mirror of
https://github.com/ossrs/srs.git
synced 2025-03-09 15:49:59 +00:00
Upgrade openssl from 1.1.0e to 1.1.1b, with source code. 4.0.78
This commit is contained in:
parent
8f1c992379
commit
96dbd7bced
1476 changed files with 616554 additions and 4 deletions
4
trunk/3rdparty/openssl-1.1-fit/crypto/pem/build.info
vendored
Normal file
4
trunk/3rdparty/openssl-1.1-fit/crypto/pem/build.info
vendored
Normal file
|
@ -0,0 +1,4 @@
|
|||
LIBS=../../libcrypto
|
||||
SOURCE[../../libcrypto]=\
|
||||
pem_sign.c pem_info.c pem_lib.c pem_all.c pem_err.c \
|
||||
pem_x509.c pem_xaux.c pem_oth.c pem_pk8.c pem_pkey.c pvkfmt.c
|
181
trunk/3rdparty/openssl-1.1-fit/crypto/pem/pem_all.c
vendored
Normal file
181
trunk/3rdparty/openssl-1.1-fit/crypto/pem/pem_all.c
vendored
Normal file
|
@ -0,0 +1,181 @@
|
|||
/*
|
||||
* Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved.
|
||||
*
|
||||
* Licensed under the OpenSSL license (the "License"). You may not use
|
||||
* this file except in compliance with the License. You can obtain a copy
|
||||
* in the file LICENSE in the source distribution or at
|
||||
* https://www.openssl.org/source/license.html
|
||||
*/
|
||||
|
||||
#include <stdio.h>
|
||||
#include "internal/cryptlib.h"
|
||||
#include <openssl/bio.h>
|
||||
#include <openssl/evp.h>
|
||||
#include <openssl/x509.h>
|
||||
#include <openssl/pkcs7.h>
|
||||
#include <openssl/pem.h>
|
||||
#include <openssl/rsa.h>
|
||||
#include <openssl/dsa.h>
|
||||
#include <openssl/dh.h>
|
||||
|
||||
#ifndef OPENSSL_NO_RSA
|
||||
static RSA *pkey_get_rsa(EVP_PKEY *key, RSA **rsa);
|
||||
#endif
|
||||
#ifndef OPENSSL_NO_DSA
|
||||
static DSA *pkey_get_dsa(EVP_PKEY *key, DSA **dsa);
|
||||
#endif
|
||||
|
||||
#ifndef OPENSSL_NO_EC
|
||||
static EC_KEY *pkey_get_eckey(EVP_PKEY *key, EC_KEY **eckey);
|
||||
#endif
|
||||
|
||||
IMPLEMENT_PEM_rw(X509_REQ, X509_REQ, PEM_STRING_X509_REQ, X509_REQ)
|
||||
|
||||
IMPLEMENT_PEM_write(X509_REQ_NEW, X509_REQ, PEM_STRING_X509_REQ_OLD, X509_REQ)
|
||||
IMPLEMENT_PEM_rw(X509_CRL, X509_CRL, PEM_STRING_X509_CRL, X509_CRL)
|
||||
IMPLEMENT_PEM_rw(PKCS7, PKCS7, PEM_STRING_PKCS7, PKCS7)
|
||||
|
||||
IMPLEMENT_PEM_rw(NETSCAPE_CERT_SEQUENCE, NETSCAPE_CERT_SEQUENCE,
|
||||
PEM_STRING_X509, NETSCAPE_CERT_SEQUENCE)
|
||||
#ifndef OPENSSL_NO_RSA
|
||||
/*
|
||||
* We treat RSA or DSA private keys as a special case. For private keys we
|
||||
* read in an EVP_PKEY structure with PEM_read_bio_PrivateKey() and extract
|
||||
* the relevant private key: this means can handle "traditional" and PKCS#8
|
||||
* formats transparently.
|
||||
*/
|
||||
static RSA *pkey_get_rsa(EVP_PKEY *key, RSA **rsa)
|
||||
{
|
||||
RSA *rtmp;
|
||||
if (!key)
|
||||
return NULL;
|
||||
rtmp = EVP_PKEY_get1_RSA(key);
|
||||
EVP_PKEY_free(key);
|
||||
if (!rtmp)
|
||||
return NULL;
|
||||
if (rsa) {
|
||||
RSA_free(*rsa);
|
||||
*rsa = rtmp;
|
||||
}
|
||||
return rtmp;
|
||||
}
|
||||
|
||||
RSA *PEM_read_bio_RSAPrivateKey(BIO *bp, RSA **rsa, pem_password_cb *cb,
|
||||
void *u)
|
||||
{
|
||||
EVP_PKEY *pktmp;
|
||||
pktmp = PEM_read_bio_PrivateKey(bp, NULL, cb, u);
|
||||
return pkey_get_rsa(pktmp, rsa);
|
||||
}
|
||||
|
||||
# ifndef OPENSSL_NO_STDIO
|
||||
|
||||
RSA *PEM_read_RSAPrivateKey(FILE *fp, RSA **rsa, pem_password_cb *cb, void *u)
|
||||
{
|
||||
EVP_PKEY *pktmp;
|
||||
pktmp = PEM_read_PrivateKey(fp, NULL, cb, u);
|
||||
return pkey_get_rsa(pktmp, rsa);
|
||||
}
|
||||
|
||||
# endif
|
||||
|
||||
IMPLEMENT_PEM_write_cb_const(RSAPrivateKey, RSA, PEM_STRING_RSA,
|
||||
RSAPrivateKey)
|
||||
|
||||
|
||||
IMPLEMENT_PEM_rw_const(RSAPublicKey, RSA, PEM_STRING_RSA_PUBLIC,
|
||||
RSAPublicKey) IMPLEMENT_PEM_rw(RSA_PUBKEY, RSA,
|
||||
PEM_STRING_PUBLIC,
|
||||
RSA_PUBKEY)
|
||||
#endif
|
||||
#ifndef OPENSSL_NO_DSA
|
||||
static DSA *pkey_get_dsa(EVP_PKEY *key, DSA **dsa)
|
||||
{
|
||||
DSA *dtmp;
|
||||
if (!key)
|
||||
return NULL;
|
||||
dtmp = EVP_PKEY_get1_DSA(key);
|
||||
EVP_PKEY_free(key);
|
||||
if (!dtmp)
|
||||
return NULL;
|
||||
if (dsa) {
|
||||
DSA_free(*dsa);
|
||||
*dsa = dtmp;
|
||||
}
|
||||
return dtmp;
|
||||
}
|
||||
|
||||
DSA *PEM_read_bio_DSAPrivateKey(BIO *bp, DSA **dsa, pem_password_cb *cb,
|
||||
void *u)
|
||||
{
|
||||
EVP_PKEY *pktmp;
|
||||
pktmp = PEM_read_bio_PrivateKey(bp, NULL, cb, u);
|
||||
return pkey_get_dsa(pktmp, dsa); /* will free pktmp */
|
||||
}
|
||||
|
||||
IMPLEMENT_PEM_write_cb_const(DSAPrivateKey, DSA, PEM_STRING_DSA,
|
||||
DSAPrivateKey)
|
||||
IMPLEMENT_PEM_rw(DSA_PUBKEY, DSA, PEM_STRING_PUBLIC, DSA_PUBKEY)
|
||||
# ifndef OPENSSL_NO_STDIO
|
||||
DSA *PEM_read_DSAPrivateKey(FILE *fp, DSA **dsa, pem_password_cb *cb, void *u)
|
||||
{
|
||||
EVP_PKEY *pktmp;
|
||||
pktmp = PEM_read_PrivateKey(fp, NULL, cb, u);
|
||||
return pkey_get_dsa(pktmp, dsa); /* will free pktmp */
|
||||
}
|
||||
|
||||
# endif
|
||||
|
||||
IMPLEMENT_PEM_rw_const(DSAparams, DSA, PEM_STRING_DSAPARAMS, DSAparams)
|
||||
#endif
|
||||
#ifndef OPENSSL_NO_EC
|
||||
static EC_KEY *pkey_get_eckey(EVP_PKEY *key, EC_KEY **eckey)
|
||||
{
|
||||
EC_KEY *dtmp;
|
||||
if (!key)
|
||||
return NULL;
|
||||
dtmp = EVP_PKEY_get1_EC_KEY(key);
|
||||
EVP_PKEY_free(key);
|
||||
if (!dtmp)
|
||||
return NULL;
|
||||
if (eckey) {
|
||||
EC_KEY_free(*eckey);
|
||||
*eckey = dtmp;
|
||||
}
|
||||
return dtmp;
|
||||
}
|
||||
|
||||
EC_KEY *PEM_read_bio_ECPrivateKey(BIO *bp, EC_KEY **key, pem_password_cb *cb,
|
||||
void *u)
|
||||
{
|
||||
EVP_PKEY *pktmp;
|
||||
pktmp = PEM_read_bio_PrivateKey(bp, NULL, cb, u);
|
||||
return pkey_get_eckey(pktmp, key); /* will free pktmp */
|
||||
}
|
||||
|
||||
IMPLEMENT_PEM_rw_const(ECPKParameters, EC_GROUP, PEM_STRING_ECPARAMETERS,
|
||||
ECPKParameters)
|
||||
|
||||
|
||||
IMPLEMENT_PEM_write_cb(ECPrivateKey, EC_KEY, PEM_STRING_ECPRIVATEKEY,
|
||||
ECPrivateKey)
|
||||
IMPLEMENT_PEM_rw(EC_PUBKEY, EC_KEY, PEM_STRING_PUBLIC, EC_PUBKEY)
|
||||
# ifndef OPENSSL_NO_STDIO
|
||||
EC_KEY *PEM_read_ECPrivateKey(FILE *fp, EC_KEY **eckey, pem_password_cb *cb,
|
||||
void *u)
|
||||
{
|
||||
EVP_PKEY *pktmp;
|
||||
pktmp = PEM_read_PrivateKey(fp, NULL, cb, u);
|
||||
return pkey_get_eckey(pktmp, eckey); /* will free pktmp */
|
||||
}
|
||||
|
||||
# endif
|
||||
|
||||
#endif
|
||||
|
||||
#ifndef OPENSSL_NO_DH
|
||||
|
||||
IMPLEMENT_PEM_write_const(DHparams, DH, PEM_STRING_DHPARAMS, DHparams)
|
||||
IMPLEMENT_PEM_write_const(DHxparams, DH, PEM_STRING_DHXPARAMS, DHxparams)
|
||||
#endif
|
||||
IMPLEMENT_PEM_rw(PUBKEY, EVP_PKEY, PEM_STRING_PUBLIC, PUBKEY)
|
126
trunk/3rdparty/openssl-1.1-fit/crypto/pem/pem_err.c
vendored
Normal file
126
trunk/3rdparty/openssl-1.1-fit/crypto/pem/pem_err.c
vendored
Normal file
|
@ -0,0 +1,126 @@
|
|||
/*
|
||||
* Generated by util/mkerr.pl DO NOT EDIT
|
||||
* Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved.
|
||||
*
|
||||
* Licensed under the OpenSSL license (the "License"). You may not use
|
||||
* this file except in compliance with the License. You can obtain a copy
|
||||
* in the file LICENSE in the source distribution or at
|
||||
* https://www.openssl.org/source/license.html
|
||||
*/
|
||||
|
||||
#include <openssl/err.h>
|
||||
#include <openssl/pemerr.h>
|
||||
|
||||
#ifndef OPENSSL_NO_ERR
|
||||
|
||||
static const ERR_STRING_DATA PEM_str_functs[] = {
|
||||
{ERR_PACK(ERR_LIB_PEM, PEM_F_B2I_DSS, 0), "b2i_dss"},
|
||||
{ERR_PACK(ERR_LIB_PEM, PEM_F_B2I_PVK_BIO, 0), "b2i_PVK_bio"},
|
||||
{ERR_PACK(ERR_LIB_PEM, PEM_F_B2I_RSA, 0), "b2i_rsa"},
|
||||
{ERR_PACK(ERR_LIB_PEM, PEM_F_CHECK_BITLEN_DSA, 0), "check_bitlen_dsa"},
|
||||
{ERR_PACK(ERR_LIB_PEM, PEM_F_CHECK_BITLEN_RSA, 0), "check_bitlen_rsa"},
|
||||
{ERR_PACK(ERR_LIB_PEM, PEM_F_D2I_PKCS8PRIVATEKEY_BIO, 0),
|
||||
"d2i_PKCS8PrivateKey_bio"},
|
||||
{ERR_PACK(ERR_LIB_PEM, PEM_F_D2I_PKCS8PRIVATEKEY_FP, 0),
|
||||
"d2i_PKCS8PrivateKey_fp"},
|
||||
{ERR_PACK(ERR_LIB_PEM, PEM_F_DO_B2I, 0), "do_b2i"},
|
||||
{ERR_PACK(ERR_LIB_PEM, PEM_F_DO_B2I_BIO, 0), "do_b2i_bio"},
|
||||
{ERR_PACK(ERR_LIB_PEM, PEM_F_DO_BLOB_HEADER, 0), "do_blob_header"},
|
||||
{ERR_PACK(ERR_LIB_PEM, PEM_F_DO_I2B, 0), "do_i2b"},
|
||||
{ERR_PACK(ERR_LIB_PEM, PEM_F_DO_PK8PKEY, 0), "do_pk8pkey"},
|
||||
{ERR_PACK(ERR_LIB_PEM, PEM_F_DO_PK8PKEY_FP, 0), "do_pk8pkey_fp"},
|
||||
{ERR_PACK(ERR_LIB_PEM, PEM_F_DO_PVK_BODY, 0), "do_PVK_body"},
|
||||
{ERR_PACK(ERR_LIB_PEM, PEM_F_DO_PVK_HEADER, 0), "do_PVK_header"},
|
||||
{ERR_PACK(ERR_LIB_PEM, PEM_F_GET_HEADER_AND_DATA, 0),
|
||||
"get_header_and_data"},
|
||||
{ERR_PACK(ERR_LIB_PEM, PEM_F_GET_NAME, 0), "get_name"},
|
||||
{ERR_PACK(ERR_LIB_PEM, PEM_F_I2B_PVK, 0), "i2b_PVK"},
|
||||
{ERR_PACK(ERR_LIB_PEM, PEM_F_I2B_PVK_BIO, 0), "i2b_PVK_bio"},
|
||||
{ERR_PACK(ERR_LIB_PEM, PEM_F_LOAD_IV, 0), "load_iv"},
|
||||
{ERR_PACK(ERR_LIB_PEM, PEM_F_PEM_ASN1_READ, 0), "PEM_ASN1_read"},
|
||||
{ERR_PACK(ERR_LIB_PEM, PEM_F_PEM_ASN1_READ_BIO, 0), "PEM_ASN1_read_bio"},
|
||||
{ERR_PACK(ERR_LIB_PEM, PEM_F_PEM_ASN1_WRITE, 0), "PEM_ASN1_write"},
|
||||
{ERR_PACK(ERR_LIB_PEM, PEM_F_PEM_ASN1_WRITE_BIO, 0), "PEM_ASN1_write_bio"},
|
||||
{ERR_PACK(ERR_LIB_PEM, PEM_F_PEM_DEF_CALLBACK, 0), "PEM_def_callback"},
|
||||
{ERR_PACK(ERR_LIB_PEM, PEM_F_PEM_DO_HEADER, 0), "PEM_do_header"},
|
||||
{ERR_PACK(ERR_LIB_PEM, PEM_F_PEM_GET_EVP_CIPHER_INFO, 0),
|
||||
"PEM_get_EVP_CIPHER_INFO"},
|
||||
{ERR_PACK(ERR_LIB_PEM, PEM_F_PEM_READ, 0), "PEM_read"},
|
||||
{ERR_PACK(ERR_LIB_PEM, PEM_F_PEM_READ_BIO, 0), "PEM_read_bio"},
|
||||
{ERR_PACK(ERR_LIB_PEM, PEM_F_PEM_READ_BIO_DHPARAMS, 0),
|
||||
"PEM_read_bio_DHparams"},
|
||||
{ERR_PACK(ERR_LIB_PEM, PEM_F_PEM_READ_BIO_EX, 0), "PEM_read_bio_ex"},
|
||||
{ERR_PACK(ERR_LIB_PEM, PEM_F_PEM_READ_BIO_PARAMETERS, 0),
|
||||
"PEM_read_bio_Parameters"},
|
||||
{ERR_PACK(ERR_LIB_PEM, PEM_F_PEM_READ_BIO_PRIVATEKEY, 0),
|
||||
"PEM_read_bio_PrivateKey"},
|
||||
{ERR_PACK(ERR_LIB_PEM, PEM_F_PEM_READ_DHPARAMS, 0), "PEM_read_DHparams"},
|
||||
{ERR_PACK(ERR_LIB_PEM, PEM_F_PEM_READ_PRIVATEKEY, 0),
|
||||
"PEM_read_PrivateKey"},
|
||||
{ERR_PACK(ERR_LIB_PEM, PEM_F_PEM_SIGNFINAL, 0), "PEM_SignFinal"},
|
||||
{ERR_PACK(ERR_LIB_PEM, PEM_F_PEM_WRITE, 0), "PEM_write"},
|
||||
{ERR_PACK(ERR_LIB_PEM, PEM_F_PEM_WRITE_BIO, 0), "PEM_write_bio"},
|
||||
{ERR_PACK(ERR_LIB_PEM, PEM_F_PEM_WRITE_PRIVATEKEY, 0),
|
||||
"PEM_write_PrivateKey"},
|
||||
{ERR_PACK(ERR_LIB_PEM, PEM_F_PEM_X509_INFO_READ, 0), "PEM_X509_INFO_read"},
|
||||
{ERR_PACK(ERR_LIB_PEM, PEM_F_PEM_X509_INFO_READ_BIO, 0),
|
||||
"PEM_X509_INFO_read_bio"},
|
||||
{ERR_PACK(ERR_LIB_PEM, PEM_F_PEM_X509_INFO_WRITE_BIO, 0),
|
||||
"PEM_X509_INFO_write_bio"},
|
||||
{0, NULL}
|
||||
};
|
||||
|
||||
static const ERR_STRING_DATA PEM_str_reasons[] = {
|
||||
{ERR_PACK(ERR_LIB_PEM, 0, PEM_R_BAD_BASE64_DECODE), "bad base64 decode"},
|
||||
{ERR_PACK(ERR_LIB_PEM, 0, PEM_R_BAD_DECRYPT), "bad decrypt"},
|
||||
{ERR_PACK(ERR_LIB_PEM, 0, PEM_R_BAD_END_LINE), "bad end line"},
|
||||
{ERR_PACK(ERR_LIB_PEM, 0, PEM_R_BAD_IV_CHARS), "bad iv chars"},
|
||||
{ERR_PACK(ERR_LIB_PEM, 0, PEM_R_BAD_MAGIC_NUMBER), "bad magic number"},
|
||||
{ERR_PACK(ERR_LIB_PEM, 0, PEM_R_BAD_PASSWORD_READ), "bad password read"},
|
||||
{ERR_PACK(ERR_LIB_PEM, 0, PEM_R_BAD_VERSION_NUMBER), "bad version number"},
|
||||
{ERR_PACK(ERR_LIB_PEM, 0, PEM_R_BIO_WRITE_FAILURE), "bio write failure"},
|
||||
{ERR_PACK(ERR_LIB_PEM, 0, PEM_R_CIPHER_IS_NULL), "cipher is null"},
|
||||
{ERR_PACK(ERR_LIB_PEM, 0, PEM_R_ERROR_CONVERTING_PRIVATE_KEY),
|
||||
"error converting private key"},
|
||||
{ERR_PACK(ERR_LIB_PEM, 0, PEM_R_EXPECTING_PRIVATE_KEY_BLOB),
|
||||
"expecting private key blob"},
|
||||
{ERR_PACK(ERR_LIB_PEM, 0, PEM_R_EXPECTING_PUBLIC_KEY_BLOB),
|
||||
"expecting public key blob"},
|
||||
{ERR_PACK(ERR_LIB_PEM, 0, PEM_R_HEADER_TOO_LONG), "header too long"},
|
||||
{ERR_PACK(ERR_LIB_PEM, 0, PEM_R_INCONSISTENT_HEADER),
|
||||
"inconsistent header"},
|
||||
{ERR_PACK(ERR_LIB_PEM, 0, PEM_R_KEYBLOB_HEADER_PARSE_ERROR),
|
||||
"keyblob header parse error"},
|
||||
{ERR_PACK(ERR_LIB_PEM, 0, PEM_R_KEYBLOB_TOO_SHORT), "keyblob too short"},
|
||||
{ERR_PACK(ERR_LIB_PEM, 0, PEM_R_MISSING_DEK_IV), "missing dek iv"},
|
||||
{ERR_PACK(ERR_LIB_PEM, 0, PEM_R_NOT_DEK_INFO), "not dek info"},
|
||||
{ERR_PACK(ERR_LIB_PEM, 0, PEM_R_NOT_ENCRYPTED), "not encrypted"},
|
||||
{ERR_PACK(ERR_LIB_PEM, 0, PEM_R_NOT_PROC_TYPE), "not proc type"},
|
||||
{ERR_PACK(ERR_LIB_PEM, 0, PEM_R_NO_START_LINE), "no start line"},
|
||||
{ERR_PACK(ERR_LIB_PEM, 0, PEM_R_PROBLEMS_GETTING_PASSWORD),
|
||||
"problems getting password"},
|
||||
{ERR_PACK(ERR_LIB_PEM, 0, PEM_R_PVK_DATA_TOO_SHORT), "pvk data too short"},
|
||||
{ERR_PACK(ERR_LIB_PEM, 0, PEM_R_PVK_TOO_SHORT), "pvk too short"},
|
||||
{ERR_PACK(ERR_LIB_PEM, 0, PEM_R_READ_KEY), "read key"},
|
||||
{ERR_PACK(ERR_LIB_PEM, 0, PEM_R_SHORT_HEADER), "short header"},
|
||||
{ERR_PACK(ERR_LIB_PEM, 0, PEM_R_UNEXPECTED_DEK_IV), "unexpected dek iv"},
|
||||
{ERR_PACK(ERR_LIB_PEM, 0, PEM_R_UNSUPPORTED_CIPHER), "unsupported cipher"},
|
||||
{ERR_PACK(ERR_LIB_PEM, 0, PEM_R_UNSUPPORTED_ENCRYPTION),
|
||||
"unsupported encryption"},
|
||||
{ERR_PACK(ERR_LIB_PEM, 0, PEM_R_UNSUPPORTED_KEY_COMPONENTS),
|
||||
"unsupported key components"},
|
||||
{0, NULL}
|
||||
};
|
||||
|
||||
#endif
|
||||
|
||||
int ERR_load_PEM_strings(void)
|
||||
{
|
||||
#ifndef OPENSSL_NO_ERR
|
||||
if (ERR_func_error_string(PEM_str_functs[0].error) == NULL) {
|
||||
ERR_load_strings_const(PEM_str_functs);
|
||||
ERR_load_strings_const(PEM_str_reasons);
|
||||
}
|
||||
#endif
|
||||
return 1;
|
||||
}
|
337
trunk/3rdparty/openssl-1.1-fit/crypto/pem/pem_info.c
vendored
Normal file
337
trunk/3rdparty/openssl-1.1-fit/crypto/pem/pem_info.c
vendored
Normal file
|
@ -0,0 +1,337 @@
|
|||
/*
|
||||
* Copyright 1995-2019 The OpenSSL Project Authors. All Rights Reserved.
|
||||
*
|
||||
* Licensed under the OpenSSL license (the "License"). You may not use
|
||||
* this file except in compliance with the License. You can obtain a copy
|
||||
* in the file LICENSE in the source distribution or at
|
||||
* https://www.openssl.org/source/license.html
|
||||
*/
|
||||
|
||||
#include <stdio.h>
|
||||
#include "internal/cryptlib.h"
|
||||
#include <openssl/buffer.h>
|
||||
#include <openssl/objects.h>
|
||||
#include <openssl/evp.h>
|
||||
#include <openssl/x509.h>
|
||||
#include <openssl/pem.h>
|
||||
#include <openssl/rsa.h>
|
||||
#include <openssl/dsa.h>
|
||||
|
||||
#ifndef OPENSSL_NO_STDIO
|
||||
STACK_OF(X509_INFO) *PEM_X509_INFO_read(FILE *fp, STACK_OF(X509_INFO) *sk,
|
||||
pem_password_cb *cb, void *u)
|
||||
{
|
||||
BIO *b;
|
||||
STACK_OF(X509_INFO) *ret;
|
||||
|
||||
if ((b = BIO_new(BIO_s_file())) == NULL) {
|
||||
PEMerr(PEM_F_PEM_X509_INFO_READ, ERR_R_BUF_LIB);
|
||||
return 0;
|
||||
}
|
||||
BIO_set_fp(b, fp, BIO_NOCLOSE);
|
||||
ret = PEM_X509_INFO_read_bio(b, sk, cb, u);
|
||||
BIO_free(b);
|
||||
return ret;
|
||||
}
|
||||
#endif
|
||||
|
||||
STACK_OF(X509_INFO) *PEM_X509_INFO_read_bio(BIO *bp, STACK_OF(X509_INFO) *sk,
|
||||
pem_password_cb *cb, void *u)
|
||||
{
|
||||
X509_INFO *xi = NULL;
|
||||
char *name = NULL, *header = NULL;
|
||||
void *pp;
|
||||
unsigned char *data = NULL;
|
||||
const unsigned char *p;
|
||||
long len, error = 0;
|
||||
int ok = 0;
|
||||
STACK_OF(X509_INFO) *ret = NULL;
|
||||
unsigned int i, raw, ptype;
|
||||
d2i_of_void *d2i = 0;
|
||||
|
||||
if (sk == NULL) {
|
||||
if ((ret = sk_X509_INFO_new_null()) == NULL) {
|
||||
PEMerr(PEM_F_PEM_X509_INFO_READ_BIO, ERR_R_MALLOC_FAILURE);
|
||||
goto err;
|
||||
}
|
||||
} else
|
||||
ret = sk;
|
||||
|
||||
if ((xi = X509_INFO_new()) == NULL)
|
||||
goto err;
|
||||
for (;;) {
|
||||
raw = 0;
|
||||
ptype = 0;
|
||||
i = PEM_read_bio(bp, &name, &header, &data, &len);
|
||||
if (i == 0) {
|
||||
error = ERR_GET_REASON(ERR_peek_last_error());
|
||||
if (error == PEM_R_NO_START_LINE) {
|
||||
ERR_clear_error();
|
||||
break;
|
||||
}
|
||||
goto err;
|
||||
}
|
||||
start:
|
||||
if ((strcmp(name, PEM_STRING_X509) == 0) ||
|
||||
(strcmp(name, PEM_STRING_X509_OLD) == 0)) {
|
||||
d2i = (D2I_OF(void)) d2i_X509;
|
||||
if (xi->x509 != NULL) {
|
||||
if (!sk_X509_INFO_push(ret, xi))
|
||||
goto err;
|
||||
if ((xi = X509_INFO_new()) == NULL)
|
||||
goto err;
|
||||
goto start;
|
||||
}
|
||||
pp = &(xi->x509);
|
||||
} else if ((strcmp(name, PEM_STRING_X509_TRUSTED) == 0)) {
|
||||
d2i = (D2I_OF(void)) d2i_X509_AUX;
|
||||
if (xi->x509 != NULL) {
|
||||
if (!sk_X509_INFO_push(ret, xi))
|
||||
goto err;
|
||||
if ((xi = X509_INFO_new()) == NULL)
|
||||
goto err;
|
||||
goto start;
|
||||
}
|
||||
pp = &(xi->x509);
|
||||
} else if (strcmp(name, PEM_STRING_X509_CRL) == 0) {
|
||||
d2i = (D2I_OF(void)) d2i_X509_CRL;
|
||||
if (xi->crl != NULL) {
|
||||
if (!sk_X509_INFO_push(ret, xi))
|
||||
goto err;
|
||||
if ((xi = X509_INFO_new()) == NULL)
|
||||
goto err;
|
||||
goto start;
|
||||
}
|
||||
pp = &(xi->crl);
|
||||
} else
|
||||
#ifndef OPENSSL_NO_RSA
|
||||
if (strcmp(name, PEM_STRING_RSA) == 0) {
|
||||
d2i = (D2I_OF(void)) d2i_RSAPrivateKey;
|
||||
if (xi->x_pkey != NULL) {
|
||||
if (!sk_X509_INFO_push(ret, xi))
|
||||
goto err;
|
||||
if ((xi = X509_INFO_new()) == NULL)
|
||||
goto err;
|
||||
goto start;
|
||||
}
|
||||
|
||||
xi->enc_data = NULL;
|
||||
xi->enc_len = 0;
|
||||
|
||||
xi->x_pkey = X509_PKEY_new();
|
||||
if (xi->x_pkey == NULL)
|
||||
goto err;
|
||||
ptype = EVP_PKEY_RSA;
|
||||
pp = &xi->x_pkey->dec_pkey;
|
||||
if ((int)strlen(header) > 10) /* assume encrypted */
|
||||
raw = 1;
|
||||
} else
|
||||
#endif
|
||||
#ifndef OPENSSL_NO_DSA
|
||||
if (strcmp(name, PEM_STRING_DSA) == 0) {
|
||||
d2i = (D2I_OF(void)) d2i_DSAPrivateKey;
|
||||
if (xi->x_pkey != NULL) {
|
||||
if (!sk_X509_INFO_push(ret, xi))
|
||||
goto err;
|
||||
if ((xi = X509_INFO_new()) == NULL)
|
||||
goto err;
|
||||
goto start;
|
||||
}
|
||||
|
||||
xi->enc_data = NULL;
|
||||
xi->enc_len = 0;
|
||||
|
||||
xi->x_pkey = X509_PKEY_new();
|
||||
if (xi->x_pkey == NULL)
|
||||
goto err;
|
||||
ptype = EVP_PKEY_DSA;
|
||||
pp = &xi->x_pkey->dec_pkey;
|
||||
if ((int)strlen(header) > 10) /* assume encrypted */
|
||||
raw = 1;
|
||||
} else
|
||||
#endif
|
||||
#ifndef OPENSSL_NO_EC
|
||||
if (strcmp(name, PEM_STRING_ECPRIVATEKEY) == 0) {
|
||||
d2i = (D2I_OF(void)) d2i_ECPrivateKey;
|
||||
if (xi->x_pkey != NULL) {
|
||||
if (!sk_X509_INFO_push(ret, xi))
|
||||
goto err;
|
||||
if ((xi = X509_INFO_new()) == NULL)
|
||||
goto err;
|
||||
goto start;
|
||||
}
|
||||
|
||||
xi->enc_data = NULL;
|
||||
xi->enc_len = 0;
|
||||
|
||||
xi->x_pkey = X509_PKEY_new();
|
||||
if (xi->x_pkey == NULL)
|
||||
goto err;
|
||||
ptype = EVP_PKEY_EC;
|
||||
pp = &xi->x_pkey->dec_pkey;
|
||||
if ((int)strlen(header) > 10) /* assume encrypted */
|
||||
raw = 1;
|
||||
} else
|
||||
#endif
|
||||
{
|
||||
d2i = NULL;
|
||||
pp = NULL;
|
||||
}
|
||||
|
||||
if (d2i != NULL) {
|
||||
if (!raw) {
|
||||
EVP_CIPHER_INFO cipher;
|
||||
|
||||
if (!PEM_get_EVP_CIPHER_INFO(header, &cipher))
|
||||
goto err;
|
||||
if (!PEM_do_header(&cipher, data, &len, cb, u))
|
||||
goto err;
|
||||
p = data;
|
||||
if (ptype) {
|
||||
if (!d2i_PrivateKey(ptype, pp, &p, len)) {
|
||||
PEMerr(PEM_F_PEM_X509_INFO_READ_BIO, ERR_R_ASN1_LIB);
|
||||
goto err;
|
||||
}
|
||||
} else if (d2i(pp, &p, len) == NULL) {
|
||||
PEMerr(PEM_F_PEM_X509_INFO_READ_BIO, ERR_R_ASN1_LIB);
|
||||
goto err;
|
||||
}
|
||||
} else { /* encrypted RSA data */
|
||||
if (!PEM_get_EVP_CIPHER_INFO(header, &xi->enc_cipher))
|
||||
goto err;
|
||||
xi->enc_data = (char *)data;
|
||||
xi->enc_len = (int)len;
|
||||
data = NULL;
|
||||
}
|
||||
} else {
|
||||
/* unknown */
|
||||
}
|
||||
OPENSSL_free(name);
|
||||
name = NULL;
|
||||
OPENSSL_free(header);
|
||||
header = NULL;
|
||||
OPENSSL_free(data);
|
||||
data = NULL;
|
||||
}
|
||||
|
||||
/*
|
||||
* if the last one hasn't been pushed yet and there is anything in it
|
||||
* then add it to the stack ...
|
||||
*/
|
||||
if ((xi->x509 != NULL) || (xi->crl != NULL) ||
|
||||
(xi->x_pkey != NULL) || (xi->enc_data != NULL)) {
|
||||
if (!sk_X509_INFO_push(ret, xi))
|
||||
goto err;
|
||||
xi = NULL;
|
||||
}
|
||||
ok = 1;
|
||||
err:
|
||||
X509_INFO_free(xi);
|
||||
if (!ok) {
|
||||
for (i = 0; ((int)i) < sk_X509_INFO_num(ret); i++) {
|
||||
xi = sk_X509_INFO_value(ret, i);
|
||||
X509_INFO_free(xi);
|
||||
}
|
||||
if (ret != sk)
|
||||
sk_X509_INFO_free(ret);
|
||||
ret = NULL;
|
||||
}
|
||||
|
||||
OPENSSL_free(name);
|
||||
OPENSSL_free(header);
|
||||
OPENSSL_free(data);
|
||||
return ret;
|
||||
}
|
||||
|
||||
/* A TJH addition */
|
||||
int PEM_X509_INFO_write_bio(BIO *bp, X509_INFO *xi, EVP_CIPHER *enc,
|
||||
unsigned char *kstr, int klen,
|
||||
pem_password_cb *cb, void *u)
|
||||
{
|
||||
int i, ret = 0;
|
||||
unsigned char *data = NULL;
|
||||
const char *objstr = NULL;
|
||||
char buf[PEM_BUFSIZE];
|
||||
unsigned char *iv = NULL;
|
||||
|
||||
if (enc != NULL) {
|
||||
objstr = OBJ_nid2sn(EVP_CIPHER_nid(enc));
|
||||
if (objstr == NULL
|
||||
/*
|
||||
* Check "Proc-Type: 4,Encrypted\nDEK-Info: objstr,hex-iv\n"
|
||||
* fits into buf
|
||||
*/
|
||||
|| (strlen(objstr) + 23 + 2 * EVP_CIPHER_iv_length(enc) + 13)
|
||||
> sizeof(buf)) {
|
||||
PEMerr(PEM_F_PEM_X509_INFO_WRITE_BIO, PEM_R_UNSUPPORTED_CIPHER);
|
||||
goto err;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* now for the fun part ... if we have a private key then we have to be
|
||||
* able to handle a not-yet-decrypted key being written out correctly ...
|
||||
* if it is decrypted or it is non-encrypted then we use the base code
|
||||
*/
|
||||
if (xi->x_pkey != NULL) {
|
||||
if ((xi->enc_data != NULL) && (xi->enc_len > 0)) {
|
||||
if (enc == NULL) {
|
||||
PEMerr(PEM_F_PEM_X509_INFO_WRITE_BIO, PEM_R_CIPHER_IS_NULL);
|
||||
goto err;
|
||||
}
|
||||
|
||||
/* copy from weirdo names into more normal things */
|
||||
iv = xi->enc_cipher.iv;
|
||||
data = (unsigned char *)xi->enc_data;
|
||||
i = xi->enc_len;
|
||||
|
||||
/*
|
||||
* we take the encryption data from the internal stuff rather
|
||||
* than what the user has passed us ... as we have to match
|
||||
* exactly for some strange reason
|
||||
*/
|
||||
objstr = OBJ_nid2sn(EVP_CIPHER_nid(xi->enc_cipher.cipher));
|
||||
if (objstr == NULL) {
|
||||
PEMerr(PEM_F_PEM_X509_INFO_WRITE_BIO,
|
||||
PEM_R_UNSUPPORTED_CIPHER);
|
||||
goto err;
|
||||
}
|
||||
|
||||
/* Create the right magic header stuff */
|
||||
buf[0] = '\0';
|
||||
PEM_proc_type(buf, PEM_TYPE_ENCRYPTED);
|
||||
PEM_dek_info(buf, objstr, EVP_CIPHER_iv_length(enc),
|
||||
(char *)iv);
|
||||
|
||||
/* use the normal code to write things out */
|
||||
i = PEM_write_bio(bp, PEM_STRING_RSA, buf, data, i);
|
||||
if (i <= 0)
|
||||
goto err;
|
||||
} else {
|
||||
/* Add DSA/DH */
|
||||
#ifndef OPENSSL_NO_RSA
|
||||
/* normal optionally encrypted stuff */
|
||||
if (PEM_write_bio_RSAPrivateKey(bp,
|
||||
EVP_PKEY_get0_RSA(xi->x_pkey->dec_pkey),
|
||||
enc, kstr, klen, cb, u) <= 0)
|
||||
goto err;
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
/* if we have a certificate then write it out now */
|
||||
if ((xi->x509 != NULL) && (PEM_write_bio_X509(bp, xi->x509) <= 0))
|
||||
goto err;
|
||||
|
||||
/*
|
||||
* we are ignoring anything else that is loaded into the X509_INFO
|
||||
* structure for the moment ... as I don't need it so I'm not coding it
|
||||
* here and Eric can do it when this makes it into the base library --tjh
|
||||
*/
|
||||
|
||||
ret = 1;
|
||||
|
||||
err:
|
||||
OPENSSL_cleanse(buf, PEM_BUFSIZE);
|
||||
return ret;
|
||||
}
|
988
trunk/3rdparty/openssl-1.1-fit/crypto/pem/pem_lib.c
vendored
Normal file
988
trunk/3rdparty/openssl-1.1-fit/crypto/pem/pem_lib.c
vendored
Normal file
|
@ -0,0 +1,988 @@
|
|||
/*
|
||||
* Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved.
|
||||
*
|
||||
* Licensed under the OpenSSL license (the "License"). You may not use
|
||||
* this file except in compliance with the License. You can obtain a copy
|
||||
* in the file LICENSE in the source distribution or at
|
||||
* https://www.openssl.org/source/license.html
|
||||
*/
|
||||
|
||||
#include <stdio.h>
|
||||
#include "internal/ctype.h"
|
||||
#include <string.h>
|
||||
#include "internal/cryptlib.h"
|
||||
#include <openssl/buffer.h>
|
||||
#include <openssl/objects.h>
|
||||
#include <openssl/evp.h>
|
||||
#include <openssl/rand.h>
|
||||
#include <openssl/x509.h>
|
||||
#include <openssl/pem.h>
|
||||
#include <openssl/pkcs12.h>
|
||||
#include "internal/asn1_int.h"
|
||||
#include <openssl/des.h>
|
||||
#include <openssl/engine.h>
|
||||
|
||||
#define MIN_LENGTH 4
|
||||
|
||||
static int load_iv(char **fromp, unsigned char *to, int num);
|
||||
static int check_pem(const char *nm, const char *name);
|
||||
int pem_check_suffix(const char *pem_str, const char *suffix);
|
||||
|
||||
int PEM_def_callback(char *buf, int num, int rwflag, void *userdata)
|
||||
{
|
||||
int i, min_len;
|
||||
const char *prompt;
|
||||
|
||||
/* We assume that the user passes a default password as userdata */
|
||||
if (userdata) {
|
||||
i = strlen(userdata);
|
||||
i = (i > num) ? num : i;
|
||||
memcpy(buf, userdata, i);
|
||||
return i;
|
||||
}
|
||||
|
||||
prompt = EVP_get_pw_prompt();
|
||||
if (prompt == NULL)
|
||||
prompt = "Enter PEM pass phrase:";
|
||||
|
||||
/*
|
||||
* rwflag == 0 means decryption
|
||||
* rwflag == 1 means encryption
|
||||
*
|
||||
* We assume that for encryption, we want a minimum length, while for
|
||||
* decryption, we cannot know any minimum length, so we assume zero.
|
||||
*/
|
||||
min_len = rwflag ? MIN_LENGTH : 0;
|
||||
|
||||
i = EVP_read_pw_string_min(buf, min_len, num, prompt, rwflag);
|
||||
if (i != 0) {
|
||||
PEMerr(PEM_F_PEM_DEF_CALLBACK, PEM_R_PROBLEMS_GETTING_PASSWORD);
|
||||
memset(buf, 0, (unsigned int)num);
|
||||
return -1;
|
||||
}
|
||||
return strlen(buf);
|
||||
}
|
||||
|
||||
void PEM_proc_type(char *buf, int type)
|
||||
{
|
||||
const char *str;
|
||||
char *p = buf + strlen(buf);
|
||||
|
||||
if (type == PEM_TYPE_ENCRYPTED)
|
||||
str = "ENCRYPTED";
|
||||
else if (type == PEM_TYPE_MIC_CLEAR)
|
||||
str = "MIC-CLEAR";
|
||||
else if (type == PEM_TYPE_MIC_ONLY)
|
||||
str = "MIC-ONLY";
|
||||
else
|
||||
str = "BAD-TYPE";
|
||||
|
||||
BIO_snprintf(p, PEM_BUFSIZE - (size_t)(p - buf), "Proc-Type: 4,%s\n", str);
|
||||
}
|
||||
|
||||
void PEM_dek_info(char *buf, const char *type, int len, char *str)
|
||||
{
|
||||
long i;
|
||||
char *p = buf + strlen(buf);
|
||||
int j = PEM_BUFSIZE - (size_t)(p - buf), n;
|
||||
|
||||
n = BIO_snprintf(p, j, "DEK-Info: %s,", type);
|
||||
if (n > 0) {
|
||||
j -= n;
|
||||
p += n;
|
||||
for (i = 0; i < len; i++) {
|
||||
n = BIO_snprintf(p, j, "%02X", 0xff & str[i]);
|
||||
if (n <= 0)
|
||||
return;
|
||||
j -= n;
|
||||
p += n;
|
||||
}
|
||||
if (j > 1)
|
||||
strcpy(p, "\n");
|
||||
}
|
||||
}
|
||||
|
||||
#ifndef OPENSSL_NO_STDIO
|
||||
void *PEM_ASN1_read(d2i_of_void *d2i, const char *name, FILE *fp, void **x,
|
||||
pem_password_cb *cb, void *u)
|
||||
{
|
||||
BIO *b;
|
||||
void *ret;
|
||||
|
||||
if ((b = BIO_new(BIO_s_file())) == NULL) {
|
||||
PEMerr(PEM_F_PEM_ASN1_READ, ERR_R_BUF_LIB);
|
||||
return 0;
|
||||
}
|
||||
BIO_set_fp(b, fp, BIO_NOCLOSE);
|
||||
ret = PEM_ASN1_read_bio(d2i, name, b, x, cb, u);
|
||||
BIO_free(b);
|
||||
return ret;
|
||||
}
|
||||
#endif
|
||||
|
||||
static int check_pem(const char *nm, const char *name)
|
||||
{
|
||||
/* Normal matching nm and name */
|
||||
if (strcmp(nm, name) == 0)
|
||||
return 1;
|
||||
|
||||
/* Make PEM_STRING_EVP_PKEY match any private key */
|
||||
|
||||
if (strcmp(name, PEM_STRING_EVP_PKEY) == 0) {
|
||||
int slen;
|
||||
const EVP_PKEY_ASN1_METHOD *ameth;
|
||||
if (strcmp(nm, PEM_STRING_PKCS8) == 0)
|
||||
return 1;
|
||||
if (strcmp(nm, PEM_STRING_PKCS8INF) == 0)
|
||||
return 1;
|
||||
slen = pem_check_suffix(nm, "PRIVATE KEY");
|
||||
if (slen > 0) {
|
||||
/*
|
||||
* NB: ENGINE implementations won't contain a deprecated old
|
||||
* private key decode function so don't look for them.
|
||||
*/
|
||||
ameth = EVP_PKEY_asn1_find_str(NULL, nm, slen);
|
||||
if (ameth && ameth->old_priv_decode)
|
||||
return 1;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (strcmp(name, PEM_STRING_PARAMETERS) == 0) {
|
||||
int slen;
|
||||
const EVP_PKEY_ASN1_METHOD *ameth;
|
||||
slen = pem_check_suffix(nm, "PARAMETERS");
|
||||
if (slen > 0) {
|
||||
ENGINE *e;
|
||||
ameth = EVP_PKEY_asn1_find_str(&e, nm, slen);
|
||||
if (ameth) {
|
||||
int r;
|
||||
if (ameth->param_decode)
|
||||
r = 1;
|
||||
else
|
||||
r = 0;
|
||||
#ifndef OPENSSL_NO_ENGINE
|
||||
ENGINE_finish(e);
|
||||
#endif
|
||||
return r;
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
/* If reading DH parameters handle X9.42 DH format too */
|
||||
if (strcmp(nm, PEM_STRING_DHXPARAMS) == 0
|
||||
&& strcmp(name, PEM_STRING_DHPARAMS) == 0)
|
||||
return 1;
|
||||
|
||||
/* Permit older strings */
|
||||
|
||||
if (strcmp(nm, PEM_STRING_X509_OLD) == 0
|
||||
&& strcmp(name, PEM_STRING_X509) == 0)
|
||||
return 1;
|
||||
|
||||
if (strcmp(nm, PEM_STRING_X509_REQ_OLD) == 0
|
||||
&& strcmp(name, PEM_STRING_X509_REQ) == 0)
|
||||
return 1;
|
||||
|
||||
/* Allow normal certs to be read as trusted certs */
|
||||
if (strcmp(nm, PEM_STRING_X509) == 0
|
||||
&& strcmp(name, PEM_STRING_X509_TRUSTED) == 0)
|
||||
return 1;
|
||||
|
||||
if (strcmp(nm, PEM_STRING_X509_OLD) == 0
|
||||
&& strcmp(name, PEM_STRING_X509_TRUSTED) == 0)
|
||||
return 1;
|
||||
|
||||
/* Some CAs use PKCS#7 with CERTIFICATE headers */
|
||||
if (strcmp(nm, PEM_STRING_X509) == 0
|
||||
&& strcmp(name, PEM_STRING_PKCS7) == 0)
|
||||
return 1;
|
||||
|
||||
if (strcmp(nm, PEM_STRING_PKCS7_SIGNED) == 0
|
||||
&& strcmp(name, PEM_STRING_PKCS7) == 0)
|
||||
return 1;
|
||||
|
||||
#ifndef OPENSSL_NO_CMS
|
||||
if (strcmp(nm, PEM_STRING_X509) == 0
|
||||
&& strcmp(name, PEM_STRING_CMS) == 0)
|
||||
return 1;
|
||||
/* Allow CMS to be read from PKCS#7 headers */
|
||||
if (strcmp(nm, PEM_STRING_PKCS7) == 0
|
||||
&& strcmp(name, PEM_STRING_CMS) == 0)
|
||||
return 1;
|
||||
#endif
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void pem_free(void *p, unsigned int flags, size_t num)
|
||||
{
|
||||
if (flags & PEM_FLAG_SECURE)
|
||||
OPENSSL_secure_clear_free(p, num);
|
||||
else
|
||||
OPENSSL_free(p);
|
||||
}
|
||||
|
||||
static void *pem_malloc(int num, unsigned int flags)
|
||||
{
|
||||
return (flags & PEM_FLAG_SECURE) ? OPENSSL_secure_malloc(num)
|
||||
: OPENSSL_malloc(num);
|
||||
}
|
||||
|
||||
static int pem_bytes_read_bio_flags(unsigned char **pdata, long *plen,
|
||||
char **pnm, const char *name, BIO *bp,
|
||||
pem_password_cb *cb, void *u,
|
||||
unsigned int flags)
|
||||
{
|
||||
EVP_CIPHER_INFO cipher;
|
||||
char *nm = NULL, *header = NULL;
|
||||
unsigned char *data = NULL;
|
||||
long len = 0;
|
||||
int ret = 0;
|
||||
|
||||
do {
|
||||
pem_free(nm, flags, 0);
|
||||
pem_free(header, flags, 0);
|
||||
pem_free(data, flags, len);
|
||||
if (!PEM_read_bio_ex(bp, &nm, &header, &data, &len, flags)) {
|
||||
if (ERR_GET_REASON(ERR_peek_error()) == PEM_R_NO_START_LINE)
|
||||
ERR_add_error_data(2, "Expecting: ", name);
|
||||
return 0;
|
||||
}
|
||||
} while (!check_pem(nm, name));
|
||||
if (!PEM_get_EVP_CIPHER_INFO(header, &cipher))
|
||||
goto err;
|
||||
if (!PEM_do_header(&cipher, data, &len, cb, u))
|
||||
goto err;
|
||||
|
||||
*pdata = data;
|
||||
*plen = len;
|
||||
|
||||
if (pnm != NULL)
|
||||
*pnm = nm;
|
||||
|
||||
ret = 1;
|
||||
|
||||
err:
|
||||
if (!ret || pnm == NULL)
|
||||
pem_free(nm, flags, 0);
|
||||
pem_free(header, flags, 0);
|
||||
if (!ret)
|
||||
pem_free(data, flags, len);
|
||||
return ret;
|
||||
}
|
||||
|
||||
int PEM_bytes_read_bio(unsigned char **pdata, long *plen, char **pnm,
|
||||
const char *name, BIO *bp, pem_password_cb *cb,
|
||||
void *u) {
|
||||
return pem_bytes_read_bio_flags(pdata, plen, pnm, name, bp, cb, u,
|
||||
PEM_FLAG_EAY_COMPATIBLE);
|
||||
}
|
||||
|
||||
int PEM_bytes_read_bio_secmem(unsigned char **pdata, long *plen, char **pnm,
|
||||
const char *name, BIO *bp, pem_password_cb *cb,
|
||||
void *u) {
|
||||
return pem_bytes_read_bio_flags(pdata, plen, pnm, name, bp, cb, u,
|
||||
PEM_FLAG_SECURE | PEM_FLAG_EAY_COMPATIBLE);
|
||||
}
|
||||
|
||||
#ifndef OPENSSL_NO_STDIO
|
||||
int PEM_ASN1_write(i2d_of_void *i2d, const char *name, FILE *fp,
|
||||
void *x, const EVP_CIPHER *enc, unsigned char *kstr,
|
||||
int klen, pem_password_cb *callback, void *u)
|
||||
{
|
||||
BIO *b;
|
||||
int ret;
|
||||
|
||||
if ((b = BIO_new(BIO_s_file())) == NULL) {
|
||||
PEMerr(PEM_F_PEM_ASN1_WRITE, ERR_R_BUF_LIB);
|
||||
return 0;
|
||||
}
|
||||
BIO_set_fp(b, fp, BIO_NOCLOSE);
|
||||
ret = PEM_ASN1_write_bio(i2d, name, b, x, enc, kstr, klen, callback, u);
|
||||
BIO_free(b);
|
||||
return ret;
|
||||
}
|
||||
#endif
|
||||
|
||||
int PEM_ASN1_write_bio(i2d_of_void *i2d, const char *name, BIO *bp,
|
||||
void *x, const EVP_CIPHER *enc, unsigned char *kstr,
|
||||
int klen, pem_password_cb *callback, void *u)
|
||||
{
|
||||
EVP_CIPHER_CTX *ctx = NULL;
|
||||
int dsize = 0, i = 0, j = 0, ret = 0;
|
||||
unsigned char *p, *data = NULL;
|
||||
const char *objstr = NULL;
|
||||
char buf[PEM_BUFSIZE];
|
||||
unsigned char key[EVP_MAX_KEY_LENGTH];
|
||||
unsigned char iv[EVP_MAX_IV_LENGTH];
|
||||
|
||||
if (enc != NULL) {
|
||||
objstr = OBJ_nid2sn(EVP_CIPHER_nid(enc));
|
||||
if (objstr == NULL || EVP_CIPHER_iv_length(enc) == 0
|
||||
|| EVP_CIPHER_iv_length(enc) > (int)sizeof(iv)
|
||||
/*
|
||||
* Check "Proc-Type: 4,Encrypted\nDEK-Info: objstr,hex-iv\n"
|
||||
* fits into buf
|
||||
*/
|
||||
|| (strlen(objstr) + 23 + 2 * EVP_CIPHER_iv_length(enc) + 13)
|
||||
> sizeof(buf)) {
|
||||
PEMerr(PEM_F_PEM_ASN1_WRITE_BIO, PEM_R_UNSUPPORTED_CIPHER);
|
||||
goto err;
|
||||
}
|
||||
}
|
||||
|
||||
if ((dsize = i2d(x, NULL)) < 0) {
|
||||
PEMerr(PEM_F_PEM_ASN1_WRITE_BIO, ERR_R_ASN1_LIB);
|
||||
dsize = 0;
|
||||
goto err;
|
||||
}
|
||||
/* dsize + 8 bytes are needed */
|
||||
/* actually it needs the cipher block size extra... */
|
||||
data = OPENSSL_malloc((unsigned int)dsize + 20);
|
||||
if (data == NULL) {
|
||||
PEMerr(PEM_F_PEM_ASN1_WRITE_BIO, ERR_R_MALLOC_FAILURE);
|
||||
goto err;
|
||||
}
|
||||
p = data;
|
||||
i = i2d(x, &p);
|
||||
|
||||
if (enc != NULL) {
|
||||
if (kstr == NULL) {
|
||||
if (callback == NULL)
|
||||
klen = PEM_def_callback(buf, PEM_BUFSIZE, 1, u);
|
||||
else
|
||||
klen = (*callback) (buf, PEM_BUFSIZE, 1, u);
|
||||
if (klen <= 0) {
|
||||
PEMerr(PEM_F_PEM_ASN1_WRITE_BIO, PEM_R_READ_KEY);
|
||||
goto err;
|
||||
}
|
||||
#ifdef CHARSET_EBCDIC
|
||||
/* Convert the pass phrase from EBCDIC */
|
||||
ebcdic2ascii(buf, buf, klen);
|
||||
#endif
|
||||
kstr = (unsigned char *)buf;
|
||||
}
|
||||
if (RAND_bytes(iv, EVP_CIPHER_iv_length(enc)) <= 0) /* Generate a salt */
|
||||
goto err;
|
||||
/*
|
||||
* The 'iv' is used as the iv and as a salt. It is NOT taken from
|
||||
* the BytesToKey function
|
||||
*/
|
||||
if (!EVP_BytesToKey(enc, EVP_md5(), iv, kstr, klen, 1, key, NULL))
|
||||
goto err;
|
||||
|
||||
if (kstr == (unsigned char *)buf)
|
||||
OPENSSL_cleanse(buf, PEM_BUFSIZE);
|
||||
|
||||
buf[0] = '\0';
|
||||
PEM_proc_type(buf, PEM_TYPE_ENCRYPTED);
|
||||
PEM_dek_info(buf, objstr, EVP_CIPHER_iv_length(enc), (char *)iv);
|
||||
/* k=strlen(buf); */
|
||||
|
||||
ret = 1;
|
||||
if ((ctx = EVP_CIPHER_CTX_new()) == NULL
|
||||
|| !EVP_EncryptInit_ex(ctx, enc, NULL, key, iv)
|
||||
|| !EVP_EncryptUpdate(ctx, data, &j, data, i)
|
||||
|| !EVP_EncryptFinal_ex(ctx, &(data[j]), &i))
|
||||
ret = 0;
|
||||
if (ret == 0)
|
||||
goto err;
|
||||
i += j;
|
||||
} else {
|
||||
ret = 1;
|
||||
buf[0] = '\0';
|
||||
}
|
||||
i = PEM_write_bio(bp, name, buf, data, i);
|
||||
if (i <= 0)
|
||||
ret = 0;
|
||||
err:
|
||||
OPENSSL_cleanse(key, sizeof(key));
|
||||
OPENSSL_cleanse(iv, sizeof(iv));
|
||||
EVP_CIPHER_CTX_free(ctx);
|
||||
OPENSSL_cleanse(buf, PEM_BUFSIZE);
|
||||
OPENSSL_clear_free(data, (unsigned int)dsize);
|
||||
return ret;
|
||||
}
|
||||
|
||||
int PEM_do_header(EVP_CIPHER_INFO *cipher, unsigned char *data, long *plen,
|
||||
pem_password_cb *callback, void *u)
|
||||
{
|
||||
int ok;
|
||||
int keylen;
|
||||
long len = *plen;
|
||||
int ilen = (int) len; /* EVP_DecryptUpdate etc. take int lengths */
|
||||
EVP_CIPHER_CTX *ctx;
|
||||
unsigned char key[EVP_MAX_KEY_LENGTH];
|
||||
char buf[PEM_BUFSIZE];
|
||||
|
||||
#if LONG_MAX > INT_MAX
|
||||
/* Check that we did not truncate the length */
|
||||
if (len > INT_MAX) {
|
||||
PEMerr(PEM_F_PEM_DO_HEADER, PEM_R_HEADER_TOO_LONG);
|
||||
return 0;
|
||||
}
|
||||
#endif
|
||||
|
||||
if (cipher->cipher == NULL)
|
||||
return 1;
|
||||
if (callback == NULL)
|
||||
keylen = PEM_def_callback(buf, PEM_BUFSIZE, 0, u);
|
||||
else
|
||||
keylen = callback(buf, PEM_BUFSIZE, 0, u);
|
||||
if (keylen < 0) {
|
||||
PEMerr(PEM_F_PEM_DO_HEADER, PEM_R_BAD_PASSWORD_READ);
|
||||
return 0;
|
||||
}
|
||||
#ifdef CHARSET_EBCDIC
|
||||
/* Convert the pass phrase from EBCDIC */
|
||||
ebcdic2ascii(buf, buf, keylen);
|
||||
#endif
|
||||
|
||||
if (!EVP_BytesToKey(cipher->cipher, EVP_md5(), &(cipher->iv[0]),
|
||||
(unsigned char *)buf, keylen, 1, key, NULL))
|
||||
return 0;
|
||||
|
||||
ctx = EVP_CIPHER_CTX_new();
|
||||
if (ctx == NULL)
|
||||
return 0;
|
||||
|
||||
ok = EVP_DecryptInit_ex(ctx, cipher->cipher, NULL, key, &(cipher->iv[0]));
|
||||
if (ok)
|
||||
ok = EVP_DecryptUpdate(ctx, data, &ilen, data, ilen);
|
||||
if (ok) {
|
||||
/* Squirrel away the length of data decrypted so far. */
|
||||
*plen = ilen;
|
||||
ok = EVP_DecryptFinal_ex(ctx, &(data[ilen]), &ilen);
|
||||
}
|
||||
if (ok)
|
||||
*plen += ilen;
|
||||
else
|
||||
PEMerr(PEM_F_PEM_DO_HEADER, PEM_R_BAD_DECRYPT);
|
||||
|
||||
EVP_CIPHER_CTX_free(ctx);
|
||||
OPENSSL_cleanse((char *)buf, sizeof(buf));
|
||||
OPENSSL_cleanse((char *)key, sizeof(key));
|
||||
return ok;
|
||||
}
|
||||
|
||||
/*
|
||||
* This implements a very limited PEM header parser that does not support the
|
||||
* full grammar of rfc1421. In particular, folded headers are not supported,
|
||||
* nor is additional whitespace.
|
||||
*
|
||||
* A robust implementation would make use of a library that turns the headers
|
||||
* into a BIO from which one folded line is read at a time, and is then split
|
||||
* into a header label and content. We would then parse the content of the
|
||||
* headers we care about. This is overkill for just this limited use-case, but
|
||||
* presumably we also parse rfc822-style headers for S/MIME, so a common
|
||||
* abstraction might well be more generally useful.
|
||||
*/
|
||||
int PEM_get_EVP_CIPHER_INFO(char *header, EVP_CIPHER_INFO *cipher)
|
||||
{
|
||||
static const char ProcType[] = "Proc-Type:";
|
||||
static const char ENCRYPTED[] = "ENCRYPTED";
|
||||
static const char DEKInfo[] = "DEK-Info:";
|
||||
const EVP_CIPHER *enc = NULL;
|
||||
int ivlen;
|
||||
char *dekinfostart, c;
|
||||
|
||||
cipher->cipher = NULL;
|
||||
memset(cipher->iv, 0, sizeof(cipher->iv));
|
||||
if ((header == NULL) || (*header == '\0') || (*header == '\n'))
|
||||
return 1;
|
||||
|
||||
if (strncmp(header, ProcType, sizeof(ProcType)-1) != 0) {
|
||||
PEMerr(PEM_F_PEM_GET_EVP_CIPHER_INFO, PEM_R_NOT_PROC_TYPE);
|
||||
return 0;
|
||||
}
|
||||
header += sizeof(ProcType)-1;
|
||||
header += strspn(header, " \t");
|
||||
|
||||
if (*header++ != '4' || *header++ != ',')
|
||||
return 0;
|
||||
header += strspn(header, " \t");
|
||||
|
||||
/* We expect "ENCRYPTED" followed by optional white-space + line break */
|
||||
if (strncmp(header, ENCRYPTED, sizeof(ENCRYPTED)-1) != 0 ||
|
||||
strspn(header+sizeof(ENCRYPTED)-1, " \t\r\n") == 0) {
|
||||
PEMerr(PEM_F_PEM_GET_EVP_CIPHER_INFO, PEM_R_NOT_ENCRYPTED);
|
||||
return 0;
|
||||
}
|
||||
header += sizeof(ENCRYPTED)-1;
|
||||
header += strspn(header, " \t\r");
|
||||
if (*header++ != '\n') {
|
||||
PEMerr(PEM_F_PEM_GET_EVP_CIPHER_INFO, PEM_R_SHORT_HEADER);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*-
|
||||
* https://tools.ietf.org/html/rfc1421#section-4.6.1.3
|
||||
* We expect "DEK-Info: algo[,hex-parameters]"
|
||||
*/
|
||||
if (strncmp(header, DEKInfo, sizeof(DEKInfo)-1) != 0) {
|
||||
PEMerr(PEM_F_PEM_GET_EVP_CIPHER_INFO, PEM_R_NOT_DEK_INFO);
|
||||
return 0;
|
||||
}
|
||||
header += sizeof(DEKInfo)-1;
|
||||
header += strspn(header, " \t");
|
||||
|
||||
/*
|
||||
* DEK-INFO is a comma-separated combination of algorithm name and optional
|
||||
* parameters.
|
||||
*/
|
||||
dekinfostart = header;
|
||||
header += strcspn(header, " \t,");
|
||||
c = *header;
|
||||
*header = '\0';
|
||||
cipher->cipher = enc = EVP_get_cipherbyname(dekinfostart);
|
||||
*header = c;
|
||||
header += strspn(header, " \t");
|
||||
|
||||
if (enc == NULL) {
|
||||
PEMerr(PEM_F_PEM_GET_EVP_CIPHER_INFO, PEM_R_UNSUPPORTED_ENCRYPTION);
|
||||
return 0;
|
||||
}
|
||||
ivlen = EVP_CIPHER_iv_length(enc);
|
||||
if (ivlen > 0 && *header++ != ',') {
|
||||
PEMerr(PEM_F_PEM_GET_EVP_CIPHER_INFO, PEM_R_MISSING_DEK_IV);
|
||||
return 0;
|
||||
} else if (ivlen == 0 && *header == ',') {
|
||||
PEMerr(PEM_F_PEM_GET_EVP_CIPHER_INFO, PEM_R_UNEXPECTED_DEK_IV);
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (!load_iv(&header, cipher->iv, EVP_CIPHER_iv_length(enc)))
|
||||
return 0;
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
static int load_iv(char **fromp, unsigned char *to, int num)
|
||||
{
|
||||
int v, i;
|
||||
char *from;
|
||||
|
||||
from = *fromp;
|
||||
for (i = 0; i < num; i++)
|
||||
to[i] = 0;
|
||||
num *= 2;
|
||||
for (i = 0; i < num; i++) {
|
||||
v = OPENSSL_hexchar2int(*from);
|
||||
if (v < 0) {
|
||||
PEMerr(PEM_F_LOAD_IV, PEM_R_BAD_IV_CHARS);
|
||||
return 0;
|
||||
}
|
||||
from++;
|
||||
to[i / 2] |= v << (long)((!(i & 1)) * 4);
|
||||
}
|
||||
|
||||
*fromp = from;
|
||||
return 1;
|
||||
}
|
||||
|
||||
#ifndef OPENSSL_NO_STDIO
|
||||
int PEM_write(FILE *fp, const char *name, const char *header,
|
||||
const unsigned char *data, long len)
|
||||
{
|
||||
BIO *b;
|
||||
int ret;
|
||||
|
||||
if ((b = BIO_new(BIO_s_file())) == NULL) {
|
||||
PEMerr(PEM_F_PEM_WRITE, ERR_R_BUF_LIB);
|
||||
return 0;
|
||||
}
|
||||
BIO_set_fp(b, fp, BIO_NOCLOSE);
|
||||
ret = PEM_write_bio(b, name, header, data, len);
|
||||
BIO_free(b);
|
||||
return ret;
|
||||
}
|
||||
#endif
|
||||
|
||||
int PEM_write_bio(BIO *bp, const char *name, const char *header,
|
||||
const unsigned char *data, long len)
|
||||
{
|
||||
int nlen, n, i, j, outl;
|
||||
unsigned char *buf = NULL;
|
||||
EVP_ENCODE_CTX *ctx = EVP_ENCODE_CTX_new();
|
||||
int reason = ERR_R_BUF_LIB;
|
||||
int retval = 0;
|
||||
|
||||
if (ctx == NULL) {
|
||||
reason = ERR_R_MALLOC_FAILURE;
|
||||
goto err;
|
||||
}
|
||||
|
||||
EVP_EncodeInit(ctx);
|
||||
nlen = strlen(name);
|
||||
|
||||
if ((BIO_write(bp, "-----BEGIN ", 11) != 11) ||
|
||||
(BIO_write(bp, name, nlen) != nlen) ||
|
||||
(BIO_write(bp, "-----\n", 6) != 6))
|
||||
goto err;
|
||||
|
||||
i = strlen(header);
|
||||
if (i > 0) {
|
||||
if ((BIO_write(bp, header, i) != i) || (BIO_write(bp, "\n", 1) != 1))
|
||||
goto err;
|
||||
}
|
||||
|
||||
buf = OPENSSL_malloc(PEM_BUFSIZE * 8);
|
||||
if (buf == NULL) {
|
||||
reason = ERR_R_MALLOC_FAILURE;
|
||||
goto err;
|
||||
}
|
||||
|
||||
i = j = 0;
|
||||
while (len > 0) {
|
||||
n = (int)((len > (PEM_BUFSIZE * 5)) ? (PEM_BUFSIZE * 5) : len);
|
||||
if (!EVP_EncodeUpdate(ctx, buf, &outl, &(data[j]), n))
|
||||
goto err;
|
||||
if ((outl) && (BIO_write(bp, (char *)buf, outl) != outl))
|
||||
goto err;
|
||||
i += outl;
|
||||
len -= n;
|
||||
j += n;
|
||||
}
|
||||
EVP_EncodeFinal(ctx, buf, &outl);
|
||||
if ((outl > 0) && (BIO_write(bp, (char *)buf, outl) != outl))
|
||||
goto err;
|
||||
if ((BIO_write(bp, "-----END ", 9) != 9) ||
|
||||
(BIO_write(bp, name, nlen) != nlen) ||
|
||||
(BIO_write(bp, "-----\n", 6) != 6))
|
||||
goto err;
|
||||
retval = i + outl;
|
||||
|
||||
err:
|
||||
if (retval == 0)
|
||||
PEMerr(PEM_F_PEM_WRITE_BIO, reason);
|
||||
EVP_ENCODE_CTX_free(ctx);
|
||||
OPENSSL_clear_free(buf, PEM_BUFSIZE * 8);
|
||||
return retval;
|
||||
}
|
||||
|
||||
#ifndef OPENSSL_NO_STDIO
|
||||
int PEM_read(FILE *fp, char **name, char **header, unsigned char **data,
|
||||
long *len)
|
||||
{
|
||||
BIO *b;
|
||||
int ret;
|
||||
|
||||
if ((b = BIO_new(BIO_s_file())) == NULL) {
|
||||
PEMerr(PEM_F_PEM_READ, ERR_R_BUF_LIB);
|
||||
return 0;
|
||||
}
|
||||
BIO_set_fp(b, fp, BIO_NOCLOSE);
|
||||
ret = PEM_read_bio(b, name, header, data, len);
|
||||
BIO_free(b);
|
||||
return ret;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* Some helpers for PEM_read_bio_ex(). */
|
||||
static int sanitize_line(char *linebuf, int len, unsigned int flags)
|
||||
{
|
||||
int i;
|
||||
|
||||
if (flags & PEM_FLAG_EAY_COMPATIBLE) {
|
||||
/* Strip trailing whitespace */
|
||||
while ((len >= 0) && (linebuf[len] <= ' '))
|
||||
len--;
|
||||
/* Go back to whitespace before applying uniform line ending. */
|
||||
len++;
|
||||
} else if (flags & PEM_FLAG_ONLY_B64) {
|
||||
for (i = 0; i < len; ++i) {
|
||||
if (!ossl_isbase64(linebuf[i]) || linebuf[i] == '\n'
|
||||
|| linebuf[i] == '\r')
|
||||
break;
|
||||
}
|
||||
len = i;
|
||||
} else {
|
||||
/* EVP_DecodeBlock strips leading and trailing whitespace, so just strip
|
||||
* control characters in-place and let everything through. */
|
||||
for (i = 0; i < len; ++i) {
|
||||
if (linebuf[i] == '\n' || linebuf[i] == '\r')
|
||||
break;
|
||||
if (ossl_iscntrl(linebuf[i]))
|
||||
linebuf[i] = ' ';
|
||||
}
|
||||
len = i;
|
||||
}
|
||||
/* The caller allocated LINESIZE+1, so this is safe. */
|
||||
linebuf[len++] = '\n';
|
||||
linebuf[len] = '\0';
|
||||
return len;
|
||||
}
|
||||
|
||||
#define LINESIZE 255
|
||||
/* Note trailing spaces for begin and end. */
|
||||
static const char beginstr[] = "-----BEGIN ";
|
||||
static const char endstr[] = "-----END ";
|
||||
static const char tailstr[] = "-----\n";
|
||||
#define BEGINLEN ((int)(sizeof(beginstr) - 1))
|
||||
#define ENDLEN ((int)(sizeof(endstr) - 1))
|
||||
#define TAILLEN ((int)(sizeof(tailstr) - 1))
|
||||
static int get_name(BIO *bp, char **name, unsigned int flags)
|
||||
{
|
||||
char *linebuf;
|
||||
int ret = 0;
|
||||
int len;
|
||||
|
||||
/*
|
||||
* Need to hold trailing NUL (accounted for by BIO_gets() and the newline
|
||||
* that will be added by sanitize_line() (the extra '1').
|
||||
*/
|
||||
linebuf = pem_malloc(LINESIZE + 1, flags);
|
||||
if (linebuf == NULL) {
|
||||
PEMerr(PEM_F_GET_NAME, ERR_R_MALLOC_FAILURE);
|
||||
return 0;
|
||||
}
|
||||
|
||||
do {
|
||||
len = BIO_gets(bp, linebuf, LINESIZE);
|
||||
|
||||
if (len <= 0) {
|
||||
PEMerr(PEM_F_GET_NAME, PEM_R_NO_START_LINE);
|
||||
goto err;
|
||||
}
|
||||
|
||||
/* Strip trailing garbage and standardize ending. */
|
||||
len = sanitize_line(linebuf, len, flags & ~PEM_FLAG_ONLY_B64);
|
||||
|
||||
/* Allow leading empty or non-matching lines. */
|
||||
} while (strncmp(linebuf, beginstr, BEGINLEN) != 0
|
||||
|| len < TAILLEN
|
||||
|| strncmp(linebuf + len - TAILLEN, tailstr, TAILLEN) != 0);
|
||||
linebuf[len - TAILLEN] = '\0';
|
||||
len = len - BEGINLEN - TAILLEN + 1;
|
||||
*name = pem_malloc(len, flags);
|
||||
if (*name == NULL) {
|
||||
PEMerr(PEM_F_GET_NAME, ERR_R_MALLOC_FAILURE);
|
||||
goto err;
|
||||
}
|
||||
memcpy(*name, linebuf + BEGINLEN, len);
|
||||
ret = 1;
|
||||
|
||||
err:
|
||||
pem_free(linebuf, flags, LINESIZE + 1);
|
||||
return ret;
|
||||
}
|
||||
|
||||
/* Keep track of how much of a header we've seen. */
|
||||
enum header_status {
|
||||
MAYBE_HEADER,
|
||||
IN_HEADER,
|
||||
POST_HEADER
|
||||
};
|
||||
|
||||
/**
|
||||
* Extract the optional PEM header, with details on the type of content and
|
||||
* any encryption used on the contents, and the bulk of the data from the bio.
|
||||
* The end of the header is marked by a blank line; if the end-of-input marker
|
||||
* is reached prior to a blank line, there is no header.
|
||||
*
|
||||
* The header and data arguments are BIO** since we may have to swap them
|
||||
* if there is no header, for efficiency.
|
||||
*
|
||||
* We need the name of the PEM-encoded type to verify the end string.
|
||||
*/
|
||||
static int get_header_and_data(BIO *bp, BIO **header, BIO **data, char *name,
|
||||
unsigned int flags)
|
||||
{
|
||||
BIO *tmp = *header;
|
||||
char *linebuf, *p;
|
||||
int len, line, ret = 0, end = 0;
|
||||
/* 0 if not seen (yet), 1 if reading header, 2 if finished header */
|
||||
enum header_status got_header = MAYBE_HEADER;
|
||||
unsigned int flags_mask;
|
||||
size_t namelen;
|
||||
|
||||
/* Need to hold trailing NUL (accounted for by BIO_gets() and the newline
|
||||
* that will be added by sanitize_line() (the extra '1'). */
|
||||
linebuf = pem_malloc(LINESIZE + 1, flags);
|
||||
if (linebuf == NULL) {
|
||||
PEMerr(PEM_F_GET_HEADER_AND_DATA, ERR_R_MALLOC_FAILURE);
|
||||
return 0;
|
||||
}
|
||||
|
||||
for (line = 0; ; line++) {
|
||||
flags_mask = ~0u;
|
||||
len = BIO_gets(bp, linebuf, LINESIZE);
|
||||
if (len <= 0) {
|
||||
PEMerr(PEM_F_GET_HEADER_AND_DATA, PEM_R_SHORT_HEADER);
|
||||
goto err;
|
||||
}
|
||||
|
||||
if (got_header == MAYBE_HEADER) {
|
||||
if (memchr(linebuf, ':', len) != NULL)
|
||||
got_header = IN_HEADER;
|
||||
}
|
||||
if (!strncmp(linebuf, endstr, ENDLEN) || got_header == IN_HEADER)
|
||||
flags_mask &= ~PEM_FLAG_ONLY_B64;
|
||||
len = sanitize_line(linebuf, len, flags & flags_mask);
|
||||
|
||||
/* Check for end of header. */
|
||||
if (linebuf[0] == '\n') {
|
||||
if (got_header == POST_HEADER) {
|
||||
/* Another blank line is an error. */
|
||||
PEMerr(PEM_F_GET_HEADER_AND_DATA, PEM_R_BAD_END_LINE);
|
||||
goto err;
|
||||
}
|
||||
got_header = POST_HEADER;
|
||||
tmp = *data;
|
||||
continue;
|
||||
}
|
||||
|
||||
/* Check for end of stream (which means there is no header). */
|
||||
if (strncmp(linebuf, endstr, ENDLEN) == 0) {
|
||||
p = linebuf + ENDLEN;
|
||||
namelen = strlen(name);
|
||||
if (strncmp(p, name, namelen) != 0 ||
|
||||
strncmp(p + namelen, tailstr, TAILLEN) != 0) {
|
||||
PEMerr(PEM_F_GET_HEADER_AND_DATA, PEM_R_BAD_END_LINE);
|
||||
goto err;
|
||||
}
|
||||
if (got_header == MAYBE_HEADER) {
|
||||
*header = *data;
|
||||
*data = tmp;
|
||||
}
|
||||
break;
|
||||
} else if (end) {
|
||||
/* Malformed input; short line not at end of data. */
|
||||
PEMerr(PEM_F_GET_HEADER_AND_DATA, PEM_R_BAD_END_LINE);
|
||||
goto err;
|
||||
}
|
||||
/*
|
||||
* Else, a line of text -- could be header or data; we don't
|
||||
* know yet. Just pass it through.
|
||||
*/
|
||||
if (BIO_puts(tmp, linebuf) < 0)
|
||||
goto err;
|
||||
/*
|
||||
* Only encrypted files need the line length check applied.
|
||||
*/
|
||||
if (got_header == POST_HEADER) {
|
||||
/* 65 includes the trailing newline */
|
||||
if (len > 65)
|
||||
goto err;
|
||||
if (len < 65)
|
||||
end = 1;
|
||||
}
|
||||
}
|
||||
|
||||
ret = 1;
|
||||
err:
|
||||
pem_free(linebuf, flags, LINESIZE + 1);
|
||||
return ret;
|
||||
}
|
||||
|
||||
/**
|
||||
* Read in PEM-formatted data from the given BIO.
|
||||
*
|
||||
* By nature of the PEM format, all content must be printable ASCII (except
|
||||
* for line endings). Other characters are malformed input and will be rejected.
|
||||
*/
|
||||
int PEM_read_bio_ex(BIO *bp, char **name_out, char **header,
|
||||
unsigned char **data, long *len_out, unsigned int flags)
|
||||
{
|
||||
EVP_ENCODE_CTX *ctx = EVP_ENCODE_CTX_new();
|
||||
const BIO_METHOD *bmeth;
|
||||
BIO *headerB = NULL, *dataB = NULL;
|
||||
char *name = NULL;
|
||||
int len, taillen, headerlen, ret = 0;
|
||||
BUF_MEM * buf_mem;
|
||||
|
||||
if (ctx == NULL) {
|
||||
PEMerr(PEM_F_PEM_READ_BIO_EX, ERR_R_MALLOC_FAILURE);
|
||||
return 0;
|
||||
}
|
||||
|
||||
*len_out = 0;
|
||||
*name_out = *header = NULL;
|
||||
*data = NULL;
|
||||
if ((flags & PEM_FLAG_EAY_COMPATIBLE) && (flags & PEM_FLAG_ONLY_B64)) {
|
||||
/* These two are mutually incompatible; bail out. */
|
||||
PEMerr(PEM_F_PEM_READ_BIO_EX, ERR_R_PASSED_INVALID_ARGUMENT);
|
||||
goto end;
|
||||
}
|
||||
bmeth = (flags & PEM_FLAG_SECURE) ? BIO_s_secmem() : BIO_s_mem();
|
||||
|
||||
headerB = BIO_new(bmeth);
|
||||
dataB = BIO_new(bmeth);
|
||||
if (headerB == NULL || dataB == NULL) {
|
||||
PEMerr(PEM_F_PEM_READ_BIO_EX, ERR_R_MALLOC_FAILURE);
|
||||
goto end;
|
||||
}
|
||||
|
||||
if (!get_name(bp, &name, flags))
|
||||
goto end;
|
||||
if (!get_header_and_data(bp, &headerB, &dataB, name, flags))
|
||||
goto end;
|
||||
|
||||
EVP_DecodeInit(ctx);
|
||||
BIO_get_mem_ptr(dataB, &buf_mem);
|
||||
len = buf_mem->length;
|
||||
if (EVP_DecodeUpdate(ctx, (unsigned char*)buf_mem->data, &len,
|
||||
(unsigned char*)buf_mem->data, len) < 0
|
||||
|| EVP_DecodeFinal(ctx, (unsigned char*)&(buf_mem->data[len]),
|
||||
&taillen) < 0) {
|
||||
PEMerr(PEM_F_PEM_READ_BIO_EX, PEM_R_BAD_BASE64_DECODE);
|
||||
goto end;
|
||||
}
|
||||
len += taillen;
|
||||
buf_mem->length = len;
|
||||
|
||||
/* There was no data in the PEM file; avoid malloc(0). */
|
||||
if (len == 0)
|
||||
goto end;
|
||||
headerlen = BIO_get_mem_data(headerB, NULL);
|
||||
*header = pem_malloc(headerlen + 1, flags);
|
||||
*data = pem_malloc(len, flags);
|
||||
if (*header == NULL || *data == NULL) {
|
||||
pem_free(*header, flags, 0);
|
||||
pem_free(*data, flags, 0);
|
||||
goto end;
|
||||
}
|
||||
BIO_read(headerB, *header, headerlen);
|
||||
(*header)[headerlen] = '\0';
|
||||
BIO_read(dataB, *data, len);
|
||||
*len_out = len;
|
||||
*name_out = name;
|
||||
name = NULL;
|
||||
ret = 1;
|
||||
|
||||
end:
|
||||
EVP_ENCODE_CTX_free(ctx);
|
||||
pem_free(name, flags, 0);
|
||||
BIO_free(headerB);
|
||||
BIO_free(dataB);
|
||||
return ret;
|
||||
}
|
||||
|
||||
int PEM_read_bio(BIO *bp, char **name, char **header, unsigned char **data,
|
||||
long *len)
|
||||
{
|
||||
return PEM_read_bio_ex(bp, name, header, data, len, PEM_FLAG_EAY_COMPATIBLE);
|
||||
}
|
||||
|
||||
/*
|
||||
* Check pem string and return prefix length. If for example the pem_str ==
|
||||
* "RSA PRIVATE KEY" and suffix = "PRIVATE KEY" the return value is 3 for the
|
||||
* string "RSA".
|
||||
*/
|
||||
|
||||
int pem_check_suffix(const char *pem_str, const char *suffix)
|
||||
{
|
||||
int pem_len = strlen(pem_str);
|
||||
int suffix_len = strlen(suffix);
|
||||
const char *p;
|
||||
if (suffix_len + 1 >= pem_len)
|
||||
return 0;
|
||||
p = pem_str + pem_len - suffix_len;
|
||||
if (strcmp(p, suffix))
|
||||
return 0;
|
||||
p--;
|
||||
if (*p != ' ')
|
||||
return 0;
|
||||
return p - pem_str;
|
||||
}
|
36
trunk/3rdparty/openssl-1.1-fit/crypto/pem/pem_oth.c
vendored
Normal file
36
trunk/3rdparty/openssl-1.1-fit/crypto/pem/pem_oth.c
vendored
Normal file
|
@ -0,0 +1,36 @@
|
|||
/*
|
||||
* Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved.
|
||||
*
|
||||
* Licensed under the OpenSSL license (the "License"). You may not use
|
||||
* this file except in compliance with the License. You can obtain a copy
|
||||
* in the file LICENSE in the source distribution or at
|
||||
* https://www.openssl.org/source/license.html
|
||||
*/
|
||||
|
||||
#include <stdio.h>
|
||||
#include "internal/cryptlib.h"
|
||||
#include <openssl/buffer.h>
|
||||
#include <openssl/objects.h>
|
||||
#include <openssl/evp.h>
|
||||
#include <openssl/x509.h>
|
||||
#include <openssl/pem.h>
|
||||
|
||||
/* Handle 'other' PEMs: not private keys */
|
||||
|
||||
void *PEM_ASN1_read_bio(d2i_of_void *d2i, const char *name, BIO *bp, void **x,
|
||||
pem_password_cb *cb, void *u)
|
||||
{
|
||||
const unsigned char *p = NULL;
|
||||
unsigned char *data = NULL;
|
||||
long len;
|
||||
char *ret = NULL;
|
||||
|
||||
if (!PEM_bytes_read_bio(&data, &len, NULL, name, bp, cb, u))
|
||||
return NULL;
|
||||
p = data;
|
||||
ret = d2i(x, &p, len);
|
||||
if (ret == NULL)
|
||||
PEMerr(PEM_F_PEM_ASN1_READ_BIO, ERR_R_ASN1_LIB);
|
||||
OPENSSL_free(data);
|
||||
return ret;
|
||||
}
|
214
trunk/3rdparty/openssl-1.1-fit/crypto/pem/pem_pk8.c
vendored
Normal file
214
trunk/3rdparty/openssl-1.1-fit/crypto/pem/pem_pk8.c
vendored
Normal file
|
@ -0,0 +1,214 @@
|
|||
/*
|
||||
* Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved.
|
||||
*
|
||||
* Licensed under the OpenSSL license (the "License"). You may not use
|
||||
* this file except in compliance with the License. You can obtain a copy
|
||||
* in the file LICENSE in the source distribution or at
|
||||
* https://www.openssl.org/source/license.html
|
||||
*/
|
||||
|
||||
#include <stdio.h>
|
||||
#include "internal/cryptlib.h"
|
||||
#include <openssl/buffer.h>
|
||||
#include <openssl/objects.h>
|
||||
#include <openssl/evp.h>
|
||||
#include <openssl/x509.h>
|
||||
#include <openssl/pkcs12.h>
|
||||
#include <openssl/pem.h>
|
||||
|
||||
static int do_pk8pkey(BIO *bp, EVP_PKEY *x, int isder,
|
||||
int nid, const EVP_CIPHER *enc,
|
||||
char *kstr, int klen, pem_password_cb *cb, void *u);
|
||||
|
||||
#ifndef OPENSSL_NO_STDIO
|
||||
static int do_pk8pkey_fp(FILE *bp, EVP_PKEY *x, int isder,
|
||||
int nid, const EVP_CIPHER *enc,
|
||||
char *kstr, int klen, pem_password_cb *cb, void *u);
|
||||
#endif
|
||||
/*
|
||||
* These functions write a private key in PKCS#8 format: it is a "drop in"
|
||||
* replacement for PEM_write_bio_PrivateKey() and friends. As usual if 'enc'
|
||||
* is NULL then it uses the unencrypted private key form. The 'nid' versions
|
||||
* uses PKCS#5 v1.5 PBE algorithms whereas the others use PKCS#5 v2.0.
|
||||
*/
|
||||
|
||||
int PEM_write_bio_PKCS8PrivateKey_nid(BIO *bp, EVP_PKEY *x, int nid,
|
||||
char *kstr, int klen,
|
||||
pem_password_cb *cb, void *u)
|
||||
{
|
||||
return do_pk8pkey(bp, x, 0, nid, NULL, kstr, klen, cb, u);
|
||||
}
|
||||
|
||||
int PEM_write_bio_PKCS8PrivateKey(BIO *bp, EVP_PKEY *x, const EVP_CIPHER *enc,
|
||||
char *kstr, int klen,
|
||||
pem_password_cb *cb, void *u)
|
||||
{
|
||||
return do_pk8pkey(bp, x, 0, -1, enc, kstr, klen, cb, u);
|
||||
}
|
||||
|
||||
int i2d_PKCS8PrivateKey_bio(BIO *bp, EVP_PKEY *x, const EVP_CIPHER *enc,
|
||||
char *kstr, int klen,
|
||||
pem_password_cb *cb, void *u)
|
||||
{
|
||||
return do_pk8pkey(bp, x, 1, -1, enc, kstr, klen, cb, u);
|
||||
}
|
||||
|
||||
int i2d_PKCS8PrivateKey_nid_bio(BIO *bp, EVP_PKEY *x, int nid,
|
||||
char *kstr, int klen,
|
||||
pem_password_cb *cb, void *u)
|
||||
{
|
||||
return do_pk8pkey(bp, x, 1, nid, NULL, kstr, klen, cb, u);
|
||||
}
|
||||
|
||||
static int do_pk8pkey(BIO *bp, EVP_PKEY *x, int isder, int nid,
|
||||
const EVP_CIPHER *enc, char *kstr, int klen,
|
||||
pem_password_cb *cb, void *u)
|
||||
{
|
||||
X509_SIG *p8;
|
||||
PKCS8_PRIV_KEY_INFO *p8inf;
|
||||
char buf[PEM_BUFSIZE];
|
||||
int ret;
|
||||
|
||||
if ((p8inf = EVP_PKEY2PKCS8(x)) == NULL) {
|
||||
PEMerr(PEM_F_DO_PK8PKEY, PEM_R_ERROR_CONVERTING_PRIVATE_KEY);
|
||||
return 0;
|
||||
}
|
||||
if (enc || (nid != -1)) {
|
||||
if (!kstr) {
|
||||
if (!cb)
|
||||
klen = PEM_def_callback(buf, PEM_BUFSIZE, 1, u);
|
||||
else
|
||||
klen = cb(buf, PEM_BUFSIZE, 1, u);
|
||||
if (klen <= 0) {
|
||||
PEMerr(PEM_F_DO_PK8PKEY, PEM_R_READ_KEY);
|
||||
PKCS8_PRIV_KEY_INFO_free(p8inf);
|
||||
return 0;
|
||||
}
|
||||
|
||||
kstr = buf;
|
||||
}
|
||||
p8 = PKCS8_encrypt(nid, enc, kstr, klen, NULL, 0, 0, p8inf);
|
||||
if (kstr == buf)
|
||||
OPENSSL_cleanse(buf, klen);
|
||||
PKCS8_PRIV_KEY_INFO_free(p8inf);
|
||||
if (p8 == NULL)
|
||||
return 0;
|
||||
if (isder)
|
||||
ret = i2d_PKCS8_bio(bp, p8);
|
||||
else
|
||||
ret = PEM_write_bio_PKCS8(bp, p8);
|
||||
X509_SIG_free(p8);
|
||||
return ret;
|
||||
} else {
|
||||
if (isder)
|
||||
ret = i2d_PKCS8_PRIV_KEY_INFO_bio(bp, p8inf);
|
||||
else
|
||||
ret = PEM_write_bio_PKCS8_PRIV_KEY_INFO(bp, p8inf);
|
||||
PKCS8_PRIV_KEY_INFO_free(p8inf);
|
||||
return ret;
|
||||
}
|
||||
}
|
||||
|
||||
EVP_PKEY *d2i_PKCS8PrivateKey_bio(BIO *bp, EVP_PKEY **x, pem_password_cb *cb,
|
||||
void *u)
|
||||
{
|
||||
PKCS8_PRIV_KEY_INFO *p8inf = NULL;
|
||||
X509_SIG *p8 = NULL;
|
||||
int klen;
|
||||
EVP_PKEY *ret;
|
||||
char psbuf[PEM_BUFSIZE];
|
||||
p8 = d2i_PKCS8_bio(bp, NULL);
|
||||
if (!p8)
|
||||
return NULL;
|
||||
if (cb)
|
||||
klen = cb(psbuf, PEM_BUFSIZE, 0, u);
|
||||
else
|
||||
klen = PEM_def_callback(psbuf, PEM_BUFSIZE, 0, u);
|
||||
if (klen < 0) {
|
||||
PEMerr(PEM_F_D2I_PKCS8PRIVATEKEY_BIO, PEM_R_BAD_PASSWORD_READ);
|
||||
X509_SIG_free(p8);
|
||||
return NULL;
|
||||
}
|
||||
p8inf = PKCS8_decrypt(p8, psbuf, klen);
|
||||
X509_SIG_free(p8);
|
||||
OPENSSL_cleanse(psbuf, klen);
|
||||
if (!p8inf)
|
||||
return NULL;
|
||||
ret = EVP_PKCS82PKEY(p8inf);
|
||||
PKCS8_PRIV_KEY_INFO_free(p8inf);
|
||||
if (!ret)
|
||||
return NULL;
|
||||
if (x) {
|
||||
EVP_PKEY_free(*x);
|
||||
*x = ret;
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
#ifndef OPENSSL_NO_STDIO
|
||||
|
||||
int i2d_PKCS8PrivateKey_fp(FILE *fp, EVP_PKEY *x, const EVP_CIPHER *enc,
|
||||
char *kstr, int klen, pem_password_cb *cb, void *u)
|
||||
{
|
||||
return do_pk8pkey_fp(fp, x, 1, -1, enc, kstr, klen, cb, u);
|
||||
}
|
||||
|
||||
int i2d_PKCS8PrivateKey_nid_fp(FILE *fp, EVP_PKEY *x, int nid,
|
||||
char *kstr, int klen,
|
||||
pem_password_cb *cb, void *u)
|
||||
{
|
||||
return do_pk8pkey_fp(fp, x, 1, nid, NULL, kstr, klen, cb, u);
|
||||
}
|
||||
|
||||
int PEM_write_PKCS8PrivateKey_nid(FILE *fp, EVP_PKEY *x, int nid,
|
||||
char *kstr, int klen,
|
||||
pem_password_cb *cb, void *u)
|
||||
{
|
||||
return do_pk8pkey_fp(fp, x, 0, nid, NULL, kstr, klen, cb, u);
|
||||
}
|
||||
|
||||
int PEM_write_PKCS8PrivateKey(FILE *fp, EVP_PKEY *x, const EVP_CIPHER *enc,
|
||||
char *kstr, int klen, pem_password_cb *cb,
|
||||
void *u)
|
||||
{
|
||||
return do_pk8pkey_fp(fp, x, 0, -1, enc, kstr, klen, cb, u);
|
||||
}
|
||||
|
||||
static int do_pk8pkey_fp(FILE *fp, EVP_PKEY *x, int isder, int nid,
|
||||
const EVP_CIPHER *enc, char *kstr, int klen,
|
||||
pem_password_cb *cb, void *u)
|
||||
{
|
||||
BIO *bp;
|
||||
int ret;
|
||||
|
||||
if ((bp = BIO_new_fp(fp, BIO_NOCLOSE)) == NULL) {
|
||||
PEMerr(PEM_F_DO_PK8PKEY_FP, ERR_R_BUF_LIB);
|
||||
return 0;
|
||||
}
|
||||
ret = do_pk8pkey(bp, x, isder, nid, enc, kstr, klen, cb, u);
|
||||
BIO_free(bp);
|
||||
return ret;
|
||||
}
|
||||
|
||||
EVP_PKEY *d2i_PKCS8PrivateKey_fp(FILE *fp, EVP_PKEY **x, pem_password_cb *cb,
|
||||
void *u)
|
||||
{
|
||||
BIO *bp;
|
||||
EVP_PKEY *ret;
|
||||
|
||||
if ((bp = BIO_new_fp(fp, BIO_NOCLOSE)) == NULL) {
|
||||
PEMerr(PEM_F_D2I_PKCS8PRIVATEKEY_FP, ERR_R_BUF_LIB);
|
||||
return NULL;
|
||||
}
|
||||
ret = d2i_PKCS8PrivateKey_bio(bp, x, cb, u);
|
||||
BIO_free(bp);
|
||||
return ret;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
IMPLEMENT_PEM_rw(PKCS8, X509_SIG, PEM_STRING_PKCS8, X509_SIG)
|
||||
|
||||
|
||||
IMPLEMENT_PEM_rw(PKCS8_PRIV_KEY_INFO, PKCS8_PRIV_KEY_INFO, PEM_STRING_PKCS8INF,
|
||||
PKCS8_PRIV_KEY_INFO)
|
245
trunk/3rdparty/openssl-1.1-fit/crypto/pem/pem_pkey.c
vendored
Normal file
245
trunk/3rdparty/openssl-1.1-fit/crypto/pem/pem_pkey.c
vendored
Normal file
|
@ -0,0 +1,245 @@
|
|||
/*
|
||||
* Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved.
|
||||
*
|
||||
* Licensed under the OpenSSL license (the "License"). You may not use
|
||||
* this file except in compliance with the License. You can obtain a copy
|
||||
* in the file LICENSE in the source distribution or at
|
||||
* https://www.openssl.org/source/license.html
|
||||
*/
|
||||
|
||||
#include <stdio.h>
|
||||
#include "internal/cryptlib.h"
|
||||
#include <openssl/buffer.h>
|
||||
#include <openssl/objects.h>
|
||||
#include <openssl/evp.h>
|
||||
#include <openssl/x509.h>
|
||||
#include <openssl/pkcs12.h>
|
||||
#include <openssl/pem.h>
|
||||
#include <openssl/engine.h>
|
||||
#include <openssl/dh.h>
|
||||
#include "internal/asn1_int.h"
|
||||
#include "internal/evp_int.h"
|
||||
|
||||
int pem_check_suffix(const char *pem_str, const char *suffix);
|
||||
|
||||
EVP_PKEY *PEM_read_bio_PrivateKey(BIO *bp, EVP_PKEY **x, pem_password_cb *cb,
|
||||
void *u)
|
||||
{
|
||||
char *nm = NULL;
|
||||
const unsigned char *p = NULL;
|
||||
unsigned char *data = NULL;
|
||||
long len;
|
||||
int slen;
|
||||
EVP_PKEY *ret = NULL;
|
||||
|
||||
if (!PEM_bytes_read_bio_secmem(&data, &len, &nm, PEM_STRING_EVP_PKEY, bp,
|
||||
cb, u))
|
||||
return NULL;
|
||||
p = data;
|
||||
|
||||
if (strcmp(nm, PEM_STRING_PKCS8INF) == 0) {
|
||||
PKCS8_PRIV_KEY_INFO *p8inf;
|
||||
p8inf = d2i_PKCS8_PRIV_KEY_INFO(NULL, &p, len);
|
||||
if (!p8inf)
|
||||
goto p8err;
|
||||
ret = EVP_PKCS82PKEY(p8inf);
|
||||
if (x) {
|
||||
EVP_PKEY_free((EVP_PKEY *)*x);
|
||||
*x = ret;
|
||||
}
|
||||
PKCS8_PRIV_KEY_INFO_free(p8inf);
|
||||
} else if (strcmp(nm, PEM_STRING_PKCS8) == 0) {
|
||||
PKCS8_PRIV_KEY_INFO *p8inf;
|
||||
X509_SIG *p8;
|
||||
int klen;
|
||||
char psbuf[PEM_BUFSIZE];
|
||||
p8 = d2i_X509_SIG(NULL, &p, len);
|
||||
if (!p8)
|
||||
goto p8err;
|
||||
if (cb)
|
||||
klen = cb(psbuf, PEM_BUFSIZE, 0, u);
|
||||
else
|
||||
klen = PEM_def_callback(psbuf, PEM_BUFSIZE, 0, u);
|
||||
if (klen < 0) {
|
||||
PEMerr(PEM_F_PEM_READ_BIO_PRIVATEKEY, PEM_R_BAD_PASSWORD_READ);
|
||||
X509_SIG_free(p8);
|
||||
goto err;
|
||||
}
|
||||
p8inf = PKCS8_decrypt(p8, psbuf, klen);
|
||||
X509_SIG_free(p8);
|
||||
OPENSSL_cleanse(psbuf, klen);
|
||||
if (!p8inf)
|
||||
goto p8err;
|
||||
ret = EVP_PKCS82PKEY(p8inf);
|
||||
if (x) {
|
||||
EVP_PKEY_free((EVP_PKEY *)*x);
|
||||
*x = ret;
|
||||
}
|
||||
PKCS8_PRIV_KEY_INFO_free(p8inf);
|
||||
} else if ((slen = pem_check_suffix(nm, "PRIVATE KEY")) > 0) {
|
||||
const EVP_PKEY_ASN1_METHOD *ameth;
|
||||
ameth = EVP_PKEY_asn1_find_str(NULL, nm, slen);
|
||||
if (!ameth || !ameth->old_priv_decode)
|
||||
goto p8err;
|
||||
ret = d2i_PrivateKey(ameth->pkey_id, x, &p, len);
|
||||
}
|
||||
p8err:
|
||||
if (ret == NULL)
|
||||
PEMerr(PEM_F_PEM_READ_BIO_PRIVATEKEY, ERR_R_ASN1_LIB);
|
||||
err:
|
||||
OPENSSL_secure_free(nm);
|
||||
OPENSSL_secure_clear_free(data, len);
|
||||
return ret;
|
||||
}
|
||||
|
||||
int PEM_write_bio_PrivateKey(BIO *bp, EVP_PKEY *x, const EVP_CIPHER *enc,
|
||||
unsigned char *kstr, int klen,
|
||||
pem_password_cb *cb, void *u)
|
||||
{
|
||||
if (x->ameth == NULL || x->ameth->priv_encode != NULL)
|
||||
return PEM_write_bio_PKCS8PrivateKey(bp, x, enc,
|
||||
(char *)kstr, klen, cb, u);
|
||||
return PEM_write_bio_PrivateKey_traditional(bp, x, enc, kstr, klen, cb, u);
|
||||
}
|
||||
|
||||
int PEM_write_bio_PrivateKey_traditional(BIO *bp, EVP_PKEY *x,
|
||||
const EVP_CIPHER *enc,
|
||||
unsigned char *kstr, int klen,
|
||||
pem_password_cb *cb, void *u)
|
||||
{
|
||||
char pem_str[80];
|
||||
BIO_snprintf(pem_str, 80, "%s PRIVATE KEY", x->ameth->pem_str);
|
||||
return PEM_ASN1_write_bio((i2d_of_void *)i2d_PrivateKey,
|
||||
pem_str, bp, x, enc, kstr, klen, cb, u);
|
||||
}
|
||||
|
||||
EVP_PKEY *PEM_read_bio_Parameters(BIO *bp, EVP_PKEY **x)
|
||||
{
|
||||
char *nm = NULL;
|
||||
const unsigned char *p = NULL;
|
||||
unsigned char *data = NULL;
|
||||
long len;
|
||||
int slen;
|
||||
EVP_PKEY *ret = NULL;
|
||||
|
||||
if (!PEM_bytes_read_bio(&data, &len, &nm, PEM_STRING_PARAMETERS,
|
||||
bp, 0, NULL))
|
||||
return NULL;
|
||||
p = data;
|
||||
|
||||
if ((slen = pem_check_suffix(nm, "PARAMETERS")) > 0) {
|
||||
ret = EVP_PKEY_new();
|
||||
if (ret == NULL)
|
||||
goto err;
|
||||
if (!EVP_PKEY_set_type_str(ret, nm, slen)
|
||||
|| !ret->ameth->param_decode
|
||||
|| !ret->ameth->param_decode(ret, &p, len)) {
|
||||
EVP_PKEY_free(ret);
|
||||
ret = NULL;
|
||||
goto err;
|
||||
}
|
||||
if (x) {
|
||||
EVP_PKEY_free((EVP_PKEY *)*x);
|
||||
*x = ret;
|
||||
}
|
||||
}
|
||||
err:
|
||||
if (ret == NULL)
|
||||
PEMerr(PEM_F_PEM_READ_BIO_PARAMETERS, ERR_R_ASN1_LIB);
|
||||
OPENSSL_free(nm);
|
||||
OPENSSL_free(data);
|
||||
return ret;
|
||||
}
|
||||
|
||||
int PEM_write_bio_Parameters(BIO *bp, EVP_PKEY *x)
|
||||
{
|
||||
char pem_str[80];
|
||||
if (!x->ameth || !x->ameth->param_encode)
|
||||
return 0;
|
||||
|
||||
BIO_snprintf(pem_str, 80, "%s PARAMETERS", x->ameth->pem_str);
|
||||
return PEM_ASN1_write_bio((i2d_of_void *)x->ameth->param_encode,
|
||||
pem_str, bp, x, NULL, NULL, 0, 0, NULL);
|
||||
}
|
||||
|
||||
#ifndef OPENSSL_NO_STDIO
|
||||
EVP_PKEY *PEM_read_PrivateKey(FILE *fp, EVP_PKEY **x, pem_password_cb *cb,
|
||||
void *u)
|
||||
{
|
||||
BIO *b;
|
||||
EVP_PKEY *ret;
|
||||
|
||||
if ((b = BIO_new(BIO_s_file())) == NULL) {
|
||||
PEMerr(PEM_F_PEM_READ_PRIVATEKEY, ERR_R_BUF_LIB);
|
||||
return 0;
|
||||
}
|
||||
BIO_set_fp(b, fp, BIO_NOCLOSE);
|
||||
ret = PEM_read_bio_PrivateKey(b, x, cb, u);
|
||||
BIO_free(b);
|
||||
return ret;
|
||||
}
|
||||
|
||||
int PEM_write_PrivateKey(FILE *fp, EVP_PKEY *x, const EVP_CIPHER *enc,
|
||||
unsigned char *kstr, int klen,
|
||||
pem_password_cb *cb, void *u)
|
||||
{
|
||||
BIO *b;
|
||||
int ret;
|
||||
|
||||
if ((b = BIO_new_fp(fp, BIO_NOCLOSE)) == NULL) {
|
||||
PEMerr(PEM_F_PEM_WRITE_PRIVATEKEY, ERR_R_BUF_LIB);
|
||||
return 0;
|
||||
}
|
||||
ret = PEM_write_bio_PrivateKey(b, x, enc, kstr, klen, cb, u);
|
||||
BIO_free(b);
|
||||
return ret;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#ifndef OPENSSL_NO_DH
|
||||
|
||||
/* Transparently read in PKCS#3 or X9.42 DH parameters */
|
||||
|
||||
DH *PEM_read_bio_DHparams(BIO *bp, DH **x, pem_password_cb *cb, void *u)
|
||||
{
|
||||
char *nm = NULL;
|
||||
const unsigned char *p = NULL;
|
||||
unsigned char *data = NULL;
|
||||
long len;
|
||||
DH *ret = NULL;
|
||||
|
||||
if (!PEM_bytes_read_bio(&data, &len, &nm, PEM_STRING_DHPARAMS, bp, cb, u))
|
||||
return NULL;
|
||||
p = data;
|
||||
|
||||
if (strcmp(nm, PEM_STRING_DHXPARAMS) == 0)
|
||||
ret = d2i_DHxparams(x, &p, len);
|
||||
else
|
||||
ret = d2i_DHparams(x, &p, len);
|
||||
|
||||
if (ret == NULL)
|
||||
PEMerr(PEM_F_PEM_READ_BIO_DHPARAMS, ERR_R_ASN1_LIB);
|
||||
OPENSSL_free(nm);
|
||||
OPENSSL_free(data);
|
||||
return ret;
|
||||
}
|
||||
|
||||
# ifndef OPENSSL_NO_STDIO
|
||||
DH *PEM_read_DHparams(FILE *fp, DH **x, pem_password_cb *cb, void *u)
|
||||
{
|
||||
BIO *b;
|
||||
DH *ret;
|
||||
|
||||
if ((b = BIO_new(BIO_s_file())) == NULL) {
|
||||
PEMerr(PEM_F_PEM_READ_DHPARAMS, ERR_R_BUF_LIB);
|
||||
return 0;
|
||||
}
|
||||
BIO_set_fp(b, fp, BIO_NOCLOSE);
|
||||
ret = PEM_read_bio_DHparams(b, x, cb, u);
|
||||
BIO_free(b);
|
||||
return ret;
|
||||
}
|
||||
# endif
|
||||
|
||||
#endif
|
50
trunk/3rdparty/openssl-1.1-fit/crypto/pem/pem_sign.c
vendored
Normal file
50
trunk/3rdparty/openssl-1.1-fit/crypto/pem/pem_sign.c
vendored
Normal file
|
@ -0,0 +1,50 @@
|
|||
/*
|
||||
* Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved.
|
||||
*
|
||||
* Licensed under the OpenSSL license (the "License"). You may not use
|
||||
* this file except in compliance with the License. You can obtain a copy
|
||||
* in the file LICENSE in the source distribution or at
|
||||
* https://www.openssl.org/source/license.html
|
||||
*/
|
||||
|
||||
#include <stdio.h>
|
||||
#include "internal/cryptlib.h"
|
||||
#include <openssl/evp.h>
|
||||
#include <openssl/objects.h>
|
||||
#include <openssl/x509.h>
|
||||
#include <openssl/pem.h>
|
||||
|
||||
int PEM_SignInit(EVP_MD_CTX *ctx, EVP_MD *type)
|
||||
{
|
||||
return EVP_DigestInit_ex(ctx, type, NULL);
|
||||
}
|
||||
|
||||
int PEM_SignUpdate(EVP_MD_CTX *ctx, unsigned char *data, unsigned int count)
|
||||
{
|
||||
return EVP_DigestUpdate(ctx, data, count);
|
||||
}
|
||||
|
||||
int PEM_SignFinal(EVP_MD_CTX *ctx, unsigned char *sigret,
|
||||
unsigned int *siglen, EVP_PKEY *pkey)
|
||||
{
|
||||
unsigned char *m;
|
||||
int i, ret = 0;
|
||||
unsigned int m_len;
|
||||
|
||||
m = OPENSSL_malloc(EVP_PKEY_size(pkey) + 2);
|
||||
if (m == NULL) {
|
||||
PEMerr(PEM_F_PEM_SIGNFINAL, ERR_R_MALLOC_FAILURE);
|
||||
goto err;
|
||||
}
|
||||
|
||||
if (EVP_SignFinal(ctx, m, &m_len, pkey) <= 0)
|
||||
goto err;
|
||||
|
||||
i = EVP_EncodeBlock(sigret, m, m_len);
|
||||
*siglen = i;
|
||||
ret = 1;
|
||||
err:
|
||||
/* ctx has been zeroed by EVP_SignFinal() */
|
||||
OPENSSL_free(m);
|
||||
return ret;
|
||||
}
|
18
trunk/3rdparty/openssl-1.1-fit/crypto/pem/pem_x509.c
vendored
Normal file
18
trunk/3rdparty/openssl-1.1-fit/crypto/pem/pem_x509.c
vendored
Normal file
|
@ -0,0 +1,18 @@
|
|||
/*
|
||||
* Copyright 2001-2016 The OpenSSL Project Authors. All Rights Reserved.
|
||||
*
|
||||
* Licensed under the OpenSSL license (the "License"). You may not use
|
||||
* this file except in compliance with the License. You can obtain a copy
|
||||
* in the file LICENSE in the source distribution or at
|
||||
* https://www.openssl.org/source/license.html
|
||||
*/
|
||||
|
||||
#include <stdio.h>
|
||||
#include "internal/cryptlib.h"
|
||||
#include <openssl/bio.h>
|
||||
#include <openssl/evp.h>
|
||||
#include <openssl/x509.h>
|
||||
#include <openssl/pkcs7.h>
|
||||
#include <openssl/pem.h>
|
||||
|
||||
IMPLEMENT_PEM_rw(X509, X509, PEM_STRING_X509, X509)
|
18
trunk/3rdparty/openssl-1.1-fit/crypto/pem/pem_xaux.c
vendored
Normal file
18
trunk/3rdparty/openssl-1.1-fit/crypto/pem/pem_xaux.c
vendored
Normal file
|
@ -0,0 +1,18 @@
|
|||
/*
|
||||
* Copyright 2001-2016 The OpenSSL Project Authors. All Rights Reserved.
|
||||
*
|
||||
* Licensed under the OpenSSL license (the "License"). You may not use
|
||||
* this file except in compliance with the License. You can obtain a copy
|
||||
* in the file LICENSE in the source distribution or at
|
||||
* https://www.openssl.org/source/license.html
|
||||
*/
|
||||
|
||||
#include <stdio.h>
|
||||
#include "internal/cryptlib.h"
|
||||
#include <openssl/bio.h>
|
||||
#include <openssl/evp.h>
|
||||
#include <openssl/x509.h>
|
||||
#include <openssl/pkcs7.h>
|
||||
#include <openssl/pem.h>
|
||||
|
||||
IMPLEMENT_PEM_rw(X509_AUX, X509, PEM_STRING_X509_TRUSTED, X509_AUX)
|
883
trunk/3rdparty/openssl-1.1-fit/crypto/pem/pvkfmt.c
vendored
Normal file
883
trunk/3rdparty/openssl-1.1-fit/crypto/pem/pvkfmt.c
vendored
Normal file
|
@ -0,0 +1,883 @@
|
|||
/*
|
||||
* Copyright 2005-2018 The OpenSSL Project Authors. All Rights Reserved.
|
||||
*
|
||||
* Licensed under the OpenSSL license (the "License"). You may not use
|
||||
* this file except in compliance with the License. You can obtain a copy
|
||||
* in the file LICENSE in the source distribution or at
|
||||
* https://www.openssl.org/source/license.html
|
||||
*/
|
||||
|
||||
/*
|
||||
* Support for PVK format keys and related structures (such a PUBLICKEYBLOB
|
||||
* and PRIVATEKEYBLOB).
|
||||
*/
|
||||
|
||||
#include "internal/cryptlib.h"
|
||||
#include <openssl/pem.h>
|
||||
#include <openssl/rand.h>
|
||||
#include <openssl/bn.h>
|
||||
#if !defined(OPENSSL_NO_RSA) && !defined(OPENSSL_NO_DSA)
|
||||
# include <openssl/dsa.h>
|
||||
# include <openssl/rsa.h>
|
||||
|
||||
/*
|
||||
* Utility function: read a DWORD (4 byte unsigned integer) in little endian
|
||||
* format
|
||||
*/
|
||||
|
||||
static unsigned int read_ledword(const unsigned char **in)
|
||||
{
|
||||
const unsigned char *p = *in;
|
||||
unsigned int ret;
|
||||
ret = *p++;
|
||||
ret |= (*p++ << 8);
|
||||
ret |= (*p++ << 16);
|
||||
ret |= (*p++ << 24);
|
||||
*in = p;
|
||||
return ret;
|
||||
}
|
||||
|
||||
/*
|
||||
* Read a BIGNUM in little endian format. The docs say that this should take
|
||||
* up bitlen/8 bytes.
|
||||
*/
|
||||
|
||||
static int read_lebn(const unsigned char **in, unsigned int nbyte, BIGNUM **r)
|
||||
{
|
||||
*r = BN_lebin2bn(*in, nbyte, NULL);
|
||||
if (*r == NULL)
|
||||
return 0;
|
||||
*in += nbyte;
|
||||
return 1;
|
||||
}
|
||||
|
||||
/* Convert private key blob to EVP_PKEY: RSA and DSA keys supported */
|
||||
|
||||
# define MS_PUBLICKEYBLOB 0x6
|
||||
# define MS_PRIVATEKEYBLOB 0x7
|
||||
# define MS_RSA1MAGIC 0x31415352L
|
||||
# define MS_RSA2MAGIC 0x32415352L
|
||||
# define MS_DSS1MAGIC 0x31535344L
|
||||
# define MS_DSS2MAGIC 0x32535344L
|
||||
|
||||
# define MS_KEYALG_RSA_KEYX 0xa400
|
||||
# define MS_KEYALG_DSS_SIGN 0x2200
|
||||
|
||||
# define MS_KEYTYPE_KEYX 0x1
|
||||
# define MS_KEYTYPE_SIGN 0x2
|
||||
|
||||
/* Maximum length of a blob after header */
|
||||
# define BLOB_MAX_LENGTH 102400
|
||||
|
||||
/* The PVK file magic number: seems to spell out "bobsfile", who is Bob? */
|
||||
# define MS_PVKMAGIC 0xb0b5f11eL
|
||||
/* Salt length for PVK files */
|
||||
# define PVK_SALTLEN 0x10
|
||||
/* Maximum length in PVK header */
|
||||
# define PVK_MAX_KEYLEN 102400
|
||||
/* Maximum salt length */
|
||||
# define PVK_MAX_SALTLEN 10240
|
||||
|
||||
static EVP_PKEY *b2i_rsa(const unsigned char **in,
|
||||
unsigned int bitlen, int ispub);
|
||||
static EVP_PKEY *b2i_dss(const unsigned char **in,
|
||||
unsigned int bitlen, int ispub);
|
||||
|
||||
static int do_blob_header(const unsigned char **in, unsigned int length,
|
||||
unsigned int *pmagic, unsigned int *pbitlen,
|
||||
int *pisdss, int *pispub)
|
||||
{
|
||||
const unsigned char *p = *in;
|
||||
if (length < 16)
|
||||
return 0;
|
||||
/* bType */
|
||||
if (*p == MS_PUBLICKEYBLOB) {
|
||||
if (*pispub == 0) {
|
||||
PEMerr(PEM_F_DO_BLOB_HEADER, PEM_R_EXPECTING_PRIVATE_KEY_BLOB);
|
||||
return 0;
|
||||
}
|
||||
*pispub = 1;
|
||||
} else if (*p == MS_PRIVATEKEYBLOB) {
|
||||
if (*pispub == 1) {
|
||||
PEMerr(PEM_F_DO_BLOB_HEADER, PEM_R_EXPECTING_PUBLIC_KEY_BLOB);
|
||||
return 0;
|
||||
}
|
||||
*pispub = 0;
|
||||
} else
|
||||
return 0;
|
||||
p++;
|
||||
/* Version */
|
||||
if (*p++ != 0x2) {
|
||||
PEMerr(PEM_F_DO_BLOB_HEADER, PEM_R_BAD_VERSION_NUMBER);
|
||||
return 0;
|
||||
}
|
||||
/* Ignore reserved, aiKeyAlg */
|
||||
p += 6;
|
||||
*pmagic = read_ledword(&p);
|
||||
*pbitlen = read_ledword(&p);
|
||||
*pisdss = 0;
|
||||
switch (*pmagic) {
|
||||
|
||||
case MS_DSS1MAGIC:
|
||||
*pisdss = 1;
|
||||
/* fall thru */
|
||||
case MS_RSA1MAGIC:
|
||||
if (*pispub == 0) {
|
||||
PEMerr(PEM_F_DO_BLOB_HEADER, PEM_R_EXPECTING_PRIVATE_KEY_BLOB);
|
||||
return 0;
|
||||
}
|
||||
break;
|
||||
|
||||
case MS_DSS2MAGIC:
|
||||
*pisdss = 1;
|
||||
/* fall thru */
|
||||
case MS_RSA2MAGIC:
|
||||
if (*pispub == 1) {
|
||||
PEMerr(PEM_F_DO_BLOB_HEADER, PEM_R_EXPECTING_PUBLIC_KEY_BLOB);
|
||||
return 0;
|
||||
}
|
||||
break;
|
||||
|
||||
default:
|
||||
PEMerr(PEM_F_DO_BLOB_HEADER, PEM_R_BAD_MAGIC_NUMBER);
|
||||
return -1;
|
||||
}
|
||||
*in = p;
|
||||
return 1;
|
||||
}
|
||||
|
||||
static unsigned int blob_length(unsigned bitlen, int isdss, int ispub)
|
||||
{
|
||||
unsigned int nbyte, hnbyte;
|
||||
nbyte = (bitlen + 7) >> 3;
|
||||
hnbyte = (bitlen + 15) >> 4;
|
||||
if (isdss) {
|
||||
|
||||
/*
|
||||
* Expected length: 20 for q + 3 components bitlen each + 24 for seed
|
||||
* structure.
|
||||
*/
|
||||
if (ispub)
|
||||
return 44 + 3 * nbyte;
|
||||
/*
|
||||
* Expected length: 20 for q, priv, 2 bitlen components + 24 for seed
|
||||
* structure.
|
||||
*/
|
||||
else
|
||||
return 64 + 2 * nbyte;
|
||||
} else {
|
||||
/* Expected length: 4 for 'e' + 'n' */
|
||||
if (ispub)
|
||||
return 4 + nbyte;
|
||||
else
|
||||
/*
|
||||
* Expected length: 4 for 'e' and 7 other components. 2
|
||||
* components are bitlen size, 5 are bitlen/2
|
||||
*/
|
||||
return 4 + 2 * nbyte + 5 * hnbyte;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
static EVP_PKEY *do_b2i(const unsigned char **in, unsigned int length,
|
||||
int ispub)
|
||||
{
|
||||
const unsigned char *p = *in;
|
||||
unsigned int bitlen, magic;
|
||||
int isdss;
|
||||
if (do_blob_header(&p, length, &magic, &bitlen, &isdss, &ispub) <= 0) {
|
||||
PEMerr(PEM_F_DO_B2I, PEM_R_KEYBLOB_HEADER_PARSE_ERROR);
|
||||
return NULL;
|
||||
}
|
||||
length -= 16;
|
||||
if (length < blob_length(bitlen, isdss, ispub)) {
|
||||
PEMerr(PEM_F_DO_B2I, PEM_R_KEYBLOB_TOO_SHORT);
|
||||
return NULL;
|
||||
}
|
||||
if (isdss)
|
||||
return b2i_dss(&p, bitlen, ispub);
|
||||
else
|
||||
return b2i_rsa(&p, bitlen, ispub);
|
||||
}
|
||||
|
||||
static EVP_PKEY *do_b2i_bio(BIO *in, int ispub)
|
||||
{
|
||||
const unsigned char *p;
|
||||
unsigned char hdr_buf[16], *buf = NULL;
|
||||
unsigned int bitlen, magic, length;
|
||||
int isdss;
|
||||
EVP_PKEY *ret = NULL;
|
||||
if (BIO_read(in, hdr_buf, 16) != 16) {
|
||||
PEMerr(PEM_F_DO_B2I_BIO, PEM_R_KEYBLOB_TOO_SHORT);
|
||||
return NULL;
|
||||
}
|
||||
p = hdr_buf;
|
||||
if (do_blob_header(&p, 16, &magic, &bitlen, &isdss, &ispub) <= 0)
|
||||
return NULL;
|
||||
|
||||
length = blob_length(bitlen, isdss, ispub);
|
||||
if (length > BLOB_MAX_LENGTH) {
|
||||
PEMerr(PEM_F_DO_B2I_BIO, PEM_R_HEADER_TOO_LONG);
|
||||
return NULL;
|
||||
}
|
||||
buf = OPENSSL_malloc(length);
|
||||
if (buf == NULL) {
|
||||
PEMerr(PEM_F_DO_B2I_BIO, ERR_R_MALLOC_FAILURE);
|
||||
goto err;
|
||||
}
|
||||
p = buf;
|
||||
if (BIO_read(in, buf, length) != (int)length) {
|
||||
PEMerr(PEM_F_DO_B2I_BIO, PEM_R_KEYBLOB_TOO_SHORT);
|
||||
goto err;
|
||||
}
|
||||
|
||||
if (isdss)
|
||||
ret = b2i_dss(&p, bitlen, ispub);
|
||||
else
|
||||
ret = b2i_rsa(&p, bitlen, ispub);
|
||||
|
||||
err:
|
||||
OPENSSL_free(buf);
|
||||
return ret;
|
||||
}
|
||||
|
||||
static EVP_PKEY *b2i_dss(const unsigned char **in,
|
||||
unsigned int bitlen, int ispub)
|
||||
{
|
||||
const unsigned char *p = *in;
|
||||
EVP_PKEY *ret = NULL;
|
||||
DSA *dsa = NULL;
|
||||
BN_CTX *ctx = NULL;
|
||||
unsigned int nbyte;
|
||||
BIGNUM *pbn = NULL, *qbn = NULL, *gbn = NULL, *priv_key = NULL;
|
||||
BIGNUM *pub_key = NULL;
|
||||
|
||||
nbyte = (bitlen + 7) >> 3;
|
||||
|
||||
dsa = DSA_new();
|
||||
ret = EVP_PKEY_new();
|
||||
if (dsa == NULL || ret == NULL)
|
||||
goto memerr;
|
||||
if (!read_lebn(&p, nbyte, &pbn))
|
||||
goto memerr;
|
||||
|
||||
if (!read_lebn(&p, 20, &qbn))
|
||||
goto memerr;
|
||||
|
||||
if (!read_lebn(&p, nbyte, &gbn))
|
||||
goto memerr;
|
||||
|
||||
if (ispub) {
|
||||
if (!read_lebn(&p, nbyte, &pub_key))
|
||||
goto memerr;
|
||||
} else {
|
||||
if (!read_lebn(&p, 20, &priv_key))
|
||||
goto memerr;
|
||||
|
||||
/* Calculate public key */
|
||||
pub_key = BN_new();
|
||||
if (pub_key == NULL)
|
||||
goto memerr;
|
||||
if ((ctx = BN_CTX_new()) == NULL)
|
||||
goto memerr;
|
||||
|
||||
if (!BN_mod_exp(pub_key, gbn, priv_key, pbn, ctx))
|
||||
goto memerr;
|
||||
|
||||
BN_CTX_free(ctx);
|
||||
ctx = NULL;
|
||||
}
|
||||
if (!DSA_set0_pqg(dsa, pbn, qbn, gbn))
|
||||
goto memerr;
|
||||
pbn = qbn = gbn = NULL;
|
||||
if (!DSA_set0_key(dsa, pub_key, priv_key))
|
||||
goto memerr;
|
||||
pub_key = priv_key = NULL;
|
||||
|
||||
if (!EVP_PKEY_set1_DSA(ret, dsa))
|
||||
goto memerr;
|
||||
DSA_free(dsa);
|
||||
*in = p;
|
||||
return ret;
|
||||
|
||||
memerr:
|
||||
PEMerr(PEM_F_B2I_DSS, ERR_R_MALLOC_FAILURE);
|
||||
DSA_free(dsa);
|
||||
BN_free(pbn);
|
||||
BN_free(qbn);
|
||||
BN_free(gbn);
|
||||
BN_free(pub_key);
|
||||
BN_free(priv_key);
|
||||
EVP_PKEY_free(ret);
|
||||
BN_CTX_free(ctx);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
static EVP_PKEY *b2i_rsa(const unsigned char **in,
|
||||
unsigned int bitlen, int ispub)
|
||||
{
|
||||
const unsigned char *pin = *in;
|
||||
EVP_PKEY *ret = NULL;
|
||||
BIGNUM *e = NULL, *n = NULL, *d = NULL;
|
||||
BIGNUM *p = NULL, *q = NULL, *dmp1 = NULL, *dmq1 = NULL, *iqmp = NULL;
|
||||
RSA *rsa = NULL;
|
||||
unsigned int nbyte, hnbyte;
|
||||
nbyte = (bitlen + 7) >> 3;
|
||||
hnbyte = (bitlen + 15) >> 4;
|
||||
rsa = RSA_new();
|
||||
ret = EVP_PKEY_new();
|
||||
if (rsa == NULL || ret == NULL)
|
||||
goto memerr;
|
||||
e = BN_new();
|
||||
if (e == NULL)
|
||||
goto memerr;
|
||||
if (!BN_set_word(e, read_ledword(&pin)))
|
||||
goto memerr;
|
||||
if (!read_lebn(&pin, nbyte, &n))
|
||||
goto memerr;
|
||||
if (!ispub) {
|
||||
if (!read_lebn(&pin, hnbyte, &p))
|
||||
goto memerr;
|
||||
if (!read_lebn(&pin, hnbyte, &q))
|
||||
goto memerr;
|
||||
if (!read_lebn(&pin, hnbyte, &dmp1))
|
||||
goto memerr;
|
||||
if (!read_lebn(&pin, hnbyte, &dmq1))
|
||||
goto memerr;
|
||||
if (!read_lebn(&pin, hnbyte, &iqmp))
|
||||
goto memerr;
|
||||
if (!read_lebn(&pin, nbyte, &d))
|
||||
goto memerr;
|
||||
if (!RSA_set0_factors(rsa, p, q))
|
||||
goto memerr;
|
||||
p = q = NULL;
|
||||
if (!RSA_set0_crt_params(rsa, dmp1, dmq1, iqmp))
|
||||
goto memerr;
|
||||
dmp1 = dmq1 = iqmp = NULL;
|
||||
}
|
||||
if (!RSA_set0_key(rsa, n, e, d))
|
||||
goto memerr;
|
||||
n = e = d = NULL;
|
||||
|
||||
if (!EVP_PKEY_set1_RSA(ret, rsa))
|
||||
goto memerr;
|
||||
RSA_free(rsa);
|
||||
*in = pin;
|
||||
return ret;
|
||||
memerr:
|
||||
PEMerr(PEM_F_B2I_RSA, ERR_R_MALLOC_FAILURE);
|
||||
BN_free(e);
|
||||
BN_free(n);
|
||||
BN_free(p);
|
||||
BN_free(q);
|
||||
BN_free(dmp1);
|
||||
BN_free(dmq1);
|
||||
BN_free(iqmp);
|
||||
BN_free(d);
|
||||
RSA_free(rsa);
|
||||
EVP_PKEY_free(ret);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
EVP_PKEY *b2i_PrivateKey(const unsigned char **in, long length)
|
||||
{
|
||||
return do_b2i(in, length, 0);
|
||||
}
|
||||
|
||||
EVP_PKEY *b2i_PublicKey(const unsigned char **in, long length)
|
||||
{
|
||||
return do_b2i(in, length, 1);
|
||||
}
|
||||
|
||||
EVP_PKEY *b2i_PrivateKey_bio(BIO *in)
|
||||
{
|
||||
return do_b2i_bio(in, 0);
|
||||
}
|
||||
|
||||
EVP_PKEY *b2i_PublicKey_bio(BIO *in)
|
||||
{
|
||||
return do_b2i_bio(in, 1);
|
||||
}
|
||||
|
||||
static void write_ledword(unsigned char **out, unsigned int dw)
|
||||
{
|
||||
unsigned char *p = *out;
|
||||
*p++ = dw & 0xff;
|
||||
*p++ = (dw >> 8) & 0xff;
|
||||
*p++ = (dw >> 16) & 0xff;
|
||||
*p++ = (dw >> 24) & 0xff;
|
||||
*out = p;
|
||||
}
|
||||
|
||||
static void write_lebn(unsigned char **out, const BIGNUM *bn, int len)
|
||||
{
|
||||
BN_bn2lebinpad(bn, *out, len);
|
||||
*out += len;
|
||||
}
|
||||
|
||||
static int check_bitlen_rsa(RSA *rsa, int ispub, unsigned int *magic);
|
||||
static int check_bitlen_dsa(DSA *dsa, int ispub, unsigned int *magic);
|
||||
|
||||
static void write_rsa(unsigned char **out, RSA *rsa, int ispub);
|
||||
static void write_dsa(unsigned char **out, DSA *dsa, int ispub);
|
||||
|
||||
static int do_i2b(unsigned char **out, EVP_PKEY *pk, int ispub)
|
||||
{
|
||||
unsigned char *p;
|
||||
unsigned int bitlen, magic = 0, keyalg;
|
||||
int outlen, noinc = 0;
|
||||
int pktype = EVP_PKEY_id(pk);
|
||||
if (pktype == EVP_PKEY_DSA) {
|
||||
bitlen = check_bitlen_dsa(EVP_PKEY_get0_DSA(pk), ispub, &magic);
|
||||
keyalg = MS_KEYALG_DSS_SIGN;
|
||||
} else if (pktype == EVP_PKEY_RSA) {
|
||||
bitlen = check_bitlen_rsa(EVP_PKEY_get0_RSA(pk), ispub, &magic);
|
||||
keyalg = MS_KEYALG_RSA_KEYX;
|
||||
} else
|
||||
return -1;
|
||||
if (bitlen == 0)
|
||||
return -1;
|
||||
outlen = 16 + blob_length(bitlen,
|
||||
keyalg == MS_KEYALG_DSS_SIGN ? 1 : 0, ispub);
|
||||
if (out == NULL)
|
||||
return outlen;
|
||||
if (*out)
|
||||
p = *out;
|
||||
else {
|
||||
if ((p = OPENSSL_malloc(outlen)) == NULL) {
|
||||
PEMerr(PEM_F_DO_I2B, ERR_R_MALLOC_FAILURE);
|
||||
return -1;
|
||||
}
|
||||
*out = p;
|
||||
noinc = 1;
|
||||
}
|
||||
if (ispub)
|
||||
*p++ = MS_PUBLICKEYBLOB;
|
||||
else
|
||||
*p++ = MS_PRIVATEKEYBLOB;
|
||||
*p++ = 0x2;
|
||||
*p++ = 0;
|
||||
*p++ = 0;
|
||||
write_ledword(&p, keyalg);
|
||||
write_ledword(&p, magic);
|
||||
write_ledword(&p, bitlen);
|
||||
if (keyalg == MS_KEYALG_DSS_SIGN)
|
||||
write_dsa(&p, EVP_PKEY_get0_DSA(pk), ispub);
|
||||
else
|
||||
write_rsa(&p, EVP_PKEY_get0_RSA(pk), ispub);
|
||||
if (!noinc)
|
||||
*out += outlen;
|
||||
return outlen;
|
||||
}
|
||||
|
||||
static int do_i2b_bio(BIO *out, EVP_PKEY *pk, int ispub)
|
||||
{
|
||||
unsigned char *tmp = NULL;
|
||||
int outlen, wrlen;
|
||||
outlen = do_i2b(&tmp, pk, ispub);
|
||||
if (outlen < 0)
|
||||
return -1;
|
||||
wrlen = BIO_write(out, tmp, outlen);
|
||||
OPENSSL_free(tmp);
|
||||
if (wrlen == outlen)
|
||||
return outlen;
|
||||
return -1;
|
||||
}
|
||||
|
||||
static int check_bitlen_dsa(DSA *dsa, int ispub, unsigned int *pmagic)
|
||||
{
|
||||
int bitlen;
|
||||
const BIGNUM *p = NULL, *q = NULL, *g = NULL;
|
||||
const BIGNUM *pub_key = NULL, *priv_key = NULL;
|
||||
|
||||
DSA_get0_pqg(dsa, &p, &q, &g);
|
||||
DSA_get0_key(dsa, &pub_key, &priv_key);
|
||||
bitlen = BN_num_bits(p);
|
||||
if ((bitlen & 7) || (BN_num_bits(q) != 160)
|
||||
|| (BN_num_bits(g) > bitlen))
|
||||
goto badkey;
|
||||
if (ispub) {
|
||||
if (BN_num_bits(pub_key) > bitlen)
|
||||
goto badkey;
|
||||
*pmagic = MS_DSS1MAGIC;
|
||||
} else {
|
||||
if (BN_num_bits(priv_key) > 160)
|
||||
goto badkey;
|
||||
*pmagic = MS_DSS2MAGIC;
|
||||
}
|
||||
|
||||
return bitlen;
|
||||
badkey:
|
||||
PEMerr(PEM_F_CHECK_BITLEN_DSA, PEM_R_UNSUPPORTED_KEY_COMPONENTS);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int check_bitlen_rsa(RSA *rsa, int ispub, unsigned int *pmagic)
|
||||
{
|
||||
int nbyte, hnbyte, bitlen;
|
||||
const BIGNUM *e;
|
||||
|
||||
RSA_get0_key(rsa, NULL, &e, NULL);
|
||||
if (BN_num_bits(e) > 32)
|
||||
goto badkey;
|
||||
bitlen = RSA_bits(rsa);
|
||||
nbyte = RSA_size(rsa);
|
||||
hnbyte = (bitlen + 15) >> 4;
|
||||
if (ispub) {
|
||||
*pmagic = MS_RSA1MAGIC;
|
||||
return bitlen;
|
||||
} else {
|
||||
const BIGNUM *d, *p, *q, *iqmp, *dmp1, *dmq1;
|
||||
|
||||
*pmagic = MS_RSA2MAGIC;
|
||||
|
||||
/*
|
||||
* For private key each component must fit within nbyte or hnbyte.
|
||||
*/
|
||||
RSA_get0_key(rsa, NULL, NULL, &d);
|
||||
if (BN_num_bytes(d) > nbyte)
|
||||
goto badkey;
|
||||
RSA_get0_factors(rsa, &p, &q);
|
||||
RSA_get0_crt_params(rsa, &dmp1, &dmq1, &iqmp);
|
||||
if ((BN_num_bytes(iqmp) > hnbyte)
|
||||
|| (BN_num_bytes(p) > hnbyte)
|
||||
|| (BN_num_bytes(q) > hnbyte)
|
||||
|| (BN_num_bytes(dmp1) > hnbyte)
|
||||
|| (BN_num_bytes(dmq1) > hnbyte))
|
||||
goto badkey;
|
||||
}
|
||||
return bitlen;
|
||||
badkey:
|
||||
PEMerr(PEM_F_CHECK_BITLEN_RSA, PEM_R_UNSUPPORTED_KEY_COMPONENTS);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void write_rsa(unsigned char **out, RSA *rsa, int ispub)
|
||||
{
|
||||
int nbyte, hnbyte;
|
||||
const BIGNUM *n, *d, *e, *p, *q, *iqmp, *dmp1, *dmq1;
|
||||
|
||||
nbyte = RSA_size(rsa);
|
||||
hnbyte = (RSA_bits(rsa) + 15) >> 4;
|
||||
RSA_get0_key(rsa, &n, &e, &d);
|
||||
write_lebn(out, e, 4);
|
||||
write_lebn(out, n, nbyte);
|
||||
if (ispub)
|
||||
return;
|
||||
RSA_get0_factors(rsa, &p, &q);
|
||||
RSA_get0_crt_params(rsa, &dmp1, &dmq1, &iqmp);
|
||||
write_lebn(out, p, hnbyte);
|
||||
write_lebn(out, q, hnbyte);
|
||||
write_lebn(out, dmp1, hnbyte);
|
||||
write_lebn(out, dmq1, hnbyte);
|
||||
write_lebn(out, iqmp, hnbyte);
|
||||
write_lebn(out, d, nbyte);
|
||||
}
|
||||
|
||||
static void write_dsa(unsigned char **out, DSA *dsa, int ispub)
|
||||
{
|
||||
int nbyte;
|
||||
const BIGNUM *p = NULL, *q = NULL, *g = NULL;
|
||||
const BIGNUM *pub_key = NULL, *priv_key = NULL;
|
||||
|
||||
DSA_get0_pqg(dsa, &p, &q, &g);
|
||||
DSA_get0_key(dsa, &pub_key, &priv_key);
|
||||
nbyte = BN_num_bytes(p);
|
||||
write_lebn(out, p, nbyte);
|
||||
write_lebn(out, q, 20);
|
||||
write_lebn(out, g, nbyte);
|
||||
if (ispub)
|
||||
write_lebn(out, pub_key, nbyte);
|
||||
else
|
||||
write_lebn(out, priv_key, 20);
|
||||
/* Set "invalid" for seed structure values */
|
||||
memset(*out, 0xff, 24);
|
||||
*out += 24;
|
||||
return;
|
||||
}
|
||||
|
||||
int i2b_PrivateKey_bio(BIO *out, EVP_PKEY *pk)
|
||||
{
|
||||
return do_i2b_bio(out, pk, 0);
|
||||
}
|
||||
|
||||
int i2b_PublicKey_bio(BIO *out, EVP_PKEY *pk)
|
||||
{
|
||||
return do_i2b_bio(out, pk, 1);
|
||||
}
|
||||
|
||||
# ifndef OPENSSL_NO_RC4
|
||||
|
||||
static int do_PVK_header(const unsigned char **in, unsigned int length,
|
||||
int skip_magic,
|
||||
unsigned int *psaltlen, unsigned int *pkeylen)
|
||||
{
|
||||
const unsigned char *p = *in;
|
||||
unsigned int pvk_magic, is_encrypted;
|
||||
if (skip_magic) {
|
||||
if (length < 20) {
|
||||
PEMerr(PEM_F_DO_PVK_HEADER, PEM_R_PVK_TOO_SHORT);
|
||||
return 0;
|
||||
}
|
||||
} else {
|
||||
if (length < 24) {
|
||||
PEMerr(PEM_F_DO_PVK_HEADER, PEM_R_PVK_TOO_SHORT);
|
||||
return 0;
|
||||
}
|
||||
pvk_magic = read_ledword(&p);
|
||||
if (pvk_magic != MS_PVKMAGIC) {
|
||||
PEMerr(PEM_F_DO_PVK_HEADER, PEM_R_BAD_MAGIC_NUMBER);
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
/* Skip reserved */
|
||||
p += 4;
|
||||
/*
|
||||
* keytype =
|
||||
*/ read_ledword(&p);
|
||||
is_encrypted = read_ledword(&p);
|
||||
*psaltlen = read_ledword(&p);
|
||||
*pkeylen = read_ledword(&p);
|
||||
|
||||
if (*pkeylen > PVK_MAX_KEYLEN || *psaltlen > PVK_MAX_SALTLEN)
|
||||
return 0;
|
||||
|
||||
if (is_encrypted && !*psaltlen) {
|
||||
PEMerr(PEM_F_DO_PVK_HEADER, PEM_R_INCONSISTENT_HEADER);
|
||||
return 0;
|
||||
}
|
||||
|
||||
*in = p;
|
||||
return 1;
|
||||
}
|
||||
|
||||
static int derive_pvk_key(unsigned char *key,
|
||||
const unsigned char *salt, unsigned int saltlen,
|
||||
const unsigned char *pass, int passlen)
|
||||
{
|
||||
EVP_MD_CTX *mctx = EVP_MD_CTX_new();
|
||||
int rv = 1;
|
||||
if (mctx == NULL
|
||||
|| !EVP_DigestInit_ex(mctx, EVP_sha1(), NULL)
|
||||
|| !EVP_DigestUpdate(mctx, salt, saltlen)
|
||||
|| !EVP_DigestUpdate(mctx, pass, passlen)
|
||||
|| !EVP_DigestFinal_ex(mctx, key, NULL))
|
||||
rv = 0;
|
||||
|
||||
EVP_MD_CTX_free(mctx);
|
||||
return rv;
|
||||
}
|
||||
|
||||
static EVP_PKEY *do_PVK_body(const unsigned char **in,
|
||||
unsigned int saltlen, unsigned int keylen,
|
||||
pem_password_cb *cb, void *u)
|
||||
{
|
||||
EVP_PKEY *ret = NULL;
|
||||
const unsigned char *p = *in;
|
||||
unsigned int magic;
|
||||
unsigned char *enctmp = NULL, *q;
|
||||
unsigned char keybuf[20];
|
||||
|
||||
EVP_CIPHER_CTX *cctx = EVP_CIPHER_CTX_new();
|
||||
if (saltlen) {
|
||||
char psbuf[PEM_BUFSIZE];
|
||||
int enctmplen, inlen;
|
||||
if (cb)
|
||||
inlen = cb(psbuf, PEM_BUFSIZE, 0, u);
|
||||
else
|
||||
inlen = PEM_def_callback(psbuf, PEM_BUFSIZE, 0, u);
|
||||
if (inlen < 0) {
|
||||
PEMerr(PEM_F_DO_PVK_BODY, PEM_R_BAD_PASSWORD_READ);
|
||||
goto err;
|
||||
}
|
||||
enctmp = OPENSSL_malloc(keylen + 8);
|
||||
if (enctmp == NULL) {
|
||||
PEMerr(PEM_F_DO_PVK_BODY, ERR_R_MALLOC_FAILURE);
|
||||
goto err;
|
||||
}
|
||||
if (!derive_pvk_key(keybuf, p, saltlen,
|
||||
(unsigned char *)psbuf, inlen))
|
||||
goto err;
|
||||
p += saltlen;
|
||||
/* Copy BLOBHEADER across, decrypt rest */
|
||||
memcpy(enctmp, p, 8);
|
||||
p += 8;
|
||||
if (keylen < 8) {
|
||||
PEMerr(PEM_F_DO_PVK_BODY, PEM_R_PVK_TOO_SHORT);
|
||||
goto err;
|
||||
}
|
||||
inlen = keylen - 8;
|
||||
q = enctmp + 8;
|
||||
if (!EVP_DecryptInit_ex(cctx, EVP_rc4(), NULL, keybuf, NULL))
|
||||
goto err;
|
||||
if (!EVP_DecryptUpdate(cctx, q, &enctmplen, p, inlen))
|
||||
goto err;
|
||||
if (!EVP_DecryptFinal_ex(cctx, q + enctmplen, &enctmplen))
|
||||
goto err;
|
||||
magic = read_ledword((const unsigned char **)&q);
|
||||
if (magic != MS_RSA2MAGIC && magic != MS_DSS2MAGIC) {
|
||||
q = enctmp + 8;
|
||||
memset(keybuf + 5, 0, 11);
|
||||
if (!EVP_DecryptInit_ex(cctx, EVP_rc4(), NULL, keybuf, NULL))
|
||||
goto err;
|
||||
if (!EVP_DecryptUpdate(cctx, q, &enctmplen, p, inlen))
|
||||
goto err;
|
||||
if (!EVP_DecryptFinal_ex(cctx, q + enctmplen, &enctmplen))
|
||||
goto err;
|
||||
magic = read_ledword((const unsigned char **)&q);
|
||||
if (magic != MS_RSA2MAGIC && magic != MS_DSS2MAGIC) {
|
||||
PEMerr(PEM_F_DO_PVK_BODY, PEM_R_BAD_DECRYPT);
|
||||
goto err;
|
||||
}
|
||||
}
|
||||
p = enctmp;
|
||||
}
|
||||
|
||||
ret = b2i_PrivateKey(&p, keylen);
|
||||
err:
|
||||
EVP_CIPHER_CTX_free(cctx);
|
||||
if (enctmp != NULL) {
|
||||
OPENSSL_cleanse(keybuf, sizeof(keybuf));
|
||||
OPENSSL_free(enctmp);
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
EVP_PKEY *b2i_PVK_bio(BIO *in, pem_password_cb *cb, void *u)
|
||||
{
|
||||
unsigned char pvk_hdr[24], *buf = NULL;
|
||||
const unsigned char *p;
|
||||
int buflen;
|
||||
EVP_PKEY *ret = NULL;
|
||||
unsigned int saltlen, keylen;
|
||||
if (BIO_read(in, pvk_hdr, 24) != 24) {
|
||||
PEMerr(PEM_F_B2I_PVK_BIO, PEM_R_PVK_DATA_TOO_SHORT);
|
||||
return NULL;
|
||||
}
|
||||
p = pvk_hdr;
|
||||
|
||||
if (!do_PVK_header(&p, 24, 0, &saltlen, &keylen))
|
||||
return 0;
|
||||
buflen = (int)keylen + saltlen;
|
||||
buf = OPENSSL_malloc(buflen);
|
||||
if (buf == NULL) {
|
||||
PEMerr(PEM_F_B2I_PVK_BIO, ERR_R_MALLOC_FAILURE);
|
||||
return 0;
|
||||
}
|
||||
p = buf;
|
||||
if (BIO_read(in, buf, buflen) != buflen) {
|
||||
PEMerr(PEM_F_B2I_PVK_BIO, PEM_R_PVK_DATA_TOO_SHORT);
|
||||
goto err;
|
||||
}
|
||||
ret = do_PVK_body(&p, saltlen, keylen, cb, u);
|
||||
|
||||
err:
|
||||
OPENSSL_clear_free(buf, buflen);
|
||||
return ret;
|
||||
}
|
||||
|
||||
static int i2b_PVK(unsigned char **out, EVP_PKEY *pk, int enclevel,
|
||||
pem_password_cb *cb, void *u)
|
||||
{
|
||||
int outlen = 24, pklen;
|
||||
unsigned char *p = NULL, *start = NULL, *salt = NULL;
|
||||
EVP_CIPHER_CTX *cctx = NULL;
|
||||
if (enclevel)
|
||||
outlen += PVK_SALTLEN;
|
||||
pklen = do_i2b(NULL, pk, 0);
|
||||
if (pklen < 0)
|
||||
return -1;
|
||||
outlen += pklen;
|
||||
if (out == NULL)
|
||||
return outlen;
|
||||
if (*out != NULL) {
|
||||
p = *out;
|
||||
} else {
|
||||
start = p = OPENSSL_malloc(outlen);
|
||||
if (p == NULL) {
|
||||
PEMerr(PEM_F_I2B_PVK, ERR_R_MALLOC_FAILURE);
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
|
||||
cctx = EVP_CIPHER_CTX_new();
|
||||
if (cctx == NULL)
|
||||
goto error;
|
||||
|
||||
write_ledword(&p, MS_PVKMAGIC);
|
||||
write_ledword(&p, 0);
|
||||
if (EVP_PKEY_id(pk) == EVP_PKEY_DSA)
|
||||
write_ledword(&p, MS_KEYTYPE_SIGN);
|
||||
else
|
||||
write_ledword(&p, MS_KEYTYPE_KEYX);
|
||||
write_ledword(&p, enclevel ? 1 : 0);
|
||||
write_ledword(&p, enclevel ? PVK_SALTLEN : 0);
|
||||
write_ledword(&p, pklen);
|
||||
if (enclevel) {
|
||||
if (RAND_bytes(p, PVK_SALTLEN) <= 0)
|
||||
goto error;
|
||||
salt = p;
|
||||
p += PVK_SALTLEN;
|
||||
}
|
||||
do_i2b(&p, pk, 0);
|
||||
if (enclevel != 0) {
|
||||
char psbuf[PEM_BUFSIZE];
|
||||
unsigned char keybuf[20];
|
||||
int enctmplen, inlen;
|
||||
if (cb)
|
||||
inlen = cb(psbuf, PEM_BUFSIZE, 1, u);
|
||||
else
|
||||
inlen = PEM_def_callback(psbuf, PEM_BUFSIZE, 1, u);
|
||||
if (inlen <= 0) {
|
||||
PEMerr(PEM_F_I2B_PVK, PEM_R_BAD_PASSWORD_READ);
|
||||
goto error;
|
||||
}
|
||||
if (!derive_pvk_key(keybuf, salt, PVK_SALTLEN,
|
||||
(unsigned char *)psbuf, inlen))
|
||||
goto error;
|
||||
if (enclevel == 1)
|
||||
memset(keybuf + 5, 0, 11);
|
||||
p = salt + PVK_SALTLEN + 8;
|
||||
if (!EVP_EncryptInit_ex(cctx, EVP_rc4(), NULL, keybuf, NULL))
|
||||
goto error;
|
||||
OPENSSL_cleanse(keybuf, 20);
|
||||
if (!EVP_DecryptUpdate(cctx, p, &enctmplen, p, pklen - 8))
|
||||
goto error;
|
||||
if (!EVP_DecryptFinal_ex(cctx, p + enctmplen, &enctmplen))
|
||||
goto error;
|
||||
}
|
||||
|
||||
EVP_CIPHER_CTX_free(cctx);
|
||||
|
||||
if (*out == NULL)
|
||||
*out = start;
|
||||
|
||||
return outlen;
|
||||
|
||||
error:
|
||||
EVP_CIPHER_CTX_free(cctx);
|
||||
if (*out == NULL)
|
||||
OPENSSL_free(start);
|
||||
return -1;
|
||||
}
|
||||
|
||||
int i2b_PVK_bio(BIO *out, EVP_PKEY *pk, int enclevel,
|
||||
pem_password_cb *cb, void *u)
|
||||
{
|
||||
unsigned char *tmp = NULL;
|
||||
int outlen, wrlen;
|
||||
outlen = i2b_PVK(&tmp, pk, enclevel, cb, u);
|
||||
if (outlen < 0)
|
||||
return -1;
|
||||
wrlen = BIO_write(out, tmp, outlen);
|
||||
OPENSSL_free(tmp);
|
||||
if (wrlen == outlen) {
|
||||
PEMerr(PEM_F_I2B_PVK_BIO, PEM_R_BIO_WRITE_FAILURE);
|
||||
return outlen;
|
||||
}
|
||||
return -1;
|
||||
}
|
||||
|
||||
# endif
|
||||
|
||||
#endif
|
Loading…
Add table
Add a link
Reference in a new issue