mirror of
https://github.com/ossrs/srs.git
synced 2025-03-09 15:49:59 +00:00
Upgrade openssl from 1.1.0e to 1.1.1b, with source code. 4.0.78
This commit is contained in:
parent
8f1c992379
commit
96dbd7bced
1476 changed files with 616554 additions and 4 deletions
707
trunk/3rdparty/openssl-1.1-fit/crypto/rand/rand_unix.c
vendored
Normal file
707
trunk/3rdparty/openssl-1.1-fit/crypto/rand/rand_unix.c
vendored
Normal file
|
@ -0,0 +1,707 @@
|
|||
/*
|
||||
* Copyright 1995-2019 The OpenSSL Project Authors. All Rights Reserved.
|
||||
*
|
||||
* Licensed under the OpenSSL license (the "License"). You may not use
|
||||
* this file except in compliance with the License. You can obtain a copy
|
||||
* in the file LICENSE in the source distribution or at
|
||||
* https://www.openssl.org/source/license.html
|
||||
*/
|
||||
|
||||
#ifndef _GNU_SOURCE
|
||||
# define _GNU_SOURCE
|
||||
#endif
|
||||
#include "e_os.h"
|
||||
#include <stdio.h>
|
||||
#include "internal/cryptlib.h"
|
||||
#include <openssl/rand.h>
|
||||
#include "rand_lcl.h"
|
||||
#include "internal/rand_int.h"
|
||||
#include <stdio.h>
|
||||
#include "internal/dso.h"
|
||||
#if defined(__linux)
|
||||
# include <sys/syscall.h>
|
||||
#endif
|
||||
#if defined(__FreeBSD__)
|
||||
# include <sys/types.h>
|
||||
# include <sys/sysctl.h>
|
||||
# include <sys/param.h>
|
||||
#endif
|
||||
#if defined(__OpenBSD__) || defined(__NetBSD__)
|
||||
# include <sys/param.h>
|
||||
#endif
|
||||
|
||||
#if defined(OPENSSL_SYS_UNIX) || defined(__DJGPP__)
|
||||
# include <sys/types.h>
|
||||
# include <sys/stat.h>
|
||||
# include <fcntl.h>
|
||||
# include <unistd.h>
|
||||
# include <sys/time.h>
|
||||
|
||||
static uint64_t get_time_stamp(void);
|
||||
static uint64_t get_timer_bits(void);
|
||||
|
||||
/* Macro to convert two thirty two bit values into a sixty four bit one */
|
||||
# define TWO32TO64(a, b) ((((uint64_t)(a)) << 32) + (b))
|
||||
|
||||
/*
|
||||
* Check for the existence and support of POSIX timers. The standard
|
||||
* says that the _POSIX_TIMERS macro will have a positive value if they
|
||||
* are available.
|
||||
*
|
||||
* However, we want an additional constraint: that the timer support does
|
||||
* not require an extra library dependency. Early versions of glibc
|
||||
* require -lrt to be specified on the link line to access the timers,
|
||||
* so this needs to be checked for.
|
||||
*
|
||||
* It is worse because some libraries define __GLIBC__ but don't
|
||||
* support the version testing macro (e.g. uClibc). This means
|
||||
* an extra check is needed.
|
||||
*
|
||||
* The final condition is:
|
||||
* "have posix timers and either not glibc or glibc without -lrt"
|
||||
*
|
||||
* The nested #if sequences are required to avoid using a parameterised
|
||||
* macro that might be undefined.
|
||||
*/
|
||||
# undef OSSL_POSIX_TIMER_OKAY
|
||||
# if defined(_POSIX_TIMERS) && _POSIX_TIMERS > 0
|
||||
# if defined(__GLIBC__)
|
||||
# if defined(__GLIBC_PREREQ)
|
||||
# if __GLIBC_PREREQ(2, 17)
|
||||
# define OSSL_POSIX_TIMER_OKAY
|
||||
# endif
|
||||
# endif
|
||||
# else
|
||||
# define OSSL_POSIX_TIMER_OKAY
|
||||
# endif
|
||||
# endif
|
||||
#endif /* defined(OPENSSL_SYS_UNIX) || defined(__DJGPP__) */
|
||||
|
||||
#if defined(OPENSSL_RAND_SEED_NONE)
|
||||
/* none means none. this simplifies the following logic */
|
||||
# undef OPENSSL_RAND_SEED_OS
|
||||
# undef OPENSSL_RAND_SEED_GETRANDOM
|
||||
# undef OPENSSL_RAND_SEED_LIBRANDOM
|
||||
# undef OPENSSL_RAND_SEED_DEVRANDOM
|
||||
# undef OPENSSL_RAND_SEED_RDTSC
|
||||
# undef OPENSSL_RAND_SEED_RDCPU
|
||||
# undef OPENSSL_RAND_SEED_EGD
|
||||
#endif
|
||||
|
||||
#if (defined(OPENSSL_SYS_VXWORKS) || defined(OPENSSL_SYS_UEFI)) && \
|
||||
!defined(OPENSSL_RAND_SEED_NONE)
|
||||
# error "UEFI and VXWorks only support seeding NONE"
|
||||
#endif
|
||||
|
||||
#if defined(OPENSSL_SYS_VXWORKS)
|
||||
/* empty implementation */
|
||||
int rand_pool_init(void)
|
||||
{
|
||||
return 1;
|
||||
}
|
||||
|
||||
void rand_pool_cleanup(void)
|
||||
{
|
||||
}
|
||||
|
||||
void rand_pool_keep_random_devices_open(int keep)
|
||||
{
|
||||
}
|
||||
|
||||
size_t rand_pool_acquire_entropy(RAND_POOL *pool)
|
||||
{
|
||||
return rand_pool_entropy_available(pool);
|
||||
}
|
||||
#endif
|
||||
|
||||
#if !(defined(OPENSSL_SYS_WINDOWS) || defined(OPENSSL_SYS_WIN32) \
|
||||
|| defined(OPENSSL_SYS_VMS) || defined(OPENSSL_SYS_VXWORKS) \
|
||||
|| defined(OPENSSL_SYS_UEFI))
|
||||
|
||||
# if defined(OPENSSL_SYS_VOS)
|
||||
|
||||
# ifndef OPENSSL_RAND_SEED_OS
|
||||
# error "Unsupported seeding method configured; must be os"
|
||||
# endif
|
||||
|
||||
# if defined(OPENSSL_SYS_VOS_HPPA) && defined(OPENSSL_SYS_VOS_IA32)
|
||||
# error "Unsupported HP-PA and IA32 at the same time."
|
||||
# endif
|
||||
# if !defined(OPENSSL_SYS_VOS_HPPA) && !defined(OPENSSL_SYS_VOS_IA32)
|
||||
# error "Must have one of HP-PA or IA32"
|
||||
# endif
|
||||
|
||||
/*
|
||||
* The following algorithm repeatedly samples the real-time clock (RTC) to
|
||||
* generate a sequence of unpredictable data. The algorithm relies upon the
|
||||
* uneven execution speed of the code (due to factors such as cache misses,
|
||||
* interrupts, bus activity, and scheduling) and upon the rather large
|
||||
* relative difference between the speed of the clock and the rate at which
|
||||
* it can be read. If it is ported to an environment where execution speed
|
||||
* is more constant or where the RTC ticks at a much slower rate, or the
|
||||
* clock can be read with fewer instructions, it is likely that the results
|
||||
* would be far more predictable. This should only be used for legacy
|
||||
* platforms.
|
||||
*
|
||||
* As a precaution, we assume only 2 bits of entropy per byte.
|
||||
*/
|
||||
size_t rand_pool_acquire_entropy(RAND_POOL *pool)
|
||||
{
|
||||
short int code;
|
||||
int i, k;
|
||||
size_t bytes_needed;
|
||||
struct timespec ts;
|
||||
unsigned char v;
|
||||
# ifdef OPENSSL_SYS_VOS_HPPA
|
||||
long duration;
|
||||
extern void s$sleep(long *_duration, short int *_code);
|
||||
# else
|
||||
long long duration;
|
||||
extern void s$sleep2(long long *_duration, short int *_code);
|
||||
# endif
|
||||
|
||||
bytes_needed = rand_pool_bytes_needed(pool, 4 /*entropy_factor*/);
|
||||
|
||||
for (i = 0; i < bytes_needed; i++) {
|
||||
/*
|
||||
* burn some cpu; hope for interrupts, cache collisions, bus
|
||||
* interference, etc.
|
||||
*/
|
||||
for (k = 0; k < 99; k++)
|
||||
ts.tv_nsec = random();
|
||||
|
||||
# ifdef OPENSSL_SYS_VOS_HPPA
|
||||
/* sleep for 1/1024 of a second (976 us). */
|
||||
duration = 1;
|
||||
s$sleep(&duration, &code);
|
||||
# else
|
||||
/* sleep for 1/65536 of a second (15 us). */
|
||||
duration = 1;
|
||||
s$sleep2(&duration, &code);
|
||||
# endif
|
||||
|
||||
/* Get wall clock time, take 8 bits. */
|
||||
clock_gettime(CLOCK_REALTIME, &ts);
|
||||
v = (unsigned char)(ts.tv_nsec & 0xFF);
|
||||
rand_pool_add(pool, arg, &v, sizeof(v) , 2);
|
||||
}
|
||||
return rand_pool_entropy_available(pool);
|
||||
}
|
||||
|
||||
void rand_pool_cleanup(void)
|
||||
{
|
||||
}
|
||||
|
||||
void rand_pool_keep_random_devices_open(int keep)
|
||||
{
|
||||
}
|
||||
|
||||
# else
|
||||
|
||||
# if defined(OPENSSL_RAND_SEED_EGD) && \
|
||||
(defined(OPENSSL_NO_EGD) || !defined(DEVRANDOM_EGD))
|
||||
# error "Seeding uses EGD but EGD is turned off or no device given"
|
||||
# endif
|
||||
|
||||
# if defined(OPENSSL_RAND_SEED_DEVRANDOM) && !defined(DEVRANDOM)
|
||||
# error "Seeding uses urandom but DEVRANDOM is not configured"
|
||||
# endif
|
||||
|
||||
# if defined(OPENSSL_RAND_SEED_OS)
|
||||
# if !defined(DEVRANDOM)
|
||||
# error "OS seeding requires DEVRANDOM to be configured"
|
||||
# endif
|
||||
# define OPENSSL_RAND_SEED_GETRANDOM
|
||||
# define OPENSSL_RAND_SEED_DEVRANDOM
|
||||
# endif
|
||||
|
||||
# if defined(OPENSSL_RAND_SEED_LIBRANDOM)
|
||||
# error "librandom not (yet) supported"
|
||||
# endif
|
||||
|
||||
# if (defined(__FreeBSD__) || defined(__NetBSD__)) && defined(KERN_ARND)
|
||||
/*
|
||||
* sysctl_random(): Use sysctl() to read a random number from the kernel
|
||||
* Returns the number of bytes returned in buf on success, -1 on failure.
|
||||
*/
|
||||
static ssize_t sysctl_random(char *buf, size_t buflen)
|
||||
{
|
||||
int mib[2];
|
||||
size_t done = 0;
|
||||
size_t len;
|
||||
|
||||
/*
|
||||
* Note: sign conversion between size_t and ssize_t is safe even
|
||||
* without a range check, see comment in syscall_random()
|
||||
*/
|
||||
|
||||
/*
|
||||
* On FreeBSD old implementations returned longs, newer versions support
|
||||
* variable sizes up to 256 byte. The code below would not work properly
|
||||
* when the sysctl returns long and we want to request something not a
|
||||
* multiple of longs, which should never be the case.
|
||||
*/
|
||||
if (!ossl_assert(buflen % sizeof(long) == 0)) {
|
||||
errno = EINVAL;
|
||||
return -1;
|
||||
}
|
||||
|
||||
/*
|
||||
* On NetBSD before 4.0 KERN_ARND was an alias for KERN_URND, and only
|
||||
* filled in an int, leaving the rest uninitialized. Since NetBSD 4.0
|
||||
* it returns a variable number of bytes with the current version supporting
|
||||
* up to 256 bytes.
|
||||
* Just return an error on older NetBSD versions.
|
||||
*/
|
||||
#if defined(__NetBSD__) && __NetBSD_Version__ < 400000000
|
||||
errno = ENOSYS;
|
||||
return -1;
|
||||
#endif
|
||||
|
||||
mib[0] = CTL_KERN;
|
||||
mib[1] = KERN_ARND;
|
||||
|
||||
do {
|
||||
len = buflen;
|
||||
if (sysctl(mib, 2, buf, &len, NULL, 0) == -1)
|
||||
return done > 0 ? done : -1;
|
||||
done += len;
|
||||
buf += len;
|
||||
buflen -= len;
|
||||
} while (buflen > 0);
|
||||
|
||||
return done;
|
||||
}
|
||||
# endif
|
||||
|
||||
# if defined(OPENSSL_RAND_SEED_GETRANDOM)
|
||||
/*
|
||||
* syscall_random(): Try to get random data using a system call
|
||||
* returns the number of bytes returned in buf, or < 0 on error.
|
||||
*/
|
||||
static ssize_t syscall_random(void *buf, size_t buflen)
|
||||
{
|
||||
/*
|
||||
* Note: 'buflen' equals the size of the buffer which is used by the
|
||||
* get_entropy() callback of the RAND_DRBG. It is roughly bounded by
|
||||
*
|
||||
* 2 * RAND_POOL_FACTOR * (RAND_DRBG_STRENGTH / 8) = 2^14
|
||||
*
|
||||
* which is way below the OSSL_SSIZE_MAX limit. Therefore sign conversion
|
||||
* between size_t and ssize_t is safe even without a range check.
|
||||
*/
|
||||
|
||||
/*
|
||||
* Do runtime detection to find getentropy().
|
||||
*
|
||||
* Known OSs that should support this:
|
||||
* - Darwin since 16 (OSX 10.12, IOS 10.0).
|
||||
* - Solaris since 11.3
|
||||
* - OpenBSD since 5.6
|
||||
* - Linux since 3.17 with glibc 2.25
|
||||
* - FreeBSD since 12.0 (1200061)
|
||||
*/
|
||||
# if defined(__GNUC__) && __GNUC__>=2 && defined(__ELF__) && !defined(__hpux)
|
||||
extern int getentropy(void *buffer, size_t length) __attribute__((weak));
|
||||
|
||||
if (getentropy != NULL)
|
||||
return getentropy(buf, buflen) == 0 ? (ssize_t)buflen : -1;
|
||||
# else
|
||||
union {
|
||||
void *p;
|
||||
int (*f)(void *buffer, size_t length);
|
||||
} p_getentropy;
|
||||
|
||||
/*
|
||||
* We could cache the result of the lookup, but we normally don't
|
||||
* call this function often.
|
||||
*/
|
||||
ERR_set_mark();
|
||||
p_getentropy.p = DSO_global_lookup("getentropy");
|
||||
ERR_pop_to_mark();
|
||||
if (p_getentropy.p != NULL)
|
||||
return p_getentropy.f(buf, buflen) == 0 ? (ssize_t)buflen : -1;
|
||||
# endif
|
||||
|
||||
/* Linux supports this since version 3.17 */
|
||||
# if defined(__linux) && defined(SYS_getrandom)
|
||||
return syscall(SYS_getrandom, buf, buflen, 0);
|
||||
# elif (defined(__FreeBSD__) || defined(__NetBSD__)) && defined(KERN_ARND)
|
||||
return sysctl_random(buf, buflen);
|
||||
# else
|
||||
errno = ENOSYS;
|
||||
return -1;
|
||||
# endif
|
||||
}
|
||||
# endif /* defined(OPENSSL_RAND_SEED_GETRANDOM) */
|
||||
|
||||
# if defined(OPENSSL_RAND_SEED_DEVRANDOM)
|
||||
static const char *random_device_paths[] = { DEVRANDOM };
|
||||
static struct random_device {
|
||||
int fd;
|
||||
dev_t dev;
|
||||
ino_t ino;
|
||||
mode_t mode;
|
||||
dev_t rdev;
|
||||
} random_devices[OSSL_NELEM(random_device_paths)];
|
||||
static int keep_random_devices_open = 1;
|
||||
|
||||
/*
|
||||
* Verify that the file descriptor associated with the random source is
|
||||
* still valid. The rationale for doing this is the fact that it is not
|
||||
* uncommon for daemons to close all open file handles when daemonizing.
|
||||
* So the handle might have been closed or even reused for opening
|
||||
* another file.
|
||||
*/
|
||||
static int check_random_device(struct random_device * rd)
|
||||
{
|
||||
struct stat st;
|
||||
|
||||
return rd->fd != -1
|
||||
&& fstat(rd->fd, &st) != -1
|
||||
&& rd->dev == st.st_dev
|
||||
&& rd->ino == st.st_ino
|
||||
&& ((rd->mode ^ st.st_mode) & ~(S_IRWXU | S_IRWXG | S_IRWXO)) == 0
|
||||
&& rd->rdev == st.st_rdev;
|
||||
}
|
||||
|
||||
/*
|
||||
* Open a random device if required and return its file descriptor or -1 on error
|
||||
*/
|
||||
static int get_random_device(size_t n)
|
||||
{
|
||||
struct stat st;
|
||||
struct random_device * rd = &random_devices[n];
|
||||
|
||||
/* reuse existing file descriptor if it is (still) valid */
|
||||
if (check_random_device(rd))
|
||||
return rd->fd;
|
||||
|
||||
/* open the random device ... */
|
||||
if ((rd->fd = open(random_device_paths[n], O_RDONLY)) == -1)
|
||||
return rd->fd;
|
||||
|
||||
/* ... and cache its relevant stat(2) data */
|
||||
if (fstat(rd->fd, &st) != -1) {
|
||||
rd->dev = st.st_dev;
|
||||
rd->ino = st.st_ino;
|
||||
rd->mode = st.st_mode;
|
||||
rd->rdev = st.st_rdev;
|
||||
} else {
|
||||
close(rd->fd);
|
||||
rd->fd = -1;
|
||||
}
|
||||
|
||||
return rd->fd;
|
||||
}
|
||||
|
||||
/*
|
||||
* Close a random device making sure it is a random device
|
||||
*/
|
||||
static void close_random_device(size_t n)
|
||||
{
|
||||
struct random_device * rd = &random_devices[n];
|
||||
|
||||
if (check_random_device(rd))
|
||||
close(rd->fd);
|
||||
rd->fd = -1;
|
||||
}
|
||||
|
||||
int rand_pool_init(void)
|
||||
{
|
||||
size_t i;
|
||||
|
||||
for (i = 0; i < OSSL_NELEM(random_devices); i++)
|
||||
random_devices[i].fd = -1;
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
void rand_pool_cleanup(void)
|
||||
{
|
||||
size_t i;
|
||||
|
||||
for (i = 0; i < OSSL_NELEM(random_devices); i++)
|
||||
close_random_device(i);
|
||||
}
|
||||
|
||||
void rand_pool_keep_random_devices_open(int keep)
|
||||
{
|
||||
if (!keep)
|
||||
rand_pool_cleanup();
|
||||
|
||||
keep_random_devices_open = keep;
|
||||
}
|
||||
|
||||
# else /* !defined(OPENSSL_RAND_SEED_DEVRANDOM) */
|
||||
|
||||
int rand_pool_init(void)
|
||||
{
|
||||
return 1;
|
||||
}
|
||||
|
||||
void rand_pool_cleanup(void)
|
||||
{
|
||||
}
|
||||
|
||||
void rand_pool_keep_random_devices_open(int keep)
|
||||
{
|
||||
}
|
||||
|
||||
# endif /* defined(OPENSSL_RAND_SEED_DEVRANDOM) */
|
||||
|
||||
/*
|
||||
* Try the various seeding methods in turn, exit when successful.
|
||||
*
|
||||
* TODO(DRBG): If more than one entropy source is available, is it
|
||||
* preferable to stop as soon as enough entropy has been collected
|
||||
* (as favored by @rsalz) or should one rather be defensive and add
|
||||
* more entropy than requested and/or from different sources?
|
||||
*
|
||||
* Currently, the user can select multiple entropy sources in the
|
||||
* configure step, yet in practice only the first available source
|
||||
* will be used. A more flexible solution has been requested, but
|
||||
* currently it is not clear how this can be achieved without
|
||||
* overengineering the problem. There are many parameters which
|
||||
* could be taken into account when selecting the order and amount
|
||||
* of input from the different entropy sources (trust, quality,
|
||||
* possibility of blocking).
|
||||
*/
|
||||
size_t rand_pool_acquire_entropy(RAND_POOL *pool)
|
||||
{
|
||||
# if defined(OPENSSL_RAND_SEED_NONE)
|
||||
return rand_pool_entropy_available(pool);
|
||||
# else
|
||||
size_t bytes_needed;
|
||||
size_t entropy_available = 0;
|
||||
unsigned char *buffer;
|
||||
|
||||
# if defined(OPENSSL_RAND_SEED_GETRANDOM)
|
||||
{
|
||||
ssize_t bytes;
|
||||
/* Maximum allowed number of consecutive unsuccessful attempts */
|
||||
int attempts = 3;
|
||||
|
||||
bytes_needed = rand_pool_bytes_needed(pool, 1 /*entropy_factor*/);
|
||||
while (bytes_needed != 0 && attempts-- > 0) {
|
||||
buffer = rand_pool_add_begin(pool, bytes_needed);
|
||||
bytes = syscall_random(buffer, bytes_needed);
|
||||
if (bytes > 0) {
|
||||
rand_pool_add_end(pool, bytes, 8 * bytes);
|
||||
bytes_needed -= bytes;
|
||||
attempts = 3; /* reset counter after successful attempt */
|
||||
} else if (bytes < 0 && errno != EINTR) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
entropy_available = rand_pool_entropy_available(pool);
|
||||
if (entropy_available > 0)
|
||||
return entropy_available;
|
||||
# endif
|
||||
|
||||
# if defined(OPENSSL_RAND_SEED_LIBRANDOM)
|
||||
{
|
||||
/* Not yet implemented. */
|
||||
}
|
||||
# endif
|
||||
|
||||
# if defined(OPENSSL_RAND_SEED_DEVRANDOM)
|
||||
bytes_needed = rand_pool_bytes_needed(pool, 1 /*entropy_factor*/);
|
||||
{
|
||||
size_t i;
|
||||
|
||||
for (i = 0; bytes_needed > 0 && i < OSSL_NELEM(random_device_paths); i++) {
|
||||
ssize_t bytes = 0;
|
||||
/* Maximum allowed number of consecutive unsuccessful attempts */
|
||||
int attempts = 3;
|
||||
const int fd = get_random_device(i);
|
||||
|
||||
if (fd == -1)
|
||||
continue;
|
||||
|
||||
while (bytes_needed != 0 && attempts-- > 0) {
|
||||
buffer = rand_pool_add_begin(pool, bytes_needed);
|
||||
bytes = read(fd, buffer, bytes_needed);
|
||||
|
||||
if (bytes > 0) {
|
||||
rand_pool_add_end(pool, bytes, 8 * bytes);
|
||||
bytes_needed -= bytes;
|
||||
attempts = 3; /* reset counter after successful attempt */
|
||||
} else if (bytes < 0 && errno != EINTR) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (bytes < 0 || !keep_random_devices_open)
|
||||
close_random_device(i);
|
||||
|
||||
bytes_needed = rand_pool_bytes_needed(pool, 1 /*entropy_factor*/);
|
||||
}
|
||||
entropy_available = rand_pool_entropy_available(pool);
|
||||
if (entropy_available > 0)
|
||||
return entropy_available;
|
||||
}
|
||||
# endif
|
||||
|
||||
# if defined(OPENSSL_RAND_SEED_RDTSC)
|
||||
entropy_available = rand_acquire_entropy_from_tsc(pool);
|
||||
if (entropy_available > 0)
|
||||
return entropy_available;
|
||||
# endif
|
||||
|
||||
# if defined(OPENSSL_RAND_SEED_RDCPU)
|
||||
entropy_available = rand_acquire_entropy_from_cpu(pool);
|
||||
if (entropy_available > 0)
|
||||
return entropy_available;
|
||||
# endif
|
||||
|
||||
# if defined(OPENSSL_RAND_SEED_EGD)
|
||||
bytes_needed = rand_pool_bytes_needed(pool, 1 /*entropy_factor*/);
|
||||
if (bytes_needed > 0) {
|
||||
static const char *paths[] = { DEVRANDOM_EGD, NULL };
|
||||
int i;
|
||||
|
||||
for (i = 0; paths[i] != NULL; i++) {
|
||||
buffer = rand_pool_add_begin(pool, bytes_needed);
|
||||
if (buffer != NULL) {
|
||||
size_t bytes = 0;
|
||||
int num = RAND_query_egd_bytes(paths[i],
|
||||
buffer, (int)bytes_needed);
|
||||
if (num == (int)bytes_needed)
|
||||
bytes = bytes_needed;
|
||||
|
||||
rand_pool_add_end(pool, bytes, 8 * bytes);
|
||||
entropy_available = rand_pool_entropy_available(pool);
|
||||
}
|
||||
if (entropy_available > 0)
|
||||
return entropy_available;
|
||||
}
|
||||
}
|
||||
# endif
|
||||
|
||||
return rand_pool_entropy_available(pool);
|
||||
# endif
|
||||
}
|
||||
# endif
|
||||
#endif
|
||||
|
||||
#if defined(OPENSSL_SYS_UNIX) || defined(__DJGPP__)
|
||||
int rand_pool_add_nonce_data(RAND_POOL *pool)
|
||||
{
|
||||
struct {
|
||||
pid_t pid;
|
||||
CRYPTO_THREAD_ID tid;
|
||||
uint64_t time;
|
||||
} data = { 0 };
|
||||
|
||||
/*
|
||||
* Add process id, thread id, and a high resolution timestamp to
|
||||
* ensure that the nonce is unique with high probability for
|
||||
* different process instances.
|
||||
*/
|
||||
data.pid = getpid();
|
||||
data.tid = CRYPTO_THREAD_get_current_id();
|
||||
data.time = get_time_stamp();
|
||||
|
||||
return rand_pool_add(pool, (unsigned char *)&data, sizeof(data), 0);
|
||||
}
|
||||
|
||||
int rand_pool_add_additional_data(RAND_POOL *pool)
|
||||
{
|
||||
struct {
|
||||
CRYPTO_THREAD_ID tid;
|
||||
uint64_t time;
|
||||
} data = { 0 };
|
||||
|
||||
/*
|
||||
* Add some noise from the thread id and a high resolution timer.
|
||||
* The thread id adds a little randomness if the drbg is accessed
|
||||
* concurrently (which is the case for the <master> drbg).
|
||||
*/
|
||||
data.tid = CRYPTO_THREAD_get_current_id();
|
||||
data.time = get_timer_bits();
|
||||
|
||||
return rand_pool_add(pool, (unsigned char *)&data, sizeof(data), 0);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Get the current time with the highest possible resolution
|
||||
*
|
||||
* The time stamp is added to the nonce, so it is optimized for not repeating.
|
||||
* The current time is ideal for this purpose, provided the computer's clock
|
||||
* is synchronized.
|
||||
*/
|
||||
static uint64_t get_time_stamp(void)
|
||||
{
|
||||
# if defined(OSSL_POSIX_TIMER_OKAY)
|
||||
{
|
||||
struct timespec ts;
|
||||
|
||||
if (clock_gettime(CLOCK_REALTIME, &ts) == 0)
|
||||
return TWO32TO64(ts.tv_sec, ts.tv_nsec);
|
||||
}
|
||||
# endif
|
||||
# if defined(__unix__) \
|
||||
|| (defined(_POSIX_C_SOURCE) && _POSIX_C_SOURCE >= 200112L)
|
||||
{
|
||||
struct timeval tv;
|
||||
|
||||
if (gettimeofday(&tv, NULL) == 0)
|
||||
return TWO32TO64(tv.tv_sec, tv.tv_usec);
|
||||
}
|
||||
# endif
|
||||
return time(NULL);
|
||||
}
|
||||
|
||||
/*
|
||||
* Get an arbitrary timer value of the highest possible resolution
|
||||
*
|
||||
* The timer value is added as random noise to the additional data,
|
||||
* which is not considered a trusted entropy sourec, so any result
|
||||
* is acceptable.
|
||||
*/
|
||||
static uint64_t get_timer_bits(void)
|
||||
{
|
||||
uint64_t res = OPENSSL_rdtsc();
|
||||
|
||||
if (res != 0)
|
||||
return res;
|
||||
|
||||
# if defined(__sun) || defined(__hpux)
|
||||
return gethrtime();
|
||||
# elif defined(_AIX)
|
||||
{
|
||||
timebasestruct_t t;
|
||||
|
||||
read_wall_time(&t, TIMEBASE_SZ);
|
||||
return TWO32TO64(t.tb_high, t.tb_low);
|
||||
}
|
||||
# elif defined(OSSL_POSIX_TIMER_OKAY)
|
||||
{
|
||||
struct timespec ts;
|
||||
|
||||
# ifdef CLOCK_BOOTTIME
|
||||
# define CLOCK_TYPE CLOCK_BOOTTIME
|
||||
# elif defined(_POSIX_MONOTONIC_CLOCK)
|
||||
# define CLOCK_TYPE CLOCK_MONOTONIC
|
||||
# else
|
||||
# define CLOCK_TYPE CLOCK_REALTIME
|
||||
# endif
|
||||
|
||||
if (clock_gettime(CLOCK_TYPE, &ts) == 0)
|
||||
return TWO32TO64(ts.tv_sec, ts.tv_nsec);
|
||||
}
|
||||
# endif
|
||||
# if defined(__unix__) \
|
||||
|| (defined(_POSIX_C_SOURCE) && _POSIX_C_SOURCE >= 200112L)
|
||||
{
|
||||
struct timeval tv;
|
||||
|
||||
if (gettimeofday(&tv, NULL) == 0)
|
||||
return TWO32TO64(tv.tv_sec, tv.tv_usec);
|
||||
}
|
||||
# endif
|
||||
return time(NULL);
|
||||
}
|
||||
#endif /* defined(OPENSSL_SYS_UNIX) || defined(__DJGPP__) */
|
Loading…
Add table
Add a link
Reference in a new issue