mirror of
				https://github.com/Ylianst/MeshCentral.git
				synced 2025-03-09 15:40:18 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			1543 lines
		
	
	
		
			No EOL
		
	
	
		
			41 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
			
		
		
	
	
			1543 lines
		
	
	
		
			No EOL
		
	
	
		
			41 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
| /*
 | |
|  * Basic JavaScript BN library - subset useful for RSA encryption.
 | |
|  *
 | |
|  * Copyright (c) 2003-2005  Tom Wu
 | |
|  * All Rights Reserved.
 | |
|  *
 | |
|  * Permission is hereby granted, free of charge, to any person obtaining
 | |
|  * a copy of this software and associated documentation files (the
 | |
|  * "Software"), to deal in the Software without restriction, including
 | |
|  * without limitation the rights to use, copy, modify, merge, publish,
 | |
|  * distribute, sublicense, and/or sell copies of the Software, and to
 | |
|  * permit persons to whom the Software is furnished to do so, subject to
 | |
|  * the following conditions:
 | |
|  *
 | |
|  * The above copyright notice and this permission notice shall be
 | |
|  * included in all copies or substantial portions of the Software.
 | |
|  *
 | |
|  * THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND,
 | |
|  * EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY
 | |
|  * WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
 | |
|  *
 | |
|  * IN NO EVENT SHALL TOM WU BE LIABLE FOR ANY SPECIAL, INCIDENTAL,
 | |
|  * INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES WHATSOEVER
 | |
|  * RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER OR NOT ADVISED OF
 | |
|  * THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF LIABILITY, ARISING OUT
 | |
|  * OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 | |
|  *
 | |
|  * In addition, the following condition applies:
 | |
|  *
 | |
|  * All redistributions must retain an intact copy of this copyright notice
 | |
|  * and disclaimer.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Added Node.js Buffers support
 | |
|  * 2014 rzcoder
 | |
|  */
 | |
| 
 | |
| var crypt = require('crypto');
 | |
| 
 | |
| //var isNumber = require('lodash.isnumber'); // Remove this dependency to limit supply chain risks
 | |
| function isObjectLike(value) { return !!value && typeof value == 'object'; }
 | |
| const isNumber = function isNumber(value) { return typeof value == 'number' || (isObjectLike(value) && Object.prototype.toString.call(value) == '[object Number]'); }
 | |
| 
 | |
| // Bits per digit
 | |
| var dbits;
 | |
| 
 | |
| // JavaScript engine analysis
 | |
| var canary = 0xdeadbeefcafe;
 | |
| var j_lm = ((canary & 0xffffff) == 0xefcafe);
 | |
| 
 | |
| // (public) Constructor
 | |
| function BigInteger(a, b) {
 | |
|     if (a != null) {
 | |
|         if ("number" == typeof a) {
 | |
|             this.fromNumber(a, b);
 | |
|         } else if (Buffer.isBuffer(a)) {
 | |
|             this.fromBuffer(a);
 | |
|         } else if (b == null && "string" != typeof a) {
 | |
|             this.fromByteArray(a);
 | |
|         } else {
 | |
|             this.fromString(a, b);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| // return new, unset BigInteger
 | |
| function nbi() {
 | |
|     return new BigInteger(null);
 | |
| }
 | |
| 
 | |
| // am: Compute w_j += (x*this_i), propagate carries,
 | |
| // c is initial carry, returns final carry.
 | |
| // c < 3*dvalue, x < 2*dvalue, this_i < dvalue
 | |
| // We need to select the fastest one that works in this environment.
 | |
| 
 | |
| // am1: use a single mult and divide to get the high bits,
 | |
| // max digit bits should be 26 because
 | |
| // max internal value = 2*dvalue^2-2*dvalue (< 2^53)
 | |
| function am1(i, x, w, j, c, n) {
 | |
|     while (--n >= 0) {
 | |
|         var v = x * this[i++] + w[j] + c;
 | |
|         c = Math.floor(v / 0x4000000);
 | |
|         w[j++] = v & 0x3ffffff;
 | |
|     }
 | |
|     return c;
 | |
| }
 | |
| // am2 avoids a big mult-and-extract completely.
 | |
| // Max digit bits should be <= 30 because we do bitwise ops
 | |
| // on values up to 2*hdvalue^2-hdvalue-1 (< 2^31)
 | |
| function am2(i, x, w, j, c, n) {
 | |
|     var xl = x & 0x7fff, xh = x >> 15;
 | |
|     while (--n >= 0) {
 | |
|         var l = this[i] & 0x7fff;
 | |
|         var h = this[i++] >> 15;
 | |
|         var m = xh * l + h * xl;
 | |
|         l = xl * l + ((m & 0x7fff) << 15) + w[j] + (c & 0x3fffffff);
 | |
|         c = (l >>> 30) + (m >>> 15) + xh * h + (c >>> 30);
 | |
|         w[j++] = l & 0x3fffffff;
 | |
|     }
 | |
|     return c;
 | |
| }
 | |
| // Alternately, set max digit bits to 28 since some
 | |
| // browsers slow down when dealing with 32-bit numbers.
 | |
| function am3(i, x, w, j, c, n) {
 | |
|     var xl = x & 0x3fff, xh = x >> 14;
 | |
|     while (--n >= 0) {
 | |
|         var l = this[i] & 0x3fff;
 | |
|         var h = this[i++] >> 14;
 | |
|         var m = xh * l + h * xl;
 | |
|         l = xl * l + ((m & 0x3fff) << 14) + w[j] + c;
 | |
|         c = (l >> 28) + (m >> 14) + xh * h;
 | |
|         w[j++] = l & 0xfffffff;
 | |
|     }
 | |
|     return c;
 | |
| }
 | |
| 
 | |
| // We need to select the fastest one that works in this environment.
 | |
| //if (j_lm && (navigator.appName == "Microsoft Internet Explorer")) {
 | |
| //	BigInteger.prototype.am = am2;
 | |
| //	dbits = 30;
 | |
| //} else if (j_lm && (navigator.appName != "Netscape")) {
 | |
| //	BigInteger.prototype.am = am1;
 | |
| //	dbits = 26;
 | |
| //} else { // Mozilla/Netscape seems to prefer am3
 | |
| //	BigInteger.prototype.am = am3;
 | |
| //	dbits = 28;
 | |
| //}
 | |
| 
 | |
| // For node.js, we pick am3 with max dbits to 28.
 | |
| BigInteger.prototype.am = am3;
 | |
| dbits = 28;
 | |
| 
 | |
| BigInteger.prototype.DB = dbits;
 | |
| BigInteger.prototype.DM = ((1 << dbits) - 1);
 | |
| BigInteger.prototype.DV = (1 << dbits);
 | |
| 
 | |
| var BI_FP = 52;
 | |
| BigInteger.prototype.FV = Math.pow(2, BI_FP);
 | |
| BigInteger.prototype.F1 = BI_FP - dbits;
 | |
| BigInteger.prototype.F2 = 2 * dbits - BI_FP;
 | |
| 
 | |
| // Digit conversions
 | |
| var BI_RM = "0123456789abcdefghijklmnopqrstuvwxyz";
 | |
| var BI_RC = new Array();
 | |
| var rr, vv;
 | |
| rr = "0".charCodeAt(0);
 | |
| for (vv = 0; vv <= 9; ++vv) BI_RC[rr++] = vv;
 | |
| rr = "a".charCodeAt(0);
 | |
| for (vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv;
 | |
| rr = "A".charCodeAt(0);
 | |
| for (vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv;
 | |
| 
 | |
| function int2char(n) {
 | |
|     return BI_RM.charAt(n);
 | |
| }
 | |
| function intAt(s, i) {
 | |
|     var c = BI_RC[s.charCodeAt(i)];
 | |
|     return (c == null) ? -1 : c;
 | |
| }
 | |
| 
 | |
| // (protected) copy this to r
 | |
| function bnpCopyTo(r) {
 | |
|     for (var i = this.t - 1; i >= 0; --i) r[i] = this[i];
 | |
|     r.t = this.t;
 | |
|     r.s = this.s;
 | |
| }
 | |
| 
 | |
| // (protected) set from integer value x, -DV <= x < DV
 | |
| function bnpFromInt(x) {
 | |
|     this.t = 1;
 | |
|     this.s = (x < 0) ? -1 : 0;
 | |
|     if (x > 0) this[0] = x;
 | |
|     else if (x < -1) this[0] = x + DV;
 | |
|     else this.t = 0;
 | |
| }
 | |
| 
 | |
| // return bigint initialized to value
 | |
| function nbv(i) {
 | |
|     var r = nbi();
 | |
|     r.fromInt(i);
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| // (protected) set from string and radix
 | |
| function bnpFromString(data, radix, unsigned) {
 | |
|     var k;
 | |
|     switch (radix) {
 | |
|         case 2:
 | |
|             k = 1;
 | |
|             break;
 | |
|         case 4:
 | |
|             k = 2;
 | |
|             break;
 | |
|         case 8:
 | |
|             k = 3;
 | |
|             break;
 | |
|         case 16:
 | |
|             k = 4;
 | |
|             break;
 | |
|         case 32:
 | |
|             k = 5;
 | |
|             break;
 | |
|         case 256:
 | |
|             k = 8;
 | |
|             break;
 | |
|         default:
 | |
|             this.fromRadix(data, radix);
 | |
|             return;
 | |
|     }
 | |
| 
 | |
|     this.t = 0;
 | |
|     this.s = 0;
 | |
| 
 | |
|     var i = data.length;
 | |
|     var mi = false;
 | |
|     var sh = 0;
 | |
| 
 | |
|     while (--i >= 0) {
 | |
|         var x = (k == 8) ? data[i] & 0xff : intAt(data, i);
 | |
|         if (x < 0) {
 | |
|             if (data.charAt(i) == "-") mi = true;
 | |
|             continue;
 | |
|         }
 | |
|         mi = false;
 | |
|         if (sh === 0)
 | |
|             this[this.t++] = x;
 | |
|         else if (sh + k > this.DB) {
 | |
|             this[this.t - 1] |= (x & ((1 << (this.DB - sh)) - 1)) << sh;
 | |
|             this[this.t++] = (x >> (this.DB - sh));
 | |
|         }
 | |
|         else
 | |
|             this[this.t - 1] |= x << sh;
 | |
|         sh += k;
 | |
|         if (sh >= this.DB) sh -= this.DB;
 | |
|     }
 | |
|     if ((!unsigned) && k == 8 && (data[0] & 0x80) != 0) {
 | |
|         this.s = -1;
 | |
|         if (sh > 0) this[this.t - 1] |= ((1 << (this.DB - sh)) - 1) << sh;
 | |
|     }
 | |
|     this.clamp();
 | |
|     if (mi) BigInteger.ZERO.subTo(this, this);
 | |
| }
 | |
| 
 | |
| function bnpFromByteArray(a, unsigned) {
 | |
|     this.fromString(a, 256, unsigned)
 | |
| }
 | |
| 
 | |
| function bnpFromBuffer(a) {
 | |
|     this.fromString(a, 256, true)
 | |
| }
 | |
| 
 | |
| // (protected) clamp off excess high words
 | |
| function bnpClamp() {
 | |
|     var c = this.s & this.DM;
 | |
|     while (this.t > 0 && this[this.t - 1] == c) --this.t;
 | |
| }
 | |
| 
 | |
| // (public) return string representation in given radix
 | |
| function bnToString(b) {
 | |
|     if (this.s < 0) return "-" + this.negate().toString(b);
 | |
|     var k;
 | |
|     if (b == 16) k = 4;
 | |
|     else if (b == 8) k = 3;
 | |
|     else if (b == 2) k = 1;
 | |
|     else if (b == 32) k = 5;
 | |
|     else if (b == 4) k = 2;
 | |
|     else return this.toRadix(b);
 | |
|     var km = (1 << k) - 1, d, m = false, r = "", i = this.t;
 | |
|     var p = this.DB - (i * this.DB) % k;
 | |
|     if (i-- > 0) {
 | |
|         if (p < this.DB && (d = this[i] >> p) > 0) {
 | |
|             m = true;
 | |
|             r = int2char(d);
 | |
|         }
 | |
|         while (i >= 0) {
 | |
|             if (p < k) {
 | |
|                 d = (this[i] & ((1 << p) - 1)) << (k - p);
 | |
|                 d |= this[--i] >> (p += this.DB - k);
 | |
|             }
 | |
|             else {
 | |
|                 d = (this[i] >> (p -= k)) & km;
 | |
|                 if (p <= 0) {
 | |
|                     p += this.DB;
 | |
|                     --i;
 | |
|                 }
 | |
|             }
 | |
|             if (d > 0) m = true;
 | |
|             if (m) r += int2char(d);
 | |
|         }
 | |
|     }
 | |
|     return m ? r : "0";
 | |
| }
 | |
| 
 | |
| // (public) -this
 | |
| function bnNegate() {
 | |
|     var r = nbi();
 | |
|     BigInteger.ZERO.subTo(this, r);
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| // (public) |this|
 | |
| function bnAbs() {
 | |
|     return (this.s < 0) ? this.negate() : this;
 | |
| }
 | |
| 
 | |
| // (public) return + if this > a, - if this < a, 0 if equal
 | |
| function bnCompareTo(a) {
 | |
|     var r = this.s - a.s;
 | |
|     if (r != 0) return r;
 | |
|     var i = this.t;
 | |
|     r = i - a.t;
 | |
|     if (r != 0) return (this.s < 0) ? -r : r;
 | |
|     while (--i >= 0) if ((r = this[i] - a[i]) != 0) return r;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| // returns bit length of the integer x
 | |
| function nbits(x) {
 | |
|     var r = 1, t;
 | |
|     if ((t = x >>> 16) != 0) {
 | |
|         x = t;
 | |
|         r += 16;
 | |
|     }
 | |
|     if ((t = x >> 8) != 0) {
 | |
|         x = t;
 | |
|         r += 8;
 | |
|     }
 | |
|     if ((t = x >> 4) != 0) {
 | |
|         x = t;
 | |
|         r += 4;
 | |
|     }
 | |
|     if ((t = x >> 2) != 0) {
 | |
|         x = t;
 | |
|         r += 2;
 | |
|     }
 | |
|     if ((t = x >> 1) != 0) {
 | |
|         x = t;
 | |
|         r += 1;
 | |
|     }
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| // (public) return the number of bits in "this"
 | |
| function bnBitLength() {
 | |
|     if (this.t <= 0) return 0;
 | |
|     return this.DB * (this.t - 1) + nbits(this[this.t - 1] ^ (this.s & this.DM));
 | |
| }
 | |
| 
 | |
| // (protected) r = this << n*DB
 | |
| function bnpDLShiftTo(n, r) {
 | |
|     var i;
 | |
|     for (i = this.t - 1; i >= 0; --i) r[i + n] = this[i];
 | |
|     for (i = n - 1; i >= 0; --i) r[i] = 0;
 | |
|     r.t = this.t + n;
 | |
|     r.s = this.s;
 | |
| }
 | |
| 
 | |
| // (protected) r = this >> n*DB
 | |
| function bnpDRShiftTo(n, r) {
 | |
|     for (var i = n; i < this.t; ++i) r[i - n] = this[i];
 | |
|     r.t = Math.max(this.t - n, 0);
 | |
|     r.s = this.s;
 | |
| }
 | |
| 
 | |
| // (protected) r = this << n
 | |
| function bnpLShiftTo(n, r) {
 | |
|     var bs = n % this.DB;
 | |
|     var cbs = this.DB - bs;
 | |
|     var bm = (1 << cbs) - 1;
 | |
|     var ds = Math.floor(n / this.DB), c = (this.s << bs) & this.DM, i;
 | |
|     for (i = this.t - 1; i >= 0; --i) {
 | |
|         r[i + ds + 1] = (this[i] >> cbs) | c;
 | |
|         c = (this[i] & bm) << bs;
 | |
|     }
 | |
|     for (i = ds - 1; i >= 0; --i) r[i] = 0;
 | |
|     r[ds] = c;
 | |
|     r.t = this.t + ds + 1;
 | |
|     r.s = this.s;
 | |
|     r.clamp();
 | |
| }
 | |
| 
 | |
| // (protected) r = this >> n
 | |
| function bnpRShiftTo(n, r) {
 | |
|     r.s = this.s;
 | |
|     var ds = Math.floor(n / this.DB);
 | |
|     if (ds >= this.t) {
 | |
|         r.t = 0;
 | |
|         return;
 | |
|     }
 | |
|     var bs = n % this.DB;
 | |
|     var cbs = this.DB - bs;
 | |
|     var bm = (1 << bs) - 1;
 | |
|     r[0] = this[ds] >> bs;
 | |
|     for (var i = ds + 1; i < this.t; ++i) {
 | |
|         r[i - ds - 1] |= (this[i] & bm) << cbs;
 | |
|         r[i - ds] = this[i] >> bs;
 | |
|     }
 | |
|     if (bs > 0) r[this.t - ds - 1] |= (this.s & bm) << cbs;
 | |
|     r.t = this.t - ds;
 | |
|     r.clamp();
 | |
| }
 | |
| 
 | |
| // (protected) r = this - a
 | |
| function bnpSubTo(a, r) {
 | |
|     var i = 0, c = 0, m = Math.min(a.t, this.t);
 | |
|     while (i < m) {
 | |
|         c += this[i] - a[i];
 | |
|         r[i++] = c & this.DM;
 | |
|         c >>= this.DB;
 | |
|     }
 | |
|     if (a.t < this.t) {
 | |
|         c -= a.s;
 | |
|         while (i < this.t) {
 | |
|             c += this[i];
 | |
|             r[i++] = c & this.DM;
 | |
|             c >>= this.DB;
 | |
|         }
 | |
|         c += this.s;
 | |
|     }
 | |
|     else {
 | |
|         c += this.s;
 | |
|         while (i < a.t) {
 | |
|             c -= a[i];
 | |
|             r[i++] = c & this.DM;
 | |
|             c >>= this.DB;
 | |
|         }
 | |
|         c -= a.s;
 | |
|     }
 | |
|     r.s = (c < 0) ? -1 : 0;
 | |
|     if (c < -1) r[i++] = this.DV + c;
 | |
|     else if (c > 0) r[i++] = c;
 | |
|     r.t = i;
 | |
|     r.clamp();
 | |
| }
 | |
| 
 | |
| // (protected) r = this * a, r != this,a (HAC 14.12)
 | |
| // "this" should be the larger one if appropriate.
 | |
| function bnpMultiplyTo(a, r) {
 | |
|     var x = this.abs(), y = a.abs();
 | |
|     var i = x.t;
 | |
|     r.t = i + y.t;
 | |
|     while (--i >= 0) r[i] = 0;
 | |
|     for (i = 0; i < y.t; ++i) r[i + x.t] = x.am(0, y[i], r, i, 0, x.t);
 | |
|     r.s = 0;
 | |
|     r.clamp();
 | |
|     if (this.s != a.s) BigInteger.ZERO.subTo(r, r);
 | |
| }
 | |
| 
 | |
| // (protected) r = this^2, r != this (HAC 14.16)
 | |
| function bnpSquareTo(r) {
 | |
|     var x = this.abs();
 | |
|     var i = r.t = 2 * x.t;
 | |
|     while (--i >= 0) r[i] = 0;
 | |
|     for (i = 0; i < x.t - 1; ++i) {
 | |
|         var c = x.am(i, x[i], r, 2 * i, 0, 1);
 | |
|         if ((r[i + x.t] += x.am(i + 1, 2 * x[i], r, 2 * i + 1, c, x.t - i - 1)) >= x.DV) {
 | |
|             r[i + x.t] -= x.DV;
 | |
|             r[i + x.t + 1] = 1;
 | |
|         }
 | |
|     }
 | |
|     if (r.t > 0) r[r.t - 1] += x.am(i, x[i], r, 2 * i, 0, 1);
 | |
|     r.s = 0;
 | |
|     r.clamp();
 | |
| }
 | |
| 
 | |
| // (protected) divide this by m, quotient and remainder to q, r (HAC 14.20)
 | |
| // r != q, this != m.  q or r may be null.
 | |
| function bnpDivRemTo(m, q, r) {
 | |
|     var pm = m.abs();
 | |
|     if (pm.t <= 0) return;
 | |
|     var pt = this.abs();
 | |
|     if (pt.t < pm.t) {
 | |
|         if (q != null) q.fromInt(0);
 | |
|         if (r != null) this.copyTo(r);
 | |
|         return;
 | |
|     }
 | |
|     if (r == null) r = nbi();
 | |
|     var y = nbi(), ts = this.s, ms = m.s;
 | |
|     var nsh = this.DB - nbits(pm[pm.t - 1]);	// normalize modulus
 | |
|     if (nsh > 0) {
 | |
|         pm.lShiftTo(nsh, y);
 | |
|         pt.lShiftTo(nsh, r);
 | |
|     }
 | |
|     else {
 | |
|         pm.copyTo(y);
 | |
|         pt.copyTo(r);
 | |
|     }
 | |
|     var ys = y.t;
 | |
|     var y0 = y[ys - 1];
 | |
|     if (y0 === 0) return;
 | |
|     var yt = y0 * (1 << this.F1) + ((ys > 1) ? y[ys - 2] >> this.F2 : 0);
 | |
|     var d1 = this.FV / yt, d2 = (1 << this.F1) / yt, e = 1 << this.F2;
 | |
|     var i = r.t, j = i - ys, t = (q == null) ? nbi() : q;
 | |
|     y.dlShiftTo(j, t);
 | |
|     if (r.compareTo(t) >= 0) {
 | |
|         r[r.t++] = 1;
 | |
|         r.subTo(t, r);
 | |
|     }
 | |
|     BigInteger.ONE.dlShiftTo(ys, t);
 | |
|     t.subTo(y, y);	// "negative" y so we can replace sub with am later
 | |
|     while (y.t < ys) y[y.t++] = 0;
 | |
|     while (--j >= 0) {
 | |
|         // Estimate quotient digit
 | |
|         var qd = (r[--i] == y0) ? this.DM : Math.floor(r[i] * d1 + (r[i - 1] + e) * d2);
 | |
|         if ((r[i] += y.am(0, qd, r, j, 0, ys)) < qd) {	// Try it out
 | |
|             y.dlShiftTo(j, t);
 | |
|             r.subTo(t, r);
 | |
|             while (r[i] < --qd) r.subTo(t, r);
 | |
|         }
 | |
|     }
 | |
|     if (q != null) {
 | |
|         r.drShiftTo(ys, q);
 | |
|         if (ts != ms) BigInteger.ZERO.subTo(q, q);
 | |
|     }
 | |
|     r.t = ys;
 | |
|     r.clamp();
 | |
|     if (nsh > 0) r.rShiftTo(nsh, r);	// Denormalize remainder
 | |
|     if (ts < 0) BigInteger.ZERO.subTo(r, r);
 | |
| }
 | |
| 
 | |
| // (public) this mod a
 | |
| function bnMod(a) {
 | |
|     var r = nbi();
 | |
|     this.abs().divRemTo(a, null, r);
 | |
|     if (this.s < 0 && r.compareTo(BigInteger.ZERO) > 0) a.subTo(r, r);
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| // Modular reduction using "classic" algorithm
 | |
| function Classic(m) {
 | |
|     this.m = m;
 | |
| }
 | |
| function cConvert(x) {
 | |
|     if (x.s < 0 || x.compareTo(this.m) >= 0) return x.mod(this.m);
 | |
|     else return x;
 | |
| }
 | |
| function cRevert(x) {
 | |
|     return x;
 | |
| }
 | |
| function cReduce(x) {
 | |
|     x.divRemTo(this.m, null, x);
 | |
| }
 | |
| function cMulTo(x, y, r) {
 | |
|     x.multiplyTo(y, r);
 | |
|     this.reduce(r);
 | |
| }
 | |
| function cSqrTo(x, r) {
 | |
|     x.squareTo(r);
 | |
|     this.reduce(r);
 | |
| }
 | |
| 
 | |
| Classic.prototype.convert = cConvert;
 | |
| Classic.prototype.revert = cRevert;
 | |
| Classic.prototype.reduce = cReduce;
 | |
| Classic.prototype.mulTo = cMulTo;
 | |
| Classic.prototype.sqrTo = cSqrTo;
 | |
| 
 | |
| // (protected) return "-1/this % 2^DB"; useful for Mont. reduction
 | |
| // justification:
 | |
| //         xy == 1 (mod m)
 | |
| //         xy =  1+km
 | |
| //   xy(2-xy) = (1+km)(1-km)
 | |
| // x[y(2-xy)] = 1-k^2m^2
 | |
| // x[y(2-xy)] == 1 (mod m^2)
 | |
| // if y is 1/x mod m, then y(2-xy) is 1/x mod m^2
 | |
| // should reduce x and y(2-xy) by m^2 at each step to keep size bounded.
 | |
| // JS multiply "overflows" differently from C/C++, so care is needed here.
 | |
| function bnpInvDigit() {
 | |
|     if (this.t < 1) return 0;
 | |
|     var x = this[0];
 | |
|     if ((x & 1) === 0) return 0;
 | |
|     var y = x & 3;		// y == 1/x mod 2^2
 | |
|     y = (y * (2 - (x & 0xf) * y)) & 0xf;	// y == 1/x mod 2^4
 | |
|     y = (y * (2 - (x & 0xff) * y)) & 0xff;	// y == 1/x mod 2^8
 | |
|     y = (y * (2 - (((x & 0xffff) * y) & 0xffff))) & 0xffff;	// y == 1/x mod 2^16
 | |
|     // last step - calculate inverse mod DV directly;
 | |
|     // assumes 16 < DB <= 32 and assumes ability to handle 48-bit ints
 | |
|     y = (y * (2 - x * y % this.DV)) % this.DV;		// y == 1/x mod 2^dbits
 | |
|     // we really want the negative inverse, and -DV < y < DV
 | |
|     return (y > 0) ? this.DV - y : -y;
 | |
| }
 | |
| 
 | |
| // Montgomery reduction
 | |
| function Montgomery(m) {
 | |
|     this.m = m;
 | |
|     this.mp = m.invDigit();
 | |
|     this.mpl = this.mp & 0x7fff;
 | |
|     this.mph = this.mp >> 15;
 | |
|     this.um = (1 << (m.DB - 15)) - 1;
 | |
|     this.mt2 = 2 * m.t;
 | |
| }
 | |
| 
 | |
| // xR mod m
 | |
| function montConvert(x) {
 | |
|     var r = nbi();
 | |
|     x.abs().dlShiftTo(this.m.t, r);
 | |
|     r.divRemTo(this.m, null, r);
 | |
|     if (x.s < 0 && r.compareTo(BigInteger.ZERO) > 0) this.m.subTo(r, r);
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| // x/R mod m
 | |
| function montRevert(x) {
 | |
|     var r = nbi();
 | |
|     x.copyTo(r);
 | |
|     this.reduce(r);
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| // x = x/R mod m (HAC 14.32)
 | |
| function montReduce(x) {
 | |
|     while (x.t <= this.mt2)	// pad x so am has enough room later
 | |
|         x[x.t++] = 0;
 | |
|     for (var i = 0; i < this.m.t; ++i) {
 | |
|         // faster way of calculating u0 = x[i]*mp mod DV
 | |
|         var j = x[i] & 0x7fff;
 | |
|         var u0 = (j * this.mpl + (((j * this.mph + (x[i] >> 15) * this.mpl) & this.um) << 15)) & x.DM;
 | |
|         // use am to combine the multiply-shift-add into one call
 | |
|         j = i + this.m.t;
 | |
|         x[j] += this.m.am(0, u0, x, i, 0, this.m.t);
 | |
|         // propagate carry
 | |
|         while (x[j] >= x.DV) {
 | |
|             x[j] -= x.DV;
 | |
|             x[++j]++;
 | |
|         }
 | |
|     }
 | |
|     x.clamp();
 | |
|     x.drShiftTo(this.m.t, x);
 | |
|     if (x.compareTo(this.m) >= 0) x.subTo(this.m, x);
 | |
| }
 | |
| 
 | |
| // r = "x^2/R mod m"; x != r
 | |
| function montSqrTo(x, r) {
 | |
|     x.squareTo(r);
 | |
|     this.reduce(r);
 | |
| }
 | |
| 
 | |
| // r = "xy/R mod m"; x,y != r
 | |
| function montMulTo(x, y, r) {
 | |
|     x.multiplyTo(y, r);
 | |
|     this.reduce(r);
 | |
| }
 | |
| 
 | |
| Montgomery.prototype.convert = montConvert;
 | |
| Montgomery.prototype.revert = montRevert;
 | |
| Montgomery.prototype.reduce = montReduce;
 | |
| Montgomery.prototype.mulTo = montMulTo;
 | |
| Montgomery.prototype.sqrTo = montSqrTo;
 | |
| 
 | |
| // (protected) true iff this is even
 | |
| function bnpIsEven() {
 | |
|     return ((this.t > 0) ? (this[0] & 1) : this.s) === 0;
 | |
| }
 | |
| 
 | |
| // (protected) this^e, e < 2^32, doing sqr and mul with "r" (HAC 14.79)
 | |
| function bnpExp(e, z) {
 | |
|     if (e > 0xffffffff || e < 1) return BigInteger.ONE;
 | |
|     var r = nbi(), r2 = nbi(), g = z.convert(this), i = nbits(e) - 1;
 | |
|     g.copyTo(r);
 | |
|     while (--i >= 0) {
 | |
|         z.sqrTo(r, r2);
 | |
|         if ((e & (1 << i)) > 0) z.mulTo(r2, g, r);
 | |
|         else {
 | |
|             var t = r;
 | |
|             r = r2;
 | |
|             r2 = t;
 | |
|         }
 | |
|     }
 | |
|     return z.revert(r);
 | |
| }
 | |
| 
 | |
| // (public) this^e % m, 0 <= e < 2^32
 | |
| function bnModPowInt(e, m) {
 | |
|     var z;
 | |
|     if (e < 256 || m.isEven()) z = new Classic(m); else z = new Montgomery(m);
 | |
|     return this.exp(e, z);
 | |
| }
 | |
| 
 | |
| // Copyright (c) 2005-2009  Tom Wu
 | |
| // All Rights Reserved.
 | |
| // See "LICENSE" for details.
 | |
| 
 | |
| // Extended JavaScript BN functions, required for RSA private ops.
 | |
| 
 | |
| // Version 1.1: new BigInteger("0", 10) returns "proper" zero
 | |
| // Version 1.2: square() API, isProbablePrime fix
 | |
| 
 | |
| //(public)
 | |
| function bnClone() {
 | |
|     var r = nbi();
 | |
|     this.copyTo(r);
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| //(public) return value as integer
 | |
| function bnIntValue() {
 | |
|     if (this.s < 0) {
 | |
|         if (this.t == 1) return this[0] - this.DV;
 | |
|         else if (this.t === 0) return -1;
 | |
|     }
 | |
|     else if (this.t == 1) return this[0];
 | |
|     else if (this.t === 0) return 0;
 | |
| // assumes 16 < DB < 32
 | |
|     return ((this[1] & ((1 << (32 - this.DB)) - 1)) << this.DB) | this[0];
 | |
| }
 | |
| 
 | |
| //(public) return value as byte
 | |
| function bnByteValue() {
 | |
|     return (this.t == 0) ? this.s : (this[0] << 24) >> 24;
 | |
| }
 | |
| 
 | |
| //(public) return value as short (assumes DB>=16)
 | |
| function bnShortValue() {
 | |
|     return (this.t == 0) ? this.s : (this[0] << 16) >> 16;
 | |
| }
 | |
| 
 | |
| //(protected) return x s.t. r^x < DV
 | |
| function bnpChunkSize(r) {
 | |
|     return Math.floor(Math.LN2 * this.DB / Math.log(r));
 | |
| }
 | |
| 
 | |
| //(public) 0 if this === 0, 1 if this > 0
 | |
| function bnSigNum() {
 | |
|     if (this.s < 0) return -1;
 | |
|     else if (this.t <= 0 || (this.t == 1 && this[0] <= 0)) return 0;
 | |
|     else return 1;
 | |
| }
 | |
| 
 | |
| //(protected) convert to radix string
 | |
| function bnpToRadix(b) {
 | |
|     if (b == null) b = 10;
 | |
|     if (this.signum() === 0 || b < 2 || b > 36) return "0";
 | |
|     var cs = this.chunkSize(b);
 | |
|     var a = Math.pow(b, cs);
 | |
|     var d = nbv(a), y = nbi(), z = nbi(), r = "";
 | |
|     this.divRemTo(d, y, z);
 | |
|     while (y.signum() > 0) {
 | |
|         r = (a + z.intValue()).toString(b).substr(1) + r;
 | |
|         y.divRemTo(d, y, z);
 | |
|     }
 | |
|     return z.intValue().toString(b) + r;
 | |
| }
 | |
| 
 | |
| //(protected) convert from radix string
 | |
| function bnpFromRadix(s, b) {
 | |
|     this.fromInt(0);
 | |
|     if (b == null) b = 10;
 | |
|     var cs = this.chunkSize(b);
 | |
|     var d = Math.pow(b, cs), mi = false, j = 0, w = 0;
 | |
|     for (var i = 0; i < s.length; ++i) {
 | |
|         var x = intAt(s, i);
 | |
|         if (x < 0) {
 | |
|             if (s.charAt(i) == "-" && this.signum() === 0) mi = true;
 | |
|             continue;
 | |
|         }
 | |
|         w = b * w + x;
 | |
|         if (++j >= cs) {
 | |
|             this.dMultiply(d);
 | |
|             this.dAddOffset(w, 0);
 | |
|             j = 0;
 | |
|             w = 0;
 | |
|         }
 | |
|     }
 | |
|     if (j > 0) {
 | |
|         this.dMultiply(Math.pow(b, j));
 | |
|         this.dAddOffset(w, 0);
 | |
|     }
 | |
|     if (mi) BigInteger.ZERO.subTo(this, this);
 | |
| }
 | |
| 
 | |
| //(protected) alternate constructor
 | |
| function bnpFromNumber(a, b) {
 | |
|     if ("number" == typeof b) {
 | |
|         // new BigInteger(int,int,RNG)
 | |
|         if (a < 2) this.fromInt(1);
 | |
|         else {
 | |
|             this.fromNumber(a);
 | |
|             if (!this.testBit(a - 1))	// force MSB set
 | |
|                 this.bitwiseTo(BigInteger.ONE.shiftLeft(a - 1), op_or, this);
 | |
|             if (this.isEven()) this.dAddOffset(1, 0); // force odd
 | |
|             while (!this.isProbablePrime(b)) {
 | |
|                 this.dAddOffset(2, 0);
 | |
|                 if (this.bitLength() > a) this.subTo(BigInteger.ONE.shiftLeft(a - 1), this);
 | |
|             }
 | |
|         }
 | |
|     } else {
 | |
|         // new BigInteger(int,RNG)
 | |
|         var x = crypt.randomBytes((a >> 3) + 1)
 | |
|         var t = a & 7;
 | |
| 
 | |
|         if (t > 0)
 | |
|             x[0] &= ((1 << t) - 1);
 | |
|         else
 | |
|             x[0] = 0;
 | |
| 
 | |
|         this.fromByteArray(x);
 | |
|     }
 | |
| }
 | |
| 
 | |
| //(public) convert to bigendian byte array
 | |
| function bnToByteArray() {
 | |
|     var i = this.t, r = new Array();
 | |
|     r[0] = this.s;
 | |
|     var p = this.DB - (i * this.DB) % 8, d, k = 0;
 | |
|     if (i-- > 0) {
 | |
|         if (p < this.DB && (d = this[i] >> p) != (this.s & this.DM) >> p)
 | |
|             r[k++] = d | (this.s << (this.DB - p));
 | |
|         while (i >= 0) {
 | |
|             if (p < 8) {
 | |
|                 d = (this[i] & ((1 << p) - 1)) << (8 - p);
 | |
|                 d |= this[--i] >> (p += this.DB - 8);
 | |
|             }
 | |
|             else {
 | |
|                 d = (this[i] >> (p -= 8)) & 0xff;
 | |
|                 if (p <= 0) {
 | |
|                     p += this.DB;
 | |
|                     --i;
 | |
|                 }
 | |
|             }
 | |
|             if ((d & 0x80) != 0) d |= -256;
 | |
|             if (k === 0 && (this.s & 0x80) != (d & 0x80)) ++k;
 | |
|             if (k > 0 || d != this.s) r[k++] = d;
 | |
|         }
 | |
|     }
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * return Buffer object
 | |
|  * @param trim {boolean} slice buffer if first element == 0
 | |
|  * @returns {Buffer}
 | |
|  */
 | |
| function bnToBuffer(trimOrSize) {
 | |
|     var res = Buffer.from(this.toByteArray());
 | |
|     if (trimOrSize === true && res[0] === 0) {
 | |
|         res = res.slice(1);
 | |
|     } else if (isNumber(trimOrSize)) {
 | |
|         if (res.length > trimOrSize) {
 | |
|             for (var i = 0; i < res.length - trimOrSize; i++) {
 | |
|                 if (res[i] !== 0) {
 | |
|                     return null;
 | |
|                 }
 | |
|             }
 | |
|             return res.slice(res.length - trimOrSize);
 | |
|         } else if (res.length < trimOrSize) {
 | |
|             var padded = Buffer.alloc(trimOrSize);
 | |
|             padded.fill(0, 0, trimOrSize - res.length);
 | |
|             res.copy(padded, trimOrSize - res.length);
 | |
|             return padded;
 | |
|         }
 | |
|     }
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| function bnEquals(a) {
 | |
|     return (this.compareTo(a) == 0);
 | |
| }
 | |
| function bnMin(a) {
 | |
|     return (this.compareTo(a) < 0) ? this : a;
 | |
| }
 | |
| function bnMax(a) {
 | |
|     return (this.compareTo(a) > 0) ? this : a;
 | |
| }
 | |
| 
 | |
| //(protected) r = this op a (bitwise)
 | |
| function bnpBitwiseTo(a, op, r) {
 | |
|     var i, f, m = Math.min(a.t, this.t);
 | |
|     for (i = 0; i < m; ++i) r[i] = op(this[i], a[i]);
 | |
|     if (a.t < this.t) {
 | |
|         f = a.s & this.DM;
 | |
|         for (i = m; i < this.t; ++i) r[i] = op(this[i], f);
 | |
|         r.t = this.t;
 | |
|     }
 | |
|     else {
 | |
|         f = this.s & this.DM;
 | |
|         for (i = m; i < a.t; ++i) r[i] = op(f, a[i]);
 | |
|         r.t = a.t;
 | |
|     }
 | |
|     r.s = op(this.s, a.s);
 | |
|     r.clamp();
 | |
| }
 | |
| 
 | |
| //(public) this & a
 | |
| function op_and(x, y) {
 | |
|     return x & y;
 | |
| }
 | |
| function bnAnd(a) {
 | |
|     var r = nbi();
 | |
|     this.bitwiseTo(a, op_and, r);
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| //(public) this | a
 | |
| function op_or(x, y) {
 | |
|     return x | y;
 | |
| }
 | |
| function bnOr(a) {
 | |
|     var r = nbi();
 | |
|     this.bitwiseTo(a, op_or, r);
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| //(public) this ^ a
 | |
| function op_xor(x, y) {
 | |
|     return x ^ y;
 | |
| }
 | |
| function bnXor(a) {
 | |
|     var r = nbi();
 | |
|     this.bitwiseTo(a, op_xor, r);
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| //(public) this & ~a
 | |
| function op_andnot(x, y) {
 | |
|     return x & ~y;
 | |
| }
 | |
| function bnAndNot(a) {
 | |
|     var r = nbi();
 | |
|     this.bitwiseTo(a, op_andnot, r);
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| //(public) ~this
 | |
| function bnNot() {
 | |
|     var r = nbi();
 | |
|     for (var i = 0; i < this.t; ++i) r[i] = this.DM & ~this[i];
 | |
|     r.t = this.t;
 | |
|     r.s = ~this.s;
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| //(public) this << n
 | |
| function bnShiftLeft(n) {
 | |
|     var r = nbi();
 | |
|     if (n < 0) this.rShiftTo(-n, r); else this.lShiftTo(n, r);
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| //(public) this >> n
 | |
| function bnShiftRight(n) {
 | |
|     var r = nbi();
 | |
|     if (n < 0) this.lShiftTo(-n, r); else this.rShiftTo(n, r);
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| //return index of lowest 1-bit in x, x < 2^31
 | |
| function lbit(x) {
 | |
|     if (x === 0) return -1;
 | |
|     var r = 0;
 | |
|     if ((x & 0xffff) === 0) {
 | |
|         x >>= 16;
 | |
|         r += 16;
 | |
|     }
 | |
|     if ((x & 0xff) === 0) {
 | |
|         x >>= 8;
 | |
|         r += 8;
 | |
|     }
 | |
|     if ((x & 0xf) === 0) {
 | |
|         x >>= 4;
 | |
|         r += 4;
 | |
|     }
 | |
|     if ((x & 3) === 0) {
 | |
|         x >>= 2;
 | |
|         r += 2;
 | |
|     }
 | |
|     if ((x & 1) === 0) ++r;
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| //(public) returns index of lowest 1-bit (or -1 if none)
 | |
| function bnGetLowestSetBit() {
 | |
|     for (var i = 0; i < this.t; ++i)
 | |
|         if (this[i] != 0) return i * this.DB + lbit(this[i]);
 | |
|     if (this.s < 0) return this.t * this.DB;
 | |
|     return -1;
 | |
| }
 | |
| 
 | |
| //return number of 1 bits in x
 | |
| function cbit(x) {
 | |
|     var r = 0;
 | |
|     while (x != 0) {
 | |
|         x &= x - 1;
 | |
|         ++r;
 | |
|     }
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| //(public) return number of set bits
 | |
| function bnBitCount() {
 | |
|     var r = 0, x = this.s & this.DM;
 | |
|     for (var i = 0; i < this.t; ++i) r += cbit(this[i] ^ x);
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| //(public) true iff nth bit is set
 | |
| function bnTestBit(n) {
 | |
|     var j = Math.floor(n / this.DB);
 | |
|     if (j >= this.t) return (this.s != 0);
 | |
|     return ((this[j] & (1 << (n % this.DB))) != 0);
 | |
| }
 | |
| 
 | |
| //(protected) this op (1<<n)
 | |
| function bnpChangeBit(n, op) {
 | |
|     var r = BigInteger.ONE.shiftLeft(n);
 | |
|     this.bitwiseTo(r, op, r);
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| //(public) this | (1<<n)
 | |
| function bnSetBit(n) {
 | |
|     return this.changeBit(n, op_or);
 | |
| }
 | |
| 
 | |
| //(public) this & ~(1<<n)
 | |
| function bnClearBit(n) {
 | |
|     return this.changeBit(n, op_andnot);
 | |
| }
 | |
| 
 | |
| //(public) this ^ (1<<n)
 | |
| function bnFlipBit(n) {
 | |
|     return this.changeBit(n, op_xor);
 | |
| }
 | |
| 
 | |
| //(protected) r = this + a
 | |
| function bnpAddTo(a, r) {
 | |
|     var i = 0, c = 0, m = Math.min(a.t, this.t);
 | |
|     while (i < m) {
 | |
|         c += this[i] + a[i];
 | |
|         r[i++] = c & this.DM;
 | |
|         c >>= this.DB;
 | |
|     }
 | |
|     if (a.t < this.t) {
 | |
|         c += a.s;
 | |
|         while (i < this.t) {
 | |
|             c += this[i];
 | |
|             r[i++] = c & this.DM;
 | |
|             c >>= this.DB;
 | |
|         }
 | |
|         c += this.s;
 | |
|     }
 | |
|     else {
 | |
|         c += this.s;
 | |
|         while (i < a.t) {
 | |
|             c += a[i];
 | |
|             r[i++] = c & this.DM;
 | |
|             c >>= this.DB;
 | |
|         }
 | |
|         c += a.s;
 | |
|     }
 | |
|     r.s = (c < 0) ? -1 : 0;
 | |
|     if (c > 0) r[i++] = c;
 | |
|     else if (c < -1) r[i++] = this.DV + c;
 | |
|     r.t = i;
 | |
|     r.clamp();
 | |
| }
 | |
| 
 | |
| //(public) this + a
 | |
| function bnAdd(a) {
 | |
|     var r = nbi();
 | |
|     this.addTo(a, r);
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| //(public) this - a
 | |
| function bnSubtract(a) {
 | |
|     var r = nbi();
 | |
|     this.subTo(a, r);
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| //(public) this * a
 | |
| function bnMultiply(a) {
 | |
|     var r = nbi();
 | |
|     this.multiplyTo(a, r);
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| // (public) this^2
 | |
| function bnSquare() {
 | |
|     var r = nbi();
 | |
|     this.squareTo(r);
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| //(public) this / a
 | |
| function bnDivide(a) {
 | |
|     var r = nbi();
 | |
|     this.divRemTo(a, r, null);
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| //(public) this % a
 | |
| function bnRemainder(a) {
 | |
|     var r = nbi();
 | |
|     this.divRemTo(a, null, r);
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| //(public) [this/a,this%a]
 | |
| function bnDivideAndRemainder(a) {
 | |
|     var q = nbi(), r = nbi();
 | |
|     this.divRemTo(a, q, r);
 | |
|     return new Array(q, r);
 | |
| }
 | |
| 
 | |
| //(protected) this *= n, this >= 0, 1 < n < DV
 | |
| function bnpDMultiply(n) {
 | |
|     this[this.t] = this.am(0, n - 1, this, 0, 0, this.t);
 | |
|     ++this.t;
 | |
|     this.clamp();
 | |
| }
 | |
| 
 | |
| //(protected) this += n << w words, this >= 0
 | |
| function bnpDAddOffset(n, w) {
 | |
|     if (n === 0) return;
 | |
|     while (this.t <= w) this[this.t++] = 0;
 | |
|     this[w] += n;
 | |
|     while (this[w] >= this.DV) {
 | |
|         this[w] -= this.DV;
 | |
|         if (++w >= this.t) this[this.t++] = 0;
 | |
|         ++this[w];
 | |
|     }
 | |
| }
 | |
| 
 | |
| //A "null" reducer
 | |
| function NullExp() {
 | |
| }
 | |
| function nNop(x) {
 | |
|     return x;
 | |
| }
 | |
| function nMulTo(x, y, r) {
 | |
|     x.multiplyTo(y, r);
 | |
| }
 | |
| function nSqrTo(x, r) {
 | |
|     x.squareTo(r);
 | |
| }
 | |
| 
 | |
| NullExp.prototype.convert = nNop;
 | |
| NullExp.prototype.revert = nNop;
 | |
| NullExp.prototype.mulTo = nMulTo;
 | |
| NullExp.prototype.sqrTo = nSqrTo;
 | |
| 
 | |
| //(public) this^e
 | |
| function bnPow(e) {
 | |
|     return this.exp(e, new NullExp());
 | |
| }
 | |
| 
 | |
| //(protected) r = lower n words of "this * a", a.t <= n
 | |
| //"this" should be the larger one if appropriate.
 | |
| function bnpMultiplyLowerTo(a, n, r) {
 | |
|     var i = Math.min(this.t + a.t, n);
 | |
|     r.s = 0; // assumes a,this >= 0
 | |
|     r.t = i;
 | |
|     while (i > 0) r[--i] = 0;
 | |
|     var j;
 | |
|     for (j = r.t - this.t; i < j; ++i) r[i + this.t] = this.am(0, a[i], r, i, 0, this.t);
 | |
|     for (j = Math.min(a.t, n); i < j; ++i) this.am(0, a[i], r, i, 0, n - i);
 | |
|     r.clamp();
 | |
| }
 | |
| 
 | |
| //(protected) r = "this * a" without lower n words, n > 0
 | |
| //"this" should be the larger one if appropriate.
 | |
| function bnpMultiplyUpperTo(a, n, r) {
 | |
|     --n;
 | |
|     var i = r.t = this.t + a.t - n;
 | |
|     r.s = 0; // assumes a,this >= 0
 | |
|     while (--i >= 0) r[i] = 0;
 | |
|     for (i = Math.max(n - this.t, 0); i < a.t; ++i)
 | |
|         r[this.t + i - n] = this.am(n - i, a[i], r, 0, 0, this.t + i - n);
 | |
|     r.clamp();
 | |
|     r.drShiftTo(1, r);
 | |
| }
 | |
| 
 | |
| //Barrett modular reduction
 | |
| function Barrett(m) {
 | |
| // setup Barrett
 | |
|     this.r2 = nbi();
 | |
|     this.q3 = nbi();
 | |
|     BigInteger.ONE.dlShiftTo(2 * m.t, this.r2);
 | |
|     this.mu = this.r2.divide(m);
 | |
|     this.m = m;
 | |
| }
 | |
| 
 | |
| function barrettConvert(x) {
 | |
|     if (x.s < 0 || x.t > 2 * this.m.t) return x.mod(this.m);
 | |
|     else if (x.compareTo(this.m) < 0) return x;
 | |
|     else {
 | |
|         var r = nbi();
 | |
|         x.copyTo(r);
 | |
|         this.reduce(r);
 | |
|         return r;
 | |
|     }
 | |
| }
 | |
| 
 | |
| function barrettRevert(x) {
 | |
|     return x;
 | |
| }
 | |
| 
 | |
| //x = x mod m (HAC 14.42)
 | |
| function barrettReduce(x) {
 | |
|     x.drShiftTo(this.m.t - 1, this.r2);
 | |
|     if (x.t > this.m.t + 1) {
 | |
|         x.t = this.m.t + 1;
 | |
|         x.clamp();
 | |
|     }
 | |
|     this.mu.multiplyUpperTo(this.r2, this.m.t + 1, this.q3);
 | |
|     this.m.multiplyLowerTo(this.q3, this.m.t + 1, this.r2);
 | |
|     while (x.compareTo(this.r2) < 0) x.dAddOffset(1, this.m.t + 1);
 | |
|     x.subTo(this.r2, x);
 | |
|     while (x.compareTo(this.m) >= 0) x.subTo(this.m, x);
 | |
| }
 | |
| 
 | |
| //r = x^2 mod m; x != r
 | |
| function barrettSqrTo(x, r) {
 | |
|     x.squareTo(r);
 | |
|     this.reduce(r);
 | |
| }
 | |
| 
 | |
| //r = x*y mod m; x,y != r
 | |
| function barrettMulTo(x, y, r) {
 | |
|     x.multiplyTo(y, r);
 | |
|     this.reduce(r);
 | |
| }
 | |
| 
 | |
| Barrett.prototype.convert = barrettConvert;
 | |
| Barrett.prototype.revert = barrettRevert;
 | |
| Barrett.prototype.reduce = barrettReduce;
 | |
| Barrett.prototype.mulTo = barrettMulTo;
 | |
| Barrett.prototype.sqrTo = barrettSqrTo;
 | |
| 
 | |
| //(public) this^e % m (HAC 14.85)
 | |
| function bnModPow(e, m) {
 | |
|     var i = e.bitLength(), k, r = nbv(1), z;
 | |
|     if (i <= 0) return r;
 | |
|     else if (i < 18) k = 1;
 | |
|     else if (i < 48) k = 3;
 | |
|     else if (i < 144) k = 4;
 | |
|     else if (i < 768) k = 5;
 | |
|     else k = 6;
 | |
|     if (i < 8)
 | |
|         z = new Classic(m);
 | |
|     else if (m.isEven())
 | |
|         z = new Barrett(m);
 | |
|     else
 | |
|         z = new Montgomery(m);
 | |
| 
 | |
| // precomputation
 | |
|     var g = new Array(), n = 3, k1 = k - 1, km = (1 << k) - 1;
 | |
|     g[1] = z.convert(this);
 | |
|     if (k > 1) {
 | |
|         var g2 = nbi();
 | |
|         z.sqrTo(g[1], g2);
 | |
|         while (n <= km) {
 | |
|             g[n] = nbi();
 | |
|             z.mulTo(g2, g[n - 2], g[n]);
 | |
|             n += 2;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     var j = e.t - 1, w, is1 = true, r2 = nbi(), t;
 | |
|     i = nbits(e[j]) - 1;
 | |
|     while (j >= 0) {
 | |
|         if (i >= k1) w = (e[j] >> (i - k1)) & km;
 | |
|         else {
 | |
|             w = (e[j] & ((1 << (i + 1)) - 1)) << (k1 - i);
 | |
|             if (j > 0) w |= e[j - 1] >> (this.DB + i - k1);
 | |
|         }
 | |
| 
 | |
|         n = k;
 | |
|         while ((w & 1) === 0) {
 | |
|             w >>= 1;
 | |
|             --n;
 | |
|         }
 | |
|         if ((i -= n) < 0) {
 | |
|             i += this.DB;
 | |
|             --j;
 | |
|         }
 | |
|         if (is1) {	// ret == 1, don't bother squaring or multiplying it
 | |
|             g[w].copyTo(r);
 | |
|             is1 = false;
 | |
|         }
 | |
|         else {
 | |
|             while (n > 1) {
 | |
|                 z.sqrTo(r, r2);
 | |
|                 z.sqrTo(r2, r);
 | |
|                 n -= 2;
 | |
|             }
 | |
|             if (n > 0) z.sqrTo(r, r2); else {
 | |
|                 t = r;
 | |
|                 r = r2;
 | |
|                 r2 = t;
 | |
|             }
 | |
|             z.mulTo(r2, g[w], r);
 | |
|         }
 | |
| 
 | |
|         while (j >= 0 && (e[j] & (1 << i)) === 0) {
 | |
|             z.sqrTo(r, r2);
 | |
|             t = r;
 | |
|             r = r2;
 | |
|             r2 = t;
 | |
|             if (--i < 0) {
 | |
|                 i = this.DB - 1;
 | |
|                 --j;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     return z.revert(r);
 | |
| }
 | |
| 
 | |
| //(public) gcd(this,a) (HAC 14.54)
 | |
| function bnGCD(a) {
 | |
|     var x = (this.s < 0) ? this.negate() : this.clone();
 | |
|     var y = (a.s < 0) ? a.negate() : a.clone();
 | |
|     if (x.compareTo(y) < 0) {
 | |
|         var t = x;
 | |
|         x = y;
 | |
|         y = t;
 | |
|     }
 | |
|     var i = x.getLowestSetBit(), g = y.getLowestSetBit();
 | |
|     if (g < 0) return x;
 | |
|     if (i < g) g = i;
 | |
|     if (g > 0) {
 | |
|         x.rShiftTo(g, x);
 | |
|         y.rShiftTo(g, y);
 | |
|     }
 | |
|     while (x.signum() > 0) {
 | |
|         if ((i = x.getLowestSetBit()) > 0) x.rShiftTo(i, x);
 | |
|         if ((i = y.getLowestSetBit()) > 0) y.rShiftTo(i, y);
 | |
|         if (x.compareTo(y) >= 0) {
 | |
|             x.subTo(y, x);
 | |
|             x.rShiftTo(1, x);
 | |
|         }
 | |
|         else {
 | |
|             y.subTo(x, y);
 | |
|             y.rShiftTo(1, y);
 | |
|         }
 | |
|     }
 | |
|     if (g > 0) y.lShiftTo(g, y);
 | |
|     return y;
 | |
| }
 | |
| 
 | |
| //(protected) this % n, n < 2^26
 | |
| function bnpModInt(n) {
 | |
|     if (n <= 0) return 0;
 | |
|     var d = this.DV % n, r = (this.s < 0) ? n - 1 : 0;
 | |
|     if (this.t > 0)
 | |
|         if (d === 0) r = this[0] % n;
 | |
|         else for (var i = this.t - 1; i >= 0; --i) r = (d * r + this[i]) % n;
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| //(public) 1/this % m (HAC 14.61)
 | |
| function bnModInverse(m) {
 | |
|     var ac = m.isEven();
 | |
|     if ((this.isEven() && ac) || m.signum() === 0) return BigInteger.ZERO;
 | |
|     var u = m.clone(), v = this.clone();
 | |
|     var a = nbv(1), b = nbv(0), c = nbv(0), d = nbv(1);
 | |
|     while (u.signum() != 0) {
 | |
|         while (u.isEven()) {
 | |
|             u.rShiftTo(1, u);
 | |
|             if (ac) {
 | |
|                 if (!a.isEven() || !b.isEven()) {
 | |
|                     a.addTo(this, a);
 | |
|                     b.subTo(m, b);
 | |
|                 }
 | |
|                 a.rShiftTo(1, a);
 | |
|             }
 | |
|             else if (!b.isEven()) b.subTo(m, b);
 | |
|             b.rShiftTo(1, b);
 | |
|         }
 | |
|         while (v.isEven()) {
 | |
|             v.rShiftTo(1, v);
 | |
|             if (ac) {
 | |
|                 if (!c.isEven() || !d.isEven()) {
 | |
|                     c.addTo(this, c);
 | |
|                     d.subTo(m, d);
 | |
|                 }
 | |
|                 c.rShiftTo(1, c);
 | |
|             }
 | |
|             else if (!d.isEven()) d.subTo(m, d);
 | |
|             d.rShiftTo(1, d);
 | |
|         }
 | |
|         if (u.compareTo(v) >= 0) {
 | |
|             u.subTo(v, u);
 | |
|             if (ac) a.subTo(c, a);
 | |
|             b.subTo(d, b);
 | |
|         }
 | |
|         else {
 | |
|             v.subTo(u, v);
 | |
|             if (ac) c.subTo(a, c);
 | |
|             d.subTo(b, d);
 | |
|         }
 | |
|     }
 | |
|     if (v.compareTo(BigInteger.ONE) != 0) return BigInteger.ZERO;
 | |
|     if (d.compareTo(m) >= 0) return d.subtract(m);
 | |
|     if (d.signum() < 0) d.addTo(m, d); else return d;
 | |
|     if (d.signum() < 0) return d.add(m); else return d;
 | |
| }
 | |
| 
 | |
| var lowprimes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997];
 | |
| var lplim = (1 << 26) / lowprimes[lowprimes.length - 1];
 | |
| 
 | |
| //(public) test primality with certainty >= 1-.5^t
 | |
| function bnIsProbablePrime(t) {
 | |
|     var i, x = this.abs();
 | |
|     if (x.t == 1 && x[0] <= lowprimes[lowprimes.length - 1]) {
 | |
|         for (i = 0; i < lowprimes.length; ++i)
 | |
|             if (x[0] == lowprimes[i]) return true;
 | |
|         return false;
 | |
|     }
 | |
|     if (x.isEven()) return false;
 | |
|     i = 1;
 | |
|     while (i < lowprimes.length) {
 | |
|         var m = lowprimes[i], j = i + 1;
 | |
|         while (j < lowprimes.length && m < lplim) m *= lowprimes[j++];
 | |
|         m = x.modInt(m);
 | |
|         while (i < j) if (m % lowprimes[i++] === 0) return false;
 | |
|     }
 | |
|     return x.millerRabin(t);
 | |
| }
 | |
| 
 | |
| //(protected) true if probably prime (HAC 4.24, Miller-Rabin)
 | |
| function bnpMillerRabin(t) {
 | |
|     var n1 = this.subtract(BigInteger.ONE);
 | |
|     var k = n1.getLowestSetBit();
 | |
|     if (k <= 0) return false;
 | |
|     var r = n1.shiftRight(k);
 | |
|     t = (t + 1) >> 1;
 | |
|     if (t > lowprimes.length) t = lowprimes.length;
 | |
|     var a = nbi();
 | |
|     for (var i = 0; i < t; ++i) {
 | |
|         //Pick bases at random, instead of starting at 2
 | |
|         a.fromInt(lowprimes[Math.floor(Math.random() * lowprimes.length)]);
 | |
|         var y = a.modPow(r, this);
 | |
|         if (y.compareTo(BigInteger.ONE) != 0 && y.compareTo(n1) != 0) {
 | |
|             var j = 1;
 | |
|             while (j++ < k && y.compareTo(n1) != 0) {
 | |
|                 y = y.modPowInt(2, this);
 | |
|                 if (y.compareTo(BigInteger.ONE) === 0) return false;
 | |
|             }
 | |
|             if (y.compareTo(n1) != 0) return false;
 | |
|         }
 | |
|     }
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| // protected
 | |
| BigInteger.prototype.copyTo = bnpCopyTo;
 | |
| BigInteger.prototype.fromInt = bnpFromInt;
 | |
| BigInteger.prototype.fromString = bnpFromString;
 | |
| BigInteger.prototype.fromByteArray = bnpFromByteArray;
 | |
| BigInteger.prototype.fromBuffer = bnpFromBuffer;
 | |
| BigInteger.prototype.clamp = bnpClamp;
 | |
| BigInteger.prototype.dlShiftTo = bnpDLShiftTo;
 | |
| BigInteger.prototype.drShiftTo = bnpDRShiftTo;
 | |
| BigInteger.prototype.lShiftTo = bnpLShiftTo;
 | |
| BigInteger.prototype.rShiftTo = bnpRShiftTo;
 | |
| BigInteger.prototype.subTo = bnpSubTo;
 | |
| BigInteger.prototype.multiplyTo = bnpMultiplyTo;
 | |
| BigInteger.prototype.squareTo = bnpSquareTo;
 | |
| BigInteger.prototype.divRemTo = bnpDivRemTo;
 | |
| BigInteger.prototype.invDigit = bnpInvDigit;
 | |
| BigInteger.prototype.isEven = bnpIsEven;
 | |
| BigInteger.prototype.exp = bnpExp;
 | |
| 
 | |
| BigInteger.prototype.chunkSize = bnpChunkSize;
 | |
| BigInteger.prototype.toRadix = bnpToRadix;
 | |
| BigInteger.prototype.fromRadix = bnpFromRadix;
 | |
| BigInteger.prototype.fromNumber = bnpFromNumber;
 | |
| BigInteger.prototype.bitwiseTo = bnpBitwiseTo;
 | |
| BigInteger.prototype.changeBit = bnpChangeBit;
 | |
| BigInteger.prototype.addTo = bnpAddTo;
 | |
| BigInteger.prototype.dMultiply = bnpDMultiply;
 | |
| BigInteger.prototype.dAddOffset = bnpDAddOffset;
 | |
| BigInteger.prototype.multiplyLowerTo = bnpMultiplyLowerTo;
 | |
| BigInteger.prototype.multiplyUpperTo = bnpMultiplyUpperTo;
 | |
| BigInteger.prototype.modInt = bnpModInt;
 | |
| BigInteger.prototype.millerRabin = bnpMillerRabin;
 | |
| 
 | |
| 
 | |
| // public
 | |
| BigInteger.prototype.toString = bnToString;
 | |
| BigInteger.prototype.negate = bnNegate;
 | |
| BigInteger.prototype.abs = bnAbs;
 | |
| BigInteger.prototype.compareTo = bnCompareTo;
 | |
| BigInteger.prototype.bitLength = bnBitLength;
 | |
| BigInteger.prototype.mod = bnMod;
 | |
| BigInteger.prototype.modPowInt = bnModPowInt;
 | |
| 
 | |
| BigInteger.prototype.clone = bnClone;
 | |
| BigInteger.prototype.intValue = bnIntValue;
 | |
| BigInteger.prototype.byteValue = bnByteValue;
 | |
| BigInteger.prototype.shortValue = bnShortValue;
 | |
| BigInteger.prototype.signum = bnSigNum;
 | |
| BigInteger.prototype.toByteArray = bnToByteArray;
 | |
| BigInteger.prototype.toBuffer = bnToBuffer;
 | |
| BigInteger.prototype.equals = bnEquals;
 | |
| BigInteger.prototype.min = bnMin;
 | |
| BigInteger.prototype.max = bnMax;
 | |
| BigInteger.prototype.and = bnAnd;
 | |
| BigInteger.prototype.or = bnOr;
 | |
| BigInteger.prototype.xor = bnXor;
 | |
| BigInteger.prototype.andNot = bnAndNot;
 | |
| BigInteger.prototype.not = bnNot;
 | |
| BigInteger.prototype.shiftLeft = bnShiftLeft;
 | |
| BigInteger.prototype.shiftRight = bnShiftRight;
 | |
| BigInteger.prototype.getLowestSetBit = bnGetLowestSetBit;
 | |
| BigInteger.prototype.bitCount = bnBitCount;
 | |
| BigInteger.prototype.testBit = bnTestBit;
 | |
| BigInteger.prototype.setBit = bnSetBit;
 | |
| BigInteger.prototype.clearBit = bnClearBit;
 | |
| BigInteger.prototype.flipBit = bnFlipBit;
 | |
| BigInteger.prototype.add = bnAdd;
 | |
| BigInteger.prototype.subtract = bnSubtract;
 | |
| BigInteger.prototype.multiply = bnMultiply;
 | |
| BigInteger.prototype.divide = bnDivide;
 | |
| BigInteger.prototype.remainder = bnRemainder;
 | |
| BigInteger.prototype.divideAndRemainder = bnDivideAndRemainder;
 | |
| BigInteger.prototype.modPow = bnModPow;
 | |
| BigInteger.prototype.modInverse = bnModInverse;
 | |
| BigInteger.prototype.pow = bnPow;
 | |
| BigInteger.prototype.gcd = bnGCD;
 | |
| BigInteger.prototype.isProbablePrime = bnIsProbablePrime;
 | |
| BigInteger.int2char = int2char;
 | |
| 
 | |
| // "constants"
 | |
| BigInteger.ZERO = nbv(0);
 | |
| BigInteger.ONE = nbv(1);
 | |
| 
 | |
| // JSBN-specific extension
 | |
| BigInteger.prototype.square = bnSquare;
 | |
| 
 | |
| //BigInteger interfaces not implemented in jsbn:
 | |
| 
 | |
| //BigInteger(int signum, byte[] magnitude)
 | |
| //double doubleValue()
 | |
| //float floatValue()
 | |
| //int hashCode()
 | |
| //long longValue()
 | |
| //static BigInteger valueOf(long val)
 | |
| 
 | |
| module.exports = BigInteger; |