mirror of
https://github.com/ossrs/srs.git
synced 2025-03-09 15:49:59 +00:00
Upgrade openssl from 1.1.0e to 1.1.1b, with source code. 4.0.78
This commit is contained in:
parent
8f1c992379
commit
96dbd7bced
1476 changed files with 616554 additions and 4 deletions
223
trunk/3rdparty/openssl-1.1-fit/crypto/ec/ecp_nistputil.c
vendored
Normal file
223
trunk/3rdparty/openssl-1.1-fit/crypto/ec/ecp_nistputil.c
vendored
Normal file
|
@ -0,0 +1,223 @@
|
|||
/*
|
||||
* Copyright 2011-2016 The OpenSSL Project Authors. All Rights Reserved.
|
||||
*
|
||||
* Licensed under the OpenSSL license (the "License"). You may not use
|
||||
* this file except in compliance with the License. You can obtain a copy
|
||||
* in the file LICENSE in the source distribution or at
|
||||
* https://www.openssl.org/source/license.html
|
||||
*/
|
||||
|
||||
/* Copyright 2011 Google Inc.
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
*
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include <openssl/opensslconf.h>
|
||||
#ifdef OPENSSL_NO_EC_NISTP_64_GCC_128
|
||||
NON_EMPTY_TRANSLATION_UNIT
|
||||
#else
|
||||
|
||||
/*
|
||||
* Common utility functions for ecp_nistp224.c, ecp_nistp256.c, ecp_nistp521.c.
|
||||
*/
|
||||
|
||||
# include <stddef.h>
|
||||
# include "ec_lcl.h"
|
||||
|
||||
/*
|
||||
* Convert an array of points into affine coordinates. (If the point at
|
||||
* infinity is found (Z = 0), it remains unchanged.) This function is
|
||||
* essentially an equivalent to EC_POINTs_make_affine(), but works with the
|
||||
* internal representation of points as used by ecp_nistp###.c rather than
|
||||
* with (BIGNUM-based) EC_POINT data structures. point_array is the
|
||||
* input/output buffer ('num' points in projective form, i.e. three
|
||||
* coordinates each), based on an internal representation of field elements
|
||||
* of size 'felem_size'. tmp_felems needs to point to a temporary array of
|
||||
* 'num'+1 field elements for storage of intermediate values.
|
||||
*/
|
||||
void ec_GFp_nistp_points_make_affine_internal(size_t num, void *point_array,
|
||||
size_t felem_size,
|
||||
void *tmp_felems,
|
||||
void (*felem_one) (void *out),
|
||||
int (*felem_is_zero) (const void
|
||||
*in),
|
||||
void (*felem_assign) (void *out,
|
||||
const void
|
||||
*in),
|
||||
void (*felem_square) (void *out,
|
||||
const void
|
||||
*in),
|
||||
void (*felem_mul) (void *out,
|
||||
const void
|
||||
*in1,
|
||||
const void
|
||||
*in2),
|
||||
void (*felem_inv) (void *out,
|
||||
const void
|
||||
*in),
|
||||
void (*felem_contract) (void
|
||||
*out,
|
||||
const
|
||||
void
|
||||
*in))
|
||||
{
|
||||
int i = 0;
|
||||
|
||||
# define tmp_felem(I) (&((char *)tmp_felems)[(I) * felem_size])
|
||||
# define X(I) (&((char *)point_array)[3*(I) * felem_size])
|
||||
# define Y(I) (&((char *)point_array)[(3*(I) + 1) * felem_size])
|
||||
# define Z(I) (&((char *)point_array)[(3*(I) + 2) * felem_size])
|
||||
|
||||
if (!felem_is_zero(Z(0)))
|
||||
felem_assign(tmp_felem(0), Z(0));
|
||||
else
|
||||
felem_one(tmp_felem(0));
|
||||
for (i = 1; i < (int)num; i++) {
|
||||
if (!felem_is_zero(Z(i)))
|
||||
felem_mul(tmp_felem(i), tmp_felem(i - 1), Z(i));
|
||||
else
|
||||
felem_assign(tmp_felem(i), tmp_felem(i - 1));
|
||||
}
|
||||
/*
|
||||
* Now each tmp_felem(i) is the product of Z(0) .. Z(i), skipping any
|
||||
* zero-valued factors: if Z(i) = 0, we essentially pretend that Z(i) = 1
|
||||
*/
|
||||
|
||||
felem_inv(tmp_felem(num - 1), tmp_felem(num - 1));
|
||||
for (i = num - 1; i >= 0; i--) {
|
||||
if (i > 0)
|
||||
/*
|
||||
* tmp_felem(i-1) is the product of Z(0) .. Z(i-1), tmp_felem(i)
|
||||
* is the inverse of the product of Z(0) .. Z(i)
|
||||
*/
|
||||
/* 1/Z(i) */
|
||||
felem_mul(tmp_felem(num), tmp_felem(i - 1), tmp_felem(i));
|
||||
else
|
||||
felem_assign(tmp_felem(num), tmp_felem(0)); /* 1/Z(0) */
|
||||
|
||||
if (!felem_is_zero(Z(i))) {
|
||||
if (i > 0)
|
||||
/*
|
||||
* For next iteration, replace tmp_felem(i-1) by its inverse
|
||||
*/
|
||||
felem_mul(tmp_felem(i - 1), tmp_felem(i), Z(i));
|
||||
|
||||
/*
|
||||
* Convert point (X, Y, Z) into affine form (X/(Z^2), Y/(Z^3), 1)
|
||||
*/
|
||||
felem_square(Z(i), tmp_felem(num)); /* 1/(Z^2) */
|
||||
felem_mul(X(i), X(i), Z(i)); /* X/(Z^2) */
|
||||
felem_mul(Z(i), Z(i), tmp_felem(num)); /* 1/(Z^3) */
|
||||
felem_mul(Y(i), Y(i), Z(i)); /* Y/(Z^3) */
|
||||
felem_contract(X(i), X(i));
|
||||
felem_contract(Y(i), Y(i));
|
||||
felem_one(Z(i));
|
||||
} else {
|
||||
if (i > 0)
|
||||
/*
|
||||
* For next iteration, replace tmp_felem(i-1) by its inverse
|
||||
*/
|
||||
felem_assign(tmp_felem(i - 1), tmp_felem(i));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/*-
|
||||
* This function looks at 5+1 scalar bits (5 current, 1 adjacent less
|
||||
* significant bit), and recodes them into a signed digit for use in fast point
|
||||
* multiplication: the use of signed rather than unsigned digits means that
|
||||
* fewer points need to be precomputed, given that point inversion is easy
|
||||
* (a precomputed point dP makes -dP available as well).
|
||||
*
|
||||
* BACKGROUND:
|
||||
*
|
||||
* Signed digits for multiplication were introduced by Booth ("A signed binary
|
||||
* multiplication technique", Quart. Journ. Mech. and Applied Math., vol. IV,
|
||||
* pt. 2 (1951), pp. 236-240), in that case for multiplication of integers.
|
||||
* Booth's original encoding did not generally improve the density of nonzero
|
||||
* digits over the binary representation, and was merely meant to simplify the
|
||||
* handling of signed factors given in two's complement; but it has since been
|
||||
* shown to be the basis of various signed-digit representations that do have
|
||||
* further advantages, including the wNAF, using the following general approach:
|
||||
*
|
||||
* (1) Given a binary representation
|
||||
*
|
||||
* b_k ... b_2 b_1 b_0,
|
||||
*
|
||||
* of a nonnegative integer (b_k in {0, 1}), rewrite it in digits 0, 1, -1
|
||||
* by using bit-wise subtraction as follows:
|
||||
*
|
||||
* b_k b_(k-1) ... b_2 b_1 b_0
|
||||
* - b_k ... b_3 b_2 b_1 b_0
|
||||
* -------------------------------------
|
||||
* s_k b_(k-1) ... s_3 s_2 s_1 s_0
|
||||
*
|
||||
* A left-shift followed by subtraction of the original value yields a new
|
||||
* representation of the same value, using signed bits s_i = b_(i+1) - b_i.
|
||||
* This representation from Booth's paper has since appeared in the
|
||||
* literature under a variety of different names including "reversed binary
|
||||
* form", "alternating greedy expansion", "mutual opposite form", and
|
||||
* "sign-alternating {+-1}-representation".
|
||||
*
|
||||
* An interesting property is that among the nonzero bits, values 1 and -1
|
||||
* strictly alternate.
|
||||
*
|
||||
* (2) Various window schemes can be applied to the Booth representation of
|
||||
* integers: for example, right-to-left sliding windows yield the wNAF
|
||||
* (a signed-digit encoding independently discovered by various researchers
|
||||
* in the 1990s), and left-to-right sliding windows yield a left-to-right
|
||||
* equivalent of the wNAF (independently discovered by various researchers
|
||||
* around 2004).
|
||||
*
|
||||
* To prevent leaking information through side channels in point multiplication,
|
||||
* we need to recode the given integer into a regular pattern: sliding windows
|
||||
* as in wNAFs won't do, we need their fixed-window equivalent -- which is a few
|
||||
* decades older: we'll be using the so-called "modified Booth encoding" due to
|
||||
* MacSorley ("High-speed arithmetic in binary computers", Proc. IRE, vol. 49
|
||||
* (1961), pp. 67-91), in a radix-2^5 setting. That is, we always combine five
|
||||
* signed bits into a signed digit:
|
||||
*
|
||||
* s_(4j + 4) s_(4j + 3) s_(4j + 2) s_(4j + 1) s_(4j)
|
||||
*
|
||||
* The sign-alternating property implies that the resulting digit values are
|
||||
* integers from -16 to 16.
|
||||
*
|
||||
* Of course, we don't actually need to compute the signed digits s_i as an
|
||||
* intermediate step (that's just a nice way to see how this scheme relates
|
||||
* to the wNAF): a direct computation obtains the recoded digit from the
|
||||
* six bits b_(4j + 4) ... b_(4j - 1).
|
||||
*
|
||||
* This function takes those five bits as an integer (0 .. 63), writing the
|
||||
* recoded digit to *sign (0 for positive, 1 for negative) and *digit (absolute
|
||||
* value, in the range 0 .. 8). Note that this integer essentially provides the
|
||||
* input bits "shifted to the left" by one position: for example, the input to
|
||||
* compute the least significant recoded digit, given that there's no bit b_-1,
|
||||
* has to be b_4 b_3 b_2 b_1 b_0 0.
|
||||
*
|
||||
*/
|
||||
void ec_GFp_nistp_recode_scalar_bits(unsigned char *sign,
|
||||
unsigned char *digit, unsigned char in)
|
||||
{
|
||||
unsigned char s, d;
|
||||
|
||||
s = ~((in >> 5) - 1); /* sets all bits to MSB(in), 'in' seen as
|
||||
* 6-bit value */
|
||||
d = (1 << 6) - in - 1;
|
||||
d = (d & s) | (in & ~s);
|
||||
d = (d >> 1) + (d & 1);
|
||||
|
||||
*sign = s & 1;
|
||||
*digit = d;
|
||||
}
|
||||
#endif
|
Loading…
Add table
Add a link
Reference in a new issue