/** * The MIT License (MIT) * * Copyright (c) 2013-2020 John * * Permission is hereby granted, free of charge, to any person obtaining a copy of * this software and associated documentation files (the "Software"), to deal in * the Software without restriction, including without limitation the rights to * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of * the Software, and to permit persons to whom the Software is furnished to do so, * subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include #include #include #include using namespace std; #include #include #include #include SrsRtpNackInfo::SrsRtpNackInfo() { generate_time_ = srs_update_system_time(); pre_req_nack_time_ = 0; req_nack_count_ = 0; } SrsRtpNackForReceiver::SrsRtpNackForReceiver(SrsRtpQueue* rtp_queue, size_t queue_size) { max_queue_size_ = queue_size; rtp_queue_ = rtp_queue; pre_check_time_ = 0; srs_info("max_queue_size=%u, nack opt: max_count=%d, max_alive_time=%us, first_nack_interval=%ld, nack_interval=%ld" max_queue_size_, opts_.max_count, opts_.max_alive_time, opts.first_nack_interval, opts_.nack_interval); } SrsRtpNackForReceiver::~SrsRtpNackForReceiver() { } void SrsRtpNackForReceiver::insert(uint16_t seq) { // FIXME: full, drop packet, and request key frame. SrsRtpNackInfo& nack_info = queue_[seq]; (void)nack_info; } void SrsRtpNackForReceiver::remove(uint16_t seq) { queue_.erase(seq); } SrsRtpNackInfo* SrsRtpNackForReceiver::find(uint16_t seq) { std::map::iterator iter = queue_.find(seq); if (iter == queue_.end()) { return NULL; } return &(iter->second); } void SrsRtpNackForReceiver::check_queue_size() { if (queue_.size() >= max_queue_size_) { rtp_queue_->notify_nack_list_full(); } } void SrsRtpNackForReceiver::get_nack_seqs(vector& seqs) { srs_utime_t now = srs_update_system_time(); int interval = now - pre_check_time_; if (interval < opts_.nack_interval / 2) { return; } pre_check_time_ = now; std::map::iterator iter = queue_.begin(); while (iter != queue_.end()) { const uint16_t& seq = iter->first; SrsRtpNackInfo& nack_info = iter->second; int alive_time = now - nack_info.generate_time_; if (alive_time > opts_.max_alive_time || nack_info.req_nack_count_ > opts_.max_count) { rtp_queue_->notify_drop_seq(seq); queue_.erase(iter++); continue; } // TODO:Statistics unorder packet. if (now - nack_info.generate_time_ < opts_.first_nack_interval) { break; } if (now - nack_info.pre_req_nack_time_ >= opts_.nack_interval && nack_info.req_nack_count_ <= opts_.max_count) { ++nack_info.req_nack_count_; nack_info.pre_req_nack_time_ = now; seqs.push_back(seq); } ++iter; } } void SrsRtpNackForReceiver::update_rtt(int rtt) { rtt_ = rtt * SRS_UTIME_MILLISECONDS; // FIXME: limit min and max value. opts_.nack_interval = rtt_; } SrsRtpRingBuffer::SrsRtpRingBuffer(int capacity) { nn_seq_flip_backs = 0; high_ = low_ = 0; capacity_ = (uint16_t)capacity; initialized_ = false; queue_ = new SrsRtpPacket2*[capacity_]; memset(queue_, 0, sizeof(SrsRtpPacket2*) * capacity); } SrsRtpRingBuffer::~SrsRtpRingBuffer() { srs_freepa(queue_); } uint16_t SrsRtpRingBuffer::low() { return low_; } uint16_t SrsRtpRingBuffer::high() { return high_; } void SrsRtpRingBuffer::advance_to(uint16_t seq) { low_ = seq; } void SrsRtpRingBuffer::set(uint16_t at, SrsRtpPacket2* pkt) { SrsRtpPacket2* p = queue_[at % capacity_]; if (p) { srs_freep(p); } queue_[at % capacity_] = pkt; } void SrsRtpRingBuffer::remove(uint16_t at) { set(at, NULL); } void SrsRtpRingBuffer::reset(uint16_t low, uint16_t high) { for (uint16_t s = low; s != high; ++s) { queue_[s % capacity_] = NULL; } } bool SrsRtpRingBuffer::overflow() { return high_ - low_ >= capacity_; } bool SrsRtpRingBuffer::is_heavy() { return high_ - low_ >= capacity_ / 2; } uint16_t SrsRtpRingBuffer::next_start_of_frame() { if (low_ == high_) { return low_; } for (uint16_t s = low_ + 1 ; s != high_; ++s) { SrsRtpPacket2*& pkt = queue_[s % capacity_]; if (pkt && pkt->is_first_packet_of_frame) { return s; } } return low_; } uint16_t SrsRtpRingBuffer::next_keyframe() { if (low_ == high_) { return low_; } for (uint16_t s = low_ + 1 ; s != high_; ++s) { SrsRtpPacket2*& pkt = queue_[s % capacity_]; if (pkt && pkt->is_key_frame && pkt->is_first_packet_of_frame) { return s; } } return low_; } uint32_t SrsRtpRingBuffer::get_extended_highest_sequence() { return nn_seq_flip_backs * 65536 + high_; } void SrsRtpRingBuffer::update(uint16_t seq, bool startup, uint16_t& nack_low, uint16_t& nack_high) { if (!initialized_) { initialized_ = true; low_ = high_ = seq; return; } // Normal sequence, seq follows high_. if (srs_rtp_seq_distance(high_, seq)) { nack_low = high_ + 1; nack_high = seq; // When distance(seq,high_)>0 and seq0 and 1<65535. if (seq < high_) { ++nn_seq_flip_backs; } high_ = seq; return; } // Out-of-order sequence, seq before low_. if (srs_rtp_seq_distance(seq, low_)) { // When startup, we may receive packets in chaos order. // Because we don't know the ISN(initiazlie sequence number), the first packet // we received maybe no the first packet client sent. if (startup) { nack_low = seq + 1; nack_high = low_; low_ = seq; } } } SrsRtpPacket2* SrsRtpRingBuffer::at(uint16_t seq) { return queue_[seq % capacity_]; } SrsRtpQueue::SrsRtpQueue(const char* tag, int capacity) { nn_collected_frames = 0; queue_ = new SrsRtpRingBuffer(capacity); jitter_ = 0; last_trans_time_ = -1; pre_number_of_packet_received_ = 0; pre_number_of_packet_lossed_ = 0; num_of_packet_received_ = 0; number_of_packet_lossed_ = 0; request_key_frame_ = false; tag_ = tag; } SrsRtpQueue::~SrsRtpQueue() { srs_freep(queue_); } srs_error_t SrsRtpQueue::consume(SrsRtpNackForReceiver* nack, SrsRtpPacket2* pkt) { srs_error_t err = srs_success; // TODO: FIXME: Update time for each packet, may hurt performance. srs_utime_t now = srs_update_system_time(); uint16_t seq = pkt->rtp_header.get_sequence(); SrsRtpNackInfo* nack_info = nack->find(seq); if (nack_info) { int nack_rtt = nack_info->req_nack_count_ ? ((now - nack_info->pre_req_nack_time_) / SRS_UTIME_MILLISECONDS) : 0; (void)nack_rtt; nack->remove(seq); } // Calc jitter time, ignore nack packets. // TODO: FIXME: Covert time to srs_utime_t. if (last_trans_time_ == -1) { last_trans_time_ = now / 1000 - pkt->rtp_header.get_timestamp() / 90; } else if (!nack_info) { int trans_time = now / 1000 - pkt->rtp_header.get_timestamp() / 90; int cur_jitter = trans_time - last_trans_time_; if (cur_jitter < 0) { cur_jitter = -cur_jitter; } last_trans_time_ = trans_time; jitter_ = (jitter_ * 15.0 / 16.0) + (static_cast(cur_jitter) / 16.0); } // OK, we got one new RTP packet, which is not in NACK. if (!nack_info) { ++num_of_packet_received_; uint16_t nack_low = 0, nack_high = 0; queue_->update(seq, !nn_collected_frames, nack_low, nack_high); if (srs_rtp_seq_distance(nack_low, nack_high)) { srs_trace("%s update nack seq=%u, startup=%d, range [%u, %u]", tag_, seq, !nn_collected_frames, nack_low, nack_high); insert_into_nack_list(nack, nack_low, nack_high); } } // When packets overflow, collect frame and move head to next frame start. if (queue_->overflow()) { collect_packet(nack); uint16_t next = queue_->next_start_of_frame(); // Note that low_ mean not found, clear queue util one packet. if (next == queue_->low()) { next = queue_->high() - 1; } srs_trace("%s seq out of range [%u, %u]", tag_, queue_->low(), next); for (uint16_t s = queue_->low(); s != next; ++s) { nack->remove(s); queue_->remove(s); } srs_trace("%s force update seq %u to %u", tag_, queue_->low(), next + 1); queue_->advance_to(next + 1); } // Save packet at the position seq. queue_->set(seq, pkt); return err; } void SrsRtpQueue::collect_frames(std::vector >& frames) { frames.swap(frames_); } bool SrsRtpQueue::should_request_key_frame() { if (request_key_frame_) { request_key_frame_ = false; return true; } return request_key_frame_; } void SrsRtpQueue::notify_drop_seq(uint16_t seq) { uint16_t next = queue_->next_start_of_frame(); // Note that low_ mean not found, clear queue util one packet. if (next == queue_->low()) { next = queue_->high() - 1; } // When NACK is timeout, move to the next start of frame. srs_trace("%s nack drop seq=%u, drop range [%u, %u]", tag_, seq, queue_->low(), next + 1); queue_->advance_to(next + 1); } void SrsRtpQueue::notify_nack_list_full() { uint16_t next = queue_->next_keyframe(); // Note that low_ mean not found, clear queue util one packet. if (next == queue_->low()) { next = queue_->high() - 1; } // When NACK is overflow, move to the next keyframe. srs_trace("%s nack overflow drop range [%u, %u]", tag_, queue_->low(), next + 1); queue_->advance_to(next + 1); } void SrsRtpQueue::request_keyframe() { request_key_frame_ = true; } uint32_t SrsRtpQueue::get_extended_highest_sequence() { return queue_->get_extended_highest_sequence(); } uint8_t SrsRtpQueue::get_fraction_lost() { int64_t total = (number_of_packet_lossed_ - pre_number_of_packet_lossed_ + num_of_packet_received_ - pre_number_of_packet_received_); uint8_t loss = 0; if (total > 0) { loss = (number_of_packet_lossed_ - pre_number_of_packet_lossed_) * 256 / total; } pre_number_of_packet_lossed_ = number_of_packet_lossed_; pre_number_of_packet_received_ = num_of_packet_received_; return loss; } uint32_t SrsRtpQueue::get_cumulative_number_of_packets_lost() { return number_of_packet_lossed_; } uint32_t SrsRtpQueue::get_interarrival_jitter() { return static_cast(jitter_); } void SrsRtpQueue::insert_into_nack_list(SrsRtpNackForReceiver* nack, uint16_t seq_start, uint16_t seq_end) { for (uint16_t s = seq_start; s != seq_end; ++s) { nack->insert(s); ++number_of_packet_lossed_; } nack->check_queue_size(); } SrsRtpAudioQueue::SrsRtpAudioQueue(int capacity) : SrsRtpQueue("audio", capacity) { } SrsRtpAudioQueue::~SrsRtpAudioQueue() { } srs_error_t SrsRtpAudioQueue::consume(SrsRtpNackForReceiver* nack, SrsRtpPacket2* pkt) { srs_error_t err = srs_success; if ((err = SrsRtpQueue::consume(nack, pkt)) != srs_success) { return srs_error_wrap(err, "audio queue"); } // For audio, always try to collect frame, because each packet is a frame. collect_packet(nack); return err; } void SrsRtpAudioQueue::collect_packet(SrsRtpNackForReceiver* nack) { // When done, s point to the next available packet. uint16_t next = queue_->low(); for (; next != queue_->high(); ++next) { SrsRtpPacket2* pkt = queue_->at(next); // Not found or in NACK, stop collecting frame. if (!pkt || nack->find(next) != NULL) { srs_trace("%s wait for nack seq=%u", tag_, next); break; } // OK, collect packet to frame. vector frame; frame.push_back(pkt); // Done, we got the last packet of frame. nn_collected_frames++; frames_.push_back(frame); } if (queue_->low() != next) { // Reset the range of packets to NULL in buffer. queue_->reset(queue_->low(), next); srs_verbose("%s collect on frame, update head seq=%u t %u", tag_, queue_->low(), next); queue_->advance_to(next); } } SrsRtpVideoQueue::SrsRtpVideoQueue(int capacity) : SrsRtpQueue("video", capacity) { } SrsRtpVideoQueue::~SrsRtpVideoQueue() { } srs_error_t SrsRtpVideoQueue::consume(SrsRtpNackForReceiver* nack, SrsRtpPacket2* pkt) { srs_error_t err = srs_success; if ((err = SrsRtpQueue::consume(nack, pkt)) != srs_success) { return srs_error_wrap(err, "video queue"); } // Collect packets to frame when: // 1. Marker bit means the last packet of frame received. // 2. Queue has lots of packets, the load is heavy. // TODO: FIMXE: For real-time, we should collect each frame ASAP. if (pkt->rtp_header.get_marker() || queue_->is_heavy()) { collect_packet(nack); } return err; } void SrsRtpVideoQueue::collect_packet(SrsRtpNackForReceiver* nack) { while (queue_->low() != queue_->high()) { vector frame; do_collect_packet(nack, frame); if (frame.empty()) { return; } nn_collected_frames++; frames_.push_back(frame); } } // TODO: FIXME: Should refer to the FU-A original video frame, to avoid finding for each packet. void SrsRtpVideoQueue::do_collect_packet(SrsRtpNackForReceiver* nack, vector& frame) { // When done, s point to the next available packet. uint16_t next = queue_->low(); bool found = false; for (; next != queue_->high(); ++next) { SrsRtpPacket2* pkt = queue_->at(next); // Not found or in NACK, stop collecting frame. if (!pkt || nack->find(next) != NULL) { srs_trace("%s wait for nack seq=%u", tag_, next); break; } // Ignore when the first packet not the start. if (next == queue_->low() && !pkt->is_first_packet_of_frame) { break; } // OK, collect packet to frame. frame.push_back(pkt); // Done, we got the last packet of frame. // @remark Note that the STAP-A is marker false and it's the last packet. if (pkt->rtp_header.get_marker() || pkt->is_last_packet_of_frame) { found = true; next++; break; } } if (!found) { frame.clear(); } uint16_t cur = next - 1; if (found && cur != queue_->high()) { // Reset the range of packets to NULL in buffer. queue_->reset(queue_->low(), next); srs_verbose("%s collect on frame, update head seq=%u t %u", tag_, queue_->low(), next); queue_->advance_to(next); } }