/* * Copyright (c)2019 ZeroTier, Inc. * * Use of this software is governed by the Business Source License included * in the LICENSE.TXT file in the project's root directory. * * Change Date: 2026-01-01 * * On the date above, in accordance with the Business Source License, use * of this software will be governed by version 2.0 of the Apache License. */ /****/ #include "Identity.hpp" #include "Constants.hpp" #include "ECC.hpp" #include "SHA512.hpp" #include "Salsa20.hpp" #include "Utils.hpp" #include #include #include #include // These can't be changed without a new identity type. They define the // parameters of the hashcash hashing/searching algorithm. #define ZT_IDENTITY_GEN_HASHCASH_FIRST_BYTE_LESS_THAN 17 #define ZT_IDENTITY_GEN_MEMORY 2097152 namespace ZeroTier { // A memory-hard composition of SHA-512 and Salsa20 for hashcash hashing static inline void _computeMemoryHardHash(const void* publicKey, unsigned int publicKeyBytes, void* digest, void* genmem) { // Digest publicKey[] to obtain initial digest SHA512(digest, publicKey, publicKeyBytes); // Initialize genmem[] using Salsa20 in a CBC-like configuration since // ordinary Salsa20 is randomly seek-able. This is good for a cipher // but is not what we want for sequential memory-hardness. memset(genmem, 0, ZT_IDENTITY_GEN_MEMORY); Salsa20 s20(digest, (char*)digest + 32); s20.crypt20((char*)genmem, (char*)genmem, 64); for (unsigned long i = 64; i < ZT_IDENTITY_GEN_MEMORY; i += 64) { unsigned long k = i - 64; *((uint64_t*)((char*)genmem + i)) = *((uint64_t*)((char*)genmem + k)); *((uint64_t*)((char*)genmem + i + 8)) = *((uint64_t*)((char*)genmem + k + 8)); *((uint64_t*)((char*)genmem + i + 16)) = *((uint64_t*)((char*)genmem + k + 16)); *((uint64_t*)((char*)genmem + i + 24)) = *((uint64_t*)((char*)genmem + k + 24)); *((uint64_t*)((char*)genmem + i + 32)) = *((uint64_t*)((char*)genmem + k + 32)); *((uint64_t*)((char*)genmem + i + 40)) = *((uint64_t*)((char*)genmem + k + 40)); *((uint64_t*)((char*)genmem + i + 48)) = *((uint64_t*)((char*)genmem + k + 48)); *((uint64_t*)((char*)genmem + i + 56)) = *((uint64_t*)((char*)genmem + k + 56)); s20.crypt20((char*)genmem + i, (char*)genmem + i, 64); } // Render final digest using genmem as a lookup table for (unsigned long i = 0; i < (ZT_IDENTITY_GEN_MEMORY / sizeof(uint64_t));) { unsigned long idx1 = (unsigned long)(Utils::ntoh(((uint64_t*)genmem)[i++]) % (64 / sizeof(uint64_t))); unsigned long idx2 = (unsigned long)(Utils::ntoh(((uint64_t*)genmem)[i++]) % (ZT_IDENTITY_GEN_MEMORY / sizeof(uint64_t))); uint64_t tmp = ((uint64_t*)genmem)[idx2]; ((uint64_t*)genmem)[idx2] = ((uint64_t*)digest)[idx1]; ((uint64_t*)digest)[idx1] = tmp; s20.crypt20(digest, digest, 64); } } // Hashcash generation halting condition -- halt when first byte is less than // threshold value. struct _Identity_generate_cond { _Identity_generate_cond() { } _Identity_generate_cond(unsigned char* sb, char* gm) : digest(sb), genmem(gm) { } inline bool operator()(const ECC::Pair& kp) const { _computeMemoryHardHash(kp.pub.data, ZT_ECC_PUBLIC_KEY_SET_LEN, digest, genmem); return (digest[0] < ZT_IDENTITY_GEN_HASHCASH_FIRST_BYTE_LESS_THAN); } unsigned char* digest; char* genmem; }; void Identity::generate() { unsigned char digest[64]; char* genmem = new char[ZT_IDENTITY_GEN_MEMORY]; ECC::Pair kp; do { kp = ECC::generateSatisfying(_Identity_generate_cond(digest, genmem)); _address.setTo(digest + 59, ZT_ADDRESS_LENGTH); // last 5 bytes are address } while (_address.isReserved()); _publicKey = kp.pub; if (! _privateKey) { _privateKey = new ECC::Private(); } *_privateKey = kp.priv; delete[] genmem; } bool Identity::locallyValidate() const { if (_address.isReserved()) { return false; } unsigned char digest[64]; char* genmem = new char[ZT_IDENTITY_GEN_MEMORY]; _computeMemoryHardHash(_publicKey.data, ZT_ECC_PUBLIC_KEY_SET_LEN, digest, genmem); delete[] genmem; unsigned char addrb[5]; _address.copyTo(addrb, 5); return ((digest[0] < ZT_IDENTITY_GEN_HASHCASH_FIRST_BYTE_LESS_THAN) && (digest[59] == addrb[0]) && (digest[60] == addrb[1]) && (digest[61] == addrb[2]) && (digest[62] == addrb[3]) && (digest[63] == addrb[4])); } char* Identity::toString(bool includePrivate, char buf[ZT_IDENTITY_STRING_BUFFER_LENGTH]) const { char* p = buf; Utils::hex10(_address.toInt(), p); p += 10; *(p++) = ':'; *(p++) = '0'; *(p++) = ':'; Utils::hex(_publicKey.data, ZT_ECC_PUBLIC_KEY_SET_LEN, p); p += ZT_ECC_PUBLIC_KEY_SET_LEN * 2; if ((_privateKey) && (includePrivate)) { *(p++) = ':'; Utils::hex(_privateKey->data, ZT_ECC_PRIVATE_KEY_SET_LEN, p); p += ZT_ECC_PRIVATE_KEY_SET_LEN * 2; } *p = (char)0; return buf; } bool Identity::fromString(const char* str) { if (! str) { _address.zero(); return false; } char tmp[ZT_IDENTITY_STRING_BUFFER_LENGTH]; if (! Utils::scopy(tmp, sizeof(tmp), str)) { _address.zero(); return false; } delete _privateKey; _privateKey = (ECC::Private*)0; int fno = 0; char* saveptr = (char*)0; for (char* f = Utils::stok(tmp, ":", &saveptr); (f); f = Utils::stok((char*)0, ":", &saveptr)) { switch (fno++) { case 0: _address = Address(Utils::hexStrToU64(f)); if (_address.isReserved()) { _address.zero(); return false; } break; case 1: if ((f[0] != '0') || (f[1])) { _address.zero(); return false; } break; case 2: if (Utils::unhex(f, _publicKey.data, ZT_ECC_PUBLIC_KEY_SET_LEN) != ZT_ECC_PUBLIC_KEY_SET_LEN) { _address.zero(); return false; } break; case 3: _privateKey = new ECC::Private(); if (Utils::unhex(f, _privateKey->data, ZT_ECC_PRIVATE_KEY_SET_LEN) != ZT_ECC_PRIVATE_KEY_SET_LEN) { _address.zero(); return false; } break; default: _address.zero(); return false; } } if (fno < 3) { _address.zero(); return false; } return true; } } // namespace ZeroTier