mirror of
https://github.com/ossrs/srs.git
synced 2025-03-09 15:49:59 +00:00
Upgrade openssl from 1.1.0e to 1.1.1b, with source code. 4.0.78
This commit is contained in:
parent
8f1c992379
commit
96dbd7bced
1476 changed files with 616554 additions and 4 deletions
255
trunk/3rdparty/openssl-1.1-fit/crypto/rsa/rsa_pk1.c
vendored
Normal file
255
trunk/3rdparty/openssl-1.1-fit/crypto/rsa/rsa_pk1.c
vendored
Normal file
|
@ -0,0 +1,255 @@
|
|||
/*
|
||||
* Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved.
|
||||
*
|
||||
* Licensed under the OpenSSL license (the "License"). You may not use
|
||||
* this file except in compliance with the License. You can obtain a copy
|
||||
* in the file LICENSE in the source distribution or at
|
||||
* https://www.openssl.org/source/license.html
|
||||
*/
|
||||
|
||||
#include "internal/constant_time_locl.h"
|
||||
|
||||
#include <stdio.h>
|
||||
#include "internal/cryptlib.h"
|
||||
#include <openssl/bn.h>
|
||||
#include <openssl/rsa.h>
|
||||
#include <openssl/rand.h>
|
||||
|
||||
int RSA_padding_add_PKCS1_type_1(unsigned char *to, int tlen,
|
||||
const unsigned char *from, int flen)
|
||||
{
|
||||
int j;
|
||||
unsigned char *p;
|
||||
|
||||
if (flen > (tlen - RSA_PKCS1_PADDING_SIZE)) {
|
||||
RSAerr(RSA_F_RSA_PADDING_ADD_PKCS1_TYPE_1,
|
||||
RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE);
|
||||
return 0;
|
||||
}
|
||||
|
||||
p = (unsigned char *)to;
|
||||
|
||||
*(p++) = 0;
|
||||
*(p++) = 1; /* Private Key BT (Block Type) */
|
||||
|
||||
/* pad out with 0xff data */
|
||||
j = tlen - 3 - flen;
|
||||
memset(p, 0xff, j);
|
||||
p += j;
|
||||
*(p++) = '\0';
|
||||
memcpy(p, from, (unsigned int)flen);
|
||||
return 1;
|
||||
}
|
||||
|
||||
int RSA_padding_check_PKCS1_type_1(unsigned char *to, int tlen,
|
||||
const unsigned char *from, int flen,
|
||||
int num)
|
||||
{
|
||||
int i, j;
|
||||
const unsigned char *p;
|
||||
|
||||
p = from;
|
||||
|
||||
/*
|
||||
* The format is
|
||||
* 00 || 01 || PS || 00 || D
|
||||
* PS - padding string, at least 8 bytes of FF
|
||||
* D - data.
|
||||
*/
|
||||
|
||||
if (num < 11)
|
||||
return -1;
|
||||
|
||||
/* Accept inputs with and without the leading 0-byte. */
|
||||
if (num == flen) {
|
||||
if ((*p++) != 0x00) {
|
||||
RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_TYPE_1,
|
||||
RSA_R_INVALID_PADDING);
|
||||
return -1;
|
||||
}
|
||||
flen--;
|
||||
}
|
||||
|
||||
if ((num != (flen + 1)) || (*(p++) != 0x01)) {
|
||||
RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_TYPE_1,
|
||||
RSA_R_BLOCK_TYPE_IS_NOT_01);
|
||||
return -1;
|
||||
}
|
||||
|
||||
/* scan over padding data */
|
||||
j = flen - 1; /* one for type. */
|
||||
for (i = 0; i < j; i++) {
|
||||
if (*p != 0xff) { /* should decrypt to 0xff */
|
||||
if (*p == 0) {
|
||||
p++;
|
||||
break;
|
||||
} else {
|
||||
RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_TYPE_1,
|
||||
RSA_R_BAD_FIXED_HEADER_DECRYPT);
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
p++;
|
||||
}
|
||||
|
||||
if (i == j) {
|
||||
RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_TYPE_1,
|
||||
RSA_R_NULL_BEFORE_BLOCK_MISSING);
|
||||
return -1;
|
||||
}
|
||||
|
||||
if (i < 8) {
|
||||
RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_TYPE_1,
|
||||
RSA_R_BAD_PAD_BYTE_COUNT);
|
||||
return -1;
|
||||
}
|
||||
i++; /* Skip over the '\0' */
|
||||
j -= i;
|
||||
if (j > tlen) {
|
||||
RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_TYPE_1, RSA_R_DATA_TOO_LARGE);
|
||||
return -1;
|
||||
}
|
||||
memcpy(to, p, (unsigned int)j);
|
||||
|
||||
return j;
|
||||
}
|
||||
|
||||
int RSA_padding_add_PKCS1_type_2(unsigned char *to, int tlen,
|
||||
const unsigned char *from, int flen)
|
||||
{
|
||||
int i, j;
|
||||
unsigned char *p;
|
||||
|
||||
if (flen > (tlen - 11)) {
|
||||
RSAerr(RSA_F_RSA_PADDING_ADD_PKCS1_TYPE_2,
|
||||
RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE);
|
||||
return 0;
|
||||
}
|
||||
|
||||
p = (unsigned char *)to;
|
||||
|
||||
*(p++) = 0;
|
||||
*(p++) = 2; /* Public Key BT (Block Type) */
|
||||
|
||||
/* pad out with non-zero random data */
|
||||
j = tlen - 3 - flen;
|
||||
|
||||
if (RAND_bytes(p, j) <= 0)
|
||||
return 0;
|
||||
for (i = 0; i < j; i++) {
|
||||
if (*p == '\0')
|
||||
do {
|
||||
if (RAND_bytes(p, 1) <= 0)
|
||||
return 0;
|
||||
} while (*p == '\0');
|
||||
p++;
|
||||
}
|
||||
|
||||
*(p++) = '\0';
|
||||
|
||||
memcpy(p, from, (unsigned int)flen);
|
||||
return 1;
|
||||
}
|
||||
|
||||
int RSA_padding_check_PKCS1_type_2(unsigned char *to, int tlen,
|
||||
const unsigned char *from, int flen,
|
||||
int num)
|
||||
{
|
||||
int i;
|
||||
/* |em| is the encoded message, zero-padded to exactly |num| bytes */
|
||||
unsigned char *em = NULL;
|
||||
unsigned int good, found_zero_byte, mask;
|
||||
int zero_index = 0, msg_index, mlen = -1;
|
||||
|
||||
if (tlen <= 0 || flen <= 0)
|
||||
return -1;
|
||||
|
||||
/*
|
||||
* PKCS#1 v1.5 decryption. See "PKCS #1 v2.2: RSA Cryptography Standard",
|
||||
* section 7.2.2.
|
||||
*/
|
||||
|
||||
if (flen > num || num < 11) {
|
||||
RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_TYPE_2,
|
||||
RSA_R_PKCS_DECODING_ERROR);
|
||||
return -1;
|
||||
}
|
||||
|
||||
em = OPENSSL_malloc(num);
|
||||
if (em == NULL) {
|
||||
RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_TYPE_2, ERR_R_MALLOC_FAILURE);
|
||||
return -1;
|
||||
}
|
||||
/*
|
||||
* Caller is encouraged to pass zero-padded message created with
|
||||
* BN_bn2binpad. Trouble is that since we can't read out of |from|'s
|
||||
* bounds, it's impossible to have an invariant memory access pattern
|
||||
* in case |from| was not zero-padded in advance.
|
||||
*/
|
||||
for (from += flen, em += num, i = 0; i < num; i++) {
|
||||
mask = ~constant_time_is_zero(flen);
|
||||
flen -= 1 & mask;
|
||||
from -= 1 & mask;
|
||||
*--em = *from & mask;
|
||||
}
|
||||
from = em;
|
||||
|
||||
good = constant_time_is_zero(from[0]);
|
||||
good &= constant_time_eq(from[1], 2);
|
||||
|
||||
/* scan over padding data */
|
||||
found_zero_byte = 0;
|
||||
for (i = 2; i < num; i++) {
|
||||
unsigned int equals0 = constant_time_is_zero(from[i]);
|
||||
|
||||
zero_index = constant_time_select_int(~found_zero_byte & equals0,
|
||||
i, zero_index);
|
||||
found_zero_byte |= equals0;
|
||||
}
|
||||
|
||||
/*
|
||||
* PS must be at least 8 bytes long, and it starts two bytes into |from|.
|
||||
* If we never found a 0-byte, then |zero_index| is 0 and the check
|
||||
* also fails.
|
||||
*/
|
||||
good &= constant_time_ge(zero_index, 2 + 8);
|
||||
|
||||
/*
|
||||
* Skip the zero byte. This is incorrect if we never found a zero-byte
|
||||
* but in this case we also do not copy the message out.
|
||||
*/
|
||||
msg_index = zero_index + 1;
|
||||
mlen = num - msg_index;
|
||||
|
||||
/*
|
||||
* For good measure, do this check in constant time as well.
|
||||
*/
|
||||
good &= constant_time_ge(tlen, mlen);
|
||||
|
||||
/*
|
||||
* Even though we can't fake result's length, we can pretend copying
|
||||
* |tlen| bytes where |mlen| bytes would be real. Last |tlen| of |num|
|
||||
* bytes are viewed as circular buffer with start at |tlen|-|mlen'|,
|
||||
* where |mlen'| is "saturated" |mlen| value. Deducing information
|
||||
* about failure or |mlen| would take attacker's ability to observe
|
||||
* memory access pattern with byte granularity *as it occurs*. It
|
||||
* should be noted that failure is indistinguishable from normal
|
||||
* operation if |tlen| is fixed by protocol.
|
||||
*/
|
||||
tlen = constant_time_select_int(constant_time_lt(num, tlen), num, tlen);
|
||||
msg_index = constant_time_select_int(good, msg_index, num - tlen);
|
||||
mlen = num - msg_index;
|
||||
for (from += msg_index, mask = good, i = 0; i < tlen; i++) {
|
||||
unsigned int equals = constant_time_eq(i, mlen);
|
||||
|
||||
from -= tlen & equals; /* if (i == mlen) rewind */
|
||||
mask &= mask ^ equals; /* if (i == mlen) mask = 0 */
|
||||
to[i] = constant_time_select_8(mask, from[i], to[i]);
|
||||
}
|
||||
|
||||
OPENSSL_clear_free(em, num);
|
||||
RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_TYPE_2, RSA_R_PKCS_DECODING_ERROR);
|
||||
err_clear_last_constant_time(1 & good);
|
||||
|
||||
return constant_time_select_int(good, mlen, -1);
|
||||
}
|
Loading…
Add table
Add a link
Reference in a new issue