/* * Copyright (c)2019 ZeroTier, Inc. * * Use of this software is governed by the Business Source License included * in the LICENSE.TXT file in the project's root directory. * * Change Date: 2026-01-01 * * On the date above, in accordance with the Business Source License, use * of this software will be governed by version 2.0 of the Apache License. */ /****/ #ifndef ZT_TOPOLOGY_HPP #define ZT_TOPOLOGY_HPP #include "../include/ZeroTierOne.h" #include "Address.hpp" #include "Constants.hpp" #include "Hashtable.hpp" #include "Identity.hpp" #include "InetAddress.hpp" #include "Mutex.hpp" #include "Path.hpp" #include "Peer.hpp" #include "World.hpp" #include #include #include #include #include #include namespace ZeroTier { class RuntimeEnvironment; /** * Database of network topology */ class Topology { public: Topology(const RuntimeEnvironment* renv, void* tPtr); ~Topology(); /** * Add a peer to database * * This will not replace existing peers. In that case the existing peer * record is returned. * * @param tPtr Thread pointer to be handed through to any callbacks called as a result of this call * @param peer Peer to add * @return New or existing peer (should replace 'peer') */ SharedPtr addPeer(void* tPtr, const SharedPtr& peer); /** * Get a peer from its address * * @param tPtr Thread pointer to be handed through to any callbacks called as a result of this call * @param zta ZeroTier address of peer * @return Peer or NULL if not found */ SharedPtr getPeer(void* tPtr, const Address& zta); /** * @param tPtr Thread pointer to be handed through to any callbacks called as a result of this call * @param zta ZeroTier address of peer * @return Identity or NULL identity if not found */ Identity getIdentity(void* tPtr, const Address& zta); /** * Get a peer only if it is presently in memory (no disk cache) * * This also does not update the lastUsed() time for peers, which means * that it won't prevent them from falling out of RAM. This is currently * used in the Cluster code to update peer info without forcing all peers * across the entire cluster to remain in memory cache. * * @param zta ZeroTier address */ inline SharedPtr getPeerNoCache(const Address& zta) { Mutex::Lock _l(_peers_m); const SharedPtr* const ap = _peers.get(zta); if (ap) { return *ap; } return SharedPtr(); } /** * Get a Path object for a given local and remote physical address, creating if needed * * @param l Local socket * @param r Remote address * @return Pointer to canonicalized Path object */ inline SharedPtr getPath(const int64_t l, const InetAddress& r) { Mutex::Lock _l(_paths_m); SharedPtr& p = _paths[Path::HashKey(l, r)]; if (! p) { p.set(new Path(l, r)); } return p; } /** * Get the current best upstream peer * * @return Upstream or NULL if none available */ SharedPtr getUpstreamPeer(); /** * @param id Identity to check * @return True if this is a root server or a network preferred relay from one of our networks */ bool isUpstream(const Identity& id) const; /** * @param addr Address to check * @return True if we should accept a world update from this address */ bool shouldAcceptWorldUpdateFrom(const Address& addr) const; /** * @param ztaddr ZeroTier address * @return Peer role for this device */ ZT_PeerRole role(const Address& ztaddr) const; /** * Check for prohibited endpoints * * Right now this returns true if the designated ZT address is a root and if * the IP (IP only, not port) does not equal any of the IPs defined in the * current World. This is an extra little security feature in case root keys * get appropriated or something. * * Otherwise it returns false. * * @param ztaddr ZeroTier address * @param ipaddr IP address * @return True if this ZT/IP pair should not be allowed to be used */ bool isProhibitedEndpoint(const Address& ztaddr, const InetAddress& ipaddr) const; /** * Gets upstreams to contact and their stable endpoints (if known) * * @param eps Hash table to fill with addresses and their stable endpoints */ inline void getUpstreamsToContact(Hashtable >& eps) const { Mutex::Lock _l(_upstreams_m); for (std::vector::const_iterator i(_planet.roots().begin()); i != _planet.roots().end(); ++i) { if (i->identity != RR->identity) { std::vector& ips = eps[i->identity.address()]; for (std::vector::const_iterator j(i->stableEndpoints.begin()); j != i->stableEndpoints.end(); ++j) { if (std::find(ips.begin(), ips.end(), *j) == ips.end()) { ips.push_back(*j); } } } } for (std::vector::const_iterator m(_moons.begin()); m != _moons.end(); ++m) { for (std::vector::const_iterator i(m->roots().begin()); i != m->roots().end(); ++i) { if (i->identity != RR->identity) { std::vector& ips = eps[i->identity.address()]; for (std::vector::const_iterator j(i->stableEndpoints.begin()); j != i->stableEndpoints.end(); ++j) { if (std::find(ips.begin(), ips.end(), *j) == ips.end()) { ips.push_back(*j); } } } } } for (std::vector >::const_iterator m(_moonSeeds.begin()); m != _moonSeeds.end(); ++m) { eps[m->second]; } } /** * @return Vector of active upstream addresses (including roots) */ inline std::vector
upstreamAddresses() const { Mutex::Lock _l(_upstreams_m); return _upstreamAddresses; } /** * @return Current moons */ inline std::vector moons() const { Mutex::Lock _l(_upstreams_m); return _moons; } /** * @return Moon IDs we are waiting for from seeds */ inline std::vector moonsWanted() const { Mutex::Lock _l(_upstreams_m); std::vector mw; for (std::vector >::const_iterator s(_moonSeeds.begin()); s != _moonSeeds.end(); ++s) { if (std::find(mw.begin(), mw.end(), s->first) == mw.end()) { mw.push_back(s->first); } } return mw; } /** * @return Current planet */ inline World planet() const { Mutex::Lock _l(_upstreams_m); return _planet; } /** * @return Current planet's world ID */ inline uint64_t planetWorldId() const { return _planet.id(); // safe to read without lock, and used from within eachPeer() so don't lock } /** * @return Current planet's world timestamp */ inline uint64_t planetWorldTimestamp() const { return _planet.timestamp(); // safe to read without lock, and used from within eachPeer() so don't lock } /** * Validate new world and update if newer and signature is okay * * @param tPtr Thread pointer to be handed through to any callbacks called as a result of this call * @param newWorld A new or updated planet or moon to learn * @param alwaysAcceptNew If true, always accept new moons even if we're not waiting for one * @return True if it was valid and newer than current (or totally new for moons) */ bool addWorld(void* tPtr, const World& newWorld, bool alwaysAcceptNew); /** * Add a moon * * This loads it from moons.d if present, and if not adds it to * a list of moons that we want to contact. * * @param id Moon ID * @param seed If non-NULL, an address of any member of the moon to contact */ void addMoon(void* tPtr, const uint64_t id, const Address& seed); /** * Remove a moon * * @param tPtr Thread pointer to be handed through to any callbacks called as a result of this call * @param id Moon's world ID */ void removeMoon(void* tPtr, const uint64_t id); /** * Clean and flush database */ void doPeriodicTasks(void* tPtr, int64_t now); /** * @param now Current time * @return Number of peers with active direct paths */ inline unsigned long countActive(int64_t now) const { unsigned long cnt = 0; Mutex::Lock _l(_peers_m); Hashtable >::Iterator i(const_cast(this)->_peers); Address* a = (Address*)0; SharedPtr* p = (SharedPtr*)0; while (i.next(a, p)) { const SharedPtr pp((*p)->getAppropriatePath(now, false)); if (pp) { ++cnt; } } return cnt; } /** * Apply a function or function object to all peers * * @param f Function to apply * @tparam F Function or function object type */ template inline void eachPeer(F f) { Mutex::Lock _l(_peers_m); Hashtable >::Iterator i(_peers); Address* a = (Address*)0; SharedPtr* p = (SharedPtr*)0; while (i.next(a, p)) { f(*this, *((const SharedPtr*)p)); } } /** * @return All currently active peers by address (unsorted) */ inline std::vector > > allPeers() const { Mutex::Lock _l(_peers_m); return _peers.entries(); } /** * @return True if I am a root server in a planet or moon */ inline bool amUpstream() const { return _amUpstream; } /** * Get info about a path * * The supplied result variables are not modified if no special config info is found. * * @param physicalAddress Physical endpoint address * @param mtu Variable set to MTU * @param trustedPathId Variable set to trusted path ID */ inline void getOutboundPathInfo(const InetAddress& physicalAddress, unsigned int& mtu, uint64_t& trustedPathId) { for (unsigned int i = 0, j = _numConfiguredPhysicalPaths; i < j; ++i) { if (_physicalPathConfig[i].first.containsAddress(physicalAddress)) { trustedPathId = _physicalPathConfig[i].second.trustedPathId; mtu = _physicalPathConfig[i].second.mtu; return; } } } /** * Get the payload MTU for an outbound physical path (returns default if not configured) * * @param physicalAddress Physical endpoint address * @return MTU */ inline unsigned int getOutboundPathMtu(const InetAddress& physicalAddress) { for (unsigned int i = 0, j = _numConfiguredPhysicalPaths; i < j; ++i) { if (_physicalPathConfig[i].first.containsAddress(physicalAddress)) { return _physicalPathConfig[i].second.mtu; } } return ZT_DEFAULT_PHYSMTU; } /** * Get the outbound trusted path ID for a physical address, or 0 if none * * @param physicalAddress Physical address to which we are sending the packet * @return Trusted path ID or 0 if none (0 is not a valid trusted path ID) */ inline uint64_t getOutboundPathTrust(const InetAddress& physicalAddress) { for (unsigned int i = 0, j = _numConfiguredPhysicalPaths; i < j; ++i) { if (_physicalPathConfig[i].first.containsAddress(physicalAddress)) { return _physicalPathConfig[i].second.trustedPathId; } } return 0; } /** * Check whether in incoming trusted path marked packet is valid * * @param physicalAddress Originating physical address * @param trustedPathId Trusted path ID from packet (from MAC field) */ inline bool shouldInboundPathBeTrusted(const InetAddress& physicalAddress, const uint64_t trustedPathId) { for (unsigned int i = 0, j = _numConfiguredPhysicalPaths; i < j; ++i) { if ((_physicalPathConfig[i].second.trustedPathId == trustedPathId) && (_physicalPathConfig[i].first.containsAddress(physicalAddress))) { return true; } } return false; } /** * Set or clear physical path configuration (called via Node::setPhysicalPathConfiguration) */ inline void setPhysicalPathConfiguration(const struct sockaddr_storage* pathNetwork, const ZT_PhysicalPathConfiguration* pathConfig) { if (! pathNetwork) { _numConfiguredPhysicalPaths = 0; } else { std::map cpaths; for (unsigned int i = 0, j = _numConfiguredPhysicalPaths; i < j; ++i) { cpaths[_physicalPathConfig[i].first] = _physicalPathConfig[i].second; } if (pathConfig) { ZT_PhysicalPathConfiguration pc(*pathConfig); if (pc.mtu <= 0) { pc.mtu = ZT_DEFAULT_PHYSMTU; } else if (pc.mtu < ZT_MIN_PHYSMTU) { pc.mtu = ZT_MIN_PHYSMTU; } else if (pc.mtu > ZT_MAX_PHYSMTU) { pc.mtu = ZT_MAX_PHYSMTU; } cpaths[*(reinterpret_cast(pathNetwork))] = pc; } else { cpaths.erase(*(reinterpret_cast(pathNetwork))); } unsigned int cnt = 0; for (std::map::const_iterator i(cpaths.begin()); ((i != cpaths.end()) && (cnt < ZT_MAX_CONFIGURABLE_PATHS)); ++i) { _physicalPathConfig[cnt].first = i->first; _physicalPathConfig[cnt].second = i->second; ++cnt; } _numConfiguredPhysicalPaths = cnt; } } private: Identity _getIdentity(void* tPtr, const Address& zta); void _memoizeUpstreams(void* tPtr); void _savePeer(void* tPtr, const SharedPtr& peer); const RuntimeEnvironment* const RR; std::pair _physicalPathConfig[ZT_MAX_CONFIGURABLE_PATHS]; volatile unsigned int _numConfiguredPhysicalPaths; Hashtable > _peers; Mutex _peers_m; Hashtable > _paths; Mutex _paths_m; World _planet; std::vector _moons; std::vector > _moonSeeds; std::vector
_upstreamAddresses; bool _amUpstream; Mutex _upstreams_m; // locks worlds, upstream info, moon info, etc. }; } // namespace ZeroTier #endif