1
0
Fork 0
mirror of https://github.com/ossrs/srs.git synced 2025-02-13 03:41:55 +00:00

GB28181: Remove unused RTSP protocol stack.

This commit is contained in:
winlin 2022-09-16 21:54:34 +08:00
parent 912cd6a59c
commit b452144fb7
4 changed files with 6 additions and 1650 deletions

2
trunk/configure vendored
View file

@ -226,7 +226,7 @@ MODULE_DEPENDS=("CORE" "KERNEL")
ModuleLibIncs=(${SRS_OBJS_DIR} ${LibSTRoot} ${LibSSLRoot})
MODULE_FILES=("srs_protocol_amf0" "srs_protocol_io" "srs_protocol_conn" "srs_protocol_rtmp_handshake"
"srs_protocol_rtmp_stack" "srs_protocol_utility" "srs_protocol_rtmp_msg_array" "srs_protocol_stream"
"srs_protocol_raw_avc" "srs_protocol_rtsp_stack" "srs_protocol_http_stack" "srs_protocol_kbps" "srs_protocol_json"
"srs_protocol_raw_avc" "srs_protocol_http_stack" "srs_protocol_kbps" "srs_protocol_json"
"srs_protocol_format" "srs_protocol_log" "srs_protocol_st" "srs_protocol_http_client"
"srs_protocol_http_conn" "srs_protocol_rtmp_conn" "srs_protocol_protobuf")
if [[ $SRS_SRT == YES ]]; then

View file

@ -71,7 +71,7 @@ void srs_build_features(stringstream& ss)
SRS_CHECK_FEATURE3(!string(source).empty(), "source", source, ss);
int nn_vhosts = 0;
bool rtsp = false, forward = false, ingest = false, edge = false, hls = false, dvr = false, flv = false;
bool gb28181 = false, forward = false, ingest = false, edge = false, hls = false, dvr = false, flv = false;
bool hooks = false, dash = false, hds = false, exec = false, transcode = false, security = false;
bool flv2 = false, oc = false;
@ -80,10 +80,10 @@ void srs_build_features(stringstream& ss)
for (int i = 0; i < (int)root->directives.size() && i < 128; i++) {
SrsConfDirective* conf = root->at(i);
if (!rtsp && conf->is_stream_caster() && _srs_config->get_stream_caster_enabled(conf)) {
if (!gb28181 && conf->is_stream_caster() && _srs_config->get_stream_caster_enabled(conf)) {
string engine = _srs_config->get_stream_caster_engine(conf);
if (engine == "rtsp") {
rtsp = true;
if (engine == "gb28181") {
gb28181 = true;
} else if (engine == "flv") {
flv2 = true;
}
@ -144,7 +144,7 @@ void srs_build_features(stringstream& ss)
}
SRS_CHECK_FEATURE2(nn_vhosts, "vhosts", ss);
SRS_CHECK_FEATURE(rtsp, ss);
SRS_CHECK_FEATURE(gb28181, ss);
SRS_CHECK_FEATURE(flv2, ss);
SRS_CHECK_FEATURE(forward, ss);
SRS_CHECK_FEATURE(ingest, ss);

File diff suppressed because it is too large Load diff

View file

@ -1,561 +0,0 @@
//
// Copyright (c) 2013-2022 The SRS Authors
//
// SPDX-License-Identifier: MIT or MulanPSL-2.0
//
#ifndef SRS_PROTOCOL_RTSP_HPP
#define SRS_PROTOCOL_RTSP_HPP
#include <srs_core.hpp>
#include <string>
#include <sstream>
#include <srs_kernel_consts.hpp>
class SrsBuffer;
class SrsSimpleStream;
class SrsAudioFrame;
class ISrsProtocolReadWriter;
// From rtsp specification
// CR = <US-ASCII CR, carriage return (13)>
#define SRS_RTSP_CR SRS_CONSTS_CR // 0x0D
// LF = <US-ASCII LF, linefeed (10)>
#define SRS_RTSP_LF SRS_CONSTS_LF // 0x0A
// SP = <US-ASCII SP, space (32)>
#define SRS_RTSP_SP ' ' // 0x20
// 4 RTSP Message, @see rfc2326-1998-rtsp.pdf, page 37
// Lines are terminated by CRLF, but
// receivers should be prepared to also interpret CR and LF by
// themselves as line terminators.
#define SRS_RTSP_CRLF "\r\n" // 0x0D0A
#define SRS_RTSP_CRLFCRLF "\r\n\r\n" // 0x0D0A0D0A
// RTSP token
#define SRS_RTSP_TOKEN_CSEQ "CSeq"
#define SRS_RTSP_TOKEN_PUBLIC "Public"
#define SRS_RTSP_TOKEN_CONTENT_TYPE "Content-Type"
#define SRS_RTSP_TOKEN_CONTENT_LENGTH "Content-Length"
#define SRS_RTSP_TOKEN_TRANSPORT "Transport"
#define SRS_RTSP_TOKEN_SESSION "Session"
// RTSP methods
#define SRS_METHOD_OPTIONS "OPTIONS"
#define SRS_METHOD_DESCRIBE "DESCRIBE"
#define SRS_METHOD_ANNOUNCE "ANNOUNCE"
#define SRS_METHOD_SETUP "SETUP"
#define SRS_METHOD_PLAY "PLAY"
#define SRS_METHOD_PAUSE "PAUSE"
#define SRS_METHOD_TEARDOWN "TEARDOWN"
#define SRS_METHOD_GET_PARAMETER "GET_PARAMETER"
#define SRS_METHOD_SET_PARAMETER "SET_PARAMETER"
#define SRS_METHOD_REDIRECT "REDIRECT"
#define SRS_METHOD_RECORD "RECORD"
// Embedded (Interleaved) Binary Data
// RTSP-Version
#define SRS_RTSP_VERSION "RTSP/1.0"
// The rtsp sdp parse state.
enum SrsRtspSdpState
{
// Other sdp properties.
SrsRtspSdpStateOthers,
// Parse sdp audio state.
SrsRtspSdpStateAudio,
// Parse sdp video state.
SrsRtspSdpStateVideo,
};
// 10 Method Definitions, @see rfc2326-1998-rtsp.pdf, page 57
// The method token indicates the method to be performed on the resource
// identified by the Request-URI. The method is case-sensitive. New
// methods may be defined in the future. Method names may not start with
// a $ character (decimal 24) and must be a token. Methods are
// summarized in Table 2.
// Notes on Table 2: PAUSE is recommended, but not required in that a
// fully functional server can be built that does not support this
// method, for example, for live feeds. If a server does not support a
// particular method, it MUST return "501 Not Implemented" and a client
// SHOULD not try this method again for this server.
enum SrsRtspMethod
{
SrsRtspMethodDescribe = 0x0001,
SrsRtspMethodAnnounce = 0x0002,
SrsRtspMethodGetParameter = 0x0004,
SrsRtspMethodOptions = 0x0008,
SrsRtspMethodPause = 0x0010,
SrsRtspMethodPlay = 0x0020,
SrsRtspMethodRecord = 0x0040,
SrsRtspMethodRedirect = 0x0080,
SrsRtspMethodSetup = 0x0100,
SrsRtspMethodSetParameter = 0x0200,
SrsRtspMethodTeardown = 0x0400,
};
// The state of rtsp token.
enum SrsRtspTokenState
{
// Parse token failed, default state.
SrsRtspTokenStateError = 100,
// When SP follow the token.
SrsRtspTokenStateNormal = 101,
// When CRLF follow the token.
SrsRtspTokenStateEOF = 102,
};
// The rtp packet.
// 5. RTP Data Transfer Protocol, @see rfc3550-2003-rtp.pdf, page 12
class SrsRtspPacket
{
public:
// The version (V): 2 bits
// This field identifies the version of RTP. The version defined by this specification is two (2).
// (The value 1 is used by the first draft version of RTP and the value 0 is used by the protocol
// initially implemented in the \vat" audio tool.)
int8_t version; //2bits
// The padding (P): 1 bit
// If the padding bit is set, the packet contains one or more additional padding octets at the
// end which are not part of the payload. The last octet of the padding contains a count of
// how many padding octets should be ignored, including itself. Padding may be needed by
// some encryption algorithms with fixed block sizes or for carrying several RTP packets in a
// lower-layer protocol data unit.
int8_t padding; //1bit
// The extension (X): 1 bit
// If the extension bit is set, the fixed header must be followed by exactly one header extension,
// with a format defined in Section 5.3.1.
int8_t extension; //1bit
// The CSRC count (CC): 4 bits
// The CSRC count contains the number of CSRC identifiers that follow the fixed header.
int8_t csrc_count; //4bits
// The marker (M): 1 bit
// The interpretation of the marker is defined by a profile. It is intended to allow significant
// events such as frame boundaries to be marked in the packet stream. A profile may define
// additional marker bits or specify that there is no marker bit by changing the number of bits
// in the payload type field (see Section 5.3).
int8_t marker; //1bit
// The payload type (PT): 7 bits
// This field identifies the format of the RTP payload and determines its interpretation by the
// application. A profile may specify a default static mapping of payload type codes to payload
// formats. Additional payload type codes may be defined dynamically through non-RTP means
// (see Section 3). A set of default mappings for audio and video is specified in the companion
// RFC 3551 [1]. An RTP source may change the payload type during a session, but this field
// should not be used for multiplexing separate media streams (see Section 5.2).
// A receiver must ignore packets with payload types that it does not understand.
int8_t payload_type; //7bits
// The sequence number: 16 bits
// The sequence number increments by one for each RTP data packet sent, and may be used
// by the receiver to detect packet loss and to restore packet sequence. The initial value of the
// sequence number should be random (unpredictable) to make known-plaintext attacks on
// encryption more dicult, even if the source itself does not encrypt according to the method
// in Section 9.1, because the packets may flow through a translator that does. Techniques for
// choosing unpredictable numbers are discussed in [17].
uint16_t sequence_number; //16bits
// The timestamp: 32 bits
// The timestamp reflects the sampling instant of the first octet in the RTP data packet. The
// sampling instant must be derived from a clock that increments monotonically and linearly
// in time to allow synchronization and jitter calculations (see Section 6.4.1). The resolution
// of the clock must be sucient for the desired synchronization accuracy and for measuring
// packet arrival jitter (one tick per video frame is typically not sucient). The clock frequency
// is dependent on the format of data carried as payload and is specified statically in the profile
// or payload format specification that defines the format, or may be specified dynamically for
// payload formats defined through non-RTP means. If RTP packets are generated periodically,
// The nominal sampling instant as determined from the sampling clock is to be used, not a
// reading of the system clock. As an example, for fixed-rate audio the timestamp clock would
// likely increment by one for each sampling period. If an audio application reads blocks covering
// 160 sampling periods from the input device, the timestamp would be increased by 160 for
// each such block, regardless of whether the block is transmitted in a packet or dropped as
// silent.
//
// The initial value of the timestamp should be random, as for the sequence number. Several
// consecutive RTP packets will have equal timestamps if they are (logically) generated at once,
// e.g., belong to the same video frame. Consecutive RTP packets may contain timestamps that
// are not monotonic if the data is not transmitted in the order it was sampled, as in the case
// of MPEG interpolated video frames. (The sequence numbers of the packets as transmitted
// will still be monotonic.)
//
// RTP timestamps from different media streams may advance at different rates and usually
// have independent, random offsets. Therefore, although these timestamps are sucient to
// reconstruct the timing of a single stream, directly comparing RTP timestamps from different
// media is not effective for synchronization. Instead, for each medium the RTP timestamp
// is related to the sampling instant by pairing it with a timestamp from a reference clock
// (wallclock) that represents the time when the data corresponding to the RTP timestamp was
// sampled. The reference clock is shared by all media to be synchronized. The timestamp
// pairs are not transmitted in every data packet, but at a lower rate in RTCP SR packets as
// described in Section 6.4.
//
// The sampling instant is chosen as the point of reference for the RTP timestamp because it is
// known to the transmitting endpoint and has a common definition for all media, independent
// of encoding delays or other processing. The purpose is to allow synchronized presentation of
// all media sampled at the same time.
//
// Applications transmitting stored data rather than data sampled in real time typically use a
// virtual presentation timeline derived from wallclock time to determine when the next frame
// or other unit of each medium in the stored data should be presented. In this case, the RTP
// timestamp would reflect the presentation time for each unit. That is, the RTP timestamp for
// each unit would be related to the wallclock time at which the unit becomes current on the
// virtual presentation timeline. Actual presentation occurs some time later as determined by
// The receiver.
//
// An example describing live audio narration of prerecorded video illustrates the significance
// of choosing the sampling instant as the reference point. In this scenario, the video would
// be presented locally for the narrator to view and would be simultaneously transmitted using
// RTP. The sampling instant" of a video frame transmitted in RTP would be established by
// referencing its timestamp to the wallclock time when that video frame was presented to the
// narrator. The sampling instant for the audio RTP packets containing the narrator's speech
// would be established by referencing the same wallclock time when the audio was sampled.
// The audio and video may even be transmitted by different hosts if the reference clocks on
// The two hosts are synchronized by some means such as NTP. A receiver can then synchronize
// presentation of the audio and video packets by relating their RTP timestamps using the
// timestamp pairs in RTCP SR packets.
uint32_t timestamp; //32bits
// The SSRC: 32 bits
// The SSRC field identifies the synchronization source. This identifier should be chosen
// randomly, with the intent that no two synchronization sources within the same RTP session
// will have the same SSRC identifier. An example algorithm for generating a random identifier
// is presented in Appendix A.6. Although the probability of multiple sources choosing the same
// identifier is low, all RTP implementations must be prepared to detect and resolve collisions.
// Section 8 describes the probability of collision along with a mechanism for resolving collisions
// and detecting RTP-level forwarding loops based on the uniqueness of the SSRC identifier. If
// a source changes its source transport address, it must also choose a new SSRC identifier to
// avoid being interpreted as a looped source (see Section 8.2).
uint32_t ssrc; //32bits
// The payload.
SrsSimpleStream* payload;
// Whether transport in chunked payload.
bool chunked;
// Whether message is completed.
// normal message always completed.
// while chunked completed when the last chunk arriaved.
bool completed;
// The audio samples, one rtp packets may contains multiple audio samples.
SrsAudioFrame* audio;
public:
SrsRtspPacket();
virtual ~SrsRtspPacket();
public:
// copy the header from src.
virtual void copy(SrsRtspPacket* src);
// reap the src to this packet, reap the payload.
virtual void reap(SrsRtspPacket* src);
// decode rtp packet from stream.
virtual srs_error_t decode(SrsBuffer* stream);
private:
virtual srs_error_t decode_97(SrsBuffer* stream);
virtual srs_error_t decode_96(SrsBuffer* stream);
};
// The sdp in announce, @see rfc2326-1998-rtsp.pdf, page 159
// Appendix C: Use of SDP for RTSP Session Descriptions
// The Session Description Protocol (SDP, RFC 2327 [6]) may be used to
// describe streams or presentations in RTSP.
class SrsRtspSdp
{
private:
SrsRtspSdpState state;
public:
// The version of sdp.
std::string version;
// The owner/creator of sdp.
std::string owner_username;
std::string owner_session_id;
std::string owner_session_version;
std::string owner_network_type;
std::string owner_address_type;
std::string owner_address;
// The session name of sdp.
std::string session_name;
// The connection info of sdp.
std::string connection_network_type;
std::string connection_address_type;
std::string connection_address;
// The tool attribute of sdp.
std::string tool;
// The video attribute of sdp.
std::string video_port;
std::string video_protocol;
std::string video_transport_format;
std::string video_bandwidth_kbps;
std::string video_codec;
std::string video_sample_rate;
std::string video_stream_id;
// The fmtp
std::string video_packetization_mode;
std::string video_sps; // sequence header: sps.
std::string video_pps; // sequence header: pps.
// The audio attribute of sdp.
std::string audio_port;
std::string audio_protocol;
std::string audio_transport_format;
std::string audio_bandwidth_kbps;
std::string audio_codec;
std::string audio_sample_rate;
std::string audio_channel;
std::string audio_stream_id;
// The fmtp
std::string audio_profile_level_id;
std::string audio_mode;
std::string audio_size_length;
std::string audio_index_length;
std::string audio_index_delta_length;
std::string audio_sh; // sequence header.
public:
SrsRtspSdp();
virtual ~SrsRtspSdp();
public:
// Parse a line of token for sdp.
virtual srs_error_t parse(std::string token);
private:
// generally, the fmtp is the sequence header for video or audio.
virtual srs_error_t parse_fmtp_attribute(std::string attr);
// generally, the control is the stream info for video or audio.
virtual srs_error_t parse_control_attribute(std::string attr);
// decode the string by base64.
virtual std::string base64_decode(std::string value);
};
// The rtsp transport.
// 12.39 Transport, @see rfc2326-1998-rtsp.pdf, page 115
// This request header indicates which transport protocol is to be used
// and configures its parameters such as destination address,
// compression, multicast time-to-live and destination port for a single
// stream. It sets those values not already determined by a presentation
// description.
class SrsRtspTransport
{
public:
// The syntax for the transport specifier is
// transport/profile/lower-transport
std::string transport;
std::string profile;
std::string lower_transport;
// unicast | multicast
// mutually exclusive indication of whether unicast or multicast
// delivery will be attempted. Default value is multicast.
// Clients that are capable of handling both unicast and
// multicast transmission MUST indicate such capability by
// including two full transport-specs with separate parameters
// For each.
std::string cast_type;
// The mode parameter indicates the methods to be supported for
// this session. Valid values are PLAY and RECORD. If not
// provided, the default is PLAY.
std::string mode;
// This parameter provides the unicast RTP/RTCP port pair on
// which the client has chosen to receive media data and control
// information. It is specified as a range, e.g.,
// client_port=3456-3457.
// where client will use port in:
// [client_port_min, client_port_max)
int client_port_min;
int client_port_max;
public:
SrsRtspTransport();
virtual ~SrsRtspTransport();
public:
// Parse a line of token for transport.
virtual srs_error_t parse(std::string attr);
};
// The rtsp request message.
// 6 Request, @see rfc2326-1998-rtsp.pdf, page 39
// A request message from a client to a server or vice versa includes,
// within the first line of that message, the method to be applied to
// The resource, the identifier of the resource, and the protocol
// version in use.
// Request = Request-Line ; Section 6.1
// // ( general-header ; Section 5
// | request-header ; Section 6.2
// | entity-header ) ; Section 8.1
// CRLF
// [ message-body ] ; Section 4.3
class SrsRtspRequest
{
public:
// 6.1 Request Line
// Request-Line = Method SP Request-URI SP RTSP-Version CRLF
std::string method;
std::string uri;
std::string version;
// 12.17 CSeq
// The CSeq field specifies the sequence number for an RTSP requestresponse
// pair. This field MUST be present in all requests and
// responses. For every RTSP request containing the given sequence
// number, there will be a corresponding response having the same
// number. Any retransmitted request must contain the same sequence
// number as the original (i.e. the sequence number is not incremented
// For retransmissions of the same request).
long seq;
// 12.16 Content-Type, @see rfc2326-1998-rtsp.pdf, page 99
// See [H14.18]. Note that the content types suitable for RTSP are
// likely to be restricted in practice to presentation descriptions and
// parameter-value types.
std::string content_type;
// 12.14 Content-Length, @see rfc2326-1998-rtsp.pdf, page 99
// This field contains the length of the content of the method (i.e.
// after the double CRLF following the last header). Unlike HTTP, it
// MUST be included in all messages that carry content beyond the header
// portion of the message. If it is missing, a default value of zero is
// assumed. It is interpreted according to [H14.14].
long content_length;
// The session id.
std::string session;
// The sdp in announce, NULL for no sdp.
SrsRtspSdp* sdp;
// The transport in setup, NULL for no transport.
SrsRtspTransport* transport;
// For setup message, parse the stream id from uri.
int stream_id;
public:
SrsRtspRequest();
virtual ~SrsRtspRequest();
public:
virtual bool is_options();
virtual bool is_announce();
virtual bool is_setup();
virtual bool is_record();
};
// The rtsp response message.
// 7 Response, @see rfc2326-1998-rtsp.pdf, page 43
// [H6] applies except that HTTP-Version is replaced by RTSP-Version.
// Also, RTSP defines additional status codes and does not define some
// HTTP codes. The valid response codes and the methods they can be used
// with are defined in Table 1.
// After receiving and interpreting a request message, the recipient
// responds with an RTSP response message.
// Response = Status-Line ; Section 7.1
// // ( general-header ; Section 5
// | response-header ; Section 7.1.2
// | entity-header ) ; Section 8.1
// CRLF
// [ message-body ] ; Section 4.3
class SrsRtspResponse
{
public:
// 7.1 Status-Line
// The first line of a Response message is the Status-Line, consisting
// of the protocol version followed by a numeric status code, and the
// textual phrase associated with the status code, with each element
// separated by SP characters. No CR or LF is allowed except in the
// final CRLF sequence.
// Status-Line = RTSP-Version SP Status-Code SP Reason-Phrase CRLF
// @see about the version of rtsp, see SRS_RTSP_VERSION
// @see about the status of rtsp, see SRS_CONSTS_RTSP_OK
int status;
// 12.17 CSeq, @see rfc2326-1998-rtsp.pdf, page 99
// The CSeq field specifies the sequence number for an RTSP requestresponse
// pair. This field MUST be present in all requests and
// responses. For every RTSP request containing the given sequence
// number, there will be a corresponding response having the same
// number. Any retransmitted request must contain the same sequence
// number as the original (i.e. the sequence number is not incremented
// For retransmissions of the same request).
long seq;
// The session id.
std::string session;
public:
SrsRtspResponse(int cseq);
virtual ~SrsRtspResponse();
public:
// Encode message to string.
virtual srs_error_t encode(std::stringstream& ss);
protected:
// Sub classes override this to encode the headers.
virtual srs_error_t encode_header(std::stringstream& ss);
};
// 10.1 OPTIONS, @see rfc2326-1998-rtsp.pdf, page 59
// The behavior is equivalent to that described in [H9.2]. An OPTIONS
// request may be issued at any time, e.g., if the client is about to
// try a nonstandard request. It does not influence server state.
class SrsRtspOptionsResponse : public SrsRtspResponse
{
public:
// Join of SrsRtspMethod
SrsRtspMethod methods;
public:
SrsRtspOptionsResponse(int cseq);
virtual ~SrsRtspOptionsResponse();
protected:
virtual srs_error_t encode_header(std::stringstream& ss);
};
// 10.4 SETUP, @see rfc2326-1998-rtsp.pdf, page 65
// The SETUP request for a URI specifies the transport mechanism to be
// used for the streamed media. A client can issue a SETUP request for a
// stream that is already playing to change transport parameters, which
// a server MAY allow. If it does not allow this, it MUST respond with
// error "455 Method Not Valid In This State". For the benefit of any
// intervening firewalls, a client must indicate the transport
// parameters even if it has no influence over these parameters, for
// example, where the server advertises a fixed multicast address.
class SrsRtspSetupResponse : public SrsRtspResponse
{
public:
// The client specified port.
int client_port_min;
int client_port_max;
// The client will use the port in:
// [local_port_min, local_port_max)
int local_port_min;
int local_port_max;
// The session.
std::string session;
public:
SrsRtspSetupResponse(int cseq);
virtual ~SrsRtspSetupResponse();
protected:
virtual srs_error_t encode_header(std::stringstream& ss);
};
// The rtsp protocol stack to parse the rtsp packets.
class SrsRtspStack
{
private:
// The cached bytes buffer.
SrsSimpleStream* buf;
// The underlayer socket object, send/recv bytes.
ISrsProtocolReadWriter* skt;
public:
SrsRtspStack(ISrsProtocolReadWriter* s);
virtual ~SrsRtspStack();
public:
// Recv rtsp message from underlayer io.
// @param preq the output rtsp request message, which user must free it.
// @return an int error code.
// ERROR_RTSP_REQUEST_HEADER_EOF indicates request header EOF.
virtual srs_error_t recv_message(SrsRtspRequest** preq);
// Send rtsp message over underlayer io.
// @param res the rtsp response message, which user should never free it.
// @return an int error code.
virtual srs_error_t send_message(SrsRtspResponse* res);
private:
// Recv the rtsp message.
virtual srs_error_t do_recv_message(SrsRtspRequest* req);
// Read a normal token from io, error when token state is not normal.
virtual srs_error_t recv_token_normal(std::string& token);
// Read a normal token from io, error when token state is not eof.
virtual srs_error_t recv_token_eof(std::string& token);
// Read the token util got eof, for example, to read the response status Reason-Phrase
// @param pconsumed, output the token parsed length. NULL to ignore.
virtual srs_error_t recv_token_util_eof(std::string& token, int* pconsumed = NULL);
// Read a token from io, split by SP, endswith CRLF:
// token1 SP token2 SP ... tokenN CRLF
// @param token, output the read token.
// @param state, output the token parse state.
// @param normal_ch, the char to indicates the normal token.
// the SP use to indicates the normal token, @see SRS_RTSP_SP
// the 0x00 use to ignore normal token flag. @see recv_token_util_eof
// @param pconsumed, output the token parsed length. NULL to ignore.
virtual srs_error_t recv_token(std::string& token, SrsRtspTokenState& state, char normal_ch = SRS_RTSP_SP, int* pconsumed = NULL);
};
#endif