mirror of
https://github.com/ossrs/srs.git
synced 2025-03-09 15:49:59 +00:00
Upgrade gperftools to 2.9 for GCP/GMC/GMP/GMD. (#2247)
This commit is contained in:
parent
63da0dca92
commit
44e9dc83e9
346 changed files with 169666 additions and 78 deletions
718
trunk/3rdparty/gperftools-2-fit/src/page_heap.cc
vendored
Normal file
718
trunk/3rdparty/gperftools-2-fit/src/page_heap.cc
vendored
Normal file
|
@ -0,0 +1,718 @@
|
|||
// -*- Mode: C++; c-basic-offset: 2; indent-tabs-mode: nil -*-
|
||||
// Copyright (c) 2008, Google Inc.
|
||||
// All rights reserved.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without
|
||||
// modification, are permitted provided that the following conditions are
|
||||
// met:
|
||||
//
|
||||
// * Redistributions of source code must retain the above copyright
|
||||
// notice, this list of conditions and the following disclaimer.
|
||||
// * Redistributions in binary form must reproduce the above
|
||||
// copyright notice, this list of conditions and the following disclaimer
|
||||
// in the documentation and/or other materials provided with the
|
||||
// distribution.
|
||||
// * Neither the name of Google Inc. nor the names of its
|
||||
// contributors may be used to endorse or promote products derived from
|
||||
// this software without specific prior written permission.
|
||||
//
|
||||
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
// ---
|
||||
// Author: Sanjay Ghemawat <opensource@google.com>
|
||||
|
||||
#include <config.h>
|
||||
#ifdef HAVE_INTTYPES_H
|
||||
#include <inttypes.h> // for PRIuPTR
|
||||
#endif
|
||||
#include <errno.h> // for ENOMEM, errno
|
||||
#include <gperftools/malloc_extension.h> // for MallocRange, etc
|
||||
#include "base/basictypes.h"
|
||||
#include "base/commandlineflags.h"
|
||||
#include "internal_logging.h" // for ASSERT, TCMalloc_Printer, etc
|
||||
#include "page_heap_allocator.h" // for PageHeapAllocator
|
||||
#include "static_vars.h" // for Static
|
||||
#include "system-alloc.h" // for TCMalloc_SystemAlloc, etc
|
||||
|
||||
DEFINE_double(tcmalloc_release_rate,
|
||||
EnvToDouble("TCMALLOC_RELEASE_RATE", 1.0),
|
||||
"Rate at which we release unused memory to the system. "
|
||||
"Zero means we never release memory back to the system. "
|
||||
"Increase this flag to return memory faster; decrease it "
|
||||
"to return memory slower. Reasonable rates are in the "
|
||||
"range [0,10]");
|
||||
|
||||
DEFINE_int64(tcmalloc_heap_limit_mb,
|
||||
EnvToInt("TCMALLOC_HEAP_LIMIT_MB", 0),
|
||||
"Limit total size of the process heap to the "
|
||||
"specified number of MiB. "
|
||||
"When we approach the limit the memory is released "
|
||||
"to the system more aggressively (more minor page faults). "
|
||||
"Zero means to allocate as long as system allows.");
|
||||
|
||||
namespace tcmalloc {
|
||||
|
||||
PageHeap::PageHeap()
|
||||
: pagemap_(MetaDataAlloc),
|
||||
scavenge_counter_(0),
|
||||
// Start scavenging at kMaxPages list
|
||||
release_index_(kMaxPages),
|
||||
aggressive_decommit_(false) {
|
||||
COMPILE_ASSERT(kClassSizesMax <= (1 << PageMapCache::kValuebits), valuebits);
|
||||
for (int i = 0; i < kMaxPages; i++) {
|
||||
DLL_Init(&free_[i].normal);
|
||||
DLL_Init(&free_[i].returned);
|
||||
}
|
||||
}
|
||||
|
||||
Span* PageHeap::SearchFreeAndLargeLists(Length n) {
|
||||
ASSERT(Check());
|
||||
ASSERT(n > 0);
|
||||
|
||||
// Find first size >= n that has a non-empty list
|
||||
for (Length s = n; s <= kMaxPages; s++) {
|
||||
Span* ll = &free_[s - 1].normal;
|
||||
// If we're lucky, ll is non-empty, meaning it has a suitable span.
|
||||
if (!DLL_IsEmpty(ll)) {
|
||||
ASSERT(ll->next->location == Span::ON_NORMAL_FREELIST);
|
||||
return Carve(ll->next, n);
|
||||
}
|
||||
// Alternatively, maybe there's a usable returned span.
|
||||
ll = &free_[s - 1].returned;
|
||||
if (!DLL_IsEmpty(ll)) {
|
||||
// We did not call EnsureLimit before, to avoid releasing the span
|
||||
// that will be taken immediately back.
|
||||
// Calling EnsureLimit here is not very expensive, as it fails only if
|
||||
// there is no more normal spans (and it fails efficiently)
|
||||
// or SystemRelease does not work (there is probably no returned spans).
|
||||
if (EnsureLimit(n)) {
|
||||
// ll may have became empty due to coalescing
|
||||
if (!DLL_IsEmpty(ll)) {
|
||||
ASSERT(ll->next->location == Span::ON_RETURNED_FREELIST);
|
||||
return Carve(ll->next, n);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
// No luck in free lists, our last chance is in a larger class.
|
||||
return AllocLarge(n); // May be NULL
|
||||
}
|
||||
|
||||
static const size_t kForcedCoalesceInterval = 128*1024*1024;
|
||||
|
||||
Span* PageHeap::New(Length n) {
|
||||
ASSERT(Check());
|
||||
ASSERT(n > 0);
|
||||
|
||||
Span* result = SearchFreeAndLargeLists(n);
|
||||
if (result != NULL)
|
||||
return result;
|
||||
|
||||
if (stats_.free_bytes != 0 && stats_.unmapped_bytes != 0
|
||||
&& stats_.free_bytes + stats_.unmapped_bytes >= stats_.system_bytes / 4
|
||||
&& (stats_.system_bytes / kForcedCoalesceInterval
|
||||
!= (stats_.system_bytes + (n << kPageShift)) / kForcedCoalesceInterval)) {
|
||||
// We're about to grow heap, but there are lots of free pages.
|
||||
// tcmalloc's design decision to keep unmapped and free spans
|
||||
// separately and never coalesce them means that sometimes there
|
||||
// can be free pages span of sufficient size, but it consists of
|
||||
// "segments" of different type so page heap search cannot find
|
||||
// it. In order to prevent growing heap and wasting memory in such
|
||||
// case we're going to unmap all free pages. So that all free
|
||||
// spans are maximally coalesced.
|
||||
//
|
||||
// We're also limiting 'rate' of going into this path to be at
|
||||
// most once per 128 megs of heap growth. Otherwise programs that
|
||||
// grow heap frequently (and that means by small amount) could be
|
||||
// penalized with higher count of minor page faults.
|
||||
//
|
||||
// See also large_heap_fragmentation_unittest.cc and
|
||||
// https://code.google.com/p/gperftools/issues/detail?id=368
|
||||
ReleaseAtLeastNPages(static_cast<Length>(0x7fffffff));
|
||||
|
||||
// then try again. If we are forced to grow heap because of large
|
||||
// spans fragmentation and not because of problem described above,
|
||||
// then at the very least we've just unmapped free but
|
||||
// insufficiently big large spans back to OS. So in case of really
|
||||
// unlucky memory fragmentation we'll be consuming virtual address
|
||||
// space, but not real memory
|
||||
result = SearchFreeAndLargeLists(n);
|
||||
if (result != NULL) return result;
|
||||
}
|
||||
|
||||
// Grow the heap and try again.
|
||||
if (!GrowHeap(n)) {
|
||||
ASSERT(stats_.unmapped_bytes+ stats_.committed_bytes==stats_.system_bytes);
|
||||
ASSERT(Check());
|
||||
// underlying SysAllocator likely set ENOMEM but we can get here
|
||||
// due to EnsureLimit so we set it here too.
|
||||
//
|
||||
// Setting errno to ENOMEM here allows us to avoid dealing with it
|
||||
// in fast-path.
|
||||
errno = ENOMEM;
|
||||
return NULL;
|
||||
}
|
||||
return SearchFreeAndLargeLists(n);
|
||||
}
|
||||
|
||||
Span* PageHeap::AllocLarge(Length n) {
|
||||
Span *best = NULL;
|
||||
Span *best_normal = NULL;
|
||||
|
||||
// Create a Span to use as an upper bound.
|
||||
Span bound;
|
||||
bound.start = 0;
|
||||
bound.length = n;
|
||||
|
||||
// First search the NORMAL spans..
|
||||
SpanSet::iterator place = large_normal_.upper_bound(SpanPtrWithLength(&bound));
|
||||
if (place != large_normal_.end()) {
|
||||
best = place->span;
|
||||
best_normal = best;
|
||||
ASSERT(best->location == Span::ON_NORMAL_FREELIST);
|
||||
}
|
||||
|
||||
// Try to find better fit from RETURNED spans.
|
||||
place = large_returned_.upper_bound(SpanPtrWithLength(&bound));
|
||||
if (place != large_returned_.end()) {
|
||||
Span *c = place->span;
|
||||
ASSERT(c->location == Span::ON_RETURNED_FREELIST);
|
||||
if (best_normal == NULL
|
||||
|| c->length < best->length
|
||||
|| (c->length == best->length && c->start < best->start))
|
||||
best = place->span;
|
||||
}
|
||||
|
||||
if (best == best_normal) {
|
||||
return best == NULL ? NULL : Carve(best, n);
|
||||
}
|
||||
|
||||
// best comes from RETURNED set.
|
||||
|
||||
if (EnsureLimit(n, false)) {
|
||||
return Carve(best, n);
|
||||
}
|
||||
|
||||
if (EnsureLimit(n, true)) {
|
||||
// best could have been destroyed by coalescing.
|
||||
// best_normal is not a best-fit, and it could be destroyed as well.
|
||||
// We retry, the limit is already ensured:
|
||||
return AllocLarge(n);
|
||||
}
|
||||
|
||||
// If best_normal existed, EnsureLimit would succeeded:
|
||||
ASSERT(best_normal == NULL);
|
||||
// We are not allowed to take best from returned list.
|
||||
return NULL;
|
||||
}
|
||||
|
||||
Span* PageHeap::Split(Span* span, Length n) {
|
||||
ASSERT(0 < n);
|
||||
ASSERT(n < span->length);
|
||||
ASSERT(span->location == Span::IN_USE);
|
||||
ASSERT(span->sizeclass == 0);
|
||||
|
||||
const int extra = span->length - n;
|
||||
Span* leftover = NewSpan(span->start + n, extra);
|
||||
ASSERT(leftover->location == Span::IN_USE);
|
||||
RecordSpan(leftover);
|
||||
pagemap_.set(span->start + n - 1, span); // Update map from pageid to span
|
||||
span->length = n;
|
||||
|
||||
return leftover;
|
||||
}
|
||||
|
||||
void PageHeap::CommitSpan(Span* span) {
|
||||
++stats_.commit_count;
|
||||
|
||||
TCMalloc_SystemCommit(reinterpret_cast<void*>(span->start << kPageShift),
|
||||
static_cast<size_t>(span->length << kPageShift));
|
||||
stats_.committed_bytes += span->length << kPageShift;
|
||||
stats_.total_commit_bytes += (span->length << kPageShift);
|
||||
}
|
||||
|
||||
bool PageHeap::DecommitSpan(Span* span) {
|
||||
++stats_.decommit_count;
|
||||
|
||||
bool rv = TCMalloc_SystemRelease(reinterpret_cast<void*>(span->start << kPageShift),
|
||||
static_cast<size_t>(span->length << kPageShift));
|
||||
if (rv) {
|
||||
stats_.committed_bytes -= span->length << kPageShift;
|
||||
stats_.total_decommit_bytes += (span->length << kPageShift);
|
||||
}
|
||||
|
||||
return rv;
|
||||
}
|
||||
|
||||
Span* PageHeap::Carve(Span* span, Length n) {
|
||||
ASSERT(n > 0);
|
||||
ASSERT(span->location != Span::IN_USE);
|
||||
const int old_location = span->location;
|
||||
RemoveFromFreeList(span);
|
||||
span->location = Span::IN_USE;
|
||||
|
||||
const int extra = span->length - n;
|
||||
ASSERT(extra >= 0);
|
||||
if (extra > 0) {
|
||||
Span* leftover = NewSpan(span->start + n, extra);
|
||||
leftover->location = old_location;
|
||||
RecordSpan(leftover);
|
||||
|
||||
// The previous span of |leftover| was just splitted -- no need to
|
||||
// coalesce them. The next span of |leftover| was not previously coalesced
|
||||
// with |span|, i.e. is NULL or has got location other than |old_location|.
|
||||
#ifndef NDEBUG
|
||||
const PageID p = leftover->start;
|
||||
const Length len = leftover->length;
|
||||
Span* next = GetDescriptor(p+len);
|
||||
ASSERT (next == NULL ||
|
||||
next->location == Span::IN_USE ||
|
||||
next->location != leftover->location);
|
||||
#endif
|
||||
|
||||
PrependToFreeList(leftover); // Skip coalescing - no candidates possible
|
||||
span->length = n;
|
||||
pagemap_.set(span->start + n - 1, span);
|
||||
}
|
||||
ASSERT(Check());
|
||||
if (old_location == Span::ON_RETURNED_FREELIST) {
|
||||
// We need to recommit this address space.
|
||||
CommitSpan(span);
|
||||
}
|
||||
ASSERT(span->location == Span::IN_USE);
|
||||
ASSERT(span->length == n);
|
||||
ASSERT(stats_.unmapped_bytes+ stats_.committed_bytes==stats_.system_bytes);
|
||||
return span;
|
||||
}
|
||||
|
||||
void PageHeap::Delete(Span* span) {
|
||||
ASSERT(Check());
|
||||
ASSERT(span->location == Span::IN_USE);
|
||||
ASSERT(span->length > 0);
|
||||
ASSERT(GetDescriptor(span->start) == span);
|
||||
ASSERT(GetDescriptor(span->start + span->length - 1) == span);
|
||||
const Length n = span->length;
|
||||
span->sizeclass = 0;
|
||||
span->sample = 0;
|
||||
span->location = Span::ON_NORMAL_FREELIST;
|
||||
MergeIntoFreeList(span); // Coalesces if possible
|
||||
IncrementalScavenge(n);
|
||||
ASSERT(stats_.unmapped_bytes+ stats_.committed_bytes==stats_.system_bytes);
|
||||
ASSERT(Check());
|
||||
}
|
||||
|
||||
// Given span we're about to free and other span (still on free list),
|
||||
// checks if 'other' span is mergable with 'span'. If it is, removes
|
||||
// other span from free list, performs aggressive decommit if
|
||||
// necessary and returns 'other' span. Otherwise 'other' span cannot
|
||||
// be merged and is left untouched. In that case NULL is returned.
|
||||
Span* PageHeap::CheckAndHandlePreMerge(Span* span, Span* other) {
|
||||
if (other == NULL) {
|
||||
return other;
|
||||
}
|
||||
// if we're in aggressive decommit mode and span is decommitted,
|
||||
// then we try to decommit adjacent span.
|
||||
if (aggressive_decommit_ && other->location == Span::ON_NORMAL_FREELIST
|
||||
&& span->location == Span::ON_RETURNED_FREELIST) {
|
||||
bool worked = DecommitSpan(other);
|
||||
if (!worked) {
|
||||
return NULL;
|
||||
}
|
||||
} else if (other->location != span->location) {
|
||||
return NULL;
|
||||
}
|
||||
|
||||
RemoveFromFreeList(other);
|
||||
return other;
|
||||
}
|
||||
|
||||
void PageHeap::MergeIntoFreeList(Span* span) {
|
||||
ASSERT(span->location != Span::IN_USE);
|
||||
|
||||
// Coalesce -- we guarantee that "p" != 0, so no bounds checking
|
||||
// necessary. We do not bother resetting the stale pagemap
|
||||
// entries for the pieces we are merging together because we only
|
||||
// care about the pagemap entries for the boundaries.
|
||||
//
|
||||
// Note: depending on aggressive_decommit_ mode we allow only
|
||||
// similar spans to be coalesced.
|
||||
//
|
||||
// The following applies if aggressive_decommit_ is enabled:
|
||||
//
|
||||
// TODO(jar): "Always decommit" causes some extra calls to commit when we are
|
||||
// called in GrowHeap() during an allocation :-/. We need to eval the cost of
|
||||
// that oscillation, and possibly do something to reduce it.
|
||||
|
||||
// TODO(jar): We need a better strategy for deciding to commit, or decommit,
|
||||
// based on memory usage and free heap sizes.
|
||||
|
||||
const PageID p = span->start;
|
||||
const Length n = span->length;
|
||||
|
||||
if (aggressive_decommit_ && span->location == Span::ON_NORMAL_FREELIST) {
|
||||
if (DecommitSpan(span)) {
|
||||
span->location = Span::ON_RETURNED_FREELIST;
|
||||
}
|
||||
}
|
||||
|
||||
Span* prev = CheckAndHandlePreMerge(span, GetDescriptor(p-1));
|
||||
if (prev != NULL) {
|
||||
// Merge preceding span into this span
|
||||
ASSERT(prev->start + prev->length == p);
|
||||
const Length len = prev->length;
|
||||
DeleteSpan(prev);
|
||||
span->start -= len;
|
||||
span->length += len;
|
||||
pagemap_.set(span->start, span);
|
||||
}
|
||||
Span* next = CheckAndHandlePreMerge(span, GetDescriptor(p+n));
|
||||
if (next != NULL) {
|
||||
// Merge next span into this span
|
||||
ASSERT(next->start == p+n);
|
||||
const Length len = next->length;
|
||||
DeleteSpan(next);
|
||||
span->length += len;
|
||||
pagemap_.set(span->start + span->length - 1, span);
|
||||
}
|
||||
|
||||
PrependToFreeList(span);
|
||||
}
|
||||
|
||||
void PageHeap::PrependToFreeList(Span* span) {
|
||||
ASSERT(span->location != Span::IN_USE);
|
||||
if (span->location == Span::ON_NORMAL_FREELIST)
|
||||
stats_.free_bytes += (span->length << kPageShift);
|
||||
else
|
||||
stats_.unmapped_bytes += (span->length << kPageShift);
|
||||
|
||||
if (span->length > kMaxPages) {
|
||||
SpanSet *set = &large_normal_;
|
||||
if (span->location == Span::ON_RETURNED_FREELIST)
|
||||
set = &large_returned_;
|
||||
std::pair<SpanSet::iterator, bool> p =
|
||||
set->insert(SpanPtrWithLength(span));
|
||||
ASSERT(p.second); // We never have duplicates since span->start is unique.
|
||||
span->SetSpanSetIterator(p.first);
|
||||
return;
|
||||
}
|
||||
|
||||
SpanList* list = &free_[span->length - 1];
|
||||
if (span->location == Span::ON_NORMAL_FREELIST) {
|
||||
DLL_Prepend(&list->normal, span);
|
||||
} else {
|
||||
DLL_Prepend(&list->returned, span);
|
||||
}
|
||||
}
|
||||
|
||||
void PageHeap::RemoveFromFreeList(Span* span) {
|
||||
ASSERT(span->location != Span::IN_USE);
|
||||
if (span->location == Span::ON_NORMAL_FREELIST) {
|
||||
stats_.free_bytes -= (span->length << kPageShift);
|
||||
} else {
|
||||
stats_.unmapped_bytes -= (span->length << kPageShift);
|
||||
}
|
||||
if (span->length > kMaxPages) {
|
||||
SpanSet *set = &large_normal_;
|
||||
if (span->location == Span::ON_RETURNED_FREELIST)
|
||||
set = &large_returned_;
|
||||
SpanSet::iterator iter = span->ExtractSpanSetIterator();
|
||||
ASSERT(iter->span == span);
|
||||
ASSERT(set->find(SpanPtrWithLength(span)) == iter);
|
||||
set->erase(iter);
|
||||
} else {
|
||||
DLL_Remove(span);
|
||||
}
|
||||
}
|
||||
|
||||
void PageHeap::IncrementalScavenge(Length n) {
|
||||
// Fast path; not yet time to release memory
|
||||
scavenge_counter_ -= n;
|
||||
if (scavenge_counter_ >= 0) return; // Not yet time to scavenge
|
||||
|
||||
const double rate = FLAGS_tcmalloc_release_rate;
|
||||
if (rate <= 1e-6) {
|
||||
// Tiny release rate means that releasing is disabled.
|
||||
scavenge_counter_ = kDefaultReleaseDelay;
|
||||
return;
|
||||
}
|
||||
|
||||
++stats_.scavenge_count;
|
||||
|
||||
Length released_pages = ReleaseAtLeastNPages(1);
|
||||
|
||||
if (released_pages == 0) {
|
||||
// Nothing to scavenge, delay for a while.
|
||||
scavenge_counter_ = kDefaultReleaseDelay;
|
||||
} else {
|
||||
// Compute how long to wait until we return memory.
|
||||
// FLAGS_tcmalloc_release_rate==1 means wait for 1000 pages
|
||||
// after releasing one page.
|
||||
const double mult = 1000.0 / rate;
|
||||
double wait = mult * static_cast<double>(released_pages);
|
||||
if (wait > kMaxReleaseDelay) {
|
||||
// Avoid overflow and bound to reasonable range.
|
||||
wait = kMaxReleaseDelay;
|
||||
}
|
||||
scavenge_counter_ = static_cast<int64_t>(wait);
|
||||
}
|
||||
}
|
||||
|
||||
Length PageHeap::ReleaseSpan(Span* s) {
|
||||
ASSERT(s->location == Span::ON_NORMAL_FREELIST);
|
||||
|
||||
if (DecommitSpan(s)) {
|
||||
RemoveFromFreeList(s);
|
||||
const Length n = s->length;
|
||||
s->location = Span::ON_RETURNED_FREELIST;
|
||||
MergeIntoFreeList(s); // Coalesces if possible.
|
||||
return n;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
Length PageHeap::ReleaseAtLeastNPages(Length num_pages) {
|
||||
Length released_pages = 0;
|
||||
|
||||
// Round robin through the lists of free spans, releasing a
|
||||
// span from each list. Stop after releasing at least num_pages
|
||||
// or when there is nothing more to release.
|
||||
while (released_pages < num_pages && stats_.free_bytes > 0) {
|
||||
for (int i = 0; i < kMaxPages+1 && released_pages < num_pages;
|
||||
i++, release_index_++) {
|
||||
Span *s;
|
||||
if (release_index_ > kMaxPages) release_index_ = 0;
|
||||
|
||||
if (release_index_ == kMaxPages) {
|
||||
if (large_normal_.empty()) {
|
||||
continue;
|
||||
}
|
||||
s = (large_normal_.begin())->span;
|
||||
} else {
|
||||
SpanList* slist = &free_[release_index_];
|
||||
if (DLL_IsEmpty(&slist->normal)) {
|
||||
continue;
|
||||
}
|
||||
s = slist->normal.prev;
|
||||
}
|
||||
// TODO(todd) if the remaining number of pages to release
|
||||
// is significantly smaller than s->length, and s is on the
|
||||
// large freelist, should we carve s instead of releasing?
|
||||
// the whole thing?
|
||||
Length released_len = ReleaseSpan(s);
|
||||
// Some systems do not support release
|
||||
if (released_len == 0) return released_pages;
|
||||
released_pages += released_len;
|
||||
}
|
||||
}
|
||||
return released_pages;
|
||||
}
|
||||
|
||||
bool PageHeap::EnsureLimit(Length n, bool withRelease)
|
||||
{
|
||||
Length limit = (FLAGS_tcmalloc_heap_limit_mb*1024*1024) >> kPageShift;
|
||||
if (limit == 0) return true; //there is no limit
|
||||
|
||||
// We do not use stats_.system_bytes because it does not take
|
||||
// MetaDataAllocs into account.
|
||||
Length takenPages = TCMalloc_SystemTaken >> kPageShift;
|
||||
//XXX takenPages may be slightly bigger than limit for two reasons:
|
||||
//* MetaDataAllocs ignore the limit (it is not easy to handle
|
||||
// out of memory there)
|
||||
//* sys_alloc may round allocation up to huge page size,
|
||||
// although smaller limit was ensured
|
||||
|
||||
ASSERT(takenPages >= stats_.unmapped_bytes >> kPageShift);
|
||||
takenPages -= stats_.unmapped_bytes >> kPageShift;
|
||||
|
||||
if (takenPages + n > limit && withRelease) {
|
||||
takenPages -= ReleaseAtLeastNPages(takenPages + n - limit);
|
||||
}
|
||||
|
||||
return takenPages + n <= limit;
|
||||
}
|
||||
|
||||
void PageHeap::RegisterSizeClass(Span* span, uint32 sc) {
|
||||
// Associate span object with all interior pages as well
|
||||
ASSERT(span->location == Span::IN_USE);
|
||||
ASSERT(GetDescriptor(span->start) == span);
|
||||
ASSERT(GetDescriptor(span->start+span->length-1) == span);
|
||||
span->sizeclass = sc;
|
||||
for (Length i = 1; i < span->length-1; i++) {
|
||||
pagemap_.set(span->start+i, span);
|
||||
}
|
||||
}
|
||||
|
||||
void PageHeap::GetSmallSpanStats(SmallSpanStats* result) {
|
||||
for (int i = 0; i < kMaxPages; i++) {
|
||||
result->normal_length[i] = DLL_Length(&free_[i].normal);
|
||||
result->returned_length[i] = DLL_Length(&free_[i].returned);
|
||||
}
|
||||
}
|
||||
|
||||
void PageHeap::GetLargeSpanStats(LargeSpanStats* result) {
|
||||
result->spans = 0;
|
||||
result->normal_pages = 0;
|
||||
result->returned_pages = 0;
|
||||
for (SpanSet::iterator it = large_normal_.begin(); it != large_normal_.end(); ++it) {
|
||||
result->normal_pages += it->length;
|
||||
result->spans++;
|
||||
}
|
||||
for (SpanSet::iterator it = large_returned_.begin(); it != large_returned_.end(); ++it) {
|
||||
result->returned_pages += it->length;
|
||||
result->spans++;
|
||||
}
|
||||
}
|
||||
|
||||
bool PageHeap::GetNextRange(PageID start, base::MallocRange* r) {
|
||||
Span* span = reinterpret_cast<Span*>(pagemap_.Next(start));
|
||||
if (span == NULL) {
|
||||
return false;
|
||||
}
|
||||
r->address = span->start << kPageShift;
|
||||
r->length = span->length << kPageShift;
|
||||
r->fraction = 0;
|
||||
switch (span->location) {
|
||||
case Span::IN_USE:
|
||||
r->type = base::MallocRange::INUSE;
|
||||
r->fraction = 1;
|
||||
if (span->sizeclass > 0) {
|
||||
// Only some of the objects in this span may be in use.
|
||||
const size_t osize = Static::sizemap()->class_to_size(span->sizeclass);
|
||||
r->fraction = (1.0 * osize * span->refcount) / r->length;
|
||||
}
|
||||
break;
|
||||
case Span::ON_NORMAL_FREELIST:
|
||||
r->type = base::MallocRange::FREE;
|
||||
break;
|
||||
case Span::ON_RETURNED_FREELIST:
|
||||
r->type = base::MallocRange::UNMAPPED;
|
||||
break;
|
||||
default:
|
||||
r->type = base::MallocRange::UNKNOWN;
|
||||
break;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
static void RecordGrowth(size_t growth) {
|
||||
StackTrace* t = Static::stacktrace_allocator()->New();
|
||||
t->depth = GetStackTrace(t->stack, kMaxStackDepth-1, 3);
|
||||
t->size = growth;
|
||||
t->stack[kMaxStackDepth-1] = reinterpret_cast<void*>(Static::growth_stacks());
|
||||
Static::set_growth_stacks(t);
|
||||
}
|
||||
|
||||
bool PageHeap::GrowHeap(Length n) {
|
||||
ASSERT(kMaxPages >= kMinSystemAlloc);
|
||||
if (n > kMaxValidPages) return false;
|
||||
Length ask = (n>kMinSystemAlloc) ? n : static_cast<Length>(kMinSystemAlloc);
|
||||
size_t actual_size;
|
||||
void* ptr = NULL;
|
||||
if (EnsureLimit(ask)) {
|
||||
ptr = TCMalloc_SystemAlloc(ask << kPageShift, &actual_size, kPageSize);
|
||||
}
|
||||
if (ptr == NULL) {
|
||||
if (n < ask) {
|
||||
// Try growing just "n" pages
|
||||
ask = n;
|
||||
if (EnsureLimit(ask)) {
|
||||
ptr = TCMalloc_SystemAlloc(ask << kPageShift, &actual_size, kPageSize);
|
||||
}
|
||||
}
|
||||
if (ptr == NULL) return false;
|
||||
}
|
||||
ask = actual_size >> kPageShift;
|
||||
RecordGrowth(ask << kPageShift);
|
||||
|
||||
++stats_.reserve_count;
|
||||
++stats_.commit_count;
|
||||
|
||||
uint64_t old_system_bytes = stats_.system_bytes;
|
||||
stats_.system_bytes += (ask << kPageShift);
|
||||
stats_.committed_bytes += (ask << kPageShift);
|
||||
|
||||
stats_.total_commit_bytes += (ask << kPageShift);
|
||||
stats_.total_reserve_bytes += (ask << kPageShift);
|
||||
|
||||
const PageID p = reinterpret_cast<uintptr_t>(ptr) >> kPageShift;
|
||||
ASSERT(p > 0);
|
||||
|
||||
// If we have already a lot of pages allocated, just pre allocate a bunch of
|
||||
// memory for the page map. This prevents fragmentation by pagemap metadata
|
||||
// when a program keeps allocating and freeing large blocks.
|
||||
|
||||
if (old_system_bytes < kPageMapBigAllocationThreshold
|
||||
&& stats_.system_bytes >= kPageMapBigAllocationThreshold) {
|
||||
pagemap_.PreallocateMoreMemory();
|
||||
}
|
||||
|
||||
// Make sure pagemap_ has entries for all of the new pages.
|
||||
// Plus ensure one before and one after so coalescing code
|
||||
// does not need bounds-checking.
|
||||
if (pagemap_.Ensure(p-1, ask+2)) {
|
||||
// Pretend the new area is allocated and then Delete() it to cause
|
||||
// any necessary coalescing to occur.
|
||||
Span* span = NewSpan(p, ask);
|
||||
RecordSpan(span);
|
||||
Delete(span);
|
||||
ASSERT(stats_.unmapped_bytes+ stats_.committed_bytes==stats_.system_bytes);
|
||||
ASSERT(Check());
|
||||
return true;
|
||||
} else {
|
||||
// We could not allocate memory within "pagemap_"
|
||||
// TODO: Once we can return memory to the system, return the new span
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
bool PageHeap::Check() {
|
||||
return true;
|
||||
}
|
||||
|
||||
bool PageHeap::CheckExpensive() {
|
||||
bool result = Check();
|
||||
CheckSet(&large_normal_, kMaxPages + 1, Span::ON_NORMAL_FREELIST);
|
||||
CheckSet(&large_returned_, kMaxPages + 1, Span::ON_RETURNED_FREELIST);
|
||||
for (int s = 1; s <= kMaxPages; s++) {
|
||||
CheckList(&free_[s - 1].normal, s, s, Span::ON_NORMAL_FREELIST);
|
||||
CheckList(&free_[s - 1].returned, s, s, Span::ON_RETURNED_FREELIST);
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
bool PageHeap::CheckList(Span* list, Length min_pages, Length max_pages,
|
||||
int freelist) {
|
||||
for (Span* s = list->next; s != list; s = s->next) {
|
||||
CHECK_CONDITION(s->location == freelist); // NORMAL or RETURNED
|
||||
CHECK_CONDITION(s->length >= min_pages);
|
||||
CHECK_CONDITION(s->length <= max_pages);
|
||||
CHECK_CONDITION(GetDescriptor(s->start) == s);
|
||||
CHECK_CONDITION(GetDescriptor(s->start+s->length-1) == s);
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
bool PageHeap::CheckSet(SpanSet* spanset, Length min_pages,int freelist) {
|
||||
for (SpanSet::iterator it = spanset->begin(); it != spanset->end(); ++it) {
|
||||
Span* s = it->span;
|
||||
CHECK_CONDITION(s->length == it->length);
|
||||
CHECK_CONDITION(s->location == freelist); // NORMAL or RETURNED
|
||||
CHECK_CONDITION(s->length >= min_pages);
|
||||
CHECK_CONDITION(GetDescriptor(s->start) == s);
|
||||
CHECK_CONDITION(GetDescriptor(s->start+s->length-1) == s);
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
} // namespace tcmalloc
|
Loading…
Add table
Add a link
Reference in a new issue