1
0
Fork 0
mirror of https://github.com/ossrs/srs.git synced 2025-03-09 15:49:59 +00:00

refine the thread to three category.

This commit is contained in:
winlin 2015-05-23 09:20:16 +08:00
parent 2f0ef87d6d
commit e5f449ce36
25 changed files with 648 additions and 416 deletions

View file

@ -31,34 +31,238 @@ CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
#include <srs_app_st.hpp>
// the internal classes, user should never use it.
// user should use the public classes at the bellow:
// @see SrsEndlessThread, SrsOneCycleThread, SrsReusableThread
namespace internal {
/**
* the handler for the thread, callback interface.
* the thread model defines as:
* handler->on_thread_start()
* while loop:
* handler->on_before_cycle()
* handler->cycle()
* handler->on_end_cycle()
* if !loop then break for user stop thread.
* sleep(CycleIntervalMilliseconds)
* handler->on_thread_stop()
* when stop, the thread will interrupt the st_thread,
* which will cause the socket to return error and
* terminate the cycle thread.
*
* @remark why should check can_loop() in cycle method?
* when thread interrupt, the socket maybe not got EINT,
* espectially on st_usleep(), so the cycle must check the loop,
* when handler->cycle() has loop itself, for example:
* while (true):
* if (read_from_socket(skt) < 0) break;
* if thread stop when read_from_socket, it's ok, the loop will break,
* but when thread stop interrupt the s_usleep(0), then the loop is
* death loop.
* in a word, the handler->cycle() must:
* while (pthread->can_loop()):
* if (read_from_socket(skt) < 0) break;
* check the loop, then it works.
*
* @remark why should use stop_loop() to terminate thread in itself?
* in the thread itself, that is the cycle method,
* if itself want to terminate the thread, should never use stop(),
* but use stop_loop() to set the loop to false and terminate normally.
*
* @remark when should set the interval_us, and when not?
* the cycle will invoke util cannot loop, eventhough the return code of cycle is error,
* so the interval_us used to sleep for each cycle.
*/
class ISrsThreadHandler
{
public:
ISrsThreadHandler();
virtual ~ISrsThreadHandler();
public:
virtual void on_thread_start();
virtual int on_before_cycle();
virtual int cycle() = 0;
virtual int on_end_cycle();
virtual void on_thread_stop();
};
/**
* provides servies from st_thread_t,
* for common thread usage.
*/
class SrsThread
{
private:
st_thread_t tid;
int _cid;
bool loop;
bool can_run;
bool really_terminated;
bool _joinable;
const char* _name;
private:
ISrsThreadHandler* handler;
int64_t cycle_interval_us;
public:
/**
* initialize the thread.
* @param name, human readable name for st debug.
* @param thread_handler, the cycle handler for the thread.
* @param interval_us, the sleep interval when cycle finished.
* @param joinable, if joinable, other thread must stop the thread.
* @remark if joinable, thread never quit itself, or memory leak.
* @see: https://github.com/simple-rtmp-server/srs/issues/78
* @remark about st debug, see st-1.9/README, _st_iterate_threads_flag
*/
/**
* TODO: FIXME: maybe all thread must be reap by others threads,
* @see: https://github.com/simple-rtmp-server/srs/issues/77
*/
SrsThread(const char* name, ISrsThreadHandler* thread_handler, int64_t interval_us, bool joinable);
virtual ~SrsThread();
public:
/**
* get the context id. @see: ISrsThreadContext.get_id().
* used for parent thread to get the id.
* @remark when start thread, parent thread will block and wait for this id ready.
*/
virtual int cid();
/**
* start the thread, invoke the cycle of handler util
* user stop the thread.
* @remark ignore any error of cycle of handler.
* @remark user can start multiple times, ignore if already started.
* @remark wait for the cid is set by thread pfn.
*/
virtual int start();
/**
* stop the thread, wait for the thread to terminate.
* @remark user can stop multiple times, ignore if already stopped.
*/
virtual void stop();
public:
/**
* whether the thread should loop,
* used for handler->cycle() which has a loop method,
* to check this method, break if false.
*/
virtual bool can_loop();
/**
* for the loop thread to stop the loop.
* other thread can directly use stop() to stop loop and wait for quit.
* this stop loop method only set loop to false.
*/
virtual void stop_loop();
private:
virtual void thread_cycle();
static void* thread_fun(void* arg);
};
}
/**
* the handler for the thread, callback interface.
* the thread model defines as:
* handler->on_thread_start()
* while loop:
* handler->on_before_cycle()
* handler->cycle()
* handler->on_end_cycle()
* if !loop then break for user stop thread.
* sleep(CycleIntervalMilliseconds)
* handler->on_thread_stop()
* when stop, the thread will interrupt the st_thread,
* which will cause the socket to return error and
* terminate the cycle thread.
*
* Usage 1: loop thread never quit.
* the endless thread is a loop thread never quit.
* user can create thread always running util server terminate.
* the step to create a thread never stop:
* 1. create SrsThread field, with joinable false.
* 1. create SrsEndlessThread field.
* for example:
* class SrsStreamCache : public ISrsThreadHandler {
* public: SrsStreamCache() { pthread = new SrsThread("http-stream", this, SRS_AUTO_STREAM_SLEEP_US, false); }
* class SrsStreamCache : public ISrsEndlessThreadHandler {
* public: SrsStreamCache() { pthread = new SrsEndlessThread("http-stream", this); }
* public: virtual int cycle() {
* // check status, start ffmpeg when stopped.
* // do some work never end.
* }
* }
*
* Usage 2: stop by other thread.
* @remark user must use block method in cycle method, for example, sleep or socket io.
*/
class ISrsEndlessThreadHandler
{
public:
ISrsEndlessThreadHandler();
virtual ~ISrsEndlessThreadHandler();
public:
/**
* the cycle method for the common thread.
* @remark user must use block method in cycle method, for example, sleep or socket io.
*/
virtual int cycle() = 0;
};
class SrsEndlessThread : public internal::ISrsThreadHandler
{
private:
internal::SrsThread* pthread;
ISrsEndlessThreadHandler* handler;
public:
SrsEndlessThread(const char* n, ISrsEndlessThreadHandler* h);
virtual ~SrsEndlessThread();
public:
/**
* for the endless thread, never quit.
*/
virtual int start();
// interface internal::ISrsThreadHandler
public:
virtual int cycle();
};
/**
* the one cycle thread is a thread do the cycle only one time,
* that is, the thread will quit when return from the cycle.
* user can create thread which stop itself,
* generally only need to provides a start method,
* the object will destroy itself then terminate the thread, @see SrsConnection
* 1. create SrsThread field
* 2. the thread quit when return from cycle.
* for example:
* class SrsConnection : public ISrsOneCycleThreadHandler {
* public: SrsConnection() { pthread = new SrsOneCycleThread("conn", this); }
* public: virtual int start() { return pthread->start(); }
* public: virtual int cycle() {
* // serve client.
* // set loop to stop to quit, stop thread itself.
* pthread->stop_loop();
* }
* public: virtual void on_thread_stop() {
* // remove the connection in thread itself.
* server->remove(this);
* }
* };
*/
class ISrsOneCycleThreadHandler
{
public:
ISrsOneCycleThreadHandler();
virtual ~ISrsOneCycleThreadHandler();
public:
/**
* the cycle method for the one cycle thread.
*/
virtual int cycle() = 0;
/**
* when thread stop, the handler can do cleanup.
* @remark this method is optional, handler can ignore it.
*/
virtual void on_thread_stop();
};
class SrsOneCycleThread : public internal::ISrsThreadHandler
{
private:
internal::SrsThread* pthread;
ISrsOneCycleThreadHandler* handler;
public:
SrsOneCycleThread(const char* n, ISrsOneCycleThreadHandler* h);
virtual ~SrsOneCycleThread();
public:
/**
* for the one cycle thread, quit when cycle return.
*/
virtual int start();
// interface internal::ISrsThreadHandler
public:
virtual int cycle();
virtual void on_thread_stop();
};
/**
* the reuse thread is a thread stop and start by other thread.
* user can create thread and stop then start again and again,
* generally must provides a start and stop method, @see SrsIngester.
* the step to create a thread stop by other thread:
@ -73,147 +277,65 @@ CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
* // check status, start ffmpeg when stopped.
* }
* };
*
* Usage 3: stop by thread itself.
* user can create thread which stop itself,
* generally only need to provides a start method,
* the object will destroy itself then terminate the thread, @see SrsConnection
* 1. create SrsThread field, with joinable false.
* 2. owner stop thread loop, destroy itself when thread stop.
* for example:
* class SrsConnection : public ISrsThreadHandler {
* public: SrsConnection() { pthread = new SrsThread("conn", this, 0, false); }
* public: virtual int start() { return pthread->start(); }
* public: virtual int cycle() {
* // serve client.
* // set loop to stop to quit, stop thread itself.
* pthread->stop_loop();
* }
* public: virtual int on_thread_stop() {
* // remove the connection in thread itself.
* server->remove(this);
* }
* };
*
* Usage 4: loop in the cycle method.
* user can use loop code in the cycle method, @see SrsForwarder
* 1. create SrsThread field, with or without joinable is ok.
* 2. loop code in cycle method, check the can_loop() for thread to quit.
* for example:
* class SrsForwarder : public ISrsThreadHandler {
* public: virtual int cycle() {
* while (pthread->can_loop()) {
* // read msgs from queue and forward to server.
* }
* }
* };
*
* @remark why should check can_loop() in cycle method?
* when thread interrupt, the socket maybe not got EINT,
* espectially on st_usleep(), so the cycle must check the loop,
* when handler->cycle() has loop itself, for example:
* while (true):
* if (read_from_socket(skt) < 0) break;
* if thread stop when read_from_socket, it's ok, the loop will break,
* but when thread stop interrupt the s_usleep(0), then the loop is
* death loop.
* in a word, the handler->cycle() must:
* while (pthread->can_loop()):
* if (read_from_socket(skt) < 0) break;
* check the loop, then it works.
*
* @remark why should use stop_loop() to terminate thread in itself?
* in the thread itself, that is the cycle method,
* if itself want to terminate the thread, should never use stop(),
* but use stop_loop() to set the loop to false and terminate normally.
*
* @remark when should set the interval_us, and when not?
* the cycle will invoke util cannot loop, eventhough the return code of cycle is error,
* so the interval_us used to sleep for each cycle.
*/
class ISrsThreadHandler
class ISrsReusableThreadHandler
{
public:
ISrsThreadHandler();
virtual ~ISrsThreadHandler();
ISrsReusableThreadHandler();
virtual ~ISrsReusableThreadHandler();
public:
virtual void on_thread_start();
virtual int on_before_cycle();
/**
* the cycle method for the one cycle thread.
* @remark when the cycle has its inner loop, it must check whether
* the thread is interrupted.
*/
virtual int cycle() = 0;
virtual int on_end_cycle();
/**
* when thread stop, the handler can do cleanup.
* @remark this method is optional, handler can ignore it.
*/
virtual void on_thread_stop();
};
/**
* provides servies from st_thread_t,
* for common thread usage.
*/
class SrsThread
class SrsReusableThread : public internal::ISrsThreadHandler
{
private:
st_thread_t tid;
int _cid;
bool loop;
bool can_run;
bool really_terminated;
bool _joinable;
const char* _name;
private:
ISrsThreadHandler* handler;
int64_t cycle_interval_us;
internal::SrsThread* pthread;
ISrsReusableThreadHandler* handler;
public:
SrsReusableThread(const char* n, ISrsReusableThreadHandler* h, int64_t interval_us = 0);
virtual ~SrsReusableThread();
public:
/**
* initialize the thread.
* @param name, human readable name for st debug.
* @param thread_handler, the cycle handler for the thread.
* @param interval_us, the sleep interval when cycle finished.
* @param joinable, if joinable, other thread must stop the thread.
* @remark if joinable, thread never quit itself, or memory leak.
* @see: https://github.com/simple-rtmp-server/srs/issues/78
* @remark about st debug, see st-1.9/README, _st_iterate_threads_flag
*/
/**
* TODO: FIXME: maybe all thread must be reap by others threads,
* @see: https://github.com/simple-rtmp-server/srs/issues/77
*/
SrsThread(const char* name, ISrsThreadHandler* thread_handler, int64_t interval_us, bool joinable);
virtual ~SrsThread();
public:
/**
* get the context id. @see: ISrsThreadContext.get_id().
* used for parent thread to get the id.
* @remark when start thread, parent thread will block and wait for this id ready.
*/
virtual int cid();
/**
* start the thread, invoke the cycle of handler util
* user stop the thread.
* @remark ignore any error of cycle of handler.
* @remark user can start multiple times, ignore if already started.
* @remark wait for the cid is set by thread pfn.
*/
* for the reusable thread, start and stop by user.
*/
virtual int start();
/**
* stop the thread, wait for the thread to terminate.
* @remark user can stop multiple times, ignore if already stopped.
*/
* stop the thread, wait for the thread to terminate.
* @remark user can stop multiple times, ignore if already stopped.
*/
virtual void stop();
public:
/**
* whether the thread should loop,
* used for handler->cycle() which has a loop method,
* to check this method, break if false.
*/
virtual bool can_loop();
* get the context id. @see: ISrsThreadContext.get_id().
* used for parent thread to get the id.
* @remark when start thread, parent thread will block and wait for this id ready.
*/
virtual int cid();
/**
* for the loop thread to stop the loop.
* other thread can directly use stop() to stop loop and wait for quit.
* this stop loop method only set loop to false.
*/
virtual void stop_loop();
private:
virtual void thread_cycle();
static void* thread_fun(void* arg);
* interrupt the thread to stop loop.
* we only set the loop flag to false, not really interrupt the thread.
*/
virtual void interrupt();
/**
* whether the thread is interrupted,
* for the cycle has its loop, the inner loop should quit when thread
* is interrupted.
*/
virtual bool interrupted();
// interface internal::ISrsThreadHandler
public:
virtual int cycle();
virtual void on_thread_stop();
};
#endif