1
0
Fork 0
mirror of https://github.com/ossrs/srs.git synced 2025-02-15 04:42:04 +00:00
srs/trunk/src/rtmp/srs_protocol_handshake.cpp

1372 lines
39 KiB
C++
Raw Normal View History

2013-11-23 03:36:07 +00:00
/*
The MIT License (MIT)
Copyright (c) 2013-2014 winlin
2013-11-23 03:36:07 +00:00
Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include <srs_protocol_handshake.hpp>
2013-11-23 03:36:07 +00:00
#include <time.h>
#include <srs_core_autofree.hpp>
#include <srs_kernel_error.hpp>
#include <srs_kernel_log.hpp>
#include <srs_protocol_io.hpp>
#include <srs_protocol_utility.hpp>
#include <srs_protocol_rtmp.hpp>
#include <srs_kernel_stream.hpp>
2013-11-23 03:36:07 +00:00
#ifdef SRS_AUTO_SSL
2013-11-27 14:41:58 +00:00
using namespace _srs_internal;
2013-11-23 03:36:07 +00:00
// for openssl_HMACsha256
2013-11-23 03:36:07 +00:00
#include <openssl/evp.h>
#include <openssl/hmac.h>
// for __openssl_generate_key
2013-11-23 03:36:07 +00:00
#include <openssl/dh.h>
namespace _srs_internal
2013-11-23 03:36:07 +00:00
{
// 68bytes FMS key which is used to sign the sever packet.
u_int8_t SrsGenuineFMSKey[] = {
0x47, 0x65, 0x6e, 0x75, 0x69, 0x6e, 0x65, 0x20,
0x41, 0x64, 0x6f, 0x62, 0x65, 0x20, 0x46, 0x6c,
0x61, 0x73, 0x68, 0x20, 0x4d, 0x65, 0x64, 0x69,
0x61, 0x20, 0x53, 0x65, 0x72, 0x76, 0x65, 0x72,
0x20, 0x30, 0x30, 0x31, // Genuine Adobe Flash Media Server 001
0xf0, 0xee, 0xc2, 0x4a, 0x80, 0x68, 0xbe, 0xe8,
0x2e, 0x00, 0xd0, 0xd1, 0x02, 0x9e, 0x7e, 0x57,
0x6e, 0xec, 0x5d, 0x2d, 0x29, 0x80, 0x6f, 0xab,
0x93, 0xb8, 0xe6, 0x36, 0xcf, 0xeb, 0x31, 0xae
}; // 68
// 62bytes FP key which is used to sign the client packet.
u_int8_t SrsGenuineFPKey[] = {
0x47, 0x65, 0x6E, 0x75, 0x69, 0x6E, 0x65, 0x20,
0x41, 0x64, 0x6F, 0x62, 0x65, 0x20, 0x46, 0x6C,
0x61, 0x73, 0x68, 0x20, 0x50, 0x6C, 0x61, 0x79,
0x65, 0x72, 0x20, 0x30, 0x30, 0x31, // Genuine Adobe Flash Player 001
0xF0, 0xEE, 0xC2, 0x4A, 0x80, 0x68, 0xBE, 0xE8,
0x2E, 0x00, 0xD0, 0xD1, 0x02, 0x9E, 0x7E, 0x57,
0x6E, 0xEC, 0x5D, 0x2D, 0x29, 0x80, 0x6F, 0xAB,
0x93, 0xB8, 0xE6, 0x36, 0xCF, 0xEB, 0x31, 0xAE
}; // 62
int __openssl_HMACsha256(HMAC_CTX* ctx, const void* data, int data_size, void* digest, unsigned int* digest_size)
{
int ret = ERROR_SUCCESS;
if (HMAC_Update(ctx, (unsigned char *) data, data_size) < 0) {
ret = ERROR_OpenSslSha256Update;
return ret;
}
2014-03-18 03:32:58 +00:00
if (HMAC_Final(ctx, (unsigned char *) digest, digest_size) < 0) {
ret = ERROR_OpenSslSha256Final;
return ret;
}
return ret;
}
/**
* sha256 digest algorithm.
* @param key the sha256 key, NULL to use EVP_Digest, for instance,
* hashlib.sha256(data).digest().
*/
int openssl_HMACsha256(const void* key, int key_size, const void* data, int data_size, void* digest)
{
int ret = ERROR_SUCCESS;
unsigned int digest_size = 0;
unsigned char* __key = (unsigned char*)key;
unsigned char* __digest = (unsigned char*)digest;
if (key == NULL) {
// use data to digest.
// @see ./crypto/sha/sha256t.c
// @see ./crypto/evp/digest.c
if (EVP_Digest(data, data_size, __digest, &digest_size, EVP_sha256(), NULL) < 0)
{
ret = ERROR_OpenSslSha256EvpDigest;
return ret;
}
} else {
// use key-data to digest.
HMAC_CTX ctx;
// @remark, if no key, use EVP_Digest to digest,
// for instance, in python, hashlib.sha256(data).digest().
HMAC_CTX_init(&ctx);
if (HMAC_Init_ex(&ctx, __key, key_size, EVP_sha256(), NULL) < 0) {
ret = ERROR_OpenSslSha256Init;
return ret;
}
ret = __openssl_HMACsha256(&ctx, data, data_size, __digest, &digest_size);
HMAC_CTX_cleanup(&ctx);
if (ret != ERROR_SUCCESS) {
return ret;
}
}
if (digest_size != 32) {
ret = ERROR_OpenSslSha256DigestSize;
return ret;
}
return ret;
}
#define RFC2409_PRIME_1024 \
"FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" \
"29024E088A67CC74020BBEA63B139B22514A08798E3404DD" \
"EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" \
"E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" \
"EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE65381" \
"FFFFFFFFFFFFFFFF"
SrsDH::SrsDH()
{
pdh = NULL;
}
2014-03-18 03:32:58 +00:00
SrsDH::~SrsDH()
{
if (pdh != NULL) {
if (pdh->p != NULL) {
BN_free(pdh->p);
pdh->p = NULL;
}
if (pdh->g != NULL) {
BN_free(pdh->g);
pdh->g = NULL;
}
DH_free(pdh);
pdh = NULL;
}
}
2014-03-18 03:32:58 +00:00
int SrsDH::initialize(bool ensure_128bytes_public_key)
{
int ret = ERROR_SUCCESS;
for (;;) {
if ((ret = do_initialize()) != ERROR_SUCCESS) {
return ret;
}
if (ensure_128bytes_public_key) {
int32_t key_size = BN_num_bytes(pdh->pub_key);
if (key_size != 128) {
srs_warn("regenerate 128B key, current=%dB", key_size);
continue;
}
}
break;
}
return ret;
}
int SrsDH::copy_public_key(char* pkey, int32_t& pkey_size)
{
int ret = ERROR_SUCCESS;
// copy public key to bytes.
// sometimes, the key_size is 127, seems ok.
int32_t key_size = BN_num_bytes(pdh->pub_key);
srs_assert(key_size > 0);
// maybe the key_size is 127, but dh will write all 128bytes pkey,
// so, donot need to set/initialize the pkey.
// @see https://github.com/winlinvip/simple-rtmp-server/issues/165
key_size = BN_bn2bin(pdh->pub_key, (unsigned char*)pkey);
srs_assert(key_size > 0);
// output the size of public key.
// @see https://github.com/winlinvip/simple-rtmp-server/issues/165
srs_assert(key_size <= pkey_size);
pkey_size = key_size;
return ret;
2014-03-18 03:32:58 +00:00
}
int SrsDH::copy_shared_key(const char* ppkey, int32_t ppkey_size, char* skey, int32_t& skey_size)
{
int ret = ERROR_SUCCESS;
BIGNUM* ppk = NULL;
if ((ppk = BN_bin2bn((const unsigned char*)ppkey, ppkey_size, 0)) == NULL) {
ret = ERROR_OpenSslGetPeerPublicKey;
return ret;
}
// if failed, donot return, do cleanup, @see ./test/dhtest.c:168
// maybe the key_size is 127, but dh will write all 128bytes skey,
// so, donot need to set/initialize the skey.
// @see https://github.com/winlinvip/simple-rtmp-server/issues/165
int32_t key_size = DH_compute_key((unsigned char*)skey, ppk, pdh);
if (key_size < ppkey_size) {
srs_warn("shared key size=%d, ppk_size=%d", key_size, ppkey_size);
}
if (key_size < 0 || key_size > skey_size) {
ret = ERROR_OpenSslComputeSharedKey;
} else {
skey_size = key_size;
}
if (ppk) {
BN_free(ppk);
}
return ret;
}
int SrsDH::do_initialize()
{
int ret = ERROR_SUCCESS;
int32_t bits_count = 1024;
//1. Create the DH
if ((pdh = DH_new()) == NULL) {
ret = ERROR_OpenSslCreateDH;
return ret;
}
//2. Create his internal p and g
if ((pdh->p = BN_new()) == NULL) {
ret = ERROR_OpenSslCreateP;
return ret;
}
if ((pdh->g = BN_new()) == NULL) {
ret = ERROR_OpenSslCreateG;
return ret;
}
//3. initialize p and g, @see ./test/ectest.c:260
if (!BN_hex2bn(&pdh->p, RFC2409_PRIME_1024)) {
ret = ERROR_OpenSslParseP1024;
return ret;
}
// @see ./test/bntest.c:1764
if (!BN_set_word(pdh->g, 2)) {
ret = ERROR_OpenSslSetG;
return ret;
}
2014-03-18 03:32:58 +00:00
// 4. Set the key length
pdh->length = bits_count;
2014-03-18 03:32:58 +00:00
// 5. Generate private and public key
// @see ./test/dhtest.c:152
if (!DH_generate_key(pdh)) {
ret = ERROR_OpenSslGenerateDHKeys;
return ret;
}
return ret;
}
2014-03-18 03:32:58 +00:00
key_block::key_block()
{
offset = (int32_t)rand();
random0 = NULL;
random1 = NULL;
int valid_offset = calc_valid_offset();
srs_assert(valid_offset >= 0);
random0_size = valid_offset;
if (random0_size > 0) {
random0 = new char[random0_size];
srs_random_generate(random0, random0_size);
snprintf(random0, random0_size, "%s", RTMP_SIG_SRS_HANDSHAKE);
}
srs_random_generate(key, sizeof(key));
random1_size = 764 - valid_offset - 128 - 4;
if (random1_size > 0) {
random1 = new char[random1_size];
srs_random_generate(random1, random1_size);
snprintf(random1, random1_size, "%s", RTMP_SIG_SRS_HANDSHAKE);
}
2014-03-18 03:32:58 +00:00
}
key_block::~key_block()
{
2014-11-29 10:16:15 +00:00
srs_freep(random0);
srs_freep(random1);
}
int key_block::parse(SrsStream* stream)
{
int ret = ERROR_SUCCESS;
// the key must be 764 bytes.
srs_assert(stream->require(764));
2014-03-18 03:32:58 +00:00
// read the last offset first, 760-763
stream->skip(764 - sizeof(int32_t));
offset = stream->read_4bytes();
// reset stream to read others.
stream->skip(-764);
int valid_offset = calc_valid_offset();
srs_assert(valid_offset >= 0);
random0_size = valid_offset;
if (random0_size > 0) {
2014-11-29 10:16:15 +00:00
srs_freep(random0);
random0 = new char[random0_size];
stream->read_bytes(random0, random0_size);
}
stream->read_bytes(key, 128);
random1_size = 764 - valid_offset - 128 - 4;
if (random1_size > 0) {
2014-11-29 10:16:15 +00:00
srs_freep(random1);
random1 = new char[random1_size];
stream->read_bytes(random1, random1_size);
}
return ret;
2014-03-18 03:32:58 +00:00
}
int key_block::calc_valid_offset()
{
int max_offset_size = 764 - 128 - 4;
int valid_offset = 0;
u_int8_t* pp = (u_int8_t*)&offset;
valid_offset += *pp++;
valid_offset += *pp++;
valid_offset += *pp++;
valid_offset += *pp++;
return valid_offset % max_offset_size;
2014-03-18 03:32:58 +00:00
}
digest_block::digest_block()
{
offset = (int32_t)rand();
random0 = NULL;
random1 = NULL;
int valid_offset = calc_valid_offset();
srs_assert(valid_offset >= 0);
random0_size = valid_offset;
if (random0_size > 0) {
random0 = new char[random0_size];
srs_random_generate(random0, random0_size);
snprintf(random0, random0_size, "%s", RTMP_SIG_SRS_HANDSHAKE);
}
srs_random_generate(digest, sizeof(digest));
random1_size = 764 - 4 - valid_offset - 32;
if (random1_size > 0) {
random1 = new char[random1_size];
srs_random_generate(random1, random1_size);
snprintf(random1, random1_size, "%s", RTMP_SIG_SRS_HANDSHAKE);
}
2014-03-18 03:32:58 +00:00
}
digest_block::~digest_block()
{
2014-11-29 10:16:15 +00:00
srs_freep(random0);
srs_freep(random1);
}
int digest_block::parse(SrsStream* stream)
{
int ret = ERROR_SUCCESS;
// the digest must be 764 bytes.
srs_assert(stream->require(764));
offset = stream->read_4bytes();
int valid_offset = calc_valid_offset();
srs_assert(valid_offset >= 0);
random0_size = valid_offset;
if (random0_size > 0) {
2014-11-29 10:16:15 +00:00
srs_freep(random0);
random0 = new char[random0_size];
stream->read_bytes(random0, random0_size);
}
stream->read_bytes(digest, 32);
random1_size = 764 - 4 - valid_offset - 32;
if (random1_size > 0) {
2014-11-29 10:16:15 +00:00
srs_freep(random1);
random1 = new char[random1_size];
stream->read_bytes(random1, random1_size);
}
return ret;
2014-03-18 03:32:58 +00:00
}
int digest_block::calc_valid_offset()
{
int max_offset_size = 764 - 32 - 4;
int valid_offset = 0;
u_int8_t* pp = (u_int8_t*)&offset;
valid_offset += *pp++;
valid_offset += *pp++;
valid_offset += *pp++;
valid_offset += *pp++;
return valid_offset % max_offset_size;
2014-03-18 03:32:58 +00:00
}
c1s1_strategy::c1s1_strategy()
{
}
c1s1_strategy::~c1s1_strategy()
{
}
char* c1s1_strategy::get_digest()
{
return digest.digest;
}
int c1s1_strategy::dump(c1s1* owner, char* _c1s1, int size)
{
return copy_to(owner, _c1s1, size, true);
}
int c1s1_strategy::c1_create(c1s1* owner)
{
int ret = ERROR_SUCCESS;
// generate digest
char* c1_digest = NULL;
if ((ret = calc_c1_digest(owner, c1_digest)) != ERROR_SUCCESS) {
srs_error("sign c1 error, failed to calc digest. ret=%d", ret);
return ret;
}
srs_assert(c1_digest != NULL);
SrsAutoFree(char, c1_digest);
memcpy(digest.digest, c1_digest, 32);
return ret;
}
int c1s1_strategy::c1_validate_digest(c1s1* owner, bool& is_valid)
{
int ret = ERROR_SUCCESS;
char* c1_digest = NULL;
if ((ret = calc_c1_digest(owner, c1_digest)) != ERROR_SUCCESS) {
srs_error("validate c1 error, failed to calc digest. ret=%d", ret);
return ret;
}
srs_assert(c1_digest != NULL);
SrsAutoFree(char, c1_digest);
is_valid = srs_bytes_equals(digest.digest, c1_digest, 32);
return ret;
}
int c1s1_strategy::s1_create(c1s1* owner)
{
int ret = ERROR_SUCCESS;
SrsDH dh;
// ensure generate 128bytes public key.
if ((ret = dh.initialize(true)) != ERROR_SUCCESS) {
return ret;
}
// directly generate the public key.
// @see: https://github.com/winlinvip/simple-rtmp-server/issues/148
int pkey_size = 128;
// TODO: FIXME: use c1 public key to calc the shared key.
if ((ret = dh.copy_public_key(key.key, pkey_size)) != ERROR_SUCCESS) {
srs_error("calc s1 key failed. ret=%d", ret);
return ret;
}
srs_assert(pkey_size == 128);
srs_verbose("calc s1 key success.");
char* s1_digest = NULL;
if ((ret = calc_s1_digest(owner, s1_digest)) != ERROR_SUCCESS) {
srs_error("calc s1 digest failed. ret=%d", ret);
return ret;
}
srs_verbose("calc s1 digest success.");
srs_assert(s1_digest != NULL);
SrsAutoFree(char, s1_digest);
memcpy(digest.digest, s1_digest, 32);
srs_verbose("copy s1 key success.");
return ret;
}
int c1s1_strategy::s1_validate_digest(c1s1* owner, bool& is_valid)
{
int ret = ERROR_SUCCESS;
char* s1_digest = NULL;
if ((ret = calc_s1_digest(owner, s1_digest)) != ERROR_SUCCESS) {
srs_error("validate s1 error, failed to calc digest. ret=%d", ret);
return ret;
}
srs_assert(s1_digest != NULL);
SrsAutoFree(char, s1_digest);
is_valid = srs_bytes_equals(digest.digest, s1_digest, 32);
return ret;
}
int c1s1_strategy::calc_c1_digest(c1s1* owner, char*& c1_digest)
{
int ret = ERROR_SUCCESS;
/**
* c1s1 is splited by digest:
* c1s1-part1: n bytes (time, version, key and digest-part1).
* digest-data: 32bytes
* c1s1-part2: (1536-n-32)bytes (digest-part2)
* @return a new allocated bytes, user must free it.
*/
char* c1s1_joined_bytes = new char[1536 -32];
SrsAutoFree(char, c1s1_joined_bytes);
if ((ret = copy_to(owner, c1s1_joined_bytes, 1536 - 32, false)) != ERROR_SUCCESS) {
return ret;
}
c1_digest = new char[__SRS_OpensslHashSize];
if ((ret = openssl_HMACsha256(SrsGenuineFPKey, 30, c1s1_joined_bytes, 1536 - 32, c1_digest)) != ERROR_SUCCESS) {
srs_freep(c1_digest);
srs_error("calc digest for c1 failed. ret=%d", ret);
return ret;
}
srs_verbose("digest calculated for c1");
return ret;
}
int c1s1_strategy::calc_s1_digest(c1s1* owner, char*& s1_digest)
{
int ret = ERROR_SUCCESS;
/**
* c1s1 is splited by digest:
* c1s1-part1: n bytes (time, version, key and digest-part1).
* digest-data: 32bytes
* c1s1-part2: (1536-n-32)bytes (digest-part2)
* @return a new allocated bytes, user must free it.
*/
char* c1s1_joined_bytes = new char[1536 -32];
SrsAutoFree(char, c1s1_joined_bytes);
if ((ret = copy_to(owner, c1s1_joined_bytes, 1536 - 32, false)) != ERROR_SUCCESS) {
return ret;
}
s1_digest = new char[__SRS_OpensslHashSize];
if ((ret = openssl_HMACsha256(SrsGenuineFMSKey, 36, c1s1_joined_bytes, 1536 - 32, s1_digest)) != ERROR_SUCCESS) {
srs_freep(s1_digest);
srs_error("calc digest for s1 failed. ret=%d", ret);
return ret;
}
srs_verbose("digest calculated for s1");
return ret;
}
void c1s1_strategy::copy_time_version(SrsStream* stream, c1s1* owner)
{
srs_assert(stream->require(8));
// 4bytes time
stream->write_4bytes(owner->time);
// 4bytes version
stream->write_4bytes(owner->version);
}
void c1s1_strategy::copy_key(SrsStream* stream)
{
srs_assert(key.random0_size >= 0);
srs_assert(key.random1_size >= 0);
int total = key.random0_size + 128 + key.random1_size + 4;
srs_assert(stream->require(total));
// 764bytes key block
if (key.random0_size > 0) {
stream->write_bytes(key.random0, key.random0_size);
}
stream->write_bytes(key.key, 128);
if (key.random1_size > 0) {
stream->write_bytes(key.random1, key.random1_size);
}
stream->write_4bytes(key.offset);
}
void c1s1_strategy::copy_digest(SrsStream* stream, bool with_digest)
{
srs_assert(key.random0_size >= 0);
srs_assert(key.random1_size >= 0);
int total = 4 + digest.random0_size + digest.random1_size;
if (with_digest) {
total += 32;
}
srs_assert(stream->require(total));
// 732bytes digest block without the 32bytes digest-data
// nbytes digest block part1
stream->write_4bytes(digest.offset);
// digest random padding.
if (digest.random0_size > 0) {
stream->write_bytes(digest.random0, digest.random0_size);
}
// digest
if (with_digest) {
stream->write_bytes(digest.digest, 32);
}
// nbytes digest block part2
if (digest.random1_size > 0) {
stream->write_bytes(digest.random1, digest.random1_size);
}
}
c1s1_strategy_schema0::c1s1_strategy_schema0()
{
}
c1s1_strategy_schema0::~c1s1_strategy_schema0()
{
}
srs_schema_type c1s1_strategy_schema0::schema()
{
return srs_schema0;
}
int c1s1_strategy_schema0::parse(char* _c1s1, int size)
{
int ret = ERROR_SUCCESS;
srs_assert(size == 1536);
SrsStream stream;
if ((ret = stream.initialize(_c1s1 + 8, 764)) != ERROR_SUCCESS) {
return ret;
}
if ((ret = key.parse(&stream)) != ERROR_SUCCESS) {
srs_error("parse the c1 key failed. ret=%d", ret);
return ret;
}
if ((ret = stream.initialize(_c1s1 + 8 + 764, 764)) != ERROR_SUCCESS) {
return ret;
}
if ((ret = digest.parse(&stream)) != ERROR_SUCCESS) {
srs_error("parse the c1 digest failed. ret=%d", ret);
return ret;
}
srs_verbose("parse c1 key-digest success");
return ret;
}
int c1s1_strategy_schema0::copy_to(c1s1* owner, char* bytes, int size, bool with_digest)
{
int ret = ERROR_SUCCESS;
2014-11-29 10:16:15 +00:00
SrsStream stream;
if ((ret = stream.initialize(bytes, size)) != ERROR_SUCCESS) {
return ret;
}
copy_time_version(&stream, owner);
copy_key(&stream);
copy_digest(&stream, with_digest);
srs_assert(stream.empty());
2014-11-29 10:16:15 +00:00
return ret;
}
c1s1_strategy_schema1::c1s1_strategy_schema1()
{
}
c1s1_strategy_schema1::~c1s1_strategy_schema1()
{
}
srs_schema_type c1s1_strategy_schema1::schema()
{
return srs_schema1;
}
int c1s1_strategy_schema1::parse(char* _c1s1, int size)
{
int ret = ERROR_SUCCESS;
srs_assert(size == 1536);
SrsStream stream;
if ((ret = stream.initialize(_c1s1 + 8, 764)) != ERROR_SUCCESS) {
return ret;
}
if ((ret = digest.parse(&stream)) != ERROR_SUCCESS) {
srs_error("parse the c1 digest failed. ret=%d", ret);
return ret;
}
if ((ret = stream.initialize(_c1s1 + 8 + 764, 764)) != ERROR_SUCCESS) {
return ret;
}
if ((ret = key.parse(&stream)) != ERROR_SUCCESS) {
srs_error("parse the c1 key failed. ret=%d", ret);
return ret;
}
srs_verbose("parse c1 digest-key success");
return ret;
}
int c1s1_strategy_schema1::copy_to(c1s1* owner, char* bytes, int size, bool with_digest)
{
int ret = ERROR_SUCCESS;
2014-11-29 10:16:15 +00:00
SrsStream stream;
if ((ret = stream.initialize(bytes, size)) != ERROR_SUCCESS) {
return ret;
}
copy_time_version(&stream, owner);
copy_digest(&stream, with_digest);
copy_key(&stream);
srs_assert(stream.empty());
2014-11-29 10:16:15 +00:00
return ret;
}
// TODO: FIXME: move to the right position.
c1s1::c1s1()
{
payload = NULL;
}
c1s1::~c1s1()
{
srs_freep(payload);
/*
void c1s1::destroy_blocks()
{
if (schema == srs_schema_invalid) {
return;
}
if (schema == srs_schema0) {
block0.key.free();
block1.digest.free();
} else {
block0.digest.free();
block1.key.free();
}
}*/
}
srs_schema_type c1s1::schema()
{
srs_assert(payload != NULL);
return payload->schema();
}
char* c1s1::get_digest()
{
srs_assert(payload != NULL);
return payload->get_digest();
}
int c1s1::dump(char* _c1s1, int size)
{
srs_assert(payload != NULL);
return payload->dump(this, _c1s1, size);
}
int c1s1::parse(char* _c1s1, int size, srs_schema_type schema)
{
int ret = ERROR_SUCCESS;
srs_assert(size == 1536);
if (schema != srs_schema0 && schema != srs_schema1) {
ret = ERROR_RTMP_CH_SCHEMA;
srs_error("parse c1 failed. invalid schema=%d, ret=%d", schema, ret);
return ret;
}
SrsStream stream;
if ((ret = stream.initialize(_c1s1, size)) != ERROR_SUCCESS) {
return ret;
}
time = stream.read_4bytes();
version = stream.read_4bytes(); // client c1 version
srs_freep(payload);
if (schema == srs_schema0) {
payload = new c1s1_strategy_schema0();
} else {
payload = new c1s1_strategy_schema1();
}
return payload->parse(_c1s1, size);
2014-03-18 03:32:58 +00:00
}
int c1s1::c1_create(srs_schema_type schema)
{
int ret = ERROR_SUCCESS;
if (schema != srs_schema0 && schema != srs_schema1) {
ret = ERROR_RTMP_CH_SCHEMA;
srs_error("create c1 failed. invalid schema=%d, ret=%d", schema, ret);
return ret;
}
// client c1 time and version
time = ::time(NULL);
version = 0x80000702; // client c1 version
// generate signature by schema
srs_freep(payload);
if (schema == srs_schema0) {
payload = new c1s1_strategy_schema0();
} else {
payload = new c1s1_strategy_schema1();
}
return payload->c1_create(this);
2014-03-19 05:10:25 +00:00
}
int c1s1::c1_validate_digest(bool& is_valid)
{
is_valid = false;
srs_assert(payload);
return payload->c1_validate_digest(this, is_valid);
2014-03-18 03:32:58 +00:00
}
int c1s1::s1_create(c1s1* c1)
{
int ret = ERROR_SUCCESS;
if (c1->schema() != srs_schema0 && c1->schema() != srs_schema1) {
ret = ERROR_RTMP_CH_SCHEMA;
srs_error("create s1 failed. invalid schema=%d, ret=%d", c1->schema(), ret);
2014-03-18 03:32:58 +00:00
return ret;
}
time = ::time(NULL);
version = 0x01000504; // server s1 version
srs_freep(payload);
if (c1->schema() == srs_schema0) {
payload = new c1s1_strategy_schema0();
} else {
payload = new c1s1_strategy_schema1();
}
return payload->s1_create(this);
2014-03-18 03:32:58 +00:00
}
int c1s1::s1_validate_digest(bool& is_valid)
{
is_valid = false;
srs_assert(payload);
return payload->s1_validate_digest(this, is_valid);
}
c2s2::c2s2()
{
srs_random_generate(random, 1504);
int size = snprintf(random, 1504, "%s", RTMP_SIG_SRS_HANDSHAKE);
srs_assert(++size < 1504);
snprintf(random + 1504 - size, size, "%s", RTMP_SIG_SRS_HANDSHAKE);
srs_random_generate(digest, 32);
}
c2s2::~c2s2()
{
}
int c2s2::dump(char* _c2s2, int size)
{
srs_assert(size == 1536);
memcpy(_c2s2, random, 1504);
memcpy(_c2s2 + 1504, digest, 32);
return ERROR_SUCCESS;
}
int c2s2::parse(char* _c2s2, int size)
{
srs_assert(size == 1536);
memcpy(random, _c2s2, 1504);
memcpy(digest, _c2s2 + 1504, 32);
return ERROR_SUCCESS;
}
int c2s2::c2_create(c1s1* s1)
{
int ret = ERROR_SUCCESS;
char temp_key[__SRS_OpensslHashSize];
if ((ret = openssl_HMACsha256(SrsGenuineFPKey, 62, s1->get_digest(), 32, temp_key)) != ERROR_SUCCESS) {
srs_error("create c2 temp key failed. ret=%d", ret);
return ret;
}
srs_verbose("generate c2 temp key success.");
char _digest[__SRS_OpensslHashSize];
if ((ret = openssl_HMACsha256(temp_key, 32, random, 1504, _digest)) != ERROR_SUCCESS) {
srs_error("create c2 digest failed. ret=%d", ret);
return ret;
}
srs_verbose("generate c2 digest success.");
memcpy(digest, _digest, 32);
return ret;
}
int c2s2::c2_validate(c1s1* s1, bool& is_valid)
{
is_valid = false;
int ret = ERROR_SUCCESS;
char temp_key[__SRS_OpensslHashSize];
if ((ret = openssl_HMACsha256(SrsGenuineFPKey, 62, s1->get_digest(), 32, temp_key)) != ERROR_SUCCESS) {
srs_error("create c2 temp key failed. ret=%d", ret);
return ret;
}
srs_verbose("generate c2 temp key success.");
char _digest[__SRS_OpensslHashSize];
if ((ret = openssl_HMACsha256(temp_key, 32, random, 1504, _digest)) != ERROR_SUCCESS) {
srs_error("create c2 digest failed. ret=%d", ret);
return ret;
}
srs_verbose("generate c2 digest success.");
is_valid = srs_bytes_equals(digest, _digest, 32);
return ret;
}
int c2s2::s2_create(c1s1* c1)
{
int ret = ERROR_SUCCESS;
char temp_key[__SRS_OpensslHashSize];
if ((ret = openssl_HMACsha256(SrsGenuineFMSKey, 68, c1->get_digest(), 32, temp_key)) != ERROR_SUCCESS) {
srs_error("create s2 temp key failed. ret=%d", ret);
return ret;
}
srs_verbose("generate s2 temp key success.");
char _digest[__SRS_OpensslHashSize];
if ((ret = openssl_HMACsha256(temp_key, 32, random, 1504, _digest)) != ERROR_SUCCESS) {
srs_error("create s2 digest failed. ret=%d", ret);
return ret;
}
srs_verbose("generate s2 digest success.");
memcpy(digest, _digest, 32);
return ret;
}
int c2s2::s2_validate(c1s1* c1, bool& is_valid)
{
is_valid = false;
int ret = ERROR_SUCCESS;
char temp_key[__SRS_OpensslHashSize];
if ((ret = openssl_HMACsha256(SrsGenuineFMSKey, 68, c1->get_digest(), 32, temp_key)) != ERROR_SUCCESS) {
srs_error("create s2 temp key failed. ret=%d", ret);
return ret;
}
srs_verbose("generate s2 temp key success.");
char _digest[__SRS_OpensslHashSize];
if ((ret = openssl_HMACsha256(temp_key, 32, random, 1504, _digest)) != ERROR_SUCCESS) {
srs_error("create s2 digest failed. ret=%d", ret);
return ret;
}
srs_verbose("generate s2 digest success.");
is_valid = srs_bytes_equals(digest, _digest, 32);
return ret;
}
2013-11-23 03:36:07 +00:00
}
2013-11-27 14:41:58 +00:00
#endif
2013-11-23 03:36:07 +00:00
SrsSimpleHandshake::SrsSimpleHandshake()
{
}
SrsSimpleHandshake::~SrsSimpleHandshake()
{
}
int SrsSimpleHandshake::handshake_with_client(SrsHandshakeBytes* hs_bytes, ISrsProtocolReaderWriter* io)
2013-11-23 03:36:07 +00:00
{
2014-03-18 03:32:58 +00:00
int ret = ERROR_SUCCESS;
2013-11-23 03:36:07 +00:00
ssize_t nsize;
if ((ret = hs_bytes->read_c0c1(io)) != ERROR_SUCCESS) {
2013-11-23 03:36:07 +00:00
return ret;
}
2014-03-18 03:32:58 +00:00
// plain text required.
if (hs_bytes->c0c1[0] != 0x03) {
2014-03-18 03:32:58 +00:00
ret = ERROR_RTMP_PLAIN_REQUIRED;
srs_warn("only support rtmp plain text. ret=%d", ret);
return ret;
}
2013-11-23 03:36:07 +00:00
srs_verbose("check c0 success, required plain text.");
if ((ret = hs_bytes->create_s0s1s2(hs_bytes->c0c1 + 1)) != ERROR_SUCCESS) {
return ret;
2014-03-18 03:32:58 +00:00
}
if ((ret = io->write(hs_bytes->s0s1s2, 3073, &nsize)) != ERROR_SUCCESS) {
2013-11-23 03:36:07 +00:00
srs_warn("simple handshake send s0s1s2 failed. ret=%d", ret);
return ret;
}
srs_verbose("simple handshake send s0s1s2 success.");
if ((ret = hs_bytes->read_c2(io)) != ERROR_SUCCESS) {
2013-11-23 03:36:07 +00:00
return ret;
}
2014-05-29 06:16:34 +00:00
srs_trace("simple handshake success.");
2013-11-23 03:36:07 +00:00
2014-03-18 03:32:58 +00:00
return ret;
2013-11-23 03:36:07 +00:00
}
int SrsSimpleHandshake::handshake_with_server(SrsHandshakeBytes* hs_bytes, ISrsProtocolReaderWriter* io)
2013-11-29 07:07:05 +00:00
{
2014-03-18 03:32:58 +00:00
int ret = ERROR_SUCCESS;
2013-11-29 07:07:05 +00:00
ssize_t nsize;
// simple handshake
if ((ret = hs_bytes->create_c0c1()) != ERROR_SUCCESS) {
return ret;
}
2014-03-18 03:32:58 +00:00
if ((ret = io->write(hs_bytes->c0c1, 1537, &nsize)) != ERROR_SUCCESS) {
2013-11-29 07:07:05 +00:00
srs_warn("write c0c1 failed. ret=%d", ret);
return ret;
}
srs_verbose("write c0c1 success.");
2014-03-18 03:32:58 +00:00
if ((ret = hs_bytes->read_s0s1s2(io)) != ERROR_SUCCESS) {
2013-11-29 07:07:05 +00:00
return ret;
}
2014-03-18 03:32:58 +00:00
// plain text required.
if (hs_bytes->s0s1s2[0] != 0x03) {
2013-11-29 07:07:05 +00:00
ret = ERROR_RTMP_HANDSHAKE;
srs_warn("handshake failed, plain text required. ret=%d", ret);
return ret;
}
if ((ret = hs_bytes->create_c2()) != ERROR_SUCCESS) {
return ret;
}
if ((ret = io->write(hs_bytes->c2, 1536, &nsize)) != ERROR_SUCCESS) {
2013-11-29 07:07:05 +00:00
srs_warn("simple handshake write c2 failed. ret=%d", ret);
return ret;
}
srs_verbose("simple handshake write c2 success.");
2014-05-29 06:16:34 +00:00
srs_trace("simple handshake success.");
2013-11-29 07:07:05 +00:00
2014-03-18 03:32:58 +00:00
return ret;
2013-11-29 07:07:05 +00:00
}
2013-11-23 03:36:07 +00:00
SrsComplexHandshake::SrsComplexHandshake()
{
}
SrsComplexHandshake::~SrsComplexHandshake()
{
}
#ifndef SRS_AUTO_SSL
int SrsComplexHandshake::handshake_with_client(SrsHandshakeBytes* /*hs_bytes*/, ISrsProtocolReaderWriter* /*io*/)
2013-11-27 14:41:58 +00:00
{
2014-03-18 09:44:43 +00:00
srs_trace("directly use simple handshake for ssl disabled.");
2014-03-18 03:32:58 +00:00
return ERROR_RTMP_TRY_SIMPLE_HS;
2013-11-27 14:41:58 +00:00
}
#else
int SrsComplexHandshake::handshake_with_client(SrsHandshakeBytes* hs_bytes, ISrsProtocolReaderWriter* io)
2013-11-23 03:36:07 +00:00
{
2014-03-18 03:32:58 +00:00
int ret = ERROR_SUCCESS;
2013-11-27 14:41:58 +00:00
2013-11-23 03:36:07 +00:00
ssize_t nsize;
2014-03-18 03:32:58 +00:00
if ((ret = hs_bytes->read_c0c1(io)) != ERROR_SUCCESS) {
return ret;
2014-03-18 03:32:58 +00:00
}
// decode c1
c1s1 c1;
// try schema0.
// @remark, use schema0 to make flash player happy.
if ((ret = c1.parse(hs_bytes->c0c1 + 1, 1536, srs_schema0)) != ERROR_SUCCESS) {
2014-03-18 03:32:58 +00:00
srs_error("parse c1 schema%d error. ret=%d", srs_schema0, ret);
return ret;
}
// try schema1
bool is_valid = false;
if ((ret = c1.c1_validate_digest(is_valid)) != ERROR_SUCCESS || !is_valid) {
srs_info("schema0 failed, try schema1.");
if ((ret = c1.parse(hs_bytes->c0c1 + 1, 1536, srs_schema1)) != ERROR_SUCCESS) {
2014-03-18 03:32:58 +00:00
srs_error("parse c1 schema%d error. ret=%d", srs_schema1, ret);
return ret;
}
if ((ret = c1.c1_validate_digest(is_valid)) != ERROR_SUCCESS || !is_valid) {
ret = ERROR_RTMP_TRY_SIMPLE_HS;
srs_info("all schema valid failed, try simple handshake. ret=%d", ret);
return ret;
}
} else {
srs_info("schema0 is ok.");
2014-03-18 03:32:58 +00:00
}
srs_verbose("decode c1 success.");
// encode s1
c1s1 s1;
if ((ret = s1.s1_create(&c1)) != ERROR_SUCCESS) {
srs_error("create s1 from c1 failed. ret=%d", ret);
return ret;
}
srs_verbose("create s1 from c1 success.");
2014-03-19 05:10:25 +00:00
// verify s1
if ((ret = s1.s1_validate_digest(is_valid)) != ERROR_SUCCESS || !is_valid) {
ret = ERROR_RTMP_TRY_SIMPLE_HS;
srs_info("verify s1 failed, try simple handshake. ret=%d", ret);
2014-03-19 05:10:25 +00:00
return ret;
}
srs_verbose("verify s1 success.");
2014-03-18 03:32:58 +00:00
c2s2 s2;
if ((ret = s2.s2_create(&c1)) != ERROR_SUCCESS) {
srs_error("create s2 from c1 failed. ret=%d", ret);
return ret;
}
srs_verbose("create s2 from c1 success.");
// verify s2
if ((ret = s2.s2_validate(&c1, is_valid)) != ERROR_SUCCESS || !is_valid) {
ret = ERROR_RTMP_TRY_SIMPLE_HS;
srs_info("verify s2 failed, try simple handshake. ret=%d", ret);
return ret;
}
srs_verbose("verify s2 success.");
2014-03-18 03:32:58 +00:00
// sendout s0s1s2
if ((ret = hs_bytes->create_s0s1s2()) != ERROR_SUCCESS) {
return ret;
}
if ((ret = s1.dump(hs_bytes->s0s1s2 + 1, 1536)) != ERROR_SUCCESS) {
return ret;
}
if ((ret = s2.dump(hs_bytes->s0s1s2 + 1537, 1536)) != ERROR_SUCCESS) {
return ret;
}
if ((ret = io->write(hs_bytes->s0s1s2, 3073, &nsize)) != ERROR_SUCCESS) {
2013-11-23 03:36:07 +00:00
srs_warn("complex handshake send s0s1s2 failed. ret=%d", ret);
return ret;
}
srs_verbose("complex handshake send s0s1s2 success.");
// recv c2
if ((ret = hs_bytes->read_c2(io)) != ERROR_SUCCESS) {
2013-11-23 03:36:07 +00:00
return ret;
}
c2s2 c2;
if ((ret = c2.parse(hs_bytes->c2, 1536)) != ERROR_SUCCESS) {
return ret;
}
2013-11-23 03:36:07 +00:00
srs_verbose("complex handshake read c2 success.");
// verify c2
// never verify c2, for ffmpeg will failed.
// it's ok for flash.
2014-05-29 06:16:34 +00:00
srs_trace("complex handshake success");
2014-03-18 03:32:58 +00:00
return ret;
2013-11-23 03:36:07 +00:00
}
2013-11-27 14:41:58 +00:00
#endif
2013-11-23 03:36:07 +00:00
#ifndef SRS_AUTO_SSL
int SrsComplexHandshake::handshake_with_server(SrsHandshakeBytes* /*hs_bytes*/, ISrsProtocolReaderWriter* /*io*/)
2013-11-29 07:07:05 +00:00
{
2014-03-18 03:32:58 +00:00
return ERROR_RTMP_TRY_SIMPLE_HS;
2013-11-29 07:07:05 +00:00
}
#else
int SrsComplexHandshake::handshake_with_server(SrsHandshakeBytes* hs_bytes, ISrsProtocolReaderWriter* io)
2013-11-29 07:07:05 +00:00
{
2014-03-18 03:32:58 +00:00
int ret = ERROR_SUCCESS;
ssize_t nsize;
// complex handshake
if ((ret = hs_bytes->create_c0c1()) != ERROR_SUCCESS) {
return ret;
}
// sign c1
c1s1 c1;
// @remark, FMS requires the schema1(digest-key), or connect failed.
if ((ret = c1.c1_create(srs_schema1)) != ERROR_SUCCESS) {
return ret;
}
if ((ret = c1.dump(hs_bytes->c0c1 + 1, 1536)) != ERROR_SUCCESS) {
return ret;
}
// verify c1
bool is_valid;
if ((ret = c1.c1_validate_digest(is_valid)) != ERROR_SUCCESS || !is_valid) {
ret = ERROR_RTMP_TRY_SIMPLE_HS;
return ret;
}
if ((ret = io->write(hs_bytes->c0c1, 1537, &nsize)) != ERROR_SUCCESS) {
srs_warn("write c0c1 failed. ret=%d", ret);
return ret;
}
srs_verbose("write c0c1 success.");
// s0s1s2
if ((ret = hs_bytes->read_s0s1s2(io)) != ERROR_SUCCESS) {
return ret;
}
// plain text required.
if (hs_bytes->s0s1s2[0] != 0x03) {
ret = ERROR_RTMP_HANDSHAKE;
srs_warn("handshake failed, plain text required. ret=%d", ret);
return ret;
}
// verify s1s2
c1s1 s1;
if ((ret = s1.parse(hs_bytes->s0s1s2 + 1, 1536, c1.schema())) != ERROR_SUCCESS) {
return ret;
}
// never verify the s1,
// for if forward to nginx-rtmp, verify s1 will failed,
// TODO: FIXME: find the handshake schema of nginx-rtmp.
// c2
if ((ret = hs_bytes->create_c2()) != ERROR_SUCCESS) {
return ret;
}
c2s2 c2;
if ((ret = c2.c2_create(&s1)) != ERROR_SUCCESS) {
return ret;
}
if ((ret = c2.dump(hs_bytes->c2, 1536)) != ERROR_SUCCESS) {
return ret;
}
if ((ret = io->write(hs_bytes->c2, 1536, &nsize)) != ERROR_SUCCESS) {
srs_warn("complex handshake write c2 failed. ret=%d", ret);
return ret;
}
srs_verbose("complex handshake write c2 success.");
2014-05-29 06:16:34 +00:00
srs_trace("complex handshake success.");
2014-03-18 03:32:58 +00:00
return ret;
2013-11-29 07:07:05 +00:00
}
#endif
2014-08-02 14:18:39 +00:00