Initial release: NCCL Mesh Plugin for direct-connect RDMA topologies

- Enables NCCL over multi-subnet mesh topologies
- 8+ GB/s bandwidth over 100Gbps RDMA
- Successfully tested with distributed LLM inference (Mistral-7B)
- Custom subnet-aware NIC selection
- Background handshake thread for deadlock-free connection setup
This commit is contained in:
autoscriptlabs 2026-01-09 14:09:33 -05:00
commit 031bc48953
13 changed files with 3074 additions and 0 deletions

View file

@ -0,0 +1,87 @@
#!/usr/bin/env python3
"""
Bandwidth benchmark for NCCL Mesh Plugin
Usage:
# On each node (adjust --rank):
python benchmark_bandwidth.py --rank 0 --world-size 3 --master-ip 10.0.0.170
"""
import argparse
import time
import torch
import torch.distributed as dist
def benchmark_allreduce(size_mb: int, iterations: int, warmup: int = 5):
"""Benchmark all-reduce bandwidth"""
# Create tensor
num_elements = (size_mb * 1024 * 1024) // 4 # float32 = 4 bytes
tensor = torch.ones(num_elements, device='cuda', dtype=torch.float32)
# Warmup
for _ in range(warmup):
dist.all_reduce(tensor)
torch.cuda.synchronize()
# Benchmark
start = time.perf_counter()
for _ in range(iterations):
dist.all_reduce(tensor)
torch.cuda.synchronize()
elapsed = time.perf_counter() - start
# Calculate bandwidth
# All-reduce transfers 2*(N-1)/N * size data in ring algorithm
total_data_gb = (size_mb * iterations) / 1024
bandwidth_gbs = total_data_gb / elapsed
return bandwidth_gbs, elapsed
def main():
parser = argparse.ArgumentParser(description='Benchmark NCCL bandwidth')
parser.add_argument('--rank', type=int, required=True)
parser.add_argument('--world-size', type=int, default=3)
parser.add_argument('--master-ip', type=str, default='10.0.0.170')
parser.add_argument('--master-port', type=int, default=29500)
parser.add_argument('--iterations', type=int, default=20)
args = parser.parse_args()
# Initialize
init_method = f'tcp://{args.master_ip}:{args.master_port}'
dist.init_process_group('nccl', rank=args.rank, world_size=args.world_size,
init_method=init_method)
if args.rank == 0:
print(f'\n{"="*60}')
print(f'NCCL Mesh Plugin Bandwidth Benchmark')
print(f'World size: {args.world_size}')
print(f'Iterations per size: {args.iterations}')
print(f'{"="*60}\n')
print(f'{"Size":<12} {"Bandwidth":<15} {"Time":<12}')
print(f'{"-"*12} {"-"*15} {"-"*12}')
# Test different sizes
sizes_mb = [1, 4, 16, 64, 128, 256, 512]
for size_mb in sizes_mb:
bandwidth, elapsed = benchmark_allreduce(size_mb, args.iterations)
if args.rank == 0:
print(f'{size_mb:>6} MB {bandwidth:>8.2f} GB/s {elapsed:>6.3f} s')
# Sync between sizes
dist.barrier()
if args.rank == 0:
print(f'\n{"="*60}')
print('Benchmark complete!')
print(f'{"="*60}\n')
dist.destroy_process_group()
if __name__ == '__main__':
main()

View file

@ -0,0 +1,84 @@
#!/usr/bin/env python3
"""
Distributed LLM Inference with NCCL Mesh Plugin
This example demonstrates loading and running inference on a large language
model distributed across multiple GPUs using the NCCL Mesh Plugin.
Usage:
# On each node (adjust --rank):
python distributed_llm.py --rank 0 --world-size 3 --master-ip 10.0.0.170
Environment setup (run on each node):
cd ~/nccl-mesh-plugin
export LD_LIBRARY_PATH=$(pwd):$LD_LIBRARY_PATH
export NCCL_NET_PLUGIN=mesh
export NCCL_DEBUG=WARN
"""
import argparse
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from accelerate import Accelerator
def main():
parser = argparse.ArgumentParser(description='Distributed LLM Inference')
parser.add_argument('--rank', type=int, required=True)
parser.add_argument('--world-size', type=int, default=3)
parser.add_argument('--master-ip', type=str, default='10.0.0.170')
parser.add_argument('--master-port', type=int, default=29500)
parser.add_argument('--model', type=str, default='mistralai/Mistral-7B-Instruct-v0.2',
help='Model to load (default: Mistral-7B)')
parser.add_argument('--prompt', type=str,
default='The future of distributed AI computing is',
help='Prompt for generation')
parser.add_argument('--max-tokens', type=int, default=100,
help='Maximum tokens to generate')
args = parser.parse_args()
# Initialize accelerator
accelerator = Accelerator()
print(f'Rank {accelerator.process_index}: Loading tokenizer...')
tokenizer = AutoTokenizer.from_pretrained(args.model)
print(f'Rank {accelerator.process_index}: Loading model...')
model = AutoModelForCausalLM.from_pretrained(
args.model,
torch_dtype=torch.bfloat16,
device_map='auto',
)
print(f'Rank {accelerator.process_index}: Model loaded!')
# Only rank 0 generates
if accelerator.is_main_process:
print(f'\nGenerating text...')
print(f'Prompt: "{args.prompt}"\n')
inputs = tokenizer(args.prompt, return_tensors='pt').to('cuda')
outputs = model.generate(
**inputs,
max_new_tokens=args.max_tokens,
do_sample=True,
temperature=0.7,
top_p=0.9,
)
result = tokenizer.decode(outputs[0], skip_special_tokens=True)
print('=' * 60)
print('Generated Text:')
print('=' * 60)
print(result)
print('=' * 60)
# Wait for all ranks
accelerator.wait_for_everyone()
print(f'Rank {accelerator.process_index}: Done!')
if __name__ == '__main__':
main()

View file

@ -0,0 +1,65 @@
#!/usr/bin/env python3
"""
Basic all-reduce test for NCCL Mesh Plugin
Usage:
# On rank 0:
python test_allreduce.py --rank 0 --world-size 3 --master-ip 10.0.0.170
# On rank 1:
python test_allreduce.py --rank 1 --world-size 3 --master-ip 10.0.0.170
# On rank 2:
python test_allreduce.py --rank 2 --world-size 3 --master-ip 10.0.0.170
"""
import argparse
import torch
import torch.distributed as dist
def main():
parser = argparse.ArgumentParser(description='Test NCCL all-reduce')
parser.add_argument('--rank', type=int, required=True, help='Rank of this process')
parser.add_argument('--world-size', type=int, default=3, help='Total number of processes')
parser.add_argument('--master-ip', type=str, default='10.0.0.170', help='Master node IP')
parser.add_argument('--master-port', type=int, default=29500, help='Master node port')
args = parser.parse_args()
# Initialize process group
init_method = f'tcp://{args.master_ip}:{args.master_port}'
print(f'Rank {args.rank}: Initializing with {init_method}')
dist.init_process_group(
backend='nccl',
rank=args.rank,
world_size=args.world_size,
init_method=init_method
)
print(f'Rank {args.rank}: Process group initialized')
# Create tensor on GPU
tensor = torch.ones(1000, device='cuda')
print(f'Rank {args.rank}: Created tensor with sum = {tensor.sum().item()}')
# All-reduce (sum)
dist.all_reduce(tensor, op=dist.ReduceOp.SUM)
result = tensor[0].item()
expected = float(args.world_size)
print(f'Rank {args.rank}: After all-reduce, tensor[0] = {result}')
if abs(result - expected) < 0.001:
print(f'Rank {args.rank}: ✓ SUCCESS! Result matches expected value {expected}')
else:
print(f'Rank {args.rank}: ✗ FAILED! Expected {expected}, got {result}')
# Cleanup
dist.destroy_process_group()
print(f'Rank {args.rank}: Done')
if __name__ == '__main__':
main()