DRAFT 1SO/IEC 14496-10 : 2002 (E)

INTERNATIONAL ORGANISATION FOR STANDARDISATION
ORGANISATION INTERNATIONALE DE NORMALISATION
|SO/IEC JTC 1/SC 29/WG 11
CODING OF MOVING PICTURESAND AUDIO

|SO/IEC JTC 1/SC 29/WG 11 N 5555

Pattaya, March 2003

Source JVT

Title Draft Text of Final Draft International Standard for Advanced Video Coding
(ITU-T Rec. H.264 | ISO/IEC 14496-10 AVC)

Status Approved for final editing period with delivery by 31 March 2003

DRAFT ITU-T Rec. H.264 (2002 E) i

DRAFT I SO/IEC 14496-10 : 2002 (E)

Title pageto beprovided by ITU-T | ISO/IEC

DRAFT INTERNATIONAL STANDARD
DRAFT ISO/IEC 14496-10 : 2002 (E)

DRAFT ITU-T Rec. H.264 (2002 E)
DRAFT ITU-T RECOMMENDATION

o s N

o

il

TABLE OF CONTENTS

=

R &

o O|
o1 I oo o =
>
=
2
o
-]

[2]

0.5.1) ST o1 S A 10 Ve 11 V=R
0.5.2 Coding INLETIACEA VIACOeeeeeeveeeeeeriee et eee e e e e e e e e e e eateeeeenareeeenneeeeenneeeean
0.53 Picture partitioning into macroblocks and smaller partitions.............ceeeeereereeeieseeneeneeeeeee e
0.54 Spatial 1edundancy reAUCHION.eeruieriieiieiee ettt ettt e st et esbeeteeaeesneesseenaeaneeens
0.6 How to read this SPECITICALIONcceeeiecieceee ettt e et sr e b snesresse e e enee e eneenes

(LS AT 1L 1TSS
P o] =Y/ = L o] T

(@40 11L< A1 K1) 13PTSR
ATTTNMIEIIC OPEIALOIS. ... eveeeieereeeeeeteie e et eeeet et e s e eteeeeseaaressssbeessaseeessasseessasseessassasessasaeeseasbesssassesessseeessnssenssns
[0 l0[Tor= | I0) 0 = =10 =TT RRT
R E= L T0]AT= 0] 01 =1 (0] TR
LIS X 0] 015 =1L TR
PSS L0 8100 A1) =L (0 =T

ez 10 (=010] 7= 1T] S
MathematiCal fUNCLIONSeieeiiieie ettt ettt s e e bt e s s be e s ebe e s sbee e be e s sbesebesssbessbesssbessabesssbessaresssres

K&
N =

o1
w

o1
~

o
o

Ay
0 N IO

o
o
v
o
§

6.1 BitStrEAM FOMMIALSeevieciecie ettt ettt st be et e et e s e e s aeeebe e beenbeeabesabesasesbaesbeesbeenbesnsesneesnnesseenseenss
6.2 Source, decoded, and output PICtUre fOrMALScceeeiveieeeieeee e e nre e
6.3 Soatial subdivision of PICIUrES AN SlICES........ccvererirerireeeieee ettt e e e seeseeseesneas
6.4 Inverse scanning processes and derivation processes for NEIGhDOULSccovveverererenenceeee e
6.4.1 Inverse macroblock SCANNING PIOCESS........eervieruieierieriieriieteeteetesetesseesseesseesessaesseesseeseenseensesssesseensens
6.4.2 Inverse macroblock partition and sub-macroblock partition Scanning Process............ecverveeververevennens

N
~

4.2.1 Inverse macroblock partition SCANNING PIOCESSc..eeveeueerueeruienereieeneeeseesseesseesseesseesesneesseesseenseenseens

6.4.2.2 Inverse sub-macroblock partition SCANNING PIOCESSeevveerverruererrieriiereieneeeeeeeeeneesseesaeesseeeeeneeenes
6.4.3 Inverse 4x4 luma blOCK SCANNING PIOCESSccuveueeuueruertiateriietienietestesteatesteeteeneeneeneensessessessesneeneeneenseneens
6.4.4 Derivation process of the availability for macroblock addresses...........c.ceeereeienienierenineneeieeeee
6.4.5 Derivation process for neighbouring macroblock addresses and their availability.............cceeeveeneennen.
6.4.6 Derivation process for neighbouring macroblock addresses and their availability in MBAFF frames
6.4.7 Derivation processes for neighbouring macroblocks, blocks, and partitions.............cceccveeeeecveecvenenennen.
6.4.7.1 Derivation process for neighbouring macroblOCKSccecveriieriircierienieieeie e
6.4.7.2 Derivation process for neighbouring 8X8 Tuma BIOCK..........cccuvviiiiiiiiiiiiiiiiee e
6.4.7.3 Derivation process for neighbouring 4x4 Tuma BIOCKScccouvvviiiiiiiiiiiiiiieee e
6.4.74 Derivation process for neighbouring 4x4 chroma BIOCKScerereriririeiieierieere e
6.4.7.5 Derivation process for neighbouring Partitionscceceeeereerierieseseseeieieiereese et eseeeeee s
6.4.8 Derivation process for neighbouring IOCAtIONSccuveeeiveeieiieeieeiieieeeeieee e e eeeareeeeaeeeeeeaaeeeeas
6.4.8.1 Specification for neighbouring luma locations in fields and non-MBAFF frames............c..ccuene...e.

DRAFT ITU-T Rec. H.264 (2002 E)

Sour ce, coded, decoded, output data formats, scanning processes, and neighbouring relationships..........

7

DRAFT 1SO/IEC 14496-10 : 2002 (E)

6.4.8.2 Specification for neighbouring luma locations in MBAFF frames......cccouvveeeieiieeeiieeeeeeeeeeeeeeeeee e 22
SYNEAX AN SEMANTICS ...veeivieiiieectee it e et et e et e sbe e ettt e sabeeeseesabeeeseeesabeeasseesaseeasseesaseaasseessseeasseessseaasseessseessseesaseensseess 24
7.1 Method of describing syntax in tabular fOrM..........cccccciiirererire e e eens 24
7.2 Soecification of syntax functions, categories, and AESCrIPLOrS........ccovvrererereeeee e seeas 25
A TS Y/ 0 =) 1 A =) o U1 F= (0] . FUOUUR U TR T TR 27
7.3.1 INAL UNTE SYIIEAX ..vveeeierieeeeeeeeeeieeeeeeeteeeeeae e e e eeaeeeeeetaeeeeeaeeeeeeseeeeeesseeeeesseeseesnseeserseeeeessseseeesneeeesseeesensseeeannns 27
7.3.2 Raw byte sequence payloads and RBSP trailing bits SYNAXccverveereerieereerierieenieeieeeeseeesseesseensesnneenns 28
7.3.2.1 Sequence parameter St RBSP SYNTAX......ccccuuiiiiiiiiiiiiiiiiee ettt e e e e et e e e e e s eeaareeeeeessennanees 28
7.3.2.2 Picture parameter Set RBSP SYMEAX.......cciviiuuiiiiiiiieeitiieieeeeeecireeeeeeeeeenteeeeeeeeeseensaaeeeeeessessasseeeeessssnnnees 29
7.3.2.3 Supplemental enhancement information RBSP SYNtaX..........ccceceeieiieiierineieiieieeeee e 30
7.3.2.3.1 Supplemental enhancement information MESSAZE SYNLAXeveveruerueruerueerieieiereeniesieseeeneeneeneeneenees 30
7.3.2.4 Picture delimiter RBSP SYNTAXccvevvieriieiiiiiiiiesiiesieetieteeeteeetesteesteesseesseessessaesseesseesseessesssesssesssesseesses 30
7.3.2.5 End of Sequence RBSP SYNTAXcc.coiiiiuiiiiiiiiieiiieieeceieeeeeeieeeeeaeeeeeeteeeeeeneeeeeeaaeesennseeeeenaresesnaaeeeenaeeeens 30
7.3.2.6 End of stream RBSP SYNTAXccoeiuviieiiuieeeeeiieeeeteeeeeeteeeeeeeeeeeereeeeeaeeeeessseeeeeseeeeesseeeensreeesenneeeenneeeens 31
7.3.2.7 Filler data RBSP SYNTAXcccooiueieeeeeeeeeeeeeeeteeeeeeeeeeeeteeeeeetaeeeeenaeeeeeneeeeentseeeeenseeeeeneeeeensreeesennseeenneeeens 31
7.3.2.8 Slice layer without partitioning RBSP SYNTAX........cccouuiiiiiiiiiiiiieiiieeeeeeceieeeeeeeeeeeeieaeeeeeeeseenaareeeeeessennnees 31
7.3.2.9 Slice data partition RBSP SYNTAXcciiiiiiiiiiiiiiiiiieeiiiieiee ettt e eeeereee e e e e e s eensaaeeeeeesseenasseeeeessssnnnees 31
7.3.29.1 Slice data partition A RBSP SYNAXcc.eeuieieieiiieiieeiieteeiteiieie ettt see e ee s 31
7.3.2.9.2 Slice data partition B RBSP SYNTAX.....cc.ceuirieieiiiiiiieeeieieeieeiieie ettt eee e ee s 31
7.3.2.9.3 Slice data partition C RBSP SYNEAX......ccuuiiiiiuiieiiiiieeeieeeeeecieeeeeireeeeeeeeeeeaeeesesaveeeeenaeeessaeeesesreeeennns 32
7.3.2.10 RBSP slice trailing DitS SYNEAX........cccvervierieiierieniieriiestiesteeteetesteesseesseeseessessaesseesseesseessesssenssesssesseesses 32
7.32.11 RBSP trailing DitS SYNEAXcecuvevrereeiesiiesteerieeteeeeseesseesseeseeseassesssesseesseessessesssesssesseessesssessesssesseessens 32
7.3.3 STICE NEAAERT SYILAXuvveeeeeereeeeetiee e et e et e ee e e e e e e e et e e eeaeeeeeeaeeeeeeaseeeeeseeeeesseeeeenseseeenseeesnssesensreeeennes 33
7.3.3.1 Reference picture liSt reOTrderiNg SYIEAXuevveieiiiiiiueiieieeeeeeiiieeeeeeeeeeeereeeeeeeeessesaareeeeessssnarreeeeessssssnnees 34
7.3.3.2 Prediction WeIght table SYITAKXuuvviiiiiiiieiiiiiieeeeeeeeeee e e e eeeeae et e e e e e e enteaeeeeeeessessaaeeeeeesssssnrseeeeesssnsnnees 35
7.3.3.3 Decoded reference picture marking SYNEAX...........eeeerverueruertereseeeeietestestesteseeeseeeenseseessessesseeseeneenseneens 36
7.3.4 STICE AALA SYNTAKveeeetietietiete ettt ettt ettt ettt ettt e b e b e et e et e e s et s et e sbe et e e et emteeateebeeebeenbeenbeenbeeneesaeesaes 37
1.3.5 MACTODIOCK TAYET SYIEAXccuvviieieeiieeiiieeeetee e e ettt e e e e et e e eaee e e eeaaeeeeeaaeeesenaeeeesaaeeeeesaaeesenseesennareesanseeeean 38
7.3.5.1 Macroblock PrediCtion SYNEAXcc..ecoevuvieeieueieeiieeeeeeeeeeeeeeeeeeteeesestaeeeeeareeeenaseesesseeeeeareeessseeeessnaeeeens 39
7.3.5.2 Sub-macroblock Prediction SYNEAXc.ccceereerueerueriuerienieereeeteetesseesseesseessessseseesseesseesseessessesssessesssees 40
7.3.5.3 Residual dat SYNTAXc.ecveriieriieiieieeieeie st teieeteete st et e st et esteeetesseesse e se e seenteenaesnee st enseenseenseenaenraenaan 41
7.3.5.3.1 Residual bBIOCK CAVIC SYNTAX ...cuuuueiiiieiieiieiiiiieeeeeeeiieeeeeeeeeeeieeeeeeeeeseesaaeeeeeeesessnnassseeesessnnanseeeess 42
7.3.5.3.2 Residual bIOCK CABAQC SYNTAXuuuveiiieiieiieiieiieeeeeeeeieeeeeeeeeeeaaeeeeeeeeseesaneeeeeessssssnnassseeesssssrsnseeeess 43

T4 SEMANLICS. ...eeitie ettt e et ee b e et e e te et e s beesbe e beeseeaeeebeeebe e beeabeeabesasesheesheeabe e beeabeeaeeeheebeenbeenbeeabeeaaeeheesteeareereannas 43
7.4.1 NAL UNIE SEMANTICS ..oeevieeeeriieieeeeeeeeiieeeeeeeeeeeeee et e e e e eesaareeeeeeeeesatteseeesseassasasseeeeseesasssreeeseessnsssresseessennsanees 43
7.4.1.1 Constraints 0N NAL UNIE OTAETccuvviiiiiiiiiieieee ettt eeee e et e e et e e eare e s eeaaeeeeenareeeenaeeeeenneeeans 45
7.4.1.2 Association of NAL units to primary coOded PICUIES........ccoouviiiiuvieeiiieieeeeeee ettt eeaeee e 47
7.4.1.3 Association of primary coded pictures t0 Vide0 SEQUENCES.ccvveeeeueeeeeirreeeeereeeeeireeeeeereeeeeneeeeeneeeens 47
7.4.1.4 Encapsulation of an SODB within an RBSP (informative)ccc..oovveeeeeiveeeeeieee e e e 47
7.4.2 Raw byte sequence payloads and RBSP trailing bits SEMAanticsceeueeeeereereerueenieeeeeieseeneeeseeeneesee e 48
7.4.2.1 Sequence parameter set RBSP SEMANTICScoveruieriieriieiieieeiieetiesie ettt neas 48
7.4.2.2 Picture parameter set RBSP SEMANTICSccuveeruieiiiieeriieeiieesiieeiiieesiieesiteesieeesteeesaeeesiaeeseeeesaeensnessseenseennns 50
7.4.2.3 Supplemental enhancement information RBSP SEMANLICSceovverurerieeriieieeieeieeeieesreereeereeereseeeseneseeas 52
7.4.2.3.1 Supplemental enhancement information message SEMANLICS.........c.ecveerveerreeeereereerieesreeeeereseeneens 52
7.42.4 Picture delimiter RBSP SEMANTICSeeeeuvviiiieeiieiiieieeeieeee et e eeteeeeeetaeeeeeaaeeeeeaaeesenaeeeeeensreeesnaeeeenneeeens 52
7.4.2.5 End of sequence RBSP SCMANLICS.ceuvertieriierieeieiiesiesieeteeteeieseeesieesseesesaesaesneesseeseansesnsesssesseensens 52
7.4.2.6 End of stream RBSP SEMANTICS.cuveeeeeureeeeitrieeeeteeeeeeieeeeeeeeeeeeeeeeeeneeeeeetreeeeeseeeeeseeeeesreeeennneeeeeneeeens 52
7.4.2.7 Filler data RBSP SEIMANTICS.ccoeuueiiiiieiiiiieiieeeeeeeeeieeeeeeeeeeessaeeeeeeeeeeeesseaseeesesssssasseeesesssssnrseeeeessssnsnnees 52
7.4.2.8 Slice layer without partitioning RBSP SEMANTICSccueeruieirrieriieiiieiieeie e 52
7.4.2.9 Slice data partition RBSP SEMANTICS.......cccviiuiiiuiiirieirietieiieeieeeesteesteesteeseeseeesaesreesseesseesessseessesssesseesses 52
4.2.9.1 Slice data partition A RBSP SEMANLICSccveevvievieriierieiiiesieeieeeeeeeereesreesseeseeereessesssesseesseessesssesnns 52
7.4.2.9.2 Slice data partition B RBSP SEMANLICSccveeviiieieieriieiieiieieeteeeesieesieeveeeeseeesseesseesseessesssessaessens 53
7.4.2.9.3 Slice data partition C RBSP SEMANLICScovveviiieieieriieiieiieteeeeseesieesseeseeseeseeesseesseesseessesssessaesses 53
7.42.10 RBSP slice trailing DitS SEMANTICS.cuerteerteerrerreereriestteteeteetesseesseesseesseesesseesseesseesseassesssesssesseesses 53
7.42.11 RBSP trailing bitS SCMANLICS.......eecveererrrerreeteereeeesreseeesseeseeseessesssesseesseesessesssesssesseesseessesssesssesseessens 53
743 STiCe NEAAET SEMANTICScevvveieieeeieeieieeeee e e e ettt e e e e e e eeeeeeeeeeeaaaeeeeeeessesasseeeeessassasaseeeessessrnsseeeeessssnnnees 53
7.43.1 Reference picture list reordering SEMANTICSceeueerurertieireieeiiesiesteeneerteeeeeeeeeeesaeeseeeeeeneeeneesneesseennens 57
7.43.2 Prediction weight table SEMANLICS.cueiueruirtiitiitietieieie ettt et sttt e e saestesbeebeeneeneeneeeens 58
7433 Decoded reference picture marking SEMANTICSceoveveruerterierieieieiesie ettt eteeeeee e seesbeseeeseeeeeeneens 59
7.4.4 STICE dAA SEMANTICSvvveeieveeeeceieeeeeeee et e e et e e et e e e et e e eesaeeeeeaaeeseesteeeeesareeseseeesansseseensaseeesseeesansreseennes 61
7.4.5 MacroblOCK 1aYET SEIMANTICSveevvervieriieiieieeieetesteesteeteeseessesstesseeseeseessesseesseesseesseessenssesssesseessessenssesses 62
7.4.5.1 Macroblock prediction SEMANTICSceverreerieerteeeeereriestteeeeteetessresseesseeseesesaesseesseenseassesssesssessesssees 67
7.4.5.2 Sub-macroblock prediction SEMANTICSecveerveruerreriieriieteeteetesesesseesseesseessesaesseesseesseessesssesssesseesses 67

DRAFT ITU-T Rec. H.264 (2002 E) iii

DRAFT I SO/IEC 14496-10 : 2002 (E)

8

iv

7.4.5.3 Residual data SEMANTICSceevuviiiiieeieeeieieeeeeeeeeeteee e et e e eeaeeeeeaeeeseetaeeesenareeeenaseesensseeesenareessnsaeeesnaeeeens
7.4.53.1 Residual block CAVILC SEMANTICS.ccvveriereeeeeetreeeeeeeeeeeeeeeeetreeeeeaeeeeeeaeeeeeeareeeeeneeeeeneeeeensreeeennns
7.4.53.2 Residual block CABAC SEMANTICScuvveeeeureeeeeiieeeeeeeeeeeeeeeeetreeeeeaeeeeeeaeeeeeesreeeeeseeeeeneeeeensseeeennns

DL ol0 0 [T aTe 010 0=
8.1 NAL UNit AECOOING PIOCESS.......eeiiieteieeiereeeieitetesseetessssteessassstessaseeessassesssassssesssssesaassesssasssssssseeesassssessasssesssssenes
8.2 IS TT01sX0 (=00 0 1010 1 o]0 01=- TR

2.1 Detection process of coded picture bOUNAATLIES...........ecuvervierierierieeienieie et eie et see st sieere e seeseeenseenseens
8.2. Decoding process for PICture OrdEr COUNLiiiiiiiiiieiiieeeeeeeieeeeeeee ettt e e e e e e et ee e e e e e e e saaraeeeeeeesesnsenreeeeas

2
.2.2.1 Decoding process for picture order COUNnt tyPe 0ccuveeieeueieieieie et eete e eaeeeea
.2.2.2 Decoding process for picture order COUNt tyPe 1cecueruerueruiriieieieieriesesie ettt
.2.2.3 Decoding process for picture order COUNt tyPE 2ccuerueruerueruieieieienieniesie st eeeeieeee e see e see et e e eeneas
823 Decoding process for 1edundant SIICESc.eeverierieriieriieiiieteeieseesieesteeteseesseesseeseesseessessaesseesseesesssesnes

8.2.4 Decoding process for macroblock to SIice Sroup MaPc.eecveevereerieriieieeieseeseeieereereseeesreesseeseeseeees
8.2.4.1 Specification for interleaved SIiCE SrouP MAP LYPE....ccvveeeeereeeeerrieeeereeeeeeeeeeeeeeeeereeeeerreeeeeaeeeeereeeens

8.2.4.2 Specification for dispersed SliCE Sroup MAP LYPE ...veeeevreeeeereeeeeieee e et e e e eere e e e e e eereeeeeneeeens
8.2.43 Specification for foreground with left-over slice group mMap tYPEcoceuvvvveeeiiiiieiieiieeeeeeeeeeeeeeeeeeeeanens
8.2.44 Specification for box-out SIiCE GrouP MAP LYPES.......uuveeeieeeieeieirireeeeeeeeeeereeeeeeeeeerreeeeesssesarreeeeessssnianees
8.2.4.5 Specification for raster scan slice Sroup MapP tYPESccueeuuerurerieriieriierieeieete ettt ettt seeeseeenaeas
8.2.4.6 Specification for wipe SliCe Zroup MapP tYPEScevueeuieiieiieiieniientientiee ettt ettt eiteeeeesbeesbeenaeas
8.2.4.7 Specification for explicit SIiCE SroUP MAP tYDE.....uvveeeeeureieeeeieeeeieee e et e eeeeeeeereeeeeeeeeeeareeeeaaeeeeeaeeeeas
8.2.4.8 Specification for conversion of map unit to slice group map to macroblock to slice group map...........
8.2.5 Decoding process for slice data partitioning............cccveeeeeueeeeeeiueeeerieeeeeeieeeeeereeeeeneeeeeireeeeeereeeeeaeeeeereeeens
8.2.6 Decoding process for reference picture listS CONStIUCHIONccuveeeeeveieeeieeeeeeeeeeeereeeeeeeeeeeereeeeeaeee e e
8.2.6.1 Decoding process fOr piCture NUMDETSccevieruieriieriieiieieeieet et et ete e eteeeeesaeeseeeeeeneeeneesseesseenneas
8.2.6.2 Initialisation process for reference PICture liStSceecueeruieierierierieie ettt
8.2.6.2.1 Initialisation process for the reference picture list for P and SP slices in frames.............c.cccveveeneen.
8.2.6.2.2 Initialisation process for the reference picture list for P and SP slices in fields...........c.cceevrrunnnen.
8.2.6.2.3 Initialisation process for reference picture lists for B slices in frames.............ccceeverieeerrecieecrennennen.
8.2.6.2.4 Initialisation process for reference picture lists for B slices in fields............ccooeverierienrieviencrernennen.

8.2.6.2.5 Initialisation process for reference picture lists in fields...........cceveerieieeciiecierieeeeee e
8.2.6.3 Reordering process for reference PICture LIStS..........eeeeuveieeeireeeeeieeeeeereeeeeeeeeeereeeeere e e e e e eeereeeeeeneeeens

8.2.6.3.1 Reordering process of reference picture lists for Short-term piCturesoooeevuvveeeeeeeeeiineeereeeeennns
8.2.6.3.2 Reordering process of reference picture lists for 1ong-term PiCturescoovvvuvveereeeeeeiinveeeeeeeeenns
8.2.7 Decoded reference picture marking PrOCESScevueerueeriieiirieniientieie ettt sttt ettt be e s

8.2.7.1 Sequence of operations for decoded reference picture marking processceoeeeeeeverueresereeeenceseenenne
8.2.7.2 Decoding process for gaps in frame NUML.............cceevierrieiiieiiieieeieseese et saeesreesseesseeesessaessaesees

8.2.7.3 Sliding window decoded reference picture Marking PrOCESS.......uveeeeeeeeeureeeeeeereeeieeeeeeeeeeeeeeeeeeeeeseeeennees

8.2.7.4 Adaptive memory control decoded reference picture marking process...........cceeeververeveseeesveesvescvesnennnns
8.2.7.4.1 Marking process of a short-term picture as “unused for reference”............cccceecververveneresiencresnennnn.
8.2.7.4.2 Marking process of a long-term picture as “unused for reference”............ccccovveerierieiinieninnennen.
8.2.7.43 Assignment process of a LongTermFrameldx to a short-term reference picture.............cceecveeueeneee.
8.2.7.4.4 Decoding process for MaxLongTermFrameldX.........cccceeeerieieriririiieieieie e
8.2.7.4.5 Marking process of all reference pictures as “unused for reference” and setting
MaxLongTermFrameldx to “no long-term frame indiCes”...........ccuevieriieciiriienienienieere et ee e seee e
8.2.7.4.6 Process for assigning a long-term frame index to the current picture...........ccoeceervvevieecreeeenvesenennenn

N 100

8.3 INEr A P EAICHION PIOCESS.eeeieeeie e ceie e ettt e e et et e s st eessstbeessasbeeessabeeesabbesssassssesasbeeessnbbessssensssssbeeesanbenesssenessanbenesn

83.1 Intra 4x4 prediction process for Iuma SAMPIESccueervieciieierierieieie et seeee e e
8.3.1.1 Derivation process for the IntradX4PredMOde............cecuieiieiirienieiieeee ettt
83.1.2 Intra 4x4 sample PrediCtioneeceeruierieeieeeieeeceet ettt ettt eet et et et e teeeesaee et esae et e et e et e enteeneeeneenean

83.1.2.1 Specification of Intra 4x4 Vertical prediction MOde..........cecuerueruererieirieieiese e

8.3.1.2.2 Specification of Intra_4x4 Horizontal prediction MOde...........c.eeerereririeienieiesie e
8.3.1.2.3 Specification of Intra 4x4 DC prediction MOAEcccveeverieriereenieeieeieeeieseesreesieereeeeseneseaesaees

8.3.1.2.4 Specification of Intra_4x4 Diagonal Down_Left prediction mode.........c..ccceeveerierivenreeienrenrennen.
8.3.1.2.5 Specification of Intra_4x4 Diagonal Down_Right prediction mode...........ccccceerverivecrreiienirnnennen.

8.3.1.2.6 Specification of Intra 4x4 Vertical Right prediction modecccvevveeiereerienieiieie e
8.3.1.2.7 Specification of Intra 4x4 Horizontal Down prediction modeccoecevreerienienieiieeeeeeeen
8.3.1.2.8 Specification of Intra 4x4 Vertical Left prediction modec.cccceveeereeienienienenincneneeeeieens
8.3.1.2.9 Specification of Intra 4x4 Horizontal Up prediction MOde.........ccceeueeerieienieiieniineneeeeieeeeeeane
832 Intra 16x16 prediction process for [uma SAMPILEScceerieriereriiiiieieese et
.1 Specification of Intra_16x16_Vertical prediction mMOde...........c.eeverieriierieerieiieiieeiesieesieeveeveeee e
3.2.2 Specification of Intra_16x16_Horizontal prediction MOde...........c.eevereereerieerieiienieniesieeieereeveseeeseees
8.3.2.3 Specification of Intra 16x16_DC prediction MOdEc.eecveeierieriieniierieeie e eee e eae e seeeeees
8.3.2.4 Specification of Intra 16x16_Plane prediction MOde...........c.eecuerierierieesieeie e eae e eees

DRAFT ITU-T Rec. H.264 (2002 E)

70

9

DRAFT 1SO/IEC 14496-10 : 2002 (E)

833 Intra prediction process for chroma SAMPIEScccevvieriieciirienienieriee e
8.3.3.1 Specification of Intra_ Chroma DC prediction MOdec.eeevereerienieniieieeieeieseeseeee e
8.3.3.2 Specification of Intra_Chroma Horizontal prediction mode...........cecvevvreceeerervenieneeieeeee
8.3.3.3 Specification of Intra Chroma Vertical prediction mode..........cccceeeeeeeeenienencneneneeeeeennes
8.3.3.4 Specification of Intra Chroma Plane prediction mode...........coceververieeeienienenienenenceeeeennen

£ IS 101 (=" o T="o [ox 0 0 o] 01 SO

84.1 Derivation process for motion vector components and reference indices............ccceevveeveerrerreennen.
8.4.1.1 Derivation process for luma motion vectors for skipped macroblocks in P and SP slices........
8.4.1.2 Derivation process for luma motion vectors for B_Skip, B Direct 16x16 and B_Direct 8x8

8.4.1.2.1 Derivation process for the co-located 4x4 sub-macroblock partitions..............cceeveveeneenne

8.4.1.2.2 Derivation process for spatial direct luma motion vector and reference index prediction mode ... 104
8.4.1.2.3 Derivation process for temporal direct luma motion vector and reference index prediction mode 106

8.4.1.3 Derivation process for luma motion vector Predictioneceereeeeeeeierieneeseeieeie e ee e 107
8.4.1.3.1 Derivation process for median luma motion vector predictionceeeveeveeveeeeseeseeereeneeenennes 108
8.4.1.3.2 Derivation process for the neighbouring blocks for motion data of neighbouring partitions......... 109

8.4.1.4 Derivation process for chroma motion VECIOTScc.eievuieeiuieiriieeiieeeeieeeereeeereeeereeeereeeereeeereeeereseeveeereeas 109

84.2 Decoding process for Inter prediction SAMPIES...........ccverveerrierieeiieeieeiesiesieesteeteseeseeesseesseeseesseessesseessees 110

8.4.2.1 Reference picture SEIECtION PIOCESSccvveiieveeerieerieeteeeeteeereeeeteeereeesseeesesesseeesesesseesseeessesssesenssessenan 111

8.4.2.2 Fractional sample interpolation PIOCESS..........eerveevrereruerieeriierteeseetestesseesseeseenseessesnsesseesseesseesesnsesses 111
84.2.2.1 Luma sample interpolation PrOCESS.ccuerurerreeueeeertiertienteeteeeeeeesseesseenteeneeeneeeneesseesseensessesneennes 112
8.4.2.2.2 Chroma sample interpolation PIrOCESSceeruieueeeertiertierieeieeeeeteeeeeseee et eeeeneeeseesseesaeesseeeeeneeens 114

84.2.3 Weighted sample prediction PrOCESScceerueeriietieientiertienteet ettt st stee st et et ee e satesbeesbeenbeeaesaeesae 115
84.23.1 Default weighted sample prediction PrOCESS.eeieeeieierierieriesieeie et eteeeeee e seesee st ebe s esee e nee 116
8.4.2.3.2 Weighted sample PrediCtion PIOCESS.........evviervieviererirerriesieeseetestesseesseesseesseessesssessaesseessesssessesses 116

8.5 Transform coefficient decoding process and picture construction process prior to deblocking filter process 118
85.1 Specification of transform decoding process for residual blOcksSeecvveeverierierienierieee e 118
852 Specification of transform decoding process for luma samples of Intra 16x16 macroblock prediction
mode 119
85.3 Specification of transform decoding process for chroma Samples...........ccceeeueeeeriereerieneeie e 119
8.5.4 Inverse scanning process for transform COEfTICIENESc..eevuieiiriirierieiiecee e 120
8.5.5 Derivation process for the quantisation parameters and scaling function.............cceceeeveviereneiescnceienans 121
8.5.6 Scaling and transformation process for luma DC coefficients for Intra_16x16 macroblock type............ 122
85.7 Scaling and transformation process for chroma DC coefficients.............cceeeverieniereerieeniecie e 122
8.5.8 Scaling and transformation process for residual 4X4 BIOCKS..........cceeieriieriieiireiesieiieeee e 123
8.5.9 Picture construction process prior to deblocking filter ProCesSccveveerieerieeiierierierieieeie e eeeeeeenees 124

8.6 Decoding Processfor SP and Sl SlICESccciviiuiieiiiiee e et ae ettt re e e e e be s resreste e e enae e e tesresrenns 125
8.6.1 SP decoding process for NON-SWitChing PICEUIEScc.eerueeruerrurrieriertietieieeteeieeetee st eee e e e ee e seeeseeeneeens 125

8.6.1.1 Luma transform coefficient decOdiNg PrOCESSc.cerieueruiriiriiriieiieieesie ettt 125

8.6.1.2 Chroma transform coefficient decOding PrOCESS.ceoueruiruirueruieieieierieeee ettt 127

8.6.2 SP and SI slice decoding process for SWitChing PICTUIESeeververrieriieiietieieeiieseeie e eaeseeseeesseenseees 128

8.6.2.1 Luma transform coefficient deCOdING PIOCESSc.eccvereverrierieriieiiiieiieseesteereere e seesteesreesseesesseeees 128

8.6.2.2 Chroma transform coefficient deCOdING PrOCESS......cc.eeivuiieuiiiiiiieiieeiieetee et eree e e e e e eveeeveeearee s 129

8.7 DebIOCKING filLEr PrOCESS......ccueeeteeteeteiiesee st e st e ste e ree st esteeste et e e beestesseesteesteeseensesaeesseaaseenseentesssesseesaeesseensennnas 130
8.7.1 Derivation process for the content dependent boundary filtering strengthccooceeveeiieiieieneneennen. 132
8.7.2 Derivation process for the thresholds for each block boundary...........cccecceveerieiieiiiniiieeee e 133
8.7.3 Filtering process for edges with Bs smaller than 4ccccooiiiiiiiiiiiinec e 134
8.7.4 Filtering process for edges for Bs €qual 10 4ccoeiiiiiiiiiiiiiieeeeeie ettt 135
= ST 10 0 00PN 136

9.1 Parsing process for EXp-GolOmD COOESccueiuerierieeiierieiesiestesesseeaesee e stestesre e e esaeseestesrestessesneeseessenseseessenses 136
9.1.1 Mapping process for signed EXp-Golomb COAEScceueriiriiiiiiiieiiiieieriese et 137
9.1.2 Mapping process for coded BlOCK PAETNccueiuiiiiirieriieiieieete et 138

9.2 CAVLC parsing process for transform COEffiCiENES..........ccveiieeiciicieee e 139
9.2.1 Parsing process for total number of coefficients and trailing ONEScceeevreeveeierienierieeieereeieeeenees 140
9.2.2 Parsing process for 1evel iNfOrmationccceeeeuiieeieiiiieeie ettt eeee et sr e saeesereesreeseveeseseesenes 142
9.2.3 Parsing process for run information.............ecvereeriieiiieiesiesiese ettt s e ne e ees 144
9.2.4 Combining level and run infOrmMationceeruerrieriierierieree ettt et see et et eneeeneesreenneas 146

9.3 CABAC parsing proCess fOr SICE AALAcceiviiereeieeiesies e se et eeae s e teste e e e e e ese e besresresreeneesaessatesresrenes 146
9.3.1 INItIAlISAtION PIOCESS 1uvvveruveeeerieeieeeieesiteeeteeeiteeeteesteeeseesseeesseessseessseesnseesssessnseeenseessseeansessnseessessnseenseenn 147

9.3.1.1 Initialisation process for cONteXt VAriables..........c.coveruieviiiiiiieeieereereere et seesre e eeeeaesreesreereereens 148

9.3.1.2 Initialisation process for the arithmetic decoding eNgiNe.............cccvevveeveeierreriereesieeeeereeeeseesreeeees 157

9.3.2 BINATIZAION PIOCESS. .. .viiivieireeiteeeteeeeteeeteeeeteeetteeeeteeeeteseeseeeseeeeseeesesesaeeaseseseeeasesensaeenseseseessesenseesnseeas 157
9.3.2.1 Unary (U) DINAriZation PIOCESSceveerureerreerireesreesreesseesseesiseesseesseessessssessosesssssesssesssseessessssesssnes 159
9.3.2.2 Truncated unary (TU) DinariZation PIOCESScevveerrreerveesreesireesreesreesreesoseessesssseessesssseessessssesssnes 159
DRAFT ITU-T Rec. H.264 (2002 E) %

DRAFT I SO/IEC 14496-10 : 2002 (E)

9.3.2.3 Concatenated unary/ k-th order Exp-Golomb (UEGK) binarization processcceeueevereerveerveenenns 159
9.3.2.4 Fixed-length (FL) binarization PIrOCESS.......ccueeiuvierveerreesreeereesteesreeereesreesseesseessseesseesseesseesseessnes 160
9.3.2.5 Binarization process for macroblock type and sub-macroblock typecccveveerieerierciercierierieieeae 160
9.3.2.6 Binarization process for coded bIOCK PALLEINccuviiiiiuiieiieiiee e 163
9.3.2.7 Binarization process for mb_gp deltaccccecueieiiinininiiiie e 163
933 Decoding PIOCESS TIOWc..eeutiiuiieiiieiieitieit ettt ettt et et b e bt e bt et et s eeesbee st e et e enteenteebeesbeenbean 163
3.3.1 Derivation process for the CIXIAX.......ccieviiiiiieiiiriieie ettt ettt et steeaeeaeereesreesaeesseenneens 164
9.3.3.1.1 Assignment process of ctxIdxInc using neighbouring syntax elements.............ceeevereververreerneennenns 166
9.3.3.1.1.1 Derivation process of ctxIdxInc for the syntax element mb_skip flag..........ccccevevervenirennnnns 166
9.3.3.1.1.2 Derivation process of ctxIdxInc for the syntax element mb_field decoding flag.................. 166
9.3.3.1.1.3 Derivation process of ctxIdxInc for the syntax element mb_type........cccceeverveervereeneererennenns 167
9.33.1.1.4 Derivation process of ctxIdxInc for the syntax element coded block pattern 167
9.33.1.1.5 Derivation process of ctxIdxInc for the syntax element mb_gp delta..........cceeeeeveervenrennnnne 168
9.3.3.1.1.6 Derivation process of ctxIdxInc for the syntax elements ref idx 10 and ref idx 11 168
9.3.3.1.1.7 Derivation process of ctxIdxInc for the syntax elements mvd 10 and mvd 11 168
9.3.3.1.1.8 Derivation process of ctxIdxInc for the syntax element intra_chroma pred mode................ 169
9.3.3.1.1.9 Derivation process of ctxIdxInc for the syntax element coded block flag...........c.cceeuneeen. 169
9.3.3.1.2 Assignment process of ctxIdxInc using prior decoded bin Valuesccceeveevierceerceerienienieenenne 171
9.3.3.1.3 Assignment process of ctxIdxInc for syntax elements significant coeff flag,
last significant coeff flag, and coeff abs Ievel MINUSTccccceeoiiriiriieniieiieieeeee e 171
9.33.2 Arithmetic dCCOAING PIOCESScevieuvieueieiiietieetiesteeste et e teeeteseee st e et e et eneeeneesseesseesseeseensesneesaeesseenseenseans 172
9.3.32.1 Arithmetic decoding process for a binary deCiSIONc.ceeueruerierierierieieieeiesie e ee e 173
9.3.3.2.1.1 State tranSition PIOCESS....eeeeveererrerrreerreerireerreesseesseessseesseessseessseessseesssessssessssessssessssessssessssess 173
9.3.3.2.2 Renormalization process in the arithmetic decoding engine.............cceeververeerreerreseeeseeseereenens 175
9.3.3.2.3 Bypass decoding process for binary deCiSIONScccvieeueeeiuieeiieeiiie e eetee e eereeeereeeereeeereeeree s 176
9.3.3.2.4 Decoding process for binary decisions before terminationeceevereereereeseescveseeseeneenenns 176
934 Arithmetic encoding process (INfOrMAtIVE)cc.eecveeierierieniieieeeeeee ettt et eae e sseesseeseeseseneees 177
9.34.1 Initialisation process for the arithmetic encoding engine (informative)ccccceevereeereenceneeneeennne 177
9.3.4.2 Encoding process for a binary decision (infOrmatiVve)cc..oeeeeuuiieeeuieeeciieee e eeeee e 178
9.3.43 Renormalization process in the arithmetic encoding engine (informative)........cc.cceeeeeereerceneeneeenene 179
9.3.4.4 Bypass encoding process for binary decisions (informative)............coceueeeeeiieieeeiiieeeeiiee e e e 180
9.3.4.5 Encoding process for a binary decision before termination (informative)............ceeveeeververeereenneeneenns 181
9.3.4.6 Byte stuffing process (INOrmMAtiVe)ccveeverieiierieerieesieeieeteeeesteeteeteesesaesaesseesseesseesseessesssesssesseens 182
ANNEX A ProfileS and [BVEIScoiiiiii e e e 183
Al Requirements on video decOder Capablity.........ccervereerereriereseseseeieses e seesre e s e eee s e tesresresresseeseeneeeeseesrenes 183
N 0] 1 1= RSOOSR SRRPRRRRP 183
A2.1 BaSEINE PIOTIICcuviiiiiie ittt ettt ettt e et e et e ete s ebeeeaaeeebeeeaeeebaeeabeeebaeeareeebaeeareean 183
A22 MAIN PIOTILE ..ttt et ettt e et e e tb e e tbeeetbeeeaseeatbeesaseesaseessseessbeessseesaseesssaessreesaseesnas 183
A23 EXteNded PrOFIle.......eieeieieiieii ettt ettt ettt et e et e et et e et e e b e et e eneeene e st enteenseenbeenteereennean 184
N - = RS 184
A3.1 Profile-independent 16VEl TIMILSceeeueiiieieie e ettt e et e e e et e e e eaeeeeeeaaeeeeans 184
A32 Profile-specific 16VEL LHMILSccveevieereiiieiieeiieeie et et e ettt eete et e eebeeeaesteesteesteesbeesseesaesseesseesseesseessesssensseseas 186
A.3.2.1 Baseling Profile LIMIESc.ecviiieiieiiieeieeie ettt ettt ettt te e s e e te e beesbeesseesaesasesseeseesseesseessesssesssesens 186
A.3.2.2 Main Profile TIMIES.....c.eeeeuiiiirieeiteeeeiee et et e et e et e et e eeteeeteeeeteeeeteeeetaeeeteeeetseeseeensaeeeseeentseeesseestseensreenes 186
A.3.2.3 Extended Profile LAMILScc.ceviiiiuiieiiiiietieeeies ettt ettt e et e eeteeeeteeeetaeeeteeeetaeeeteeeetseeesseentseensseenes 187
A33 Effect of level limits on frame rate (iNfOrmMatiVe)ceeevueeeeuiiiiiieeiree ettt e e e evee v 187
ANNEX B Byt Stream fOIMALccuiiiiiie et st et re e st e sae e sbe e be e beeateeatesaeesreesaeesreennesneas 189
B.1 Bytestream NAL unit SyntaxX and SEMANLICS.c.everereeeereeeereeeseeseereseeseeteseesesteseesesseseesessessesessessssessessesesseses 189
B.1.1 Byte stream NAL UNIE SYITAX ...ccveeeeveeiereeereeiiieeeteeeereeeireeeeteeereeeeseeesseseeseeeseseeseeesesenseeeseseeseessesenseesseean 189
B.1.2 Byte stream NAL Unit SEMANTICSecveruverereriietieieeieetesitesseesseesseesessseseeesseesseesseessesssesssesseesseessesssesssesses 189
B.2 Byte stream NAL unit dECOOING PrOCESS........cieeiueeireeieeeeeeeesteesteesteetesseesseesseesseessesssesssssesssssssesssesssesssessessenss 189
B.3 Decoder byte-alignment recovery (infOrmatiVE)ccueeereiieieeesieeiiesiesesesre s e seeeeseestesresressesseesaessesseseessesees 190
Annex C Hypothetical refer ENCE AECOUEYceiiiieiieieieeie st sttt e e see e st te e e eaae st e besrestesreeaeesee e eneeseestesrennens 190
C.1 Operation of coded picture BUFEr (CPB)ccccciieiiiiiecee e seeste et eteete s eesee s e e sreesreseesaeesreesreesbeenreeneesneesreens 192
C.1.1 Timing Of DItStream AITIVAL.........cccuieieeiieitieieerie ettt ste st et et eteetae st esteesseesseensesseesseeseenseenseenseessesseenseas 192
C.l1.2 Timing of coded PICtUIe TEMOVAL........cc.eiiuieieieiieie ettt ettt et st e et et e et e eneeeneesneennean 193
C.2 Operation of the decoded picture BUFfEr (DPB)........cccccevuirieiiiiiieeeeeiieseesesie e s e sseeaesees e sresressesseesaessesseseessesses 193
C.2.1 PICHUIE A@COAING ...ttt ettt b e et h et e st et et e e beseeebeenean s e s e sbeabeseeeseeneensennans 193
C2.2 PACTUIES OULDUL ..veeiveeiiieeteeeite et tee et e et e et e et eesbeeeateessbeeesteessseeasseessseeasseesnseeanseeansaeanseesnseesnsessnsesnnseenn 194
C23 Reference picture marking and picture removal (Without OUEPUL)ccveeeevericiieeiiie e 194
C24 Current decoded picture marking and STOTAZEc.eeeeviriivieeiriieciieeireeeeteeeree e eeteeeeteeereeeereeereeeereeeree s 194
C.2.4.1 Storage of a reference decoded picture into the DPB..........ccooiioiiiiiiiieieeceeeeeee e 194
C.2.4.2 Storage of a non-reference picture into the DPB.........cccoooiiiiiiiiiiiiieiie e 194

vi DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT 1SO/IEC 14496-10 : 2002 (E)

C.3 BitStream CONFOIMANCE..........cccuieiveeieeieceectee st e et e ste e te st eeteeete e beebeeabesseesbeesaeesbeesbeensesnsesaeesseeaseenbeentenssenssessanns 194
[O B T= ol o =00 0] 110'= 010 PSSR 195
C4.1 Operation of the output order DPB.........cccoiiiiiiiiiiiiiecie et ettt e ve e et eere e eraeeavee s 195
Cc42 PiCture d@COAINEveeieeeeee e et e et e e et e e e et e e et e e e et e e e et e e e e eareeeenneas 195
C4.3 Reference picture MAarKing..........oecueeeeeierieiiee ettt ettt ettt s eteeeeesee et e enteeneeeneeeneenneas 195
Cc4.4 Current decoded picture marking and SEOTAZEc.eeeeieruirierieieieeeeieie ettt ettt see e ebe e eneeeens 196
C4.4.1 Storage of a reference decoded picture into the DPB..........cccoiiiiiiiiiiiiiiieieee e 196
C.4.42 Storage and marking of a non-reference decoded picture into the DPB..........ccccccoovvieviiniicenicenieenen. 196
C.4.4.3 "BUMPING" PIOCESS. . uviietviiitrieereeetreeeteeeteeeireeereeeiseeetreeessesseesssesseessseessessssesasessseesseesseeseressseessses 196
Annex D Supplemental enhancement iINfOrMatioNccveiieiiieiicie et sre e s re e ne e 196
|0 S 0 1Y 0= 10 IS 117 < S 198
D.1.1 Buffering period SEI MESSAZE SYNTAKceevvieruieiiiieiieriiesteeteeteesesseesteesseeseessesssesseesseesseessesssesssesseessees 199
D.1.2 Picture timing SET MESSAZE SYNTAXcuerreerreeriieieiieseesieesseeteesesssesssesseesseessesssesssesssesseessesssesssesssesssessees 199
D.1.3 Pan-scan rectangle SEI MESSAZE SYNTAXccveerverierierieriiestieieeteetesseesseesseeseesesseesseesseesseenseessesssesseessees 200
D.14 Filler payload SEI MESSAZE SYNTAXccveeeveeiereeereeereeereeeiteesreeeseeeseseseessesesseessesessesssesssssssssessssesssseens 200
D.1.5 User data registered by ITU-T Recommendation T.35 SEI message SyntaX..........ccoeceeeeeerieeneeeueseeseeennes 201
D.1.6 User data unregistered SEI MESSAZE SYNEAXccueeeieiueiiieeeieeeeieeeeeiteeeeeeeeeeeeeeeeeeeetteeeeeaeeeeeineeeeenaneeeeenns 201
D.1.7 Recovery point SET mMeSSAZE SYNTAKeeruieruiiriiiieiiertienieente et et stte st e st e bt etestesitesbeesbeenteenteeneesseesseenneas 201
D.1.8 Decoded reference picture marking repetition SEI meSSage SYNtaXccervereeeueeeeierieniesieseeeeseeeeens 201
D.1.9 Spare picture SEI MESSAZE SYNEAXccuvervierrierieieeieriesteesteesestessesseesseesseesesssessaessessseessesssesssesssessesssenns 202
D.1.10 Scene information SEI MESSAZE SYNEAXcververveerieerieeieeteeresseesseesseeseessessaesseesseessesssesssesssesseesseessesssenns 202
D.1.11 Sub-sequence information SEI MESSAZE SYNEAX........ccerruerrrerrerrieriieieeteeteeaessaesseesseessesssessesseesseessesssenns 203
D.1.12 Sub-sequence layer characteristics SEI MeSSAZE SYNTAX......c..cevverivuieeirieiirieereeereeereeereeereesreesereessseesens 203
D.1.13 Sub-sequence characteristics SEI MeSSAZE SYNLAX........cc..eeeeeuiieieireeeeeiieeeeeieeeeeeeeeeeeeeeeeeeereeeeeeaeeeeeneeeens 203
D.1.14 Full-frame freeze SEI MESSAZE SYNEAXeeieiuriiiieiiieeectiee e et e e eeee e e et e e eeaee e e eeaeeeeeaeeeeeereeeeeeaneaeeenneeeenn 204
D.1.15 Full-frame freeze release SEI MESSAZE SYNMEAXccueruerterteruieiienieieieniesiesteete et eseeeeeesteseesbeseeeseeneenseneeneas 204
D.1.16 Full-frame snapshot SEI MESSAZE SYMEAXeeueeeeeerierierieetieteeieeniertestesee et eteeseeseeeesesseseesbeseeeseeneensenseneas 204
D.1.17 Progressive refinement segment start SEI MmesSage SYNEAX.........ccverveervirereerierieseesieesieeeeseeseesseesseessenns 204
D.1.18 Progressive refinement segment end SEI MESSAZE SYNEAXccvervierrierrieireeierieseesreeseeeeseesseesseesseessenns 204
D.1.19 Motion-constrained slice group set SEI mMEeSSAZE SYNLAXccuverurerueererererrerienieenreesseesseeseesnesseesseesseensenns 204
D.1.20 Reserved SEL MESSAZE SYMAX......eerviertieieererrerteesseesseesessesseesseesseesseesesssesssesssessesssesssesssesssesssesseessesssenns 205
DI I 0 1Y L0 1o IS =017 11 S 205
D.2.1 Buffering period SET mesSSage SEMANTICS.c.eeveeutieeeeeeestiesteesteerteeeeeseesieesteeseeeseeneeeneesseesseesseesessesneesnes 205
D.2.2 Picture timing SEI MESSAZE SEIMANTICS.eerueeueruteriieriieniienteenieeitesttesttesteenteeteestesitesteesbeenteenteeneeeseesseenseas 205
D.2.3 Pan-scan rectangle SE] MeSSAZE SEMANLICS -.....evveruertreuieierierierteeeeeteeienteseeseesteseeeseeseenseseseesseseeeseeneensensens 208
D.24 Filler payload SEI mMESSAZE SCMANTICSeccvveveeieeerereeerriesteeteeseessesseesseesseesseessesssesseesseesseesseessesssesseessees 209
D.2.5 User data registered by ITU-T Recommendation T.35 SEI message semantics...........cceeververeerueerveanenns 209
D.2.6 User data unregistered SEI meSSage SCMANLICSc.eeverurerreerreesrerieeseesresseesseeseesesssesssesseesseessesssesssesses 209
D.2.7 Recovery point SET mMeSSaZE SCMANLICSccuvervrerrereeeresieesteenseesseeeessreseresseesseesseessesssesssesseesseessesssesssesses 209
D.2.8 Decoded reference picture marking repetition SEI message semantics.........ceeevereereeereeenereneeeeeseeneeenens 210
D.2.9 Spare picture SEI MESSAZE SCMANTICScuveeuvreuueeuieetientierteesteeeeeeeeaeessteseeeeeeneesseesseenseeseeseensesneesseenseenseens 211
D.2.10 Scene information SEI meSSage SEMANTICSccueeteeruerierieriientienieeieeateeitesteesteesbeenteeteeaeeseeesbeesbeeneeeneeans 212
D.2.11 Sub-sequence information SEI meSSage SEMANTICSccuerueeueruieierieriereeeeeeteeieeeeeeeee e seesteseeeseeneenseneeneas 214
D.2.12 Sub-sequence layer characteristics SEI message SEMANTICSccvverveeviereeierieseesreenseeseeseesseesseesseesseens 215
D.2.13 Sub-sequence characteristics SEI meSSage SCMANLICSceverreerrierrierreereeieseeseesseesseessessesseesseessesssenns 216
D.2.14 Full-frame freeze SEI MESSAZE SCIMANTICScuverveerveerreeieereeeteseieseeeseeseassessaessaesseesseessesssesssesseesseessesssenns 216
D.2.15 Full-frame freeze release SEI MESSAZE SCMANTICScveeuveruvererereieriieieereereeaesseesseesseessesssessnesseesseessesssenns 217
D.2.16 Full-frame snapshot SET MeSSaZe SEMANLICSeerveerueeeeeieriiertienteeteeteeeteeteesseesseesseeaeeeesneesneesseeneeenseens 217
D.2.17 Progressive refinement segment start SE] message SEMANTICSeevveevreverieriienierieeieeeeeeeseeeseeeseeeeens 217
D.2.18 Progressive refinement segment end SE] message SEMANTICSeoververuereeriiruieienieienierieeeeseeeeeeeeeeeeneas 217
D.2.19 Motion-constrained slice group set SEI message SeMANICSceuveruerierueriereeriieeieieiesiesieeeeseeeeeeneeeeneeneas 218
D.2.20 Reserved SEI MESSAZE SCMANLICSccveeveeverrerieerieesseeseesestesseesseesseesesssessaessessseessesssesssesssesseesseessesssenns 218
Annex E Video usability iNfOrMEation.........cceciiiiiiieiie ettt et st e st s re e sbe e resaeesaeeebe e beenbeentesnnesaeens 218
E.l WULSYNEAX c.viuecuiiiiiecteste ettt sttt te et st saete st e s e etesbesaeseebeseesesbesaeseebesseseebeseebeebesseseabeseeseabeseesesbesaesestessesenteneas 220
E.1.1 VUL PATamMELETS SYMEAXeeuvieuteentieieeiteiitesteenttete et ettesteesteesbeenteeatesatesatesaeenbeenteenteenteestesbeenbeebeenseensesaeenae 220
E.1.2 HRD parameterS SYNEAXccuuviieiieeiieiiiiieeeeeeeeiitteeeeeesessttreeeeeesassnssaseeessassssssseeessesssssssseesseessssssseeessennes 221
E.2 WUIL SEIMANLICS. c..veveveeteeecteeteeeeteeteetetesteseeteetestesesteseesesbestesesteseesesseseesesteseeseateseesesteseesesteseesesteseesestesensessessesessenens 221
E2.1 VUL parameters SCIMANTICSveveeverrerrereeerseesseeseesesssesseesseesseessessesssesssesseesseesseessesssesssesseessesssesssesssesses 221
E2.2 HRD parameters SEMANTICS........eecveererrrerreerteeteetestesstesseesseesseassesssesseesseessesssesssesssesssesseesseensesssesssesseessees 229

LIST OF FIGURES

DRAFT ITU-T Rec. H.264 (2002 E) vii

DRAFT I SO/IEC 14496-10 : 2002 (E)

Figure 6-1 — Nominal vertical and horizontal locations of 4:2:0 luma and chroma samples in a frame............c.cceouveneenne 12
Figure 6-2 — Nominal vertical and horizontal sampling locations of samples top and bottom fields............ccccvervverreennens 13
Figure 6-3 — A picture with 11 by 9 macroblocks that is partitioned int0 tWo SIICES.cceruerveririerieiereeeeeeieieieie e 13
Figure 6-4 — Partitioning of the decoded frame into MacroblOCK PAILS.cocuevierieriieiieieeee et 14
Figure 6-5 — Macroblock partitions, sub-macroblock partitions, macroblock partition scans, and sub-macroblock partition

SCANS. .ottt ettt ettt ettt ettt et et e a e et s bt e aa e bt e ha e et e e aa e s a e e s a et e e Ra e e e aa e e s an e e e Rt e e s aa e e e aa e e s aa e e saa e e saneesaa e e saneenane 15
Figure 6-6 — Scan for 4x4 Tuma BIOCKS.c..couiiiiiiiiiiiiiere ettt ettt st st 16
Figure 6-7 — Neighbouring macroblocks for a given macrobloCkKcceiiririiieieriireiieieeceeeee e 17
Figure 6-8 — Neighbouring macroblocks for a given macroblock in MBAFF frames.........cccceceeeeienienencnencnieieeieneae 17
Figure 6-9 — Determination of the neighbouring macroblock, blocks, and partitions (informative)ccccceceeeeereeeenee 18
Figure 8-1 — Intra_4x4 prediction mode directions (INfOrmMatiVe)c.eeerueeuieirieieriesiesie ettt eie e eee e eens 91
Figure 8-2 — Chroma 4x4 blocks a, b, ¢, d. and predictors 80, S1, 82, 83.coceeereeierieniinieniiniereeeeeetene et 98

Figure 8-3 A direct-mode B partition has two derived motion vectors (mvL.0, mvI 1) pointing to two reference pictures
referred by refldxI 0, refldxI.1. [Ed. Note(YK): In the figure, MV, MV0, and MV1 should be changed to mvCol

MvL0, and MV T, TESPECHIVELY.] ..eviuiitieiieiieieiet sttt b et b et eb et e e sae st e b sbeebe e e et eneeneen 107
Figure 8-4 — Directional segmentation prediction (iNfOrmMatiVe)couerueruerueririeierienenie ettt 108
Figure 8-5 — Integer samples (shaded blocks with upper-case letters) and fractional sample positions (un-shaded blocks

with lower-case letters) for quarter sample luma interpolation.cceeeierierieriereie e 113
Figure 8-6 — Fractional sample position dependent variables in chroma interpolation and surrounding integer position

samples A, B, C, aNd D. ..oouiiiiiiiiiiiee ettt et h e h ettt et e a e e bt s bt e b e e bt enbesaeenae 115
Figure 8-7 — Assignment of the indices of dcY t0 TumadxA4BIKIAX.ccueruerueririeieierieee e 119
Figure 8-8 — Assignment of the indices of dcC to chromad4x4BIKIAX.cccoeeiuieriiiiiiiieieriee e 120
Figure 8-9 — a) Zig-zag scan. b) FIeld SCANccccecieriiiiiriiriiiirieeietceeee sttt st st 121
Figure 8-10 — Boundaries in a macroblock to be filtered (luma boundaries shown with solid lines and chroma boundaries

ShOWN With daSHEd TINES) ... c.veveetiiiieiieieieete ettt ettt e bttt b e bbbt e st et et e st e sbeebeeneenteneenean 131
Figure 8-11 — Convention for describing samples across a 4x4 block horizontal or vertical boundary 131
Figure 9-1 — Illustration of CABAC parsing process for a syntax element SE (informative)c.cccevevererencecenenne. 147
Figure 9-2 — Flowchart of initialisation of the decoding eNGINe...........c.cceeruieriirieiiirieeieeeee e 157
Figure 9-3 — Overview of the arithmetic decoding process for a single bin (informative)...........cccceevveviereererseneeenne. 172
Figure 9-4 — Flowchart for decoding @ deCISIONcoueruiriirieriiriieieieietesie ettt ettt st 174
Figure 9-5 — Flowchart of 1€N0rMAaliZatIONee.eeuteieieniertiiterieett ettt sttt ettt st eb et eat et et ettt ebesbeebe et eneenee 176
Figure 9-6 — Flowchart of bypass deCOdiNg PrOCESS.......ccueruerueruieuieieieieeieeie ettt sttt ettt e stesteseeebeeseesee e eneenes 176
Figure 9-7 — Flowchart of decoding a decision before terminationcceereereereerierieniesie e 177
Figure 9-8 — Flowchart of initialisation of the encoding ENGINE...........c.ecveruieriierieriieeieeiereerie e ae e ees 178
Figure 9-9 — Flowchart for encoding @ deCISIONcoueruiriiriirieriiieieicnese ettt ettt st 179
Figure 9-10 — Flowchart of renormalization in the €NCOAETcccueieriiriiriiiiiiiceieeee e 180
Figure 9-11 — Flowchart Of PUHNE DItccueeueeuieiieiieieiee ettt ettt sae bt et st et e besae e e ebeeseese e e eneenes 180
Figure 9-12 — Flowchart of encoding DYPASS.ccueeueeiiiriieriieieeiteiie ettt ettt et ettt ettt et esteeseesseesseenseeseeneeeneeene 181
Figure 9-13 — Flowchart of encoding a decision before terminationccecverueerierceerierieniieieeieeeeseeesieesseesseesesnesens 182
Figure 9-14 — Flowchart of flushing at termMiNAtION........cc.eruirterueetieieieieneste sttt sttt ettt ettt se e st ese e e e nee 182
Figure C-1 — Structure of byte streams and NAL unit streams and HRD conformance pointsc.cccceeererereeeeennene 191
Figure C-2 — HRD BUFTET TNOAEL ...ttt st b et eat et et et e st e e bt e st ese e e ensenseseeneenes 192

viii DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT 1SO/IEC 14496-10 : 2002 (E)

Figure E-1 — Location of chroma samples for top and bottom fields as a function of chroma sample loc type top field
and chroma sample loc _type bottom fIeld..........cceeciirieiieiieiieie ettt ens 227

LIST OF TABLES

Table 6-1 — ChromaFormatFaCtOr VAIUESccueuirieuiriirieieiiieieeeiete ettt st 11
Table 6-2 — Specification of input and output assignments for subclauses 6.4.7.1 10 6.4.7.5cccocevvecerenecenenecrenencnn 18
Table 6-3 — Specification Of MBAAAINc..coviiiiiiiiiiie ettt s 21
Table 6-4 - Specification MbAAIN anNd YIMcc.ceuiiiiiiiiniiniiiiiieietet ettt sttt sttt e b et eae et neaens 23
Table 7-1 — NAL UNIt tYPE COURS ..cuvviviieiiitiieiietieteiiete ettt sttt e 44
Table 7-2 — Meaning Of PIC tVPC.....uecuueruieriierteeieeteeiesttesteeteeteetestesseesseeseeseesseasseassesseeseanseensesnsesnsesseesseenseensesnsesseensenns 52
Table 7-3 — Name ass0ciation t0 SIICE LYPE ...viivireirierieiieitieiietestesteesteeteetesseesseesseesseesseasseessesseesseessesssesssesssesseesseensenns 54
Table 7-4 — reordering_of pic_nums idc operations for reordering of reference picture listscccceoerererieeenceniennnne 58
Table 7-5 — Interpretation of adaptive ref pic marking mode flag..........cccooeroiiriiiiiiieieeeeeee e 60
Table 7-6 — Memory management control operation (memory_management control operation) values......................... 61
Table 7-7 — Allowed collective macroblock types fOr SIICE LYPEC......cviirrieriiicieiieiiestieie et eee et e e esreeaeeeeseeesseesseenseees 62
Table 7-8 — Macroblock types fOr I STICESevveurruirrerruirieieiinteietirietettetetetcste ettt ettt st sa et bt sre e ene 63
Table 7-9 — Macroblock type with value 0 fOr STSHCESc.ceverveurruirieieiinieieienieteerteet ettt 64
Table 7-10 — Macroblock type values 0 t0 4 for P and SP SIICES.......cc.eoueruiririiririeieieienientieteeeeeeteeetente e eeeenenens 64
Table 7-11 — Macroblock type values 0 t0 22 fOr B SIICEScueveuirueieuiriiieiinieieieiceeeeeeeeseeee e 65
Table 7-12 — Specification of CodedBlockPatternChroma VAUEScc.ccveerueieirieieinieieenieecneeeceeneeeere e 66
Table 7-13 — Relationship between intra_chroma pred mode and spatial prediction modes............cccceverererieienieniennnns 67
Table 7-14 — Sub-macroblock types in P mMacroODIOCKSc.coueieiriiiiiriieiniiteinie ettt 68
Table 7-15 — Sub-macroblock types in B MacroblOCKSccerueeuieieiiriiriiniinieeeitetetetestente et 68
Table 8-1 — Refined slice Sroup MAP LYPE.....eoveueeuirueuiriirieieiieieieeie ettt et r ettt en et ene e 75
Table 8-2 — Specification of Intra4x4PredMode[luma4x4BlkIdx] and associated Names...........c.cccevverereneneeeeneeniennns 91
Table 8-3 — Specification of Intral 6x16PredMode and associated NAMESccevveveeerreireninieenenieeneneeereee e 96
Table 8-4 — Specification of Intra chroma prediction modes and associated NAMEScccceverveeeerenienieneneneeeereeeienaens 97
Table 8-5 — Specification for Intra Chroma DC prediction MOdEccceoeruieireeiinieneninineeeerenteene et 98
Table 8-6 — Specification of colPic [Ed. Note (GJS): double-check use of term "pair of complementary fields"].......... 102
Table 8-7 — Specification of pic_coding StIUCH X) c..cueruiriiriiriieiieieieiereste sttt ettt ettt bbbt eee e e e nee 102
Table 8-8 — Specification of mbAddrCol, yM, and VErtMVSCale............coveiruiriiiriniiiriiniciniereteeeee et 104
Table 8-9 — Assignment of prediction utilization flagscecceveeeieriiriininininieccteeee et 105
Table 8-10 — Calculation of vertical component of chroma vector in field coding modeccceeveevveveninenineneennne. 110
Table 8-11 — Differential full-sample [UmMa I0CAIONSc.eeuirueuiriirieiriiieieieeeteeee ettt 113
Table 8-12 — Assignment of the luma prediction sample predPartl. X; (X;, Vi).cocvvereiriiiiiiiiiiiiiiiceiccceeceeees 114
Table 8-13 — Specification of mapping of idx to ¢;; for zig-zag and field scan................ooooeriiiiiiiiiic 121
Table 8-14 — Specification of QP as a function 0f gP)cccociiviiiiiiiiiiiiiii 121
Table 8-15 — QP,, and offset dependent threshold variables o and B............ccooviiiiiiiiiiiiiiiie, 134
Table 8-16 — Value of filter clipping variable CO as a function of Index, and Bs............ccccooiiiiiiniiiiiiinn, 135
Table 9-1 — Bit strings with “prefix” and “suffix” bits and assignment to codeNum ranges (informative) 136

DRAFT ITU-T Rec. H.264 (2002 E) ix

DRAFT I SO/IEC 14496-10 : 2002 (E)

Table 9-2 — Exp-Golomb bit strings and codeNum in explicit form and used as ue(v) (informative)..........c.cceceeueeueneeee 137
Table 9-3 — Assignment of syntax element to codeNum for signed Exp-Golomb coded syntax elements se(V) 137
Table 9-4 — Assignment of coded block pattern codewords for macroblock prediction modesccccoeeeerieceeenene. 138
Table 9-5 — coeff token mapping to total coeff and trailing ONESccceveerierrieeiieriiieie et 141
Table 9-6 — Codeword table for IEVEIPTETIXccceeeieriiriiriinieriieiee ettt 143
Table 9-7 — total zeros tables for 4x4 blocks with total cOeff() 1 £0 7 ...ccveveeriieriiiiieieeieeeeeee e 144
Table 9-8 — total_zeros tables for 4x4 blocks with total coeff() 8 t0 15cccieriieriieciiiiicieceeeeeeeee e 145
Table 9-9 — total zeros tables for chroma DC 2X2 BIOCKS.......ccueeuieieieiiieiie et 145
Table 9-10 — Tables for 1N DEIOIEcc.eeiiieiiee ettt ettt ettt e st e s st e sb e e neeteenaeeneeene 146
Table 9-11 — Association of ctxIdx and syntax elements for each slice type in the initialisation process..........c...c......... 148
Table 9-12 — Values of variables m and n for ¢tXIdX from 0 0 10.......cccoeririririieiieninineneeeet ettt 149
Table 9-13 — Values of variables m and n for ctxIdx from 1110 23cccciririeiininieieineieineeeeneeee e 149
Table 9-14 — Values of variables m and n for ctxIdX from 24 0 39.......cccccvviriiirineiiinieicenecereeeree et 149
Table 9-15 — Values of variables m and n for ctxIdx from 40 £0 53.....c..cccooiriririiiiieninineeeeceteeere e 150
Table 9-16 — Values of variables m and n for ctxIdX from 54 £0 59.....cccoceiiriiiiiiiiiinininenecceeee e 150
Table 9-17 — Values of variables m and n for ctxIdx from 60 0 69..........ccvvimieiririiiiineieireieereeereeeeeee s 151
Table 9-18 — Values of variables m and n for ctxIdx from 70 0 104ccoccovveieinieirineieieieereeeereeeeseree s 151
Table 9-19 — Values of variables m and n for ctxIdx from 105 £0 165......cccevivueiririeiiiniieineieereeeereee s 152
Table 9-20 — Values of variables m and n for ctxIdx from 166 t0 226.......cc.coceveeeeieniineninineeeeienienene et 153
Table 9-21 — Values of variables m and n for ¢txIdx from 227 t0 275cccererieiiiininienienieeecteetee et 154
Table 9-22 — Values of variables m and n for ctxIdx from 277 £0 337ccoecivveirinieiniinieieineeeeneeeereeeeseeeee e 155
Table 9-23 — Values of variables m and n for ctxIdx from 338 t0 398c..ccoviiririiiiineicce s 156
Table 9-24 — Syntax elements and associated types of binarization, maxBinldxCtx, and ctxIdxOffset...........ccoeerueenee. 158
Table 9-25 — Bin string of the unary binarization (infOrmative)...........coeeerererereeienenenenee e 159
Table 9-26 — Binarization for macroblock types in L SHCEScc.eeueeieieriiniinierienieeccieteee ettt 161
Table 9-27 — Binarization for macroblock types in P, SP, and B SIICESccereriiienienieniiniiececeieeee e 162
Table 9-28 — Binarization for sub-macroblock types in P, SP, and B SICES........ccevveiruimeirineirinieinineeecseeeecsieaees 163
Table 9-29 — Assignment of ctxIdxInc to binldx for all ctxIdxOffset values except those related to the syntax elements

coded block flag, significant coeff flag, last significant coeff flag, and coeff abs level minusl 165
Table 9-30 — Assignment of ctxIdxBlockCatOffset to ctxBlockCat for syntax elements coded block flag,

significant coeff flag, last significant coeff flag, and coeff abs level minusl.......cccocveiieiinienienieieeeee 166
Table 9-31 — Specification of ctxIdxInc for specific values of ctxIdxOffset and binldX...........ceceeveevveriereninicnineneennnns 171
Table 9-32 — Specification of ctxBlockCat for the different BlOCKSeoererieiiiiinininiiireccceeee 171
Table 9-33 — Specification of rangeTabLPS depending on pStateldx and gCodIRangeldX.........cccceoeevueriereneninineennene. 174
Table 9-34 — State transition tADIEc.eoveutriirieiiriirieirtit ettt ettt ettt ettt bbbttt b et eb ettt bbbttt s e aeaeens 175
Table A-1 — LeVEL LIMIES . cveovirtietieiieiieeetente ettt ettt ettt ettt ettt et b e bt ettt et et e b e bt sa e bt et e st et et e be st e ebesueeseeneeneenne 185
Table A-2 — Baseline profile 16VEl IHMILS........ceeeeeeeieriiniiniinieneeitetet ettt sttt ettt sttt ettt b e s aenne 186
Table A-3 — Main profile 1eVel ISc.ceeuirieuiriirieiriieeiieieeeiiet ettt 187
Table A-4 — Extended profile IeVEl IIMILSccveeruereeuiruirieuirtinteiietinteetetest ettt ettt se et et eaesae sttt sse e bt sneseenesneneenes 187
Table A-5 — Maximum frame rates (frames per second) for some example PICtUre SIZES.........cccvververervirvererenvererenenenne 188
Table D-1 — Interpretation Of PIC SHITCEcovieuerieieieieriertirterteete ettt sttt ettt st ettt ae st b e ese oo naenee 206

X DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

Table D-2 — Mapping of ct_type to original PICHUIE SCAMNccveevieieeieriiesiieteeieeeeetesteseeeseeeseeesbeesaessaesseesseeseensesnnesnes 207
Table D-3 — Definition of cOUNtING _tyPE VALUESceevviiriieriieiieiieieeieeteesie et eie et e seesteesteesseesbeesseessessaesseesseesseessesssenens 207
Table D-4 — SCENE trANSILION LYPES. .. .eveiterueeuieteetietteieterteeteeteeteeteeste e stesteebeeteeseeaeesseseseasesaeeseeseeneensenseaseebeeneeneeneensansenes 213
Table E-1 — Meaning of sample aspect 1atio iNAICALOTc.eerureiieieeieetieeieerie ettt ettt eete et eeee st e seeaeeeeeneeene 222
Table E-2 — Meaning of Vide0 fOrMALcc.eeiuieiiiieiieeieeee ettt ettt ettt s e bt e beeeeeneeeneeene 223
Table E-3 — COIOUL PITMATIES «..c..eeveeureuteterientieieeieetteit ettt st sttt et et et et e b sheebeeates s et et e bt saeebe e bt eat e e etenbe st e ebesbeenteneensenee 224
Table E-4 — Transfer CRAraCtEIISTICSco.erutrtireriietieieiete sttt ettt ettt et et b e st b et ea et et et e st besbeebe et e s e 225
Table E-5 — MatriX COCTIICIENLSceueiiiiiitiitieteeti ettt ettt ettt st eb e et e st et et e bt saeebeeneese e e e teabeebeebeeneeneeneeneenes 225
Table E-6 — Divisor for computation 0f At ,p(11)..eveeeiviiiieiieieiiicccc s 228

DRAFT ITU-T Rec. H.264 (2002 E) xi

DRAFT I SO/IEC 14496-10 : 2002 (E)

Foreword

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of
telecommunications. The ITU Telecommunication Standardisation Sector (ITU-T) is a permanent organ of ITU. ITU-T
is responsible for studying technical, operating and tariff questions and issuing Recommendations on them with a view to
standardising telecommunications on a world-wide basis. The World Telecommunication Standardisation Assembly
(WTSA), which meets every four years, establishes the topics for study by the ITU-T study groups that, in turn, produce
Recommendations on these topics. The approval of ITU-T Recommendations is covered by the procedure laid down in
WTSA Resolution 1. In some areas of information technology that fall within ITU-T's purview, the necessary standards
are prepared on a collaborative basis with ISO and IEC.

ISO (the International Organisation for Standardisation) and IEC (the International Electrotechnical Commission) form
the specialised system for world-wide standardisation. National Bodies that are members of ISO and IEC participate in
the development of International Standards through technical committees established by the respective organisation to
deal with particular fields of technical activity. ISO and IEC technical committees collaborate in fields of mutual interest.
Other international organisations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the
work. In the field of information technology, ISO and IEC have established a joint technical committee, ISO/IEC JTCI.
Draft International Standards adopted by the joint technical committee are circulated to national bodies for voting.
Publication as an International Standard requires approval by at least 75% of the national bodies casting a vote.

This Recommendation | International Standard was prepared jointly by ITU-T SG16 Q.6, also known as VCEG (Video
Coding Experts Group), and by ISO/IEC JTC1/SC29/WG11, also known as MPEG (Moving Picture Experts Group).
VCEG was formed in 1997 to maintain prior ITU-T video coding standards and develop new video coding standard(s)
appropriate for a wide range of conversational and non-conversational services. MPEG was formed in 1988 to establish
standards for coding of moving pictures and associated audio for various applications such as digital storage media,
distribution and communication.

In this Recommendation | International Standard Annexes A through E contain normative requirements and are an
integral part of this Recommendation | International Standard.

xii DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT 1SO/IEC 14496-10 : 2002 (E)

0 I ntroduction

0.1 Prolog

As the costs for both processing power and memory have reduced, network support for coded video data has diversified,
and advances in video coding technology have progressed, the need has arisen for an industry standard for compressed
video representation with substantially increased coding efficiency and enhanced robustness to network environments.
Toward these ends the ITU-T Video Coding Experts Group (VCEG) and the ISO/IEC Moving Picture Experts Group
(MPEG) formed a Joint Video Team (JVT) in 2001 for development of a new Recommendation | International Standard.

0.2 Purpose

This Recommendation | International Standard was developed in response to the growing need for higher compression of
moving pictures for various applications such as videoconferencing, digital storage media, television broadcasting,
internet streaming, and communication. It is also designed to enable the use of the coded video representation in a
flexible manner for a wide variety of network environments. The use of this Recommendation | International Standard
allows motion video to be manipulated as a form of computer data and to be stored on various storage media, transmitted
and received over existing and future networks and distributed on existing and future broadcasting channels.

0.3 Applications
This Recommendation | International Standard is designed to cover a broad range of applications for video content
including but not limited to the following:
CATV Cable TV on optical networks, copper, etc.
DBS Direct broadcast satellite video services
DSL Digital subscriber line video services
DTTB Digital terrestrial television broadcasting
ISM Interactive storage media (optical disks, etc.)
MMM Multimedia mailing
MSPN Multimedia services over packet networks
RTC Real-time conversational services (videoconferencing, videophone, etc.)
RVS Remote video surveillance
SSM Serial storage media (digital VTR, etc.)

04 Profilesand levels

This Recommendation | International Standard is designed to be generic in the sense that it serves a wide range of
applications, bit rates, resolutions, qualities and services. Applications should cover, among other things, digital storage
media, television broadcasting and real-time communications. In the course of creating this Specification, various
requirements from typical applications have been considered, necessary algorithmic elements have been developed, and
these have been integrated into a single syntax. Hence, this Specification will facilitate video data interchange among
different applications.

Considering the practicality of implementing the full syntax of this Specification, however, a limited number of subsets
of the syntax are also stipulated by means of "profiles" and "levels". These and other related terms are formally defined
in clause 3.

A "profile" is a subset of the entire bitstream syntax that is specified by this Recommendation | International Standard.
Within the bounds imposed by the syntax of a given profile it is still possible to require a very large variation in the
performance of encoders and decoders depending upon the values taken by parameters in the bitstream such as the
specified size of the decoded pictures. In many applications, it is currently neither practical nor economic to implement a
decoder capable of dealing with all hypothetical uses of the syntax within a particular profile.

In order to deal with this problem, "levels" are specified within each profile. A level is a specified set of constraints
imposed on values of the syntax elements in the bitstream. These constraints may be simple limits on values.
Alternatively they may take the form of constraints on arithmetic combinations of values (e.g. picture width multiplied
by picture height multiplied by number of pictures decoded per second).

Coded video content conforming to this Recommendation | International Standard uses a common syntax. In order to
achieve a subset of the complete syntax, flags and parameters are included in the bitstream that signal the presence or
absence of syntactic elements that occur later in the bitstream. In order to specify constraints on the syntax (and hence

DRAFT ITU-T Rec. H.264 (2002 E) xiii

DRAFT I SO/IEC 14496-10 : 2002 (E)

define a profile), it is thus only necessary to constrain the values of these flags and parameters that specify the presence
of later syntactic elements.

0.5 Overview of the syntax

The coded representation specified in the syntax achieves a high compression capability for a desired image quality. The
algorithm is not lossless, as the exact source sample values are typically not preserved through the encoding and
decoding processes. A number of techniques may be used to achieve highly efficient compression. The expected
encoding algorithm (not specified in this Recommendation | International Standard) in inter coding first uses block-based
inter prediction to exploit temporal statistical dependencies or in intra coding first uses spatial prediction to exploit
spatial statistical dependencies in the source signal. Motion vectors and intra prediction modes may be specified for a
variety of block sizes in the picture. The prediction residual is then further compressed using a transform to remove
spatial correlation inside the transform block before it is quantised, producing an irreversible process that typically
discards less important information while forming a close approximation to the source samples. Finally, the motion
vectors or intra prediction modes are combined with the quantised transform coefficient information and encoded using
either variable length codes or arithmetic coding.

0.5.1 Predictive coding

Because of the conflicting requirements of random access and highly efficient compression, two main coding types are
specified. Intra coding is done without reference to other pictures. Intra coding may provide access points to the coded
sequence where decoding can begin and continue correctly, but typically also shows only moderate compression
efficiency. Inter coding (predictive or bi-predictive) is more efficient using inter prediction of each block of sample
values from some previously decoded picture selected by the encoder. In contrast to some other video coding standards,
pictures using bi-predictive inter coding may be used as references for inter coding of other pictures.

The application of the three coding types to pictures in a sequence is flexible, and the order of the decoding process is
generally not the same as the order of the source picture capture process in the encoder or the output order from the
decoder for display. The choice is left to the encoder and will depend on the requirements of the application. The
decoding order is specified such that the decoding of pictures that use inter-picture prediction follows later in decoding
order than other pictures that are referenced in the decoding process.

0.5.2 Caodinginterlaced video

This Recommendation | International Standard specifies a syntax and decoding process for video that originated in either
progressive-scan or interlaced-scan form, which may be mixed together in the same sequence. The two fields of an
interlaced frame are separated in time while the two fields of a progressive frame share the same time. Each field may be
coded separately or they may be coded together as a frame. Progressive frames are typically coded as a frame.

Each frame of interlaced video consists of two fields that are separated in capture time. This
Recommendation | International Standard allows either the representation of complete frames or the representation of
individual fields. Frame encoding or field encoding can be adaptively selected on a picture-by-picture basis and also on a
more localized basis within a coded frame. Frame encoding is typically preferred when the video scene contains
significant detail with limited motion. Field encoding, in which the second field can be predicted from the first, works
better when there is fast picture-to-picture motion.

0.5.3 Picture partitioning into macroblocks and smaller partitions

As in previous video coding Recommendations and International Standards, a macroblock consisting of a 16x16 block of
luma samples and two corresponding blocks of chroma samples is used as the basic processing unit of the video
decoding process.

A macroblock can be further partitioned for inter prediction. The selection of the size of inter prediction partitions is a
result of a trade-off between the coding gain provided by using motion compensation with smaller blocks and the
quantity of data needed to represent the data for motion compensation. In this Recommendation | International Standard
the inter prediction process can form segmentations for motion representation as small as 4x4 luma samples in size, using
motion vector accuracy of one-quarter of the luma sample grid spacing displacement. The process for inter prediction of
a sample block can also involve the selection of the picture to be used as the reference picture from a number of stored
previously-decoded pictures. Motion vectors are encoded differentially with respect to predicted values formed from
nearby encoded motion vectors.

Typically, the encoder calculates appropriate motion vectors and other data elements represented in the video data
stream. This motion estimation process in the encoder and the selection of whether to use inter prediction for the
representation of each region of the video content is not specified in this Recommendation | International Standard.

Xiv DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT 1SO/IEC 14496-10 : 2002 (E)

0.5.4 Spatial redundancy reduction

Both source pictures and prediction residuals have high spatial redundancy. This
Recommendation | International Standard is based on the use of a block-based transform method for spatial redundancy
removal. After inter prediction from previously-decoded samples in other pictures or spatial-based prediction from
previously-decoded samples within the current picture, the resulting prediction residual is split into 4x4 blocks. These
are converted into the transform domain where they are quantised. After quantisation many of the transform coefficients
are zero or have low amplitude and can thus be represented with a small amount of encoded data. The processes of
transformation and quantisation in the encoder are not specified in this Recommendation | International Standard.

0.6 How to read this specification

It is recommended that the reader starts with clause 1 (Scope) and moves on to clause 3 (Definitions). Clause 6 should be
read for the geometrical relationship of the source, input, and output of the decoder. Clause 7 (Syntax and semantics)
specifies the order to parse syntax elements from the bitstream. See subclauses 7.1-7.3 for syntactical order and see
subclause 7.4 for semantics; i.e., the scope, restrictions, and conditions that are imposed on the syntax elements. The
actual parsing for most syntax elements is specified in clause 9 (Parsing process). Finally, clause 8 (Decoding process)
specifies how the syntax elements are mapped into decoded samples. Throughout reading this specification, the reader
should refer to clauses 2 (Normative references), 4 (Abbreviations), and 5 (Conventions) as needed. Annexes A through
E also form an integral part of this Recommendation | International Standard.

Throughout this specification, statements appearing with the preamble "NOTE -" are informative and are not an integral
part of this Recommendation | International Standard.

DRAFT ITU-T Rec. H.264 (2002 E) XV

DRAFT 1SO/IEC 14496-10 : 2002 (E)

1 Scope

This document specifies ITU-T Recommendation H.264 | ISO/IEC International Standard ISO/IEC 14496-10 video
coding.

2 Nor mative refer ences

The following Recommendations and International Standards contain provisions that, through reference in this text,
constitute provisions of this Recommendation | International Standard. At the time of publication, the editions indicated
were valid. All Recommendations and Standards are subject to revision, and parties to agreements based on this
Recommendation | International Standard are encouraged to investigate the possibility of applying the most recent
edition of the Recommendations and Standards listed below. Members of IEC and ISO maintain registers of currently
valid International Standards. The Telecommunication Standardisation Bureau of the ITU maintains a list of currently
valid ITU-T Recommendations.

— ITU-T Recommendation T.35 (2000), Procedure for the allocation of ITU-T defined codes for non-
standard facilities

— ISO/IEC 11578:1996, Annex A, Universal Unique Identifier
— ISO/CIE 10527:1991, Colorimetric Observers

3 Definitions

For the purposes of this Recommendation | International Standard, the following definitions apply.

31 AC coefficient: Any transform coefficient for which the frequency index in one or both dimensions is non-
zero.
3.2 adaptive binary arithmetic decoding: An entropy decoding process that recovers the values of bins from a

sequence of bits produced by an adaptive binary arithmetic encoding process.

3.3 adaptive binary arithmetic encoding: An entropy encoding process, not normatively specified in this
Recommendation | International Standard, that codes a sequence of bin values by means of a recursive interval
subdivision process using the adaptively estimated probabilities of the individual bins.

3.4 arbitrary dice order: An ordering of slices in which the macroblock address of the first macroblock of some
slice may be smaller than the macroblock address of the first macroblock of some other slice of the picture that
precedes it in decoding order.

35 B dlice: A dlice that may be decoded using intra prediction from decoded samples within the same slice or
inter prediction from previously-decoded reference pictures, using at most two motion vectors and reference
indices to predict the sample values of each block.

3.6 bin: One bit of a bin string.

3.7 binarization: The set of binary representations of all possible values of a Syntax element.

3.8 binarization process: A unique mapping process of possible values of a syntax element onto a set of bin
strings.

3.9 bin string: A string of bins. A bit string is an intermediate binary representation of values of syntax elements.

3.10 bi-predictive dice: See B slice.

311 bitstream: A sequence of bits that forms the representation of data and coded fields and frames forming one or
more video sequence. Bitstream is a collective term used to refer either to a NAL unit stream or a byte stream.

3.12 block: An MxN (M-column by N-row) array of samples, or an MxN array of transform coefficients.

3.13 bottom field: One of two fields that comprise a frame. Each row of a bottom field is spatially located
immediately below a corresponding row of a top field.

3.14 bottom macroblock (of a macroblock pair): The macroblock within a macroblock pair that contains the
samples in the bottom row of samples for the macroblock pair. For a field macroblock pair, the bottom
macroblock represents the samples from the region of the bottom field of the frame that lie within the spatial

DRAFT ITU-T Rec. H.264 (2002 E) 1

3.15

3.16

3.17

3.18

3.19

3.20

321
3.22
3.23

3.24

3.25
3.26

3.27

3.28

3.29

3.30
331

3.32

3.33
3.34
3.35

3.36

3.37

2

region of the macroblock pair. For a frame macroblock pair, the bottom macroblock represents the samples of
the frame that lie within the bottom half of the spatial region of the macroblock pair.

broken link: A location in a bitstream at which it is indicated that some subsequent pictures may contain
serious visual artefacts due to unspecified operations performed in the generation of the bitstream.

byte: A sequence of 8 bits, ordered from the first and most significant bit on the left to the last and least
significant bit on the right.

byte-aligned: A bit in a bitstream is byte-aligned if its position is a multiple of 8 bits from the first bit in the
bitstream.

byte stream: An encapsulation of a NAL unit stream containing start code prefixes and NAL units as specified
in Annex B.

category: A number associated with each syntax element that specifies the allocation of syntax elements to
NAL units for dice data partitioning. It may also be used in a manner determined by the application to refer to
classes of syntax elements in a manner not specified in this Recommendation | International Standard.

chroma: An adjective specifying that a sample array or single sample is representing one of the two colour
difference signals related to the primary colours. The symbols used for a chroma array or sample are Cb and
Cr.

NOTE - The term chroma is used rather than the term chrominance in order to avoid the implication of the use of linear
light transfer characteristics that is often associated with the term chrominance.

coded field: A coded representation of a field.
coded frame: A coded representation of a frame.

coded picture: A coded representation of a picture. A coded picture may be either a coded field or a coded
frame and may be either a primary coded picture or a redundant coded picture. In cases where a distinction is
relevant but is not explicitly stated, the term coded picture shall be interpreted to refer the primary coded
picture.

coded picture buffer (CPB): A first-in first-out buffer containing coded pictures in decoding order specified
in the hypothetical reference decoder in Annex C.

coded representation: A data element as represented in its coded form.

component: An array or single sample from one of the three arrays (luma and two chroma) that make up a
field or frame.

complementary non-reference field pair: Two non-reference fields that are adjacent in decoding order as
two coded fields where the first field is not already a paired field.

complementary reference field pair: Two reference fields that are adjacent in decoding order as two coded
fields and share the same value of frame number.

context variable: A variable specified for the decoding process of a symbol by an equation containing recently
decoded symbols.

DC coefficient: A transform coefficient for which the frequency index is zero in all dimensions.

decoded picture: A decoded picture is derived by decoding a coded picture. A decoded picture is either a
decoded frame, or a decoded field. A decoded field is either a decoded top field or a decoded bottom field.

decoded picture buffer (DPB): A buffer holding decoded pictures for reference, output reordering, or output
delay specified for the hypothetical reference decoder in Annex C.

decoder: An embodiment of a decoding process.
decoding order: The nominal order in which syntax elements are processed by the decoding process.

decoding process: The process specified in this Recommendation | International Standard that reads a
bitstream and produces decoded pictures.

direct prediction: An inter prediction for a block for which no motion vector is decoded. Two direct
prediction modes are specified that are referred to as spatial direct prediction and temporal prediction mode.

emulation prevention byte: A byte equal to 0x03 that may be present within a NAL unit. The presence of
emulation prevention bytes ensures that no sequence of consecutive byte-aligned bytes in the NAL unit
contains a start code prefix.

DRAFT ITU-T Rec. H.264 (2002 E)

3.38

3.39

3.40

341

3.42

343

344
345

3.46

3.47
3.48

3.49

3.50
351

3.52
3.53

354
3.55

3.56
3.57

3.58

3.59

3.60

DRAFT 1SO/IEC 14496-10 : 2002 (E)

encoder: An embodiment of an encoding process.

encoding process: A process, not specified in this Recommendation | International Standard, that reads a
sequence of fields and frames and produces a conforming bitstream as specified in this
Recommendation | International Standard.

field: An assembly of alternate rows of a frame. A frame is composed of two fields, a top field and a bottom
field.

field macroblock: A macroblock containing samples from a single field. All macroblocks of a coded field are
field macroblocks. When macroblock-adaptive frame/field decoding is in use, some macroblocks of a coded
frame may be field macroblocks.

field macroblock pair: A macroblock pair decoded as two field macroblocks.

field scan: A specific sequential ordering of transform coefficients that differs from the zig-zag scan by
scanning columns more rapidly than rows. Field scan is used for transform coefficients in field macroblocks.

flag: A variable that can take one of only two possible values.

frame: A frame contains an array of luma samples and two corresponding arrays of chroma samples. A frame
consists of two fields, a top field and a bottom field.

frame macroblock: A macroblock representing samples from two fields of a coded frame. When macroblock-
adaptive frame/field decoding is not in use, all macroblocks of a coded frame are frame macroblocks. When
macroblock-adaptive frame/field decoding is in use, some macroblocks of a coded frame may be frame
macroblocks.

frame macroblock pair: A macroblock pair decoded as two frame macroblocks.

frequency index: A one-dimensional or two-dimensional index associated with a transform coefficient prior to
an inverse transform part of the decoding process.

hypothetical reference decoder (HRD): A hypothetical decoder model that specifies constraints on the
variability of conforming NAL unit streams or conforming byte streams that an encoding process may produce.

| slice: A dlicethat is decoded using prediction only from decoded samples within the same slice.

instantaneous decoding refresh (IDR) picture: A coded picture containing only | or S slice types that causes
the decoding process to mark all reference pictures as "unused for reference" immediately before decoding the
IDR picture, and to indicate that later coded pictures in decoding order can be decoded without inter prediction
from any picture decoded prior to the IDR picture. The first picture of each video sequence is an IDR picture.

inter coding: Coding of a block, macroblock, slice, or picture that uses inter prediction.

inter prediction: A prediction derived from decoded samples of reference pictures other than the current
decoded picture. Inter prediction is a collective term for the prediction process invoked for P or B macroblock

types.
intra coding: Coding of a block, macroblock, slice or picture that uses intra prediction.

intra prediction: A prediction derived from the decoded samples of the same decoded picture. Intra
prediction is a collective term for the prediction process invoked for I or SI macroblock types.

intra dice: See I slice.

inverse transform: A part of the decoding process by which a transform coefficients are converted into
spatial-domain values, or by which a transform coefficients are converted into DC coefficients.

layer: One of a set of syntactical structures in a non-branching hierarchical relationship. Higher layers contain
lower layers. The coding layers are the sequence, picture, slice, reference picture selection [Ed. Note(GJS):
That's not the proper name], macroblock, prediction block [Ed. Note(GJS): Is that the right name?], and 4x4
block layers.

level: A defined set of constraints on the values that may be taken by the syntax elements and variables of this
Recommendation | International Standard. The same set of level definitions is used with all profiles, but
individual implementations may, within specified constraints, support a different level for each supported
profile. In a different context, level is the value of a transform coefficient prior to scaling.

list O (list 1) motion vector: A motion vector associated with a reference index pointing into reference picture
list O (list 1).

DRAFT ITU-T Rec. H.264 (2002 E) 3

3.61

3.62

3.63

3.64

3.65

3.66

3.67

3.68

3.69

3.70

3.71

3.72

3.73
3.74
3.75

3.76
3.77

3.78

3.79

4

list O (list 1) prediction: Inter prediction of the content of a Slice using a reference index pointing into
reference picturelist O (list 1).

luma: An adjective specifying that a sample array or single sample is representing the monochrome signal
related to the primary colours. The symbol used for luma is Y.

NOTE — The term luma is used rather than the term luminance in order to avoid the implication of the use of linear
light transfer characteristics that is often associated with the term luminance.

macroblock: A 16x16 block of luma samples and two corresponding blocks of chroma samples. The division
of a slice or a macroblock pair into macroblocks is a partitioning.

macr oblock-adaptive framef/field decoding: A decoding process for coded frames in which some
macr oblocks may be decoded as frame macroblocks and others may be decoded as field macroblocks.

macr oblock address: When macroblock-adaptive frame/field decoding is not in use, a macroblock address is
the index of a macroblock in a macroblock raster scan of the picture starting with zero for the top-left
macroblock in a picture. When macroblock-adaptive frame/field decoding is in use, the macroblock address of
the top macroblock of a macroblock pair is two times the index of the macroblock pair in a macroblock pair
raster scan of the picture, and the macroblock address of the bottom macroblock of a macroblock pair is the
macroblock address of the corresponding top macroblock plus 1. The macroblock address of the top
macroblock of each macroblock pair is an even number and the macroblock address of the bottom macroblock
of each macroblock pair is an odd number.

macr oblock location: The two-dimensional coordinates of a macroblock in a picture denoted by (x, y). For
the top left macroblock of the picture (x, y) is equal to (0, 0). x is incremented by 1 for each macroblock
column from left to right. When macroblock-adaptive frame/field decoding is not in use, y is incremented by 1
for each macroblock row from top to bottom. When macroblock-adaptive frame/field decoding is in use, y is
incremented by 2 for each macroblock pair row from top to bottom, and is incremented by an additional 1 if a
macroblock is a bottom macroblock.

macroblock pair: A pair of vertically contiguous macroblocks in a frame that is coupled for use in
macroblock-adaptive frame/field decoding processing. The division of a slice into macroblock pairs is a
partitioning.

macroblock partition: A block of luma samples and two corresponding blocks of chroma samples resulting
from a partitioning of a macroblock for inter prediction.

macroblock to slice group map: A means of mapping macroblocks of a picture into slice groups. The
macroblock to slice group map consists of a list of numbers, one for each coded macroblock, specifying the
slice group to which each coded macroblock belongs.

map unit to sice group map: A means of mapping slice group map units of a picture into slice groups. The
map unit to slice group map consists of a list of numbers, one for each slice group map unit, specifying the
slice group to which each coded slice group map unit belongs.

motion vector: A two-dimensional vector used for inter prediction that provides an offset from the coordinates
in the decoded picture to the coordinates in a reference picture.

NAL unit: A syntax structure containing an indication of the type of data to follow and bytes containing that
data in the form of an RBSP interspersed as necessary with emulation prevention bytes.

NAL unit stream: A sequence of NAL units.
non-paired referencefield: A decoded referencefield that is not part of a complementary reference field pair.

non-reference picture: A picture coded with nal_ref idc equal to 0. A non-reference picture is not used for
inter prediction of any other pictures.

opposite parity: The opposite parity of top is bottom, and vice versa.

output order: The order in which the decoded pictures are intended for output from the decoded picture
buffer.

P dlice: A dlice that may be decoded using intra prediction from decoded samples within the same slice or inter
prediction from previously-decoded reference pictures, using at most one motion vector and reference index to
predict the sample values of each block.

parameter: A syntax element of a sequence parameter set or a picture parameter set. [Ed. Note(WYK): Not
accurate, since “parameter” is used in many other places such as “quantisation parameter”, “HRD parameter”.
Is the definition really necessary?]

DRAFT ITU-T Rec. H.264 (2002 E)

3.80
381

3.82
3.83
3.84

3.85
3.86

3.87
3.88

3.89

3.90
391
3.92
3.93
3.94

3.95

3.96

3.97

3.98

3.99

3.100
3.101
3.102

3.103

3.104

DRAFT 1SO/IEC 14496-10 : 2002 (E)

parity: The parity of a field can be top or bottom.

partitioning: The division of a set into subsets such that each element of the set is in exactly one of the
subsets.

picture: A collective term for a field or a frame.
picture order count: Picture position in output order, relative to the previous IDR picture in decoding order.

picturereordering: The process of reordering the decoded pictures when the decoding order is different from
the output order.

prediction: An embodiment of the prediction process.

prediction process: The use of a predictor to provide an estimate of the sample value or data element currently
being decoded.

predictive slice: See P slice.

predictor: A combination of previously decoded sample values or data elements used in the decoding process
of subsequent sample values or data elements.

primary coded picture: A primary coded representation of a picture. The primary coded picture contains all
slices of the picture (and thus contains all macroblocks or macroblock pairs of the picture, as the division of
the picture into slice groupsis a partitioning and the division of the slice groupsinto slices s a partitioning for
the primary coded picture). In cases where a distinction is relevant but is not explicitly stated, the term coded
picture shall be interpreted to refer the primary coded picture. In particular, all pictures that have a normative
effect on the decoding process are primary coded pictures (see redundant coded pictures).

primary coded slice: A slice belonging to a primary coded picture.

primary dice data partition: A dice data partition belonging to a primary coded dice.

profile: A specified subset of the syntax of this Recommendation | International Standard.

guantisation parameter: A variable used by the decoding process for scaling of transform coefficient levels.

random access: The act of starting the decoding process for a coded NAL unit stream at a point other than the
beginning of the stream.

raster scan: A mapping of a rectangular two-dimensional pattern to a one-dimensional pattern such that the
first entries in the one-dimensional pattern are from the first top row of the two-dimensional pattern scanned
from left to right, followed similarly by the second, third, etc. rows of the pattern (going down) each scanned
from left to right.

raw byte sequence payload (RBSP): A syntactical data structure containing an integer number of bytes
encapsulated in a NAL unit that is either null or has the form of a string of data bits containing syntax elements,
followed by an RBSP stop hit, and followed by zero or more subsequent bits equal to 0.

raw byte sequence payload stop bit: A bit equal to 1 present within a raw byte sequence payload (RBSP)
after a string of data bits. The location of the end of the string of data bits within an RBSP can be identified by
searching from the end of the RBSP for the RBSP stop bit, which is the last non-zero bit in the RBSP.

recovery point: A point in the NAL unit stream at which the recovery of an exact or approximate
representation of the decoded pictures represented by the NAL unit stream is achieved after a random access or
broken link.

redundant coded picture: A redundant coded representation of a picture or a part of a picture that shall not be
used for decoding unless the primary coded picture is missing or corrupted (a condition that is not allowed in a
conforming bitstream). The redundant coded picture is not required to contain all macroblocks in the primary
coded picture. Redundant coded pictures have no normative effect on the decoding process.

redundant coded slice: A dice belonging to a redundant coded picture.
redundant slice data partition: A slice data partition belonging to a redundant coded slice.

referencefield: A reference field is used for inter prediction when P, SP, and B dlices of a coded field or field
macroblocks of a coded frame are decoded. See also reference picture.

reference frame: A reference frame is used for inter prediction when P, SP, and B dlices of a coded frame are
decoded. See also reference picture.

referenceindex: An index into a reference picturelist.

DRAFT ITU-T Rec. H.264 (2002 E) 5

3.105

3.106

3.107

3.108

3.109

3.110

3111
3.112

3.113

3114
3.115

3.116

3.117

3.118

3.119

3.120
3121

3.122
3.123

3.124

6

reference picture: A primary coded picture with nal ref idc not equal to 0. A reference picture contains
samples that may be used for inter prediction of subsequent pictures in decoding order.

reference picturelist: A list of short-term picture numbers and long-term picture numbers that are assigned to
reference pictures.

reference picture list 0: A reference picture list used for inter prediction of a P, B, or SP dice. All inter
prediction used for P and SP slices uses reference picture list 0. Reference picture list 0 is one of two
reference picture lists used for inter prediction for a B dice, with the other being reference picture list 1.

reference picturelist 1: A reference picture list used for inter prediction of a B dlice. Reference picture list 1
is one of two lists of reference picture lists used for inter prediction for a B dice, with the other being
reference picturelist 0.

reference picture marking: Specifies in the coded data, how the decoded pictures are marked for inter
prediction.

reserved: The term “reserved”, when used in the clauses specifying some values of a particular syntax element
means that these values may be used in extensions of this Recommendation | International Standard by
ITU-T | ISO/IEC, and that these values shall not be used.

residual: The decoded difference between a prediction of a sample or data element and its decoded value.

run: A number of consecutive data elements represented in the decoding process. In one context, the number
of zero-valued transform coefficients preceding a non-zero transform coefficient, in the zig-zag scan or field
scan. In other contexts, run refers to a number of macroblocks.

sample aspect ratio: Specifies, for assisting the display process not specified in this
Recommendation | International Standard, the ratio between the intended horizontal distance between the
columns and the intended vertical distance between the rows of the luma sample array in a frame. Sample
aspect ratio is expressed as h:v, where h is horizontal width and v is vertical height (in arbitrary units of spatial
distance).

scaling: The process of scaling the transform coefficient levels resulting in transform coefficients.

Sl dlice: A dice that is coded using prediction only from decoded samples within the same slice, encoded such
that it can be reconstructed identically to an SP dlice.

skipped macroblock: A macroblock for which no data is coded other than an indication that the macroblock is
to be decoded as "skipped". This indication may be common to several macroblocks.

dlice: An integer number of macroblocks or macroblock pairs ordered contiguously in raster scan order within
a particular slice group. For the primary coded picture, the division of each dice group into slices is a
partitioning. Although a slice contains macroblocks or macroblock pairs that are contiguous in raster scan
order within a slice group, these macroblocks or macroblock pairs are not necessarily contiguous within the
picture. The addresses of the macroblocks are derived from the address of the first macroblock or macroblock
pair in a slice (as represented in the slice header) and the macroblock to slice group map.

slice data partitioning: A method of partitioning selected syntax elements into syntactical structures based on
a category associated with each of the syntax elements.

slice group: A subset of the macroblocks or macroblock pairs of a picture. The division of the picture into
slice groups is a partitioning of the picture. The partitioning is specified by the macroblock to slice group map.

glice group map units: The units of the map unit to slice group map.

dlice header: A part of a coded dlice containing the data elements pertaining to the first or all macroblocks
represented in the slice.

sour ce: Term used to describe the video material or some of its attributes before encoding.

SP dice: A dicethat is coded using inter prediction from previously-decoded reference pictures, using at most
one motion vector and reference index to predict the sample values of each block, encoded such that it can be
reconstructed identically to another SP slice or an S dlice.

start code prefix: A unique sequence of three bytes equal to 0x000001 embedded in the byte stream as a
prefix to each NAL unit. The location of a start code prefix can be used by a decoder to identify the beginning
of a new NAL unit and the end of a previous NAL unit. Emulation of start code prefixes is prevented within
NAL units by the inclusion of emulation prevention bytes.

DRAFT ITU-T Rec. H.264 (2002 E)

3.125

3.126

3.127

3.128
3.129
3.130
3.131
3.132
3.133

3.134

3.135

3.136

3.137

3.138

3.139

3.140

4
41
4.2
43
4.4
45
46
47
48
4.9
4.10
411

DRAFT 1SO/IEC 14496-10 : 2002 (E)

string of data bits (SODB): A sequence of some number of bits representing syntax elements present within a
raw byte sequence payload prior to the raw byte sequence payload stop bit. Within an SODB, the left-most bit
is considered to be the first and most significant bit and the right-most bit is considered to be the last and least
significant bit.

sub-macroblock: One quarter of the samples of a macroblock, i.e., an 8x8 luma block and two 4x4 chroma
blocks of which one corner is located at a corner of the macroblock.

sub-macroblock partition: A block of luma samples and two corresponding blocks of chroma samples
resulting from a partitioning of a sub-macroblock for inter prediction.

switching | slice: See Sl slice.

switching P glice: See SP slice.

symbol: A syntax element, or part thereof, to be decoded.

syntax element: An element of data represented in the bitstream.

syntax structure: Zero or more Syntax elements present together in the bitstream in a specified order.

top field: One of two fields that comprise a frame. Each row of a top field is spatially located immediately
above the corresponding row of the bottom field.

top macraoblock (of a macroblock pair): The macroblock within a macroblock pair that contains the samples
in the top row of samples for the macroblock pair. For a field macroblock pair, the top macroblock represents
the samples from the region of the top field of the frame that lie within the spatial region of the macroblock
pair. For a frame macroblock pair, the top macroblock represents the samples of the frame that lie within the
top half of the spatial region of the macroblock pair.

transform coefficient: A scalar quantity, considered to be in a frequency domain, that is associated with a
particular one-dimensional or two-dimensional frequency index in an inverse transform part of the decoding
process.

transform coefficient level: An integer quantity representing the value associated with a particular two-
dimensional frequency index in the decoding process prior to scaling for computation of a transform
coefficient value.

universal unique identifier (UUID): An identifier that is unique with respect to the space of all universal
unique identifiers.

variable length coding (VLC): A reversible procedure for entropy coding that assigns shorter codewords to
symbols expected to be more frequent and longer codewords to symbols expected to be less frequent.

video sequence: A sequence of pictures that consists, in syntax order, of an IDR picture followed zero or more
non-IDR pictures including all subsequent pictures up to but not including any subsequent IDR picture.

Zig-zag scan: A specific sequential ordering of transform coefficients from (approximately) the lowest spatial
frequency to the highest. Zig-zag scan is used for transform coefficients in frame macroblocks.

Abbreviations

CABAC: Context-based Adaptive Binary Arithmetic Coding
CAVLC: Context-based Adaptive Variable Length Coding
CBR: Constant Bit Rate

CPB: Coded Picture Buffer

DPB: Decoded Picture Buffer

FIFO: First-In, First-Out

HRD: Hypothetical Reference Decoder

I DR: Instantaneous Decoding Refresh

L PS: Least Probable Symbol

L SB: Least Significant Bit

M B: Macroblock

DRAFT ITU-T Rec. H.264 (2002 E) 7

4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22
4.23

5

5.1

MBAFF: Macroblock-Adaptive Frame-Field Coding
M PS: Most Probable Symbol

M SB: Most Significant Bit

NAL: Network Abstraction Layer

RBSP: Raw Byte Sequence Payload

SE|: Supplemental Enhancement Information
SODB: String Of Data Bits

UUID: Universal Unique Identifier

VBR: Variable Bit Rate

VCL: Video Coding Layer

VLC: Variable Length Coding

VUI: Video Usability Information

Conventions

NOTE - The mathematical operators used in this Specification are similar to those used in the C programming language. However,
integer division and arithmetic shift operations are specifically defined. Numbering and counting conventions generally begin
from 0.

Arithmetic operators

The following arithmetic operators are defined as follows

5.2

+

~

X
y

Addition

Subtraction (as a two-argument operator) or negation (as a unary prefix operator)
Multiplication

Multiplication

Multiplication

Exponentiation. Specifies x to the power of y. In other contexts, such notation is used for
superscripting not intended for interpretation as exponentiation.

Integer division with truncation of the result toward zero. For example, 7/4 and —7/—4 are truncated to 1
and —7/4 and 7/-4 are truncated to —1.

Used to denote division in mathematical equations where no truncation or rounding is intended.

Used to denote division in mathematical equations where no truncation or rounding is intended.

y
Z f (i) The summation of f(i) with i taking all integer values from x up to and including y.
i=x

x%y Modulus. Remainder of x divided by y, defined only for integers x and y with x >= 0 and y > 0.

Logical operators

The following logical operators are defined as follows

5.3

x && y Boolean logical "and" of x and y

x || y Boolean logical "or" of x and y

Boolean logical "not"

x ?y:z Ifxis TRUE or not equal to 0, evaluates to the value of y; otherwise, evaluates to the value of z

Relational operators

The following relational operators are defined as follows

8

DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT 1SO/IEC 14496-10 : 2002 (E)

> Greater than

>= Greater than or equal to
< Less than

<= Less than or equal to
== Equal to

I= Not equal to

54 Bit-wise operators

The following bit-wise operators are defined as follows

& Bit-wise "and". When operating on integer arguments, operates on a two's complement representation
of the integer value.

| Bit-wise "or". When operating on integer arguments, operates on a two's complement representation of
the integer value.

x>>y Arithmetic right shift of a two’s complement integer representation of x by y binary digits. This
function is defined only for positive values of y. Bits shifted into the MSBs as a result of the right shift
shall have a value equal to the MSB of x prior to the shift operation.

x <<y Arithmetic left shift of a two’s complement integer representation of x by y binary digits. This function
is defined only for positive values of y. Bits shifted into the LSBs as a result of the left shift have a
value equal to 0.

55 Assignment operators

The following arithmetic operators are defined as follows
= Assignment operator.

++ Increment, i.e., X++ is equivalent to X = X+ 1; when used in an array index, evaluates to the value of the
variable prior to the increment operation.

— Decrement, i.e., X—— is equivalent to X = X — 1; when used in an array index, evaluates to the value of
the variable prior to the decrement operation.

+= Increment by amount specified, i.e., x += 3 is equivalent to x = x + 3, and x += (-3) is equivalent to
x=x+(-3).

— Decrement by amount specified, i.e., x — 3 is equivalent to x = x — 3, and x — (-3) is equivalent to x =
x —(-3).

5.6 Range notation
The following notation is used to specify a range of values

x=y..z x takes on integer values starting from y to z inclusive, with X, y, and z being integer numbers.

57 M athematical functions

The following mathematical functions are defined as follows

X ; X=0
Abs(x)= (5-1)
-X ; X<0
Ceil(x) rounds x up to the nearest integer greater than or equal to x. (5-2)
Clip1(x)= Clip3(0, 255, x) (5-3)

DRAFT ITU-T Rec. H.264 (2002 E) 9

5.8

X ; Z<X
Clip3(x,y,z)=3y ; z>y
Z ; otherwise

Floor(x) rounds x down to the nearest integer less than or equal to x.

(a%(d /b)) *b; e==

InverseRasterScan(a, b, c,d, e)=
{ (a/(d/b))*c;, e==

Log2(x) returns the base-2 logarithm of x.
Logl0(x) returns the base-10 logarithm of x.
Luma4x4BlkScan(x,y)=(x/2)*4+(y/2)* 8+ RasterScan(x % 2,y % 2,2)

Median(X, y,z)=x+y+z—Min(x, Min(y, z)) — Max(x, Max(y,z))

{x i X<y
Min(x,y)=
y ; X>Yy
: >
Max(x,y)={x > X2V
y § X<y

RasterScan(x,y,n,)=x+y *n,
Round(x) =Sign(x) * n where n is an integer and n - 0.5 <= Abs(x)<n+0.5

RasterTodx4LumaBIkOffset(x) = (((x % 4)/2)-((x/4)%2))*2

Sign(x) = 1 ; x=0
-1 ; x<0

Sqrt(x) = vx

Variables, syntax elementsand tables

(5-4)

(3-5)

(5-6)

(5-7)

(5-8)

(5-9)

(5-10)

(5-11)

(5-12)

(5-13)

(5-14)

(5-15)

(5-16)

(5-17)

Syntax elements in the bitstream are represented in bold type. Each syntax element is described by its name (all lower
case letters with underscore characters), its syntax category and descriptor for its method of coded representation. The
decoding process behaves according to the value of the syntax element and to the values of previously decoded syntax
elements. When a value of a syntax element is used in the syntax tables or the text, it appears in regular (i.e., not bold)

type.

In some cases the syntax tables may use the values of other variables derived from syntax elements values. Such
variables appear in the syntax tables, or text, named by a mixture of lower case and upper case letter and without any
underscore characters. Variables starting with an upper case letter are derived for the decoding of the current syntax

10

DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT 1SO/IEC 14496-10 : 2002 (E)

structure and all depending syntax structures. Variables starting with an upper case letter may be used in the decoding
process for later syntax structures mentioning the originating syntax structure of the variable. Variables starting with a
lower case letter are only used within the subclause in which they are derived.

In some cases, "mnemonic" names for syntax element values or variable values are used interchangeably with their
numerical values. Sometimes "mnemonic" names are used without any associated numerical values. The association of
values and names is specified in the text. The names are constructed from one or more groups of letters separated by an
underscore character. Each group starts with an upper case letter and may contain more upper case letters.

NOTE - The syntax is described in a manner that closely follows the C-language syntactic constructs.

Functions are described by their names, which are constructed as syntax element names, with left and right round
parentheses including zero or more variable names (for definition) or values (for usage), separated by commas (if more
than one variable).

Square parentheses are used for indexing in lists or arrays. Lists or arrays can either be syntax elements or variables.

Binary notation is indicated by enclosing the string of bit values by single quote marks. For example, ‘01000001
represents an eight-bit string having only its second and its last bits equal to 1.

Hexadecimal notation, indicated by prefixing the hexadecimal number by "0x", may be used instead of binary notation
when the number of bits is a multiple of 4. For example, 0x41 represents an eight-bit string having only its second and
its last bits equal to 1.

Numerical values not enclosed in single quotes and not prefixed by "0x" are decimal values.

A value equal to 0 represents a FALSE condition in a test statement. The value TRUE is represented by any other value
different than zero.

59 Processes

Processes are used to describe the decoding of syntax elements. A process has a separate specification and invoking. All
syntax elements and upper case variables that pertain to the current syntax structure and depending syntax structures are
available in the process specification and invoking. A process specification may also have a lower case variable
explicitly specified as the input. Each process specification has explicitly specified an output. The output is a variable
that can either be an upper case variable or a lower case variable. When invoking a process, variables are explicitly
assigned to lower case input or output variables of the process specification in case these do not have the same name.
Otherwise (when the variables at the invoking and specification have the same name), assignment is implied.

6 Sour ce, coded, decoded, output data formats, scanning processes, and neighbouring
relationships

6.1 Bitstream for mats

This subclause specifies the relationship between the NAL unit stream and byte stream, either of which are referred to as
the bitstream.

The bitstream can be in one of two formats: the NAL unit stream format or the byte stream format. The NAL unit stream
format is conceptually the more "basic" type. It consists of a sequence of syntax structures called NAL units. This
sequence is ordered in decoding order. There are constraints imposed on the decoding order (and contents) of the NAL
units in the NAL unit stream.

The byte stream format can be constructed from the NAL unit stream format by ordering the NAL units in decoding
order and prefixing each NAL unit with a start code prefix and zero or more zero-valued bytes to form a stream of bytes.
The NAL unit stream format can be extracted from the byte stream format by searching for the location of the unique
start code prefix pattern within this stream of bytes. Methods of framing the NAL units in a manner other than use of the
byte stream format are outside the scope of this Recommendation | International Standard. The byte stream format is
specified in Annex B.

6.2 Sour ce, decoded, and output picture formats
This subclause specifies the relationship between source and decoded frames and fields that is given via the bitstream.

The video source that is represented by the bitstream is a sequence of frames and/or fields (called collectively pictures) in
decoding order.

DRAFT ITU-T Rec. H.264 (2002 E) 11

The source and decoded pictures (frames or fields) are each comprised of three sample arrays, one luma and two chroma
sample arrays.

The variable ChromaFormatFactor is specified in Table 6-1. The value of ChromaFormatFactor shall be inferred equal to
L.5.

NOTE — Other values may be valid for future versions of this Recommendation | International Standard.

Table 6-1 — ChromaFor matFactor values

Chroma
For mat ChromaFormatFactor
monochrome 1
4:2:0 1.5
4:2:2 2
4:4:4 3

The width and height of the luma arrays are multiples of 16 samples. This Recommendation | International Standard
represents colour sequences using 4:2:0 chroma sampling. I.e., the width and height of each of the two chroma samples
arrays are half of the width and height of the luma array of the same picture. The width and height of chroma arrays are
multiple of 8 samples. The height of a luma array that is coded as two separate fields or in macroblock-based frame field
adaptive mode (see below) is a multiple of 32 samples. The height of each chroma array that is coded as two separate
fields or in macroblock-based frame field adaptive mode (see below) is a multiple of 16 samples. The width or height of
pictures output from the decoding process need not be a multiple of 16 and can be specified using a cropping rectangle.

The width of fields coded referring to a specific sequence parameter set is the same as that of frames coded referring to
the same sequence parameter set (see below). The height of fields coded referring to a specific sequence parameter set is
half that of frames coded referring to the same sequence parameter set (see below).

The nominal vertical and horizontal relative locations of luma and chroma samples in frames are shown in Figure 6-1.
Alternative chroma sample relative locations may be indicated in video usability information (see Annex E).

12 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT 1SO/IEC 14496-10 : 2002 (E)

X X X X X X

(o) (o) (o) “uw
X X X X X X

X X X X X X

(@) o (@)

X X X X X X

X X X X X X

(@] o @)

X X X X X X

Guide:

X =Location of luma sample
QO =Location of chroma sample

Figure 6-1 —Nominal vertical and horizontal locations of 4:2:0 luma and chroma samplesin a frame

A video frame consists of two fields as described below. A coded picture may represent a frame or an individual field.
A video sequence conforming to this Recommendation | International Standard may contain arbitrary combinations of
coded frames and coded fields. The decoding process is also specified in a manner that allows smaller regions of a
coded frame to be coded either as a frame or field region.

Source and decoded fields are one of two types: top field or bottom field. When two fields are output at the same time, or
are combined to be used as a reference frame (see below), the two fields (which shall be of opposite parity) are
interleaved. The first (i.e., top), third, fifth, etc. rows of a decoded frame are the top field rows. The second, fourth, sixth,
etc. rows of a decoded frame are the bottom field rows. A top field consists of only the top field rows of a decoded
frame. When the top field or bottom field of a decoded frame is used as a reference field (see below) only the even rows
(for a top field) or the odd rows (for a bottom field) of the decoded frame are used.

The nominal vertical and horizontal relative locations of luma and chroma samples in top and bottom fields are shown in
Figure 6-2. Alternative chroma sample relative locations may be indicated in the video usability information (see
Annex E).

The vertical sampling relative locations of the chroma samples in a top field are specified as shifted up by one-quarter
luma sample height relative to the field-sampling grid. The vertical sampling locations of the chroma samples in a
bottom field are specified as shifted down by one-quarter luma sample height relative to the field-sampling grid.

NOTE — The shifting of the chroma samples is in order for these samples to align vertically to the usual location relative to the
full-frame sampling grid.

DRAFT ITU-T Rec. H.264 (2002 E) 13

O X
O X
O X

Q O O
X X X X X X
X X X X X X
O Q O
X X X X X X
Top field L Bottom field L
Guide: Guide:
X = Location of luma sample X = Location of luma sample
O =Location of chroma sample O =Location of chroma sample

Figure 6-2 —Nominal vertical and horizontal sampling locations of samplestop and bottom fields.

6.3 Spatial subdivision of picturesand slices

This subclause specifies how a picture is partitioned into slices and macroblocks. Pictures are divided into slices. A slice
is a sequence of macroblocks, or, when macroblock-adaptive frame/field decoding is in use, a sequence of macroblock
pairs.

Each macroblock is comprised of one 16x16 luma and two 8x8 chroma sample arrays. When macroblock-adaptive
frame/field decoding is not in use, each macroblock represents a spatial rectangular region of the picture. For example, a
picture may be divided into two slices as shown in Figure 6-3. If the first slice in such a partitioning of a picture with 99
macroblocks contains 48 macroblocks, then the second slice contains 51 macroblocks as shown in Figure 6-3.

Figure 6-3— A picturewith 11 by 9 macroblocksthat is partitioned into two slices

When macroblock-adaptive frame/field decoding is in use, the picture is partitioned into slices containing an integer
number of macroblock pairs as shown in Figure 6-4. Each macroblock pair consists of two macroblocks.

14 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT 1SO/IEC 14496-10 : 2002 (E)

>

A macroblock pair

Figure 6-4 — Partitioning of the decoded frameinto macroblock pairs.

6.4 I nver se scanning processes and derivation processes for neighbours

This subclause specifies inverse scanning processes; i.e., the mapping of indices to locations, and derivation processes
for neighbours.

6.4.1 Inversemacroblock scanning process
Input to this process is a macroblock address mbAddr.

Output of this process is the location (x,y) of the upper-left luma sample for the macroblock with address mbAddr
relative to the upper-left sample of the picture.

The inverse macroblock scanning process is specified as follows.

- If MbaffFrameFlag is equal to 0,

x = InverseRasterScan(mbAddr, 16, 16, PicWidthInSamples,, 0) (6-1)

y = InverseRasterScan(mbAddr, 16, 16, PicWidthInSamples,, 1) (6-2)

- Otherwise (MbaffFrameFlag is equal to 1), the following applies.

xO = InverseRasterScan(mbAddr / 2, 16, 32, PicWidthInSamples,, 0) (6-3)

yO = InverseRasterScan(mbAddr / 2, 16, 32, PicWidthInSamples,, 1) (6-4)

- If the current macroblock is a frame macroblock

x=x0 (6-5)

y=y0 + (mbAddr % 2) * 16 (6-6)

- Otherwise (the current macroblock is a field macroblock),

x =x0 (6-7)

DRAFT ITU-T Rec. H.264 (2002 E) 15

y =yO + (mbAddr % 2) (6-8)

6.4.2 Inversemacroblock partition and sub-macraoblock partition scanning process

Macroblocks or sub-macroblocks may be partitioned, and the partitions are scanned for inter prediction as shown in
Figure 6-5. The outer rectangles refer to the samples in a macroblock or sub-macroblock, respectively. The rectangles
refer to the partitions. The number in each rectangle specifies the index of the inverse macroblock partition scan or
inverse sub-macroblock partition scan.

The functions mb_part width(), mb_part_height(), sub_mb_part width(), sub_mb_part_height() describing the width
and height of macroblock partitions and sub-macroblock partitions are specified in Table 7-10, Table 7-11, Table 7-14,
and Table 7-15. mb_part width() and mb_part_height() are set to appropriate values for each macroblock, depending on
the macroblock type. sub_ mb part width() and sub_mb part height() are set to appropriate values for each sub-
macroblock of a macroblocks with mb_type equal to P_8x8, P_8x8ref0, or B_8x8, depending on the sub-macroblock

type.

4 sub-macroblocks of
8*8 luma samples and
associated chroma samples

1 macroblock partition of
16*16 luma samples and
associated chroma samples

2 macroblock partitions of
16*8 luma samples and
associated chroma samples

2 macroblock partitions of
8*16 luma samples and
associated chroma samples

Macroblock 0 0 1
partitions
1 2 3
1 sub-macroblock partition 2 sub-macroblock partitions 2 sub-macroblock partitions | 4 sub-macroblock partitions
of 8*8 luma samples and of 8*4 luma samples and of 4*8 luma samples and of 4*4 lJuma samples and
associated chroma samples | associated chroma samples |associated chroma samples |associated chroma samples
Sub-macroblock 0 0 1
partitions 0 0 1

Figure 6-5—Macroblock partitions, sub-macraoblock partitions, macraoblock partition scans, and sub-macr oblock
partition scans.

6.4.2.1 Inversemacroblock partition scanning process
Input to this process is the index of a macroblock partition mbPartIdx.

Output of this process is the location (x,y) of the upper-left luma sample for the macroblock partition mbPartldx
relative to the upper-left sample of the macroblock.

The inverse macroblock partition scanning process is specified by

x = InverseRasterScan(mbPartldx, mb_part width(mb_type), mb_part _height(mb_type), 16,0) (6-9)

y = InverseRasterScan(mbPartldx, mb_part width(mb_type), mb_part_height(mb_type), 16, 1) (6-10)

6.4.2.2 Inversesub-macroblock partition scanning process

Inputs to this process are the index of a macroblock partition mbPartldx and the index of a sub-macroblock partition
subMbPartIdx.

Output of this process is the location (x,y) of the upper-left luma sample for the sub-macroblock partition
subMbPartldx relative to the upper-left sample of the sub-macroblock.

16 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 :

subMbPartWidth = sub_mb_part width(sub_mb_type[mbPartldx])

subMbPartHeight = sub_mb_part_height(sub_mb_type[mbPartldx])

The inverse sub-macroblock partition scanning process is specified by

x = InverseRasterScan(subMbPartldx, subMbPartWidth, subMbPartHeight, 8, 0)

y = InverseRasterScan(subMbPartldx, subMbPartWidth, subMbPartHeight, 8, 1)

6.4.3 Inverse4x4luma block scanning process

Input to this process is the index of a 4x4 luma block luma4x4BlkIdx.

2002 (E)

(6-11)

(6-12)

(6-13)

(6-14)

Output of this process is the location (x,y) of the upper-left luma sample for the 4x4 luma block with index

luma4x4BIkIdx relative to the upper-left luma sample of the macroblock.

Figure 6-6 shows the scan for the 4x4 luma blocks.

10| 11| 14| 15

Figure 6-6 — Scan for 4x4 luma blocks.

The inverse 4x4 luma block scanning process is specified by

x = InverseRasterScan(luma4x4Blkldx / 4, 8, 8, 16, 0) + InverseRasterScan(luma4x4Blkldx % 4, 4,4, 8,0)

y = InverseRasterScan(luma4x4Blkldx / 4, 8, 8, 16, 1) + InverseRasterScan(luma4x4Blkldx % 4, 4,4, 8, 1)

6.4.4 Derivation process of the availability for macroblock addresses
Input to this process is a macroblock address mbAddr.

Output of this process is the availability of the macroblock mbAddr.

(6-15)

(6-16)

The macroblock is marked as available, unless one of the following conditions is true in which case the macroblock shall

be marked as not available:

- mbAddr<0

- mbAddr > PicSizeInMbs — 1

- the macroblock with address mbAddr belongs to a different slice than the current slice

- the macroblock with address mbAddr is at a later position in decoding order than the current macroblock
6.4.5 Derivation process for neighbouring macroblock addresses and their availability

This process can only be invoked when MbaffFrameFlag is equal to 0.

The outputs of this process are

- mbAddrA: the address and availability status of the macroblock to the left of the current macroblock.

- mbAddrB: the address and availability status of the macroblock above the current macroblock.

- mbAddrC: the address and availability status of the macroblock above-right of the current macroblock.

DRAFT ITU-T Rec. H.264 (2002 E)

17

- mbAddrD: the address and availability status of the macroblock above-left of the current macroblock.

Figure 6-7 shows the relative spatial locations of the macroblocks with mbAddrA, mbAddrB, mbAddrC, and mbAddrD
relative to the current macroblock with CurrMbAddr.

mbAddrD | mbAddrB mbAddrC

mbAddrA | CurrMbAddr

Figure 6-7 — Neighbouring macroblocks for a given macr oblock

Input to the process in subclause 6.4.4 is mbAddrA = CurrMbAddr — 1 and the output is whether the macroblock
mbAddrA is available. In addition, mbAddrA is marked as not available if
((CurrMbAddr % (PicWidthInMbs)) == 0).

Input to the process in subclause 6.4.4 is mbAddrB = CurrMbAddr — PicWidthInMbs and the output is whether the
macroblock mbAddrB is available.

Input to the process in subclause 6.4.4 is mbAddrC = CurrMbAddr — PicWidthInMbs + 1 and the output is whether the
macroblock mbAddrC is available. In addition, mbAddrC is marked as not available if
(((CurrMbAddr + 1) % (PicWidthinMbs)) == 0).

Input to the process in subclause 6.4.4 is mbAddrD = CurrMbAddr — PicWidthInMbs - 1 and the output is whether the
macroblock mbAddrD is available. In addition, mbAddrD is marked as not available if
((CurrMbAddr % (PicWidthInMbs)) == 0).

6.4.6 Derivation processfor neighbouring macroblock addresses and their availability in MBAFF frames
This process can only be invoked when MbaffFrameFlag is equal to 1.
The outputs of this process are

- mbAddrA: the address and availability status of the top macroblock of the macroblock pair to the left of the current
macroblock pair.

- mbAddrB: the address and availability status of the top macroblock of the macroblock pair above the current
macroblock pair.

- mbAddrC: the address and availability status of the top macroblock of the macroblock pair above-right of the
current macroblock pair.

- mbAddrD: the address and availability status of the top macroblock of the macroblock pair above-left of the current
macroblock pair.

Figure 6-8 shows the relative spatial locations of the macroblocks with mbAddrA, mbAddrB, mbAddrC, and mbAddrD
relative to the current macroblock with CurrMbAddr.

mbAddrA, mbAddrB, mbAddrC, and mbAddrD have identical values regardless whether the current macroblock is the
top or the bottom macroblock of a macroblock pair.

mbAddrD mbAddrB mbAddrC

mbAddrA CurrMbAddr or

18 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT 1SO/IEC 14496-10 : 2002 (E)

Figure 6-8 — Neighbouring macroblocks for a given macroblock in MBAFF frames

Input to the process in subclause 6.4.4 is mbAddrA =2 * (CurrMbAddr/2 —1) and the output is whether the
macroblock mbAddrA is available. In addition, mbAddrA is marked as not available if
(((CurrMbAddr /2) % (PicWidthInMbs)) == 0).

Input to the process in subclause 6.4.4 is mbAddrB =2 * (CurrMbAddr / 2 — PicWidthInMbs) and the output is whether
the macroblock mbAddrB is available.

Input to the process in subclause 6.4.4 is mbAddrC =2 * (CurrMbAddr / 2 — PicWidthInMbs + 1) and the output is
whether the macroblock mbAddrC 1is available. In addition, mbAddrC is marked as not available if
(((CurrMbAddr /2 + 1) % (PicWidthInMbs)) == 0).

Input to the process in subclause 6.4.4 is mbAddrD =2 * (CurrMbAddr / 2 — PicWidthInMbs - 1) and the output is
whether the macroblock mbAddrD is available. In addition, mbAddrD is marked as not available if
(((CurrMbAddr /2) % (PicWidthInMbs)) == 0).

6.4.7 Derivation processesfor neighbouring macroblocks, blocks, and partitions
Subclause 6.4.7.1 specifies the derivation process for neighbouring macroblocks.
Subclause 6.4.7.2 specifies the derivation process for neighbouring 8x8 luma blocks.
Subclause 6.4.7.3 specifies the derivation process for neighbouring 4x4 luma blocks.
Subclause 6.4.7.4 specifies the derivation process for neighbouring 4x4 chroma blocks.
Subclause 6.4.7.5 specifies the derivation process for neighbouring partitions.

Table 6-2 specifies the values for the difference of luma location (xD, yD) for the input and the replacement for N in
mbAddrN, mbPartldxN, subMbPartldxN, luma8x8BlkIdxN, luma4x4BIkIdxN, and chroma4x4BlkIdxN for the output.
These input and output assignments are used in subclauses 6.4.7.1 to 6.4.7.5. The variable partWidth is specified when
Table 6-2 is referred to.

Table 6-2 — Specification of input and output assignments for subclauses 6.4.7.1t0 6.4.7.5

N xD yD
A -1 0
B 0 -1
C | partWidth -1
D -1 -1

Figure 6-9 illustrates the relative location of the neighbouring macroblocks, blocks, or partitions A, B, C, and D to the
current macroblock, block, or partition E, when E is in frame coding mode

DRAFT ITU-T Rec. H.264 (2002 E) 19

Figure 6-9 — Determination of the neighbouring macroblock, blocks, and partitions (infor mative)

6.4.7.1 Derivation processfor neighbouring macr oblocks

Outputs of this process are

mbAddrA: the address of the macroblock to the left of the current macroblock and its availability status and

mbAddrB: the address of the macroblock above the current macroblock and its availability status.

mbAddrN (with N being A or B) is derived as follows.

The difference of luma location (xD, yD) is set according to Table 6-2.

The derivation process for neighbouring locations as specified in subclause 6.4.8 is invoked for luma locations with
(xN, yN) equal to (xD, yD), and the output is assigned to mbAddrN.

6.4.7.2 Derivation processfor neighbouring 8x8 luma block

Input to this process is an 8x8 luma block index luma8x8BlkIdx.

The luma8x8BIlkIdx specifies the 8x8 luma blocks of a macroblock in raster scan order.

Outputs of this process are

mbAddrA: either equal to CurrMbAddr or the address of the macroblock to the left of the current macroblock and its
availability status,

luma8x8BlkIdxA: the index of the 8x8 luma block to the left of the 8x8 block with index luma8x8Blkldx and its
availability

mbAddrB: either equal to CurrMbAddr or the address of the macroblock above the current macroblock and its
availability status,

luma8x8BlkIdxB: the index of the 8x8 luma block above the 8x8 block with index luma8x8Blkldx and its
availability

mbAddrN and luma8x8BIlkIdxN (with N being A or B) are derived as follows.

The difference of luma location (xD, yD) is set according to Table 6-2.

The luma location (xN, yN) is specified by

xN = (luma8x8Blkldx % 2) * 8 + xD (6-17)

yN = (luma8x8Blkldx /2) * 8§ + yD (6-18)

The derivation process for neighbouring locations as specified in subclause 6.4.8 is invoked for luma locations with
(xN, yN) as the input and the output is assigned to mbAddrN and (xW, yW).

If mbAddrN is not available, luma8x8BIkIdxN is marked as not available.

Otherwise, the 8x8 luma block in the macroblock mbAddrN covering the luma location (xW, yW) shall be
assigned to luma8x8BlkIdxN.

6.4.7.3 Derivation process for neighbouring 4x4 luma blocks

Input to this process is a 4x4 luma block index luma4x4BIkIdx.

20

DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT 1SO/IEC 14496-10 : 2002 (E)

Outputs of this process are

mbAddrA: either equal to CurrMbAddr or the address of the macroblock to the left of the current macroblock and its
availability status,

luma4x4BlkIdxA: the index of the 4x4 luma block to the left of the 4x4 block with index luma4x4Blkldx and its
availability

mbAddrB: either equal to CurrMbAddr or the address of the macroblock above the current macroblock and its
availability status,

lumad4x4BIkIdxB: the index of the 4x4 luma block above the 4x4 block with index luma4x4BlkIdx and its
availability

mbAddrN and luma4x4BlkIdxN (with N being A or B) are derived as follows.

The difference of luma location (xD, yD) is set according to Table 6-2.

The inverse 4x4 luma block scanning process as specified in subclause 6.4.3 is invoked with luma4x4BlkIdx as the
input and (X, y) as the output.

The luma location (xN, yN) is specified by

xN =x +xD (6-19)

yN=y+yD (6-20)

The derivation process for neighbouring locations as specified in subclause 6.4.8 is invoked for luma locations with
(xN, yN) as the input and the output is assigned to mbAddrN and (xW, yW).

If mbAddrN is not available, luma4x4BIlkIdxN is marked as not available.

Otherwise, the 4x4 luma block in the macroblock mbAddrN covering the luma location (xW,yW) shall be
assigned to luma4x4BIlkIdxN.

6.4.7.4 Derivation processfor neighbouring 4x4 chroma blocks

Input to this is a current 4x4 chroma block chroma4x4BlkIdx.

Outputs of this process are

mbAddrA: either equal to CurrMbAddr or the address of the macroblock to the left of the current macroblock and its
availability status,

chroma4x4BlkldxA: the index of the 4x4 chroma block to the left of the chroma 4x4 block with index
chroma4x4Blkldx and its availability

mbAddrB: either equal to CurrMbAddr or the address of the macroblock above the current macroblock and its
availability status,

chroma4x4BlkldxB: the index of the 4x4 chroma block above the chroma 4x4 block index chroma4x4Blkldx and its
availability

The derivation process for neighbouring 8x8 luma block is invoked with luma8x8Blkldx = chroma4x4Blkldx as the
input and mbAddrA, chroma4x4BlkIdxA = luma8x8BIlkIdxA, mbAddrB, chroma4x4BlkldxB = luma8x8BlkIdxB as the
output.

6.4.7.5 Derivation processfor neighbouring partitions

Inputs to this process are

a macroblock partition index mbPartldx

a sub-macroblock partition index subMbPartldx

Outputs of this process are

mbAddrA\mbPartldx A\subMbPartldxA: specifying the macroblock or sub-macroblock partition to the left of the
current macroblock and its availability status, or the sub-macroblock partition
CurrMbAddr\mbPartldx\subMbPartldx and its availability status,

DRAFT ITU-T Rec. H.264 (2002 E) 21

- mbAddrB\mbPartldxB\subMbPartldxB: specifying the macroblock or sub-macroblock partition above the current
macroblock and its availability status, or the sub-macroblock partition CurrMbAddr\mbPartldx\subMbPartldx and
its availability status,

- mbAddrC\mbPartldxC\subMbPartldxC: specifying the macroblock or sub-macroblock partition to the right-above of
the current macroblock and its availability = status, or the sub-macroblock partition
CurrMbAddr\mbPartldx\subMbPartldx and its availability status,

- mbAddrD\mbPartldxD\subMbPartldxD: specifying the macroblock or sub-macroblock partition to the left-above of
the current macroblock and its availability = status, or the sub-macroblock partition
CurrMbAddr\mbPartIdx\subMbPartldx and its availability status.

mbAddrN, mbPartldxN, and subMbPartldx (with N being A, B, C, or D) are derived as follows.

- The inverse macroblock partition scanning process as described in subclause 6.4.2.1 is invoked with mbPartldx as
the input and (x, y) as the output.

- When mb_type is equal to P_8x8 or P_8x8ref or B_8x8, the inverse sub-macroblock partition scanning process as
described in subclause 6.4.2.2 is invoked with subMbPartldx as the input and (xS, yS) as the output. partWidth in
Table 6-2 is specified as partWidth = sub_mb_part width(sub_mb_type[mbPartldx]). Otherwise, (xS, yS) are set
to 0 and partWidth in Table 6-2 is specified as partWidth = mb_part width(mb_type).

- The difference of luma location (XD, yD) is set according to Table 6-2.

- The neighbouring luma location (XN, yN) is specified by

xN=x+xS +xD (6-21)

yN=y+yS+yD (6-22)

- The derivation process for neighbouring locations as specified in subclause 6.4.8 is invoked for luma locations with
(xN, yN) as the input and the output is assigned to mbAddrN and (xW, yW).

- If mbAddrN is not available, the macroblock or sub-macroblock partition mbAddrN\mbPartldxN\subMbPartIdxN is
marked as not available.

- Otherwise, the following applies.

- The macroblock partition in the macroblock mbAddrN covering the luma location (xW, yW) shall be assigned to
mbPartldxN and the sub-macroblock partition inside the macroblock partition mbPartldxN covering the sample
(xW, yW) in the macroblock mbAddrN shall be assigned to subMbPartIdxN.

- If the partition given by mbPartldxN and subMbPartldxN is not yet decoded, the macroblock partition
mbPartldxN and the sub-macroblock partition subMbPartldxN are marked as not available.

NOTE - The latter condition is, for example, the case if mbPartldx = 2, subMbPartldx = 3, xD =4, yD = -1, i.e., if neighbour
C of the last 4x4 luma block of the third sub-macroblock is requested.

6.4.8 Derivation processfor neighbouring locations

Input to this process is a luma or chroma location (XN, yN) expressed relative to the upper left corner of the current
macroblock

Outputs of this process are

- mbAddrN: either equal to CurrMbAddr or to the address of neighbouring macroblock that contains (xN, yN) and its
availability status,

- (xW, yW): the location (xN, yN) expressed relative to the upper-left corner of the macroblock mbAddrN (rather
than relative to the upper-left corner of the current macroblock).

Let maxWH be a variable specifying a maximum value of the location components xN, yN xW, and yW. maxWH is
derived as follows.

- If this process is invoked for neighbouring luma locations, then

maxWH =16 (6-23)

- Otherwise (this process is invoked for neighbouring chroma locations),

22 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT 1SO/IEC 14496-10 : 2002 (E)

maxWH = 8 (6-24)

If MbaffFrameFlag is equal to 0, the specification for neighbouring luma locations in fields and non-MBAFF frames as
described in subclause 6.4.8.1 is applied.

Otherwise (MbaffFrameFlag is equal to 1), the specification for neighbouring luma locations in MBAFF frames as
described in subclause 6.4.8.2 is applied.

6.4.8.1 Specification for neighbouring luma locationsin fields and non-M BAFF frames
The specifications in this subclause are applied when MbaffFrameFlag is equal to 0.

The derivation process for neighbouring macroblock addresses and their availability in subclause 6.4.5 is invoked with
mbAddrA, mbAddrB, mbAddrC, and mbAddrD as well as their availability status as the output.

Table 6-3 specifies mbAddrN depending on (XN, yN).

Table 6-3 — Specification of mbAddrN

XN yN mbAddrN
<0 <0 mbAddrD
<0 0. maxWH-1 | mbAddrA
0. maxWH-1 | <0 mbAddrB
0.maxWH-1 | 0..maxWH-1 | CurrMbAddr
> maxWH - 1 <0 mbAddrC
> maxWH - 1 0..maxWH -1 | notavailable
> maxWH - 1 not available

The neighbouring luma location (xW, yW) relative to the upper-left corner of the macroblock mbAddrN is derived as

xW = (xN + maxWH) % maxWH (6-25)

yW = (yN + maxWH) % maxWH (6-26)

6.4.8.2 Specification for neighbouring luma locationsin MBAFF frames
The specifications in this subclause are applied when MbaffFrameFlag is equal to 1.

The derivation process for neighbouring macroblock addresses and their availability in subclause 6.4.6 is invoked with
mbAddrA, mbAddrB, mbAddrC, and mbAddrD as well as their availability status as the output.

Table 6-4 specifies the macroblock addresses mbAddrN and yM in two ordered steps:
1. Specification of a macroblock address mbAddrX depending on (XN, yN) and the following variables:

- If the macroblock with address CurrMbAddr is a frame macroblock, then currMbFrameFlag is set equal to 1;
otherwise (the macroblock with address CurrMbAddr is a field macroblock), currMbFrameFlag is set equal to 0.

- If the macroblock with address CurrMbAddr is a top macroblock, i.e., if CurrMbAddr % 2 is equal to 0, then
mblsTopMbFlag is set equal to 1; otherwise (CurrMbAddr % 2 is equal to 1), mbIsTopMbFlag is set equal to 0.

2. If mbAddrX is unavailable, mbAddrN is marked as unavailable. Otherwise (mbAddrX is available), mbAddrN is
marked as available and Table 6-4 specifies mbAddrN and yM depending on (xN, yN), currMbFrameFlag,
mblsTopMbFlag, and the following variable

- If the macroblock mbAddrX is a frame macroblock, then mbAddrXFrameFlag is set equal to 1; otherwise (the
macroblock mbAddrX is a field macroblock), mbAddrXFrameFlag is set equal to 0.

Unspecified values (na) of the above flags in Table 6-4 indicate that the value of the corresponding flag is not relevant
for the current table rows.

DRAFT ITU-T Rec. H.264 (2002 E) 23

Table 6-4 - Specification mbAddrN and yM

on
’ g s
S © =
(= = 3
o | = =
1E : :
ZlE oz |% E Z
=|° 3 i g S
2z 2|2 £ 2
z z |55 = |2 3 < =
< > 5| E = = & = >
1 |mbAddrD mbAddrD+1 |yN
1 1 mbAddrA yN
0 |mbAddrA 5 MbAddrA + 1 |(yN + maxWH) >> |
<0 <0 1 mbAddrD + 1 [2*yN
o || |mbAddD o mbAddrD yN
0 |mbAddrD mbAddrD+1 |yN
1 mbAddrA yN
1 |mbAddrA 0 yN %2 == mbAddrA yN >> |
yN%2!=0 mbAddrA +1 [yN>>1
1 1 mbAddrA + 1 [yN
0 |mbAddrA yN %2 == mbAddrA (yN+maxWH) >> 1
0. O [yN%21=0 mbAddrA + 1 [(yN + maxWH) >> |
<0 maxWH - | yN <(maxWH/2) |mbAddrA yN <<1
1 1 |mbAddrA yN >=(maxWH /2) JmbAddrA+1 [(yN <<1)- maxWH
0 mbAddrA yN
0 yN <(maxWH/2) |mbAddrA (yN<<1)+1
1 _ mbAddrA+1 [(yN<<1)+1-
0 |mbAddrA yN >=(maxWH/2) maxWH
0 mbAddrA +1 |yN
1 |mbAddrB mbAddrB+1 |yN
0 I o JcurrMbAddr CurrMbAddr - 1 [yN
maxWH - |<0 mbAddrB + 1 2 *yN
X 0 1 |mbAddrB bAddB N
0 |mbAddrB mbAddrB+1 |yN
0. CurrMbAddr |yN
0 WH W - CurrMbAddr
) 1
1 |mbAddrC mbAddrC +1 |yN
1 |0 Junavailable unavailable na
> maxWH mbAddrC+1 [2*yN
<0 Yy
-1 0 1 |mbAddrC bAdAC N
0 |mbAddrC mbAddrC+1 |yN
0. unavailable na
_>1m axWH maxWH - unavailable
1
> maxWH . unavailable na
-1 unavailable

The neighbouring luma location (xW, yW) relative to the upper-left corner of the macroblock mbAddrN is derived as

xW = (xN + maxWH) % maxWH (6-27)

yW = (yM + maxWH) % maxWH (6-28)

24 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT 1SO/IEC 14496-10 : 2002 (E)

7 Syntax and semantics

71 Method of describing syntax in tabular form

The syntax tables describe a superset of the syntax of all allowed input bitstreams. Additional constraints on the syntax
may be specified in other clauses.

NOTE - An actual decoder should implement means for identifying entry points into the bitstream and to identify and handle non-
conforming bitstreams. The methods for identifying and handling errors and other such situations are not described here.

The following table lists examples of pseudo code used to describe the syntax. When syntax_element appears, it specifies
that a data element is read (extracted) from the bitstream and the bitstream pointer.

DRAFT ITU-T Rec. H.264 (2002 E) 25

C | Descriptor

/* A statement can be a syntax element with an associated syntax category and
descriptor or can be an expression used to specify conditions for the existence,
type, and quantity of syntax elements, as in the following two examples */

syntax_element 3 | ue(v)

conditioning statement

/* A group of statements enclosed in curly brackets is a compound statement and
is treated functionally as a single statement. */

{

statement

statement

/* A “while” structure specifies a test of whether a condition is true, and if true,
specifies evaluation of a statement (or compound statement) repeatedly until the
condition is no longer true */

while(condition)

statement

/* A “do ... while” structure specifies evaluation of a statement once, followed by
a test of whether a condition is true, and if true, specifies repeated evaluation of
the statement until the condition is no longer true */

do

statement

while(condition)

/* An “if ... else” structure specifies a test of whether a condition is true, and if
the condition is true, specifies evaluation of a primary statement, otherwise
specifies evaluation of an alternative statement. The “else” part of the structure
and the associated alternative statement is omitted if no alternative statement
evaluation is needed */

if(condition)

primary statement

else

alternative statement

/* A “for” structure specifies evaluation of an initial statement, followed by a test
of a condition, and if the condition is true, specifies repeated evaluation of a
primary statement followed by a subsequent statement until the condition is no
longer true. */

for(initial statement; condition; subsequent statement)

primary statement

7.2 Specification of syntax functions, categories, and descriptors

The functions presented here are used in the syntactical description. These functions assume the existence of a bitstream
pointer with an indication of the position of the next bit to be read by the decoding process from the bitstream.

byte aligned()

- Returns TRUE if the current position in the bitstream is on a byte boundary, i.e., the next bit in the bitstream is
the first bit in a byte. Otherwise it returns FALSE.

26 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT 1SO/IEC 14496-10 : 2002 (E)

more data in_byte stream()

- Returns TRUE if more data follows in the byte stream. Otherwise it returns FALSE. Used only in the byte
stream NAL unit syntax structure specified in Annex B.

more_rbsp data()

- Returns TRUE if there is more data in an RBSP before rbsp_trailing_bits(). Otherwise it returns FALSE. The
method for enabling determination of whether there is more data in the RBSP is specified by the application (or
in Annex B for applications that use the byte stream format).

more_rbsp_trailing_data()
- Returns TRUE if there is more data in an RBSP. Otherwise it returns FALSE.
next bits(n)

- Provides the next bits in the bitstream for comparison purposes, without advancing the bitstream pointer.
Provides a look at the next n bits in the bitstream with n being its argument. If used within the byte stream as
specified in Annex B, returns a value of 0 if fewer than n bits remain within the byte stream.

read bits(n)

- Reads the next n bits from the bitstream and advances the bitstream pointer by n bit positions. If n is equal to 0,
then read_bits(n) is specified to return a value equal to 0 and to not advance the bitstream pointer.

Categories (labelled in the table as C) specify the partitioning of slice data into at most three slice data partitions. Slice
data partition A contains all syntax elements of category 2. Slice data partition B contains all syntax elements of
category 3. Slice data partition C contains all syntax elements of category 4. The meaning of other category values is not
specified. For some syntax elements, two category values, separated by a vertical bar, are used. In these cases, the
category value to be applied is further specified in the text. For syntax structures used within other syntax structures, the
categories of all syntax elements found within the included syntax structure are listed, separated by a vertical bar. A
syntax element or syntax structure with category marked as "All" is present within all syntax structures that include that
syntax element or syntax structure, and the syntax category for that syntax element or syntax structure is specified in the
higher-level syntax structure that includes it.

The following descriptors specify the parsing process of each syntax element. For some syntax elements, two descriptors,
separated by a vertical bar, are used. In these cases, the left descriptors apply when entropy coding_mode flag is equal
to 0 and the right descriptor applies when entropy coding_mode_flag is equal to 1.

- ae(v): context-adaptive arithmetic entropy-coded syntax element. The parsing process for this descriptor is
specified in subclause 9.3.

- Db(8): byte having any pattern of bit string (8 bits). The parsing process for this descriptor is specified by the
return value of the function read bits(8).

- ce(v): context-adaptive variable-length entropy-coded syntax element with the left bit first. The parsing process
for this descriptor is specified in subclause 9.2.

- f(n): fixed-pattern bit string using n bits written (from left to right) with the left bit first. The parsing process for
this descriptor is specified by the return value of the function read bits(n).

- i(n): signed integer using n bits. If nis "v" in the syntax table, the number of bits varies in a manner dependent
on the value of other syntax elements. The parsing process for this descriptor is specified by the return value of
the function read bits(n) interpreted as a two’s complement integer representation with most significant bit
written first.

- me(v): mapped Exp-Golomb-coded syntax element with the left bit first. The parsing process for this descriptor
is specified in subclause 9.1.

- se(v): signed integer Exp-Golomb-coded syntax element with the left bit first. The parsing process for this
descriptor is specified in subclause 9.1.

- te(v): truncated Exp-Golomb-coded syntax element with left bit first. The parsing process for this descriptor is
specified in subclause 9.1.

nen

- u(n): unsigned integer using n bits. If n is "v" in the syntax table, the number of bits varies in a manner
dependent on the value of other syntax elements. The parsing process for this descriptor is specified by the
return value of the function read bits(n) interpreted as a binary representation of an unsigned integer with most
significant bit written first.

DRAFT ITU-T Rec. H.264 (2002 E) 27

- ue(v): unsigned integer Exp-Golomb-coded syntax element with the left bit first. The parsing process for this
descriptor is specified in subclause 9.1.

7.3 Syntax in tabular form
7.3.1 NAL unit syntax

nal_unit(NumBytesInNALunit) { C | Descriptor
forbidden_zero bit f(1)
nal_ref idc u(2)
nal_unit_type u(5)

NumBytesInRBSP = 0
for(1=1; 1 <NumBytesInNALunit; i++) {
if(1+ 2 < NumBytesInNALunit && next_bits(24) == 0x000003) {

rbsp[NumBytesInRBSP++] b(8)

rbsp[NumBytesInRBSP++] b(8)

1+=2

emulation_prevention_three byte /* equal to 0x03 */ f(8)
} else

rbsp[NumBytesInRBSP++] b(8)

28 DRAFT ITU-T Rec. H.264 (2002 E)

7.3.2 Raw byte sequence payloads and RBSP trailing bits syntax
7.3.21 Sequence parameter set RBSP syntax

DRAFT 1SO/IEC 14496-10 : 2002 (E)

seq_parameter_set rbsp() { C | Descriptor

profile idc 0 |u®
level idc 0 |u®
more _than_one dlice group_allowed_flag 0 [u)
arbitrary_slice order_allowed_flag 0 | u)
redundant_pictures allowed flag 0 [u)
seq_parameter_set_id 0 | ue(v)
log2_max_frame _num_minus4 0 | uev)
pic_order_cnt_type 0 | ue(v)
if(pic_order cnt type == 0)

log2_max_pic_order_cnt_Isb_minus4 0 | ue(v)
else if(pic_order cnt type == 1) {

delta_pic_order_always zero flag 0 | ul)

offset_ for_non_ref_pic 0 | se(v)

offset_for_top_to bottom field 0 | se(v)

num_ref frames in_pic_order_cnt_cycle 0 | ue(v)

for(1=0;1<num_ref frames in pic_order cnt cycle; i++)

offset_for_ref frame]i] 0 | se(v)

H
num_ref_frames 0 | ue(v)
required_frame_num_update behaviour_flag 0 | u
pic_width_in_mbs minusl 0 | ue(v)
pic_height_in_map_units minusl 0 | ue(v)
frame_mbs only_flag 0 [u)
if(!frame _mbs_only flag)

mb_adaptive frame field_flag 0 | u)
direct_8x8 inference flag 0 | u)
vui_parameters present_flag 0 [u)
if(vui_parameters_present flag)

vui_parameters() 0
rbsp_trailing_bits() 0

H

DRAFT ITU-T Rec. H.264 (2002 E)

29

7.3.2.2 Picture parameter set RBSP syntax

pic_parameter_set rbsp() { C | Descriptor
pic_parameter_set_id 1 | ue(v)
seq_parameter_set_id 1 | ue(v)
entropy_coding_mode flag 1 | u(l)
pic_order present_flag 1| u(l)
num_slice_groups minusl 1 | ue(v)
if(num_slice _groups minusl >0) {
dice_group_map_type 1 | ue(v)
if(slice_group map type == 0)
for(iGroup = 0; iGroup <= num_slice_groups_minus1; iGroup++)
run_length_minusl| iGroup] 1 | ue(v)
else if(slice_group map type == 2)
for(iGroup = 0; iGroup < num_slice_groups_minus1; iGroup++) {
top_left[iGroup] 1 | ue(v)
bottom_right[iGroup] 1 | ue(v)
H
else if(slice_group map_type == 3 ||
slice_group map type == 4 ||
slice_group map type == 5) {
dice group_change direction_flag 1 | u(l)
dice _group_change rate minusl 1 | ue(v)
} else if(slice_group map type == 6) {
pic_size in_map_units minusl 1 | ue(v)
for(1=0;1<=pic_size in_map_ units minusl; i++)
dlice group_id[i] 1 | uv)
H
}
num_ref_idx_|0_active_minusl 1 | ue(v)
num_ref_idx_11 active minusl 1 | ue(v)
weighted pred flag 1| u(l)
weighted_bipred_idc 1 | u®)
pic_init_qp_minus26 /* relative to 26 */ 1 | se(v)
pic_init_qs minus26 /* relative to 26 */ 1 | se(v)
chroma_qgp_index_offset 1 | se(v)
deblocking_filter_variables present_flag 1 | u(l)
constrained_intra_pred_flag 1 | u(l)
redundant_pic_cnt_present_flag 1 | u(l)
frame_cropping_flag 1 | u(l)
if(frame cropping_flag) {
frame_crop_left_offset 1 | ue(v)
frame _crop_right_offset 1 | ue(v)
frame_crop_top_offset 1 | ue(v)
frame _crop_bottom_offset 1 | ue(v)
H
rbsp_trailing_bits() 1

30 DRAFT ITU-T Rec. H.264 (2002 E)

7.3.2.3

7.3.2.3.1 Supplemental enhancement infor mation message syntax

7324

7.3.2.5

Supplemental enhancement infor mation RBSP syntax

DRAFT ISO/IEC 14496-10 : 2002 (E)

sei_rbsp() {

C | Descriptor

do

sei_message() 5
while(more_rbsp_data())
rbsp_trailing bits() 5

sei_message() {

C | Descriptor

payloadType =0

while(next_bits(8) == O0xFF) {

ff_byte /* equal to OXFF */

5 [18)

payloadType += 255

i

last_payload_type byte

5 | u®)

payloadType += last_payload type byte

payloadSize = 0

while(next bits(8) == OxFF) {

ff_byte /* equal to OXFF */

5 [f8)

payloadSize += 255

}

last_payload_size byte

5 | u®)

payloadSize += last_payload size byte

sei_payload(payloadType, payloadSize)

Picture delimiter RBSP syntax

pic_delimiter rbsp() {

Descriptor

pic_type

O

u3)

rbsp _trailing bits()

End of sequence RBSP syntax

end_of seq rbsp() {

C | Descriptor

i

DRAFT ITU-T Rec. H.264 (2002 E) 31

7.3.2.6

7327

7.3.2.8

7.3.2.9

End of stream RBSP syntax

end of stream rbsp() {

Descriptor

}

Filler data RBSP syntax

filler data rbsp(NumBytesInRBSP) {

Descriptor

while(next_bits(8) == OxFF)

ff_byte /* equal to OXFF */

f(8)

rbsp_trailing_bits()

Slice layer without partitioning RBSP syntax

slice_layer without partitioning_rbsp() {

Descriptor

slice_header()

slice_data() /* all categories of slice_data() syntax */

21314

rbsp_slice trailing bits()

Slice data partition RBSP syntax

7.3.2.9.1 Slice data partition A RBSP syntax

slice_data_partition_a layer rbsp() {

Descriptor

slice_header()

dice id

ue(v)

slice_data() /* only category 2 parts of slice data() syntax */

tbsp_slice_trailing_bits()

IRV IESI N I e)

7.3.2.9.2 Slice data partition B RBSP syntax

32

slice_data_partition_b_layer rbsp() {

Descriptor

dice id

ue(v)

if(redundant_pic_cnt present flag)

redundant_pic_cnt

ue(v)

slice_data() /* only category 3 parts of slice_data() syntax */

rbsp_slice_trailing_bits()

DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT 1SO/IEC 14496-10 : 2002 (E)

7.3.2.9.3 Slice data partition C RBSP syntax

slice_data_partition ¢ _layer rbsp() { C | Descriptor
dice id 4 | ue(v)
if(redundant pic_cnt present flag)
redundant_pic_cnt 4 | ue(v)
slice_data() /* only category 4 parts of slice_data() syntax */ 4
tbsp_slice_trailing_bits() 4
H

7.3.2.10 RBSP dlicetrailing bits syntax

tbsp_slice_trailing bits() { C | Descriptor
rbsp _trailing bits() All
if(entropy coding_mode flag)

while(more rbsp trailing data())
cabac zero word /* equal to 0x0000 */ All | f(16)

7.3.2.11 RBSP trailing bits syntax

rbsp_trailing_bits() { C | Descriptor
rbsp_stop_one bit /* equal to 1 */ All | f(1)
while('byte aligned())
rbsp_alignment_zero_bit /* equal to 0 */ All | (1)
}

DRAFT ITU-T Rec. H.264 (2002 E) 33

7.3.3

34

Slice header syntax

slice_header() { C | Descriptor
first._mb_in_dlice 2 | ue(v)
dlice_type 2 | ue(v)
pic_parameter_set_id 2 | ue(v)
frame_num 2 | uv)
if(!frame mbs_only flag) {
field_pic_flag 2 | u(l)
if(field pic flag)
bottom_field_flag 2 | u(l)
i
if(nal unit type == 5)
idr_pic id 2 | ue(v)
if(pic_order_cnt_type == 0) {
pic_order_cnt_Isb 2 | uv)
if(pic_order_present flag == 1 && !field pic_flag)
delta_pic_order_cnt_bottom 2 | se(v)
}
if(pic_order_cnt_type == 1 && !delta_pic_order always zero flag) {
delta_pic_order_cnt[0] 2 | se(v)
if(pic_order present flag == 1 && !field pic_flag)
delta_pic_order_cnt[1] 2 | se(v)
}
if(redundant pic_cnt present flag)
redundant_pic_cnt 2 | ue(v)
if(slice type == B)
direct_spatial_mv_pred_flag 2 | u(l)
if(slice type==P || slice_type==SP | |slice type==B) {
num_ref _idx_active override flag 2 | u(l)
if(num_ref idx_active override flag) {
num_ref_idx_I0_active_minusl 2 | ue(v)
if(slice type == B)
num_ref_idx_I1 active minusl 2 | ue(v)
}
i
ref pic_list reordering() 2
if((weighted pred flag && (slice_type==P || slice type==SP)) ||
(weighted bipred idc == 1 && slice type == B))
pred_weight table() 2
if(nal_ref idc!=0)
dec ref pic_marking() 2
if(entropy coding_mode flag && slice type != I && slice type != SI)
cabac init_idc 2 | ue(v)
dlice_gp_delta 2 | se(v)
if(slice type == SP || slice type == SI) {
if(slice_type == SP)
sp_for_switch_flag 2 | u(l)
dlice gs delta 2 | se(v)

DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT 1SO/IEC 14496-10 : 2002 (E)

2 | ue(v)

}
if(deblocking_filter variables present flag == 1) {

disable deblocking filter_idc

2 | se(v)

if(disable deblocking_filter idc != 1) {

2 | se(v)

dlice_alpha c0 offset_div2

dice beta offset_div2

}

2 | uv)

dlice_group_change cycle

if(num_slice groups minusl >0 &&
slice_group map type >=3 && slice group map type <=15)

7.33.1

Reference picturelist reordering syntax

C | Descriptor

ref pic_list reordering() {

2 [u()

if(slice_type != 1 && slice type != SI)

ref_pic list_reordering flag 10

if(ref pic list reordering flag 10)

2 | ue(v)

do {

reordering_of pic_ nums idc
==0]|

if(reordering_of pic_nums_idc
reordering of pic nums idc == 1)

2 ue(v)

abs diff_pic_num_minusl

2 ue(v)

else if(reordering_of pic nums idc == 2)

long term_pic_num

} while(reordering_of pic_ nums_idc != 3)

2 |ul)

}
if(slice type == B) {

ref_pic list_reordering flag |1

2 | ue(v)

if(ref pic_list reordering flag 11)

do {

reordering_of pic_nums idc

2 | ue(v)

if(reordering_of pic nums_idc == 0 ||
reordering of pic nums idc == 1)

abs diff_pic_num_minusl

2 | ue(v)

else if(reordering_of pic nums_idc == 2)

long_term_pic_num

} while(reordering_of pic nums idc != 3)

DRAFT ITU-T Rec. H.264 (2002 E)

35

7332

36

Prediction weight table syntax
pred_weight table() { C | Descriptor
luma_log2 weight_denom 2 | ue(v)
chroma_log2 weight_denom 2 | ue(v)
for(1=0; i <=num_ref idx 10 active minusl; i++) {
luma_weight |0 flag 2 | u(l)
if(luma_weight 10 flag) {
luma weight_10[1] 2 | se(v)
luma_offset_10[1] 2 | se(v)
H
chroma_weight_|0 flag 2 | u(l)
if(chroma weight 10 flag)
for(j =0;j<2;j++) {
chroma_weight_10[i][j] 2 | se(v)
chroma_offset 10[i][]] 2 | se(v)
H
H
if(slice type == B)
for(1=0;1<=num ref idx 11 _active minusl; i++) {
luma_weight_|1 flag 2 | u(l)
if(luma_weight 11 _flag) {
luma_weight _[1][1] 2 | se(v)
luma_offset_11] 1] 2 | se(v)
}
chroma_weight |1 flag 2 | u(l)
if(chroma_weight 11 _flag)
for(j=0;j<2;j++){
chroma_weight 1] i][j] se(v)
chroma_offset_11[i][j] se(v)

DRAFT ITU-T Rec. H.264 (2002 E)

7.3.3.3

Decoded reference picture marking syntax

DRAFT 1SO/IEC 14496-10 : 2002 (E)

dec_ref pic_marking() { C | Descriptor
if(nal_unit_type == 5) {
no_output_of prior_pics flag 215 | u(l)
long_term_reference flag 215 | u(l)
}else {
adaptive ref_pic_marking_mode flag 215 | ul)
if(adaptive ref pic _marking mode flag == 1)
do {
memory_management_control_operation 215 | ue(v)
if(memory management_control operation == 1 ||
memory management_control operation == 3)
difference of pic_nums minusl 215 | ue(v)
if(memory_management_control operation == 2)
long term_pic_num 215 | ue(v)
if(memory_management control operation == 3 ||
memory management control operation == 6)
long_term_frame_idx 215 | ue(v)
if(memory management_control operation == 4)
max_long_term_frame idx_plusl 2|5 | ue(v)
} while(memory_management control operation != 0)
}
i

DRAFT ITU-T Rec. H.264 (2002 E)

37

734

38

Slice data syntax

slice_data() {

Descriptor

if(entropy_coding_mode flag)

while(!byte aligned())

cabac_alignment_one bit

f1)

CurrMbAddr = first mb_in_slice * (1 + MbaffFrameFlag)

moreDataFlag = 1

prevMbSkipped = 0

do {

if(slice_type != 1 && slice type != SI)

if(lentropy_coding_mode flag) {

mb_skip_run

ue(v)

prevMbSkipped = (mb_skip run>0)

for(i=0; i<mb_skip run; i++)

CurrMbAddr = NextMbAddress(CurrMbAddr)

moreDataFlag = more_rbsp data()

}else {

mb_skip_flag

ae(v)

moreDataFlag = !mb_skip flag

i

if(moreDataFlag) {

if(MbaffFrameFlag && (CurrMbAddr % 2 == 0 ||
(CurrMbAddr % 2 == 1 && prevMbSkipped)))

mb_field_decoding_flag

u(1) [ae(v)

macroblock layer()

21314

}

if(!entropy_coding mode flag)

moreDataFlag = more_rbsp data()

else {

if(slice_type != 1 && slice type != SI)

prevMbSkipped = mb_skip flag

if(MbaffFrameFlag && CurrMbAddr %2 == 0)

moreDataFlag = 1

else {

end_of_dlice flag

ae(v)

moreDataFlag = lend_of slice flag

}

CurrMbAddr = NextMbAddress(CurrMbAddr)

} while(moreDataFlag)

DRAFT ITU-T Rec. H.264 (2002 E)

7.35

DRAFT ISO/IEC 14496-10

Macroblock layer syntax

macroblock layer() {

Descriptor

mb_type

ue(v) | ae(v)

if(mb_type==1 PCM) {

while(!byte_aligned())

pcm_alignment_zero_bit

f(1)

for(1=0;1<256 * ChromaFormatFactor; i++)

pcm_byte

u(8)

} else {

if(mb_part pred mode(mb_type, 0) != Intra 4x4 &&
mb_part_pred mode(mb_type, 0) != Intra 16x16 &&
num _mb part(mb type) == 4)

sub_mb_pred(mb_type)

else

mb_pred(mb_type)

if(mb_part pred mode(mb_type, 0) != Intra 16x16)

coded_block_pattern

me(Vv) | ae(v)

if(CodedBlockPatternLuma > 0 | | CodedBlockPatternChroma >0 | |
mb_part pred mode(mb type, 0) == Intra 16x16) {

mb_gp_delta

se(v) | ae(v)

residual()

3|4

DRAFT ITU-T Rec. H.264 (2002 E)

: 2002 (E)

39

7351

40

M acroblock prediction syntax

mb_pred(mb_type) {

Descriptor

if(mb_part pred mode(mb_type, 0) == Intra 4x4 ||
mb_part pred mode(mb type, 0) == Intra 16x16) {

if(mb_part pred mode(mb_type, 0) == Intra 4x4)

for(luma4x4Blkldx=0; luma4x4BlkIdx<16; luma4x4BlkIdx++) {

prev_intradx4 pred_mode flag[luma4x4BlkIdx]

u(l) | ae(v)

if(!prev_intradx4 pred mode_flag[lumad4x4BlkIdx])

rem_intradx4_pred_mode] luma4x4BIlkIdx]

u(3) | ae(v)

}

intra_chroma_pred_mode

ue(v) | ae(v)

} else if(mb_part_pred mode(mb_type, 0) != Direct) {

for(mbPartldx = 0; mbPartldx <num mb part(mb_type); mbPartldx++)

if((num_ref idx 10 active minusl >0 ||
mb_field decoding flag == 1) &&
mb_part pred mode(mb_type, mbPartldx) != Pred L1)

ref_idx_IO[mbPartldx]

te(v) | ae(v)

for(mbPartldx = 0; mbPartldx < num_mb_part(mb_type); mbPartldx++)

if((num_ref idx 11 active minusl > 0 ||
mb_field decoding flag == 1) &&
mb_part pred mode(mb_type, mbPartldx) != Pred LO)

ref_jdx_I1[mbPartldx]

te(v) | ae(v)

for(mbPartldx = 0; mbPartldx <num mb part(mb_type); mbPartldx++)

if(mb_part_pred mode (mb_type, mbPartldx) != Pred L.1)

for(compldx = 0; compldx < 2; compldx++)

mvd_10[mbPartldx][0][compldx]

se(v) | ae(v)

for(mbPartldx = 0; mbPartldx < num_mb_part(mb_type); mbPartldx-++)

if(mb_part pred mode(mb_type, mbPartldx) != Pred LO)

for(compldx = 0; compldx < 2; compldx++)

mvd_|1[mbPartldx][0][compldx]

se(v) | ae(v)

DRAFT ITU-T Rec. H.264 (2002 E)

7352

DRAFT ISO/IEC 14496-10

Sub-macroblock prediction syntax

: 2002 (E)

sub mb pred(mb type) {

Descriptor

for(mbPartldx = 0; mbPartldx < 4; mbPartldx++)

sub_mb_type] mbPartldx]

ue(v) | ae(v)

for(mbPartldx = 0; mbPartldx < 4; mbPartldx++)

if((num_ref idx 10 active minusl > 0 ||
mb_field decoding flag==1) &&
mb_type != P_8x8ref0 &&
sub_mb_type[mbPartldx] != B_Direct 8x8 &&
sub mb pred mode(sub mb_type[mbPartldx]) != Pred L1)

ref_idx_10[mbPartldx]

te(v) | ae(v)

for(mbPartldx = 0; mbPartldx < 4; mbPartldx++)

if((num_ref idx 11_active_minusl > 0 ||
mb_field decoding flag==1) &&
sub_mb_type[mbPartldx] != B Direct 8x8 &&
sub mb pred mode(sub mb type[mbPartldx]) != Pred LO)

ref_idx_|1[mbPartldx]

te(v) | ae(v)

for(mbPartldx = 0; mbPartldx <4; mbPartldx++)

if(sub_mb_type[mbPartldx] !=B_Direct 8x8 &&
sub mb pred mode(sub mb type[mbPartldx]) != Pred L1)

for(subMbPartldx = 0;
subMbPartldx < num_sub_mb_part(sub_mb_type[mbPartldx]);
subMbPartldx++)

for(compldx = 0; compldx < 2; compldx++)

mvd_10[mbPartldx][subMbPartldx][compldx]

se(v) | ae(v)

for(mbPartldx = 0; mbPartldx < 4; mbPartldx++)

if(sub_mb_type[mbPartldx] != B_Direct 8x8 &&
sub mb pred mode(sub mb type[mbPartldx]) != Pred L0O)

for(subMbPartldx = 0;
subMbPartldx < num_sub_mb_part(sub_mb_type[mbPartldx]);
subMbPartldx++)

for(compldx = 0; compldx < 2; compldx++)

mvd_11] mbPartldx][subMbPartldx][compldx]

se(v) | ae(v)

DRAFT ITU-T Rec. H.264 (2002 E)

41

7.3.5.3

42

Residual data syntax

residual() {

Descriptor

if(lentropy coding mode flag)

residual block = residual block cavlc

else

residual_block = residual block cabac

if(mb_part_pred mode(mb_type, 0) == Intra_16x16)

residual_block(Intral6x16DCLevel, 16)

for(18x8 = 0; i8x8 < 4; i8x8++) /* each luma 8x8 block */

for(14x4 = 0; i4x4 < 4; i4x4++) /* each 4x4 sub-block of block */

if(CodedBlockPatternLuma & (1 <<i8x8))

if(mb_part pred mode(mb_type, 0) == Intra 16x16)

residual_block(Intral6x16ACLevel[i8x8 * 4 +i4x4], 15)

else

residual_block(LumaCoeffLevel[i8x8 * 4 +i4x4], 16)

314

}else {

if(mb_part pred mode(mb_type, 0) == Intra 16x16)

for(i=0;1<15;it++)

Intral6x16ACLevel[i8x8 * 4 + i4x4 |[i]=0

else

for(i=0;1<16;i++)

LumaCoeffLevel] i8x8 * 4 +i4x4 J[1]=0

}

for(iCbCr = 0; iCbCr < 2; iCbCr++)

if(CodedBlockPatternChroma & 3) /* chroma DC residual present */

residual_block(ChromaDCLevel[iCbCr |, 4)

314

else

for(i=0;1<4;it+)

ChromaDCLevel[iCbCr][i]=0

for(iCbCr = 0; iCbCr < 2; iCbCr++)

for(idx4 = 0; i4x4 < 4; i4x4++)

if(CodedBlockPattern & 2)
/* chroma AC residual present */

residual_block(ChromaACLevel[iCbCr][14x4], 15)

314

else

for(i=0;1<15;i++)

ChromaACLevel[iCbCr][i4x4][1]=0

DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT 1SO/IEC 14496-10 : 2002 (E)

7.3.5.3.1 Residual block CAVLC syntax

residual_block cavlc(coeffLevel, maxNumCoeff) { C Descriptor
for(i =0; i < maxNumCoeff; i++)
coeffLevel[1]=0
coeff_token 314 | ce(v)
if(total_coeff(coeff token)>0) {
for(1=0;1<total coeff(coeff token); i++)
if(i <trailing_ones(coeff token)) {

trailing_ones sign_flag 314 | u(l)
level[i]=1 -2 * trailing_ones_sign_flag

} else {
coeff_level 314 | ce(v)
level[i] = coeff level

}

if(total_coeff(coeff token) < maxNumCoeff) {
total_zeros 314 | ce(v)

zerosLeft = total zeros

} else
zerosLeft =0
for(1=0;1i<total coeff(coeff token)—1;i++) {
if(zerosLeft>0) {
run_before 314 | ce(v)
run[i] =run_before

} else

run[i]=0

zerosLeft = zerosLeft — run[i]

}
run[total coeff(coeff token)—1] = zerosLeft
coeffNum = -1

for(1= total coeff(coeff token)—1;i>=0;i-) {
coeffNum +=run[i]+ 1
coeffLevel[coeffNum] = level[i]

DRAFT ITU-T Rec. H.264 (2002 E) 43

7.3.5.3.2 Residual block CABAC syntax

residual_block cabac(coeffLevel, maxNumCoeff') { C | Descriptor
coded_block_flag 314 | ae(v)
if(coded block flag) {

numCoeff = maxNumCoeff

i=0
do {
significant_coeff flag[i] 314 | ae(v)
if(significant coeff flag[i]) {
last_significant_coeff flag[i] 314 | ae(v)

if(last_significant coeff flag[i]) {
numCoeff =1+ 1
for(j = numCoeff; j < maxNumCoeff; j++)
coeffLevel[j]=0

}
}
i++
+ while(1 < numCoeff-1)
coeff_abs level_minusl] numCoeff-1] 314 | ae(v)
coeff_sign_flag[numCoeff-1] 314 | ae(v)

coeffLevel[numCoeff-1] = (coeff abs level minusl[numCoeff-1]+1)

(1 =2 * coeff sign flag[numCoeff-1])
for(i =numCoeff-2; 1>=0;i--) {
if(significant coeff flag[i]) {
coeff_abs level minusl[i] 314 | ae(v)
coeff_sign_flag[i] 314 | ae(v)

coeffLevel[i] = (coeff abs level minusl[i]+1)*
(1 =2 * coeff sign flag[i])

} else
coeffLevel[1]=0

}

} else
for(1= 0; i < maxNumCoeff; i++)
coeffLevel[1]=0

7.4 Semantics

7.4.1 NAL unit semantics

NOTE - The VCL is specified to efficiently represent the content of the video data. The NAL is specified to format that data and
provide header information in a manner appropriate for conveyance on a variety of communication channels or storage media. All
data are contained in NAL units, each of which contains an integer number of bytes. A NAL unit specifies a generic format for use
in both packet-oriented and bitstream systems. The format of NAL units for both packet-oriented transport and byte stream is
identical except that each NAL unit can be preceded by a start code prefix and extra padding bytes in the byte stream format.

NumBytesInNALunit specifies the size of the NAL unit in bytes. This value is required for decoding of the NAL unit.
Framing of NAL units is necessary to enable inference of NumBytesInNALunit. Such framing is specified in Annex B
for the byte stream format, and other methods for framing may be specified outside of this
Recommendation | International Standard.

forbidden_zero_bit shall be equal to 0.

44 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT 1SO/IEC 14496-10 : 2002 (E)

nal_ref_idc not equal to 0 specifies that the content of the NAL unit contains a sequence parameter set or a picture
parameter set or a slice of a reference picture or a slice data partition of a reference picture.

nal ref idc equal to 0 for a NAL unit containing a slice or slice data partition indicates that the slice or slice data
partition is part of a non-reference picture.

nal_ref idc shall not be equal to 0 for sequence parameter set or picture parameter set NAL units. If nal ref idc is equal
to 0 for one slice or slice data partition NAL unit of a particular picture, it shall be equal to 0 for all slice and slice data
partition NAL units of the picture.

nal_ref idc shall be not be equal to 0 for IDR NAL units, i.e., NAL units with nal_unit_type equal to 5.
nal_ref idc shall be equal to 0 for all NAL units having nal unit_type equal to 6, 9, 10, 11, or 12.

nal_unit_type specifies the type of RBSP data structure contained in the NAL unit as specified in Table 7-1. VCL NAL
units are specified as those NAL units having nal unit type equal to 1, 2, 3, 4, 5, or 12. All remaining NAL units are
called non-VCL NAL units.

The column marked "C" in Table 7-1 lists the categories of the syntax elements that may be present in the NAL unit. In
addition, syntax elements with syntax category "All" may be present, as determined by the syntax and semantics of the
RBSP data structure. The presence or absence of any syntax elements of a particular listed category is determined from
the syntax and semantics of the associated RBSP data structure. nal _unit_type shall not be equal to 3 or 4 unless at least
one syntax element is present in the RBSP data structure having a syntax element category value equal to the value of
nal_unit_type and not categorized as "All".

Table 7-1 — NAL unit type codes

nal_unit_type Content of NAL unit and RBSP syntax structure C

0 Unspecified

1 Coded slice 2,3,4
slice_layer without partitioning rbsp()

2 Coded slice data partition A 2
slice_data partition a layer rbsp()

3 Coded slice data partition B 3
slice_data partition b layer rbsp()

4 Coded slice data partition C 4
slice data partition c layer rbsp()

5 Coded slice of an IDR picture 2,3
slice_layer without partitioning rbsp()

6 Supplemental enhancement information (SEI) 5
sei_rbsp()

7 Sequence parameter set 0

seq parameter set rbsp()

8 Picture parameter set 1
pic_parameter set rbsp()

9 Picture delimiter 6
pic_delimiter rbsp()

10 End of sequence 7
end of seq rbsp()
11 End of stream 8
end of stream rbsp()
12 Filler data 9
filler data rbsp()
13..23 Reserved
24.31 Unspecified

DRAFT ITU-T Rec. H.264 (2002 E) 45

No decoding process for nal unit type equal to O or in the range of 24 to 31, inclusive, is specified in this
Recommendation | International Standard.

NOTE — NAL unit types 0 and 24..31 may be used as determined by the application.

Decoders shall ignore (remove from the bitstream and discard) the contents of all NAL units that use reserved values of
nal_unit_type.

If one slice has nal_unit_type equal to 5, all other slices associated with the same picture shall have nal _unit_type equal
to 5. Such pictures are referred to as IDR pictures. The first picture in the bitstream shall be an IDR picture.

NOTE - Slice data partitioning cannot be used for IDR pictures.
rbsp[i] a raw byte sequence payload is specified as an ordered sequence of bytes.

The RBSP contains an SODB in the following form:
- If the SODB is null, the RBSP is also null.
- Otherwise, the RBSP contains the SODB in the following form:

1) The first byte of the RBSP contains the (most significant, left-most) eight bits of the SODB; the next byte of
the RBSP shall contain the next eight bits of the SODB, etc., until fewer than eight bits of the SODB remain.

2) rbsp trailing bits() are present after the SODB as follows:

i) The first (most significant, left-most) bits of the final RBSP byte contains the remaining bits of the SODB,
if any,

ii) The next bit consists of a single rbsp_stop one_bit equal to 1, and

iii) If the rbsp_stop one bit is not the last bit of a byte-aligned byte, one or more rbsp_alignment zero_bit is
present to result in byte alignment.

3) One or more cabac_zero word 16-bit syntax elements equal to 0x0000 may be present in some RBSPs after
the rbsp_trailing_bits() at the end of the RBSP.

"

Syntax structures having these RBSP properties are denoted in the syntax tables using an " rbsp" suffix. These
structures shall be carried within NAL units as the content of the rbsp[i] data bytes. The association of the RBSP
syntax structures to the NAL units shall be as specified in Table 7-1.

NOTE - If the boundaries of the RBSP are known, the decoder can extract the SODB from the RBSP by concatenating the bits of
the bytes of the RBSP and discarding the rbsp_stop one_bit, which is the last (least significant, right-most) bit equal to 1, and
discarding any following (less significant, farther to the right) bits that follow it, which are equal to 0. The data necessary for the
decoding process is contained in the SODB part of the RBSP.

emulation_prevention_three byte is a byte equal to 0x03. If an emulation prevention_three byte is present in the
NAL unit, it shall be discarded.

The last byte of the NAL unit shall not be equal to 0x00.

Within the NAL unit, the following three-byte sequences shall not occur at any byte-aligned position:
- 0x000000
- 0x000001
- 0x000002

Within the NAL unit, any four-byte sequence that starts with 0x000003 other than the following sequences shall not
occur at any byte-aligned position:

- 0x00000300
- 0x00000301
- 0x00000302
- 0x00000303

7411 Constraintson NAL unit order
This subclause specifies the requirements for NAL unit syntactical order.

Decoders conforming to this Recommendation | International Standard shall be capable of receiving NAL units in the
order specified in this subclause, which is the syntax order and is also the decoding order. Constraints expressed in this
Recommendation | International Standard on the decoding order of NAL units shall also constrain the syntax order of the
NAL units.

46 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT 1SO/IEC 14496-10 : 2002 (E)

Applications presenting a NAL unit stream conforming to this Recommendation | International Standard to a decoder
shall either:

1) Present the NAL unit stream to the decoder in the specified syntactical order, or

2) Provide a means to indicate the specified NAL unit syntactical order for decoders that may be capable of receiving
or processing some NAL units in an out-of-order fashion. No such capability is required for decoders conforming
to this Recommendation | International Standard.

[Ed. Note (JVT): Change syntax order to decoding order below. Agreed.]A sequence parameter set NAL unit shall
precede in syntax order all NAL units that refer to that sequence parameter set, unless the sequence parameter set NAL
unit contains a duplicate copy of the previous sequence parameter set RBSP with the same value of
seq_parameter set id.

A picture parameter set shall precede in syntax order all NAL units that refer to that picture parameter set, unless the
picture parameter set NAL unit contains a duplicate copy of the previous picture parameter set RBSP with the same
value of pic_parameter set id.

The syntax order of coded slices and data partitions of a primary coded picture shall not be interleaved with the syntax
order of coded slices and data partitions of other primary coded pictures.

All coded slices and data partitions of a primary coded picture or a corresponding redundant coded picture shall precede
in syntax order the coded slices and data partitions of any other coded picture that uses the primary coded picture as a
reference picture for inter prediction.

Each coded slice or data partition of a primary coded picture shall precede in syntax order any slices or data partitions of
a corresponding redundant coded picture containing coded data for the macroblock locations represented in the slice or
data partition of the primary coded picture.

If consecutive non-reference primary coded pictures occur in the bitstream, the syntax order of the non-reference primary
coded pictures shall be in ascending order of picture order count.

[Ed. Note (YKW/GIJS): Can the syntax order of the slices and data partitions of one redundant coded picture be
interleaved with the syntax order of the slices and data partitions of a different redundant coded picture corresponding to
the same macroblocks of the same primary coded picture? (I think not.) How about for different macroblocks? (perhaps
that is OK.) Can the syntax order of a slice or data partition of a redundant coded picture corresponding to a non-
reference primary coded picture follow after the syntax order of the next subsequent primary coded picture with the same
frame num and (if applicable) parity?]

If arbitrary slice order allowed flag is equal to 1, slices and data partitions of a primary coded picture may follow any
syntax order relative to each other. If arbitrary slice order allowed flag is equal to 0, the syntax order of slices and data
partitions of a primary coded picture shall be increasing in the macroblock or macroblock pair address of the first
macroblock of each slice, and if slice data partitioning is in use for a slice the data partition A of the coded slice shall
precede the data partition B of the coded slice, and the data partition B of the coded slice shall precede the data partition
C of the coded slice, and the data partitions A, B, and C of the coded slice shall not be interleaved in syntax order with
any data partitions or non-partitioned slice data NAL units of other coded slices of the primary coded picture.

The syntax order of SEI NAL units, if present, shall precede the order of the slices and data partitions of the primary
coded picture to which the SEI NAL unit corresponds, and shall be subsequent to the syntax order of all slices and data
partitions of primary coded pictures that precede the primary coded picture to which the SEI NAL unit corresponds. If an
SEI NAL unit contains data that pertains to more than one primary coded picture (for example, if the SEI NAL unit has a
sequence as its scope), it shall be considered to correspond to the first primary coded picture in syntax order to which it
pertains.

A picture delimiter, if present, shall precede in syntax order all SEI NAL units, slices and data partitions of the
corresponding primary coded picture, and shall follow in syntax order after any associated SEI NAL units, slices, and
data partitions of primary coded pictures that precede the corresponding primary coded picture in syntax order.

If an end of sequence NAL unit is present, the first picture that follows the end of sequence NAL unit in syntax order, if
any pictures follow, shall be an IDR picture. If such an IDR picture follows, the syntax order of the end of sequence
NAL unit shall precede the syntax order of any associated picture delimiter, SEI NAL units, slices, and data partitions of
that IDR picture and shall be subsequent to the syntax order of all slices and data partitions of pictures that precede the
IDR picture.

If an end of sequence NAL unit is present and no pictures follow the end of sequence NAL unit in syntax order, the
syntax order of the end of sequence NAL unit shall be subsequent to the syntax order of all slices and data partitions of
all pictures in the bitstream.

If an end of stream NAL unit is present, the syntax order of the end of stream NAL unit shall be subsequent to the syntax
order of all end of sequence NAL units, slices and data partitions of all pictures in the bitstream.

DRAFT ITU-T Rec. H.264 (2002 E) 47

The syntax order of NAL units having nal unit type equal to 0 or in the range of 12 to 31, inclusive, are not constrained.

7.4.1.2 Association of NAL unitsto primary coded pictures

Each NAL unit in the bitstream up to and including the end of stream NAL unit, if present, is associated with a primary
coded picture. The NAL units associated with any primary coded picture are not interleaved in syntax order with the
NAL units associated with any other primary coded picture.

All NAL units in the bitstream that precede the first slice or data partition of the first primary coded picture in the
bitstream are associated with the first primary coded picture.

All NAL units in the bitstream from the first slice or data partition of a primary coded picture to the last slice or data
partition of the primary coded picture, inclusive, are associated with the primary coded picture.

An end of sequence NAL unit in the bitstream is associated the preceding primary coded picture.

All NAL units in the bitstream that precede an end of stream NAL unit and follow the last slice or data partition of the
primary coded picture prior to the end of sequence NAL unit are associated with the preceding primary coded picture.

An end of stream NAL unit in the bitstream is associated with the preceding primary coded picture.

All NAL units in the bitstream that precede an end of stream NAL unit and follow the last slice or data partition of the
primary coded picture prior to the end of stream NAL unit are associated with the preceding primary coded picture.

All NAL units in the bitstream prior to the end of stream NAL unit, if present, that are not associated with a primary
coded picture by the other association rules specified in this subclause are associated with the next primary coded picture
in syntax order.

NAL units in the bitstream that follow after an end of stream NAL unit, if present, are not associated with any primary
coded picture.

7.4.1.3 Association of primary coded picturesto video sequences
Each primary coded picture in the bitstream is associated with a video sequence.

The IDR picture at the beginning of the bitstream is the first picture of the first video sequence in the bitstream. Each
subsequent IDR picture in the bitstream starts a subsequent video sequence.

All non-IDR pictures in the bitstream are associated with the video sequence containing the preceding IDR picture.

7.4.1.4 Encapsulation of an SODB within an RBSP (informative)
This subclause does not form an integral part of this Recommendation | International Standard.

The form of encapsulation of an SODB within an RBSP and the use of the emulation prevention three byte for
encapsulation of an RBSP within a NAL unit is specified for the following purposes:

— to prevent the emulation of start codes within NAL units while allowing any arbitrary SODB to be represented
within a NAL unit,

— to cnable identification of the end of the SODB within the NAL unit by searching the RBSP for the
rbsp_stop one bit starting at the end of the RBSP, and

— to enable a NAL unit to have a size larger than that of the SODB under some circumstances (using one or more
cabac_zero word).

The encoder can produce a NAL unit from an RBSP by the following procedure:
The RBSP data is searched for byte-aligned bits of the following binary patterns:

'00000000 00000000 000000xx' (where xx represents any 2 bit pattern: 00, 01, 10 or 11),
and a byte equal to 0x03 is inserted to replace these bit patterns with the patterns

'00000000 00000000 00000011 000000xx",

and finally, if the last byte of the RBSP data is equal to 0x00 (which can only occur if the RBSP ends in a
cabac_zero_word), a final byte equal to 0x03 is appended to the end of the data.

The resulting sequence of bytes is then prefixed with the first byte of the NAL unit containing the indication of the type
of RBSP data structure it contains. This results in the construction of the entire NAL unit.

This process can allow any SODB to be represented in a NAL unit while ensuring that

— no byte-aligned start code prefix is emulated within the NAL unit, and

48 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT 1SO/IEC 14496-10 : 2002 (E)

— no sequence of 8 zero-valued bits followed by a start code prefix, regardless of byte-alignment, is emulated within
the NAL unit.

7.4.2 Raw byte sequence payloads and RBSP trailing bits semantics

7.4.21 Sequenceparameter set RBSP semantics
A sequence parameter set includes parameters that can be referred to by one or more picture parameter sets.

The sequence parameter set that is referred to in the slices of an IDR picture is called the active sequence parameter set.
The content of the active sequence parameter set shall not change in any sequence parameter set NAL unit until after the
last NAL unit in syntax order having nal unit type ranging from 1 to 6, inclusive, prior to another IDR picture.
However, exact duplicate copies of the active sequence parameter set may be present in sequence parameter set NAL
units in a manner interleaved with the NAL units of the sequence having nal unit_type ranging from 1 to 6.

All picture parameter sets that are referred to by all NAL units of the sequence shall refer to the active sequence
parameter set.
NOTE - The sequence and picture parameter set mechanism decouples the transmission of infrequently changing information
from the transmission of coded macroblock data. Sequence and picture parameter sets may, in some applications, be conveyed
"out-of-band" using a reliable transport mechanism.

profile_idc and level_idc indicate profile and level as specified in Annex A. The value of profile idc and level idc shall
be equal to one of the values specified in Annex A for these syntax elements.

more_than_one dlice_group_allowed_flag indicates whether more than one slice group may be used in any picture of
the sequence. The constraint indicated by more than_one_slice group allowed flag equal to 0 is specified in subclause
7.4.2.2.

arbitrary_dlice order_allowed _flag indicates whether arbitrary slice order may be used within pictures of the
sequence. The constraint indicated by arbitrary slice order allowed flag equal to 0 on the order of slices and data
partitions in pictures is specified in subclause 7.4.1.1.

redundant_pictures allowed_flag indicates whether redundant coded pictures may be present in the sequence. The
constraint indicated by redundant_pictures_allowed flag equal to 0 on the order of slices and data partitions in pictures is
specified in subclause 7.4.2.2.

seq_parameter_set_id identifies the sequence parameter set that is referred to by the picture parameter set. The value of
seq_parameter_set_id shall be in the range of 0 to 31, inclusive.

NOTE — When feasible, encoders should use distinct values of seq_parameter_set_id when the values of other sequence parameter
set syntax elements differ rather than changing the values of the syntax elements associated with a specific value of
seq_parameter_set id.

log2_max_frame_num_minus4 specifies the value of the variable MaxFrameNum that is used in frame num related
derivations as follows:

MaxFrameNum = 2(log2_max_frame_num_minus4 + 4) (7_ 1)
The value of log2 max frame num_ minus4 shall be in the range of 0 to 12, inclusive.

pic_order_cnt_type specifies the method to code picture order count (as specified in subclause 8.2.2). The value of
pic_order cnt_type shall be in the range of 0 to 2, inclusive. pic_order cnt_type shall not be equal to 2 in a sequence that
contains two or more consecutive non-reference frames, complementary non-reference field pairs or non-paired non-
reference fields in decoding order.

log2_max_pic_order_cnt_lsb_minus4 specifies the value of the variable MaxPicOrderCntLsb that is used in the
decoding process for picture order count as specified in subclause 8.2.2 as follows:

MaXPiCOTderCHtLSb — 2(log2_max_pic_order_cnt_Isb_minus4 + 4)(7_2)

The value of log2 max_pic_order cnt Isb_minus4 shall be in the range of 0 to 12, inclusive.

delta_pic_order_always zero_flag equal to 1 specifies that delta_pic_order cnt[0] and delta_pic_order cnt[1] are
always 0 and are not coded. delta_pic_order always zero flag equal to O specifies that delta_pic_order cnt[0] is coded
and delta_pic_order cnt[1] may be coded.

offset_for_non_ref _picis used to calculate the picture order count of a non-reference picture as specified in 8.2.2. The
value of offset_for non_ref pic shall be in the range from -2*! to 2*' - 1, inclusive.

DRAFT ITU-T Rec. H.264 (2002 E) 49

offset_for_top_to_bottom_field is used to calculate the picture order count of the bottom field in a frame as specified in
8.2.2. The value of offset for top to bottom_field shall be in the range from -2*' to 2*' - 1, inclusive.

num_ref_frames in_pic_order_cnt_cycle is used in the decoding process for picture order count as specified in
subclause 8.2.2. The value of num_ref frames in pic_order cnt cycle shall be in the range from 0 to 255.

offset_for_ref frame[i] is an element of a list of num_ref frames in pic_order cnt cycle values used in the decoding
process for picture order count as specified in subclause 8.2.2. The value of offset for ref frame[i] shall be in the
range from -2*! to 2*' - 1, inclusive.

num_ref_frames specifies the maximum total number of short-term and long-term reference frames, complementary
reference field pairs, and non-paired reference fields used by the decoding process for inter prediction of any picture in
the sequence. num_ref frames also determines the size of the sliding window operation as specified in subclause 8.2.7.3.
The value of num_ref frames shall be in the range of 0 to 16, inclusive.

required_frame_num_update behaviour_flag specifies the allowed values of frame num as specified in subclause
7.4.3 and the decoding process in case of an inferred gap between values of frame num as specified in subclause 8.2.7.2.

pic_width_in_mbs minusl plus 1 specifies the width of each decoded picture in units of macroblocks.

The variable for the picture width in units of macroblocks is derived as follows

PicWidthInMbs = pic_width_in_mbs_minus] + 1 (7-3)

The variable for picture width for the luma component is derived as follows

PicWidthInSamples, = PicWidthInMbs * 16 (7-4)

The variable for picture width for the chroma components is derived as follows

PicWidthInSamples. = PicWidthInMbs * 8 (7-5)

pic_height_in_map_units minusl plus 1 specifies the height in slice group map units of a decoded frame or field.

The variables PicHeightiInMapUnits and PicSizeInMapUnits are derived as follows

PicHeightInMapUnits = pic_height in_map_units minusl + 1 (7-6)

PicSizeInMapUnits = PicWidthInMbs * PicHeightInMapUnits 7-7)

frame_mbs only flag equal to 0 specifies that coded pictures in the sequence may either be coded fields or coded
frames. frame _mbs_only flag equal to 1 specifies that every coded picture of the sequence is a coded frame containing
only frame macroblocks.

The allowed range of values for pic width in mbs minusl, pic_height in map units minusl, and
frame _mbs_only_ flag is specified by constraints in Annex A.

If frame mbs_only flag is equal to 0, pic_height in map units_minus] is the height of a field in units of macroblocks.
Otherwise (if frame _mbs_only flag is equal to 1), pic_height in_map_units minusl is the height of a frame in units of
macroblocks.

The variables FrameHeightiInMbs and FrameSizeInMbs are derived as follows

FrameHeightInMbs = (2 — frame mbs_only flag) * PicHeightInMapUnits (7-8)

FrameSizeInMbs = PicWidthInMbs * FrameHeightiInMbs (7-9)

mb_adaptive frame field_flag equal to 0 specifies no switching between frame and field macroblocks within a picture,
whereas equal to 1 specifies the possible use of switching between frame and field macroblocks within frames. When
mb_adaptive frame field flag is not present it shall be inferred to be equal to 0.

direct_8x8 inference flag specifies the method used in the derivation process for luma motion vectors for B_Skip,
B Direct 16x16 and B _Direct 8x8 as specified in subclause 8.4.1.2. If frame mbs only flag is equal to O,
direct 8x8 inference flag shall be equal to 1.

50 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT 1SO/IEC 14496-10 : 2002 (E)

vui_parameters present_flag equal to 0 specifies that default parameter values for the VUI parameters as specified in
Annex E shall be applied. vui_parameters_present flag equal to 1 specifies that VUI parameters are present next in the
bitstream. Syntax and semantics of VUI parameters is specified in Annex E.

7.4.2.2 Pictureparameter set RBSP semantics

A picture parameter set includes parameters that can be referred to by multiple NAL units of type 1 to 6, inclusive. A
coded picture is referred to in the text as all NAL units with types between 1 and 6, inclusive, that are decoded between
two detected picture boundaries. The detection process for picture boundaries is specified in subclause 8.2.1.

The picture parameter set that is referred to in the slice of a coded picture is called the active picture parameter set. A
change of the active picture parameter set is only possible after the last NAL unit of the picture is decoded. However, it
is possible to decode exact copies of the active picture parameter set before or after decoding NAL units of the picture.

pic_parameter_set_id identifies the picture parameter set that is referred to in the slice header. The value of
pic_parameter_set id shall be in the range of 0 to 255, inclusive.

seq_parameter_set_id refers to the active sequence parameter set. The value of seq_parameter_set id shall be in the
range of 0 to 31, inclusive.

entropy_coding_mode flag selects the entropy decoding method to be applied for the syntax elements for which two
descriptors appear in the syntax tables. If entropy coding mode flag is equal to 0 the method specified by the left
descriptor is applied (Exp-Golomb coded, see subclause 9.1 or CAVLC, see subclause 9.2), whereas if
entropy_coding mode flag is equal to 1 the method specified by the right descriptor is applied (CABAC, see subclause
9.3).

pic_order_present_flag specifies the presence of other picture order count related syntax elements in the slice header as
specified in subclause 7.3.3.

num_slice_groups minusl plus 1 is the number of slice groups for a picture. If num_slice _groups_minusl is zero, all
slices of the picture belong to the same slice group. The allowed range of num_slice groups minus] is specified in
Annex A. If more than one slice group allowed flag is equal to 0, num_slice groups minus] shall be equal to 0.

dlice_group_map_type specifies how the mapping of slice group map units to slice groups is coded. The value of
slice_group _map_type shall be in the range of 0 to 6, inclusive.

slice_group map_type equal to O specifies interleaved slice groups.
slice_group _map_type equal to 1 specifies a dispersed slice group mapping.
slice_group map_type equal to 2 specifies one or more “foreground” slice groups and a “leftover” slice group.

slice_group map_type values equal to 3, 4, and 5 specify changing slice groups. slice group map type shall not be
equal to 3, 4, or 5 if num_slice_groups_minus1 is not equal to 1.

slice_group map_type equal to 6 specifies an explicit assignment of a slice group to each slice group map unit.

Slice group map units are specified as follows:

— If frame mbs_only flag is equal to 1 or if a coded picture is a field, the slice group map units are units of
macroblocks.

— If frame mbs _only flag is equal to 0 and mb_adaptive frame field flag is equal to 1 and the coded picture is a
frame, the slice group map units are macroblock pair units.

— Otherwise (if frame mbs_only flag is equal to 0 and mb_adaptive frame field flag is equal to 0 and the coded
picture is a frame), the slice group map units are units of two macroblocks that are vertically contiguous as in a
frame macroblock pair of an MBAFF frame.

run_length_minusl| i] is used to specify a number of consecutive slice group map units to be assigned to the i-th slice
group in raster scan order of slice group map units. The value of run_length minus1[i] shall be in the range from 0 to
PicSizeInMapUnits - 1, inclusive.

top_left[i] and bottom_right[i] specify the top-left and bottom-right corners of a rectangle, respectively. top left[i]
and bottom_right[i] are slice group map unit positions in a raster scan of the picture for the slice group map units. For
each rectangle i, top left[i] shall be less than or equal to bottom right[i] and bottom right[i] shall be less than
PicSizeInMapUnits.

dice _group_change direction_flag is used with slice group map type to indicate the refined mapping type of the
slice_group map_type when slice_group map type is 3, 4, or 5.

slice_group_change rate minusl is used to specify the variable SliceGroupChangeRate. SliceGroupChangeRate
specifies the multiple in number of slice group map units by which the size of a slice group can change from one picture

DRAFT ITU-T Rec. H.264 (2002 E) 51

to the next. The value of slice_group change rate_minus! shall be in the range of 0 to PicSizeInMapUnits — 1, inclusive.
The SliceGroupChangeRate variable is specified as follows:

SliceGroupChangeRate = slice_group change rate minusl + 1 (7-10)

pic_size in_map_units minusl is used to specify the number of slice group map units in the picture.
pic_size in_map_units_minus] shall be equal to PicSizeInMapUnits - 1.

dice group_id[i] identifies a slice group of the i-th slice group map unit in raster scan order. The size of the
slice_group _id[i] syntax element is Ceil(Log2(num_slice_groups_minusl + 1)) bits. The value of slice_group id[1]
shall be in the range of 0 to num_slice groups minusl, inclusive.

num_ref_idx_10_active_minusl specifies the maximum reference index for reference picture list 0 that shall be used to
decode each slice of the picture in which list 0 is used if num_ref idx_active override flag is equal to O for the slice.
When MbaffFrameFlag is equal to 1, num_ref idx 10 active minusl is the maximum index value for the decoding of
frame macroblocks and 2 * num_ref idx 10 active minusl + 1 is the maximum index value for the decoding of field
macroblocks. The value of num_ref idx 10 active minus! shall be in the range of 0 to 31, inclusive.

num_ref_idx_|1 active_minusl has the same semantics as num_ref idx 10 active_minus] with 10 replaced by 11 and
list O replaced by list 1.

weighted_pred flag equal to 0 specifies that weighted prediction shall not be applied to P and SP slices.
weighted pred flag equal to 1 specifies that weighted prediction shall be applied to P and SP slices.

weighted_bipred_idc equal to 0 specifies that weighted prediction shall not be applied to B slices. weighted bipred_idc
equal to 1 specifies that explicit weighted prediction shall be applied to B slices. weighted bipred idc equal to 2
specifies that implicit weighted prediction shall be applied to B slices. The value of weighted bipred idc shall be in the
range of 0 to 2, inclusive.

pic_init_qgp_minus26 specifies the initial value minus 26 of SliceQPy for each slice. The initial value is modified at the
slice layer when a non-zero value of slice gqp _delta is decoded, and is modified further when a non-zero value of
mb _gp delta is decoded at the macroblock layer. The value of pic_init qp minus26 shall be in the range of -26 to +25,
inclusive.

pic_init_gs minus26 specifies the initial value minus 26 of SliceQS,, for all macroblocks in SP or SI slices. The initial
value is modified at the slice layer when a non-zero value of slice gs delta is decoded. The value of
pic_init_gs_minus26 shall be in the range of -26 to +25, inclusive.

chroma_qp_index_offset specifies the offset that shall be added to QP and QS,, for addressing the table of QP values.
The value of chroma_qp_index_offset shall be in the range from -12 to +12, inclusive.

deblocking_filter_variables present_flag specifies whether a set of variables controlling the characteristics of the
deblocking filter is specified in the slice header.

constrained_intra_pred_flag equal to 0 specifies that intra prediction allows use of neighbouring inter macroblock
residual data and decoded samples for the prediction of intra macroblocks, whereas constrained intra pred flag equal to
1 specifies constrained intra prediction, where intra prediction only uses residual data and decoded samples from I or SI
macroblock types.

redundant_pic_cnt_present_flag specifies the presence of the redundant pic_cnt syntax element in all slice headers,
data partitions B, and data partitions C that refer (either directly or by association with a corresponding data partition A)
to the picture parameter set. If redundant pictures_allowed flag is equal to 0, redundant pic cnt present flag shall be
equal to 0.

frame_cropping_flag equal to 1 specifies the presence of frame cropping information. If frame cropping_flag is equal
to 0, then the following default values shall be inferred frame crop left offset = 0, frame crop right offset = 0,
frame crop_top_offset =0, frame crop_bottom_offset = 0.

frame_crop_left_offset, frame_crop_right_offset, frame_crop_top_offset, frame_crop_bottom_offset specify the
samples of a frame within a rectangle containing luma samples with horizontal coordinates from
2 * frame crop_left offset to PicWidthInSamples; - (2 * frame crop right offset+ 1) and vertical coordinates from
2 * frame crop _top_offset to (FrameHeightInMbs * 16) - (2 * frame_crop_bottom_offset + 1), inclusive.

The value of frame crop_left offset shall not exceed 8 * PicWidthInMbs - (frame crop right offset + 1).
The value of frame crop_top_offset shall not exceed 8 * FrameHeightInMbs - (frame crop_bottom_offset + 1).

[Ed. Note (GJS): frame crop_top_offset and frame crop_bottom_offset should be required or interpreted to be multiples
of 2 if frame_mbs_only flag is equal to 0. Otherwise no clear association of chroma lines to fields is possible. Also, it

52 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)
should be noted that without field-specific cropping information, smooth movement of cropping rectangles is not really
possible for interlaced video.

Move to SPS and interpret for frame mbs_only flag = 0 as mult of 4 for top & bottom? Agreed.]

7.4.2.3 Supplemental enhancement infor mation RBSP semantics

Supplemental Enhancement Information (SEI) contains information that is not necessary to decode VCL NAL units.

7.4.2.3.1 Supplemental enhancement infor mation message semantics

An SEI NAL unit contains one or more SEI messages. Each SEI message consists of the variables specifying the type
and size of the SEI payload and the SEI payload. SEI payload types are specified in Annex D. The SEI payload size is
specified in bytes.

ff_byteis a byte equal to OXFF identifying a need for a longer representation of the syntax structure that it is used within.
last_payload_type byte is the last byte of the payload type of an SEI message.
last_payload_size byteis the last byte of the size of an SEI message.

7.4.2.4 Picturedelimiter RBSP semantics

The picture delimiter may be used to indicate the type of slices present in a primary coded picture and to simplify the
detection of the boundary between primary coded pictures. There is no normative decoding process associated with the
picture delimiter.

pic_type indicates which slice_type may be present in the picture [Ed. Note (AG): To provide small further clarification
here]. Table 7-2 shows the slice type that may occur in a picture with a given pic_type.

Table 7-2 —Meaning of pic_type

pic_type | dlice_typethat may be present in picture
0 I
1 ILP
2 ILP,B
3 SI
4 SI, SP
5 I, SI
6 I, SI, P, SP
7 I, SI, P, SP, B

7.4.25 End of sequence RBSP semantics

The end of sequence RBSP specifies that the next subsequent picture in the bitstream in decoding order, if any, shall be
an IDR picture. The syntax content of the SODB and RBSP for the end of sequence RBSP are null. No normative
decoding process is specified for an end of sequence RBSP.

7.4.2.6 End of stream RBSP semantics

The end of stream RBSP indicates that no additional pictures shall be present in the bitstream that are subsequent to the
end of stream RBSP in decoding order. The syntax content of the SODB and RBSP for the end of stream RBSP are null.
No normative decoding process is specified for an end of stream RBSP.

7.4.2.7 Filler data RBSP semantics

The filler data RBSP contains bytes whose value shall be equal to OxFF. No normative decoding process is specified for
a filler data RBSP.

ff_byteis a byte equal to OXFF.

7.4.28 Slicelayer without partitioning RBSP semantics

The slice layer without partitioning RBSP consists of a slice header and slice data.

DRAFT ITU-T Rec. H.264 (2002 E) 53

7.4.29 Slicedata partition RBSP semantics

7.4.2.9.1 Slicedata partition A RBSP semantics

When slice data partitioning is in use, the coded data for a single slice is divided into three separate partitions. Partition A
contains all syntax elements of category 2.

Category 2 syntax elements include all syntax elements in the slice header and slice data syntax structures other than the
syntax elements in the residual() syntax structure.

dlice_id identifies the slice associated with the data partition. Each slice shall have a unique slice id value within the
primary or redundant coded picture. If arbitrary slice order allowed flag is equal to 0, within any primary or redundant
coded picture the first coded slice shall have slice_id equal to 0 and the value of slice_id shall be incremented by one for
each subsequent coded slice in decoding order.

When MbaffFrameFlag is equal to 0, slice_id shall be in the range of 0 to PicSizeInMbs - 1, inclusive.
When MbaffFrameFlag is equal to 1, slice id shall be in the range of 0 to PicSizeInMbs / 2 - 1, inclusive.

7.4.2.9.2 Slicedata partition B RBSP semantics

When slice data partitioning is in use, the coded data for a single slice is divided into one to three separate partitions.
Slice data partition B contains all syntax elements of category 3.

Category 3 syntax elements include all syntax elements in the residual() syntax structure and in syntax structures used
within that syntax structure for collective macroblock types I and SI as specified in Table 7-7.

dlice_id has the same semantics as specified in subclause 7.4.2.9.1.

redundant_pic_cnt shall be equal to 0 for slices and slice data partitions belonging to the primary coded picture. The
redundant pic_cnt shall be greater than 0 for redundant coded slices and slice data partitions. If redundant pic_cnt is not
present, its value shall be inferred to be equal to 0. The value of redundant pic_cnt shall not exceed 127.

If the syntax elements of a slice data partition A RBSP indicate the presence of any syntax elements of category 3 in the
slice data for a slice, a slice data partition B RBSP shall be present having the same value of slice id and
redundant pic_cnt as in the slice data partition A RBSP. If the syntax elements of a slice data partition A RBSP do not
indicate the presence of any syntax elements of category 3 in the slice data for a slice, no slice data partition B RBSP
shall be present having the same value of slice_id and redundant pic_cnt as in the slice data partition A RBSP.

7.4.2.9.3 Slice data partition C RBSP semantics

When slice data partitioning is in use, the coded data for a single slice is divided into three separate partitions. Slice data
partition C contains all syntax elements of category 4.

Category 4 syntax elements include all syntax elements in the residual() syntax structure and in syntax structures used
within that syntax structure for collective macroblock types P and B as specified in Table 7-7.

dlice_id has the same semantics as specified in subclause 7.4.2.9.1.
redundant_pic_cnt has the same semantics as specified in subclause 7.4.2.9.2.

If the syntax elements of a slice data partition A RBSP indicate the presence of any syntax elements of category 4 in the
slice data for a slice, a slice data partition C RBSP shall be present having the same value of slice id and
redundant pic_cnt as in the slice data partition A RBSP. If the syntax elements of a slice data partition A RBSP do not
indicate the presence of any syntax elements of category 4 in the slice data for a slice, no slice data partition C RBSP
shall be present having the same value of slice_id and redundant_pic_cnt as in the slice data partition A RBSP.

7.4.2.10 RBSP dicetrailing bits semantics

cabac _zero _word is a byte-aligned string of two bytes equal to 0x0000. When entropy_coding mode flag is equal to 1,
the number of bins resulting from decoding the contents of all slice layer NAL units of a picture with nal_unit_type equal
to 1, 2, 3, 4, or 5 shall not exceed (32+3)* NumBytesiInNALunitsTotal + 96 * PicSizeInMbs.
NumBytesInNALunitsTotal is set to the sum of NumBytesInNALunit of all NAL units of a picture with nal_unit_type
equalto 1,2,3,4,or5.
NOTE - The constraint on the maximum number of bins resulting from decoding the contents of the slice layer NAL units can be
met by inserting a number of cabac zero word syntax elements to increase the value of NumBytesInNALunitsTotal. Each
cabac_zero_word is represented in a NAL unit by the three-byte sequence 0x000003 (as a result of the constraints on NAL unit
contents that result in requiring inclusion of an emulation_prevention_three byte for each cabac_zero word).

7.4.2.11 RBSP trailing bits semantics

rbsp_stop_one_bit is a single bit equal to 1.

54 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT 1SO/IEC 14496-10 : 2002 (E)

rbsp_alignment_zero_bit is a single bit equal to 0.

7.4.3 Sliceheader semantics

The value of the slice header syntax elements pic_parameter set id, frame num, field pic_flag, bottom field flag,
idr pic id, pic order cnt Isb, delta pic order cnt bottom, delta pic order cnt[0], delta pic order cnt[1],
sp_for_switch_flag, and slice group change cycle shall be the same in all slice headers of a primary and (if present)
redundant coded picture.

first_mb_in_dlice specifies the address of the first macroblock in the slice. If arbitrary _slice order allowed flag is equal
to 0, the value of first mb_in_slice shall not be less than the value of first mb_in_slice for any other slice of the current
picture that precedes the current slice in decoding order.

When MbaffFrameFlag is equal to 0, first mb_in_slice is the macroblock address of the first macroblock in the slice, and
first mb_in_slice shall be in the range of 0 to PicSizeInMbs - 1, inclusive.

When MbaftFrameFlag is equal to 1, first mb_in_slice * 2 is the macroblock address of the first macroblock in the slice,
which is the top macroblock of the first macroblock pair in the slice, and first mb_in_slice shall be in the range of 0 to
PicSizeInMbs / 2 - 1, inclusive.

dlice_type specifies the coding type of the slice according to Table 7-3.

Table 7-3 —Name association to slice_type

dice_type Name of dice_type
P (P slice)

B (B slice)

I (I slice)

SP (SP slice)
SI (SI slice)
P (P slice)

B (B slice)

I (I slice)

SP (SP slice)
SI (SI slice)

Nl Heol BN Ro N RO, [N RUSH B NS Bl Renl

slice_type values in the range 5..9 specifies, in addition to the coding type of the current slice, that all other slices of the
current coded picture shall have a value of slice_type equal to the current value of slice_type or equal to the current value
of slice _type — 5.

If nal unit type is equal to 5 (IDR picture), slice type shall be equal to 2, 4, 7 or 9.

pic_parameter_set_id specifies the picture parameter set in use. All slices belonging to a picture shall have the same
value of pic_parameter_set id. The value of pic_parameter set id shall be in the range of 0 to 255, inclusive. The value
of seq_parameter set id in the picture parameter set referred to by pic_parameter set id shall be equal to the value of
seq parameter set id in the picture parameter set referred to by the pic parameter set id in the previous picture in
decoding order unless nal unit_type is equal to 5.

frame num is used as a unique identifier for each short-term reference frame and shall be represented by
log2 max_ frame num minus4 + 4 bits in the bitstream. frame num is constrained as follows:

If the current picture is an IDR picture, let PrecedingRefFrameNum be equal to 0. If the current picture is not an IDR
picture and redundant pic cnt is equal to O for the current picture, let PrecedingRefFrameNum be equal to the value of
frame num for the previous primary reference picture in decoding order. If the current picture is not an IDR picture and
redundant pic_cnt is not equal to O for the current picture, let PrecedingRefFrameNum be equal to the value of
frame num for the primary reference picture that immediately precedes the previous primary reference picture in
decoding order.

When the current picture is an IDR picture frame num shall be equal to 0.

When the current picture is not an IDR picture, it shall not have frame num equal to PrecedingRefFrameNum unless the
current picture and the preceding primary reference picture are both reference fields and all of the following three
conditions are true.

- the current field and the preceding field have opposite parity

DRAFT ITU-T Rec. H.264 (2002 E) 55

- the preceding primary picture is the preceding primary reference picture

- one of the following conditions is true
— the preceding primary coded picture is an IDR picture

— the preceding primary coded picture includes a memory management control operation syntax element equal
to 5

NOTE - If the preceding primary coded picture includes a memory management control_operation syntax element
equal to 5, PrecedingRefFrameNum is 0.

— there is a primary picture that precedes the preceding primary reference picture and the primary picture that
precedes the preceding primary picture does not have frame num equal to PrecedingRefFrameNum

— there is a primary picture that precedes the preceding primary reference picture and the primary picture that
precedes the preceding primary picture is not a reference picture

If required_frame num_update behaviour flag is equal to 0 and frame num is not equal to PrecedingRefFrameNum,
frame num shall be equal to (PrecedingRefFrameNum + 1) % MaxFrameNum.

If the value of frame num is not equal to PrecedingRefFrameNum, there shall not be any previous field or frame in
decoding order that is currently marked as "used for short-term reference" that has a value of frame num equal to any
value taken on by the variable UnusedShortTermFrameNum in the following:

UnusedShortTermFrameNum = (PrecedingRefFrameNum + 1) % MaxFrameNum
while(UnusedShortTermFrameNum != frame num) (7-11)
UnusedShortTermFrameNum = (UnusedShortTermFrameNum + 1) % MaxFrameNum

A picture including a memory management control operation equal to 5 (reset all reference pictures) shall have
frame num constraints as described above, but after the decoding of the current picture and the processing of the
memory management control operations, shall be inferred to have had frame num equal to 0 for all subsequent use in the
decoding process.

NOTE - The value of frame_num of a redundant coded picture is the same as the value of frame num in the primary coded picture
with which it is associated. Alternatively, the redundant coded picture includes a memory management control operation syntax
element equal to 5 and the corresponding primary coded picture is an IDR picture.

field_pic_flag equal to 1 specifies that the slice is associated to a coded field and equal to 0 specifies that the picture is a
coded frame. When field pic_flag is not present it shall be inferred to be equal to 0.

The variable MbaffFrameFlag is derived as follows.

MbaffFrameFlag = mb_adaptive frame field flag && !field pic flag (7-12)

The variable for the picture height in units of macroblocks is derived as follows

PicHeightInMbs = FrameHeightInMbs / (1 + field pic flag) (7-13)

The variable for picture height for the luma component is derived as follows

PicHeightInSamples, = PicHeightInMbs * 16 (7-14)

The variable for picture height for the chroma component is derived as follows

PicHeightInSamples. = PicHeightInMbs * 8 (7-15)

The variable PicSizeInMbs for the current picture is derived according to:

PicSizeInMbs = PicWidthInMbs * PicHeightInMbs (7-16)

bottom_field_flag equal to 1 specifies that the slice is associated to a coded bottom field. bottom_field flag equal to 0
specifies that the picture is a coded top field. If this syntax element is not coded for the current slice, it shall be inferred
to be equal to 0.

idr_pic_id identifies an IDR picture. The values of idr_pic_id in all the slices of an IDR picture shall remain unchanged.
If two consecutive primary coded pictures in decoding order are both IDR pictures, the value of idr_pic_id in the slices

56 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

of the first such IDR picture shall differ from the idr pic id in the second such IDR picture. The value of idr pic id
shall be in the range of 0 to 65535, inclusive.

pic_order_cnt_lsb specifies the picture order count coded in modulo MaxPicOrderCntLsb arithmetic for the top field of
a coded frame or for a coded field. An IDR picture shall have pic_order cnt Isb equal to 0. The size of the
pic_order cnt Isb variable is log2 max_pic order cnt Isb minus4 + 4 bits. The value of the pic_order cnt Isb shall be
in the range of 0 to MaxPicOrderCntLsb — 1, inclusive.

delta_pic_order_cnt_bottom specifies the picture order count difference between the bottom field and the top field of a
coded frame. The value of delta_pic_order cnt bottom shall be in the range of —2*' to 2°' - 1, inclusive. If this syntax
element is not coded for the current slice, it is inferred to be equal to 0.

delta_pic_order_cnt[0] specifies the picture order count difference from the expected picture order count for the top
field of a coded frame or for a coded field as specified in subclause 8.2.2. The value of delta_pic_order cnt[O] shall be
in the range of -2*' to 2°' - 1, inclusive. If this syntax element is not coded for the current slice, it is inferred to be equal to
0.

delta_pic_order_cnt[1] specifies the picture order count difference from the expected picture order count for the
bottom field of a coded frame specified in subclause 8.2.2. The value of delta_pic_order cnt[0] shall be in the range of -
23! to 2*' - 1, inclusive. If this syntax element is not coded for the current slice, it is inferred to be equal to 0.

redundant_pic_cnt shall be equal to 0 for slices and slice data partitions belonging to the primary coded picture. The
redundant_pic_cnt shall be greater than 0 for redundant coded slices and slice data partitions. If redundant pic_cnt is not
present, its value shall be inferred to be equal to 0. The value of redundant_pic_cnt shall not exceed 127.

NOTE - There should be no noticeable difference between the co-located areas of the decoded primary picture and any decoded
redundant pictures.

Redundant slices and slice data partitions having the same value of redundant pic cnt belong to the same redundant
picture. Decoded slices within the same redundant picture need not cover the entire picture area and shall not overlap. If
the value of nal ref idc in a primary picture is equal to 0, the nal ref idc in corresponding redundant pictures shall be
equal to 0. If the value of nal ref idc in a primary picture is greater than 0, the nal ref idc in corresponding redundant
picture(s) shall be greater than 0.

All slices of a redundant picture shall have the same values of field pic_flag and bottom_field flag as the corresponding
primary picture. The frame num of a redundant picture shall be the same as the frame num in the primary picture, or
one of the following conditions shall be true for both the redundant picture and the primary picture:

— the nal _unit_type of the picture is equal to 5, or

— the picture shall have a memory management control operation equal to 5.
The derived picture order count of a redundant picture shall be the same as for the corresponding primary picture.

direct_spatial_mv_pred_flag specifies the method used in the decoding process to determine the prediction values of
direct prediction. If direct spatial mv_pred flag is equal to 1, then the derivation process for luma motion vectors for
B Skip, B Direct 16x16 and B_Direct 8x8 in subclause 8.4.1.2 shall use spatial direct mode prediction as specified in
subclause 8.4.1.2.2. If direct_spatial mv_pred flag is equal to 0, then the derivation process for luma motion vectors for
B Skip, B Direct 16x16 and B Direct 8x8 in subclause 8.4.1.2 shall use temporal direct mode prediction as specified
in subclause 8.4.1.2.3.

num_ref_idx_active override flag equal to0O specifies that the values of the syntax elements
num_ref idx 10 active minusl and num_ref idx 11 active minusl specified in the referred picture parameter set are in
effect. num ref idx active override flag equal to 1 specifies that the num ref idx 10 active minusl and
num_ref idx 11 active minusl specified in the referred picture parameter set are overridden for the current slice (and
only for the current slice) by the following values in the slice header.

If the current slice is a P, SP, or B slice and field pic flag is equal to 0 and the value of num_ref idx 10 active _minus]
in the picture parameter set exceeds 15, num_ref idx active override flag shall be equal to 1.

If the current slice is a B slice and field pic_flag is equal to 0 and the value of num_ref idx 11 active minusl in the
picture parameter set exceeds 15, num_ref idx_active override flag shall be equal to 1.

num_ref_idx_|0_active_minusl specifies the maximum reference index for reference picture list 0 that shall be used to
decode the slice. If field pic flag is equal to 0, the allowed range of num ref idx 10 active minusl is from 0 to 15,
inclusive. If field pic flag is equal to 1, the allowed range of num ref idx 10 active minusl is from 0 to 31, inclusive.
When MbaffFrameFlag is equal to 1, num_ref idx 10 active _minus] is the maximum index value for the decoding of
frame macroblocks and 2 * num_ref idx 10 active minusl + 1 is the maximum index value for the decoding of field
macroblocks. [Ed. Note: Check against SPS semantics.]

DRAFT ITU-T Rec. H.264 (2002 E) 57

num_ref_idx_|1 active_minusl has the same semantics as num_ref idx 10 active_minusl with 10 replaced by 11 and
list O replaced by list 1.

cabac_init_idc is only present when entropy coding mode flag is equal to 1 and slice type is not equal to I or SI. It
specifies the index for determining the initialisation table used in the initialisation process for context variables. The
value of cabac_init _idc shall be in the range of 0 to 2, inclusive.

dice_gp_delta specifies the initial value of QPy to be used for all the macroblocks in the slice until modified by the
value of mb_qp_delta in the macroblock layer. The initial QP quantisation parameter for the slice is computed as:

SliceQPy =26 + pic_init_qp_minus26 + slice_qp_delta (7-17)

The value of slice_qp_delta shall be limited such that QP is in the range of 0 to 51, inclusive.

sp_for_switch_flag specifies the decoding process to be used to decode P macroblocks in an SP slice. If
sp_for_switch_flag is equal to 0, the P macroblocks in the SP slice shall be decoded using the SP decoding process for
non-switching pictures as specified in subclause 8.6.1. If sp_for switch flag is equal to 1, the P macroblocks in the SP
slice shall be decoded using the SP and SI decoding process for switching pictures as specified in subclause 8.6.2.

dice_gs delta specifies the value of QS for all the macroblocks in SP and SI slices. The QSy quantisation parameter for
the slice is computed as:

QS =26 + pic_init_gs_minus26 + slice_gs_delta (7-18)

The value of slice_qs_delta shall be limited such that QSy is in the range of 0 to 51, inclusive. This value of QS is used
for the decoding of all macroblocks in SI slices with mb_type equal to SI and all macroblocks in SP slices with
prediction mode equal to inter.

disable_deblocking_filter_idc specifies whether the operation of the deblocking filter shall be disabled across some
block edges of the slice and specifies for which edges the filtering is disabled. If disable deblocking filter idc is not
present in the slice header, the value of disable deblocking_filter idc shall be inferred to be equal to 0.

If disable deblocking filter idc is equal to 0, the deblocking filter shall be applied across all edges controlled by the
macroblocks within the current slice.

If disable deblocking_filter idc is equal to 1, the deblocking filter shall not be applied across any edges controlled by the
macroblocks within the current slice.

If disable deblocking_filter idc is equal to 2, the deblocking filter shall be applied across all edges controlled by the
macroblocks within the current slice, with the exception of the macroblock edges that are also slice boundaries.

The value of disable deblocking_filter idc shall be in the range of 0 to 2, inclusive.

dlice_alpha_c0_offset_div2 specifies the offset used in accessing the o and CO deblocking filter tables for filtering
operations controlled by the macroblocks within the slice. From this value, the offset that shall be applied when
addressing these tables shall be computed as:

FilterOffsetA = slice_alpha c0_offset div2 <<1 (7-19)

The value of slice_alpha c0_offset div2 shall be in the range of -6 to +6, inclusive. If slice_alpha c0_offset div2 is not
present in the slice header, the value of slice_alpha c0_offset_div2 shall be inferred to be equal to 0.

dlice beta offset_div2 specifies the offset used in accessing the B deblocking filter table for filtering operations
controlled by the macroblocks within the slice. From this value, the offset that is applied when addressing the 3 table of
the deblocking filter shall be computed as:

FilterOffsetB = slice beta offset div2 << (7-20)

The value of slice beta offset div2 shall be in the range of -6 to +6, inclusive. If slice beta offset div2 is not present in
the slice header the value of slice_beta_offset_div2 shall be inferred to be equal to 0.

slice_group_change_cycle * SliceGroupChangeRate or PicSizeInMapUnits, whichever is smaller, specifies the number
of slice group map units in slice group 0. The value of slice_group change cycle is represented in the bitstream by the
following number of bits [Ed. Note: Get rid of the starting asterisk in the semantics.]

Ceil(Log2(PicSizeInMapUnits + SliceGroupChangeRate + 1)). (7-21)

58 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)
The minimum value of slice_group change cycle is 0. The maximum value of slice_group change cycle is

Ceil(PicSizeInMapUnits + SliceGroupChangeRate). (7-22)

7.4.3.1 Referencepicturelist reordering semantics

The syntax elements reordering of pic nums idc, abs diff pic num minusl, and long term pic num specify the
change from the initial reference picture lists to the reference picture lists to be used for decoding the slice.

ref pic list_reordering flag_|0 equal to 1 specifies that the syntax element reordering_of pic nums_idc is present for
specifying reference picture list 0, while ref pic_list reordering flag 10 equal to O specifies that this syntax element is
not present.

If ref pic list reordering flag 10 is equal to 1, the number of times that reordering_of pic nums_idc is not equal to 3
following ref pic list reordering flag 10 shall not exceed num_ref idx 10 active minusl + 1.

If RefPicListO] num_ref idx 10 active minusl] in the initial reference picture list produced as specified in subclause
8.2.6.2 is equal to Null, ref pic_list reordering flag 10 shall be equal to 1 and reordering_of pic nums_idc shall not be
equal to 3 until RefPicListO] num_ref idx 10 active minusl] in the reordered list produced as specified in subclause
8.2.6.3 is not equal to Null.

ref pic list_reordering flag_|1 equal to 1 specifies that the syntax element reordering_of pic nums_idc is present for
specifying reference picture list 1, while ref pic_list reordering flag 11 equal to 0 specifies that this syntax element is
not present.

If ref pic list reordering flag 11 is equal to 1, the number of times that reordering of pic nums_idc is not equal to 3
following ref pic list reordering flag I1 shall not exceed num ref idx 11 active minusl + 1.

When decoding a B slice, if RefPicListO[num ref idx 11 active minus]] in the initial reference picture list produced
as specified in subclause 8.2.6.2 is equal to Null, ref pic list reordering flag 11 shall be equal to 1 and
reordering_of pic nums_idc shall not be equal to 3 until RefPicListO[num_ref idx 11 active minusl] in the reordered
list produced as specified in subclause 8.2.6.3 is not equal to Null.

reordering_of_pic_nums idc together with abs_diff pic num minusl or long term pic num specifies which of the
reference pictures are re-mapped. The values of reordering_of pic nums_idc are specified in Table 7-4. The value of the
first reordering_of pic nums idc that follows immediately after ref pic_list reordering flag 10 or
ref pic_list reordering_flag 11 shall not be equal to 3.

Table 7-4 —reordering_of pic_nums_ idc operationsfor reordering of reference picturelists

reordering_of_pic_nums_idc Reordering specified

0 abs_diff pic num_minusl is present and corresponds to a difference to
subtract from a picture number prediction value

1 abs_diff pic num_minusl is present and corresponds to a difference to
add to a picture number prediction value

2 long term_pic_num is present and specifies the long-term picture number
for a reference picture

3 End loop for reordering of the initial reference picture list

abs diff_pic_num_minusl plus 1 specifies the absolute difference between the picture number of the picture being
moved to the current index in the list and the picture number prediction value. When reordering_of pic_nums_idc is
equal to 0, abs_diff pic num minus] shall not exceed MaxPicNum/2 - 1. When reordering_of pic_nums_idc is equal
to 1, abs_diff pic num minusl shall not exceed MaxPicNum/2-2. The allowed values of abs_diff pic num minusl are
further restricted as specified in subclause 8.2.6.3.1. [Ed. remove MaxPicNum since it is local to subclause 8.2.6.3.1]

long_term_pic_num specifies the long-term picture number of the picture being moved to the current index in the list.
When decoding a coded frame, long term pic_num shall be equal to a LongTermPicNum assigned to one of the
reference frames or complementary reference field pair marked as "used for long-term reference". When decoding a
coded field, long_term pic_num shall be equal to a LongTermPicNum assigned to one of the reference fields marked as
"used for long-term reference".

DRAFT ITU-T Rec. H.264 (2002 E) 59

7.4.3.2 Prediction weight table semantics

[Ed.Note: We should check later subclauses to make sure that it says somewhere that if MbaffFrameFlag is equal to 1,
explicit weighted prediction for field macroblocks uses the same weighting for each field of a frame or complementary
reference field pair and that implicit weighted prediction uses TopFieldOrderCnt or BottomFieldOrderCnt for field MBs
and FrameOrderCnt for frame MBs.]

luma_log2_weight_denom is the base 2 logarithm of the denominator for all luma weighting factors. The value of
luma log2 weight denom shall be in the range of 0 to 7, inclusive.

chroma_log2_weight_denom is the base 2 logarithm of the denominator for all chroma weighting factors. The value of
chroma log2 weight denom shall be in the range of 0 to 7, inclusive.

luma_weight_l0_flag equal to 1 specifies that weighting factors for the luma component of list 0 prediction are present,
while luma_weight 10 flag equal to 0 specifies that these weighting factors are not present. If luma weight 10 flag is
equal to 0, then luma weight 10[i] shall be inferred as equal to 2Muma-leg2-veightdenom g Jyma offset 10[i] shall be
inferred as equal to 0 for RefPicListO[i].

luma_weight_I0[i] is the weighting factor applied to the luma prediction value for list 0 prediction using
RefPicList0[i]. Allowed range is —128 to 127, inclusive.

luma_offset_10[i] is the additive offset applied to the luma prediction value for list 0 prediction using RefPicListO[i].
Allowed range is —128 to 127, inclusive.

chroma_weight_l0_flag equal to 1 specifies that weighting factors for the Cb and Cr components of list 0 prediction are
present, while chroma weight 10 flag equal to O specifies that these weighting factors are not present. If
chroma weight 10 flag is equal to 0, chroma weight 10[i] shall be inferred as equal to 2°ciomaleg2weight denom a4
chroma offset 10[i] shall be inferred as equal to 0 for RefPicListO[i].

chroma_weight_I0[i][j] is the weighting factor applied to the Cb prediction values for list O prediction using
RefPicList0[i] with j equal to 0 for Cb and j equal to 1 for Cr. Allowed range is —128 to 127, inclusive.

chroma offset I0[i][j] is the additive offset applied to the chroma prediction values for list 0 prediction using
RefPicList0[i] with j equal to O for Cb and j equal to 1 for Cr. Allowed range is -128 to 127, inclusive.

luma_weight_I1 flag, luma_weight_11, luma_offset_11, chroma_weight_I1 flag, chroma_weight_l1,
chroma offset 1 have the same semantics as luma weight 10 flag, Iuma weight 10, luma offset 10,
chroma_weight 10 flag, chroma weight 10, chroma_offset 10, respectively, with 10 and List O replaced by 11 and Listl,
respectively.

7.4.3.3 Decoded reference picture marking semantics

All syntax elements of the decoded reference picture marking shall be identical in all slice headers of a primary and (if
present) redundant coded picture.

The syntax elements no_output of prior pics flag, long term reference flag, adaptive ref pic_marking mode flag,
memory_management_control operation, difference of pic nums minusl, long_term frame idx, long term pic num,
and max_long_term_frame idx plusl specify marking of the reference pictures. The reference pictures marking can be
modified by marking them as “unused for reference” and by assigning them to long-term frame indices. The syntax
element adaptive ref pic_marking mode flag and the content of the decoded reference picture marking syntax structure
shall be identical for all coded slices of a coded picture.

The syntax category of the decoded reference picture marking syntax shall be inferred to be equal to 2 if this syntax is in
a slice header and shall be inferred to be equal to 5 if this syntax is in a decoded reference picture marking repetition SEI
message as specified in Annex D.

no_output_of_prior_pics flag specifies how the previously-decoded pictures in the decoded picture buffer are treated
after decoding of an IDR picture. See Annex C. [Ed.Note (GJS): Ensure the following sentences are redundant with
content of Annex C: "A value of 1 specifies that all previously-decoded pictures that are stored in the decoded picture
buffer are removed and not output. A value of 0 specifies that the previously-decoded pictures remain in the decoded
picture buffer for output. (MH): “removed” is unclear. This paragraph has to refer to the operation of the “bumping
decoder”. (GJS) The operation of this flag needs to be clarified such that in Annex C the same pictures are produced by
the timed HRD as for the bumping decoder — i.e., such that the output time marked on any of these non-output pictures
shall exceed the decoding time of the IDR picture AND such that the constraint on how close together the time tags are
between output times does not apply to the non-output pictures.]

long_term_reference _flag equal to 0 specifies that the MaxLongTermFrameldx variable is set to “no long-term frame
indices” and that the IDR picture is marked as “used for short-term reference”. long_term reference flag equal to 1
specifies that the MaxLongTermFrameldx variable is set to 0 and that the current IDR picture is marked “used for long-
term reference” and is assigned LongTermFrameldx equal to 0.

60 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)
adaptive ref_pic_marking_mode flag specifies the reference picture marking mode of the currently decoded picture
and specifies how the reference picture marking is modified after the current picture is decoded. The values for

adaptive ref pic marking mode flag are specified in Table 7-5.

Table 7-5 — I nter pretation of adaptive ref_pic_marking_mode flag

adaptive ref_pic_marking_mode _flag | Reference picture marking mode specified

0 Sliding window reference picture marking mode: A marking mode
providing a first-in first-out mechanism for short-term reference
pictures.

1 Adaptive reference picture marking mode: A reference picture

marking mode providing syntax elements to specify marking of
reference pictures as “unused for reference” and to assign long-term
frame indices.

memory_management_control_operation specifies a control operation to be applied to manage the reference picture
marking. The memory management control operation syntax element is followed by data necessary for the operation
specified by the value of memory management control operation. The values and control operations associated with
memory management_control operation are specified in Table 7-6.

[Ed. Note (GJS): Check to ensure that the following sentence is redundant with content of decoding process section: If
memory _management_control operation is 5 (reset all reference pictures), all frames and fields marked as “used for
reference” in the decoded picture buffer shall be marked as "unused for reference". Moreover, the
MaxLongTermFrameldx variable shall be set to "no long-term frame indices".]

memory management_control operation shall not be equal to 1 in a slice header unless the specified short-term picture
is currently marked as "used for reference" and has not been assigned to a long-term frame index and is not assigned to a
long-term frame index in the same decoded reference picture marking syntax structure.

memory management_control operation shall not be equal to 2 in a slice header unless the specified long-term picture
number refers to a frame or field that is currently marked as "used for reference".

memory management _control operation shall not be equal to 3 in a slice header unless the specified short-term
reference picture is currently marked as "used for reference" and has not previously been assigned a long-term frame
index and is not assigned to any other long-term frame index within the same decoded reference picture marking syntax
structure.

memory management control operation shall not be equal to 5 in a slice header wunless no
memory_management_control operation in the range of 1..3 is present in the same decoded reference picture marking
syntax structure.

No more than one memory management control operation shall be present in a slice header that specifies the same
action to be taken.

DRAFT ITU-T Rec. H.264 (2002 E) 61

Table 7-6 — Memory management control operation (memory_management_control_operation) values

memory_management_ | Memory Management Control Operation
control_operation

0 End memory management control operation
loop
1 Mark a short-term picture as

“unused for reference”

2 Mark a frame or field having a long-term
picture number as
“unused for reference”

3 Assign a long-term frame index to a short-
term picture

4 Specify the maximum long-term frame index

Mark all reference pictures as "unused for
reference"” and set the
MaxLongTermFrameldx variable to "no long-
term frame indices"

6 Assign a long-term frame index to the current
decoded picture

When decoding a field, if a memory management control operation command equal to 3 assigns a long-term frame
index to a field that is part of a short-term reference frame or a short-term complementary reference field pair, another
memory_management_control operation command to assign the same long-term frame index to the other field of the
same frame or complementary reference field pair shall be present in the same decoded reference picture marking syntax
structure.

If, in decoding order, the first field of a complementary reference field pair includes a long_term_reference flag equal
to 1 or a memory management control operation command equal to 6, the decoded reference picture marking syntax
structure for the other field of the complementary reference field pair shall contain a
memory management_control operation command equal to 6 to assign the same long-term frame index to the other
field.

difference_of_pic_nums_minusl is used (with memory management control operation equal to 3 or 1) to assign a
long-term frame index to a short-term reference picture or to mark a short-term reference picture as “unused for
reference”. The resulting picture number derived from difference of pic nums minusl shall be a picture number
assigned to one of the reference pictures marked as "used for reference" and not previously assigned to a long-term frame
index. When decoding a frame, the resulting picture number shall be one of the set of picture numbers assigned to
reference frames or complementary reference field pairs. When decoding a field, the resulting picture number shall be
one of the set of picture numbers assigned to reference fields.

long_term_pic_num is used (with memory management control operation equal to 2) to mark a long-term reference
picture as "unused for reference". The resulting picture number derived from long term pic_num shall be equal to a
picture number assigned to one of the reference pictures marked as "used for long-term reference". When decoding a
frame, the resulting long-term picture number shall be one of the set of long-term picture numbers assigned to reference
frames or complementary reference field pairs. When decoding a field, the resulting long-term picture number shall be
one of the set of long-term picture numbers assigned to reference fields.

long_term_frame_idx is used (with memory management control operation equal to 3 or 6) to assign a long-term
frame index to a picture. If the MaxLongTermFrameldx variable is equal to “no long-term frame indices”,
long term frame idx shall not be present. Otherwise, the value of long term frame idx shall be in the range of 0 to
MaxLongTermFrameldx, inclusive.

max_long_term_frame_idx_plusl minus 1 specifies the maximum value of long-term frame index allowed for long-
term reference pictures (until receipt of another value of max long term frame idx plusl). The allowed range of
max_long term frame idx plusl is from O to num_ref frames.

744 Slice data semantics
cabac_alignment_one_bit is a bit equal to 1.

mb_skip_run is present only when entropy_coding mode flag is equal to 0. mb_skip run specifies the number of
consecutive macroblocks for which, when decoding a P or SP, slice mb_type is inferred to be P_Skip and the macroblock
type is collectively referred to as a P macroblock type, and when decoding a B slice mb_type is inferred to be B_Skip

62 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT 1SO/IEC 14496-10 : 2002 (E)

and the macroblock type is collectively referred to as a B macroblock type. The value of mb_skip run shall be in the
range of 0 to PicSizeInMbs — CurrMbAddr, inclusive.

mb_skip_flag is present only when entropy coding mode flag is equal to 1. mb_skip flag equal to 1 specifies that for
the current macroblock, when decoding a P or SP slice mb_type is inferred to be P_Skip and the macroblock type is
collectively referred to as P macroblock type, and when decoding a B slice mb_type is inferred to be B_Skip and the
macroblock type is collectively referred to as B macroblock type. mb_skip flag equal to 0 specifies that the current
macroblock is not skipped.

mb_field_decoding_flag equal to O specifies that the current macroblock pair is a frame macroblock pair and
mb_field decoding flag equal to 1 specifies that the macroblock pair is a field macroblock pair. Both macroblocks of a
frame macroblock pair are referred to in the text as frame macroblocks, whereas both macroblocks of a field macroblock
pair are referred to in the text as field macroblocks.

When mb_field decoding_flag is not present for either macroblock of a macroblock pair, the following applies.

— If there is a neighbouring macroblock pair to the left in the same slice, the value of mb_field decoding_flag shall be
inferred to be equal to the value of mb_field decoding_flag for the neighbouring macroblock pair to the left of the
current macroblock pair,

— If there is no neighbouring macroblock pair to the left in the same slice and there is a neighbouring macroblock pair
above in the same slice, the value of mb field decoding flag shall be inferred to be equal to the value of
mb_field decoding_flag for the neighbouring macroblock pair above the current macroblock pair,

— Otherwise (if there is no neighbouring macroblock pair either on the left or above the current macroblock pair), the
value of mb_field decoding_flag shall be inferred to be equal to 0.

end_of_dlice flag equal to 0 specifies that another macroblock is following, whereas end of slice flag equal to 1
specifies the end of the slice and that no further macroblock follows.

The function NextMbAddress() used in the slice data syntax is specified in subclause 8.2.4.

745 Macroblock layer semantics
mb_type specifies the macroblock type. The semantics of mb_type depend on the slice type.

Tables and semantics are specified for the various macroblock types for I, SI, P, SP, and B slices. Each table presents the
value of mb type, the name of mb type, the number of macroblock partitions used (given by the
num_mb_part(mb_type) function), the prediction mode of the macroblock (if it is not partitioned) or the first partition
(given by the mb_part pred mode(mb_type, 0) function) and the prediction mode of the second partition (given by the
mb_part pred mode(mb_type, 1) function). When a value is not applicable it is designated by “na”. A column of the
table including only not applicable ("na") values does not appear in the table. In the text, the value of mb_type may be
referred to as the macroblock type and a value X of mb_part pred mode may be referred to in the text by "X macroblock
(partition) prediction mode" or as “X prediction macroblocks”.

Table 7-7 shows the allowed collective macroblock types for each slice_type.
NOTE - There are some macroblock types with Pred L0 prediction mode that are classified as B macroblock types.

Table 7-7 — Allowed collective macroblock typesfor dice type

dice_type allowed collective macroblock types

I (slice) I (see Table 7-8) (macroblock types)

P (slice) P (see Table 7-10) and I (see Table 7-8) (macroblock types)
B (slice) B (see Table 7-11) and I (see Table 7-8) (macroblock types)
SI (slice) SI (see Table 7-9) and I (see Table 7-8) (macroblock types)
SP (slice) P (see Table 7-10) and I (see Table 7-8) (macroblock types)

Macroblock types that may be collectively referred to as I macroblock types are specified in Table 7-8.

The macroblock types for I slices are all I macroblock types.

DRAFT ITU-T Rec. H.264 (2002 E) 63

Table 7-8 —Macraoblock typesfor | slices

mb_type | Name of mb_type | mb_part_pred_mode | Intral6x16 CodedBlock CodedBlock
(mb_type, 0) PredMode | PatternChroma | PatternLuma
0 I 4x4 Intra_4x4 na na na
1 1 16x16 0 0 0 Intra_16x16 0 0 0
2 I 16x16 1 0 0 Intra_16x16 1 0 0
3 [16x16 2 0 0 Intra_16x16 2 0 0
4 1 16x16 3 0 0 Intra_16x16 3 0 0
5 I 16x16 0 1 0 Intra_16x16 0 1 0
6 1 16x16 1.1 0 Intra_16x16 1 1 0
7 1 16x16 2.1 0 Intra_16x16 2 1 0
8 [16x16 3 10 Intra_16x16 3 1 0
9 1 16x16 0 2 0 Intra_16x16 0 2 0
10 [16x16 12 0 Intra_16x16 1 2 0
11 1 16x16 22 0 Intra_16x16 2 2 0
12 1 16x16 3.2 0 Intra_16x16 3 2 0
13 [16x16 0 0 1 Intra_16x16 0 0 15
14 1 16x16 1 0 1 Intra_16x16 1 0 15
15 1 16x16 2 0 1 Intra_16x16 2 0 15
16 [16x16 3 0 1 Intra_16x16 3 0 15
17 1 16x16 0 1 1 Intra_16x16 0 1 15
18 [16x16 1 1 1 Intra_16x16 1 1 15
19 1 16x16 2 1 1 Intra_16x16 2 1 15
20 1 16x16 3 1 1 Intra_16x16 3 1 15
21 [16x16 0 2 1 Intra_16x16 0 2 15
22 1 16x16 12 1 Intra_16x16 1 2 15
23 1 16x16 2 2 1 Intra_16x16 2 2 15
24 1 16x16 3 2 1 Intra_16x16 3 2 15
25 I PCM na na na na

The following semantics are assigned to the macroblock types in Table 7-8:
I 4x4: the macroblock is coded as an Intra_4x4 prediction macroblock.

I 16x16 0 0 0,1 16x16 1 0 0,1 16x16 2 0 0,1 16x16 3 0 0,1 16x16 0 1 0,1 16x16 1 1 0,1 16x16 2 1 0,
I 16x16 3 1 0,1 16x16 0 2 0,1 16x16 1 2 0,1 16x16 2 2 0,1 16x16 3 2 0,1 16x16 0 0 1,1 16x16 1 0 1,
[16x16 2 0 1,1 16x16 3 0 1,1 16x16 0 1 1,1 16x16 1 1 1,1 16x16 2 1 1,1 16x16 3 1 1,1 16x16 0 2 1
[16x16 1 2 1,1 16x16 2 2 1,1 16x16_3 2 1:the macroblock is coded as an Intra_16x16 prediction mode
macroblock.

>

>

To each Intra_16x16 prediction macroblock, an Intral6x16PredMode is assigned, which specifies the Intra 16x16
prediction mode. CodedBlockPatternChroma contains the coded block pattern value for chroma as specified in
Table 7-12. CodedBlockPatternLuma specifies whether for the luma component non-zero AC coefficient levels are
present. CodedBlockPatternLuma equal to 0 specifies that there are no AC coefficient levels in the luma component of

64 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT 1SO/IEC 14496-10 : 2002 (E)

the macroblock. CodedBlockPatternLuma equal to 15 specifies that at least one AC coefficient level is in the luma
component of the macroblock, requiring scanning of AC coefficient values for all 16 of the 4x4 blocks in the 16x16

block.

Intra_4x4 specifies the macroblock prediction mode and specifies that the Intra 4x4 prediction process is invoked as
specified in subclause 8.3.1. Intra_4x4 is an Intra macroblock prediction mode.

Intra_16x16 specifies the macroblock prediction mode and specifies that the Intra 16x16 prediction process is invoked
as specified in subclause 8.3.2. Intra_16x16 is an Intra macroblock prediction mode.

For a macroblock coded with mb_type equal to I PCM, the Intra macroblock prediction mode is inferred.

A macroblock type that may be referred to as SI macroblock type is specified in Table 7-9.

The macroblock types for SI slices are specified in Table 7-9 and Table 7-8. The mb_type value O is specified in
Table 7-9 and the mb_type values 1 to 26 are specified in Table 7-8, indexed by subtracting 1 from the value of mb_type.

Table 7-9 —Macroblock typewith value O for Sl dlices

mb_type | Name of mb_type | mb_part_pred_mode | Intral6x16 CodedBlock CodedAC
(mb_type, 0) PredMode | PatternChroma | PatternLuma
0 SI Intra_4x4 na na na

The following semantics are assigned to the macroblock type in Table 7-9. The SI macroblock is coded as Intra 4x4
prediction macroblock.

Macroblock types that may be collectively referred to as P macroblock types are specified in Table 7-10.

The macroblock types for P and SP slices are specified in Table 7-10 and Table 7-8. The mb_type values 0 to 4 are
specified in Table 7-10 and the mb_type values 5 to 30 are specified in Table 7-8, indexed by subtracting 5 from the

value of mb_type.

Table 7-10 — M acroblock type valuesOto 4 for P and SP slices

[[
g 3 3 = =
> 5~ £ES e E~ | B~
3 d 58 o By | 58|28
2 E 2z 2 2 Jz | 02
[= E I o2 92 = =y
o 6 2 T 1T 8 o 8 9o
E o EE = o= 9E | FE
z o ! E =
S S
0 P LO 16x16 1 Pred LO na 16 16
1 P_LO_LO_16x8 2 Pred_LO Pred_LO 16 8
2 P L0 _LO 8x16 2 Pred LO Pred_LO 8 16
3 P 8x8 4 na na 8 8
4 P 8x8ref0 4 na na 8 8

The following semantics are assigned to the macroblock types in Table 7-10:

P 10 16x16,P L0 LO 16x8, P L0 LO 8x16, and P_8x8: the macroblock is predicted from a previous decoded picture
with luma block sizes 16x16, 16x8, 8x16, and 8x8, respectively, and the associated chroma blocks. For the macroblock
types with NxM = 16x16, 16x8, and 8x16, a motion vector difference is decoded for each NxM luma block and the
associated chroma blocks. If N is equal to 8 and M is equal to 8, for each sub-macroblock an additional syntax element
is decoded that specifies in which type the corresponding sub-macroblock is decoded (see subclause 7.4.5.2). Depending
on N, M and the sub-macroblock types there may be 1 to 16 sets of motion vector difference for a macroblock.

DRAFT ITU-T Rec. H.264 (2002 E) 65

P 8x8ref0: same as P_8x8 but ref idx 10 is not present in the bitstream and set equal to 0 for all sub-macroblocks.
P_8x8refl is only present when entropy coding mode flag is equal to 0.

Pred LO specifies the macroblock (partition) prediction mode and specifies that the Inter prediction process is invoked
using list 0 prediction. Pred L0 is an Inter macroblock prediction mode.

Macroblock types that may be collectively referred to as B macroblock types are specified in Table 7-11.

The macroblock types for B slices are specified in Table 7-11 and Table 7-8. The mb_type values 0 to 22 are specified in
Table 7-11 and the mb_type values 23 to 48 are specified in Table 7-8, indexed by subtracting 23 from the value of
mb_type.

Table 7-11 — Macroblock type values0to 22 for B dlices

) @

g 3 3 c =

> 5~ ES Shen S~ | 5~
o I) 1= I~ =0 D O
o o Qo B B S0 | 2
> £ o' =t =t D
= ke E|Q| S‘“I S‘“I 8 o 8 g
€ tv £EE = = Se €

z o o = £

S S

0 B _Direct_16x16 1 Direct na 16 16
1 B L0 _16x16 1 Pred_LO na 16 16
2 B L1 _16x16 1 Pred L1 na 16 16
3 B _Bi 16x16 1 BiPred na 16 16
4 B L0 LO 16x8 2 Pred LO Pred_LO 16 8
5 | B_LO_LO 8x16 2 Pred_LO Pred_LO 8 16
6 | B.LI LI 16x8 2 Pred L1 Pred L1 16 8
7 B L1 L1 8x16 2 Pred L1 Pred L1 8 16
8 | B_LO LI 16x8 2 Pred_LO Pred L1 16 8
9 B LO L1 8x16 2 Pred LO Pred L1 8 16
10 B L1 LO 16x8 2 Pred L1 Pred_LO 16 8
11 | B_L1_LO 816 2 Pred L1 Pred_LO 8 16
12 | B_LO Bi 16x8 2 Pred LO BiPred 16 8
13 B L0 Bi 8x16 2 Pred_LO BiPred 8 16
14 | B_L1 Bi 16x8 2 Pred L1 BiPred 16 8
15 | B_LI1 Bi 8x16 2 Pred L1 BiPred 8 16
16 B Bi L0 16x8 2 BiPred Pred_LO 16 8
17 | B_Bi L0 8x16 2 BiPred Pred_LO 8 16
18 | B Bi Ll 16x8 2 BiPred Pred L1 16 8
19 B Bi L1 8x16 2 BiPred Pred L1 8 16
20 | B_Bi Bi_16x8 2 BiPred BiPred 16 8
21 | B_Bi Bi 8x16 2 BiPred BiPred 8 16
22 B 8x8 4 na na 8 8

66 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT 1SO/IEC 14496-10 : 2002 (E)

The macroblock types in Table 7-11 are collectively referred to as B macroblock types.
The following semantics are assigned to the macroblock types in Table 7-11:
B _Direct 16x16 type: no motion vector data or reference index is present in the bitstream.

B x y NxM, x,y=L0,L1,Bi: each NxM luma block and the associated chroma blocks of a macroblock are predicted by
using decoded motion vector differences and reference pictures. As shown in Table 7-11, for 16x16 macroblock
partitions, 3 different macroblock types that differ in their prediction modes can be decoded for a macroblock. For the
16x8 and 8x16 macroblock partitions, 18 different combinations of prediction modes can be decoded for a macroblock.
If a macroblock is coded as B_8x8 macroblock type, an additional codeword for each 8x8 macroblock partition, referred
to as sub-macroblock, specifies the decomposition of the sub-macroblock (see Table 7-15).

B 8x8: the macroblock is partitioned into sub-macroblocks. The decoding of each sub-macroblock is specified using
sub_mb_type.

Direct specifies the macroblock (partition) prediction mode and specifies that no data are present in the bitstream for the
prediction process. The variables for the Inter prediction process are derived may be using list O or list 1 prediction.
Direct is an Inter macroblock prediction mode.

Pred L1 specifies the macroblock (partition) prediction mode and specifies that the Inter prediction process is invoked
using list 1 prediction. Pred L1 is an Inter macroblock prediction mode.

BiPred specifies the macroblock (partition) prediction mode and specifies that the Inter prediction process is invoked
using list 0 and list 1 prediction. BiPred is an Inter macroblock prediction mode.

pcm_alignment_zero_bit is a bit equal to 0.

pcm_byte is a sample value. pcm_byte shall not be equal to 0. The first 256 pcm_byte values represent luma sample
values in raster scan order within the macroblock. The next (256*(ChromaFormatFactor-1))/2 pcm_byte values
represent Cb sample values in raster scan order within the macroblock. The last (256*(ChromaFormatFactor-1))/2
pcm_byte values represent Cr sample values in raster scan order within the macroblock.

coded_block_pattern specifies which of the 6 8x8 blocks - luma and chroma - contain non-zero transform coefficients.
For macroblocks with prediction mode not equal to Intra 16x16, coded block pattern is present in the bitstream and the
variables CodedBlockPatternL.uma and CodedBlockPatternChroma are derived as follows.

CodedBlockPatternLuma = coded_block pattern % 16
CodedBlockPatternChroma = coded block pattern / 16 (7-23)

CodedBlockPatternLuma is a number between 0 and 15 inclusive where bit n (binary representation) is 1 if 8x8 luma
block n contains non-zero coefficients; otherwise, bit n is 0. The bit index n refers to the n-th luma 8x8 block in raster
scan within the current macroblock.

The meaning of CodedBlockPatternChroma is given in Table 7-12.

Table 7-12 — Specification of CodedBlockPatter nChroma values

CodedBlockPatternChroma | Description

0 All chroma coefficients are 0.

1 One or more chroma DC coefficients are non-zero.
All chroma AC coefficients are 0.

2 Zero or more chroma DC coefficients are non-zero.
One or more chroma AC coefficients are non-zero.

mb_qgp_delta can change the value of QPy in the macroblock layer. The decoded value of mb_qp_delta shall be in the
range from -26 to +25, inclusive. mb_qp_delta shall be inferred to be equal to 0 if it is not present for any macroblock
(including P_Skip and B_Skip macroblock types).

The value of QPy, is derived as

DRAFT ITU-T Rec. H.264 (2002 E) 67

QPy = (QPy prpy T mb_qp_delta + 52) % 52 (7-24)

where QPy prey is the luma quantisation parameter, QPy, of the previous macroblock in the current slice. For the first
macroblock in the slice QPy pggy is initially set to SliceQPy derived in Equation 7-17 at the start of each slice.

7.45.1 Macroblock prediction semantics
All samples of the macroblock are predicted. The prediction modes are derived using the following syntax elements.

prev_intradx4 pred_mode flag[luma4x4Blkldx] and rem_intradx4_pred_mode] lumad4x4Blkldx] indicate the
Intra_4x4 prediction of the 4x4 luma block with index luma4x4BlkIdx = 0..15.

intra_chroma_pred_mode specifies the type of spatial prediction used for chroma whenever any part of the luma
macroblock is intra coded. This is shown in Table 7-13.

Table 7-13 — Relationship between intra_chroma_pred_mode and spatial prediction modes

intra_chroma_pred_mode Intra Chroma Prediction Mode
0 DC
1 Horizontal
2 Vertical
3 Plane

ref_idx_|O[mbPartldx] when present, specifies the index in list O of the reference picture to be used for prediction. If
MbaffFrameFlag is equal to 0, the value of ref idx 10 shall be in the range of 0 to num_ref idx 10 active minusl,
inclusive. If MbaffFrameFlag is equal to 1 and mb_field decoding flag is equal to 1, the value of ref idx 10 shall be in
the range of 0 to 2 * num_ref idx 10 active minusl + 1.

ref_idx_|1] mbPartldx] has the same semantics as ref idx 10, except that it is applied to reference picture list 1 and
therefore all 10 or LO extensions are replaced by 11 or L1, respectively.

mvd_|O[mbPartldx][0][compldx] specifies the difference between a vector component to be used and its prediction.
The index mbPartldx specifies to which macroblock partition mvd_10 is assigned. The partitioning of the macroblock is
specified by mb_type. The horizontal motion vector component difference is decoded first in decoding order and is
assigned Compldx = 0, the vertical motion vector component is decoded second in decoding order and is assigned
Compldx = 1. For each motion vector variable MvLO[mbPartldx][0][Compldx], a prediction is formed for the
horizontal and vertical components MvpLO that is then added to mvd_10[mbPartldx][0][Compldx] in order to derive
the motion vector variable as specified in subclause 8.4.1. The motion vector variable
MvLO[mbPartldx][0][Compldx] is used in inter prediction for the samples covered by the macroblock partition
mbPartldx as specified in subclause 8.4.2. The range of the components of mvd 10 is specified by constraints on the
motion vector variable values as specified in Annex A.

mvd_|1] mbPartldx][0][compldx] has the same semantics as mvd 10, except that it is applied to reference picture
list 1 and therefore all 10 or LO extensions are replaced by 11 and L1 respectively.

7.4.5.2 Sub-macroblock prediction semantics
sub_mb_type[mbPartldx] specifies the sub-macroblock types.

Tables and semantics are specified for the various sub-macroblock types for P, SP, and B slices. Each table presents the
value of sub_mb type, the name of sub _mb type, the number of sub-macroblock partitions used (given by the
num_sub_mb_part(sub mb type) function) and the prediction mode of the sub-macroblock (given by the
sub_mb pred mode(sub_mb type) function). In the text, the value of sub_mb type may be referred to by “sub-
macroblock type”. In the text, the value of sub_ mb pred mode may be referred to by “sub-macroblock prediction
mode”. [Ed. Note (JVT): Change function names to follow convention.]

The sub-macroblock types for P macroblock types are specified in Table 7-14.

68 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

Table 7-14 — Sub-macroblock typesin P macroblocks

+— (€] =
o — o — a L — -8 L — % L —~ 'ED L —~
Sx| 2% 5% | E&X =5% | 25%
s 8;I: Ed=| B2 £a2 g‘_czlg
EF| EES 2'E8| SEB SEx | SE®
a a o o o [
(re) | o
o zZao2 325 | 295 2o =99
3 E 3 E 'BE| EBRE 3E | EBE
— —_— E ~ |v O~ O~
S>—| o—— 5~ g~
c a 7] 7
0 P L0 8x8 1 Pred LO 8 8
1 P_LO 8x4 2 Pred_LO 8 4
2 P L0 4x8 2 Pred L0 4 8
3 P L0 4x4 4 Pred LO 4 4

The following semantics are assigned to the sub-macroblock types in Table 7-14:

P L0 XxY, X,Y=4,8 the corresponding partition of the sub-macroblock is predicted from a past picture with luma block
size 8x8, 8x4, 4x8, and 4x4, respectively, and the associated chroma blocks. A motion vector is present in the bitstream
for each NxM=8x8, 8x4, 4x8, and 4x4 block. Depending on N and M, up to 4 motion vector component differences may
be decoded for a sub-macroblock, and thus up to 16 motion vector component differences may be decoded for a

macroblock.

The sub-macroblock types for B macroblock types are specified in Table 7-15.

Table 7-15 — Sub-macroblock typesin B macroblocks

- Q < c
o x - 22X =y = % < 5%
23 6232 2= 5 E s + 1T 4_.|“'|‘C5
U o SlE Eoc o= Bao= zoT
E§ EEE o €8 D-|EB CﬁEB Q.|Ea
s S s = [P aga o
o Z o Qo Q o Q5 Qa9
3 E 3 E c'BE ERE EBRE ERE
—_ —_— 5 ~— o~ o~ o~——
= B B 3
0 B_Direct_8x8 1 Direct 8 8
1 B LO 8x8 1 Pred_LO 8 8
2 B L1 _8x8 1 Pred L1 8 8
3 B Bi_8x8 1 BiPred 8 8
4 B LO 8x4 2 Pred_LO 8 4
5 B_LO_4x8 2 Pred_LO 4 8
6 B L1 _8x4 2 Pred L1 8 4
7 B L1 4x8 2 Pred L1 4 8
8 B_Bi_8x4 2 BiPred 8 4
9 B _Bi_4x8 2 BiPred 4 8
10 B L0 4x4 4 Pred_LO 4 4
11 B L1_4x4 4 Pred L1 4 4
12 B _Bi_4x4 4 BiPred 4 4

DRAFT ITU-T Rec. H.264 (2002 E)

69

The following semantics are assigned to the sub-macroblock types in Table 7-15:

B L0 XxY, X,Y=4,8, have the same semantics as in Table 7-14.

B Z X Y, Z=L1,Bi, X,Y=4,8 [Ed.Note: add description of these mnemonic names]|
ref_idx_I0[mbPartldx] has the same semantics as ref_idx_10 in subclause 7.4.5.1.
ref_idx_I1] mbPartldx] has the same semantics as ref idx_11 in subclause 7.4.5.1.

mvd_|O[mbPartldx][subMbPartldx][compldx] has the same semantics as mvd 10 in subclause 7.4.5.1. The indices
mbPartldx and subMbPartldx specify to which macroblock partition and sub-macroblock partition mvd 10 is assigned.

mvd_|1[mbPartldx][subMbPartldx][compldx] has the same semantics as mvd 11 in subclause 7.4.5.1.

7.45.3 Residual data semantics

When entropy coding mode flag is equal to 0, residual block is equal to residual block cavlc, which is used for
parsing the syntax elements for coefficient levels.

When entropy coding mode flag is equal to 1, residual block is equal to residual block cabac, which is used for
parsing the syntax elements for coefficient levels.

Depending on mb_type, luma or chroma, residual block(coeffLevel, maxNumCoeff) is invoked with the arguments
coeffLevel and maxNumCoeff. coeffLevel is an array containing the maxNumCoeff coefficient levels that are parsed.

When mb_part pred mode(mb_type, 0) is equal to Intra 16x16, the coefficient levels are parsed into two arrays:
Intral6x16DCLevel and Intral6x16ACLevel. Intral6x16DCLevel contains the 16 coefficient levels of the DC
coefficient levels for each 4x4 luma block. Intral6x16ACLevel[i8x8 * 4 +14x4 | contains for each 4x4 luma block
indexed by i8x8 * 4 + i4x4 the 15 AC coefficients.

When mb_part pred mode(mb_type, 0) is not equal to Intra_16x16, the 16 coefficient levels for each 4x4 luma block
indexed by i8x8 * 4 + i4x4 are contained in LumaCoeffLevel[i8x8 * 4 + i4x4].

The 4 DC coefficients of all 4x4 chroma blocks per chroma component are parsed into ChromaDCLevel[iCbCr | with
iCbCr indexing the chroma component.

The 15 AC coefficients for each 4x4 chroma coefficient that is indexed by i4x4 for each chroma block and iCbCr for
each chroma component are contained in ChromaACLevel[iCbCr][i4x4].

7.4.5.3.1 Residual block CAVLC semantics

The function total coeff(coeff token) that is used in subclause 7.3.5.3.1 returns the number of coefficients derived from
coeff token.

The function trailing ones(coeff token) that is used in subclause 7.3.5.3.1 returns the trailing ones derived from
coeff token.

coeff_token specifies the total number of non-zero coefficients and the number of trailing one coefficients in a
coefficient scan. A trailing one coefficient is one of up to three consecutive non-zero coefficients having an absolute
value equal to 1 at the end of a scan of non-zero coefficients. The range of coeff token is specified in subclause 9.2.1.

trailing_ones _sign_flag specifies the sign of a trailing one coefficient. A trailing_ones_sign_flag equal to 0 specifies
that the level of the corresponding transform coefficient is +1. A trailing ones_sign flag equal to 1 specifies that the
level of the corresponding transform coefficient is -1.

coeff_level specifies the level and sign of a non-zero transform coefficient. The range of coeff level is specified in
subclause 9.2.2.

total_zeros specifies the total number of zero-valued coefficients that are located before the position of the last non-zero
coefficient in a scan of coefficients. The range of total zeros is specified in subclause 9.2.3.

run_before specifies the number of consecutive coefficients in the scan with zero value before a non-zero valued
coefficient. The range of run_before is specified in subclause 9.2.3.

coeffLevel contains maxNumCoeff coefficient levels for the current array.

70 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT 1SO/IEC 14496-10 : 2002 (E)

7.4.5.3.2 Residual block CABAC semantics

coded_block_flag specifies whether the block contains non-zero transform coefficients. If coded block flag is equal to
0, the block contains no non-zero transform coefficients. If coded block flag is equal to 1, the block contains at least one
non-zero transform coefficient.

significant_coeff _flag[i] specifies whether the transform coefficient at scanning position i is non-zero. If
significant _coeff flag[i] is equal to 0, the transform coefficient at scanning position i is equal to zero; if
significant coeff flag[i]is equal to 1, the transform coefficient at scanning position i has a non-zero value.

last_significant_coeff_flag[i] specifies for the scanning position i whether there are non-zero transform coefficients for
subsequent scanning positions i + 1 to maxNumCoeff - 1. If all following transform coefficients (in scanning order) of
the block have value equal to zero last_significant coeff flag[i]is equal to 1. If last_significant coeff flag[i] is equal
to 0, there are further non-zero transform coefficients along the scanning path.

coeff_abs level minusl[i] is the absolute value of a transform coefficient level minus 1. The value of
coeff abs level minusl is constraint by the limits in subclause 8.5.

coeff_sign_flag[i] specifies the sign of a transform coefficient level. When coeff sign flag is equal to 0, the
corresponding transform coefficient level has a positive value. When coeff sign flag is equal to 1, the corresponding
transform coefficient level has a negative value.

coeffLevel contains maxNumCoeff coefficient levels for the current array.

8 Decoding process
Outputs of this process are decoded samples of the current picture.
This clause describes the decoding process, given syntax elements and variables from clause 7.

The decoding process is specified such that all decoders shall produce numerically identical results. Any decoding
process that produces identical results to the process described here conforms to the decoding process requirements of
this Recommendation | International Standard.

8.1 NAL unit decoding process
Inputs to this process are NAL units.
Outputs of this process are the RBSP syntax structures encapsulated within the NAL units.

The decoding process for each NAL unit extracts the RBSP syntax structure from the NAL unit and then operates the
decoding processes specified for the RBSP syntax structure in the NAL unit as follows.

Subclause 8.2 describes the decoding process for NAL units with nal_unit_type equal to 1 through 5.

Subclauses 8.3 describes the decoding process for a macroblock or part of a macroblock coded in NAL units with
nal _unit_type equal to 1, 2, and 5.

Subclause 8.4 describes the decoding process for a macroblock or part of a macroblock coded in NAL units with
nal unit_type equal to 1 and 2.

Subclause 8.5 describes the decoding process for a macroblock or part of a macroblock coded in NAL units with
nal unit type equalto 1, 3, 4 and 5.

Subclause 8.6 describes the decoding process for a macroblock or part of a macroblock coded in NAL units with
nal unit type equalto 1, 3, 4 and 5.

Subclause 8.7 describes the decoding process for a macroblock or part of a macroblock coded in NAL units with
nal unit type equal to 1 through 5.

NAL units with nal unit type equal to 7 and 8 contain sequence parameter sets and picture parameter sets, respectively.
Picture parameter sets are used in the decoding processes of other NAL units as determined by reference to a picture
parameter set within the slice headers of each picture. Sequence parameter sets are used in the decoding processes of
other NAL units as determined by reference to a sequence parameter set within the picture parameter sets of each
sequence.

No normative decoding process is specified for NAL units with nal unit_type equal to 6, 9, 10, 11, and 12.

DRAFT ITU-T Rec. H.264 (2002 E) 71

8.2 Slice decoding process

8.21 Detection process of coded picture boundaries

Inputs to this process are the slice header of the previous and current slice, as well as TopFieldOrderCnt and/or
BottomFieldOrderCnt for the previous and current slice and the nal ref idc of the NAL units that contained the current
and previously decoded slice. [Ed. Note (JVT): "and/or"? - "or" (for "xor" use "a or b but not both")]

Output of this process is an indication if decoding of a new picture is being started from the current slice.

Decoding of a new picture is being started from the current slice, if the slice is not a redundant coded slice and if any of
the following conditions is true:

- The frame num of the current slice is different from the frame num of the previous slice.
- The field pic flag of the previous slice is different from the field pic flag of the current slice.

- The bottom_field flag is present in the bitstream for both the previous slice and the current slice but is not equal in
the two slices.

- The nal ref idc of the previous slice is different from the nal ref idc of the current slice with one of the nal_ref idc
values being equal to 0.

- The frame num of the current slice is the same as the frame num in the previous slice and pic_order cnt type is
equal to 0, and either pic_order cnt Isb is different from the pic order cnt Isb in the previous slice, or
delta pic_order cnt bottom is different from the delta pic_order cnt bottom in the previous slice.

- The frame num of the current slice is the same as the frame num in the previous slice and pic_order cnt type is
equal to 1, and either delta_pic_order cnt[0] is different from the delta pic_order cnt[0] in the previous slice, or
delta_pic_order cnt[1] is different from the delta pic_order cnt[1] in the previous slice.

- Both the current slice and the previous slice belong to an IDR picture, and the idr_pic_id of the current slice differs
from the idr_pic_id of the previous slice.

At least one of the above conditions shall be fulfilled at the start of each primary coded picture in the bitstream.

NOTE — The presence of a picture delimiter NAL unit after the previous slice or data partition is also a sufficient condition for
detection of the start of a new primary coded picture. However, a picture delimiter NAL unit has no normative effect on the
decoding process and may not be present.

8.2.2 Decoding processfor pictureorder count
Outputs of this process are TopFieldOrderCnt (if applicable) and BottomFieldOrderCnt (if applicable)..

Picture order counts are used to determine initial picture orderings for reference pictures in the decoding of B slices (see
subclauses 8.2.6.2.3 and 8.2.6.2.4), to represent picture order differences between frames or fields for motion vector
scaling in temporal direct mode (see subclause 8.4.1.2.3) and for implicit mode weighted prediction in B slices (see
subclause 8.4.2.3.2).

Picture order count information is derived for every field, independent of the value of field pic_flag, as follows:

- Each coded field is associated with a picture order count, called TopFieldOrderCnt for a coded top field and
BottomFieldOrderCnt for a bottom field.

- Each coded frame is associated with two picture order counts, called TopFieldOrderCnt and BottomFieldOrderCnt
for its decoded top field and decoded bottom field, respectively.

TopFieldOrderCnt and BottomFieldOrderCnt indicate the output order of the corresponding decoded top field or
decoded bottom field relative to the first output field of the previous IDR picture in decoding order.

TopFieldOrderCnt and BottomFieldOrderCnt are derived by invoking one of the decoding process for picture order
count type 0, 1, and in subclauses 8.2.2.1, 8.2.2.2, and 8.2.2.3, respectively.

[Ed. (TW) consider removing FramePicOrder Cnt and replace its use by PicOrderCnt(CurrPic)]

In addition, for each frame or field pair or non-paired field a FrameOrderCnt is derived such that for a frame or
complementary field pair,

FrameOrderCnt = min(TopFieldOrderCnt, BottomFieldOrderCnt) (8-1)

and for a non-paired top field,

FrameOrderCnt = TopFieldOrderCnt (8-2)

72 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT 1SO/IEC 14496-10 : 2002 (E)

and for a non-paired bottom field,

FrameOrderCnt = BottomFieldOrderCnt (8-3)

The bitstream shall not contain data that results in a FrameOrderCnt not equal to 0 for an IDR picture. Thus, at least one
of TopFieldOrderCnt and BottomFieldOrderCnt shall be equal to 0 for the fields of a frame whose FrameOrderCnt is
equal to zero.

The signed picture order difference from X to Y, DiffPicOrderCnt(X, Y), between two fields or frames is specified as
follows (with Z being a variable for X and Y):

if (Z is a frame) PicOrderCnt(Z) = FrameOrderCnt of frame Z
else if (Z is a complementary field pair)
PicOrderCnt(Z) = min(TopFieldOrderCnt, BottomFieldOrderCnt) of field pair Z
else if (Z is a top field) PicOrderCnt(Z) (8-4)
else if (Z is a bottom field) PicOrderCnt(Z) = BottomFieldOrderCnt of frame containing Z

DiffPicOrderCnt(X, Y) = PicOrderCnt(X) - PicOrderCnt(Y) (8-5)

The bitstream shall not contain data that results in values of DiffPicOrderCnt(X, Y) used in the decoding process that
exceed the range from -2" to 2"-1, inclusive.

NOTE — Many applications assign PicOrderCnt(X) proportional to the sampling time of the picture X relative to the sampling
time of an IDR picture. In this case, if X is the current picture and Y and Z are reference pictures, Y and Z are considered to be in
the same temporal direction from X if both DiffPicOrderCnt(X, Y) and DiffPicOrderCnt(X, Z) are positive or both are negative.

The bitstream shall not contain data that results in values of FrameOrderCnt, TopFieldOrderCnt, BottomFieldOrderCnt,
PicOrderCntMsb, FrameNumOffset used in the decoding process as specified in subclauses 8.2.2.1 to 8.2.2.3 that exceed
the range of values from -2*' to 2*'-1, inclusive.

8.2.2.1 Decoding processfor pictureorder count typeO

This process is invoked when pic_order cnt type is equal to 0.

Input to this process is PicOrderCntMsb of the previous reference picture in decoding order.
Outputs of this process are TopFieldOrderCnt and/or BottomFieldOrderCnt.

Let prevPicOrderCntMsb be the PicOrderCntMsb of the previous reference picture in decoding order. If the current
picture is an IDR picture, prevPicOrderCntMsb is set to 0.

Let prevPicOrderCntLsb be the value of pic_order cnt_Isb of the previous reference picture in decoding order.

PicOrderCntMsb of the current picture is derived as follows:

if((pic_order_cnt Isb < prevPicOrderCntLsb) &&

((prevPicOrderCntLsb — pic_order cnt Isb) >= (MaxPicOrderCntLsb/2)))

PicOrderCntMsb = prevPicOrderCntMsb + MaxPicOrderCntLsb (8-6)
else if((pic_order cnt Isb > prevPicOrderCntLsb) &&

((pic_order cnt Isb — prevPicOrderCntLsb) > (MaxPicOrderCntLsb/2)))

PicOrderCntMsb = prevPicOrderCntMsb — MaxPicOrderCntLsb
else

PicOrderCntMsb = prevPicOrderCntMsb

Subsequently, if the current picture is not a bottom field, the TopFieldOrderCnt is derived as follows:
if(field pic flag == 0 || bottom_field flag ==0)
TopFieldOrderCnt = PicOrderCntMsb + pic_order cnt lsb (8-7)
Subsequently, if the current picture is not a top field, the BottomFieldOrderCnt is derived as follows:
if(field pic flag == 0)
BottomFieldOrderCnt = TopFieldOrderCnt + delta_pic_order cnt bottom

else if(bottom_field flag) (8-8)
BottomFieldOrderCnt = PicOrderCntMsb + pic_order cnt Isb

DRAFT ITU-T Rec. H.264 (2002 E) 73

8.2.2.2 Decoding processfor pictureorder count typel
This process is invoked when pic_order cnt type is equal to 1.
Input to this process is FrameNumOffset of the previous picture in decoding order.

Outputs of this process are TopFieldOrderCnt and/or BottomFieldOrderCnt.

The values of TopFieldOrderCnt and BottomFieldOrderCnt are derived relative to the most recent IDR picture as
specified in this subclause. Let prevFrameNum be equal to the frame num of the previous picture in decoding order.

If the current picture is an IDR picture, then the variable idrPicFlag is set equal to 1, otherwise idrPicFlag is set equal to

0.

First, let prevFrameNumOffset be the value of FrameNumOffset of the previous picture. FrameNumOffset is derived as

follows:

if(idrPicFlag)

FrameNumOffset = 0
else if (prevFrameNum > frame num)

FrameNumOffset = prevFrameNumOffset + MaxFrameNum
else

FrameNumOffset = prevFrameNumOffset

Second, let absFrameNum is derived as follows:

if(num_ref frames_in pic_order cnt cycle != 0)
absFrameNum = FrameNumOffset + frame num

else
absFrameNum = 0

if(nal ref idc == 0 && absFrameNum > 0)
absFrameNum = absFrameNum — 1

Third, if absFrameNum > 0, PicOrderCntCycleCnt and FrameNumInPicOrderCntCycle are derived as follows:

if(absFrameNum > 0) {
picOrderCntCycleCnt = (absFrameNum — 1) / num_ref frames_in_pic_order cnt cycle
frameNumlInPicOrderCntCycle = (absFrameNum — 1) % num_ref frames_in_pic_order cnt cycle

}

Let expectedDeltaPerPicOrderCntCycle be derived as follows:

expectedDeltaPerPicOrderCntCycle = 0
for(1=0; i <num_ref frames in pic order cnt cycle; i++)
expectedDeltaPerPicOrderCntCycle += offset for ref frame[1i]

Let expectedPicOrderCnt be derived as follows:

if(absFrameNum > 0){
expectedPicOrderCnt = picOrderCntCycleCnt * expectedDeltaPerPicOrderCntCycle
for(1= 0; i <= frameNumInPicOrderCntCycle; i++)
expectedPicOrderCnt = expectedPicOrderCnt + offset for ref frame[i]
} else
expectedPicOrderCnt = 0
if(nal_ref idc == 0)
expectedPicOrderCnt = expectedPicOrderCnt + offset for non_ref pic

TopFieldOrderCnt or BottomFieldOrderCnt of the current picture are derived as follows:

if(field pic flag == 0) {
TopFieldOrderCnt = expectedPicOrderCnt + delta_pic_order cnt[0]

(8-9)

(8-10)

(8-11)

(8-12)

(8-13)

BottomFieldOrderCnt = TopFieldOrderCnt + offset for top to bottom field + delta pic_order cnt[1] (8-

14)
} else if (bottom_field flag == 0)

74 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

TopFieldOrderCnt = expectedPicOrderCnt + delta_pic_order cnt[0]
else if (bottom_field flag == 1)
BottomFieldOrderCnt = expectedPicOrderCnt + offset for top to bottom field + delta pic order cnt[O]

8.2.2.3 Decoding processfor pictureorder count type 2

This process is invoked when pic_order cnt type is equal to 2.

Outputs of this process are TopFieldOrderCnt or BottomFieldOrderCnt.

Let prevFrameNum be equal to the frame num of the previous picture in decoding order.

If the current picture is an IDR picture, then the variable idrPicFlag is set equal to 1, otherwise idrPicFlag is set equal
to 0.

Let prevFrameNumOffset be the value of FrameNumOffset of the previous picture. FrameNumOffset is derived as
follows.

if(idrPicFlag)
FrameNumOffset = 0

else if (prevFrameNum > frame num) (8-15)
FrameNumOffset = prevFrameNumOffset + MaxFrameNum

else

FrameNumOffset = prevFrameNumOffset

Let tempPicOrderCnt be derived as follows:

if (idrPicFlag == 1)

tempPicOrderCnt = 0
else if (nal_ref idc==0)

tempPicOrderCnt = 2 * (FrameNumOffset + frame num) — 1
else

tempPicOrderCnt = 2 * (FrameNumOffset + frame num)

TopFieldOrderCnt or BottomFieldOrderCnt are derived as follows:

if (!field pic flag) {
TopFieldOrderCnt = tempPicOrderCnt
BottomFieldOrderCnt = tempPicOrderCnt
} else if (bottom_field flag)
BottomFieldOrderCnt = tempPicOrderCnt
else
TopFieldOrderCnt = tempPicOrderCnt

NOTE - Picture order count type 2 cannot be used in a sequence that contains two or more consecutive non-reference frames,
complementary non-reference field pairs or non-paired non-reference fields in decoding order.

NOTE — When picture order count type 2 is used the output order is the same as the decoding order.

8.2.3 Decoding processfor redundant dices
Input to this process is a redundant coded slice.
Output of this process is a decoded approximation of the area of the primary picture represented in the redundant slice.

There is no required decoding process for a redundant coded slice. If the redundant pic cnt in the slice header of a
coded slice is greater than 0, the decoder may discard the coded slice. However, a redundant coded slice shall be
decodable by the decoding process for a primary coded slice.

NOTE - If some of the samples in the decoded primary picture cannot be correctly decoded due to errors or losses in transmission
of the sequence and if the coded redundant slice can be correctly decoded, the decoder should replace the samples of the decoded
primary picture with the corresponding samples of the decoded redundant slice. If more than one redundant slice covers the
relevant region of the primary picture, the redundant slice having the lowest value of redundant pic_cnt should be used.

8.24 Decoding processfor macraoblock to slice group map

Inputs to this process are the active picture parameter set and the slice header of the slice to be decoded.

DRAFT ITU-T Rec. H.264 (2002 E) 75

Output of this process is a macroblock to slice group map MbToSliceGroupMap.

This process is invoked after a new picture has been detected using the process specified in subclause 8.2.1 and the slice
header of the first slice of the new picture has been parsed.

If num_slice_groups _minus] is equal to 1 and slice_group map_type is equal to 3, 4, or 5, slice groups 0 and 1 have a
size and shape determined by slice group change direction flag as shown in Table 8-1 and specified in subclauses
8.2.4.4-8.2.4.6. In such a case, the number of slice group map units in slice group 0 is equal to

mapUnitsInSliceGroup0 = Min(slice_group_change cycle * SliceGroupChangeRate, PicSizeInMapUnits) (8-16)

Table 8-1 — Refined slice group map type

slice_group_map_type slice_group_change direction_flag | refined slice group map type
3 0 Box-out clockwise
3 1 Box-out counter-clockwise
4 0 Raster scan
4 1 Reverse raster scan
5 0 Wipe right
5 1 Wipe left

In such a case, this number of slice group map units in the specified growth order is allocated for slice group 0 and the
remaining PicSizeInMapUnits — mapUnitsIinSliceGroup0 slice group map units of the picture are allocated for slice
group 1.

If num slice groups minusl is equal to 1 and slice group map type is equal to 4 or 5, the variable
sizeOfUpperLeftGroup is defined as follows:

sizeOfUpperLeftGroup = slice_group change direction flag ?
(PicSizeInMapUnits — mapUnitsInSliceGroupO0) : mapUnitsInSliceGroupO (8-17)

If num_slice groups minusl is equal to 0, the map unit to slice group map is generated for all i ranging from 0 to
PicSizeInMapUnits — 1, inclusive, as specified by:

mapUnitToSliceGroupMap[i]| =0 (8-18)

Otherwise,

— If slice_group map type is equal to 0, the process specified in subclause 8.2.4.1 is invoked for the
generation of mapUnitToSliceGroupMap.

— If slice group map type is equal to 1, the process specified in subclause 8.2.4.2 is invoked for the
generation of mapUnitToSliceGroupMap.

— If slice_group _map_type is equal to 2, the process specified in subclause 8.2.4.3 is invoked for the
generation of mapUnitToSliceGroupMap.

— If slice_group map type is equal to 3, the process specified in subclause 8.2.4.4 is invoked for the
generation of mapUnitToSliceGroupMap.

— If slice group map type is equal to 4, the process specified in subclause 8.2.4.5 is invoked for the
generation of mapUnitToSliceGroupMap.

— If slice_group _map_type is equal to 5, the process specified in subclause 8.2.4.6 is invoked for the
generation of mapUnitToSliceGroupMap.

— If slice_group map type is equal to 6, the process specified in subclause 8.2.4.7 is invoked for the
generation of mapUnitToSliceGroupMap.

After generation of the mapUnitToSliceGroupMap, the process specified in subclause 8.2.4.8 is invoked to convert the
map unit to slice group map mapUnitToSliceGroupMap to the macroblock to slice group map MbToSliceGroupMap.
[Ed. Note (JVT): Convert to refer to “specification”, not process. |

After generation of the macroblock to slice group map as specified in subclause 8.2.4.8, the function
NextMbAddress(n) is defined as the value of the variable nextMbAddress derived as specified by:

76 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT 1SO/IEC 14496-10 : 2002 (E)

i=n+t1
while(i < PicSizeInMbs && MbToSliceGroupMap[i] != MbToSliceGroupMap[n |)
it++;
nextMbAddress =i (8-19)

8.24.1 Specification for interleaved slice group map type
The specifications in this subclause apply when slice_group map_type is equal to 0.

The map unit to slice group map is generated as specified by:

i=0
do
for(iGroup = 0; iGroup <= num_slice_groups_minus| && i < PicSizeInMapUnits;
i+=run_length minusl[iGroup++]+1)
for(j=0;j <=run_length minusl1[iGroup] && i+ j < PicSizeInMapUnits; j++)
mapUnitToSliceGroupMap| i +j | = iGroup (8-20)
while(i < PicSizeInMapUnits)

8.2.4.2 Specification for dispersed slice group map type
The specifications in this subclause apply when slice_group map_type is equal to 1.

The map unit to slice group map is generated as specified by:

for(1= 0; i < PicSizeInMapUnits; i++)
mapUnitToSliceGroupMap[i] = ((1 % PicWidthInMbs) +
(((1/PicWidthInMbs) * (num_slice_groups minusl +1))/2))
% (num_slice groups minusl + 1) (8-21)

8.24.3 Specification for foreground with left-over slice group map type
The specifications in this subclause apply when slice_group map_type is equal to 2.

The map unit to slice group map is generated as specified by:

for(1= 0; i <PicSizeInMapUnits; i++)

mapUnitToSliceGroupMap| i | = num_slice_groups minusl
for(iGroup = num_slice groups minusl — 1; iGroup >= 0; iGroup--) {

yTopLeft = top_left[iGroup]/ PicWidthInMbs

xTopLeft = top_left[iGroup] % PicWidthInMbs

yBottomRight = bottom_right[iGroup]/ PicWidthInMbs

xBottomRight = bottom_right[iGroup] % PicWidthInMbs

for(y = yTopLeft; y <= yBottomRight; y++)

for(x = xTopLeft; x <= xBottomRight; x++)
mapUnitToSliceGroupMap[y * PicWidthInMbs + x] = iGroup (8-22)

After application of the process specified in Equation 8-22, there shall be at least one value of i from 0 to
PicSizeInMapUnits — 1, inclusive, for which mapUnitToSliceGroupMap] i] is equal to iGroup for each value of iGroup
from 0 to num_slice groups minusl, inclusive (i.e., each slice group shall contain at least one slice group map unit).

NOTE — The rectangles may overlap. Slice group 0 contains the macroblocks that are within the rectangle specified by
top_left[0] and bottom_right[0]. A slice group having slice group ID greater than 0 and less than num_slice_groups minusl
contains the macroblocks that are within the specified rectangle for that slice group that are not within the rectangle specified for
any slice group having a smaller slice group ID. The slice group with slice group ID equal to num_slice_groups_minus! contains
the macroblocks that are not in the other slice groups.

8.2.4.4 Specification for box-out slice group map types
The specifications in this subclause apply when slice _group map_type is equal to 3.

The map unit to slice group map is generated as specified by:

for(1= 0; 1 < PicSizeInMapUnits; i++)
mapUnitToSliceGroupMap[i]=1

DRAFT ITU-T Rec. H.264 (2002 E) 77

x = (PicWidthInMbs — slice_group change direction flag) /2
y = (PicHeightInMapUnits — slice_group change direction flag)/2
(leftBound, topBound) = (X, y)
(rightBound, bottomBound) = (x,y)
(xDir, yDir) = (slice_group change direction flag — 1, slice_group change direction_flag)
for(k = 0; k < mapUnitsInSliceGroup0; k += mapUnitVacant) {
mapUnitVacant = (mapUnitToSliceGroupMap[y * PicWidthInMbs +x] == 1)

if(mapUnitVacant)
mapUnitToSliceGroupMap[y * PicWidthInMbs + x] =0 (8-23)
if(xDir == -1 && x == leftBound) {

leftBound = Max(leftBound — 1, 0)

x = leftBound

(xDir, yDir) = (0, 2 * slice_group _change direction flag— 1)
}else if(xDir == 1 && x == rightBound) {

rightBound = Min(rightBound + 1, PicWidthInMbs — 1)

x = rightBound

(xDir, yDir)= (0, 1 —2 * slice_group change direction_flag)

} else if(yDir == -1 && y == topBound) {
topBound = Max(topBound -1, 0)
y = topBound

(xDir, yDir) =(1 — 2 * slice_group_change direction_flag, 0)
}else if(yDir == 1 && y == bottomBound) {
bottomBound = Min(bottomBound + 1, PicHeightiInMapUnits — 1)
y = bottomBound
(xDir, yDir) = (2 * slice_group change direction flag—1,0)
} else
(x,y)=(x+xDir, y+ yDir)

8.24.5 Specification for raster scan slice group map types
The specifications in this subclause apply when slice_group map_type is equal to 4.

The map unit to slice group map is generated as specified by:

for(1= 0; i <PicSizeInMapUnits; i++)
if(1 < sizeOfUpperLeftGroup)
mapUnitToSliceGroupMap| i | = slice_group change direction flag
else (8-24)
mapUnitToSliceGroupMap[i] = 1 —slice_group_change direction_flag

8.24.6 Specification for wipedice group map types
The specifications in this subclause apply when slice _group map_type is equal to 5.

The map unit to slice group map is generated as specified by:

k=0;
for(j = 0; j < PicWidthInMbs; j++)
for(1= 0; i < PicHeightInMapUnits; i++)
if(k++ < sizeOfUpperLeftGroup)
mapUnitToSliceGroupMap][i * PicWidthInMbs + j] = slice_group change direction flag
else (8-25)
mapUnitToSliceGroupMap| i * PicWidthInMbs + j] = 1 —slice_group _change direction_flag

8.2.4.7 Specification for explicit slice group map type
The specifications in this subclause apply when slice _group map_type is equal to 6.

The map unit to slice group map is generated as specified by:

mapUnitToSliceGroupMap| i | = slice_group id[i] (8-26)

78 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT 1SO/IEC 14496-10 : 2002 (E)

for all i ranging from 0 to PicSizeInMapUnits — 1, inclusive.

8.2.4.8 Specification for conversion of map unit to slice group map to macroblock to slice group map

The macroblock to slice group map is specified as follows for each value of i ranging from 0 to PicSizeInMbs — 1,
inclusive.

— If frame mbs_only flag is equal to 1 or field pic flag is equal to 1, the macroblock to slice group map is specified
by:

MbToSliceGroupMap| i | = mapUnitToSliceGroupMap] i] (8-27)

— If MbaffFrameFlag is equal to 1, the macroblock to slice group map is specified by:

MbToSliceGroupMap| i] = mapUnitToSliceGroupMap[i/2] (8-28)

— Otherwise (if frame_mbs_only flag is equal to 0 and mb_adaptive frame field flag is equal to 0 and field pic_flag
is equal to 0), the macroblock to slice group map is specified by:

MbToSliceGroupMap| i] = mapUnitToSliceGroupMap[(i/ (2 * PicWidthInMbs)) * PicWidthInMbs
+ (1 % PicWidthInMbs)] (8-29)

8.25 Decoding processfor dlice data partitioning

Inputs to this process are
— aslice data partition A layer RBSP,

— if syntax elements of category 3 are present in the slice data, a slice data partition B layer RBSP having the same
slice_id and redundant_pic_cnt as in the slice data partition A layer RBSP, and

— if syntax elements of category 4 are present in the slice data, a slice data partition C layer RBSP having the same
slice id and redundant pic cnt as in the slice data partition A layer RBSP.

NOTE — The slice data partition B layer RBSP and slice data partition C layer RBSP need not be present.
Output of this process is a coded slice.

When slice data partitioning is not used, coded slices are represented by a slice layer without partitioning RBSP that
contains a slice header followed by a slice data syntax structure that contains all the syntax elements of categories 2, 3,
and 4 (see category column in clause 7.3) of the macroblock data for the macroblocks of the slice.

When slice data partitioning is used, the macroblock data of a slice is partitioned into one to three partitions contained in
separate NAL units. Partition A contains a slice data partition A header and all syntax elements of category 2. Partition
B, if present, contains a slice data partition B header and all syntax elements of category 3. Partition C, if present,
contains a slice data partition C header and all syntax elements of category 4.

When slice data partitioning is used, the syntax elements of each category are parsed from a separate NAL unit, which
need not be present if no symbols of the respective category exist. The decoding process shall process the slice data
partitions of a coded slice in a manner equivalent to processing a corresponding slice layer without partitioning RBSP by
extracting each syntax element from the slice data partition in which the syntax element appears depending on the slice
data partition assignment in the syntax tables in subclause 7.3.
NOTE - Syntax elements of category 3 are relevant to the decoding of residual data of I and SI macroblock types. Syntax
clements of category 4 are relevant to the decoding of residual data of P and B macroblock types. Category 2 encompasses all
other syntax elements related to the decoding of macroblocks, and their information is often denoted as header information. The
slice data partition A header contains all the syntax elements of the slice header, and additionally a slice id and redundant_pic_cnt
that are used to associate the slice data partitions B and C with the slice data partition A. The slice data partition B and C headers
contain only the slice_id and redundant pic_cnt that establishes their association with the slice data partition A of the slice.

8.26 Decoding processfor reference picturelists construction
This process is invoked at the beginning of decoding of each P, SP, or B slice.

Outputs of this process are a reference picture list RefPicList0 and, when decoding a B slice, a second reference picture
list RefPicList1.

[Ed. Note (GJS): Check to ensure that the following deleted sentence is redundant with Annex C content: The decoded
picture buffer contains frames. Each frame may contain one field or a pair of complementary fields.] Decoded reference
pictures are marked as "used for short-term reference" or "used for long-term reference" as specified by the bitstream and
specified in subclause 8.2.7. Short-term decoded reference pictures are identified by the value of frame num. Long-term

DRAFT ITU-T Rec. H.264 (2002 E) 79

decoded reference pictures are assigned a long-term frame index as specified by the bitstream and specified in subclause
8.2.7.

Subclause 8.2.6.1 specifies

- the assignment of variables FrameNum and FrameNumWrap to each of the short-term reference frames,
- the assignment of variable PicNum to each of the short-term reference pictures, and

- the assignment of variable LongTermPicNum to each of the long-term reference pictures.

Reference pictures are addressed through reference indices as specified in subclause 8.4.2.1. A reference index is an
index into a list of variables PicNum and LongTermPicNum, which is called a reference picture list. When decoding a P
or SP slice, there is a single reference picture list RefPicList0. When decoding a B slice, there is a second reference
picture list RefPicList] in addition to RefPicList0 that is independent of RefPicList0.

Let long_term_entry(RefPicListX[i]) for an entry RefPicListX] i] at index i in reference picture list X where X is 0 or
1 be specified as equal to 1 if RefPicListX[i] is associated with a LongTermPicNum (for a long-term reference picture)
and be specified as equal to 0 if the entry is associated with a PicNum (for a short-term reference picture).

At the beginning of decoding of each slice, the reference picture list RefPicList0 and for B slices RefPicList] are derived
as follows.

- An initial reference picture list RefPicList0 and for B slices RefPicList] are derived as specified in subclause 8.2.6.2.

- The initial reference picture list RefPicList0 and for B slices RefPicList] are modified as specified in subclause
8.2.6.3.

The total length of the modified reference picture list RefPicList0 is num_ref idx 10 active minusl+1, and for B slices
the total length of the modified reference picture list RefPicListl is num_ ref idx 11 active minusl+1. A reference
picture may appear at more than one index in the modified reference picture lists RefPicList0 or RefPicList1.

8.2.6.1 Decoding processfor picture numbers

The variables FrameNum, FrameNumWrap, PicNum, LongTermFrameldx, and LongTermPicNum are used for the
initialisation process for reference picture lists in subclause 8.2.6.2, the modification process for reference picture lists in
subclause 8.2.6.3, and for the decoded reference picture marking process in subclause 8.2.7.

To each short-term reference picture the variables FrameNum and FrameNumWrap are assigned as follows. First,
FrameNum is set to the syntax element frame num that has been decoded in the slice header(s) of the corresponding
short-term reference picture. Then the variable FrameNumWrap is derived as

if(FrameNum > frame num)

FrameNumWrap = FrameNum — MaxFrameNum (8-30)
else

FrameNumWrap = FrameNum

where the value of frame num used in Equation 8-30 is the frame num in the slice header(s) for the current picture. [Ed.
Note (AG): Make sure that somewhere it is stated that for a decoded field, its two fields inherit the value of FrameNum
and FrameNumWrap. And for a complementary reference field pair, the pair inherits the value of FrameNum and
FrameNumWrap of its constituent fields.]

To each long-term reference picture the variable LongTermFrameldx is assigned as specified in subclause 8.2.7.

To each short-term reference picture a variable PicNum is assigned, and to each long-term reference picture a variable
LongTermPicNum is assigned. The values of these variables depend on the value of field pic flag and
bottom_field flag for the current picture and they are set as follows.

When decoding a frame,

- For each short-term reference frame or complementary reference field pair:

PicNum = FrameNumWrap (8-31)

- For each long-term reference frame or complementary reference field pair:

LongTermPicNum = LongTermFrameldx (8-32)

80 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT 1SO/IEC 14496-10 : 2002 (E)

NOTE — When decoding a frame the value of MbaffFrameFlag has no influence on the derivations in subclauses 8.2.6.2, 8.2.6.3,
and 8.2.7.

When decoding a field,
- For each short-term reference field the following applies

- Ifthe reference field has the same parity as the current field

PicNum = 2 * FrameNumWrap + 1 (8-33)
- Otherwise
PicNum = 2 * FrameNumWrap (8-34)

- For each long-term reference field the following applies

- If the reference field has the same parity as the current field

LongTermPicNum = 2 * LongTermFrameldx + 1 (8-35)
- Otherwise
LongTermPicNum = 2 * LongTermFrameldx (8-36)

8.2.6.2 Initialisation processfor reference picturelists
This initialisation process is invoked when decoding a P, SP, or B slice header.
Outputs of this process are initial reference picture lists RefPicList0 and when decoding a B slice RefPicList1.

RefPicList0 and RefPicListl have initial entries of the variables PicNum and LongTermPicNum as specified in
subclauses 8.2.6.2.1 through 8.2.6.2.5.

If the number of entries in the initial RefPicList0 or RefPicList]l produced as specified in subclauses 8.2.6.2.1 through
8.2.6.2.5 exceeds num_ref idx 10 active minusl+1 or num_ref idx 11 active minusl+1, respectively, the extra entries
past position num_ref idx 10 active minusl or num_ref idx 11 active minusl are discarded from the initial reference
picture list. If the number of entries in the initial RefPicList0 or RefPicList] produced as specified in subclauses 8.2.6.2.1
through 8.2.6.2.5 is less than num_ref idx 10 active minusl+1 or num_ref idx 11 active minusl+1, respectively, the
remaining entries in the initial reference picture list are set equal to Null.

8.2.6.2.1 Initialisation processfor thereference picturelist for P and SP slicesin frames
This initialisation process is invoked when decoding a P or SP slice in a coded frame.
Output of this process is the initial reference picture list RefPicList0.

The reference picture list RefPicList0 is ordered so that short-term reference frames and short-term complementary
reference field pairs have lower indices than long-term reference frames and long-term complementary reference field
pairs.

The short-term reference frames and complementary reference field pairs are ordered starting with the frame or
complementary field pair with the highest PicNum value and proceeding through to the frame or complementary field
pair with the lowest PicNum value.

The long-term reference frames and complementary reference field pairs are ordered starting with the frame or
complementary field pair with the lowest LongTermPicNum value and proceeding through to the frame or
complementary field pair with the highest LongTermPicNum value.

NOTE — A non-paired reference field is not used for inter prediction for decoding a frame, regardless of the value of
MbaftFrameFlag.

For example, if three reference frames are marked as "used for short-term reference" with PicNum equal to 300, 302, and
303 and two reference frames are marked as "used for long-term reference" with LongTermPicNum equal to 0 and 3, the
initial index order is:

- RefPicList0[0] is set to PicNum = 303,
- RefPicList0[1] is set to PicNum = 302,

DRAFT ITU-T Rec. H.264 (2002 E) 81

- RefPicList0[2] is set to PicNum = 300,
- RefPicList0[3] is set to LongTermPicNum = 0, and
- RefPicList0[4] is set to LongTermPicNum = 3.
And long_term_entry(RefPicListO[i]) is equal to O for i equal to 0, 1, and 2; and is equal to 1 for i equal to 3 and 4.

8.2.6.2.2 Initialisation processfor thereference picturelist for P and SP dicesin fields
This initialisation process is invoked when decoding a P or SP slice in a coded field.
Output of this process is reference picture list RefPicList0.

When decoding a field, each decoded field included in the reference picture list has a separate index in the list.

NOTE - When decoding a field, there are effectively at least twice as many pictures available for referencing as when decoding a
frame at the same position in decoding order.

Two ordered lists of reference frames, refFrameListOShortTerm and refFrameListOLongTerm, are derived as follows.
For purposes of the formation of this list of frames, decoded frames, complementary reference field pairs, non-paired
reference fields and reference frames in which a single field is marked "used for short-term reference" or "used for long-
term reference" are all considered reference frames.

- The FrameNumWrap of all frames having one or more field marked "used for short-term reference" are included in
the list of short-term reference frames refFrameListOShortTerm. If the current field is the second field (in decoding
order) of a complementary reference field pair and the first field is marked as "used for short-term reference", the
FrameNumWrap of the current field is included in the list refFrameListOShortTerm. refFrameListOShortTerm is
ordered starting with the frame with the highest FrameNumWrap value and proceeding through to the frame with the
lowest FrameNumWrap value.

- The LongTermFrameldx of all frames having one or more field marked "used for long-term reference" are included
in the list of long-term reference frames refFrameListOLongTerm. If the current field is the second field (in decoding
order) of a complementary reference field pair and the first field is marked as "used for long-term reference", the
LongTermFrameldx of the first field is included in the list refFrameListOLongTerm. refFrameListOLongTerm is
ordered starting with the frame with the lowest LongTermFrameldx value and proceeding through to the frame with
the highest LongTermFrameldx value.

The process specified in subclause 8.2.6.2.5 is invoked with refFrameListOShortTerm and refFrameListOLongTerm
given as input and the output is assigned to RefPicList0.

8.2.6.2.3 Initialisation processfor reference picturelistsfor B slicesin frames
This initialisation process is invoked when decoding a B slice in a coded frame.
Outputs of this process are the initial reference picture lists RefPicList0 and RefPicListl.

For B slices, the order of short-term reference pictures in the reference picture lists RefPicList0 and RefPicListl depends
on output order, as given by PicOrderCnt().

The reference picture list RefPicList0 is ordered such that short-term reference frames and short-term complementary
reference field pairs have lower indices than long-term reference frames and long-term complementary reference field
pairs. It is derived as follows.

- Short-term reference frames and short-term complementary reference field pairs are ordered starting with the short-
term reference frame or complementary reference field pair frm0 with the largest value of PicOrderCnt(frm0) less
than the value of PicOrderCnt(CurrPic) and proceeding through to the short-term reference frame or complementary
reference field pair frm1 that has the smallest value of PicOrderCnt(frm1), and then continuing with the short-term
reference frame or complementary reference field pair frm2 with the smallest value of PicOrderCnt(frm2) greater
than the value of PicOrderCnt(CurrPic) of the current frame and proceeding through to the short-term reference
frame or complementary reference field pair frm3 that has the largest value of PicOrderCnt(frm3).

- The long-term reference frames and long-term complementary reference field pairs are ordered starting with the long-
term reference frame or complementary reference field pair that has the lowest LongTermPicNum value and
proceeding to the long-term reference frame or complementary reference field pair that has the highest
LongTermPicNum value.

The reference picture list RefPicList]l is ordered so that short-term reference frames and short-term complementary
reference field pairs have lower indices than long-term reference frames and long-term complementary reference field
pairs. It is derived as follows.

82 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT 1SO/IEC 14496-10 : 2002 (E)

- Short-term reference frames and short-term complementary reference field pairs are ordered starting with the short-
term reference frame or complementary reference field pair frm4 with the smallest value of PicOrderCnt(frm4)
greater than the value of PicOrderCnt(CurrPic) of the current frame and proceeding through to the short-term
reference frame or complementary reference field pair frm5 that has the largest value of PicOrderCnt(frmS5), and
then continuing with the short-term reference frame or complementary reference field pair frm6 with the largest value
of PicOrderCnt(frm6) less than the value of PicOrderCnt(CurrPic) of the current frame and proceeding through to
the short-term reference frame or complementary reference field pair frm7 that has the smallest value of
PicOrderCnt(frm7).

- Long-term reference frames and long-term complementary reference field pairs are ordered starting with the long-
term reference frame or complementary reference field pair that has the lowest LongTermPicNum value and
proceeding to the long-term reference frame or complementary reference field pair that has the highest
LongTermPicNum value.

- If the reference picture list RefPicList] has more than one entry and it is identical to the reference picture list
RefPicList0, the first two entries RefPicList1[0] and RefPicList1[1] are switched.

NOTE - A non-paired reference field is not used for inter prediction of frames independent of the value of MbaffFrameFlag.

8.2.6.2.4 Initialisation processfor reference picturelistsfor B dlicesin fields
This initialisation process is invoked when decoding a B slice in a coded field.
Outputs of this process are the initial reference picture lists RefPicList0 and RefPicListl.

When decoding a field, each field of a stored reference frame is identified as a separate reference picture with a unique
index. The order of short-term reference pictures in the reference picture lists RefPicList0 and RefPicList] depend on
output order, as given by PicOrderCnt().

NOTE - When decoding a field, there are effectively at least twice the number of pictures available for referencing, as there would
be if decoding a frame at the same position in decoding order.

Three ordered lists of reference frames, refFrameListOShortTerm, refFrameListlShortTerm and
refFrameListXLongTerm, are derived as follows. For purposes of the formation of these lists of frames the term
reference frame refers in the following to decoded frames, complementary reference field pairs, or non-paired reference
fields.

- refFrameListOShortTerm is ordered starting with the reference frame frm0 with the largest value of
PicOrderCnt(frm0) less than the value of PicOrderCnt(CurrPic) of the current field and proceeding through to the
short-term reference frame frml that has the smallest value of PicOrderCnt(frml), and then continuing with the
reference frame frm2 with the smallest value of PicOrderCnt(frm2) greater than the value of PicOrderCnt(CurrPic)
of the current field and proceeding through to the short-term reference frame frm3 that has the largest value of
PicOrderCnt(frm3). When for the current field nal ref idc is greater than 0 and the current coded field follows in
decoding order a coded field fld1 with which together it forms a complementary reference field pair after decoding,
fldl shall be included into the list refFrameListOShortTerm using PicOrderCnt(fld1) and the ordering method
described in the previous sentence shall be applied.

- refFrameListlShortTerm is ordered starting with the reference frame frm4 with the smallest value of
PicOrderCnt(frm4) greater than the value of PicOrderCnt(CurrPic) of the current field and proceeding through to
the short-term reference frame frmS5 that has the largest value of PicOrderCnt(frm5), and then continuing with the
frame picture frm6 with the largest value of PicOrderCnt(frm6) less than the value of PicOrderCnt(CurrPic) of the
current field and proceeding through to the short-term reference frame frm?7 that has the smallest value of
PicOrderCnt(frm7). When for the current field nal ref idc is greater than 0 and the current coded field follows in
decoding order a coded field fld2 with which together it forms a complementary reference field pair after decoding,
fld2 shall be included into the list refFrameList] ShortTerm using PicOrderCnt(fld2) and the ordering method
described in the previous sentence shall be applied.

- refFrameListXLongTerm is ordered starting with the frame having the lowest LongTermFrameldx value and
proceeding to the frame having highest LongTermPicNum value. The current frame (with only the opposite-parity
field marked "used for reference") is included into the list refFrameListXLongTerm when the complementary field of
the current picture is stored as long-term picture and marked "used for reference". Frames in which only one field is
stored as long-term picture and marked as “used for reference” are included into the list refFrameListXLongTerm.

The process specified in subclause 8.2.6.2.5 is invoked with refFrameListOShortTerm and refFrameListXLongTerm
given as input and the output is assigned to RefPicList0.

The process specified in subclause 8.2.6.2.5 is invoked with refFrameList]lShortTerm and refFrameListXLongTerm
given as input and the output is assigned to RefPicList1.

DRAFT ITU-T Rec. H.264 (2002 E) 83

If the reference picture list RefPicList] has more than one entry and it is identical to the reference picture list
RefPicList0, the first two entries RefPicList1[0] and RefPicList1[1] are switched.

8.2.6.2.5 Initialisation processfor reference picturelistsin fields

Inputs of this process are the reference frame lists refFrameListXShortTerm and refFrameListXLongTerm (with X may
be 0 or 1).

Output of this process is reference picture list RefPicListX (which may be RefPicListO or RefPicListl).

The reference picture list RefPicListX is a list ordered such that short-term reference fields have lower indices than long-
term reference fields. Given the reference frame lists refFrameListXShortTerm and refFrameListXLongTerm, it is
derived as follows.

- Short-term reference fields are ordered by selecting reference fields from the ordered list of frames
refFrameListXShortTerm by alternating between fields of differing parity, starting with fields that have the same
parity as the current field. If one field of a reference frame was not decoded or is not marked as “used for reference”,
the missing field is ignored and instead the next available stored reference field of the chosen parity from the ordered
list of frames refFrameListXShortTerm is inserted into RefPicListX. When there are no more short-term reference
fields of the alternate parity in the ordered list of frames refFrameListXShortTerm, the next not yet indexed fields of
the available parity in the order in which they occur in the ordered list of frames refFrameListXShortTerm is inserted
into RefPicListX.

- Long-term reference fields are ordered by selecting reference fields from the ordered list of frames
refFrameListXLongTerm by alternating between fields of differing parity, starting with fields that have the same
parity as the current field. If one field of a reference frame was not decoded or is not marked as “used for reference”,
the missing field is ignored and instead the next available stored reference field of the chosen parity from the ordered
list of frames refFrameListXLongTerm is inserted into RefPicListX. When there are no more short-term reference
fields of the alternate parity in the ordered list of frames refFrameListXLongTerm, the next not yet indexed fields of
the available parity in the order in which they occur in the ordered list of frames refFrameListXLongTerm is inserted
into RefPicListX.

8.2.6.3 Reordering processfor reference picturelists

Input to this process is reference picture list RefPicList0 and, when decoding a B slice, also reference picture list
RefPicListl.

Outputs of this process are a possibly modified reference picture list RefPicList0 and, when decoding a B slice, also a
possibly modified reference picture list RefPicList1.

If ref pic list reordering flag 10 is equal to 1, the following applies.
- Let refldxL0 be an index into the reference picture list RefPicList0. It is initially set to 0.

- The corresponding syntax elements reordering of pic nums_idc are processed in the order they occur in the
bitstream. For each of these syntax elements, the following applies.

- Ifreordering of pic nums_idc is equal to 0 or equal to 1, the process specified in subclause 8.2.6.3.1 is invoked
with RefPicList0 and refldxL0 given as input, and the output is assigned to RefPicList0 and refldxLO0.

- If reordering_of pic nums idc is equal to 2, the process specified in subclause 8.2.6.3.2 is invoked with
RefPicList0 and refldxL0 given as input, and the output is assigned to RefPicList0 and refldxLO.

- Otherwise, reordering_of pic nums_idc is equal to 3, and the reordering process for reference picture list
RefPicList0 is finished.

If ref pic list reordering flag 11 is equal to 1, the following applies.
- LetrefldxL1 be an index into the reference picture list RefPicListl1. It is initially set to 0.

- The corresponding syntax elements reordering of pic nums idc are processed in the order they occur in the
bitstream. For each of these syntax elements, the following applies.

- Ifreordering_of pic nums_idc is equal to O or equal to 1, the process specified in subclause 8.2.6.3.1 is invoked
with RefPicListl and refldxL1 given as input, and the output is assigned to RefPicListl and refldxL1.

- If reordering_of pic nums idc is equal to 2, the process specified in subclause 8.2.6.3.2 is invoked with
RefPicList] and refldxL1 given as input, and the output is assigned to RefPicListl and refldxL1.

- Otherwise, reordering_of pic nums_idc is equal to 3, and the reordering process for reference picture list
RefPicListl is finished.

84 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT 1SO/IEC 14496-10 : 2002 (E)

8.2.6.3.1 Reordering process of reference picture listsfor short-term pictures
Inputs to this process are reference picture list RefPicListX (with X being 0 or 1) and an index refldxLX into this list.

Outputs of this process are a possibly modified reference picture list RefPicListX (with X being 0 or 1) and the
incremented index refldxLX.

If the current picture is a coded frame, let maxPicNum be equal to MaxFrameNum. Otherwise, let maxPicNum be equal
to 2*MaxFrameNum.

Let currPicNum be a variable for identifying the current picture. If the current picture is a coded frame, it is set to
currPicNum = frame_num. Otherwise, it is set currPicNum = 2 * frame num.

Let picNumLXNoWrap be an auxiliary variable only used inside this subclause, it is specified as follows

- Ifreordering of pic nums idc is equal to 0

if(picNumLXPred — (abs_diff pic num minusl +1)<0)

picNumLXNoWrap = picNumLXPred — (abs_diff pic num minusl + 1) + maxPicNum (8-37)
else

picNumLXNoWrap = picNumLXPred — (abs_diff pic num minusl + 1)

- Ifreordering of pic nums_idc is equal to 1

if(picNumLXPred + (abs_diff pic num minusl + 1) >= maxPicNum)

picNumLXNoWrap = picNumLXPred + (abs_diff pic num minusl + 1) — maxPicNum (8-38)
else

picNumLXNoWrap = picNumLXPred + (abs_diff pic num minusl + 1)

picNumLXPred is the prediction value for the variable picNumLXNoWrap. If the process specified in this subclause is
invoked the first time for a slice (that is, for the first occurrence of reordering of pic nums_idc equal to 0 or 1 in the
ref pic_list reordering() syntax), picNumLOPred and picNumL1Pred are initially set to currPicNum. After each
assignment of picNumLXNoWTrap, the value of picNumLXNoWrap is assigned to picNumLXPred.

Let picNumLX be the variable PicNum of the short-term reference picture to be inserted into the reference picture list
RefPicListX at index refldxLX, it is specified as follows

if(picNumLXNoWrap > currPicNum)

picNumLX = picNumLXNoWrap — maxPicNum (8-39)
else

picNumLX = picNumLXNoWrap

picNumLX shall specify a reference picture that is marked as “used for short-term reference” and shall not specify a
short-term reference picture that is marked as "non-existing".

The following procedure shall then be conducted to place the picture with short-term picture number picNumLX into the
index position refldxLX, shift the position of any other remaining pictures to later in the list, and increment the value of
refldxLX.

for(cldx =num_ref idx 1X active minusl+1; cldx > refldxLX; cldx--)
RefPicListX[cldx] = RefPicListX[cldx — 1]
RefPicListX[refldxLX++] = picNumLX
nldx = refldxLX
for(cldx = refldxLX; cldx <=num ref idx IX active minusl+1; cldx++) (8-40)
if(long_term_entry(RefPicListX][cldx]) || RefPicListX[cldx] != picNumLX)
RefPicListX[nldx++] = RefPicListX][cldx]

NOTE — Within this pseudo-code procedure, the length of the list RefPicListX is temporarily made one element longer than the
length needed for the final list. After the execution of this procedure, only elements 0 through num_ref idx 1X active minusl of
the list need to be retained.

8.2.6.3.2 Reordering process of reference picturelistsfor long-term pictures

Inputs to this process are reference picture list RefPicListX (with X being 0 or 1) and an index refldxLX into this list.

DRAFT ITU-T Rec. H.264 (2002 E) 85

Outputs of this process are a possibly modified reference picture list RefPicListX (with X being 0 or 1) and the
incremented index refldxLX.

LongTermPicNum equal to long term pic_num shall specify a reference picture that is marked as "used for long-term
reference".

The following procedure shall then be conducted to place the picture with long-term picture number long_term pic_num
into the index position refldxLX, shift the position of any other remaining pictures to later in the list, and increment the
value of refldxLX.

for(cldx =num_ref idx 1X active minusl+1; cldx > refldxLX; cldx--)
RefPicListX[cldx] = RefPicListX[cldx — 1]
RefPicListX[refldxLX++] = LongTermPicNum (8-41)
nldx = refldxLX
for(cldx = refldxLX; cldx <= num_ref idx 1X active minusl+1; cldx++)
if(long_term_entry(RefPicListX[cldx]) || RefPicListX] cldx] != LongTermPicNum)
RefPicListX[nldx++] = RefPicListX[cldx]

NOTE — Within this pseudo-code procedure, the length of the list RefPicListX is temporarily made one element longer than the
length needed for the final list. After the execution of this procedure, only elements 0 through num_ref idx_1X active_minusl of
the list need to be retained.

8.2.7 Decoded reference picture marking process
This process is invoked for decoded pictures when nal_ref idc is not equal to 0.

A decoded picture with nal ref idc not equal to 0, referred to as a reference picture, is marked as “used for short-term
reference” or "used for long-term reference". For a decoded reference frame, both of its fields are marked the same as
the frame. For a complementary reference field pair, the pair is marked the same as both of its fields. A picture that is
marked as "used for short-term reference" is identified by its FrameNum and, if a field, by its parity. A picture that is
marked as "used for long-term reference" is identified by its LongTermFrameldx and, if a field, by its parity.

Frames or complementary reference field pairs marked as “used for short-term reference” or as "used for long-term
reference” can be used as a reference for inter prediction when decoding a frame until the frame or one of its constituent
fields is marked as “unused for reference”. Fields marked as “used for short-term reference” or as "used for long-term
reference" can be used as a reference for inter prediction when decoding a field until marked as “unused for reference”.

A picture can be marked as "unused for reference" by the sliding window reference picture marking process, a first-in,
first-out mechanism specified in subclause 8.2.7.3 or by the adaptive memory control reference picture marking process,
a customised adaptive marking operation specified in subclause 8.2.7.4.

A short-term reference picture is identified for use in the decoding process by its picture number PicNum, and a long-
term reference picture is identified for use in the decoding process by its long-term picture number LongTermPicNum.
Subclause 8.2.6.1 specifies how PicNum and LongTermPicNum are calculated.

8.2.7.1 Sequence of operationsfor decoded refer ence picture marking process
The sequence of operations for decoded reference picture marking is as follows.

Step 1:

If frame num of the current picture is not equal to PrecedingRefFrameNum and is not equal to
(PrecedingRefFrameNum + 1) % MaxFrameNum, the decoding process for gaps in frame num is performed according
to subclause 8.2.7.2.

Step 2:

The current picture is decoded.
Step 3:
- Ifthe current picture is an IDR picture, the following applies.
- All reference pictures shall be marked as "unused for reference"

- Iflong term reference flag is equal to 0, the IDR picture shall be marked as "used for short-term reference" and
MaxLongTermFrameldx shall be set to “no long-term frame indices”.

- Otherwise (if long_term_reference flag is equal to 1), the IDR picture shall be marked as "used for long-term
reference", the LongTermFrameldx for the IDR picture shall be set to 0, and MaxLongTermFrameldx shall be set
to 0.

86 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT 1SO/IEC 14496-10 : 2002 (E)

- Otherwise, the following applies.
- If adaptive ref pic_marking mode flag is equal to 0, the process specified in subclause 8.2.7.3 is invoked.

- Otherwise (if adaptive ref pic_marking mode flag is equal to 1), the process specified in subclause 8.2.7.4 is
invoked.

Step 4:

If the current picture was not marked as "used for long-term reference" by memory management control operation
equal to 6, it is marked as "used for short-term reference".

After marking the current decoded reference picture, the total number of frames with at least one field marked as “used
for reference”, plus the number of complementary field pairs with at least one field marked as “used for reference”, plus
the number of non-paired fields marked as “used for reference” shall not be greater than num_ref frames.

8.2.7.2 Decoding processfor gapsin frame_num

This process is invoked when frame num is not equal to PrecedingRefFrameNum and is not equal to
(PrecedingRefFrameNum + 1) % MaxFrameNum.
NOTE — This process can only be invoked for a conforming bitstream if required frame num_update behaviour flag is equal
to 1. If required_frame num update behaviour flag is equal to 0 and frame num is not equal to PrecedingRefFrameNum and is
not equal to (PrecedingRefFrameNum + 1) % MaxFrameNum, the decoding process should infer an unintentional loss of
pictures.

If this process is invoked, a set of values of frame num pertaining to “non-existing” pictures is derived as all values
taken on by UnusedShortTermFrameNum in Equation 7-11 except the value of frame num for the current picture.

The decoding process shall mark a frame for each values of frame num pertaining to “non-existing” pictures, in the
order in which the values of UnusedShortTermFrameNum are generated by Equation 7-11, using the “sliding window”
picture marking process as specified in subclause 8.2.7.3. The added frames shall also be marked as “non-existing” and
“used for short-term reference”. The sample values of the added frames may be set to any value. These added frames
marked as “non-existing” shall not be referred to in the inter prediction process, shall not be referred to in the reordering
commands for reference picture lists for short-term pictures (subclause 8.2.6.3.1), and shall not be referred to in the
assignment process of a LongTermFrameldx to a short-term picture (subclause 8.2.7.4.3). When a frame marked as
“non-existing” is marked as “unused for reference” using the “sliding window” buffering process or the “adaptive
memory control” mechanism, it shall no longer be marked as “non-existing”.
NOTE - The decoding process should infer an unintentional picture loss if any of these values of frame num pertaining to “non-
existing” pictures is referred to in inter prediction or is referred to in the assignment process for reference indices. The decoding
process should not infer an unintentional picture loss if a memory management control operation is applied to a frame marked as
“non-existing”.

8.2.7.3 Sliding window decoded refer ence picture marking process
This process is invoked when adaptive ref pic_marking mode flag is equal to 0.

If the current picture is a coded field that is the second field in decoding order of a complementary reference field pair,
and the first field has been marked as “used for short-term reference”, the current picture is also marked as “used for
short-term reference”.

Otherwise, the following applies.

- Let numShortTerm be the total number of reference frames, complementary reference field pairs and non-paired
reference fields for which at least one field is marked as “used for short-term reference”. Let numLongTerm be the
total number of reference frames, complementary reference field pairs and non-paired reference fields for which at
least one field is marked as “used for long-term reference”.

- If (numShortTerm + numLongTerm) is equal to num_ref frames, numShortTerm shall be greater than 0, and the
short-term reference frame, complementary reference field pair or non-paired reference field that was decoded first (it
has the smallest value of FrameNumWrap) is marked as “unused for reference”. If it is a frame or a complementary
field pair, both of its fields are also marked as “unused for reference”.

8.2.7.4 Adaptive memory control decoded refer ence picture marking process
This process is invoked when adaptive ref pic_marking mode flag is equal to 1.

The memory_management control operation commands with values of 1 to 6 are processed in the order they occur in
the bitstream after the current picture has been decoded. For each of these memory management control operation
commands, one of the processes specified in subclauses 8.2.7.4.1 to 8.2.7.4.6 is invoked depending on the value of

DRAFT ITU-T Rec. H.264 (2002 E) 87

memory management_control operation. The memory management control operation command with value of 0
specifies the end of memory management control operation commands.

When decoding a frame, memory management control operation commands are applied to the frames or
complementary reference field pairs specified.

When decoding a field, memory management_control operation commands are applied to the individual reference fields
specified.

8.2.7.4.1 Marking process of a short-term pictureas*“ unused for reference”
This process is invoked when memory _management_control operation is equal to 1.

Let currPicNum be the current picture number. If the current picture is a coded frame, currPicNum = frame num.
Otherwise, currPicNum = 2 * frame num.

Let picNumX be specified by

picNumX = currPicNum — (difference of pic_ nums minusl + 1). (8-42)

If the current picture is a frame, the short-term reference frame or short-term complementary reference field pair
specified by picNumX and both of its fields are marked as “unused for reference”.

If the current picture is a field, the short-term reference field specified by picNumX is marked as “unused for reference”.
If that reference field is part of a reference frame or a complementary reference field pair, the reference frame or
complementary field pair is also marked as "unused for reference", but the marking of the other field is not changed.

8.2.7.4.2 Marking process of along-term pictureas*“ unused for reference”
This process is invoked when memory management control operation is equal to 2.

If the current picture is a frame, the long-term reference frame or long-term complementary reference field pair having
LongTermPicNum equal to long_term_pic_num and both of its fields are marked as “unused for reference”.

If the current picture is a field, the long-term reference field specified by LongTermPicNum equal to long_term pic_num
is marked as “unused for reference”. If that reference field is part of a reference frame or a complementary reference
field pair, the reference frame or complementary field pair is also marked as "unused for reference", but the marking of
the other field is not changed.

8.2.7.4.3 Assignment process of a LongTermFramel dx to a short-term reference picture
This process is invoked when memory _management_control operation is equal to 3.

Given the syntax element difference of pic nums minusl, the variable picNumX is obtained as specified in subclause
8.2.7.4.1. picNumX shall refer to a frame or complementary reference field pair or non-paired reference field marked as
"used for short-term reference" and not marked as "non-existing".

If LongTermFrameldx equal to long_term frame idx is already assigned to a long-term reference frame or a long-term
complementary reference field pair, that frame or complementary field pair and both of its fields are marked as "unused
for reference". If LongTermFrameldx is already assigned to a non-paired reference field, and the field is not the
complementary field of the picture specified by picNumX, that field is marked as “unused for reference”.

If the current picture is a frame, the marking of the short-term reference frame or short-term complementary reference
field pair specified by picNumX and both of its fields are changed from "used for short-term reference" to "used for
long-term reference" and assigned LongTermFrameldx equal to long_term frame idx.

If the current picture is a field, the marking of the short-term reference field specified by picNumX is changed from
"used for short-term reference" to "used for long-term reference" and assigned LongTermFrameldx equal to
long_term frame idx.

8.2.7.4.4 Decoding process for MaxL ongTermFramel dx
This process is invoked when memory management_control operation is equal to 4.

If max_long_term_frame idx_plusl is smaller than MaxLongTermFrameldx+1, all pictures marked as "used for long-
term reference" and assigned LongTermFrameldx greater than max long_term frame idx plusl — 1 shall be marked as
“unused for reference”.

88 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT 1SO/IEC 14496-10 : 2002 (E)

If max_long term frame idx plusl is equal to 0, MaxLongTermFrameldx shall be set to “no long-term frame indices”.
Otherwise, MaxLongTermFrameldx shall be set to max_long term frame idx plusl — 1.

NOTE — The memory management_control_operation command equal to 4 can be used to mark long-term reference pictures as
“unused for reference”. The frequency of transmitting max long_term_frame idx_plusl is not specified by this Recommendation |
International Standard. However, the encoder should send a memory management _control operation command equal to 4 upon
receiving an error message, such as an intra refresh request message.

8.2.7.45 Marking process of all reference pictures as “unused for reference’ and setting
MaxL ongTermFramel dx to “no long-term frame indices”

This process is invoked when memory _management_control operation is equal to 5.

All reference pictures are marked as “unused for reference” and the variable MaxLongTermFrameldx is set to “no long-
term frame indices”.

8.2.7.4.6 Processfor assigning along-term frameindex to the current picture
This process is invoked when memory _management_control operation is equal to 6.

If LongTermFrameldx is already assigned to a long-term reference frame or a long-term complementary reference field
pair, that frame or complementary field pair and both of its fields are marked as "unused for reference". If
LongTermFrameldx is already assigned to a non-paired reference field, and the field is not the complementary field of
the current picture, that field is marked as “unused for reference”.

The current picture is marked as "used for long-term reference" and assigned LongTermFrameldx equal to
long term frame idx. If the current picture is a frame, then both its fields are also marked as "used for long-term
reference" and assigned LongTermFrameldx equal to long term frame idx. If the current picture is a second (in
decoding order) field of a complementary reference field pair, then the pair is also marked as "used for long-term
reference" and assigned LongTermFrameldx equal to long_term_frame idx.

8.3 Intra prediction process
This process is invoked for I and SI macroblock types.

Inputs to this process are constructed samples prior to the deblocking filter process from neighbouring macroblocks and
for Intra_4x4 prediction mode, the associated values of Intra4x4PredMode from neighbouring macroblocks.

Outputs of this process are the Intra prediction samples of components of the macroblock or in case of the Intra_4x4
prediction process for luma samples the output are 4x4 luma sample arrays as part of the 16x16 luma array of prediction
samples of the macroblock.

The decoding processes for Intra prediction modes are described for the luma component if the macroblock prediction
mode is equal to Intra_4x4 in subclause 8.3.1 otherwise (Intra_16x16) in subclause 8.3.2.

The decoding processes for Intra prediction modes for the chroma component are described in subclause 8.3.3.

Samples used in the Intra prediction process shall be sample values prior to alteration by any deblocking filter operations.

8.3.1 Intra_4x4 prediction processfor luma samples
This process is invoked when the macroblock prediction mode is equal to Intra_4x4.

Inputs to this process are constructed luma samples prior to the deblocking filter process from neighbouring macroblocks
and the associated values of Intra4x4PredMode from the neighbouring macroblocks or macroblock pairs.

Outputs of this process are 4x4 luma sample arrays as part of the 16x16 luma array of prediction samples of the
macroblock pred, .

The luma component of a macroblock consists of 16 blocks of 4x4 luma samples. These blocks are inverse scanned
using the 4x4 luma block inverse scanning process as specified in subclause 6.4.3.

For the all 4x4 luma blocks of the luma component of a macroblock with luma4x4Blkldx = 0..15, the variable
Intradx4PredMode[luma4x4BlkIdx] is derived as specified in subclause 8.3.1.1.

For the each luma block of 4x4 samples indexed using luma4x4Blkldx = 0..15,

1. The Intra 4x4 sample prediction process in subclause 8.3.1.2 is invoked with luma4x4Blkldx and constructed
samples prior (in decoding order) to the deblocking filter process from adjacent luma blocks as the input and the
output are the Intra_4x4 luma prediction samples pred4x4,(x, y) with x, y =0..3.

DRAFT ITU-T Rec. H.264 (2002 E) 89

2. The position of the upper-left sample of a 4x4 luma block with index luma4x4BIkldx inside the current macroblock
is derived by invoking the inverse 4x4 luma block scanning process in subclause 6.4.3 with luma4x4BlkIdx as the
input and the output being assigned to (xO, yO).

pred; (xO + x, yO +y) =preddx4,(X,y) (8-43)

3. The transform coefficient decoding process and picture construction process prior to deblocking filter process in
subclause 8.5 is invoked with pred; and luma4x4Blkldx as the input and the constructed samples for the current 4x4
luma block S’, as the output.

8.3.1.1 Derivation processfor the Intradx4PredM ode

Inputs to this process are the index of the 4x4 luma block luma4x4Blkldx and variable arrays Intra4x4PredMode that are
prior (in decoding order) derived for adjacent macroblocks.

Output of this process is the variable Intra4x4PredMode[luma4x4BlkIdx].
Table 8-2 specifies the values for Intra4x4PredMode[luma4x4BlklIdx] and the associated names.

Table 8-2 — Specification of Intradx4PredM ode] lumadx4BIkldx] and associated names

Intra4x4PredMode[luma4x4BIkIdx] Name of Intra4x4PredMode[luma4x4BIlkIdx]
0 Intra_4x4 Vertical (prediction mode)
1 Intra_4x4 Horizontal (prediction mode)
2 Intra_4x4 DC (prediction mode)
3 Intra_4x4 Diagonal Down_Left (prediction mode)
4 Intra_4x4 Diagonal Down_Right (prediction mode)
5 Intra_4x4 Vertical Right (prediction mode)
6 Intra_4x4 Horizontal Down (prediction mode)
7 Intra_4x4 Vertical Left (prediction mode)
8 Intra_4x4 Horizontal Up (prediction mode)

Intradx4PredMode[luma4x4BlkIdx] labelled O, 1, 3, 4, 5, 6, 7, and 8 represent directions of predictions as illustrated in
Figure 8-1.

90 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT 1SO/IEC 14496-10 : 2002 (E)

v
[N

Figure 8-1—Intra_4x4 prediction mode directions (informative)

Let intra4x4PredModeA and intra4x4PredModeB be variables that specify the intra prediction modes of neighbouring
4x4 luma blocks.

Intrad4x4PredMode[luma4x4BlkIdx] is derived as follows.

- The process specified in subclause 6.4.7.3 is invoked with lumad4x4Blkldx given as input and the output is assigned
to mbAddrA, luma4x4BIlkIdxA, mbAddrB, and luma4x4BIlkIdxB.

- If mbAddrA is not available or mbAddrA is not coded in Intra 4x4 prediction mode, intra4x4PredModeA and
intra4x4PredModeB are set to 2 (Intra 4x4 DC prediction mode). Otherwise, intra4x4PredModeA is set to
Intra4x4PredMode[luma4x4BlkIdxA], where Intra4x4PredMode is the variable assigned to the macroblock
mbAddrA.

- If mbAddrB is not available or mbAddrB is not coded in Intra 4x4 prediction mode, intra4x4PredModeA and
intra4x4PredModeB are set to 2 (Intra 4x4 DC prediction mode). Otherwise, intradx4PredModeB is set to
Intra4x4PredMode[luma4x4BlkIdxB], where Intra4x4PredMode is the variable assigned to the macroblock
mbAddrB.

- Intra4x4PredMode[luma4x4BlkIdx] is derived by applying the following procedure.

predIntra4x4PredMode = Min(intra4x4PredModeA, intra4x4PredModeB)
if (prev_intra4x4 pred mode flag[luma4x4BlklIdx])
IntralLuma4x4PredMode[luma4x4BlkIdx] = predIntra4x4PredMode
else (8-44)
if (rem_intra4x4 pred mode[luma4x4Blkldx] < predIntra4x4PredMode)
Intraluma4x4PredMode[luma4x4BlkIdx] = rem_intra4x4 pred mode[luma4x4Blkldx]
else
IntralLuma4x4PredMode[luma4x4BlkIdx] =rem_intra4x4 pred mode[luma4x4BlkIdx]+ 1

8.3.1.2 Intra_4x4 sample prediction

This process is invoked for each of 4x4 luma block of a macroblock with prediction mode equal to Intra 4x4 followed
by the transform decoding process and picture construction process prior to deblocking for each 4x4 luma block.

Inputs to this process are the index of the 4x4 luma block with index luma4x4Blkldx and constructed samples prior (in
decoding order) to the deblocking filter process from adjacent luma blocks.

Output of this process are the prediction samples pred4x4,(x,y), with x, y = 0..3 for the 4x4 luma block with index
luma4x4BlkIdx.

The position of the upper-left sample of a 4x4 luma block with index luma4x4BlkIdx inside the current macroblock is
derived by invoking the inverse 4x4 luma block scanning process in subclause 6.4.3 with luma4x4Blkldx as the input
and the output being assigned to (xO, yO).

The 13 neighbouring samples p(x, y) that are constructed luma samples prior to deblocking, with x =-1, y=-1..3 and
x =0..7, y =-1, are derived as follows.

DRAFT ITU-T Rec. H.264 (2002 E) 91

— The luma location (XN, yN) is specified by

xN =x0 + x (8-45)

yN=yO+y (8-46)

— The derivation process for neighbouring locations in subclause 6.4.8 is invoked for luma locations with (XN, yN)
as input and mbAddrN and (xW, yW) as output.

— If any of the following conditions is true, the sample p(X, y) is marked as “not available for Intra_4x4 prediction”
- mbAddrN is not available,
- the macroblock mbAddrN is coded in Inter prediction mode and constrained intra_pred flag is equal to 1.
- x is greater than 3 and luma4x4BIkIdx is equal to 3 or 11

— Otherwise, the sample p(x, y) is marked as “available for Intra_4x4 prediction” and the following applies

- The luma sample at luma location (xW, yW) inside the macroblock mbAddrN is assigned to p(x, y).

When samples p(x, -1), with x = 4..7 are marked as “not available for Intra_4x4 prediction,” and if the sample p(3, -1)
is marked as “available for Intra_4x4 prediction,” the sample value of p(3, -1) is substituted for sample values p(x, -1),
with x =4..7 and samples p(x, -1), with x =4..7 are marked as “available for Intra_4x4 prediction”.

NOTE — Each block is assumed to be reconstructed into a frame prior to decoding of the next block.

Depending on Intra4x4predMode[luma4x4BlkIdx], one of the Intra 4x4 prediction modes specified in subclauses
8.3.1.2.1 to 8.3.1.2.9 shall be used.

8.3.1.2.1 Specification of Intra_4x4 Vertical prediction mode
This Intra_4x4 prediction mode shall be used, when Intra4x4PredMode[luma4x4BlklIdx] is equal to 0.
This mode shall be used only if p(x, -1), with x = 0..3 are marked as “available for Intra 4x4 prediction”.

The values of the prediction samples pred4x4,(x, y), with x, y = 0..3 are derived as follows:

pred4x4,(x,y)=p(x,-1),withx,y=0.3 (8-47)

8.3.1.2.2 Specification of Intra_4x4 Horizontal prediction mode
This Intra_4x4 prediction mode shall be used, when Intra4x4PredMode[luma4x4BlkIdx] is equal to 1.
This mode shall be used only if p(-1,y),y =0..3 are marked as “available for Intra_4x4 prediction”.

The values of the prediction samples pred4x4,(x, y), with x, y = 0..3 are derived as follows:

pred4x4,(x,y)=p(-1,y), withx,y=0..3 (8-48)

8.3.1.2.3 Specification of Intra_4x4 DC prediction mode
This Intra_4x4 prediction mode shall be used, when Intra4x4PredMode[luma4x4BlkIdx] is equal to 2.
The values of the prediction samples pred4x4, (x, y), with x, y = 0..3 are derived as follows:

- If all samples p(x, -1), with x =0..3 and p(-1, y), with y = 0..3 are marked as “available for Intra _4x4 prediction”,
the values of the prediction samples pred4x4, (x, y), with x, y = 0..3 are derived as follows:

preddx4, (x,y)=(p(0,-1)+p(1,-1)+p(2,-1)+p(3,-1)+
p(-1,0)+p(-1,1)+p(-1,2)+p(-1,3)+4)>>3 (8-49)

- If samples p(x, -1), with x = 0..3 are marked as “not available for Intra 4x4 prediction” and p(-1,y), withy =0..3
are marked as “available for Intra 4x4 prediction”, the values of the prediction samples pred4x4,(x, y), with x, y =
0..3 are derived as follows:

preddx4 (x,y)=(p(-1,0)+p(-1,1)+p(-1,2)+p(-1,3)+2)>>2 (8-50)

92 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT 1SO/IEC 14496-10 : 2002 (E)

- If samples p(-1,y), with y = 0..3 are marked as “not available for Intra 4x4 prediction” and p(x, -1), withx =0..3
are marked as “available for Intra 4x4 prediction”, the values of the prediction samples pred4x4,(x, y), with x, y =
0..3 are derived as follows:

pred4x4, (x,y)=(p(0,-1)+p(1,-1)+p(2,-1)+p(3,-1)+2)>>2 (8-51)

- Otherwise, the values of the prediction samples pred4x4, (x, y), with x, y = 0..3 are derived as follows:

preddx4, (x,y)=128 (8-52)

NOTE - A block can always be predicted using this mode.

8.3.1.2.4 Specification of Intra_4x4 Diagonal_Down_L eft prediction mode

This Intra_4x4 prediction mode shall be used, when Intra4x4PredMode[luma4x4BlklIdx] is equal to 3.

This mode shall be used only if all samples p(x, -1), with x = 0..7 are marked as “available for Intra_4x4 prediction”.
The values of the prediction samples pred4x4,(x, y), with x, y = 0..3 are derived as follows:

Forx=3 andy=3,

preddx4, (x,y) =(p(6,-1)+3*p(7,-1)+2)>>2 (8-53)
Otherwise,
preddx4 (x,y) =(p(x+y,-1)+2*p(x+y+1,-1)+p(x+y+2,-1)+2)>>2 (8-54)

8.3.1.2.5 Specification of Intra_4x4_Diagonal_Down_Right prediction mode
This Intra_4x4 prediction mode shall be used, when Intra4x4PredMode[luma4x4BlklIdx] is equal to 4.

This mode shall be used only if all samples p(x, -1), with x =0..3 and p(-1,y), with y = -1..3 are marked as “available
for Intra_4x4 prediction”.

The values of the prediction samples pred4x4,(x, y), with x, y = 0..3 are derived as follows:

Forx >y,

preddxd (x,y) = (p(x-y-2,-D)+2¥p(x-y-1,-1)+p(x-y,-1)+2)>>2 (8-55)
Forx <y,

preddx4 (X, y)=(p(-1,y-x-2)+2*p(-1,y-x-1)+p(-l,y-x)+2)>>2 (8-56)
Otherwise,

pred4x4,(x,y)=(p(0,-1)+2*p(-1,-1)+p(-1,0)+2)>>2 (8-57)

8.3.1.2.6 Specification of Intra_4x4_Vertical_Right prediction mode
This Intra_4x4 prediction mode shall be used, when Intra4x4PredMode[luma4x4BlklIdx] is equal to 5.

This mode shall be used only if all samples p(x, -1), with x =0..3 and p(-1, y), with y = -1..3 are marked as “available
for Intra_4x4 prediction”.

The values of the prediction samples pred4x4,(x, y), with x, y = 0..3 are derived as follows:

For(2*x-y)=0,2,4,6,

preddx4; (X, y)=(p(x-(y>>1)-1L-1)+p(x-(y>>1),-1)+1)>>1 (8-58)

For(2*x-y)=1,3,5,

preddx4, (x,y)=(p(x-(y>>1)-2,-1)+2%*p(x-(y>>1)-1,-1)+p(x-(y>>1),-1)+2)>>2 (8-59)

DRAFT ITU-T Rec. H.264 (2002 E) 93

For(2*x-y)=-1,

preddx4,(x,y)=(p(-1,0)+2*p(-1,-1)+p(0,-1)+2)>>2 (8-60)
Otherwise
preddx4 (x,y)=(p(-1l,y-1)+2*p(-1,y-2)+p(-1,y-3)+2)>>2 (3-61)

8.3.1.2.7 Specification of Intra_4x4 Horizontal _Down prediction mode
This Intra_4x4 prediction mode shall be used, when Intra4x4PredMode[luma4x4BlkIdx] is equal to 6.

This mode shall be used only if all samples p(x, -1), with x =0..3 and p(-1, y), with y = -1..3 are marked as “available
for Intra_4x4 prediction”.

The values of the prediction samples pred4x4,(x, y), with x, y = 0..3 are derived as follows:

For (2*y-x)=0,2,4,6,

preddx4, (x,y) =(p(-L,y-(x>>1)-1)+p(-l,y-(x>>1))+1)>1 (8-62)

For(2*y-x)=1,3,5,

preddxd;(x,y) = (p(-1y-(x>>1)-2)+2%p(-1,y - (x>> 1)~ 1) +p(-Ly-(x>>1))+2)>>2 (8-63)

For(2*y-x)=-1,

preddx4,(x,y)=(p(-1,0)+2*p(-1,-1)+p(0,-1)+2)>>2 (8-64)
Otherwise
preddxd, (x,y) = (p(x-1,-1)+2%p(x-2,-1)+p(x-3,-1)+2)>>2 (8-65)

8.3.1.2.8 Specification of Intra_4x4 Vertical_L eft prediction mode

This Intra_4x4 prediction mode shall be used, when Intra4x4PredMode[luma4x4BlkIdx] is equal to 7.

This mode shall be used only if all samples p(x, -1), with x =0..7 are marked as “available for Intra_4x4 prediction”.
The values of the prediction samples pred4x4,(x, y), with x, y = 0..3 are derived as follows:

Fory=0ory=2,

preddxd, (x,y) = (p(x+(y>>1),-1)+p(x+(y>> 1)+ 1,-1)+1)>>1 (8-66)

Otherwise,
preddxd, (x,y) = (p(x+(y>>1),-1)+2%p(x+(y>> 1)+ 1L,-1)+p(x+(y>>1)+2,-1)+2)>>2
(8-67)

8.3.1.2.9 Specification of Intra_4x4 Horizontal _Up prediction mode

This Intra_4x4 prediction mode shall be used, when Intra4x4PredMode[luma4x4BlklIdx] is equal to 8.

This mode shall be used only if all samples p(-1, y), with y = 0..3 are marked as “available for Intra_4x4 prediction”.
The values of the prediction samples pred4x4,(x, y), with x, y = 0..3 are derived as follows:

For(x+2*y)=0,2,4

preddx4, (x,y)=(p(-Ly +(x>>1))+p(-Ly+(x>>1)+1)+1)>>1 (8-68)

For(x+2*y)=1,3

94 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT 1SO/IEC 14496-10 : 2002 (E)

preddxd, (x,y) = (p(-L,y+(x>> 1))+ 2% p(-Ly+(x>> 1)+ 1) +p(-Ly+(x>>1)+2)+2)>>2

(8-69)
For(x+2*y)=5,
preddx4, (x,y)=(p(-1,2)+3 *p(-1,3)+2)>>2 (8-70)
For(x+2*y)>5,
pred4x4,(x,y)=p(-1,3) (8-71)

8.3.2 Intra_16x16 prediction processfor luma samples

This process is invoked when the macroblock prediction mode is equal to Intra 16x16. It specifies how the Intra
prediction luma samples for the current macroblock are derived.

Input to this process are constructed samples prior to the deblocking process from neighbouring luma blocks (if
available).

Outputs of this process are Intra prediction luma samples for the current macroblock pred;(x, y).

The 33 neighbouring samples p(x, y) that are constructed luma samples prior to deblocking, with x =-1, y=-1..15 and
x =0..15, y =-1, are derived as follows.

— The derivation process for neighbouring locations in subclause 6.4.8 is invoked for luma locations with (x,y)
assigned to (xN, yN) as input and mbAddrN and (xW, yW) as output.

— If any of the following conditions is true, the sample p(x,y) is marked as “not available for Intra 16x16
prediction”

- mbAddrN is not available,

- the macroblock mbAddrN is coded in Inter prediction mode and constrained intra_pred flag is equal to 1.
— Otherwise, the sample p(x, y) is marked as “available for Intra_16x16 prediction” and the following applies

- The luma sample at luma location (xW, yW) inside the macroblock mbAddrN is assigned to p(x, y).
Let pred, (x, y) with x, y = 0..15 denote the prediction for the 16x16 luma block samples.

Intra 16x16 prediction modes are specified in Table 8-3.

Table 8-3 — Specification of I ntral6x16PredM ode and associated names

Intral6x16PredMode Name of Intral 6x16PredMode
0 Intra_16x16_Vertical (prediction mode)
1 Intra_16x16_Horizontal (prediction mode)
2 Intra_16x16_DC (prediction mode)
3 Intra_16x16_Plane (prediction mode)

Depending on Intral6x16PredMode, one of the Intra_16x16 prediction modes specified in subclauses 8.3.2.1 to 8.3.2.4
shall be used.

8.3.2.1 Specification of Intra_16x16 Vertical prediction mode

This mode shall be used only if all neighbouring samples p(x, -1) , with x = 0..15 are marked as “available for
Intra_16x16 prediction”.

pred;(x,y)=p(x,-1), withx,y=0..15 (8-72)

8.3.2.2 Specification of Intra_16x16_Horizontal prediction mode

This mode shall be used only if all neighbouring samples p(-1, y) , y = 0..15 are marked as “available for Intra_16x16
prediction”.

DRAFT ITU-T Rec. H.264 (2002 E) 95

pred;(x,y)=p(-1,y), withx,y=0..15 (8-73)

8.3.2.3 Specification of Intra_16x16_DC prediction mode
If all neighbouring samples p(x',-1) and p(-1,y"') used in Equation 8-74 are marked as “available for Intra 16x16
prediction”, the prediction for all luma samples in the macroblock is given by:

15 15 .
predi(X,y) = (3 p(x',-1)+ Y p(-1,y") +16) >> 5 Withx,y =0..15 (8-74)

x'=0 ¥'=0

If the neighbouring samples p(x', -1) are not available and the neighbouring samples p(-1, y') are marked as “available
for Intra_16x16 prediction”, the prediction for all luma samples in the macroblock is given by:

15
pred (x,y)= (Zp(_l,y') +8)>>4 with x, y =0..15 (8-75)

y'=0

If the neighbouring samples p(-1, y') are not available and the neighbouring samples p(x', -1) are marked as “available
for Intra_16x16 prediction”, the prediction for all luma samples in the macroblock is given by:

15 .
predi(x,¥)= (D p(x',~1) +8) >> 4 Withx,y =0..15 (8-76)

x'=0
If none of the neighbouring samples p(x', -1) and p(-1, y') are marked as “available for Intra_16x16 prediction”, the
prediction for all luma samples in the macroblock shall be

pred;(x,y) =128 with x, y = 0..15 (8-77)

8.3.24 Specification of Intra_16x16_Plane prediction mode

This mode shall be used only if all neighbouring samples p(x, -1) with x = -1..15 and p(-1,y) with y = 0..15 are
marked as “available for Intra_16x16 prediction”.

pred,(x,y)=Clipl((a+b*(x-7)+c*(y-7)+16)>>5), (8-78)
where:

a=16*(p(-1,15)+p(15,-1)) (8-79)

b=(5*H+32)>>6 (8-80)

c=(5*V+32)>>6 (8-81)

and H and V are specified in Equations 8-82 and 8-83.

H=i(X’+1)*(p(8+X',—1)-p(6-X',-1)) (8-82)
x'=0

V= (y+D)*(p(-1,8+y)-p(-1,6-y'")) (8-83)
y=0

8.3.3 Intraprediction processfor chroma samples

This process is invoked for I and SI macroblock types. It specifies how the Intra prediction chroma samples for the
current macroblock are derived.

96 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)
Inputs to this process are constructed samples prior to the deblocking process from neighbouring chroma blocks (if
available).
Outputs of this process are Intra prediction chroma samples for the current macroblock predc,(x, y) and pred(X, y).

Both chroma blocks (Cb and Cr) of the macroblock shall use the same prediction mode. The prediction mode is applied
to each of the chroma blocks separately. The process specified in this subclause is invoked for each chroma block. In the
remainder of this subclause, chroma block refers to one of the two chroma blocks and the subcase C is used as a
replacement of the subcases Cb or Cr.

The 17 neighbouring samples p(X, y) that are constructed chroma samples prior to deblocking, with x =-1, y =-1..7 and
x =0..7, y =-1, are derived as follows.

— The derivation process for neighbouring locations in subclause 6.4.8 is invoked for chroma locations with (x,y)
assigned to (XN, yN) as input and mbAddrN and (xW, yW) as output.

— If any of the following conditions is true, the sample p(x,y) is marked as “not available for Intra chroma
prediction”

- mbAddrN is not available,
- the macroblock mbAddrN is coded in Inter prediction mode and constrained_intra pred flag is equal to 1.
— Otherwise, the sample p(x, y) is marked as “available for Intra chroma prediction” and the following applies

- The chroma sample of component C at chroma location (xW, yW) inside the macroblock mbAddrN is assigned
top(x,y).

Let predc(x, y) with x, y = 0..7 denote the prediction samples for the chroma block samples.

Intra chroma prediction modes are specified in Table 8-4.

Table 8-4 — Specification of Intra chroma prediction modes and associated names

intra_chroma pred mode Name of intra_chroma_pred mode
0 Intra_Chroma_ DC (prediction mode)
1 Intra_Chroma_Horizontal (prediction
mode)
2 Intra_Chroma_Vertical (prediction mode)
3 Intra_Chroma_Plane (prediction mode)

Depending on intra_chroma pred mode, one of the Intra chroma prediction modes specified in subclauses 8.3.3.1 to
8.3.3.4 shall be used.

8.3.3.1 Specification of Intra_Chroma_DC prediction mode
[Ed.(TW) Double-Check clarity of this subclause]

The block of chroma samples is predicted in four separate 4x4 sub-blocks, labelled a-d as shown in Figure 8-2.

DRAFT ITU-T Rec. H.264 (2002 E) 97

sO sl

s2 a b

s3

Figure 8-2— Chroma 4x4 blocks a, b, ¢, d, and predictors <0, sl, s2, s3.

In Figure 8-2, each of s0, s1, s2, and s3 represents the sum of the four reconstructed samples bordering the chroma block
at the location shown. The predictions for all chroma samples within a block (a, b, ¢, or d) are dependent upon the
availability of the samples used to compute s0, sl, s2, and s3, and are given in Table 8-5. s0, s, s2, and s3 may be
unavailable by being outside the picture or slice or because constrained intra prediction is in use and the neighbouring
blocks are not intra coded. In Table 8-5 block predictors are given by the left-most formula for which the sums used in
their calculation are available. For example, with sO and s3 available, but s1 and s2 not available, a, b, ¢, and d are
predicted by the formulas in their predl, pred3, pred0, and pred2 columns, respectively.

Table 8-5 — Specification for Intra_Chroma_DC prediction mode

Block | pred0 predl pred2 pred3
a (sO0+s2+4)>>3 | (s0+2)>>2 | (s2+2)>>2 | 128
b (sl +2)>>2 (s1+2)>>2 | (s2+2)>>2 | 128
c (s3+2)>2 (s0+2)>>2 | (s3+2)>>2 | 128
d (sl+s3+4)>>3 | (s1+2)>>2 | (s3+2)>>2 | 128

8.3.3.2 Specification of Intra_Chroma_Horizontal prediction mode

This mode shall be used only if all neighbouring samples p(-1,y), with y = 0..7 are marked as “available for Intra
chroma prediction”.

The values of the prediction samples pred.(x, y) are derived as follows.

predo(x,y)=p(-1,y), withx,y=0..7 (8-84)

8.3.3.3 Specification of Intra_Chroma_Vertical prediction mode

This mode shall be used only if all neighbouring samples p(x, -1), with x = 0..7 are marked as “available for Intra
chroma prediction”.

The values of the prediction samples pred.(x, y) are derived as follows.

predo(X, y)=p(x,-1),withx,y=0..7 (8-85)

8.3.3.4 Specification of Intra_Chroma_Plane prediction mode

This mode shall be used only if all neighbouring samples p(x, -1), with x =0..7 and p(-1, y), with y = -1..7 are marked
as “available for Intra chroma prediction”.

The values of the prediction samples pred(X, y) are derived as follows.

prede(x,y)=Clipl((a+b*(x-3)+c*(y-3)+16)>>5), withx,y=0..7 (8-86)

where:

98 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT 1SO/IEC 14496-10 : 2002 (E)

a=16*(p(-1,7)+p(7,-1)) (8-87)
b=(17*H+16)>>5 (8-88)
c=(17*V+16)>>5 (8-89)

and H and V are specified as follows.

H= 23: (x+1)-[p(4 +x,-1)-p2 - X,_1)][Ed. Change dot to asterisk] (8-90)
3
V=Y (y+D):[p(-1.4+y)-p(-1.2-y)] (8-91)
y=0
8.4 Inter prediction process

This process is invoked when decoding P and B macroblock types.

Outputs of this process are Inter prediction samples for the current macroblock that are a 16x16 array pred; of luma
samples and two 8x8 arrays pred, and pred, of chroma samples, one for each of the chroma components Cb and Cr.

The partitioning of a macroblock is specified by mb_type. Each macroblock partition is referred to by mbPartldx. When
the macroblock partitioning consists of partitions that are equal to sub-macroblocks, each sub-macroblock can be further
partitioned into sub-macroblock partitions as specified by sub_mb_type. Each sub-macroblock partition is referred to by
subMbPartldx. When the macroblock partitioning does not consist of sub-macroblocks, subMbPartldx is set to 0.

The following steps are specified for each macroblock partition or for each sub-macroblock partition.

The functions mb_part width(), mb_part _height(), sub mb_part width(), sub mb part height() describing the width
and height of macroblock partitions and sub-macroblock partitions specified in Table 7-10, Table 7-11, Table 7-14 and
Table 7-15.

The variables partWidth and partHeight are derived as follows.
- Ifmb_type is not equal to P_8x8 or P_8x8ref0 or B_8x8, the following applies.

partWidth = mb_part width(mb_type) (8-92)

partHeight = mb_part_height(mb_type) (8-93)
- Otherwise,

partWidth = sub_mb_part width(sub_mb_type[mbPartldx]) (8-94)

partHeight = sub_mb_part_height(sub_mb_type[mbPartldx]). (8-95)

When mb_type is equal to B_Skip or B_Direct 16x16 or sub_mb_type[mbPartldx] is equal to B_Direct 8x8, the Inter
prediction process is specified for
partWidth = 4 (8-96)

partHeight =4 (8-97)

with mbPartldx proceeding over values 0..3 and for each sub-macroblock indexed by mbPartldx, subMbPartldx proceeds
over values 0..3.

DRAFT ITU-T Rec. H.264 (2002 E) 99

The Inter prediction process for a macroblock partition mbPartldx and a sub-macroblock partition subMbPartldx consists
of the following ordered steps

1. Derivation process for motion vector components and reference indices as specified in subclause 8.4.1.
Inputs to this process are
- a macroblock partition mbPartldx,
- a sub-macroblock partition subMbPartldx.
Outputs of this process are
- luma motion vectors mvL0 and mvL1 and the chroma motion vectors mvCL0O and mvCL1
- reference indices refldxL0 and refldxL1
- prediction list utilization flags predFlaglL0 and predFlagL.1
2. Decoding process for Inter prediction samples as specified in subclause 8.4.2.
Inputs to this process are
- a macroblock partition mbPartldx,
- a sub-macroblock partition subMbPartIdx.
- variables specifying partition width and height, partWidth and partHeight
- luma motion vectors mvL0 and mvL1 and the chroma motion vectors mvCL0O and mvCL1
- reference indices refldxL0 and refldxL1
- prediction list utilization flags predFlagl.0 and predFlagL.1
Outputs of this process are

- inter prediction samples (pred); which are a (partWidth)x(partHeight) array predPart; of prediction luma
samples and two (partWidth/2)x(partHeight/2) arrays predPart,, and predPart., of prediction chroma samples,
one for each of the chroma components Cb and Cr.

For use in derivation processes of variables derived later in the decoding process, the following assignments are made:

MvLO[mbPartldx][subMbPartldx][compldx] = mvLO[compldx] (8-98)
MvLI1[mbPartldx][subMbPartldx][compldx] =mvLI1[compldx] (8-99)
RefldxLO[mbPartldx | = refldxL0 (8-100)
RefldxL1[mbPartldx | = refldxL1 (8-101)

[Ed. Note (LoWi): double-check whether the last 4 equations are redundant.]

The location of the upper-left sample of the partition relative to the upper-left sample of the macroblock is derived by
invoking the inverse macroblock partition scanning process as described in subclause 6.4.2.1 with mbPartldx as the input
and (xP, yP) as the output.

The location of the upper-left sample of the macroblock sub-partition relative to the upper-left sample of the macroblock
partition is derived by invoking the inverse sub-macroblock partition scanning process as described in subclause 6.4.2.2
with subMbPartldx as the input and (xS, yS) as the output.

The macroblock prediction is formed by placing the partition or sub-macroblock partitition prediction samples in their
correct relative positions in the macroblock, as follows.

for x = 0..partWidth — 1, y = 0 .. partHeight — 1
pred, (xP + xS + x, yP +yS +y) =predPart; (X, y)
for x = 0..partWidth/2 — 1, y = 0 .. partHeight/2 — 1, and C being replaced by either Cb or Cr

100 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT 1SO/IEC 14496-10 : 2002 (E)

predc(xP/2 + xS/2 + x, yP/2 + yS/2 +y) = predPart(X,y)

8.4.1 Derivation processfor motion vector components and referenceindices

Inputs to this process are

a macroblock partition mbPartldx,

a sub-macroblock partition subMbPartIdx.

Outputs of this process are

luma motion vectors mvL0O and mvL1 and the chroma motion vectors mvCL0O and mvCL1
reference indices refldxLL0 and refldxL.1

prediction list utilization flags predFlagl.0 and predFlagL1

For the derivation of the variables mvL0 and mvL1 as well as refldxL0 and refldxL1, the following applies.

If mb_type is equal to P_Skip, the derivation process for luma motion vectors for skipped macroblocks in P and SP
slices in subclause 8.4.1.1 is invoked with the output being the luma motion vectors mvLO and reference indices
refldxL0, and predFlagL0 is set to 1. mvL1 and refldxL1 are marked as not available and predFlagL1 is set to 0.

If mb_type is equal to B_Skip, or B Direct 16x16 or sub_mb_type[subMbPartldx] is equal to B Direct 8x8, the
following applies. The derivation process for luma motion vectors for B_Skip, B Direct 16x16 and B_Direct 8x8 in
B slices in subclause 8.4.1.2 is invoked with mbPartldx and subMbPartldx as the input and the output being the luma
motion vectors mvL0O, mvL1, the reference indices refldxL0, refldxLL1, and the prediction utilization flags
predFlaglL0 and predFlagL1.

Otherwise, for X being replaced by either O or 1 in the variables predFlagl. X, mvLX, refldxLX, and in Pred LX and
in the syntax elements ref idx 1X and mvd_1X, the following is specified. predFlagl.X is initially set to 0. When
mb_part pred mode(mbPartldx) is equal to Pred LX or BiPred,

refldxLX = ref idx_1X[mbPartldx] (8-102)

predFlagLX =1 (8-103)

and the derivation process for luma motion vector prediction in subclause 8.4.1.3 is invoked with mbPartldx
subMbPartldx, and list suffix LX as the input and the output being mvpLX. The luma motion vectors are derived as
follows.

mvLX[0]=mvpLX[0] + mvd_IX[mbPartldx][subMbPartldx][0] (8-104)

mvLX[1]=mvpLX[1]+ mvd IX[mbPartldx][subMbPartldx][1] (8-105)

For the derivation of the variables for the chroma motion vectors, the following applies. When predFlaglLX (with X

being either 0 or 1) is equal to 1, the derivation process for chroma motion vectors in subclause 8.4.1.4 is invoked with
mvLX and refldxLX as input and the output being mvCLX.

8.4.1.1 Derivation processfor luma mation vectorsfor skipped macroblocksin P and SP slices

This process is invoked when mb_type is equal to P_Skip.

Outputs of this process are the motion vector mvLO0 and the reference index refldxLO.

The reference index refldxL0 for a skipped macroblock is set equal to zero:

refldxLO0 = 0. (8-106)

For the derivation of the motion vector mvLO0 of a P_Skip macroblock type, the following applies.

The process specified in subclause 8.4.1.3.2 is invoked with mbPartldx set to 0, subMbPartldx set to 0, and list suffix
L0 as input and the output is assigned the mbAddrA, mbAddrB, mvLOA, mvLOB, refldxLLOA, and refldxLOB.

If at least one of the following conditions is true, both components of the motion vector mvLO0 are set to zero.

DRAFT ITU-T Rec. H.264 (2002 E) 101

- mbAddrA is not available
- mbAddrB is not available
- refldxLOA is equal to 0 and both components of mvLOA are equal to 0
- refldxLOB is equal to 0 and both components of mvLOB are equal to 0

- Otherwise, with mb_part width(mb_type) = 16 and mb_part_height(mb_type) = 16, the derivation process for
luma motion vector prediction as specified in subclause 8.4.1.3 is invoked with mbPartldx = 0, subMbPartldx = 0,
and list suffix LO as input and the output is assigned to mvL0.

NOTE - The output is directly assigned to mvL0, since the predictor is equal to the actual motion vector.

8.4.1.2 Derivation processfor luma motion vectorsfor B_Skip, B_Direct_16x16 and B_Direct_8x8

This process is invoked when mb_type is equal to B_Skip or B_Direct 16x16, or sub_mb_type[mbPartldx] is equal to
B Direct 8x8.

Inputs to this process are mbPartldx and subMbPartIdx.

Outputs of this process are the reference indices refldxL0, refldxL1, the motion vectors mvLO and mvL1, and the
prediction list utilization flags, predFlagL0 and predFlagL1.

The derivation process depends on the value of direct spatial mv_pred flag in the slice header syntax as specified in
subclause 7.3.3. If direct_spatial mv_pred_flag is equal to 1, the mode in which the outputs of this process are derived is
referred to as spatial direct prediction mode; otherwise, it is referred to as temporal direct prediction mode.

Both spatial and temporal direct prediction mode use the co-located motion vectors and reference indices as specified in
subclause 8.4.1.2.1.

When direct spatial mv_pred flag is equal to 1, the spatial direct motion vector and reference picture index prediction
mode specified in subclause 8.4.1.2.2 is used.

When direct_spatial mv_pred flag is equal to 0, the temporal direct motion vector and reference picture index prediction
mode specified in subclause 8.4.1.2.3 is used.

8.4.1.2.1 Derivation processfor the co-located 4x4 sub-macroblock partitions
Inputs to this process are mbPartldx, subMbPartIdx.

Outputs of this process are the picture colPic, the co-located macroblock mbAddrCol, the motion vector mvCol, the
reference index refldxCol, and the variable vertMvScale (which can be One_To One, Frm_To_Fld or Fld_To Frm).

Let firstRefPicL1 be the reference picture referred by RefPicList1[0].

When firstRefPicL1 is a coded frame or a pair of complementary fields let firstRefPicL1Top and firstRefPicL1Bottom
be the top and bottom fields of firstRefPicL.1 and the following variables are specified as

topAbsDiffPOC = Abs(DiffPicOrderCnt(firstRefPicL1Top, CurrPic)) (8-107)

bottomAbsDiffPOC = Abs(DiffPicOrderCnt(firstRefPicL1Bottom, CurrPic)) (8-108)

colPic is the picture that contains the co-located macroblock. It is specified in Table 8-6.

Table 8-6 — Specification of colPic [Ed. Note (GJS): double-check use of term " pair of complementary fields']

field pic flag | The first entry mb_field decoding flag | additional condition colPic
in RefPicListl
is ...
b e
1 decoded frame firstRefPicL.1
a decoded field firstRefPicL1
0 a decoded frame firstRefPicL1
a topAbsDiffPOC < the top field of
complementary bottomAbsDiffPOC firstRefPicL1
field pair 0
102 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT 1SO/IEC 14496-10 : 2002 (E)

topAbsDiffPOC >= the bottom field
bottomAbsDiffPOC of firstRefPicL1
_ the top field of
(CurrMbAddr & 1) = firstRefPicL1
1
the bottom field
1=
(CurrMbAddr & 1) !=0 of firstRefPicL.1

If direct 8x8 inference flag is equal to 1, the motion vectors associated to the outside macroblock corner 4x4 sub-
macroblock partition are used for all 4x4 sub-macroblock partitions of a macroblock partition. In this case,
subMbPartldx is set to

subMbPartldx = mbPartldx (8-109)

Let pic_coding_struct(X) be a function with the argument X being either CurrPic or colPic. It is specified in Table 8-7.

Table 8-7 — Specification of pic_coding_struct(X)

X is coded with field pic_flag equal to ... | mb_adaptive frame field fla | pic_coding struct(X)
g
1 FLD
0 0 FRM
0 1 AFRM

With luma4x4Blkldx = mbPartldx * 4 + subMbPartldx, the inverse 4x4 luma block scanning process as specified in
subclause 6.4.3 is invoked with luma4x4BIkldx as the input (X, y) assigned to (xCol, yCol) as the output.

Table 8-8 specifies the co-located macroblock address mbAddrCol, yM, and the variable vertMvScale in two steps:

1.

Specification of a macroblock address mbAddrX depending on pic _coding struct(CurrPic), and
pic_coding_struct(colPic).
NOTE - It is not possible for CurrPic and colPic picture coding types to be either (FRM, AFRM) or (AFRM, FRM)
because these picture coding types must be separated by an IDR picture.

Specification of mbAddrCol, yM, and vertMvScale depending on mb_field decoding flag and the following
variable

- fieldDecodingFlagX is set to 1 if the macroblock mbAddrX in the picture colPic is coded in field decoding
mode, otherwise it is set to 0.

Unspecified values in Table 8-8 indicate that the value of the corresponding variable is not relevant for the current table
Tow.

mbAddrCol is set to CurrMbAddr or to one of the following values.

mbAddrColl =2 * PicWidthInMbs * (CurrMbAddr / PicWidthInMbs) +

(CurrMbAddr % PicWidthInMbs) + PicWidthInMbs * (yCol / 8) (8-110)
mbAddrCol2 =2 * CurrMbAddr + (yCol / 8) (8-111)
mbAddrCol3 =2 * CurrMbAddr + bottom_field flag (8-112)

mbAddrCol4 = PicWidthiInMbs * (CurrMbAddr / (2 * PicWidthInMbs)) +
(CurrMbAddr % PicWidthInMbs) (8-113)

mbAddrCol5 = CurrMbAddr / 2 (8-114)

DRAFT ITU-T Rec. H.264 (2002 E) 103

mbAddrCol6 =2 * (CurrMbAddr / 2) + ((topAbsDiffPOC < bottomAbsDiffPOC) ?0: 1) (8-115)

mbAddrCol7 =2 * (CurrMbAddr /2) + (yCol / 8) (8-116)

Table 8-8 — Specification of mbAddrCol, yM, and vertMvScale

o | 4
a o
| & 2
S 8 il
~ e o)
T | % HE
e P 8 T
S o= 5 o
g | g x o |5|8l ¢ 8
3|3 s B8 = 2
o | o S D=1 - =
3 i1 E El= (S > >
FLD CurrMbAddr | yCol One_To_On
FRM mbAddrColl | (2 * yCol) % 16 Frm To FId
FLD
0] mbAddrCol2 | (2 * yCol) % 16 Frm To FId
AFR | 2*CurrMbAdd
M r 1 | mbAddrCol3 | yCol Sne_To_On
8 * ((CurrMbAddr / PicWidthInMbs) %
FLD mbAddrCol4 2)+4*(yCol /8) Fld To Frm
FRM
FRM CurrMbAddr | yCol One_To_On
0 mbAddrCol5 | 8 * (CurrMbAddr % 2) +4 * (yCol /8) Fld To Frm
FLD
1| | mbaddrcols | ycol Sne—TO—On
AFR 0] CurrMbAddr | yCol One_To_On
M CurrMbAddr | 0 c
AFR 1| mbAddrCol6 | 8 * (CurrMbAddr % 2)+4 * (yCol /8) | Fld To Frm
M 0| mbAddrCol7 | (2 * yCol) % 16 Frm To Fld
CurrMbAddr 1
1| currMbAddr | yCol Sne—TO—On

Let mbPartldxCol be the macroblock partition index of the co-located partition and subMbPartldxCol the sub-
macroblock partition index of the co-located sub-macroblock partition. The partition in the macroblock mbAddrCol
inside the picture colPic covering the sample (xCol, yM) shall be assigned to mbPartldxCol and the sub-macroblock
partition inside the partition mbPartldxCol covering the sample (xCol, yM) in the macroblock mbAddrCol inside the
picture colPic shall be assigned to subMbPartIdxCol.

Let predFlagl.0Col and predFlagl.1Col be the prediction utilization flags predFlagl.0 and predFlagL1 that are assigned
to the (sub-)macroblock partition mbAddrCol\mbPartldxCol\subMbPartldxCol inside the picture colPic.

The motion vector mvCol and the reference index refldxCol are derived as follows.

- If the macroblock mbAddrCol is coded in intra mode or both prediction utilization flags, predFlagl.0Col and
predFlagL.1Col are equal to 0, both components of mvCol are set to 0 and refldxCol is set to —1.

- Otherwise, the following applies.

104 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT 1SO/IEC 14496-10 : 2002 (E)

- If predFlagL0Col is equal to 1, the motion vector mvLO0 and the reference index refldxL0 of the (sub-)macroblock
partition mbAddrCol\mbPartldxCol\subMbPartldxCol inside the picture colPic are assigned to mvCol and
refldxCol.

- Otherwise (predFlaglL0Col is equal to 0 and predFlagl.1Col is equal to 1), the motion vector mvL1 and the
reference index refldxL1 of the (sub-)macroblock partition mbAddrCol\mbPartldxCol\subMbPartldxCol inside
the picture colPic are assigned to mvCol and refldxCol.

8.4.1.2.2 Derivation processfor spatial direct luma motion vector and reference index prediction mode

This process is invoked if the direct spatial mv_pred flag is equal to 1 and when mb_type is equal to B Skip or
B Direct 16x16, or sub_mb_type[mbPartldx] is equal to B_Direct 8x8.

Inputs to this process are mbPartldx, subMbPartIdx.

Outputs of this process are the reference indices refldxL0, refldxL1, the motion vectors mvLO and mvL1, and the
prediction list utilization flags, predFlaglL0 and predFlagL1.

The reference indices refldxLO and refldxL1 and the variable directZeroPredictionFlag are derived by applying the
following ordered steps.

1. The process specified in subclause 8.4.1.3.2 is invoked with mbPartldx = 0, subMbPartldx = 0, and list suffix LO as
input and the output is assigned to the motion vectors mvLON and the reference indices refldxLON with N being
either A, B, or C.

2. The process specified in subclause 8.4.1.3.2 is invoked with mbPartldx = 0, subMbPartldx = 0, and list suffix L1 as
input and the output is assigned to the motion vectors mvLIN and the reference indices refldxLIN with N being
either A, B, or C.

3. The reference indices refldxL0, refldxL.1 and directZeroPredictionFlag are derived by

refldxLLO0 = MinPositive(refldxLLOA, MinPositive(refldxLOB, refldxLOC)) (8-117)

refldxLL1 = MinPositive(refldxL1A, MinPositive(refldxL1B, refldxL1C)) (8-118)

directZeroPredictionFlag = 0 (8-119)
where

Min(x, if x>=0andy>=0
MinPositive(x, y)= n(ey) if x>=0andy (8-120)
Max(x,y) otherwise

4. If both reference indices refldxLLO and refIldxL1 are less than 0, then

refldxLO =0 (8-121)
refldxL1 =0 (8-122)
directZeroPredictionFlag = 1 (8-123)

The process specified in subclause 8.4.1.2.1 is invoked with mbPartldx, subMbPartldx given as input and the output is
assigned to refldxCol and mvCol.

Let colZeroFlag be a flag that is set to 1 if the reference picture in reference index list RefPicList] referred by refldxL1
is a short-term reference picture, refldxCol is equal to 0, and both motion vector components mvCol[0] and mvCol[1]
lie in the range of -1 and 1 in quarter-sample units, inclusive. Otherwise, it is set to 0.

The motion vectors mvLX (with X being 0 or 1) are derived as follows.

- If any of the following conditions is true, both components of the motion vector mvLX are set to 0.
- directZeroPredictionFlag is equal to 1
- refldxLX is less than 0
- refldxLX is equal to 0 and colZeroFlag is equal to 1

- Otherwise, the process specified in subclause 8.4.1.3 is invoked with mbPartldx = 0, refldx, subMbPartldx = 0, list
suffix LX, and partWidth = partHeight = 16 as the input and the output is assigned to mvLX.

NOTE — The motion vector mvLX is equal to the motion vector prediction mvpLX that would be derived for the Pred 16x16_LX
macroblock mode with refldxLX given as input.

DRAFT ITU-T Rec. H.264 (2002 E) 105

The prediction utilization flags predFlaglL0 and predFlagl1 shall be derived as specified using Table 8-9.

Table 8-9 — Assignment of prediction utilization flags

refldxL0 refldxL1 predFlagL0 predFlagL1
>=0 >=0 1 1
>=0 <0 1 0
<0 >=() 0 1

8.4.1.2.3 Derivation process for temporal direct luma motion vector and referenceindex prediction mode

This process is invoked if the direct spatial mv_pred flag is equal to O for a B slice and when mb_type is equal to
B_Skip, B_Direct _16x16, or sub_mb_type[mbPartldx] is equal to B_Direct 8x8.

Inputs to this process are mbPartldx and subMbPartIdx.

Outputs of this process are the motion vectors mvL0O and mvL1, the reference indices refldxL0 and refldxL1, and the
prediction list utilization flags, predFlaglL0 and predFlagL1.

The process specified in subclause 8.4.1.2.1 is invoked with mbPartldx, subMbPartldx given as input and the output is
assigned to colPic, mbAddrCol, mvCol, refldxCol, and vertMvScale.

The reference indices refldxL0 and refldxLL1 are derived as follows.

refldxL0 = (refldxCol <0 ? 0 : MapColToListO(refldxCol)) (8-124)

refldxLL1 =0 (8-125)

NOTE - refldxL0 and refldxL1 index a list of fields if the current macroblock is a field macroblock (i.e., field pic_flag equal to 1,
or MbaffFrameFlag with mb_field decoding_flag equal to 1 for the current macroblock pair); otherwise, both indices select from
lists of frames.

The function MapColToListO(refldxCol) is specified as follows. [Ed. Note (LW/GJS): Add a note indicating that a
picture used as a short-term picture for reference in the colocated MB can be turned into a long-term picture before using
it again for reference.]

- Let refPicCol be a frame, a field, or a pair of complementary fields that was referred by the reference index refldxCol
when decoding the co-located macroblock mbAddrCol inside the picture colPic.

- If vertMvScale is equal to One To_One, MapColToList0(refldxCol) returns the lowest valued reference index
refldxL0 in the current reference index list RefPicList0 that references refPicCol. RefPicListO shall contain a variable
PicNum or LongTermPicNum that references refPicCol.

- If vertMvScale is equal to Frm_To_ Fld, MapColToListO(refldxCol) returns the lowest valued reference index
refldxL0 in the current reference index list RefPicList0 that references the field of refPicCol with the same parity as
the current picture CurrPic. RefPicListO shall contain a variable PicNum or LongTermPicNum that references the
field of refPicCol with the same parity as the current picture CurrPic.

- Otherwise (vertMvScale is equal to Fld_To_ Frm), MapColToListO(refldxCol) returns the lowest valued reference
index refldxL0 in the current reference index list RefPicList0 that references the frame or pair of complementary
fields that contains refPicCol. RefPicList0 shall contain a variable PicNum or LongTermPicNum that references the
frame or complementary field pair that contains refPicCol.

Depending on the value of vertMvScale the vertical component of mvCol is modified as follows.

- If vertMvScale is equal to Frm_To_Fld

mvCol[1]=mvCol[1]/2 (8-126)

- If vertMvScale is equal to FId_ To_Frm

mvCol[1]=mvCol[1]*2 (8-127)

106 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT 1SO/IEC 14496-10 : 2002 (E)

The two motion vectors mvL0 and mvL1 for each 4x4 sub-macroblock partition of the current macroblock are derived as
follows:
NOTE - It is often the case that many of the 4x4 sub-macroblock partitions share the same motion vectors and reference
pictures. In these cases, temporal direct mode motion compensation can calculate the inter prediction sample values in larger

units that 4x4 luma sample blocks. For example, if direct 8x8 inference flag is equal to 1, at least each 8x8 luma sample
quadrant of the macroblock shares the same motion vectors and reference pictures.

— If the reference index refldxLO0 refers to a long-term picture, or if DiffPicOrderCnt(picl, picO) with picl being the
picture referred by RefPicList1[refldxL.1] and picO being the picture referred by RefPicListO[refldxLO0] is equal to
0, the motion vectors mvL0, mvL1 for the direct mode partition are derived by

mvL0 = mvCol (8-128)

mvL1 =0 (8-129)

— Otherwise, the motion vectors mvL0, mvL1 are derived as scaled versions of the motion vector mvCol of the co-
located sub-macroblock partition as specified below (see Figure 8-3)

X =(16384+ Abs(TD,/2))/TDy (8-130)

DistScaleFactor = Clip3(-1024, 1023, (TDg * X +32)>>6) (8-131)

mvL0 = (DistScaleFactor * mvCol + 128) >> 8§ (8-132)

mvL1 =mvL0 — mvCol (8-133)
where

TDjg = Clip3(-128, 127, DiffPicOrderCnt(CurrPic, RefPicListO[refldxL0])), (8-134)

TD,, = Clip3(-128, 127, DiffPicOrderCnt(RefPicList1[refldxL1], RefPicListO[refldxL0])) (8-135)

NOTE - mvLO0 and mvL1 cannot exceed the ranges specified in Annex A.

The prediction utilization flags predFlagl.0 and predFlagl1 are both set to 1.

List 0 Reference Current B List 1 Reference

T~ co-located partition

WA

direct-mode B partition

Time

DRAFT ITU-T Rec. H.264 (2002 E) 107

Figure 8-3 A direct-mode B partition hastwo derived motion vectors (mvL 0, mvL 1) pointing to two r eference
picturesreferred by refldxL O, refldxL 1. [Ed. Note(YK): In thefigure, MV, MVO0, and MV 1 should be changed to
mvCol, mvLO0, and mvL 1, respectively.]

8.4.1.3 Derivation processfor luma motion vector prediction

Inputs to this process are

- the macroblock partition index mbPartldx,

- the sub-macroblock partition index subMbPartldx,

- list suffix LX,

- the reference index of the current partition refldxLX.

Output of this process is the prediction mvpLX of the motion vector mvLX.

The derivation process for the neighbouring blocks for motion data in subclause 8.4.1.3.2 is invoked with mbPartldx,
subMbPartldx, and list suffix LX as the input and the output being mbAddrN\mbPartldxN\subMbPartldxN, reference
indices refldxLXN and the motion vectors mvLXN with N being either A, B, or C.

The derivation process for median luma motion vector prediction in subclause 8.4.1.3.1 is invoked with
mbAddrN\mbPartIldxN\subMbPartldxN, mvLXN, refldxLXN with N being either A, B, or C and refldxLX as the input
and mvpLX as the output, unless one of the following is true.

- mb_part width(mb_type) is equal to 16, mb_part height(mb_type) is equal to 8, mbPartldx is equal to 0, and
refldxL.XB is equal to refldxLX, then

mvpLX = mvLXB (8-136)

- mb part width(mb type) is equal to 16, mb_part height(mb type) is equal to 8, mbPartldx is equal to 1, and
refldxLXA is equal to refldxLX, then

mvpLX = mvLXA (8-137)

- mb part width(mb type) is equal to 8, mb part height(mb_type) is equal to 16, mbPartldx is equal to 0, and
refldxLXA is equal to refldxLX, then

mvpLX = mvLXA (8-138)

- mb_part width(mb_type) is equal to 8, mb_part height(mb_type) is equal to 16, mbPartldx is equal to 1, and
refldxLXC is equal to refldxLX, then

mvpLX =mvLXC (8-139)

Figure 8-4 illustrates the non-median prediction as described above.

108 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT 1SO/IEC 14496-10 : 2002 (E)

8*16 16*8

Figure 8-4 — Directional segmentation prediction (informative)

8.4.1.3.1 Derivation process for median luma motion vector prediction

Inputs to this process are

the neighbouring partitions mbAddrN\mbPartldxN\subMbPartldxN (with N being either A, B, or C),
the motion vectors mvLXN (with N being either A, B, or C) of the neighbouring partitions,
the reference indices refldxLXN (with N being either A, B, or C) of the neighbouring partitions, and

the reference index refldxLX of the current partition.

Output of this process is the motion vector prediction mvpLX.

The following rules are applied in sequential order to determine the motion vector prediction mvpLX:

If both partitions mbAddrB\mbPartldxB\subMbPartldxB and mbAddrC\mbPartldxC\subMbPartldxC are not
available and mbAddrA\mbPartIdxA\subMbPartIdxA is available, then

mvLXB =mvLXA (8-140)
mvLXC =mvLXA (8-141)
refldxLXB = refldxLXA (8-142)
refldxLXC = refldxLXA (8-143)

If one and only one of the reference indices refldxLXA, refldxLXB and refldxLXC is equal to the reference index
refldxLX of the current partition, the following applies. Let refldxLXN be the reference index that is equal to
refldxLX, then the motion vector mvLXN is assigned to the motion vector prediction mvpLX:

mvpLX =mvLXN (8-144)
Otherwise, each component of the motion vector prediction mvpLX is given by the median of the corresponding
vector components of the motion vector mvLXA, mvLXB, and mvLXC:

mvpLX[0] = Median(mvLXA[0], mvLXB[0], mvLXC[0]) (8-145)

mvpLX[1] = Median(mvLXA[1], mvLXB[1], mvLXC[1]) (8-146)

8.4.1.3.2 Derivation processfor the neighbouring blocks for motion data of neighbouring partitions

Inputs to this process are

the macroblock partition index mbPartldx,
the sub-macroblock partition index subMbPartldx,
the list suffix LX

DRAFT ITU-T Rec. H.264 (2002 E) 109

Outputs of this process are (with N being A, B, or C)

- mbAddrN\mbPartldxN\subMbPartldxN specifying neighbouring partitions,
- the motion vectors mvLXN of the neighbouring partitions, and

- the reference indices refldxLXN of the neighbouring partitions.

The partitions mbAddrN\mbPartldxN\subMbPartldxN with N being either A, B, or C are derived in the following
ordered steps.

1. Let mbAddrD\mbPartldxD\subMbPartldxD be variables specifying an additional neighbouring partition.

2. The process in subclause 6.4.7.5 is invoked with mbPartldx and subMbPartldx as input and the output is assigned to
mbAddrN\mbPartIdxN\subMbPartldxN with N being either A, B, C, or D.

3. Ifthe partition mbAddrC\mbPartldxC\subMbPartldxC is not available, the following applies

mbAddrC = mbAddrD (8-147)
mbPartldxC = mbPartldxD (8-148)
subMbPartldxC = subMbPartldxD (8-149)

The motion vectors mvLXN and reference indices refldxLXN (with N being A, B, or C) are derived as follows.

- If the macroblock partition or sub-macroblock partition mbAddrN\mbPartldxN\subMbPartIdxN is not available or
mbAddrN is coded in Intra prediction mode or predFlagLX of mbAddrN\mbPartldxN\subMbPartIldxN is equal to 0,
then both components of mvLXN are set to zero and refldxLXN is set to —1.

- Otherwise, the following applies.

- The motion vector mvLXN and reference index refldxLXN are those that are assigned to the macroblock or sub-
macroblock partition mbPartldxN\subMbPartIdxN inside the macroblock mbAddrN.

- If the current macroblock a field macroblock and the macroblock mbAddrN is a frame macroblock

mvLXN[1] = mvLXN[1]/2 (8-150)

refldxLXN = refldxLXN * 2 (8-151)

- If the current macroblock a frame macroblock and the macroblock mbAddrN is a field macroblock

mvLXN[1] = mvLXN[1] * 2 (8-152)

refldxLXN = refldxLXN / 2 (8-153)

8.4.1.4 Derivation processfor chroma motion vectors
Inputs to this process are a luma motion vector mvLX and a reference index refldxLX.
Outputs of this process are a chroma motion vector mvCLX.

A chroma motion vector is derived from the corresponding luma motion vector. Since the accuracy of luma motion
vectors is one-quarter sample and chroma has half resolution compared to luma, the accuracy of chroma motion vectors
is one-eighth sample, i.e., a value of 1 for the chroma motion vector refers to a one-eighth sample displacement.

NOTE - For example if the luma vector applies to 8x16 luma samples, the corresponding chroma vector applies to 4x8 chroma
samples and if the luma vector applies to 4x4 luma samples, the corresponding chroma vector applies to 2x2 chroma samples.

For the derivation of the motion vector mvCLX, the following applies.

- If the current picture is a frame (field pic flag equal to 0), and the current macroblock is a frame macroblock, the
horizontal and vertical components of the chroma motion vector mvCLX are derived by scaling the corresponding
components of luma motion vector mvLX by 2, through mapping one-quarter sample mvLX units to one-eighth
sample mvCLX units:

110 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT 1SO/IEC 14496-10 : 2002 (E)

mvCLX[0]=mvLX[0] (8-154)
mvCLX[1]=mvLX][1] (8-155)

- If the current picture is a field (field pic_flag equal to 1) or if the current macroblock is a field macroblock, only the
horizontal component of the chroma motion vector mvCLX][0] is derived using Equation 8-154. The vertical
component of the chroma motion vector mvCLX] 1] is dependent on the parity of the current frame or the current
macroblock and the reference picture, which is referred by the reference index refldxL.X. mvCLX[1] is derived
from mvLX][1] according to Table 8-10.

Table 8-10 — Calculation of vertical component of chroma vector in field coding mode

Parity conditions mvCLX[1]
Reference picture (refldxLX) Current field (picture/macroblock)

Top field Bottom field mvLX[1]+2
Bottom field Top field mvLX[1]-2
Otherwise mvLX[1]

8.4.2 Decoding processfor Inter prediction samples

Inputs to this process are

- amacroblock partition mbPartldx,

- asub-macroblock partition subMbPartIdx.

- variables specifying partition width and height, partWidth and partHeight

- luma motion vectors mvL0 and mvL1 and chroma motion vectors mvCL0O and mvCL1
- reference indices refldxL0 and refldxL1

- prediction list utilization flags, predFlagl.0 and predFlagLl.1

Outputs of this process are

- the Inter prediction samples predPart, which are a (partWidth)x(partHeight) array predPart;, of prediction luma
samples, and two (partWidth/2)x(partHeight/2) arrays predPart,, predPart., of prediction chroma samples, one for
each of the chroma components Cb and Cr.

Let predPartL0; and predPartL1, be (partWidth)x(partHeight) arrays of predicted luma sample values and predPartLO,
predPartL 1, predPartL0,, and predPartL 1., be (partWidth/2)x(partHeight/2) arrays of predicted chroma sample values.

For LX being replaced by either LO or L1 in the variables predFlagLX, RefPicListX, refldxLX, refPicLX, predPartLX,
the following is specified.

When predFlagLX is equal to 1, the following applies.

- The reference frame consisting of an ordered two-dimensional array refPicLX; of luma samples and two ordered
two-dimensional arrays refPicLX,, refPicLX,, of chroma samples is derived by invoking the process specified in
subclause 8.4.2.1 with refldxLX and RefPicListX given as input.

- The arrays predPartLX,, predPartLX,, and predPartL X, are derived by invoking the process specified in subclause
8.4.2.2 with the current partition specified by mbPartldx\subMbPartldx, the motion vectors mvLX, mvCLX, and the
reference arrays with refPicLX, refPicLX(,, and refPicLX, given as input.

For C being replaced by either L, Cb, or Cr, the array predPart. of the prediction samples of component C is derived by
invoking the process specified in subclause 8.4.2.3 with the current partition specified by mbPartldx and subMbPartldx
and the array predPartLO. and predPartL1 as well as predFlagl.0 and predFlagl1 given as input.

8.4.2.1 Reference picture selection process

Inputs to this process are a reference index refldxLX.

DRAFT ITU-T Rec. H.264 (2002 E) 111

Outputs of this process are a reference picture consisting of an ordered two-dimensional array of luma samples
refPicLX; and two ordered two-dimensional arrays of chroma samples refPicL X, and refPicLX,.

The reference picture list RefPicListX is a list of variables PicNum (for short-term reference pictures) and
LongTermPicNum (for long-term reference pictures) of previously decoded reference frame, complementary reference
field pairs, or non-paired reference fields that have been marked as “used for reference” as specified in subclause 8.2.7. If
field pic flag is equal to 1, all entries of the RefPicListX are variables PicNum and LongTermPicNum of decoded
reference fields or fields of decoded reference frames; otherwise, all entries of RefPicListX are variables PicNum and
LongTermPicNum of decoded reference frames or complementary reference field pairs. The reference picture list
RefPicListX is derived as specified in subclause 8.2.6.

The reference pictures consist of a (PicWidthInSamples,)x(PicHeightInSamples,) array of luma samples refPicLX; and
two (PicWidthInSamples.)x(PicHeightInSamples,) arrays of chroma samples refPicL X, and refPicLX,.

For the derivation of the reference picture, the following applies.

- If field pic flag is equal to 1, the reference field or field of a reference frame referred by
PicNum = RefPicListX][refldxL.X] or LongTermPicNum = RefPicListX[refldxLX] shall be the output.

- Otherwise, the following applies.

- If the current macroblock is a frame macroblock, the reference frame or complementary field pair referred by
PicNum = RefPicListX[refldxLX] or LongTermPicNum = RefPicListX][refldxLX] shall be the output.

- Otherwise, the reference field or field of a reference frame referred by
PicNum = RefPicListX[refldxLX /2]+ 1 — (refldxLX % 2) or
LongTermPicNum = RefPicListX[refldxLX /2]+ 1 — (refldxL.X % 2) shall be the output. [Ed Note (AG): State
that this returns a field with partity conditioned on the parity of the current field macroblock: even for the same
parity, odd for the opposite parity.]

8.4.2.2 Fractional sampleinterpolation process

Inputs to this process are

- the current partition given by its partition index mbPartldx and its sub-macroblock partition index subMbPartldx,
- the width and height partWidth, partHeight of this partition in luma-sample units,

- aluma motion vector mvLX given in quarter-luma-sample units,

- achroma motion vector mvCLX given in eighth-chroma-sample units, and

- the selected reference picture sample arrays refPicLX,, refPicLX,, and refPicLX,

Outputs of this process are

- a(partWidth)x(partHeight) array predPartLX, of prediction luma sample values and

- two (partWidth/2)x(partHeight/2) arrays predPartL. X, predPartL X, of prediction chroma sample values.

Let (xA,, yA,) be the location given in full-sample units of the upper-left luma sample of the current partition given by
mbPartldx\subMbPartldx relative to the upper-left luma sample location of the given two-dimensional array of luma
samples.

Let (xInt;, yInt;) be a luma location given in full-sample units and (xFrac;, yFrac;) be an offset given in quarter-
sample units. These variables are used only inside this subclause for specifying general fractional-sample locations inside
the reference sample arrays refPicLX, refPicLX,, and refPicLX,. [Ed. Note (GJS): Actually, no. These variables are
now also used in Annex A (the chroma ones are not). I suppose this means we should start these variable names with
capital letters.]

For each luma sample location (0 <=x; <partWidth, 0 <=y, <partHeight) inside the prediction luma sample array
predLX,, the corresponding predicted luma sample value predLX, (x;, y,) is derived as follows:

xInt, = xA; + (mvLX[0]>>2)+x, (8-156)
yInt, =yA, + (mvLX[1]>2)+y. (8-157)
xFrac, =mvLX[0] & 3 (8-158)
yFrac, =mvLX[1] &3 (8-159)

112 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT 1SO/IEC 14496-10 : 2002 (E)

- The prediction sample value predLX, (X, y,) is derived by invoking the process specified in subclause 8.4.2.2.1
with (xInt;, yInt;), (xFrac,, yFrac,) and refPicLX, given as input.

Let (xInt., yInt) be a chroma location given in full-sample units and (xFrac., yFrac.) be an offset given in one-eighth
sample units. These variables are used only inside this subclause for specifying general fractional-sample locations inside
the reference sample arrays refPicL X, and refPicLX..

For each chroma sample location (0 <= x. < partWidth/2, 0 <=y < partHeight/2) inside the prediction chroma sample
arrays predPartL X, and predPartLX, the corresponding prediction chroma sample values predPartLXq,(x¢ yc) and
predPartL X (X yc) are derived as follows:

xInte =(xA. >> 1)+ (mvCLX[0]>>3)+x¢ (8-160)
ylnte =(yA.,>> 1)+ (mvCLX[1]>3)+y, (8-161)
xFracc =mvCLX[0] & 7 (8-162)
yFracc=mvCLX[1] & 7 (8-163)

- The prediction sample value predPartLXq,(Xc yc) is derived by invoking the process specified in subclause
8.4.2.2.2 with (xInt, yInt.), (xFrac, yFrac.) and refPicL X, given as input.

- The prediction sample value predPartLX.(Xc yc) is derived by invoking the process specified in subclause
8.4.2.2.2 with (xInt, yInt.), (xFrac, yFrac.) and refPicL X, given as input.

8.4.2.2.1 Luma sampleinterpolation process

Inputs to this process are

- aluma location in full-sample units (xInt;, yInt;),

- aluma location offset in fractional-sample units (xFrac,, yFrac,), and
- the luma samples of the selected reference picture refPicL.X;

Output of this process is a predicted luma sample value predPartLX; (x;, y;).

DRAFT ITU-T Rec. H.264 (2002 E) 113

x|lQ |0

cc

-

& [s] [m]
= [E

E 8] E
B [=] E

L] L] L] L]

Figure 8-5—Integer samples (shaded blockswith upper-case letters) and fractional sample positions (un-shaded
blockswith lower-case letters) for quarter sample lumainterpolation.

In Figure 8-5, the positions labelled with upper-case letters within shaded blocks represent luma samples at full-sample
locations inside the given two-dimensional array refPicLX, of luma samples. These samples may be used for generating
the predicted luma sample value predPartLX, (x;, y;). The locations (xZ,, yZ,) for each of the corresponding luma
samples Z, where Z may be A, B,C,D,E,F, G, H, L J, K, L, M, N, P, Q, R, S, T, or U, inside the given array refPicLX
of luma samples are derived as follows:

xZ, = Clip3(0, PicWidthInSamples, — 1, xInt, + xDZ,)
yZ, = Clip3(0, PicHeightInSamples, — 1, yInt; + yDZ,) (8-164)

Table 8-11 specifies (xDZ,, yDZ,) for different replacements of Z.

Table 8-11 — Differential full-sample luma locations

xDZ, | 0 1 0 1 2 1-1 |0 1 2 3 2 |1-1 |0 1 2 3 0 1 0 1

yDZ, | -2 |2 |-1 |-1 |O 0 0 0 0 0 1 1 1 1 1 1 2 2 3 3

Given the luma samples ‘A’ to ‘U’ at full-sample locations (xA;, yA;) to (xU, yU,), the luma samples ‘a’ to ‘s’ at
fractional sample positions are derived by the following rules. The luma prediction values at half sample positions shall
be derived by applying a 6-tap filter with tap values (1, -5, 20, 20, -5, 1). The luma prediction values at quarter sample
positions shall be derived by averaging samples at full and half sample positions. The process for each fractional position
is described below.

— The samples at half sample positions labelled b shall be derived by first calculating intermediate values denoted as b,
by applying the 6-tap filter to the nearest integer position samples in the horizontal direction. The samples at half

114 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT 1SO/IEC 14496-10 : 2002 (E)

sample positions labelled h shall be derived by first calculating intermediate values denoted as h, by applying the 6-
tap filter to the nearest integer position samples in the vertical direction:

b=(E-5*F+20*G+20*H-5*1+1J) (8-165)
h=(A-5*C+20*G+20*M—-5*R+T) (8-166)

The final prediction values b and h shall be derived using:

b=Clipl((b, +16)>>5) (8-167)
h=Clipl((h,+16)>>5) (8-168)

— The samples at half sample position labelled as j shall be derived by first calculating intermediate value denoted as j,
by applying the 6-tap filter to the intermediate values of the closest half sample positions in either the horizontal or
vertical direction because these yield an equal result.

ji=cc—5*dd+20*h, +20*m, 5 * ee + ff, or (8-169)
j,=aa—5*bb+20*b,+20*s, —5*gg+hh (8-170)

where intermediate values denoted as aa, bb, gg, s, and hh shall be derived by applying the 6-tap filter horizontally in
the same manner as the derivation of b, and intermediate values denoted as cc, dd, ee, m, and ff shall be derived by
applying the 6-tap filter vertically in the same manner as the derivation of h,. The final prediction value j shall be
derived using:

j=Clipl((j;+512)>>10) (8-171)

— The final prediction values s and m shall be derived from s, and m, in the same manner as the derivation of b and h,
as given by:

s =Clipl((s, +16)>>5) (8-172)

m=Clipl((m, +16)>>5) (8-173)

— The samples at quarter sample positions labelled as a, ¢, d, n, f, i, k and q shall be derived by averaging with upward
rounding of the two nearest samples at integer and half sample positions using:

a=(G+b+1)>1 (8-174)
c=(H+b+1)>1 (8-175)
d=(G+h+1)>1 (8-176)
n=(M+h+1)>>1 (8-177)
f=(b+j+1)>>1 (8-178)
i=(h+j+1)>1 (8-179)
k=(j+tm+1)>1 (8-180)
q=(jts+1)>1. (8-181)

— The samples at quarter sample positions labelled as e, g, p, and r shall be derived by averaging with upward rounding
of the two nearest samples at half sample positions in the diagonal direction using

e=(b+h+1)>>1 (8-182)
g=(b+m+1)>>1 (8-183)
p=(h+s+1)>>1 (8-184)
r=(m+s+1)>1. (8-185)

The luma location offset in fractional-sample units (xFrac,, yFrac,) specifies which of the generated luma samples at
full-sample and fractional-sample locations is assigned to the predicted luma sample value predPartLX, (x;, y,). This
assignment is done according to Table 8-12. The value of predPartLX, (x;, y;) shall be the output.

Table 8-12 — Assignment of the luma prediction sample predPartL X, (X, Y,)

xFracg 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3

yFrac, 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

predPartLX;(x,v.) |G |d h n a e i p b f J q c g k r

DRAFT ITU-T Rec. H.264 (2002 E) 115

8.4.2.2.2 Chroma sample inter polation process

Inputs to this process are

- achroma location in full-sample units (xInt, yInt.),

- achroma location offset in fractional-sample units (xFrac, yFrac.), and

- chroma component samples from the selected reference picture refPicLX.
Output of this process is a predicted chroma sample value predPartLX(X, yc).

In Figure 8-6, the positions labelled with A, B, C, and D represent chroma samples at full-sample locations inside the
given two-dimensional array refPicLX. of chroma samples.

Figure 8-6 — Fractional sample position dependent variablesin chroma interpolation and surrounding integer
position samples A, B, C, and D.

These samples may be used for generating the predicted chroma sample value predPartLX(X¢, y¢).

xA¢ = Clip3(0, PicWidthInSamples. — 1, xInt.) (8-186)
xB¢ = Clip3(0, PicWidthInSamples. — 1, xInt. + 1) (8-187)
xC¢ = Clip3(0, PicWidthInSamples. — 1, xInt) (8-188)
xD¢ = Clip3(0, PicWidthInSamples. — 1, xInt, + 1) (8-189)
yA. = Clip3(0, PicHeightInSamples. — 1, yInt.) (8-190)
yB¢ = Clip3(0, PicHeightInSamples. — 1, yInt,) (8-191)
yCc = Clip3(0, PicHeightInSamples. — 1, yInt. + 1) (8-192)
yD. = Clip3(0, PicHeightInSamples. — 1, ylnt. + 1) (8-193)

Given the chroma samples A, B, C, and D at full-sample locations, the predicted chroma sample value predPartLX (X,
yc) is derived as follows:

predPartLX(X¢, yc) = ((8 —xFracc) * (8 — yFracc) * A + xFrac. * (8 —yFrac.) * B+
(8 —xFrac.) * yFrac. * C + xFrac. * yFrac. * D +32)>>6 (8-194)

8.4.2.3 Weighted sample prediction process

Inputs to this process are the current partition given by the partition index mbPartldx and the sub-macroblock partition
index subMbPartldx as well as a (partWidth)x(partHeight) array predPartL0, of prediction luma samples and two
(partWidth/2)x(partHeight/2) arrays predPartL0,, and predPartL0O., of prediction chroma samples, one for each of the
chroma components Cb and Cr (derived by list 0 prediction) and/or a (partWidth)x(partHeight) array predPartL1, of
prediction luma samples and two (partWidth/2)x(partHeight/2) arrays predPartL1.,, and predPartL1. of prediction
chroma samples, one for each of the chroma components Cb and Cr (derived by list 1 prediction), and refldxLO and
refldxL1.

116 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT 1SO/IEC 14496-10 : 2002 (E)

Outputs of this process are a (partWidth)x(partHeight) array predPart, of prediction luma samples and two
(partWidth/2)x(partHeight/2) arrays predPart,, and predPart,, of prediction chroma samples, one for each of the chroma
components Cb and Cr.

For P and SP slices, if weighted pred flag is equal to 0, then the default weighted sample prediction process as described
in subclause 8.4.2.3.1 is used for macroblocks or partitions with predFlagl0 equal to 1. For P and SP slices, if
weighted pred flag is equal to 1, then explicit weighted prediction is applied as described in subclause 8.4.2.3.2, for
macroblocks or partitions with predFlagL.0 equal to 1.

For B slices, if weighted bipred idc is equal to 0, then the default weighted sample prediction process as described in
subclause 8.4.2.3.1 is used, for macroblocks or partitions with predFlagL0 and/or predFlagl1 equal to 1.

For B slices, if weighted bipred idc is equal to 1, explicit weighted sample prediction is used to form the final sample
predictor, as described in subclause 8.4.2.3.2, for macroblocks or partitions with predFlaglL.0 and/or predFlagL1 equal to
L.

For B slices, if weighted bipred idc is equal to 2, the default weighted sample prediction process as described in
subclause 8.4.2.3.1 is used for macroblocks or partitions with one and only one of predFlagL.0 or predFlagL1 equal to 1,
and implicit weighted sample prediction as described in subclause 8.4.2.3.2 is used for skipped macroblocks or
macroblock or partitions with both predFlagl.0 and predFlagl.1 equal to 1.

8.4.2.3.1 Default weighted sample prediction process

Input to this process are the current partition given by the partition index mbPartldx and the sub-macroblock partition
index subMbPartldx as well as a (partWidth)x(partHeight) array predPartL0O, of prediction luma samples and two
(partWidth/2)x(partHeight/2) arrays predPartL0,, and predPartL0O., of prediction chroma samples, one for each of the
chroma components Cb and Cr (derived by list 0 prediction) and/or a (partWidth)x(partHeight) array predPartL1, of
prediction luma samples and two (partWidth/2)x(partHeight/2) arrays predPartL1.,, and predPartL1. of prediction
chroma samples, one for each of the chroma components Cb and Cr (derived by list 1 prediction), and refldxL0 and
refldxL1.

Output of this process are a (partWidth)x(partHeight) array predPart, of prediction luma samples and two
(partWidth/2)x(partHeight/2) arrays predPart.,, and predPart., of prediction chroma samples, one for each of the chroma
components Cb and Cr.

This process is invoked for macroblocks or partitions that meet any of the following conditions:

- in P slices with weighted pred flag equal to 0 and predFlagL0 is equal to 1

- in B slices with weighted bipred idc equal to 0 and predFlagl.0 and/or predFlagl.1 equal to 1

- in B slices with weighted bipred idc equal to 2 and one but not both of predFlagl.0 and predFlagL1 are equal to 1

All samples predPart-(x, y) of the array of final predicted luma or chroma samples predPart. are derived by using the
samples predPartL0.(x, y) and/or predPartL1-(X, y), corresponding to the same location (X,y).

For the luma block, C=L, x =0 .. partWidth - 1, y =0 .. partHeight - 1,
and for the two chroma blocks, C =Cb and Cr, x =0 .. partWidth /2 - 1, y=0 .. partHeight /2 - 1
For partitions with predFlagL0 equal to 1 and predFlagl.1 equal to 0

predPart.(X, y) = predPartLO-(X,y) (8-195)

For partitions with predFlagl.0 equal to 0 and predFlagL1 equal to 1

predPart.(x, y)= predPartL1.(x,y) (8-196)

For partitions with both predFlagl0 and predFlagl.1 equal to 1,

predPart.(x, y) = (predPartLO.(X,y) + predPartL1(x,y)+ 1)>>1. (8-197)

8.4.2.3.2 Weighted sample prediction process

Input to this process are the current partition given by the partition index mbPartldx and the sub-macroblock partition
index subMbPartldx as well as a (partWidth)x(partHeight) array predPartL0O, of prediction luma samples and two
(partWidth/2)x(partHeight/2) arrays predPartLO,, and predPartLO., of prediction chroma samples, one for each of the
chroma components Cb and Cr (derived by list 0 prediction) and/or a (partWidth)x(partHeight) array predPartL1, of

DRAFT ITU-T Rec. H.264 (2002 E) 117

prediction luma samples and two (partWidth/2)x(partHeight/2) arrays predPartL1.,, and predPartL1. of prediction
chroma samples, one for each of the chroma components Cb and Cr (derived by list 1 prediction), refldxLO and
refldxL1, and the reference picture lists RefPicList0 and RefPicList1.

Output of this process are a (partWidth)x(partHeight) array predPart; of prediction luma samples and two
(partWidth/2)x(partHeight/2) arrays predPart,, and predPart,, of prediction chroma samples, one for each of the chroma
components Cb and Cr.

This process is invoked for macroblocks or partitions that meet any of the following conditions:

- in P slices with weighted pred flag equal to 1 and predFlagl.0 is equal to 1

- in B slices with weighted bipred idc equal to 1 and either predFlagl0 is equal to 1 and/or predFlagl.1 is equal to 1
- in B slices with weighted bipred_idc equal to 2 and predFlagL0 is equal to 1 and predFlagL1 is equal to 1

All samples predPart-(X, y) of the array of final predicted luma or chroma samples predPart. are derived by using the
samples predPartLOq(x, y) and/or predPartL1.(x, y), corresponding to the same location (X, y).

The final predicted luma sample values predPart (x,y) are derived by invoking this process with C = L, for
x ==0..partWidth - 1, y =0 .. partHeight - 1.

The final predicted chroma sample values predPart.,(X, y) and predPart.(x, y) are derived by invoking this process
with C = Cb and Cr, for x =0 .. partWidth/2 - 1, y =0 .. partHeight/2 - 1.

If the partition given by mbPartldx (and subMbPartldx) has predFlagL.0 equal to 1 and predFlagl1 equal to 0, the final
predicted sample values predPart.(x, y) are derived as follows

if(LWD>=1)
predPart.(x, y) = Clip1(((predPartLOc(x,y) * W, +2""P-1)y>>LWD)+ O,)
else (8-198)

predPart.(x,y) = Clipl(predPartLO(x,y) * W, + O,)

Else if the partition given by mbPartldx (and subMbPartldx) has predFlagl.0 equal to 0 and predFlagl1 equal to 1, the
final predicted sample values predPart.(X,y) are derived as follows.

if(LWD>=1)
predPart.(x, y) = Clipl(((predPartL1(x,y) * W, +2"VP-1)>>LWD)+ 0O,)
else (8-199)

predPart.(x, y) = Clipl(predPartL1.(x,y) * W, + O,)

Else if the partition given by mbPartldx (and subMbPartldx) has both predFlagl.0 and predFlagl1 equal to 1, the final
predicted sample values predPart.(x,y) are derived by
predPart.(x, y) = Clip1(((predPartLO(x,y) * W, +predPartL1(x,y) * W, +2"VP) >>
(LWD+1))+((0,+0,+1)>>1)) (8-200)

If weighted bipred _idc is equal to 2 and the slice_type is equal to B,

LWD=5 (8-201)
0,=0 (8-202)
0,=0 (8-203)
W, = DistScaleFactor >> 2 (8-204)

where DistScaleFactor is specified in subclause 8.4.1.2.3, and

W,=64—-W, (8-205)

118 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT I SO/IEC 14496-10 : 2002 (E)
except if DiffPicOrderCnt(picl, picO) with picl being the picture referred by RefPicList1[refldxL1] and pic0 being the
picture referred by RefPicListO[refldxL0] is equal to 0 or if one or both reference pictures is a long-term reference

picture or if W, <-64 or if W, > 128, in which case,

W, =32 (8-206)

W, =32 (8-207)

Otherwise if weighted bipred idc is equal to 1, explicit mode WP is used as follows.

- If MbaffFrameFlag is equal to 1 and the current macroblock is a field macroblock

refldxLOWP = refldxL0 >> 1 (8-208)
refldxL1WP = refldxL1 >> 1 (8-209)

- Otherwise
refldxLOWP = refldxL0 (8-210)
refldx LIWP = refldxL1 (8-211)

- IfCisequal to L for luma samples

LWD = luma_log2 weight denom (8-212)
W, =luma_weight 10[refldxLOWP] (8-213)
W, =luma_weight 11] refldxL1WP] (8-214)
O, =luma_offset 10[refldxLOWP] (8-215)
O, =luma_offset 11[refldxL1WP] (8-216)

- Otherwise if C is equal to Cb or Cr for chroma samples, with iCbCr = 0 for Cb, iCbCr =1 for Cr,

LWD = chroma log2 weight denom (8-217)
W, = chroma_weight 10[refldxLOWP][iCbCr] (8-218)
W, = chroma_weight 11[refldxL1WP][iCbCr] (8-219)
O, = chroma_offset 10[refldxLOWP][iCbCr] (8-220)
O, = chroma_offset 11[refldxL1WP][iCbCr] (8-221)

For explicit mode the following conditions shall be met

128 <= W, + W, <= 127 (8-222)

DRAFT ITU-T Rec. H.264 (2002 E) 119

NOTE - For implicit mode, weights are guaranteed to be in the range is -64 < W ,W, < 128.

[Ed. clarify with regard to P, SP, B slice types]

8.5 Transform coefficient decoding process and picture construction process prior to deblocking
filter process

Inputs to this process are Intral6x16DCLevel (if available), Intral 6x16ACLevel (if available), LumaLevel (if available),
ChromaDCLevel, ChromaACLevel, and Inter or Intra prediction samples for the applicaple component pred,, pred,,
predc,. [Ed. specify size of pred arrays]

Outputs of this process are the constructed samples arrays prior to deblocking for the applicaple component S’;, S’
S’

This subclause specifies transform coefficient decoding and picture construction prior to the deblocking filter process.

When the current macroblock is coded as P _Skip or B Skip, all values of LumaLevel, ChromaDCLevel,
ChromaACLevel are set to 0.

8.5.1 Specification of transform decoding processfor residual blocks

When the current macroblock prediction mode is not equal to Intra_16x16, the variable LumaLevel contains the levels
for the luma transform coefficients. For a 4x4 luma block indexed by luma4x4Blkldx = 0..15, the following ordered
steps are specified.

1. The inverse transform coefficient scanning process as described in subclause 8.5.4 is invoked with
LumaLevel[luma4x4BlkIdx] as the input and the 2-D array c as the output.

2. The scaling and transformation process for residual luma 4x4 blocks as specified in subclause 8.5.8 is invoked
with ¢ as the input and x’’ as the output.

3. The position of the upper-left sample of a 4x4 luma block with index luma4x4BIklIdx inside the macroblock is
derived by invoking the inverse 4x4 luma block scanning process in subclause 6.4.3 with luma4x4BlkIdx as the
input and the output being assigned to (xO, yO).

4. The 4x4 array u with elements u, for x, y = 0..3 is derived as

uy, = Clip1(pred; (xO +x,yO +y) +x",) (8-223)

5. The picture construction process prior to deblocking filter process in subclause 8.5.9 is invoked with
luma4x4BIkldx, u as the input and S’ as the output.

8.5.2 Specification of transform decoding process for luma samples of Intra 16x16 macroblock prediction
mode

When the current macroblock prediction mode is equal to Intra 16x16, the variables Intral6x16DCLevel and
Intral6x16ACLevel contain the levels for the luma transform coefficients. The transform coefficient decoding proceeds
in the following ordered steps:

1. The 4x4 luma DC coefficients of all 4x4 luma blocks of the macroblock are decoded.

a. The inverse transform coefficient scanning process as described in subclause 8.5.4 is invoked with
Intral6x16DCLevel as the input and the 2-D array c as the output.

b. The scaling and transformation process for luma DC coefficients for Intra_16x16 macroblock type as specified
in subclause 8.5.6 is invoked with ¢ as the input and dcY as the output.

2. For a 4x4 luma block indexed by luma4x4BlkIdx = 0..15, the following ordered steps are specified.

a. The variable lumaList, which is a list of 16 entries, is derived. The first entry of lumaList is the corresponding
value from the array dcY. Figure 8-7 shows the assignment of the indices of the array dcY to the
luma4x4BlkIdx. The two numbers in the small squares refer to indices i and j in dcY;; , and the numbers in
large squares refer to luma4x4BIkIdx.

120 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT 1SO/IEC 14496-10 : 2002 (E)

10 11 14 15

Figure 8-7 — Assignment of theindices of dcY to luma4x4BIkIdx.

The elements in lumaList with index k = 1..15 are specified as

lumalList[k] = Intral6x16ACLevel[luma4x4BIkIdx J[k-1] (8-224)

b. The inverse transform coefficient scanning process as described in subclause 8.5.4 is invoked with lumalList as
the input and the 2-D array c as the output.

c. The scaling and transformation process for residual luma 4x4 blocks as specified in subclause 8.5.8 is invoked
with c as the input and x’’ as the output.

d. The position of the upper-left sample of a 4x4 luma block with index luma4x4BlkIdx inside the macroblock is
derived by invoking the inverse 4x4 luma block scanning process in subclause 6.4.3 with luma4x4BlklIdx as
the input and the output being assigned to (xO, yO).

e. The 4x4 array u with elements u,, for x, y = 0..3 is derived as

= Clipl(pred,(xO +x, yO +y) +x",,) (8-225)

f. The picture construction process prior to deblocking filter process in subclause 8.5.9 is invoked with
luma4x4BIkldx, u as the input and S’ as the output.

8.5.3 Specification of transform decoding process for chroma samples

For each chroma component, the variables ChromaDCLevel[iCbCr | and ChromaACLevel[iCbCr | with iCbCr = 0 for
Cb and iCbCr =1 for Cr contain the levels for both components of the chroma transform coefficients. For each chroma
component, the transform decoding proceeds separately in the following ordered steps:

1.

The 2x2 luma DC coefficients of the 4x4 chroma blocks of the component indexed by iCbCr of the macroblock are
decoded.

a. The 2x2 array c is derived using the inverse raster scanning process applied to ChromaDCLevel as follows

_ (ChromaDCLevel [iCbCr][0] ChromaDCLevel[iCbCr][1]

c= (8-226)
ChromaDCLevel[iCbCr][2] ChromaDCLevel[iCbCr][3]

b. The scaling and transformation process for chroma DC coefficients as specified in subclause 8.5.7 is invoked
with ¢ as the input and dcC as the output.

For each 4x4 chroma block indexed by chroma4x4Blkldx = 0..3 of the component indexed by iCbCer, the following
ordered steps are specified.

a. The variable chromaList, which is a list of 16 entries, is derived. The first entry of chromaList is the
corresponding value from the array dcC. Figure 8-8 shows the assignment of the indices of the array dcC to the
chroma4x4BlkIdx. The two numbers in the small squares refer to indices i and j in dcCj;, and the numbers in
large squares refer to chroma4x4BlkIdx.

DRAFT ITU-T Rec. H.264 (2002 E) 121

C
0 1

|
2 3

Figure 8-8 — Assignment of theindices of dcC to chromadx4BIkl dx.

The elements in chromaList with index k = 1..15 are specified as

chromalList[k] = ChromaACLevel[chroma4x4Blkldx][k-1] (8-227)

b. The inverse transform coefficient scanning process as described in subclause 8.5.4 is invoked with chromalL ist
as the input and the 2-D array c as the output.

c. The scaling and transformation process for residual 4x4 blocks as specified in subclause 8.5.8 is invoked with ¢
as the input and x’’ as the output.

d. The position of the upper-left sample of a 4x4 chroma block with index chroma4x4Blkldx inside the
macroblock is derived as follows

xO = InverseRasterScan(chroma4x4BIkldx, 4, 4, 8, 0) (8-228)

yO = InverseRasterScan(chroma4x4Blkldx, 4, 4, 8, 1)

€. The 4x4 array u with elements u,, for x, y = 0..3 is derived as

u,, = Clipl(prede(xO +x,yO +y) +x") (8-229)

f. The picture construction process prior to deblocking filter process in subclause 8.5.9 is invoked with
chroma4x4BlkIdx, u as the input and S’ as the output.

8.5.4 Inversescanning processfor transform coefficients
Input to this process is a list of 16 values.

Output of this process is a variable ¢ containing a 2-D array of 4x4 values with level assigned to locations in the
transform block.

The decoding process maps the sequence of transform coefficient levels to the transform coefficient level positions. For
this mapping, the two inverse scanning patterns shown in Figure 8-9 are used.

The inverse zig-zag scan shall be used for frame macroblocks and the inverse field scan shall be used for field
macroblocks.

122 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT 1SO/IEC 14496-10 : 2002 (E)

s L
A
R U O

Figure 8-9 —a) Zig-zag scan. b) Field scan

Table 8-13 provides the mapping from the index idx of the 1-D list input list of 16 elements to indices i and j of the 2-D
array c.

Table 8-13 — Specification of mapping of idx to ¢; for zig-zag and field scan

idx 0|12 |3|4|5|6|7|8]9]10]11)12|13|1415

219-289 | Coo | Co1 | C1o | €20 | €11 | Coo | Co3 | Cip | Co1 | C30 | Ca1 | € | Ci3 | Co3 | C3p | C33

field Coo | €10] Co1 | €0 | C30 [Cip | Co1 | C51 | Cop | Ci1p | €0 | C3p | Co3 | Cy3 | Cp3 | C33

8.5.5 Derivation processfor the quantisation parameter s and scaling function
Input to this process is a two-dimensional array of transform coefficient levels.

Outputs of this process are:
— QP¢: the chroma quantisation parameter
— QS_: the additional chroma quantisation parameter required for decoding SP and SI slices (if applicable)

QP quantisation parameter values QPy, QP, QSy, and QS shall be in the range from 0 to 51, inclusive.

The value of QP for chroma is determined from the current value of QP and the value of chroma qp_index_offset.

NOTE - The scaling equations are specified such that the equivalent quantisation parameter doubles for every increment of 6 in
QPy. Thus, there is an increase in scaling magnitude of approximately 12 % for each increase of 1 in the value of QPy,.

The value of QP shall be determined as specified in Table 8-14 based on the indexing denoted qP,. The value of qP,
shall be derived as follows.

qP,=Clip3(0, 51, QPy + chroma_qgp_index_offset) (8-230)

Table 8-14 — Specification of QP asa function of gP,

qP, <30 30 [31 |32 |33 |34 |35 (36|37 |38]3940 |41 |42 |43 |44 |45 |46 |47 | 48 | 49 | 50 | 51

QP. | =QP; | 29 | 30 | 31 | 32 | 32 | 33 | 34 |34 | 35|35 |36 |36 |37 |37]|37 |38 38|38)39]39)|39]39

When the current slice is an SP or SI slice, QS is derived using the above process, substituting QP, with QS and QP
with QS,.

The function LevelScale(m, i, j) is specified as follows:

DRAFT ITU-T Rec. H.264 (2002 E) 123

VmO fOI' (13.]) € {(090)7 (0’2)’ (2’0)7 (2a2)}7
LevelScale(m,i,j)=4v,, for (i,))e{(1,1),(1,3),(3,1),(3,3)}, (8-231)
v, otherwise;
where the first and second subscripts of v are row and column indices, respectively, of the matrix specified as:
[10 16 13]
11 18 14
v 13 20 16 ' (8232)
14 23 18
16 25 20
|18 29 23]

8.5.6

Inputs to this process are transform coefficient level values for luma DC coefficients of Intra 16x16 macroblocks as a
4x4 array c of elements c;;, where i and j form a two-dimensional frequency index.

Scaling and transformation process for luma DC coefficientsfor Intra_16x16 macroblock type

ij>
Outputs of this process are 16 scaled DC values for luma 4x4 blocks of Intra_16x16 macroblocks as a 4x4 array dcY of
elements dcYj;.

The inverse transform for the 4x4 luma DC coefficients is specified by:

I 1 1 TIfce Co Cp Co3|fl 1 1 1

fe 1 1 -1 -1fcy ¢; ¢, c5fl 1 -1 -1 ' (8-233)
1 -1 -1 1fcy €5 € Cyufl =1 -1 1
1 -1 1 —=1Ifcy €5 €3, cCy |1 -1 1 -1

A Ditstream conforming to this Recommendation | International Standard shall not contain data that results in any
element of f that exceeds the range of integer values from —2'° to 2'°~1, inclusive.

After the inverse transform, scaling is performed according to the following:

- If QPy is greater than or equal to 12, then the scaled result shall be derived as

deY; =[f; * LevelScale (QPy %6, 0,0)] << (QPy /6-2), 1,j=0.3. (8-234)
- Otherwise, the scaled results shall be derived as
deY, =[f, * LevelScale (QPy % 6,0,0)+2"%" 1>> (2-QP, /6), i,j=0.3. (8-235)

A bitstream conforming to this Recommendation | International Standard shall not contain data that results in element of
dcY; that exceeds the range of integer values from —2' to 2'°~1, inclusive.
8.5.7

Inputs to this process are transform coefficient level values for chroma DC coefficients of one chroma component of the
macroblock as a 2x2 array c of elements c;;, where i and j form a two-dimensional frequency index.

Scaling and transformation process for chroma DC coefficients

Outputs of this process are 4 scaled DC values as a 2x2 array dcC of elements dcC;;.

The inverse transform for the 2x2 chroma DC coefficients is specified by:
. {1 1}[% Cor }{1 1} .
1 -1|c, ¢ |1 -1

DRAFT ITU-T Rec. H.264 (2002 E)

(8-236)

124

DRAFT 1SO/IEC 14496-10 : 2002 (E)

A bitstream conforming to this Recommendation | International Standard shall not contain data that results in any
element f;; of f that exceeds the range of integer values from —2" t0 2'5~1, inclusive.

After the inverse transform, scaling is performed according to the following.

- If QP is greater than or equal to 6, then the scaling result shall be derived as

deC, =[f, * LevelScale(QP. %6,0,0)]<< (QP. /6-1), i,j=0,1. (8-237)

- Otherwise, the scaling results shall be derived by

deC; =[f; * LevelScale (QP % 6,0,0)]>>1, 1,j=0,1. (8-238)

A Dbitstream conforming to this Recommendation | International Standard shall not contain data that results in any
element of dcC;; that exceeds the range of integer values from —2'* to 2"°~1, inclusive.

8.5.8 Scaling and transfor mation processfor residual 4x4 blocks

Input to this process is a 2-D array ¢ of elements c,, which is either an array relating to a luma residual block or to a
residual block of a chroma component.

Outputs of this process are residual sample values as 4x4 array x of elements X,,,.

If mb_type is equal to SI or the macroblock prediction mode is equal to Inter in an SP slice, the variable sMbFlag is set
equal to 1, otherwise it is set equal to 0.

The variable qP is derived as follows.

- If the input array c relates to a luma residual block and sMbFlag is equal to 0

qP =QPy (8-239)

- If the input array c relates to a luma residual block and sMbFlag is equal to 1

qP = QSy (8-240)

- Ifthe input array c relates to a chroma residual block and sMbFlag is equal to 0

qP = QP (8-241)

- Otherwise (the input array c relates to a chroma residual and sMbFlag is equal to 1)

qP = QS (8-242)

Scaling of 4x4 block coefficient levels ¢; proceeds as follows.
- If all of the following conditions are true

- iisequalto0

- jisequalto0

- crelates to a luma residual block coded using Intra 16x16 prediction mode or c relates to a chroma residual block

Woo = Coo (8-243)
- Otherwise
wy =[¢; *LevelScale(qP % 6, m,n)] <<(qP/6), 1,j=0.3. (8-244)

The bitstream shall not contain data that results in a value of w; that exceeds the range of integer values from —2" to
2'3.1, inclusive.

DRAFT ITU-T Rec. H.264 (2002 E) 125

After constructing an entire 4x4 block of scaled transform coefficients and assembling these into a 4x4 array w of
elements w; illustrated as

Wi Wi W Wy (8-245)

The transform process shall convert the block of reconstructed transform coefficients to a block of output samples in a
manner mathematically equivalent to the following process:

1. Each column of reconstructed transform coefficients is transformed using a one-dimensional inverse transform, and

2. Each row of the resulting matrix is transformed using the same one-dimensional inverse transform.

The one-dimensional inverse transform is specified as follows for four input samples w,, w,, w,, w;, where the subscript
indicates the one-dimensional frequency index.

1. A set of intermediate values is computed:

Zy=Wot W, (8-246)
Z; = Wy— W, (8-247)
z,=(w;>>1)—w; (8-248)
zz=w, +(w;>>1) (8-249)

2. The transformed result is computed from these intermediate values:

Xg=Zyt 24 (8-250)
X, =2 1tz (8-251)
X, =22, (8-252)
Xy =7, — Z4 (8-253)

The bitstream shall not contain data that results in a value of z,, z,, z,, z;, X,, X;, X, O X5 that exceeds the range of integer
values from —2'° to 21, inclusive, in either the first (horizontal) or second (vertical) stage of application of this
transformation process. The bitstream shall not contain data that results in a value of x,, X,, X,, or X; that exceeds the
range of integer values from —2" to 2°-33, inclusive, in the second (vertical) stage of application of this transformation
process.

After performing the both the one-dimensional horizontal and one-dimensional vertical inverse transforms to produce a
block of transformed samples,
X'y X, X, X
00 01 02 03
\l 1 1
X X X X
<= 10 11 12 13 (8-254)
1 \l '
X Xy Xpn Xp

1 1 1
X3 X3 X3 X33

the final reconstructed sample residual values shall be derived as

X" =[x, +2°1>>6 (8-255)

mn

126 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT 1SO/IEC 14496-10 : 2002 (E)

8.5.9 Pictureconstruction processprior to deblocking filter process

Inputs to this process are
- luma4x4BIkldx or chroma4x4Blkldx
- aconstructed sample residual 4x4 array x" with elements x",, which is either a luma or chroma residual block

- the prediction sample 4x4 array pred,, pred,, pred,
Outputs of this process are constructed sample blocks s' prior to the deblocking filter process.

The position of the upper-left luma sample of the current macroblock is derived by invoking the inverse macroblock
scanning process in subclause 6.4.1 with CurrMbAddr as input and the output being assigned to (xP, yP).

When x”’ is a luma block, for each sample at position (x, y) of the 4x4 luma block, the following applies.

- The position of the upper-left sample of a 4x4 luma block with index luma4x4BlkIdx inside the macroblock is
derived by invoking the inverse 4x4 luma block scanning process in subclause 6.4.3 with luma4x4Blkldx as the
input and the output being assigned to (xO, yO).

- If MbaffFrameFlag is equal to 1 and the current macroblock is a field macroblock

SUxP+x0+x,yP+2*(yO+y))=u, (8-256)
- Otherwise,
S (xP+x0+x,yP+yO+y)=u, (8-257)

When x”’ is a chroma block, for each sample at position (x, y) of the 4x4 chroma block, the following applies.

- The subscript C in the variables S'c and pred,. is replaced with Cb for the Cb chroma component and with Cr for the
Cr chroma component.

- The position of the upper-left sample of a 4x4 chroma block with index chroma4x4Blkldx inside the macroblock is
derived as follows

xO = InverseRasterScan(chroma4x4BIklIdx, 4, 4, 8, 0) (8-258)

yO = InverseRasterScan(chroma4x4Blkldx, 4, 4, 8, 1) (8-259)

- If MbaffFrameFlag is equal to 1 and the current macroblock is a field macroblock

Se((xP>>1)+x0+x, ((yP+1)>>1)+2*(yO+y))=u, (8-260)
- Otherwise,
Sc((xP>1)+x0+x,((yP+1)>>1)+y0 +y)=u, (8-261)

8.6 Decoding processfor SP and Sl dlices
This process is invoked when decoding P macroblock types in an SP slice type or an SI macroblock type in SI slices.

Inputs to this process are the prediction residual coefficient levels and the predicted luma samples for the current
macroblock.

Outputs of this process are the decoded samples of the current macroblock prior to deblocking.

This subclause specifies the transform coefficient decoding process and picture construction process for P macroblock
types in SP slices and SI macroblock type in SI slices.
NOTE - SP slices make use of Inter predictive coding to exploit temporal redundancy in the sequence, in a similar manner to P
slices. Unlike P slices, however, SP slice coding allows identical reconstruction of a slice even when different reference pictures
are being used. SI slices make use of spatial prediction, in a similar manner to I slices. SI slice coding allows identical
reconstruction to a corresponding SP slice. The properties of SP and SI slices provide functionalities for bitstream switching,
splicing, random access, VCR functionalities such as fast-forward, and error resilience/recovery.

An SP slice consists of macroblocks coded either as I macroblock types or P macroblock types.

DRAFT ITU-T Rec. H.264 (2002 E) 127

An ST slice consists of macroblocks coded either as I macroblock types or SI macroblock type.

The transform coefficient decoding process and picture construction process prior to deblocking filter process for I
macroblock types in SI slices shall be invoked as specified in subclause 8.5. SI macroblock type shall be decoded as
described below.

8.6.1 SP decoding processfor non-switching pictures
This process is invoked, when decoding P macroblock types in SP slices in which sp_for switch_flag is equal to 0.

Input to this process are Inter prediction samples for the current macroblock from subclause 8.4 and the prediction
residual coefficient levels.

Outputs of this process are the decoded samples of the current macroblock prior to the deblocking filter process.

This subclause applies to all macroblocks in SP slices in which sp_for switch flag is equal to 0, except those with
macroblock prediction mode equal to Intra_4x4 or Intra_16x16. It does not apply to SI slices.

8.6.1.1 Lumatransform coefficient decoding process

Inputs to this process are Inter prediction luma samples for the current macroblock pred; from subclause 8.4 and the
prediction residual coefficient levels, Lumal.evel, and the index of the 4x4 luma block luma4x4BlkIdx.

Outputs of this process are the decoded luma samples of the current macroblock prior to the deblocking filter process.

The position of the upper-left sample of the 4x4 luma block with index luma4x4BlkIdx inside the current macroblock is
derived by invoking the inverse 4x4 luma block scanning process in subclause 6.4.3 with luma4x4BlkIdx as the input
and the output being assigned to (X, y).

Let the variable p be an 4x4 array of prediction samples with element p; being derived as follows.

P =predi(y +j,x +1) (8-262)

The variable p is transformed producing transform coefficients c” according to:

1 1 1 1Py Po P Pos ! 2 1 1

o = 2 I =1 =20py Py P P! I -1 -2 (8-263)
1 -1 -1 1Py Pu Pn Pyfl -1 -1 2
1 =2 2 —1|psy Psi Pn Pujl -2 1 -1

The inverse transform coefficient scanning process as described in subclause 8.5.4 is invoked with
LumaLevel[luma4x4Blkldx] as the input and the 2-D array ¢’ as the output with elements c;;".

The prediction residual coefficients c' are scaled using quantisation parameter QPy, and added to the transform
coefficients of the prediction block c? with i, j = 0..3 as follows.

¢ =c¢;" + (((c; * LevelScale(QPy % 6,1,j) * A;;) <<(QPy/6))>>6) (8-264)

where LevelScale(m, i, j) is specified in Equation 8-231, and where A;; is specified as:

16 for (i,)) €{(0,0),(0,2),(2,0),(2,2)},
A;=425 for (i,))€{(1,1),(1,3),(3,1),(3.3)}, (8-265)
20 otherwise;

The function LevelScale2(m, i, j), used in the formulas below, is specified as:

WmO for (15.]) € {(0’0)5 (052)5 (230)’ (252)}5
LevelScale2(m,i,j)={w,, for (i,j)e{(1,1),(1,3),(3,1),(3.3)}, (8-266)
w,, otherwise;

128 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT I SO/IEC 14496-10 : 2002 (E)
where the first and second subscripts of w are row and column indices, respectively, of the matrix specified as:

(13107 5243 8066 |
11916 4660 7490
"o 10082 4194 6554 (8-267)
9362 3647 5825
8192 3355 5243

| 7282 2893 4559

The resulting sum, c’, is quantised with a quantisation parameter QS, and with i, j = 0..3 as follows.

¢; = (Sign(c;') * (Abs(¢) * LevelScale2(QSy % 6,1,) + (1 << (14+QSy/6))))>>(15+QSy/6)
(8-268)

The scaling and transformation process for residual 4x4 blocks as specified in subclause 8.5.8 is invoked with ¢ as the
input and x’’ as the output.

The 4x4 array u with elements u;; is derived as follows.

u; = Clipl(x”’;) with i, j =0..3 (8-269)

The picture construction process prior to deblocking filter process in subclause 8.5.9 is invoked with luma4x4BIkIdx, u
as the input and S’ as the output.

8.6.1.2 Chromatransform coefficient decoding process

Inputs to this process are Inter prediction chroma samples for the current macroblock from subclause 8.4 and the
prediction residual coefficient levels, ChromaDCLevel and ChromaACLevel.

Outputs of this process are the decoded chroma samples of the current macroblock prior to the deblocking filter process.

This process is invoked twice: once for the Cb component and once for the Cr component. The component is referred to
by replacing C with Cb for the Cb component and C with Cr for the Cr component. Let iCbCr select the current chroma
component.

For each 4x4 block of the current chroma component indexed using chroma4x4Blkldx with chroma4x4Blkldx equal to
0..3, the following applies.

- The position of the upper-left sample of a 4x4 chroma block with index chroma4x4Blkldx inside the macroblock is
derived as follows

x = InverseRasterScan(chroma4x4Blkldx, 4, 4, 8, 0) (8-270)

y = InverseRasterScan(chroma4x4Blkldx, 4, 4, 8, 1) (8-271)

- Letp be an 4x4 array of prediction samples with element p; being derived as follows.

P =prede(y +j,x +1) (8-272)

- The 4x4 array p is transformed producing transform coefficients c’(chroma4x4BlkIdx) using Equation 8-263.

- The variable chromaList, which is a list of 16 entries, is derived. The first entry of chromaList is the corresponding
value from the array dc'. This corresponding value is derived below.

- The elements in chromaList with index k = 1..15 are specified as

chromaList[k] = ChromaACLevel[iCbCr][chroma4x4Blkldx [k-1] (8-273)

- The inverse transform coefficient scanning process as described in subclause 8.5.4 is invoked with chromaList as the
input and the 2-D array c¢" as the output.

DRAFT ITU-T Rec. H.264 (2002 E) 129

- The prediction residual coefficients ¢ are scaled using quantisation parameter QP., and added to the transform
coefficients of the prediction block c? with i, j = 0..3 except for the combination i = 0, j = 0 as follows.

C

1

it = ¢;*(chromadx4BlkIdx) + (((¢; * LevelScale(QP. % 6,1,j) * A;;) <<(QP./6))>>6) (8-274)
- The resulting sum, c*, is quantised with a quantisation parameter QS. and with i, j = 0..3 except for the combination i
=0, j =0 as follows.
c; = (Sign(c;’) * (Abs(c;*) * LevelScale2(QSc % 6,1,j) + (1 <<(14+QS./6))))>>(15+QS./6)
(8-275)

After calculating the coefficients of the 4 chroma blocks of a chroma component of a macroblock, the DC coefficients of
the 4 chroma blocks are assembled into a 2x2 matrix of elements ¢y, (chroma4x4BlkIdx) and an additional 2x2 transform
is applied to the DC coefficients of these blocks. The 2 dimensional 2x2 transform procedure is specified by:

dcp{l 1}{(:30 0) b, (1)}{1 1} (8276)
I =1]cg(2) ¢l -1

The parsed chroma DC prediction residual coefficients, ChromaDCLevel[iCbCr][k] with k= 0..3 are scaled using
quantisation parameter QP, and added to the DC transform coefficients of the prediction block, as given by:

dc;® = dc;? + (((ChromaDCLevel[iCbCr][j * 2 +1i] * LevelScale(QP % 6, 0, 0) * Ay,) <<(QP./6))>>5)
withi,j=0,1 (8-277)
The resulting array of sums, dc’, is quantised with a quantisation parameter QS, as given by:
dc;" = (Sign(dc;*) * (Abs(dc;®) * LevelScale2(QSc, 0,0) + (1 <<(15+QS:/6))))>>(16+QS./6)
withi,j=0,1 (8-278)

The 2x2 array f with elements f;; and i, j = 0..1 is derived using
1 1 0 o1
£ dey, ey, . (8-279)
I -1jdc, dc, |1 -1

Scaling is performed according to the following:

- If QS is greater than or equal to 6, then the scaling result shall be derived as

Coo(j * 2+1)=(f; * LevelScale(QS¢ % 6,0,0)) << (QSc/6- 1) withi, j=0, 1 (8-280)

- Otherwise, the scaling results shall be derived by

Coo(j * 2+1)=(f; * LevelScale(QS¢ % 6,0,0)) >> 1 withi, j=0, 1 (8-281)

The scaling and transformation process for residual 4x4 blocks as specified in subclause 8.5.8 is invoked with c as the
input and x’’ as the output.

The 4x4 array u with elements uj; is derived as follows.

u; = Clipl(x”’;) with i,j=0..3 (8-282)
The picture construction process prior to deblocking filter process in subclause 8.5.9 is invoked with chroma4x4BlkIdx,
u as the input and S’ as the output.

8.6.2 SPand Sl dicedecoding processfor switching pictures

This process is invoked, when decoding P macroblock types in SP slices in which sp_for switch flag is equal to 1 and
when decoding SI macroblock type in SI slices.

130 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

Inputs to this process are the prediction residual coefficient levels and the prediction sample arrays pred,, predg,, prede,
for the current macroblock.

Outputs of this process are the decoded samples of the current macroblock prior to deblocking.

8.6.2.1 Lumatransform coefficient decoding process
Inputs to this process are prediction luma samples pred, and the luma prediction residual coefficient levels, LumaLevel.
Outputs of this process are the decoded luma samples of the current macroblock prior to the deblocking filter process.

The 4x4 array p with elements p; with i, j = 0..3 is derived as in subclause 8.6.1.1, is transformed according to Equation
8-263 to produce transform coefficients cP. These transform coefficients are then quantised with the quantisation
parameter QSy, as follows:

c;’ = (Sign(¢;?)* (Abs(¢’) * LevelScale2(QSy % 6, Lj)+(1<<(14+QSy/6))))>>(15+QS,/6)
withi,j=0..3 (8-283)

The inverse transform coefficient scanning process as described in subclause 8.5.4 is invoked with
LumaLevel[luma4x4BlkIdx] as the input and the 2-D array c" as the output with elements c;;".

The 4x4 array ¢ with elements c;; with i, j = 0..3 is derived as follows.

[

j=¢ +¢ withi, j=0.3 (8-284)

The scaling and transformation process for residual 4x4 blocks as specified in subclause 8.5.8 is invoked with c as the
input and x’’ as the output.

The 4x4 array u with elements u;; is derived as follows.

u; = Clipl(x”;) withi,j=0..3 (8-285)

The picture construction process prior to deblocking filter process in subclause 8.5.9 is invoked with luma4x4BIkIdx, u
as the input and S’ as the output.

8.6.2.2 Chromatransform coefficient decoding process

Inputs to this process are predicted chroma samples for the current macroblock from subclause 8.4 and the prediction
residual coefficient levels, ChromaDCLevel and ChromaACLevel.

Outputs of this process are the decoded chroma samples of the current macroblock prior to the deblocking filter process.

This process is invoked twice: once for the Cb component and once for the Cr component. The component is referred to
by replacing C with Cb for the Cb component and C with Cr for the Cr component. Let iCbCr select the current chroma
component.

For each 4x4 block of the current chroma component indexed using chroma4x4Blkldx with chroma4x4BlkIdx equal to
0..3, the following applies.

- The 4x4 array p with elements p; with i, j = 0..3 is derived as in subclause 8.6.1.1, is transformed according to
Equation 8-263 to produce transform coefficients cP. These transform coefficients are then quantised with the
quantisation parameter QS, with i, j = 0..3 except for the combination i = 0, j = 0 as follows. The processing of ¢’

¢;" = (Sign(¢) * (Abs(c;?) * LevelScale2(QS % 6,1,j) + (1 <<(14+QS./6))))>>(15+QS./6)
(8-286)

- The variable chromaList, which is a list of 16 entries, is derived. The first entry of chromalList is the corresponding
value from the array dc'. This corresponding value is derived below.

- The elements in chromaList with index k = 1..15 are specified as

chromalList[k] = ChromaACLevel[iCbCr][chroma4x4Blkldx][k-1] (8-287)

- The inverse transform coefficient scanning process as described in subclause 8.5.4 is invoked with chromalList as the
input and the 2-D array c'(chroma4x4BlklIdx) as the output with elements c;'(chroma4x4BIkldx).

DRAFT ITU-T Rec. H.264 (2002 E) 131

- The 4x4 array c(chroma4x4Blkldx) with elements c;(chroma4x4Blkldx) with i, j = 0..3 except for the
combination i = 0, j = 0 is derived as follows. The derivation of c,,(chroma4x4BlkIdx) is described below.

¢;;(chroma4x4BIlkldx) = ¢;(chroma4x4BlkIdx) + ¢;(chroma4x4BlkIdx) (8-288)

- The scaling and transformation process for residual 4x4 blocks as specified in subclause 8.5.8 is invoked with
¢(chroma4x4BIklIdx) as the input and X’ as the output.

- The 4x4 array u with elements u; is derived as follows.

uy = Clipl(x>’) with i, j=0.3 (8-289)

- The picture construction process prior to deblocking filter process in subclause 8.5.9 is invoked with
chroma4x4BIlkIdx, u as the input and S’ as the output.

After calculating the coefficients of the 4 chroma blocks of a chroma component of a macroblock, the DC coefficients of
the 4 chroma blocks, c,,"(chroma4x4BIlkIdx), are assembled into a 2x2 matrix of elements and an additional 2x2
transform is applied to the DC coefficients of these blocks according to Equation (dcp = ...){Ed Note (MN) Need to
insert a link to the correct equation}, resulting in DC transform coefficients dcijP .

These DC transform coefficients are then quantised with the quantisation parameter QS,, as given by:

de;* = (Sign(de,”) * (Abs(dc;?) * LevelScale2(QS¢ % 6,0,0) + (1 << (15+QS¢/6))))>>
(16+QS./6) with i, =0, 1 (8-290)

The parsed chroma DC prediction residual coefficients, ChromaDCLevel[iCbCr][k] with k =0..3 are added to these
quantised DC transform coefficients of the prediction block, as given by:

dc;’ = dc; + ChromaDCLevel[iCbCr J[j*2+1] withi,j=0,1 (8-291)

The 2x2 array f with elements f; and i, j = 0..1 is derived using
1 1 0 ol 1
Fo dey, dcy,) (8-292)
I —1jdc, dc, |1 -1

The 2x2 array f with elements f;; and i, j = 0..1 is copied using:

Coo(j*2+1)=1f; withi,j=0,1 (8-293)

8.7 Deblocking filter process

Inputs to this process are the decoded sample values of a picture, constructed as described in subclause 8.5.9; the
prediction mode information (whether intra or inter and whether I PCM) for each macroblock; information on which
4x4 luma blocks in the picture were coded using non-zero coefficients; the motion vectors used for generating motion-
compensated predictions; the quantisation parameter values, QP, used for coding each macroblock; the deblocking filter
syntax elements and variables disable deblocking filter idc, FilterOffsetA, and FilterOffsetB, computed as described in
subclause 7.4.3; and, when MbaffFrameFlag is equal to 1, the coding mode (frame/field) for each macroblock pair in a
frame.

Outputs of this process are the filtered sample values for a decoded picture.

A conditional filtering shall be applied to all 4x4 block edges of a picture, except edges at the boundary of the picture
and any edges for which the deblocking filter process is disabled by disable deblocking_filter idc, as specified below.
For the deblocking filter process and the effect of the filter control variables, the edges controlled by a macroblock are
specified to be the block edges internal to the macroblock and the top and left edges between the current macroblock and
its neighbouring macroblocks.

This filtering process shall be performed on a macroblock basis, with all macroblocks in a picture processed in order of
increasing macroblock addresses.

For each macroblock in the picture:

132 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT 1SO/IEC 14496-10 : 2002 (E)

— If disable deblocking filter idc for the current slice is equal to 1, then deblocking is disabled for all edges
controlled by the current macroblock.

— Ifdisable deblocking filter idc for the current slice is equal to 2, then deblocking is applied to the edges controlled
by the current macroblock, with the exception of the edges that are also slice boundaries.

— Otherwise, deblocking is applied to all of the edges controlled by the current macroblock.

Prior to the operation of the deblocking filter process for each macroblock, the deblocked samples of the macroblock or
macroblock pair above and the macroblock or macroblock pair to the left of the current macroblock shall be available.

The deblocking filter process applies to both luma and chroma. For each macroblock, vertical edges are filtered first,
from left to right, and then horizontal edges are filtered from top to bottom. The luma deblocking filter process is
performed on four 16-sample edges in each direction, as shown on the left side of Figure 8-10. The chroma deblocking
filter process is performed in the same order on two 8-sample edges in each direction, as shown on the right side of
Figure 8-10. Sample values above and to the left of the current macroblock that may have already been modified by the
deblocking filter process operation on previous macroblocks shall be used as input to the deblocking filter process on the
current macroblock and may be further modified during the filtering of the current macroblock. Sample values modified
during filtering of vertical edges are used as input for the filtering of the horizontal edges for the same macroblock.

In field mode filtering, horizontal edges are filtered using samples from only one field. In frame mode filtering,
horizontal edges are filtered using samples from both fields. Vertical edges are always filtered within a row of samples
of a single field, regardless of whether the filtering is frame mode or field mode filtering.

If MbaffFrameFlag is equal to 1, then the following rules apply:

— If the current macroblock is a field macroblock, all edges controlled by the macroblock are filtered in field
mode.

— If the current macroblock is a frame macroblock, all edges controlled by the macroblock with the exception of
the top edge of the macroblock are filtered in frame mode. The top edge is filtered in frame mode if it borders

a neighbouring frame macroblock above it; otherwise it is filtered in field mode.
NOTE - When field mode filtering is applied to the horizontal edges of a frame mode macroblock, this vertical filtering across the

top or bottom macroblock boundary may involve some samples that extend across an internal block edge that is also filtered
internally in frame mode.

NOTE - In all cases, 3 horizontal luma edges and 1 horizontal chroma edge are filtered that are internal to a macroblock. When
field mode filtering is applied to the top edges of a frame mode macroblock, 2 horizontal luma and 2 horizontal chroma edges
between the frame mode macroblock and the above macroblock pair are filtered using field mode filtering, for a total of 5
horizontal luma edges and 3 horizontal chroma edges filtered that are considered to be controlled by the frame mode macroblock.
In all other cases, at most 4 horizontal luma and 2 horizontal chroma edges are filtered that are considered to be controlled by a
particular macroblock.

Otherwise (if MbaffFrameFlag is equal to 0):
— Iffield pic flag is equal to 1, field mode filtering is applied to the edges controlled by the macroblock.
— Otherwise, frame mode filtering is applied to the edges controlled by the macroblock.

DRAFT ITU-T Rec. H.264 (2002 E) 133

16*16 Macroblock 16*16 Macroblock

! | Horizontal edges
' ! i\ (luma)
|

|
| | ll\ Horizontal edges
(chroma)

|

S S ————————

Vertical edges Vertical edges
(luma) (chroma)

Figure 8-10 — Boundariesin a macroblock to befiltered (luma boundaries shown with solid lines and chroma
boundaries shown with dashed lines)

In the following description, the set of eight samples across a 4x4 block horizontal or vertically boundary is denoted as p;
and q; (1= 0..3) as shown in Figure 8-11 with the actual boundary lying between p, and q,. For chroma edges, samples p,,
P3» 92, and g5 are never involved in the filtering process.

p3| pP2| p1| pOl g0 | gl | g2 | g3

Figure 8-11 — Convention for describing samples across a 4x4 block horizontal or vertical boundary

Let s’ be a variable specifying a luma or chroma sample array. If frame mode filtering is applied, s’ specifies the luma or
chroma sample array of the frame. Otherwise (field mode filtering is applied), s’ specifies the luma or chroma sample
array of the field.

The set of samples p; and q; (i = 0..3) are specified as follows.

- P, is the sample to the right of a vertical edge or the sample below a horizontal edge with location (x, y) relative to the
upper left sample of the luma or chroma array s’.

- The samples p; with i = 1..3 and q; with i = 0..4 are specified as follows [Ed.(TW) clarify for edges of the picture].
- For the filtering of vertical edges,

q=s(x+iy) (8-294)

pi=s(x—i-1,y) (8-295)

- For the filtering of horizontal edges,

q=s(x,y+i) (8-296)

p=s(xy—i-1) (8-297)

134 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT 1SO/IEC 14496-10 : 2002 (E)

8.7.1 Derivation process for the content dependent boundary filtering strength

Inputs to this process are the prediction mode information (intra or inter) for each macroblock; information on which 4x4
luma blocks were coded using non-zero coefficients; the motion vectors used for generating motion-compensated
predictions; and, when MbaffFrameFlag is equal to 1, the coding mode (frame/field) for each macroblock pair.

Outputs of this process is the Boundary Strength variable, Bs, for each line of an edge to be filtered, where a line of an
edge is represented by a set of samples p; and g; (i=0..3).

As specified in Figure 8-10, every block boundary of a chroma block corresponds to a specific boundary of a luma block.
The Bs value used for filtering a specific line of a chroma edge is selected as follows:

- When filtering in frame mode, the Bs used for filtering a line of a horizontal or vertical chroma edge is the same as
the value of Bs for filtering the line of a horizontal or vertical luma edge, respectively, that contains the luma sample
at location (2*x, 2*y) inside the luma array of the frame, where (x, y) is the location of the chroma sample q, inside
the chroma array for that frame.

- When filtering in field mode, the Bs used for filtering a line of a horizontal or vertical chroma edge is the same as the
value of Bs for filtering the line of a horizontal or vertical luma edge, respectively, that contains the luma sample at
location (2*x, 2*y) inside the luma array of the same field, where (x, y) is the location of the chroma sample q, inside
the chroma array for that field.

If Bs is equal to 0, filtering is skipped for that particular edge. In all other cases filtering is dependent on the local sample
properties and the value of Bs for this particular set of samples p; and g; (i=0..3).

Let MixedModeEdgeFlag be assigned a value of 1 if MbaffFrameFlag is equal to 1 and the samples p; and q; (i = 0..3)
(see Error! Reference sour ce not found.) are in different macroblock pairs, one of which is a field macroblock pair and
the other is a frame macroblock pair; otherwise, MixedModeEdgeFlag is assigned a value of 0.

A value of Bs equal to 4 is assigned if the block boundary is also a macroblock boundary and any of the following
conditions are true:

— the samples p, and q, are both in frame macroblocks and either of the macroblocks containing samples p, and q, is
coded using an Intra macroblock prediction mode

— MbaftFrameFlag is equal to 1, the edge is a vertical edge and either of the macroblocks containing samples p, and
qo is coded using an Intra macroblock prediction mode.

If the value of Bs has not been assigned based on the above conditions, then a value of Bs equal to 3 is assigned if any of
the following conditions are true:

— MixedModeEdgeFlag is equal to 0 and either of the macroblocks containing samples p, and q, is coded using an
Intra macroblock prediction mode

— MixedModeEdgeFlag is equal to 1, the edge is a horizontal edge, and either of the macroblocks containing samples
Po and q is coded using an Intra macroblock prediction mode

If the value of Bs has not been assigned based on the above conditions, then a value of Bs equal to 2 is assigned if:

— the 4x4 luma block containing sample p, or the 4x4 luma block containing sample q, contains non-zero transform
coefficient levels

If the value of Bs has not been assigned based on the above conditions, then a value of Bs equal to 1 is assigned if any of
the following conditions are true:

— MixedModeEdgeFlag is equal to 1

— MixedModeEdgeFlag is equal to 0 and for the prediction of the macroblock partition containing the sample p,
different reference pictures or a different number of reference pictures are used than for the prediction of the
macroblock partition containing the sample q,.

— MixedModeEdgeFlag is equal to 0 and one motion vector is used to predict the macroblock/sub-macroblock
partition containing the sample p, and one motion vector is used to predict the macroblock/sub-macroblock partition
containing the sample q, and the absolute difference between the horizontal or vertical component of the motion
vector used is greater than 4 in units of quarter luma frame samples.

— MixedModeEdgeFlag is equal to 0 and two motion vectors and two different reference pictures are used to predict
the macroblock/sub-macroblock partition containing the sample p, and two motion vectors for the same two
reference pictures are used to predict the macroblock/sub-macroblock partition containing the sample q, and the
absolute difference between the horizontal or vertical component of a motion vector used in the prediction of the
two the macroblock/sub-macroblock partitions for the same reference picture is greater than 4 in units of quarter
luma frame samples.

DRAFT ITU-T Rec. H.264 (2002 E) 135

— MixedModeEdgeFlag is equal to 0 and two motion vectors for the same reference picture are used to predict the
macroblock/sub-macroblock partition containing the sample p, and two motion vectors for the same reference
picture as used to predict the macroblock/sub-macroblock partition containing the sample p, are used to predict the
macroblock/sub-macroblock partition containing the sample q, and both of the following conditions are true:

— The absolute difference between the horizontal or vertical component of list 0 motion vectors used in the
prediction of the two macroblock/sub-macroblock partitions is greater than 4 in quarter-sample luma units
or the absolute difference between the horizontal or vertical component of the list 1 motion vectors used in
the prediction of the two macroblock/sub-macroblock partitions is greater than 4 in units of quarter luma
frame samples.

— The absolute difference between the horizontal or vertical component of list 0 motion vector used in the
prediction of the macroblock/sub-macroblock partition containing the sample p, and the list 1 motion
vector used in the prediction of the macroblock/sub-macroblock partition containing the sample q, is
greater than 4 in units of quarter luma frame samples or the absolute difference between the horizontal or
vertical component of the list 1 motion vector used in the prediction of the macroblock/sub-macroblock
partition containing the sample p, and list 0 motion vector used in the prediction of the macroblock/sub-
macroblock partition containing the sample q, is greater than 4 in units of quarter luma frame samples.

NOTE - A vertical difference of 4 in units of quarter luma frame samples is a difference of 2 in units of quarter luma field samples

Otherwise, Bs shall be assigned the value 0, resulting in filtering not being applied for that particular boundary segment.

8.7.2 Derivation process for thethresholdsfor each block boundary

Input to this process are the input sample values p; and q; (i = 0..3) of a single line of an edge to be filtered, the
quantisation parameter values, QP, used for coding the macroblocks containing the samples p, and q,, the deblocking
filter control variables FilterOffsetA and FilterOffsetB that apply to this edge segment, and the value of the Boundary
Strength variable, Bs, for the corresponding line of an edge.

Output of this process is a Boolean decision as to whether sample values will be modified on the input line of the edge,
and the value of Index,, which is used to access the table of CO values for filtering lines of edges with Bs smaller than 4,
as specified in subclause 8.7.3, the values of the threshold variables (o and), which are used for luma filtering of lines
of edges with Bs equal to 4, as specified in subclause 8.7.4.

In the following, uppercase letters indicate filtered samples and lower case letters indicate unfiltered samples with regard
to the current edge filtering operation. However, p,, p, and p; may indicate samples that have been modified by the
filtering of a previous block edge. A line of an edge is only filtered if the condition

Bs#0 && Abs(py—qy)<c && Abs(p,—p,) <P && Abs(q,—qy) <P (8-298)

is true. The values of the thresholds o and P are dependent on the average value of QP for the macroblock(s) containing
the samples p, and q, as well as on a pair of index offsets FilterOffsetA and FilterOffsetB that may be transmitted in the
slice header for the purpose of modifying the characteristics of the filter. The average QP value for the is computed as

QPav=(QP,+QP,+1)>>1 (8-299)

where QP, is the quantisation parameter of the macroblock containing the sample p, and QP, is the quantisation
parameter of the macroblock containing the sample q,.

NOTE — The above statement is true regardless of the value of MbaffFrameFlag.

For luma sample filtering, if the macroblock containing the sample p, (or q,) is an I PCM macroblock, the value 0 shall
be used for QP, (or QP,) in Equation 8-299; otherwise, the value of QPy for the macroblock containing the sample p, (or
qo) shall be used.

For chroma sample filtering, if the macroblock containing the sample p, (or q,) is an I PCM macroblock, the value of
QP that corresponds to a value of 0 for QP shall be used for QP, (or QP,) in Equation 8-299; otherwise, the value of
QP for the macroblock containing the sample p, (or q,) shall be used.

The index used to access the o table (Table 8-15), as well as the CO table (Table 8-16) that is used in filtering of edges
with Bs smaller than 4, is computed as:

IndexA = Clip3(0, 51, QP,, + FilterOffsetA) (8-300)

NOTE - In SP and SI slices, QP,, is derived in the same way as in other slice types. QS from Equation 7-18 is not used in the
deblocking filter.

The index used to access the [table (Table 8-15) is computed as:

136 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT 1SO/IEC 14496-10 : 2002 (E)

IndexB = Clip3(0, 51, QP,, + FilterOffsetB) (8-301)

The relationships between the indices computed using Equations 8-300 and 8-301 and the thresholds (o and) are
shown in Table 8-15.

Table 8-15 - QP,, and offset dependent threshold variables o and

Index, (for o) or Index (for f3)

o1 (2345|6789 |10(11|12|13|14|15|16|17|18[19|20|21 22|23 |24]|25

a |OjO}O|lO]JO]j]OjOfO]JO|]O]O|O|O]O]O|O0O|4]|4|5|6|7|8]|9]|10[12]13

B fo0jo0oj0jo0ojojofojojojofojojojofojo|2(2(2|13(3(3(3|4|4]4

Table 8-15 (continued)

Index, (for o) or Index (for f3)

2627128293031 |32(33[34|35|36(37[38|39|40 (41 (42|43 |44[45|46|47 4849|5051

o |15]17120(22)25|28(32|36|40|45|50 (56|63 |71|80|90|101|113]127(144|162|182{203(226|255|255

B 6 1677|8899 |10]10f11 1112|1213 |13|14|14|15|15]|16|16|17 |17 |18 |18

8.7.3 Filtering processfor edgeswith Bssmaller than 4

Inputs to this process are the input sample values p; and q; (i = 0..3) of a single line of an edge that is to be filtered, the
value of the Boundary Strength variable, Bs, for the corresponding line of an edge, the value of the threshold variable £,
and the value of Index,, as specified in 8.7.2.

Outputs of this process are the filtered result sample values for each line of input sample values.

Two types of filtering are specified. In the case of lines of edges with 0 < Bs < 4, the samples having values p, and q,
shall be modified to filtered values P, and Q, as given by:

A=Clip3(~C, C, ((((dy—Py) <<2)+(p;—qy)+4)>>3)) (8-302)
P, = Clipl(p, + A) (8-303)
Q,=Clipl(qy—A) (8-304)

where C is determined as specified below.

The two intermediate threshold variables

a,= Abs(p,— D) (8-305)

a, = Abs(q,—qq) (8-3006)

shall be used to determine whether filtering for the luma samples p, and q, is taking place at this position of the edge.

If a, <3 for a line of a luma edge, the sample having value p, shall be modified to a filtered value P, as specified by

P, =p, + Clip3(-C0, CO, (p, + ((py+ o+ 1)>>1)=(p,<<1)) >> 1) (8-307)

If a, < B for a line of a luma edge, the sample having value g, shall be modified to a filtered value Q, as specified by

Qi =q, + Clip3(-C0, CO, (q, + ((po+ g+ 1)>>1)-(q<<1)) >> 1) (8-308)

DRAFT ITU-T Rec. H.264 (2002 E) 137

where CO is specified in Table 8-16. Chroma samples p, and q, are never filtered.

For luma, C is determined by setting it equal to CO and then incrementing it by one if a, < 3, and again by one if a, < f.
For chroma, C is equal to CO + 1.

Table 8-16 — Value of filter clipping variable C0O asa function of Index, and Bs

Index,

0123|4567 |8|9]|101112|13|14|15|16/17|18|19]20(21|22|23|24(25

Bs=1 oj0j040/j0{0}j0f0O)0j0|0OjOJO|O|O]O]O|O]O|O]O|O|O]1]T1]1
Bs=2 ojo0jo0y0j0{0}j0f0J0j]0j0OjOJO|O|O]O]JOJO]O|O]O|T 1|1]1][1
Bs=3 ojojojo0jo0jo0jo0foj0j0j0jo0jo0ojof{ojojo|trjr|{rj1r|{ryrj1rj1i1

Table 8-16 (continued)

Index,,

26272829 (30(31|32/33(34|35|36|37(38[39(40 41 42|43 /44|45 /46|47 |48|49|50|51

Bs=1 r{1rj1 (1,11 {1j2(2/2(2(3[3|3|4|4/4|5/6|6/|7[8|910]11]13
Bs=2 ry1 (171122223334 |4|5,5|6|7|8|8|10[11|12|13/15/|17
Bs=3 1{212(2,2|3[3(3|4|/4|4|5|6|6|7|8|9|10/11|13]14|16|18|20|23|25

8.7.4 Filtering processfor edgesfor Bsequal to 4

Inputs to this process are the input sample values p; and q; (i = 0..3) of a single line of an edge that is to be filtered, the
values of the threshold variables o and 3 for the line of the edge segment, as specified in subclause 8.7.2.

Outputs of this process are the filtered result sample values for each line of input sample values.
In this subclause, the intermediate variables a, and a, are computed as specified in Equations 8-305 and 8-306.

For luma samples, if the following condition holds:

a, <P && Abs(py—qo)<((a>>2)+2) (8-309)

filtering of the left/upper side of the line of the edge shall be applied by replacing the samples having values p,, p;, and p,
with the filtered values P, P,, and P, according to:

Py=(p,+2%p, +2%p, +2%qy +q; +4)>>3 (8-310)
Pi=(potpitpptqt+2)>>2 (8-311)
P, =(2%p;+3*p,+p, +pytqo+4)>>3 (8-312)

For chroma samples, and for luma samples for which the condition described in Equation 8-309 does not hold, the filter
shall be applied by replacing the sample having value p, with the filtered value P, according to:

Py=(2%p,tpy+q+2)>>2 (8-313)

Similarly, for filtering of luma samples on the right/lower side of the line of the edge, if the following condition holds:

a,< P && Abs(py—qy) <((a>>2)+2) (8-314)

138 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT 1SO/IEC 14496-10 : 2002 (E)

filtering shall be applied by replacing the samples having values q,, q;, and q, with the filtered values Q,, Q,, and Q,
according to:

Qo=(p; +2%p, +2%qy +2%q, +q, +4)>>3 (8-315)
Q=(pptqo+qtq+2)>>2 (8-316)
Q=(2*q3+3*q, +q +qotpyt4)>>3 (8-317)

For chroma samples, and for luma samples for which the condition described in Equation 8-314 does not hold, the filter
shall be applied by replacing the sample having value q, with the filtered value Q, according to:

Qo=(2%q; +qytp +2)>>2 (8-318)

9 Parsing process
Inputs to this process are bits from the RBSP.
Outputs of this process are syntax elements.

This process is invoked when the descriptor of a syntax element in the syntax tables in subclause 7.3 is equal to ue(v),
me(v), se(v), te(v) (see subclause 9.1), ce(v) (see subclause 9.2), or ae(v) (see subclause 9.3).

9.1 Parsing processfor Exp-Golomb codes

This process is invoked when the descriptor of a syntax element in the syntax tables in subclause 7.3 is equal to ue(v),
me(v), se(v), or te(v). For syntax elements in subclauses 7.3.4 and 7.3.5, this process is invoked only if
entropy_coding_mode _flag is equal to 0.

Inputs to this process are bits from the RBSP.
Outputs of this process are syntax elements.

This subclause specifies the parsing process for the Exp-Golomb-coded or truncated Exp-Golomb-coded syntax
elements.

Syntax elements coded as ue(v), me(v), or se(v) are Exp-Golomb-coded. The parsing process for these syntax elements
begins with reading the bits starting at the current location in the bitstream up to and including the first non-zero bit, and
counting the number of leading bits that are equal to zero. This process shall be equivalent to the following:

leadingZeroBits = -1;
for(b = 0; !b; leadingZeroBits++)
b =read bits(1)
The variable codeNum is then assigned as follows:

codeNum = 2'edingZeroBits 1 4 read bits(leadingZeroBits)

where the value returned from read bits(leadingZeroBits) is interpreted as a binary representation of an unsigned
integer with most significant bit written first.

Table 9-1 illustrates the structure of the Exp-Golomb code by separating the bit string into “prefix” and “suffix” bits. The
“prefix” bits are those bits that are parsed in the above pseudo-code for the computation of leadingZeroBits, and are
shown as either 0 or 1 in the bit string column of Table 9-1. The “suffix” bits are those bits that are parsed in the
computation of codeNum and are shown as x; in Table 9-1, with i being in the range 0 to leadingZeroBits - 1, inclusive.
Each x; can take on values 0 or 1.

DRAFT ITU-T Rec. H.264 (2002 E) 139

Table 9-1 —Bit stringswith “prefix” and “ suffix” bitsand assignment to codeNum ranges (infor mative)

Bit string form Range of codeNum
1 0
01 %, 1-2
001X X 3-6
000 1X, X Xo 7-14
00001 X3 X, Xy X 15-30
00000 1X, Xg X, Xy Xg 31-62

Table 9-2 illustrates explicitly the assignment of bit strings to codeNum values.

Table 9-2 — Exp-Golomb bit strings and codeNum in explicit form and used as ue(v) (infor mative)

Bit string codeNum
1 0
010 1
011 2
00100 3
00101 4
00110 5
00111 6
0001000 7
0001001 8
0001010 9

When the syntax element is coded as ue(v), the value of the syntax element is equal to codeNum.

When the syntax element is coded as se(v), the value of the syntax element is derived by invoking the mapping process
for signed Exp-Golomb codes as specified in subclause 9.1.1 with codeNum as the input.

When the syntax element is coded as me(v), the value of the syntax element is derived by invoking the mapping process
for coded block pattern as specified in subclause 9.1.2 with codeNum as the input.

When the syntax element is coded as te(v) the range of the syntax element shall be determined first. The range of this
syntax element may be between 0 and x, with x being greater than or equal to 1.

If x is greater than 1, then codeNum shall be parsed in the same way as syntax elements coded as ue(v), me(v), or se(v).

If x is equal to 1, the parsing process for codeNum for syntax elements coded as te(v) is given by a process equivalent to:

b = read bits(1)
codeNum = !b

Finally, the value of the syntax element is equal to codeNum.

140 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT 1SO/IEC 14496-10 : 2002 (E)

9.1.1 Mapping processfor signed Exp-Golomb codes
Input to this process is codeNum as specified in subclause 9.1.
Output of this process is a value of a syntax element coded as se(v).

The syntax element is assigned to the codeNum by ordering the syntax element by its absolute value in increasing order
and representing the positive value for a given absolute value with the lower codeNum. Table 9-3 provides the
assignment rule.

Table 9-3 — Assignment of syntax element to codeNum for signed Exp-Golomb coded syntax elements se(v)

codeNum | syntax element

0 0

1 1

2 -1

3 2

4 2

5 3

6 -3

k (=) Ceil(k=2)

9.1.2 Mapping processfor coded block pattern
Input to this process is codeNum as specified in subclause 9.1.
Output of this process is a value of the syntax element coded block pattern coded as me(v).

Table 9-4 shows the assignment of coded_block pattern to codeNum depending on whether the macroblock prediction
mode is equal to Intra_4x4 or Inter.

Table 9-4 — Assignment of coded_block_pattern codewords for macroblock prediction modes

codeNum coded_block_pattern
Intra_4x4 Inter
0 47 0
1 31 16
2 15 1
3 0 2
4 23 4
5 27 8
6 29 32
7 30 3
8 7 5
9 11 10
10 13 12
11 14 15

DRAFT ITU-T Rec. H.264 (2002 E) 141

142

12 39 47
13 43 7
14 45 11
15 46 13
16 16 14
17 3 6
18 5 9
19 10 31
20 12 35
21 19 37
22 21 42
23 26 44
24 28 33
25 35 34
26 37 36
27 42 40
28 44 39
29 1 43
30 2 45
31 4 46
32 8 17
33 17 18
34 18 20
35 20 24
36 24 19
37 6 21
38 9 26
39 22 28
40 25 23
41 32 27
42 33 29
43 34 30
44 36 22
45 40 25
46 38 38
47 41 41

DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT 1SO/IEC 14496-10 : 2002 (E)

9.2 CAVLC parsing processfor transform coefficients

This process is invoked when parsing syntax elements with descriptor equal to ce(v) in subclause 7.3.5.3.1 and when
entropy_coding_mode _flag is equal to 0.

Inputs to this process are bits from slice data, an array coefflLevel, a maximum number of coefficients maxNumCoeff,
the luma block index luma4x4BlkIdx or the chroma block index chroma4x4Blkldx of the current block of transform
coefficients.

Output of this process is the coeffLevel array containing transform coefficients.
The process is specified in the following ordered steps:
1. All coefficients, with indices from 0 to maxNumCoeff - 1, in the coeffLevel array are set to zero.

2. The total number of coefficients total coeff and the number of trailing one coefficients trailing_ones are derived by
parsing coeff token (see subclause 9.2.1). If the number of coefficients total coeff is equal to 0, the coeffLevel array
containing 0 values is returned and no further step is carried out. Otherwise, the following steps are carried out.

3. The levels of non-zero coefficients are derived by parsing trailing ones_sign flag and coeff level (see subclause
9.2.2).

4. The runs of zero coefficients before each non-zero coefficient are derived by parsing total zeros and run_before (see
subclause 9.2.3).

5. The level and run information are combined into the coeffLevel array (see subclause 9.2.4).

9.2.1 Parsing processfor total number of coefficientsand trailing ones

Inputs to this process are bits from slice data, a maximum number of coefficients maxNumCoeff, the luma block index
luma4x4BlklIdx or the chroma block index chroma4x4BlklIdx of the current block of transform.

Outputs of this process are total coeff and trailing_ones.

The syntax element coeff token is decoded using one of the five VLCs specified in five columns of Table 9-5. Each
VLC specifies both total coeff and trailing_ones for a given codeword coeff token. VLC selection is dependent upon a
variable nC that is derived as follows.

If the CAVLC parsing process is invoked for ChromaDCLevel, then nC is set to —1,
Otherwise, the following applies.
- If the CAVLC parsing process is invoked for Intral6x16DCLevel, luma4x4BlklIdx is set to 0.

- If the CAVLC parsing process is invoked for Intral6x16DCLevel, Intral6x16ACLevel, or Lumalevel, the process
specified in subclause 6.4.7.3 is invoked with luma4x4Blkldx as the input, and the output is assigned to mbAddrA,
mbAddrB, luma4x4BlkIdxA, and luma4x4BlkldxB. The 4x4 luma block specified by mbAddrA\luma4x4BIkIdxA is
assigned to A, and the 4x4 luma block specified by mbAddrB\luma4x4BlkIdxB is assigned to B.

- Let nA and nB be the number of non-zero coefficients (given by total coeff) in the block of transform coefficients A
located to the left of the current block and the block of transform coefficients B located above the current block,
respectively.

- Otherwise (the CAVLC parsing process is invoked for ChromaACLevel), the process specified in subclause 6.4.7.4 is
invoked with chroma4x4BlkIdx as input, and the output is assigned to mbAddrA, mbAddrB, chroma4x4BIlkIdxA,
and chroma4x4BlkIdxB. The 4x4 chroma block specified by mbAddrA\iCbCr\chroma4x4BIkIdxA is assigned to A,
and the 4x4 chroma block specified by mbAddrB\iCbCr\luma4x4BlkIdxB is assigned to B.

With N replaced by A and B, in mbAddrN and nN the following applies.
- Ifany of the following conditions is true, nN is set to zero.
- mbAddrN is not available

- The current macroblock is coded as Intra prediction mode, constrained intra pred flag is equal to 1 and
mbAddrN is coded as Inter prediction and slice data partitioning is in use (nal unit type is in the range of 2
through 4, inclusive).

- If mbAddrN is an I PCM macroblock, nN is set to 16.

- Otherwise, nN is set to the syntax element total coeff of the neighbouring block N.

DRAFT ITU-T Rec. H.264 (2002 E) 143

NOTE - The values nA and nB that are derived using total coeff do not include the DC coefficients in Intra 16x16 macroblocks or
DC coefficients in chroma blocks, because these coefficients are decoded separately. When the block above or to the left belongs
to an Intra 16x16 macroblock, or is a chroma block, nA and nB is the number of decoded non-zero AC coefficients.

NOTE - When parsing for Intral6x16DCLevel, the values nA and nB are based on the number of coded coefficients in adjacent
4x4 blocks and not on the number of coded DC coefficients in adjacent 16x16 blocks.

If both mbAddrA and mbAddrB are available, the variable nC is set to (nA +nB + 1) >> 1. Otherwise, nC is set to
nA +nB.

The value total_coeff resulting from decoding coeff token shall not exceed maxNumCoeff.

144

DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT 1SO/IEC 14496-10 : 2002 (E)

Table 9-5 — coeff_token mapping to total_coeff and trailing_ones

trailing_ones | total coeff | 0 <= nC < 2 2 <=nC <4 4 <=nC<8[8<=nC|nC==-1
0 0 1 11 1111 000011 | 01

0 1 0001 01 0010 11 0011 11 0000 00 0001 11
1 1 01 10 1110 0000 01 1

0 2 0000 0111 0001 11 0010 11 0001 00 | 0001 00
1 2 0001 00 00111 01111 0001 01 | 0001 10
2 2 001 011 1101 0001 10 | 001

0 3 0000 0011 1 0000 111 0010 00 0010 00 0000 11
1 3 0000 0110 0010 10 01100 001001 | 0000011
2 3 0000 101 0010 01 01110 001010 | 0000 010
3 3 0001 1 0101 1100 0010 11 0001 01
0 4 0000 0001 11 0000 0111 0001 111 001100 | 0000 10
1 4 0000 0011 0 0001 10 01010 001101 | 00000011
2 4 0000 0101 0001 01 01011 001110 | 00000010
3 4 0000 11 0100 1011 001111 | 0000 000
0 5 0000 0000 111 0000 0100 0001 011 0100 00 -

1 5 0000 0001 10 0000 110 01000 010001 | -

2 5 0000 0010 1 0000 101 0100 1 010010 | -

3 5 0000 100 00110 1010 0100 11 -

0 6 0000 0000 0111 1 0000 0011 1 0001 001 010100 | -

1 6 0000 0000 110 0000 0110 0011 10 010101 | -

2 6 0000 0001 01 0000 0101 0011 01 010110 | -

3 6 0000 0100 0010 00 1001 oror11 | -

0 7 0000 0000 0101 1 0000 0001 111 0001 000 0110 00 -

1 7 0000 0000 0111 0 0000 0011 0 0010 10 o1roo1r | -

2 7 0000 0000 101 0000 0010 1 0010 01 011010 | -

3 7 0000 0010 0 0001 00 1000 011011 -

0 8 0000 0000 0100 O 0000 0001 011 0000 1111 011100 | -

1 8 0000 0000 0101 O 0000 0001 110 0001 110 orrro1r | -

2 8 0000 0000 0110 1 0000 0001 101 0001 101 011110 | -

3 8 0000 0001 00 0000 100 01101 orrr 11 | -

0 9 0000 0000 0011 11 0000 0000 1111 0000 1011 1000 00 -

1 9 0000 0000 0011 10 0000 0001 010 0000 1110 100001 | -

2 9 0000 0000 0100 1 0000 0001 001 0001 010 100010 | -

3 9 0000 0000 100 0000 0010 0 0011 00 1000 11 -

DRAFT ITU-T Rec. H.264 (2002 E)

145

0 10 0000 0000 0010 11 0000 0000 1011 00000111 1 100100 | -
1 10 0000 0000 0010 10 0000 0000 1110 0000 1010 1001 01 -
2 10 0000 0000 0011 01 0000 0000 1101 0000 1101 100110 | -
3 10 0000 0000 0110 0 0000 0001 100 0001 100 1001 11 -
0 11 0000 0000 0001 111 | 0000 0000 1000 0000 0101 1 101000 | -
1 11 0000 0000 0001 110 | 0000 0000 1010 000001110 1010 01 -
2 11 0000 0000 0010 01 0000 0000 1001 0000 1001 101010 | -
3 11 0000 0000 0011 00 0000 0001 000 0000 1100 1010 11 -
0 12 0000 0000 0001 011 | 0000 0000 01111 | 0000 0100 0 101100 | -
1 12 0000 0000 0001 010 | 0000 0000 01110 | 0000 0101 0 1011 01 -
2 12 0000 0000 0001 101 | 0000 0000 01101 | 00000110 1 101110 | -
3 12 0000 0000 0010 00 0000 0000 1100 0000 1000 1011 11 -
0 13 0000 0000 0000 1111 | 0000 0000 01011 | 0000001101 | 110000 | -
1 13 0000 0000 0000 001 | 0000 0000 0101 0 | 0000 0011 1 1100 01 -
2 13 0000 0000 0001 001 | 0000 0000 01001 | 0000 0100 1 110010 | -
3 13 0000 0000 0001 100 | 0000 0000 01100 | 000001100 1100 11 -
0 14 0000 0000 0000 1011 | 0000 0000 00111 | 0000001001 | 110100 | -
1 14 0000 0000 0000 1110 | 0000 0000 0010 11 | 0000 0011 00 | 1101 01 -
2 14 0000 0000 0000 1101 | 0000 0000 00110 | 0000001011 | 110110 | -
3 14 0000 0000 0001 000 | 0000 0000 01000 | 0000001010 | 1101 11 -
0 15 0000 0000 0000 0111 | 0000 0000 0010 01 | 0000 0001 01 | 111000 | -
1 15 0000 0000 0000 1010 | 0000 0000 0010 00 | 0000 001000 | 111001 -
2 15 0000 0000 0000 1001 | 0000 0000 0010 10 | 0000 0001 11 | 111010 | -
3 15 0000 0000 0000 1100 | 0000 0000 00001 | 0000 0001 10 | 111011 -
0 16 0000 0000 0000 0100 | 0000 0000 0001 11 | 0000 000001 | 111100 | -
1 16 0000 0000 0000 0110 | 0000 0000 0001 10 | 0000 0001 00 | 1111 01 -
2 16 0000 0000 0000 0101 | 0000 0000 0001 01 | 0000 0000 11 | 111110 | -
3 16 0000 0000 0000 1000 | 0000 0000 0001 00 | 0000 0000 10 | 111111 -

9.2.2 Parsing processfor level information

Inputs to this process are bits from slice data, the number of non-zero coefficients total coeff and, the number of trailing
one coefficients trailing_ones.

Output of this process is a list level containing coefficient levels.

Initially an index i is set to zero. Then the following procedure is iteratively applied trailing_ones() times to decode the
trailing one coefficients, if any:

- A 1-bit syntax element trailing_ones_sign_flag is decoded.

- If trailing_ones sign flag is equal to 0, the value +1 is assigned to level[i]. Otherwise, the value -1 is assigned to
level[1].

146 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT 1SO/IEC 14496-10 : 2002 (E)

- The index i is incremented by 1.

Following the decoding of the trailing one coefficients, a variable suffixLength is initialised as follows.
- Iftotal coeffis larger than 10 and trailing_ones is smaller than 3, suffixLength is set to 1.

- Otherwise suffixLength is set to 0.

The following procedure is then applied iteratively (total coeff — trailing_ones) times to decode the remaining levels, if
any:

- The syntax element coeff level is decoded in two steps. In a first step a value of levelPrefix is decoded using the
VLC specified in Table 9-6. In a second step an unsigned integer levelSuffix is read from the slice data. The size in
bits of the unsigned integer is equal to suffixLength with the exception of the following two cases:

o iflevelPrefix is equal to 14 and suffixLength is 0, the size is 4 bits
o iflevelPrefix is equal to 15, the size is 12 bits.
- A variable levelCode is set to (levelPrefix << suffixLength) + levelSuffix.
- IflevelPrefix is equal to 15 and suffixLength is equal to 0, levelCode is incremented by 15.
- Ifthe index i is equal to trailing_ones and trailing_ones is smaller than 3, levelCode is incremented by 2.

- If levelCode is an even number the value (levelCode + 2) >> 1 is assigned to level[i]. Otherwise, the value
(-levelCode — 1) >> 1 is assigned to level[i].

- If suffixLength is equal to zero, suffixLength is set to 1.

- If the absolute value of level[i] is larger than (3 << (suffixLength — 1)) and suffixLength is smaller than 6,
suffixLength is incremented by 1.

- The index i is incremented by 1.

Table 9-6 — Codeword table for levelPrefix

levelPrefix | bit string

0 1

1 01

2 001

3 0001

4 0000 1

5 0000 01

6 0000 001

7 0000 0001

8 0000 0000 1

9 0000 0000 01

10 0000 0000 001

11 0000 0000 0001

12 0000 0000 0000 1
13 0000 0000 0000 01
14 0000 0000 0000 001
15 0000 0000 0000 0001

DRAFT ITU-T Rec. H.264 (2002 E) 147

9.23 Parsing processfor run information

Inputs to this process are bits from slice data, the number of non-zero coefficients total coeff, and the maximum number
of coefficients maxNumCoeff.

Output of this process is a list of runs of zero coefficients preceding non-zero coefficients called run.

Initially an index i is set to 0. If the number of coefficients total coeff is equal to the maximum number of coefficients
maxNumCoeff, a variable zerosLeft is set to 0. Otherwise, total zeros is decoded and zerosLeft is set to its value. The
VLC used to decode total zeros is derived as follows:

- If maxNumCoeff is equal to 4 one of the VLCs specified in Table 9-9 is used.
- Otherwise VLCs from Table 9-7 and Table 9-8 are used.
The following procedure is then applied iteratively (total coeff— 1) times:

- If zerosLeft is larger than zero, a value run_before is decoded based on Table 9-10 and zerosLeft. run[i] is set to
run_before. Otherwise run[i] is set to 0.

- The value of run[i] is subtracted from zerosLeft and the result assigned to zerosLeft. The result of the subtraction
shall be larger than or equal to 0.

- The index i is incremented by 1.

Finally the value of zerosLeft is assigned to run[i].

Table 9-7 —total_zerostablesfor 4x4 blockswith total_coeff() 1to 7

total zeros() total coeff()
1 2 3 4 5 6 7
0 1 111 0101 00011 | 0101 000001 | 0000 01
1 011 110 111 111 0100 00001 [0000 1
2 010 101 110 0101 0011 111 101
3 0011 100 101 0100 111 110 100
4 0010 011 0100 110 110 101 011
5 0001 1 0101 0011 101 101 100 11
6 0001 0 0100 100 100 100 011 010
7 0000 11 0011 011 0011 011 010 0001
8 0000 10 0010 0010 011 0010 0001 001
9 0000 011 00011 | 00011 | 0010 00001 | 001 0000 00
10 0000 010 0001 0 0001 0 0001 0 | 0001 0000 00
11 0000 0011 0000 11 | 0000 01 | 00001 [00000
12 0000 0010 0000 10 | 0000 1 | 0000 O
13 0000 0001 1 | 000001 | 0000 00
14 0000 0001 0 | 0000 00
15 0000 0000 1

148 DRAFT ITU-T Rec. H.264 (2002 E)

Table 9-8 —total_zerostablesfor 4x4 blockswith total _coeff() 8 to 15

DRAFT 1SO/IEC 14496-10 : 2002 (E)

total zeros()

total coeff()

8 9 10 11 12 13 14 | 15
0 0000 01 | 000001 | 00001 | 0000 [0000 | 000 [00 [O
1 0001 0000 00 | 00000 [0001 | 0001 | 001 [O1 [1
2 00001 | 0001 001 001 | 01 1 1
3 011 11 11 010 |1 01
4 11 10 10 1 001
5 10 001 01 011
6 010 01 0001
7 001 0000 1
8 0000 00

Table 9-9 —total_zerostablesfor chroma DC 2x2 blocks

total_zeros()

total_coeff()

1 2 13
0 1 1 1
1 01 01 f|o
2 001 | 00
3 000

DRAFT ITU-T Rec. H.264 (2002 E)

149

Table9-10 - Tablesfor run_before

run_before | zerosLeft
12 |3 |4 5 6 >6
0 1|1 | 11|11 |11 |11 | 111
1 0]01] 10|10 10 000 | 110
2 - 100 |01]01 011 | 001 | 101
3 - |- 1001001010011 | 100
4 - - - 000 | 001 | 010 | O11
5 e 000 | 101 | 010
6 - -] - - 100 | 001
7 - |- |- |- |- |oo01
8 - - - - - 00001
9 - -] - - - 000001
10 - - - - - - 0000001
11 -- - |- - - 00000001
12 - - - - - - 000000001
13 - - - - - - 0000000001
14 - - - - - - 00000000001

9.24 Combining level and run information

Input to this process are a list of coefficient levels called level, a list of runs called run, and the number of non-zero
coefficients total coeff.

Output of this process is an array coeffLevel of transform coefficients.

A variable coeffNum is set to -1 and an index i is set to (total coeff — 1). The following procedure is iteratively applied
total coeff times:

- coeffNum is incremented by run[i] + 1.
- coeffLevel[coeffNum] is set to level[1].

- The index i is decremented by 1.

9.3 CABAC parsing processfor slice data

This process is invoked when parsing syntax elements with descriptor ae(v) in subclauses 7.3.4 and 7.3.5 when
entropy_coding_mode flag is equal to 1.

Inputs to this process are a request for a value of a syntax element and prior parsed syntax elements.
Output of this process is the value of the syntax element.

When starting the parsing of the slice data of a slice in subclause 7.3.4, the initialisation process of the CABAC parsing
process is invoked as specified in subclause 9.3.1.

The parsing of syntax elements proceeds as follows:
For each requested value of a syntax element a binarization is derived as described in subclause 9.3.2.

The binarization for the syntax element and the sequence of parsed bins determines the decoding process flow as
described in subclause 9.3.3.

150 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

For each bin of the binarization of the syntax element, which is indexed by the variable binldx, a context index ctxIdx is
derived as specified in subclause 9.3.3.1.

For each ctxIdx the arithmetic decoding process is invoked as specified in subclause 9.3.3.2.

The resulting sequence (by..b;.4x) Of parsed bins is compared to the set of bin strings given by the binarization process
after decoding of each bin. If the sequence matches a bin string in the given set, the corresponding value shall be
assigned to the syntax element.

In case the request for a value of a syntax element is processed for the syntax element mb_type and the decoded value of
mb_type is I PCM, the decoding engine shall be initialised after the decoding of the pcm_alignment zero bit and all
pcm_byte data as specified in subclause 9.3.1.2.

The whole CABAC parsing process is illustrated in the flowchart of Figure 9-1 with the abbreviation SE for syntax
element.

CABACParsing(SE)

First SE in Yes
slice ? v
Initialisation of
context variables
v
No Initialisation of
decoding engine
]

4

Get Binarization(SE)
binldx =-1

Get ctxldx(binldx)

}

‘ ‘ DecodeBin(ctxIdx)

Binarization(SE) ?

"i\‘/io Yesﬁ
= ’ Initialisation of
decoding engine
No ‘

Figure9-1 —Illustration of CABAC parsing process for a syntax element SE (infor mative)

9.3.1 Initialisation process
Outputs of this process are initialised CABAC internal variables.

The processes in subclauses 9.3.1.1 and 9.3.1.2 are invoked when starting the parsing of the slice data of a slice in
subclause 7.3.4.

The process in subclause 9.3.1.2 is invoked after decoding the pcm_alignment zero bit and all pcm_byte data for a
macroblock of type I PCM.

DRAFT ITU-T Rec. H.264 (2002 E) 151

9.3.1.1 Initialisation processfor context variables
Outputs of this process are the initialised CABAC context variables indexed by ctxIdx.

Table 9-12 to Table 9-23 contain the values of the variables n and m used in the initialisation of context variables that are
assigned to all syntax elements in subclauses 7.3.4 and 7.3.5 except for the end-of-slice flag.

For each context variable, the two variables pStateldx and valMPS are initialised.

NOTE - The variable pStateldx corresponds to a probability state index and the variable valMPS corresponds to the value of the
most probable symbol as further described in subclause 9.3.3.2.

The two values assigned to pStateldx and valMPS for the initialisation are derived from SliceQPy, which is derived in
Equation 7-17. Given the two table entries (m, n),

1. preCtxState = Clip3(1, 126, ((m * SliceQPy)>>4)+n)
2. if(preCtxState <= 63) {
pStateldx = 63 - preCtxState

valMPS =0

} else {
pStateldx = preCtxState - 64
valMPS =1

}

In the following table, the ctxIdx for which initialisation is needed for each of the slice types are listed. Also listed is the
table number that includes the values of m and n needed for the initialisation. For P, SP and B slice type, the initialisation
depend also on the value of the cabac init idc syntax parameters. Note that the syntax element names do not affect the
initialisation process.

Table 9-11 — Association of ctxldx and syntax elementsfor each slicetypein theinitialisation process

Slicetype
Syntax element Table
S | P, SP B
mb_skip_flag %‘;‘1‘; 99'_111’ 11-13 2426
slice_data()

mb_field_decoding_flag Table 9-18 70-72 70-72 70-72 70-72

Table 9-12,
mb_type Table 9-13, 0-10 3-10 14-20 27-35

Table 9-14

coded_block_pattern

macroblock_layer() (luma) Table 9-18 73-76 73-76 73-76 73-76

coded_block_pattern Table9-18 | 77-84 | 77-84 | 7784 | 77-84

(chroma)
mb_qp_delta Table 9-17 60-63 60-63 60-63 60-63
prev_intra4x4 pred_mode flag | Table 9-17 68 68 68 68
mb_pred() rem_intra4x4 pred_mode Table 9-17 69 69 69 69

intra_chroma_pred_mode Table 9-17 64-67 64-67 64-67 64-67

ref_idx_10 Table 9-16 5459 | 54-59

ref idx 11 Table 9-16 54-59

b, pred() and mvd 10[][][0] Table 9-15 40-46 | 40-46
sub_mb_pred() mvd 1[][][0] Table 9-15 40-46
mvd 10[][][1] Table 9-15 47-53 | 47-53

152 DRAFT ITU-T Reg. H.264 (2002 E)

: 2002 (E)

DRAFT I1SO/IEC 14496-10
mvd [1] Table 9-15 47-53
sub_mb_pred() sub_mb_type TTZI;IE 99'_111’ 21-23 36-39
coded_block_flag Table 9-18 | 85-104 | 85-104 | 85-104 | 85-104
significant_coof flag[] Table 9-19, | 105-165, | 105-165, | 105-165, | 105-165,
& _Coctt_tag Table 922 | 277-337 | 277-337 | 277-337 | 277-337
residual_block cabac()
last_significant cocff flagl] | T201€ 920, | 166:226, | 166-226, | 166226, | 166-226,
S8 —coetl_Tlag Table 9-23 | 338-398 | 338-398 | 338-398 | 338-398
coeff abs level minusl[] Table 9-21 | 227-275 | 227-275 | 227-275 | 227-275

NOTE - ctxIdx equal to 276 is associated with the end of slice flag and the bin of mb_type, which specifies the I PCM
macroblock type. The decoding process specified in subclause 9.3.3.2.4 applies to ctxIdx equal to 276. This decoding process,
however, may also be implemented by using the decoding process specified in subclause 9.3.3.2.1. In this case, the initial values
associated with ctxIdx equal to 276 are specified to be pStateldx = 63 and valMPS = 0, where pStateldx = 63 represents a non-
adapting probability state.

Table 9-12 — Values of variablesm and n for ctxldx from 0to 10

Initialisation ctxidx
variables 0 1 2 3 4 5 6 7 8 9 10
m 20 2 3 20 2 3 28 | 23 | -6 1 7
n a5 | 54 | 74 | 15 | sa | 74 | 127 | 104 | 53 s4 | s1
Table9-13 —Values of variablesm and n for ctxldx from 11to 23
Value of Initialisation otxldx
cabac_jnit_ide | variables 1 | 122 | 3| 14 | 15 | 16| 17 | 18| 19 | 20 | 22 | 22 | 23
0 m 3 | 23 | 21 1 0o | 37| s 43 | -n 1 12 | 4 17
n 33 2 0 9 40 | g | 57 | 78 | 6s | 62 | 40 | 13| 50
1 m 2 | 4 | 16| 2 4 | 20| 2 6 | <13 | s 9 3 10
n 25 0 0 9 a1 s | 65 | 71| 79 | 52 | 50 | 70 | 54
2 m 20 | 25 | 14 | 10 | 3 | 27| 26 4 | 24 | s 6 | 17 | 14
n 16 0 0 st | 62 | 9 | 16 | 85 | 102 | 57 | 57| 13| s7
Table 9-14 — Values of variablesm and n for ctxldx from 24 to 39
valueof | Initialisation ctxidx
cabac init ide | variables |) | o5 | 56 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39
0 m 18 9 | 2026|169 |46|20|1 |-13|-11|1|-6|-17|-6]09
n 64 | 43 | 0 | 67 | 90 | 104|127 | 104 | 67 | 78 | 65 | 62 | 86 | 95 | 61 | 45
1 m 26 | 19 | 40 | 57 | 41 | 26 | 45| 15| 4| 6|13 5|6 |-13] 0] 8
n 34 | 2] 0| 2 |36 |6 [127]100] 76| 71| 79| 526 |9 | 52| 4
2 m 20 |20 |20 | 54 |37 | 12|32 2| 24|24 5|6]|-14|-61] 4
n 40 | 10| 0o | o | 42|97 | 127|117 74 | 85 |102] 57 | 93 | 88 | 44 | 55
DRAFT ITU-T Rec. H.264 (2002 E) 153

Table 9-15—-Values of variablesm and n for ctxldx from 40 to 53

Valueof | Initialisation otxidx
cabac init ide | variables |4 |4y | 4 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53
0 m 30 6 | 11| 6 7| 5| 2 o | 3 | -0 5| 4| 3]0
n 60 | 81 | 96 | 55 | 67 | 86 | 88 | 58 | 76 | 94 | s4 | 6 | 81 | s8
1 m 2 | 5 | -0 | 2 2 | 3| 3 1 30 6o | 3| 7]
n 69 | 8 | 96 | 59 | 75 | 87 | 100 | 56 | 74 | 85 | 59 | 81 | 8 | 95
2 m At | s |21 | 19 | 20 | 4 6 1 S5 a3 | s 6 | 3 | -1
n 8 | 103 | 116 | 57 | 58 | 84 | 96 | 63 | 85 | 106 | 63 | 75 | 90 | 101
Table 9-16 — Values of variablesm and n for ctxldx from 54 to 59
Value of Initialisation caxidx

cabac _init_idc variables 54 55 56 57 58 59

0 m) 5 4 5 7 1

n 67 74 74 80 72 58

1 m A A1 1 2 5 0

n 66 77 70 86 7 61

2 m 3 4 2 | a2 7 !

n 55 79 75 97 50 60

154 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)
Table9-17 — Values of variables m and n for ctxldx from 60 to 69
Initialisation ctxidx
variables 60 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69
m 0 0 0 0 9 4 0 7 13 3
n 41 63 63 63 83 86 97 7 41 62
Table9-18 — Values of variablesm and n for ctxldx from 70 to 104
| and SI Value of cabac_init_idc Value of cabac_init_idc
dlices ! :?::jesS'
ctxldx 0 1 ctxldx 0 1 2

m n m n m n m n m n m n m n m n
70 0 [11| 0 | 45 | 13| 15| 7 | 34 88 | -11|115]-13|108| -4 | 92 | 5 | 78
71 1 | 55| 4|78 7 | 51| -9 88 8 |-12| 63| -3 |46 | 0 | 39| -6] 55
72 0 | 69| -3]9 | 2|8 |-20]127]| 90 2|68 | -1]65| 0| 65| 4| 6l
73 |17 | 127 |27 | 126 | -39 | 127 |36 | 127 | 91 | -15| 84 | -1 | 57 | -15| 84 | -14 | 83
74 | -13|102 | 28 | 98 | -18 | 91 | -17 | 91 92 | -13|104 | -9 | 93 | 35| 127 | -37 | 127
75 0 | 8 |-25]101]|-17] 96 | -14 | 95 93 370 | 3| 4| 2| B|-5]79
76 7| 74 | 23| 67 | 26| 81 | 25| 84 94 8| 93| 9| 92 |-12|104|-11| 104
77 | 21| 107 | 28 | 82 | 35| 98 | -25 | 86 95 |[-10| 90 | -8 | 87 | -9 | 91 | -11 | 91
78 | 27 | 127 | 20 | 94 | 24 | 102 | -12 | 89 96 | -30 | 127 | -23 | 126 | -31 | 127 | -30 | 127
79 | 31| 127 |-16| 8 | -23| 97 | -17 | 91 97 1| 74| 5 | 54| 3 | 55| 0|65
80 | -24|127|-22|110|-27|119|-31| 127 | 98 6|97 |6 | 60| 7 |56]|-2]79
81 | -18| 95 | 21| 91 | -24| 99 | -14 | 76 99 196|597 |50
82 |27 |127]-18 | 102 | -21| 110 | -18 | 103 | 100 |-20 | 127 | 6 | 69 | 8 | 61 | -4 | 92
8 |21 |114|-13] 93 | -18 | 102|-13| 9 | 101 | -4 | 56 | -1 | 48 | -3 | 53 | -6 | 56
84 | 30| 127 |29 | 127 | -36 | 127 | -37 | 127 | 102 | -5 | 8 | 0 | 68 | 0 | 68 | 3 | 68
8 | -17|123] -7 | 92| 0 | 8 | 11 | 8 | 103 | -7 | 76 | -4 | 69 | -7 | 74 | -8 | 71
86 |-12|115] -5 |8 | 5|8 | 5 | 76| 104 |-22|125| -8 | 88 | -9 | 88 | -13 | 98
87 |-l16|122] -7 | 96 | -7 | 94 | 2 | 84

DRAFT ITU-T Rec. H.264 (2002 E) 155

Table 9-19 —Values of variablesm and n for ctxldx from 105 to 165

I and SI Value of cabac_init_idc Value of cabac _init_idc
slices ! :Tg;l
ctxldx 0 1 ctxldx 0 1 2

m n m n m n m | n m n m|n|{m/|{n|m n
105 -7 93 -2 85 | -13 | 103 | -4 | 86 136 -13 | 101 5 53 0 58| -5 75
106 -11 87 -6 78 | -13 | 91 | -12 | 88 137 -13 | 91 2 (61| -1 |60 -8 80
107 -3 77 -1 75 -9 89 -5 | 82 138 -12 | 94 0 56 | -3 | 61 | -21 83
108 -5 71 -7 77 | -14 | 92 30072 139 -10 | 88 0 56 | -8 | 67 | -21 | 64
109 -4 63 2 54 -8 76 -4 | 67 140 -16 | 84 | -13 | 63 | -25 | 84 | -13 | 31
110 -4 68 5 50 | -12 | 87 8 | 72 141 -10 | 86 S5 160 | -14 | 74| 25| o4
111 -12 | 84 -3 68 | -23 | 110 | -16 | 89 142 -7 83 -1 [62| -5 | 65|29 %4
112 -7 62 1 50 | 24 | 105 | 9 | 69 143 -13 | 87 4 57 5 52 9 75
113 -7 65 6 42 | -10 | 78 -1 | 59 144 -19 | 94 -6 | 69 2 57 | 17 63
114 8 61 -4 81 | -20 | 112 5 66 145 1 70 4 57 0 61 | -8 74
115 5 56 1 63 | -17 | 99 4 57 146 0 72 14 {39 9 [69| -5 35
116 -2 66 -4 70 | 78 | 127 | 4 | 71 147 -5 74 4 51 -11 (70| -2 27
117 1 64 0 67 | -70 | 127 | -2 | 71 148 18 59 13 [68 | 18 | 55| 13 91
118 0 61 2 57 | -50 | 127 2 58 149 -8 102 3 64 | 4 |71 3 65
119 -2 78 -2 76 | 46 | 127 | -1 74 150 -15 | 100 1 61 0 58 -7 69
120 1 50 11 35 -4 66 -4 | 44 151 0 95 9 63 7 61 8 77
121 7 52 4 64 -5 78 -1 | 69 152 -4 75 7 50 9 41 | -10 | 66
122 10 35 1 61 -4 71 0 62 153 2 72 16 | 39 | 18 | 25 3 62
123 0 44 11 35 -8 72 -7 | 51 154 -11 | 75 5 44 9 321 3 68
124 11 38 18 25 2 59 -4 | 47 155 -3 71 4 52 5 43 | -20 | 81
125 1 45 12 24 -1 55 -6 | 42 156 15 46 11 | 48 9 47 0 30
126 0 46 13 29 -7 70 -3 | 41 157 -13 | 69 -5 | 60 0 44 1 7
127 5 44 13 36 -6 75 -6 | 53 158 0 62 -1 59 0 51 -3 23
128 31 17 | -10 | 93 -8 89 8 76 159 0 65 0 59 2 46 | 21 | 74
129 1 51 -7 73 | 34 [119 | 9 | 78 160 21 37 22 (33|19 | 38| 16 66
130 7 50 -2 73 -3 75 | -11 | 83 161 -15 | 72 5 44 | -4 | 66 | -23 | 124
131 28 19 13 46 32 20 9 52 162 9 57 14 [43| 15 | 38| 17 37
132 16 33 9 49 30 22 0 67 163 16 54 -1 [78 | 12 | 42 | 44 | -18
133 14 62 -7 100 | -44 | 127 | -5 | 90 164 0 62 0 60 9 34 | 50 | -34
134 -13 | 108 9 53 0 54 1 67 165 12 72 9 69 0 89 | -22 | 127
135 -15 | 100 2 53 -5 61 | -15 | 72

156

DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT 1SO/IEC 14496-10 : 2002 (E)

Table 9-20 — Values of variablesm and n for ctxldx from 166 to 226

| and SI Value of cabac_init_idc Value of cabac init_idc
slices ! :?gess'l
ctxldx 0 1 2 ctxldx 0 1 2

m| n |m]|n m n|mj|n m| n [m n m n m n
166 24 0 11 | 28 4 45 4 39 197 26 | -17 | 28 3 36 | -28 | 28 -3
167 15 9 2 |40 | 10 28 0 42 198 30 | -25 | 28 4 38 | 28 | 24 10
168 8 25 3 144| 10 31 7 34 199 28 | -20 | 32 0 38 | 27 | 27 0
169 13 | 18 0|49 | 33 | -11 | 11 | 29 200 33 [-23 | 34| -1 34 | -18 | 34 | -14
170 15 9 0 |46 | 52 | 43| 8 31 201 37 1 -27 | 30 6 35 | -16 | 52 | -44
171 13 | 19 2 | 44| 18 15 6 37 202 33 | -23 | 30 6 34 | -14 | 39 | -24
172 10 | 37 2 | 51| 28 0 7 42 203 40 | -28 | 32 9 32 -8 19 17
173 12 | 18 0 | 47| 35 |22 3 40 204 38 | -17 | 31 19 37 -6 31 25
174 6 29 4 |39 38 | 25| 8 33 205 33 | -11 | 26 | 27 35 0 36 29
175 20 | 33 2 162 | 34 0 13 | 43 206 40 | -15 | 26 | 30 30 10 24 33
176 15 | 30 6 | 46| 39 | -18 | 13 | 36 207 41| -6 | 37 | 20 28 18 34 15
177 4 45 0|54 32 |-12| 4 47 208 38 1 28 | 34 26 25 30 20
178 1 58 3 154]102|-94]| 3 55 209 41| 17 | 17| 70 29 41 22 73
179 0 62 2 | 58 0 0 2 58 210 30 | -6 1 67 0 75 20 34
180 7 61 4 63| 56 | -15]| 6 60 211 27 3 5 59 2 72 19 31
181 12 | 38 6 | 51| 33 -4 8 44 212 26 | 22 9 67 8 77 27 44
182 11 | 45 6 | 57| 29 10 | 11 | 44 213 37 1 -16 | 16 | 30 14 35 19 16
183 15| 39 7 | 53| 37 -5 14 | 42 214 350 4 | 18| 32 18 31 15 36
184 11 | 42 6 | 52| 51 |29 7 48 215 38 | -8 18 | 35 17 35 15 36
185 13 | 44 6 | 55| 39 -9 4 56 216 38 -3 122 29 21 30 21 28
186 16 | 45 | 11 | 45| 52 | -34 | 4 52 217 37 3 24 | 31 17 45 25 21
187 12 | 41 | 14|36 | 69 | -58 | 13 | 37 218 38 5 23 | 38 20 42 30 20
188 10 | 49 8 | 53] 67 | -63] 9 49 219 42 0 18 | 43 18 45 31 12
189 30 | 34 | -1 | 82 | 44 -5 19 | 58 220 351 16 | 20 | 41 27 26 27 16
190 18 | 42 7155 32 7 10 | 48 221 39 1 22 | 11| 63 16 54 24 42
191 10 | 55 | -3 [78| 55 | -29 | 12 | 45 222 14 | 48 9 59 7 66 0 93
192 17 | 51 | 15| 46 | 32 1 0 69 223 27 | 37 9 64 16 56 14 56
193 17 | 46 | 22 | 31 0 0 20 | 33 224 21 | 60 | -1 94 11 73 15 57
194 0 89 | -1 | 84 | 27 36 8 63 225 12 | 68 | -2 89 10 67 26 38
195 26 | -19 | 25| 7 33 | 25 | 35 | -18 226 2 97 | -9 | 108 | -10 | 116 | -24 | 127
196 22 | -17 | 30 | -7 | 34 | -30 | 33 | -25

DRAFT ITU-T Rec. H.264 (2002 E)

157

Table 9-21 —Values of variablesm and n for ctxldx from 227 to 275

| and S| Value of cabac _init_idc Value of cabac _init_idc
di | and S|
1068 dlices
ctxldx 0 1 2 ctxldx 0 1 2
m n m n m n m n m n m n m n m n

227 3|1 71| -6 76 | -23 | 112 | -24 | 115 252 -12 | 73 -6 | 55| -16 | 72 | -14 | 75

228 -6 | 42| -2 44 | -15 | 71 | 22 | 82 253 -8 76 0 58| -7 [69| -10| 79

229 S5 150 0 45 -7 61 -9 62 254 -7 80 0 [64] -4 |69 | -9 83

230 31540 52 0 53 0 53 255 -9 88 3174 -5 |74 -12 | 92

231 2 62| -3 64 -5 66 0 59 256 -17 | 110 | -10 [90 | -9 | 86 | -18 | 108

232 0 58 | -2 59 (-11 | 77 | -14 | 85 257 -11 | 97 0 70 | 2 66 | -4 79

233 1 63 | -4 70 -9 80 | -13 | 89 258 -20 | 84 4 129 -9 [34]-22| 69

234 2172 -4 75 -9 84 | -13 | 94 259 -11 | 79 5 31 1 32 |-16 | 75

235 -1 74| -8 82 | -10 | 87 | -11 | 92 260 -6 73 7 (42 11 | 31| -2 58

236 -9 | 91| -17 | 102 | -34 | 127 | -29 | 127 261 -4 74 1 591 5 52 1 58

237 5167 -9 77 | -21 | 101 | -21 | 100 262 -13 | 86 2 | 58 -2 [55 -13 | 78

238 5127 3 24 -3 39 | -14 | 57 263 -13 | 96 3172 -2 67| 9 83

239 31391 0 42 -5 53 | -12 | 67 264 -11 | 97 -3 | 81 0 |73] -4 81

240 22 1441 0 48 -7 61 | -11 | 71 265 -19 | 117 | -11 | 97 | -8 | 89 | -13 | 99

241 0 [46 | O 55 (-11 | 75 | -10 | 77 266 -8 78 0 58 3 52 | -13 | 81

242 -16 | 64 | -6 59 [-I5 | 77 | -21 | 85 267 -5 33 8 5 7 4 -6 38

243 -8 | 68 | -7 71 | -17 | 91 | -16 | 88 268 -4 48 10 | 14| 10 | 8 | -13 | 62

244 -10 | 78 | -12 | 83 | -25 | 107 | -23 | 104 269 -2 53 14 | 18| 17 8 -6 58

245 -6 | 77 | -11 | 87 | -25 | 111 | -15 | 98 270 -3 62 13 |27 16 | 19| -2 59

246 -10 | 86 | -30 | 119 | -28 | 122 | -37 | 127 271 -13] 71 2 (40| 3 37 | -16 | 73

247 -12 | 92 1 58 | -11 | 76 | -10 | 82 272 -10 | 79 0 58| -1 [61 |-10| 76

248 15 (55 -3 29 | -10 | 44 -8 48 273 -12 | 86 3170 -5 | 73] -13 | 86

249 -10 | 60 | -1 36 | -10 | 52 -8 61 274 -13 | 90 6 |79 -1 | 70| 9 83

250 -6 | 62 1 38 | -10 | 57 -8 66 275 -14 | 97 -8 |8 | 4 | 78 | -10 | 87

251 4 |1 65| 2 43 -9 58 -7 70

158 DRAFT ITU-T Rec. H.264 (2002 E)

Table 9-22 —Values of variablesm and n for ctxldx from 277 to 337

DRAFT 1SO/IEC 14496-10 : 2002 (E)

I and SI Value of cabac_init_idc Value of cabac _init_idc
slices ! :?g;l
ctxldx 1 2 ctxldx 0 1 2

m n m n m n m n m | n|{m|n|m|n|m]|n
277 -6 93 | -13 | 106 | -21 | 126 | -22 | 127 308 -16 |1 96 | -1 | 51 | -16 | 77 | -10 | 67
278 -6 84 | -16 | 106 | -23 | 124 | -25 | 127 309 -7 | 88 | 7 149 | -2 | 64 1 68
279 -8 79 | -10 87 | -20 | 110 | -25 | 120 310 -8 85 8 52 2 61 0 77
280 0 66 | -21 | 114 | -26 | 126 | -27 | 127 311 -7 18 | 9 | 41| -6 | 67 2 64
281 -1 71 | -18 | 110 | -25 | 124 | -19 | 114 312 9 |8 | 6 | 47| -3 | 64 0 68
282 0 62 | -14 | 98 -17 | 105 | -23 | 117 313 -13 18 | 2 |55 2 57 -5 78
283 -2 60 | -22 | 110 | -27 | 121 | -25 | 118 314 4 66 | 13 [41 | -3 | 65 7 55
284 -2 59 | -21 | 106 | -27 | 117 | -26 | 117 315 3 [77|10 | 44| -3 | 66 5 59
285 -5 75 | -18 | 103 | -17 | 102 | -24 | 113 316 3176 6 | 50 0 62 2 65
286 -3 62 | -21 | 107 | -26 | 117 | -28 | 118 317 6 |76 | 5 | 53 9 51 14 | 54
287 -4 58 | -23 | 108 | -27 | 116 | -31 | 120 318 10 [S8 | 13 149 | -1 |66 | 15 | 44
288 -9 66 | -26 | 112 | -33 | 122 | -37 | 124 319 -1 (76 | 4 163 2 |71 5 60
289 -1 79 | -10 | 96 | -10 | 95 | -10 | 94 320 -1 83| 6 | 64| -2 |75 2 70
290 0 71 | -12 | 95 | -14 | 100 | -15 | 102 321 71992169 -1 | 70| -2 | 76
291 3 68 -5 91 -8 95 -10 | 99 322 14195 -2 (59| -9 72 | -18 | 86
292 10 44 -9 93 | -17 | 111 | -13 | 106 323 2 951 6 [70| 14 | 60 | 12 | 70
293 -7 62 | 22 | 94 | -28 | 114 | -50 | 127 324 0 76 | 10 | 44 | 16 | 37 5 64
294 15 36 -5 86 -6 89 -5 92 325 S 174 9 |31 0 47 | -12 | 70
295 14 40 9 67 -2 80 17 57 326 0 70 | 12 [43| 18 | 35| 11 | 55
296 16 27 -4 80 -4 82 -5 86 327 1175 3 [53| 11 | 37 5 56
297 12 29 | -10 85 -9 85 -13 94 328 1 68 | 14 | 34 | 12 | 41 0 69
298 1 44 -1 70 -8 81 | -12 | 91 329 0 65 | 10 | 38 | 10 | 41 2 65
299 20 36 7 60 -1 72 -2 77 330 -14 1 73 | -3 | 52 2 48 | -6 | 74
300 18 32 9 58 5 64 0 71 331 3 62 | 13 | 40 | 12 | 41 5 54
301 5 42 5 61 1 67 -1 73 332 4 62 | 17 | 32| 13 | 41 7 54
302 1 48 12 50 9 56 4 64 333 -1 [68| 7 | 44 0 591 -6 | 76
303 10 62 15 50 0 69 -7 81 334 -13 | 75 7 | 38 3 50 | -11 | 82
304 17 46 18 49 1 69 5 64 335 11 [55|13 |50 | 19 |40 | -2 | 77
305 9 64 17 54 7 69 15 57 336 5 64 | 10 | 57 3 66 | -2 | 77
306 -12 | 104 | 10 41 -7 69 1 67 337 12 | 70 | 26 | 43 18 | 50 | 25 | 42
307 -11] 97 7 46 -6 67 0 68

DRAFT ITU-T Rec. H.264 (2002 E)

159

160

Table 9-23 —Values of variablesm and n for ctxldx from 338 to 398

| and SI Value of cabac_init_idc Value of cabac _init_idc
slices ! :?g;l
ctxldx 0 1 2 ctxldx 0 1 2
m n m n mi| n |mj|n mi| n |mj|n|m|n m n

338 15 6 14 11 191 -6 | 17 | -13 369 32 | 26 | 31| -4 |40 | -37 | 37 | -17
339 6 19 11 14 | 18] -6 | 16 | -9 370 37 1-30 | 27| 6 |38] -30 | 32 1
340 7 16 9 11 14 0 17 | -12 371 44 | 32 |1 34| 8 |46 | -33 | 34 15
341 12 14 18 11 | 26| -12 | 27 | -21 372 34 | -18 | 30 | 10 | 42 | -30 | 29 15
342 18 13 21 9 31 | -16 | 37 | -30 373 34 | -15 |24 | 22|40 | 24| 24 25
343 13 11 23 2 |33 -25 | 41| 40 374 40 | -15 |1 33 | 19 | 49 | -29 | 34 22
344 13 15 32 | -15 | 33| 22 | 42 | 41 375 33 -7 |22 (32|38 -12| 31 16
345 15 16 32 | -15 | 37 | -28 | 48 | 47 376 35 -5 | 26|31 |40]| -10 | 35 18
346 12 23 34 | 21 [39] -30 | 39| -32 377 33 0 21 | 41 | 38 | -3 31 28
347 13 23 39 | 23 | 42| -30 | 46 | 40 378 38 2 26 | 44 | 46 | -5 33 41
348 15 20 42 | 33 | 47 | 42 | 52 | -51 379 33 | 13 | 23 | 47 | 31 | 20 | 36 28
349 14 26 41 | 31 | 45| -36 | 46 | -41 380 23 | 35 |16 | 65|29 | 30 | 27 47
350 14 44 46 | -28 | 49 | -34 | 52 | -39 381 13| 58 | 14 [71 | 25| 44 | 21 62
351 17 40 38 | -12 | 41 | -17 | 43 | -19 382 29 | -3 8 | 60 | 12 | 48 18 31
352 17 47 21 29 | 32 9 32 | 11 383 26 0 6 | 63 | 11 | 49 19 26
353 24 17 45 | 24 | 69 | -71 | 61 | -55 384 22 | 30 | 17 | 65 | 26 | 45 36 24
354 21 21 53 | 45 | 63 | -63 | 56 | -46 385 31 -7 | 21 |24 |22] 22 | 24 23
355 25 22 48 | -26 | 66 | -64 | 62 | -50 386 35 (-15 |23 (20|23]| 22 | 27 16
356 31 27 65 | 43 | 77 | -74 | 81 | -67 387 34 -3 | 262327 21 24 30
357 22 29 43 | -19 | 54 | -39 | 45 | -20 388 34 3 27 |32 |33 | 20 | 31 29
358 19 35 39 | -10 | 52] 35 | 35| -2 389 36 | -1 | 28 | 23 |26 28 | 22 41
359 14 50 30 9 41 | -10 | 28 | 15 390 34 5 28 | 24 | 30 | 24 | 22 42
360 10 57 18 26 | 36 0 34 1 391 32 | 11 | 23 |40 | 27 | 34 16 60
361 7 63 20 27 (40| -1 | 39 1 392 35 5 24 | 32 | 18 | 42 15 52
362 -2 77 0 57 |30 | 14 | 30 | 17 393 34 (12 | 28 | 29| 25| 39 14 60
363 -4 82 | -14 | 82 | 28| 26 | 20| 38 394 39 11 | 23 | 42| 18 | 50 3 78
364 -3 94 -5 75 | 23| 37 18 | 45 395 30 | 29 19 | 57 | 12| 70 | -16 | 123
365 9 69 | -19 | 97 |12 | 55 | 15| 54 396 34 | 26 | 22 (53|21 54 | 21 53
366 -12 1 109 | 35 | 125 | 11 | 65 0 79 397 291 39 | 22|61 | 14| 71 22 56
367 36 | 35 | 27 0 37 1 -33 | 36 | -16 398 19 66 | 11 | 8 | 11 | 83 25 61
368 36 | -34 | 28 0 39 | -36 | 37 | -14

DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)

9.3.1.2 Initialisation processfor the arithmetic decoding engine

This process is invoked before decoding the first macroblock of a slice or after the decoding of the
pcm_alignment_zero bit and all pcm_byte data for a macroblock of type I PCM.

Outputs of this process are the initialised decoding engine registers codIRange and codIOffset.

The status of the arithmetic decoding engine is represented by the variables codlRange and codlOffset. In the
initialisation procedure of the arithmetic decoding process, as shown in Figure 9-2, codIRange is set to 0x01FE and
codlOffset is set to the value returned from read bits(9) interpreted as a 9 bit binary representation of an unsigned
integer with most significant bit written first.

NOTE — The description of the arithmetic decoding engine in this Recommendation | International Standard utilizes 16 bit register
precision. However, the minimum register precision for the variables codIRange and codIOffset is 9 bits.

Init Decoder

codlOffset = read_bits(9)
codlRange = Ox01FE

Figure 9-2 — Flowchart of initialisation of the decoding engine

9.3.2 Binarization process
Input to this process is a request for a syntax element.
Output of this process is the binarization of the syntax element, maxBinldxCtx, ctxIdxOffset, and bypassFlag.

Table 9-24 specifies the type of binarization process, maxBinldxCtx, and ctxIdxOffset associated with each syntax
element.

The specification of the unary (U) binarization process, the truncated unary (TU) binarization process, the concatenated
unary / k-th order Exp-Golomb (UEGKk) binarization process, and the fixed-length (FL) binarization process is given in
subclauses 9.3.2.1 to 9.3.2.4, respectively. Other binarizations are specified in subclauses 9.3.2.5 t0 9.3.2.7.

Except for I slices, the binarizations for the syntax element mb_type as specified in subclause 9.3.2.5 consist of bin
strings given by a concatenation of prefix and suffix bit strings. The UEGk binarization as specified in 9.3.2.3, which is
used for the binarization of the syntax elements mvd IX (X =0, 1) and coeff abs level minusl, and the binarization of
the coded block pattern also consist of a concatenation of prefix and suffix bit strings. For these binarization processes,
the prefix and the suffix bit string are separately indexed using the binldx variable as specified further in subclause 9.3.3.
The two sets of prefix bitstrings and suffix bitstrings are referenced as the binarization prefix part and the binarization
suffix part, respectively.

Associated with each binarization or binarization part is a specific value of the context index offset (ctxIdxOffset)
variable and a specific value of the maxBinldxCtx variable as given in Table 9-24. If two values for each of these
variables are specified for one syntax element of a given slice type in Table 9-24, the value in the upper row is related to
the prefix part while the value in the lower row is related to the suffix part of the binarization of the corresponding syntax
element.

If no value is assigned to ctxIdxOffset for the corresponding binarization or binarization part in Table 9-24 labelled as
“na”, all bins of the bit strings of the corresponding binarization or of the binarization prefix/suffix part shall be decoded
by invoking the DecodeBypass process as specified in subclause 9.3.3.2.3. In such a case, bypassFlag is set to 1, where
bypassFlag is used to indicate that for parsing the value of the bin from the bitstream the DecodeBypass process shall be
applied. In all other cases, for each possible value of binldx up to the specified value of MaxBinldxCtx given in
Table 9-24, a specific value of the variable ctxIdx is further specified in subclause 9.3.3.

The possible values of the context index ctxIdx range from 0 to 398. The value assigned to ctxIdxOffset specifies the
lower value of the range of ctxIdx assigned to the corresponding binarization or binarization part of a syntax element.

DRAFT ITU-T Rec. H.264 (2002 E) 161

ctxldx = ctxIdxOffset = 276 is assigned to the syntax element end of slice flag and the bin of mb_type, which specifies
the I PCM macroblock type as further specified in subclause 9.3.3.1. For parsing the value of the corresponding bin
from the bitstream, the arithmetic decoding process for decisions before termination (DecodeTerminate) as specified in
subclause 9.3.3.2.4 shall be applied.
NOTE — The bins of mb_type in I slices and the bins of the suffix for mb_type in SI slices that correspond to the same value of
binldx share the same ctxIdx. The last bin of the prefix of mb_type and the first bin of the suffix of mb_type in P, SP, and B slices
may share the same ctxIdx.

162

Table 9-24 — Syntax elements and associated types of binarization, maxBinl dxCtx, and ctxl dxOffset

Syntax element Type of binarization maxBinl dxCtx Value of ctxldxOffset
mb_type prefix and suffix prefix: 0 prefix: 0
(SI slices only) as specified in subclause 9.3.2.5 suffix: 6 suffix: 3
mb_type (I slices only) as specified in subclause 9.3.2.5 6 3
mb_skip flag _
(P, SP slices only) FL, cMax=1 0 1
. prefix and suffix prefix: 2 prefix: 14
mb_type (P, SP slices only) as specified in subclause 9.3.2.5 suffix: 5 suffix: 17
sub_mb_type . .
(P, SP slices only) as specified in subclause 9.3.2.5 2 21
mb_skip flag _
(B slices only) FL, cMax=1 0 24
. prefix and suffix prefix: 3 prefix: 27
mb_type (B slices only) as specified in subclause 9.3.2.5 suffix: 5 suffix: 32
sub_mb_type (B slices only) as specified in subclause 9.3.2.5 3 36
prefix: 4 prefix: 40
mvd 10[][][0], mvd 1I[][][0]
- - . fix: ffix: DecodeB
prefix and suffix as given by UEG3 suffix: na suffix: na (uses DecodeBypass)
OO0 o 1] | e prefix: 4 | prefic 47
- ’ - suffix: na suffix: na (uses DecodeBypass)
ref idx_10, ref idx 11 U 2 54
mb_qp_delta as specified in subclause 9.3.2.7 2 60
intra_chroma_pred_mode TU, cMax=3 1 64
prev_intradx4 pred_mode_flag FL, cMax=1 0 68
rem_intra4x4 pred_mode FL, cMax=7 0 69
mb_field decoding_flag FL, cMax=1 0 70
coded_block pattern 3 73
(CodedBlockPatternLuma part only)
as specified in subclause 9.3.2.6
coded_block_pattern 1 77
(CodedBlockPatternChroma part only)
coded_block flag FL, cMax=1 0 85
significant_coeff flag _
(frame coded blocks only) FL, cMax=1 0 105
last_significant coeff flag _
(frame coded blocks only) FL, cMax=1 0 166
. prefix and suffix as given by UEGO prefix: 1 prefix: 227
coeff_abs_level_minusl with signedValFlag=0, uCoff=14 suffix: na suffix: na, (uses DecodeBypass)
coeft sign flag FL, cMax=1 0 na, (uses DecodeBypass)

DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT 1SO/IEC 14496-10 : 2002 (E)

end_of slice flag FL, cMax=1 0 276

significant_coeff flag

(field coded blocks only) FL, cMax=1 0 277

last_significant_coeff flag

(field coded blocks only) FL, cMax=1 0 338

9.3.21 Unary (U) binarization process
Input to this process is a request for a U binarization for a syntax element.
Output of this process is the U binarization of the syntax element.

The bin string of a syntax element having value C is a bitstring of length C+1 indexed by Binldx. The bins for binldx
less than C are equal to 1. The bin with binldx equal to C is equal to 0.

Table 9-25 illustrates the bin strings of the unary binarization for a syntax element.

Table 9-25 —Bin string of the unary binarization (informative)

Value of syntax element Bin string
0 0
1 110
2 11110
3 1111110
4 1{1]1f(1]o0
5 11|11]1]60
binldx 0O(1]2(3]|4]|5

9.3.2.2 Truncated unary (TU) binarization process
Input to this process is a request for a TU binarization for a syntax element and cMax.
Output of this process is the TU binarization of the syntax element.

For syntax element values smaller than cMax the U binarization process as specified in subclause 9.3.2.1 is invoked. For
the syntax element value equal to cMax the bin string is a bit string of length cMax with all bins being equal to 1.

NOTE — TU binarization is always invoked with a cMax value equal to the largest possible value of the syntax element being
decoded.

9.3.2.3 Concatenated unary/ k-th order Exp-Golomb (UEGK) binarization process
Input to this process is a request for a UEGk binarization for a syntax element, signedValFlag and uCoff.
Output of this process is the UEGk binarization of the syntax element.

A UEGk bin string is a concatenation of a prefix bit string and a suffix bit string. The prefixes of the binarization are
specified by invoking the TU binarization process for prefS = Min(uCoff, Abs(S)) of a syntax element value S as
specified in subclause 9.3.2.2 with cMax = uCoff, where uCoff > 0.

The bin string of a syntax element having value S consists only of a prefix bit string, if one of the following is true:
- signedValFlag is equal to 0 and S is less than uCoff.
- signedValFlag is equal to 1 and S is equal to 0.

Otherwise, the bin string of the UEGk suffix part of a syntax element value S is specified by a process equivalent to the
following pseudo-code:

if(Abs(S) >= uCoff) {
sufS = Abs(S) — uCoff;

DRAFT ITU-T Rec. H.264 (2002 E) 163

while(1) {
if(sufS >= (unsigned int)(1 <<k)) {

put(1);
sufS = sufS — (1<<k);
k++;
} else {
put(0);
while(k——)
put((sufS>>k) & 0x01);
break;
H
H
i
if (signedValFlag == 1) {
if(S!1=0){
if (S>0)¢{
put(0)
} else {
put(1)
H
H

H

NOTE — The specification for the k-th order Exp-Golomb (EGk) code uses 1’s and 0’s in reverse meaning for the unary part of the
Exp-Golomb code of 0-th order as specified in subclause 9.1.

9.3.24 Fixed-length (FL) binarization process
Input to this process is a request for a FL binarization for a syntax element and cMax.
Output of this process is the FL binarization of the syntax element.

FL binarization is constructed by using an L-bit unsigned integer bin string of the syntax element value, where
L = Ceil(Log2(cMax+1)). The indexing of bins for the FL binarization is such that the binldx = 0 relates to the least
significant bit with increasing values of binldx towards the most significant bit.

9.3.25 Binarization processfor macroblock type and sub-macrablock type

Input to this process is a request for a binarization for syntax elements mb_type or sub_mb_type.
Output of this process is the binarization of the syntax element.

The binarization scheme for decoding of macroblock type in I slices is specified in Table 9-26.

For macroblock types in SI slices the binarization consists of bin strings specified as a concatenation of a prefix and a
suffix bit string as follows.

The prefix bit string consists of a single bit, which is specified by b, = ((mb_type == SI)? 0:1). For the syntax
element value for which b, is equal to 0, the bin string only consists of the prefix bit string. For the syntax element value
for which b, is equal to 1, the binarization is given by concatenating the prefix b, and the suffix bit string as specified in
Table 9-26 for macroblock type in I slices indexed by subtracting 1 from the value of mb_type in SI slices.

164 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT 1SO/IEC 14496-10 : 2002 (E)

Table 9-26 — Binarization for macroblock typesin | slices

Value (name) of mb_type | Bin string

0 (I 4x4) 0

1(1_16x16 0 0 0) 1 0 0 0 0 0
2(1_16x16_1_0_0) 1 0 0 0 0 1
3(1_16x16 2 0 0) 1 0 0 0 1 0

4 (1 16x16 3 0 0) 1 0 0 0 1 1
5(1_16x16 0 1 0) 1 0 0 1 0 0 0
6 (1 16x16_1 1 0) 1 0 0 1 0 0 1
71 16x16 2 1 0) 1 0 0 1 0 1 0
8 (1 16x16 3 1 0) 1 0 0 1 0 1 1
9 (1 16x16 0 2 0) 1 0 0 1 1 0 0
10 (1_16x16_1 2 0) 1 0 0 1 1 0 1
11 (1 16x16 2 2 0) 1 0 0 1 1 1 0
12 (1_16x16_3 2 0) 1 0 0 1 1 1 1
13 (1 16x16 0 0 1) 1 0 1 0 0 0

14 (1_16x16_1 0 1) 1 0 1 0 0 1
15(1_16x16 2 0 1) 1 0 1 0 1 0

16 (1 16x16 3 0 1) 1 0 1 0 1 1

17 (1_16x16 0 1 1) 1 0 1 1 0 0 0
18 (1 16x16 1 1 1) 1 0 1 1 0 0 1
19 (1_16x16 2 1 1) 1 0 1 1 0 1 0
20 (1 16x16 3 1 1) 1 0 1 1 0 1 1
21 (1 16x16 0 2 1) 1 0 1 1 1 0 0
22(1 16x16 1 2 1) 1 0 1 1 1 0 1
23 (1 16x16 2 2 1) 1 0 1 1 1 1 0
24 (1 16x16 3 2 1) 1 0 1 1 1 1 1
25 (1 PCM) 1 1

binldx 0 1 2 3 4 5 6

The binarization schemes for P macroblock types in P and SP slices and for B macroblocks in B slices are specified in
Table 9-27.

The bin string for I macroblock types in P and SP slices corresponding to mb_type values 5 to 30 consists of a
concatenation of a prefix as specified in Table 9-27 and a suffix as specified in Table 9-26, indexed by subtracting 5
from the value of mb_type.

When entropy_coding mode_flag is equal to 1, mb_type equal to 4 (P_8x8ref0) is not allowed.

For I macroblock types in B slices (mb_type values 23 to 48) the binarization consists of a prefix as specified in
Table 9-27 and a suffix as specified in Table 9-26, indexed by subtracting 23 from the value of mb_type.

DRAFT ITU-T Rec. H.264 (2002 E) 165

Table 9-27 — Binarization for macroblock typesin P, SP, and B slices

Slicetype | Value (name) of mb_type | Bin string
0 (P_LO_lex16) 0 0 0
1 (P_LO_LO_16x8) 0 1 1
2 (P_LO_LO_8x16) 0 1 0

P, SP slice
3 (P_8x8) 0 0 1
4 (P_8x8ref0) na
5 to 30 (Intra, prefix only) 1
0 (B_Direct_16x16) 0
1 (B_LO_16x16) 1 0 0
2 (B_L1_16x16) 1 0 1
3 (B_Bi_16x16) 1 1 0 0 0 0
4 (B_LO_LO_16x8) 1 1 0 0 0 1
5(B_L0_LO 8x16) 1 1 0 0 1 0
6(B_L1 L1 16x8) 1 1 0 0 1 1
7(B_L1_L1_8x16) 1 1 0 1 0 0
8(B_LO L1 16x8) 1 1 0 1 0 1
9(B_LO L1 8x16) 1 1 0 1 1 0
10 (B_L1_LO_16x8) 1 1 0 1 1 1
11 (B_L1 L0 8x16) 1 1 1 1 1 0

B slice
12 (B_LO_Bi_16x8) 1 1 1 0 0 0 0
13 (B_L0O_Bi_8x16) 1 1 1 0 0 0 1
14 (B_L1 _Bi_16x8) 1 1 1 0 0 1 0
15(B_L1 _Bi_8x16) 1 1 1 0 0 1 1
16 (B_Bi_L0_16x8) 1 1 1 0 1 0 0
17 (B_Bi_L0_8x16) 1 1 1 0 1 0 1
18 (B_Bi_L1_16x8) 1 1 1 0 1 1 0
19 (B_Bi_L1_8x16) 1 1 1 0 1 1 1
20 (B_Bi_Bi_16x8) 1 1 1 1 0 0 0
21 (B_Bi_Bi_8x16) 1 1 1 1 0 0 1
22 (B_8x8) 1 1 1 1 1 1
23 to 48 (Intra, prefix only) | 1 1 1 1 0 1

binldx 0 1 2 3 4 5 6

For P, SP, and B slices the specification of the binarization for sub_mb_type is given in Table 9-28.

166 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT 1SO/IEC 14496-10 : 2002 (E)

Table 9-28 — Binarization for sub-macroblock typesin P, SP, and B dlices

Slicetype | Value (name) of sub_mb_type | Bin string
0 (P_LO_8x8) 1
1 (P_LO_8x4) 0 0

P, SP slice
2 (P_L0O_4x8) 0 1 1
3 (P_LO_4x4) 0 1 0
0 (B_Direct_8x8) 0
1 (B_LO 8x8) 1 0 0
2 (B_L1 8x8) 1 0 1
3 (B_Bi_8x8) 1 1 0 0 0
4 (B_LO_8x4) 1 1 0 0 1
5(B_L0_4x8) 1 1 0 1 0

B slice 6 (B_L1 _8x4) 1 1 0 1 1
7(B_L1 4x8) 1 1 1 0 0 0
8 (B_Bi_8x4) 1 1 1 0 0 1
9 (B_Bi_4x8) 1 1 1 0 1 0
10 (B_LO_4x4) 1 1 1 0 1 1
11 (B_L1_4x4) 1 1 1 1 0
12 (B_Bi_4x4) 1 1 1 1 1

binldx 0 1 2 3 4 5

9.3.2.6 Binarization processfor coded block pattern
Input to this process is a request for a binarization for the syntax element coded block pattern.
Output of this process is the binarization of the syntax element.

The binarization of coded block pattern consists of a prefix and a suffix part. The prefix part of the binarization is given
by the FL binarization of CodedBlockPatternLuma with cMax = 15. The suffix part consists of the TU binarization of
CodedBlockPatternChroma with cMax =2. The relationship between the value of the syntax element
coded block pattern and the values of CodedBlockPatternLuma and CodedBlockPatternChroma is given as specified in
subclause 7.4.5.

9.3.2.7 Binarization processfor mb_qp_delta
Input to this process is a request for a binarization for the syntax element mb_qp_delta.
Output of this process is the binarization of the syntax element.

The bin string of mb_qp_delta is derived by the U binarization of the mapped value of the syntax element mb _qp delta,
where the assignment rule between the signed value of mb gp delta and its mapped value is given as specified in
Table 9-3.

9.3.3 Decoding process flow

Input to this process is a binarization of the requested syntax element, maxBinldxCtx, bypassFlag and ctxIdxOffset as
specified in subclause 9.3.2.

Output of this process is the value of the syntax element.
This process specifies how each bit of a bitstring is parsed for each syntax element.

After parsing each bit, the resulting bitstring is compared to all bin strings of the binarization of the syntax element.

DRAFT ITU-T Rec. H.264 (2002 E) 167

If the bitstring is equal to one of the bin strings, the corresponding value of the syntax element is the output. Otherwise,
the next bit is parsed.

While parsing each bin, the variable binldx is incremented by 1 starting with binldx=0 for the first bin. If the bin strings
are concatenated, the variable binldx is set to O for the first bin of each part of the bin string (prefix and suffix part).

If bypassFlag is equal to 1, the bypass decoding process as specified in subclause 9.3.3.2.3 shall be applied for parsing
the value of the bins from the bitstream. Otherwise, the parsing of each bin is specified by the following two ordered
steps:

1. Given binldx, maxBinldxCtx and ctxIdxOffset, ctxIdx is derived as specified in subclause 9.3.3.1.

2. Given ctxldx, the value of the bin from the bitstream as specified in subclause 9.3.3.2 is decoded.

9.3.3.1 Derivation processfor the ctxldx
Inputs to this process are binldx, maxBinldxCtx and ctxIdxOffset.
Output of this process is ctxIdx.

Table 9-29 shows the assignment of ctxldx increments (ctxldxInc) to binldx for all ctxIdxOffset values except those
related to the syntax elements coded block flag, significant coeff flag, last significant coeff flag, and
coeff abs level minusl.

The ctxIdx to be used with a specific binldx is specified by first determining the ctxIdxOffset associated with the given
bin string or part thereof. The ctxIdx is determined as follows.

- If the ctxIdxOffset is listed in Table 9-29, then the ctxIdx for a binldx is the sum of ctxIdxOffset and ctxIdxInc,
which is found in Table 9-29. If more than one value is listed for a binldx, then the assignment process for ctxIdxInc
for that binldx is further specified in the subclauses given in parenthesis of the corresponding table entry.

- Otherwise, the ctxIdx is specified to be the sum of ctxIdxOffset and ctxIdxBlockCatOffset(ctxBlockCat) as specified
in Table 9-30 and ctxIdxInc(ctxBlockCat). Subclause 9.3.3.1.3 specifies which ctxBlockCat is used. Subclause
9.3.3.1.1.9 specifies the assignment of ctxldxInc(ctxBlockCat) for coded block flag and subclause 9.3.3.1.3
specifies the assignment of ctxIdxInc(ctxBlockCat) for significant coeff flag, last significant coeff flag, and
coeff abs_level minusl.

All bins with binldx larger than maxBinldxCtx are parsed using ctxIdx assigned to maxBinldxCtx.

All entries in Table 9-29 labelled with “na” correspond to values of binldx that do not occur for the corresponding
ctxIdxOffset.

ctxIdx=276 is assigned to the binldx of mb_type indicating the I PCM mode. For parsing the value of the corresponding
bins from the bitstream, the arithmetic decoding process for decisions before termination as specified in subclause
9.3.3.2.4 shall be applied.

168 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT 1SO/IEC 14496-10 : 2002 (E)

Table 9-29 — Assignment of ctxldxInc to binldx for all ctxldxOffset values except thoserelated to the syntax
elements coded_block_flag, significant_coeff _flag, last_significant_coeff flag, and coeff_abs level minusl

binldx
Value (name) of ctxldxOffset 0 1 2 3 4 5 =6
0 0,1,2 na na na na na na
(subclause 9.3.3.1.1.3)
3 0,1,2 ctxldx=27 3 5,6 6,7
(subclause 9.3.3.1.1.3) 6 4 (subclause | (subclause | 7
9.3.3.1.2) | 93.3.1.2)
11 0,1,2 na na na na na na
(subclause 9.3.3.1.1.1)
2,3
14 0 1 (subclause na na na na
9.3.3.1.2)
- 2,3
17 0 C”‘Idg‘” 1 2 (subclause 3 3
9.3.3.1.2)
21 0 1 2 na na na na
24 0,1,2 na na na na na na
(subclause 9.3.3.1.1.1)
4,5
0,1,2 3 (subclause
27 (subclause 9.3.3.1.1.3) 93.3.1.2) 3 3 3 3
_ 2,3
32 0 Cmdz’” 1 2 (subclause 3 3
9.3.3.1.2)
2,3
36 0 1 (subclause 3 3 3 na
9.3.3.1.2)
0,1,2
40 (subclause 9.3.3.1.1.7) 3 4 > 6 6 6
0,1,2
47 (subclause 9.3.3.1.1.7) 3 4 > 6 6 6
0,1,2,3
>4 (subclause 9.3.3.1.1.6) 4 > > > > >
0,1
60 (subclause 9.3.3.1.1.5) 2 3 3 3 3 3
0,1,2
64 (subclause 9.3.3.1.1.8) 3 3 na na na na
68 0 na na na na na na
69 0 0 0 na na na na
70 0,1,2 na na na na na na
(subclause 9.3.3.1.1.2)
0,1,2,3 0,1,2,3 0,1,2,3
0,1,2,3
73 (subclause 9.3.3.1.1.4) (subclause | (subclause | (subclause na na na
""" 9.3.3.1.14) | 93.3.1.14) | 93.3.1.14)
4,5,6,7
0,1,2,3 T
77 T (subclause na na na na na
(subclause 9.3.3.1.1.4) 93.3.1.14)
276 0 na na na na na na

Table 9-30 shows the values of ctxldxBlockCatOffset depending on ctxBlockCat for the syntax elements
coded block flag, significant coeff flag, last significant coeff flag, and coeff abs level minusl. The ctxIdx is
specified by ctxIdxOffset + ctxIldxBlockCatOffset(ctxBlockCat) + ctxIdxInc(ctxBlockCat). The specification of
ctxBlockCat is given in Table 9-32.

DRAFT ITU-T Rec. H.264 (2002 E) 169

Table 9-30 — Assignment of ctxl dxBlock CatOffset to ctxBlockCat for syntax elements coded_block_flag,
significant_coeff_flag, last_significant_coeff flag, and coeff_abs level _minusl

ctxBlockCat (as specified in Table 9-32)
Syntax element

0 1 2 3 4
coded block flag 0 4 8 12 16
significant_coeff flag 0 15 29 44 47
last_significant_coeff fla 0 15 29 44 47
g
coeff abs level minusl 0 10 20 30 39

9.3.3.1.1 Assignment process of ctxldxlnc using neighbouring syntax elements

Subclause 9.3.3.1.1.1 specifies the derivation process of ctxIdxInc for the syntax element mb_skip flag.

Subclause 9.3.3.1.1.2 specifies the derivation process of ctxIdxInc for the syntax element mb_field decoding flag.
Subclause 9.3.3.1.1.3 specifies the derivation process of ctxIdxInc for the syntax element mb_type.

Subclause 9.3.3.1.1.4 specifies the derivation process of ctxIdxInc for the syntax element coded block pattern.
Subclause 9.3.3.1.1.5 specifies the derivation process of ctxIdxInc for the syntax element mb_qp_delta.

Subclause 9.3.3.1.1.6 specifies the derivation process of ctxIdxInc for the syntax elements ref idx 10 and ref idx I1.
Subclause 9.3.3.1.1.7 specifies the derivation process of ctxIdxInc for the syntax elements mvd 10 and mvd_11.
Subclause 9.3.3.1.1.8 specifies the derivation process of ctxldxInc for the syntax element intra_chroma pred mode.

Subclause 9.3.3.1.1.9 specifies the derivation process of ctxIdxInc for the syntax element coded block flag.

9.3.3.1.1.1 Derivation process of ctxldxInc for the syntax element mb_skip_flag
Output of this process is ctxIdxInc.

If mb_field decoding flag has not been decoded (yet) for the current macroblock pair with top macroblock address
2 * (CurrMbAddr / 2), the inference rule specified in subclause 7.4.4 shall be applied.

The derivation process for neighbouring macroblocks specified in subclause 6.4.7.1 is invoked and the output is assigned
to mbAddrA and mbAddrB.

Let condTermN (with N being either A or B) be a variable that is set as follows.
- If mbAddrN is not available or mb_skip flag for the macroblock mbAddrN is equal to 1, condTermN is set to 0.
- Otherwise, condTermN is set to 1.

ctxIdxInc is derived as

ctxIdxInc = condTermA + condTermB 9-1)

9.3.3.1.1.2 Derivation processof ctxldxInc for the syntax element mb_field decoding flag
Output of this process is ctxIdxInc.

The derivation process for neighbouring macroblock addresses and their availability in MBAFF frames specified in
subclause 6.4.6 is invoked and the output is assigned to mbAddrA and mbAddrB.

If both macroblocks mbAddrN and mbAddrN+1 are skipped, the inference rule specified in subclause 7.4.4 shall be
applied.

Let condTermN (with N being either A or B) be a variable that is set as follows.
- If any of the following conditions is true, then condTermN is set to O,
- mbAddrN is not available

- the macroblock mbAddrN is a frame macroblock.

170 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT 1SO/IEC 14496-10 : 2002 (E)

- Otherwise, condTermN is set to 1.

ctxIdxInc is derived as

ctxIdxInc = condTermA + condTermB 9-2)

9.3.3.1.1.3 Derivation process of ctxldxInc for the syntax element mb_type
Input to this process is ctxIdxOffset.
Output of this process is ctxIdxInc.

The derivation process for neighbouring macroblocks specified in subclause 6.4.7.1 is invoked and the output is assigned
to mbAddrA and mbAddrB.

Let condTermN (with N being either A or B) be a variable that is set as follows.
- condTermN is set to O if any of the following conditions is true

- mbAddrN is not available

- ctxIdxOffset is equal to 0 and mb_type for the macroblock mbAddrN is equal to SI

- ctxIdxOffset is equal to 3 and mb_type for the macroblock mbAddrN is equal to I 4x4

- ctxIdxOffset is equal to 27 and the macroblock mbAddrN is skipped

- ctxIdxOffset is equal to 27 and mb_type for the macroblock mbAddrN is equal to B_Direct 16x16
- Otherwise, condTermN is set to 1.

ctxIdxInc is derived as

ctxIdxInc = condTermA + condTermB 9-3)

9.3.3.1.1.4 Derivation processof ctxldxInc for the syntax element coded_block_pattern
Inputs to this process are ctxldxOffset and binldx.

Output of this process is ctxIdxInc.

If ctxIdxOffset is equal to 73, the following applies

- The derivation process for neighbouring 8x8 luma blocks specified in subclause 6.4.7.2 is invoked with
luma8x8Blkldx = binldx as input and the output is assigned to mbAddrA, mbAddrB, luma8x8BIlkIdxA, and
luma8x8BlkIdxB.

- Let condTermN (with N being either A or B) be a variable that is set as follows.
- If any of the following conditions is true, then condTermN is set to 0

- mbAddrN is not available [Ed. Note (DM): removal of conflicting condition with regard to JM
implementation, also addressed by Ed. Note (PH) below]

- mb_type for the macroblock mbAddrN is equal to I PCM

- if the macroblock mbAddrN is not skipped and ((CodedBlockPatternLuma >> luma8x8BIkIdxN) & 1) is
not equal to 0 for the macroblock mbAddrN

- Otherwise, condTermN is set to 1.

- ctxIdxInc is derived as

ctxIdxInc = condTermA + 2 * condTermB (9-4)

Otherwise (ctxIdxOffset is equal to 77), the following applies.

- The derivation process for neighbouring macroblocks specified in subclause 6.4.7.1 is invoked and the output is
assigned to mbAddrA and mbAddrB.

- Let condTermN (with N being either A or B) be a variable that is set as follows.
- condTermN is set to 1 if mbAddrN is available and mb_type for the macroblock mbAddrN is equal to | PCM

DRAFT ITU-T Rec. H.264 (2002 E) 171

- condTermN is set to 0 if any of the following conditions is true

- mbAddrN is not available or the macroblock mbAddrN is skipped

- binldx is equal to 0 and CodedBlockPatternChroma for the macroblock mbAddrN is equal to 0

- binldx is equal to 1 and CodedBlockPatternChroma for the macroblock mbAddrN is not equal to 2
- Otherwise, condTermN is set to 1.

- ctxIdxInc is derived as

ctxIdxInc = condTermA + 2 * condTermB + (binldx==17?74:0) 9-5)

9.3.3.1.1.5 Derivation processof ctxldxInc for the syntax element mb_qp_delta
Output of this process is ctxIdxInc.

Let mbAddrN be the macroblock address of the macroblock that precedes the current macroblock in decoding order. If
the current macroblock is the first macroblock of a slice, mbAddrN is marked as not available.

ctxIdxInc is set to 0, if any of the following conditions is true
- mbAddrN is not available or the macroblock mbAddrN is skipped
- mb_type of the macroblock mbAddrN is equal to I PCM

- The macroblock mbAddrN is not coded in Intra 16x16 prediction mode and both CodedBlockPatternLuma and
CodedBlockPatternChroma for the macroblock mbAddrN are equal to 0

- mb _gp delta for the macroblock mbAddrN is equal to 0

Otherwise, ctxIdxInc is set to 1.

9.3.3.1.1.6 Derivation processof ctxldxInc for the syntax elementsref_idx _10and ref_idx_I1
Inputs to this process are mbPartldx and the reference index list suffix 1X, where X =0 or 1.
Output of this process is ctxIdxInc.

The derivation process for neighbouring partitions specified in subclause 6.4.7.5 is invoked with mbPartldx and
subMbPartldx = 0 as input and the output is assigned to mbAddrA\mbPartldxA and mbAddrB\mbPartldxB.

Let refldxZeroFlagN (with N being either A or B) be a variable that is set as follows.

- If MbaftFrameFlag is equal to 1, the current macroblock is a frame macroblock, and the macroblock mbAddrN is a
field macroblock

refldxZeroFlagN = (ref idx IX[mbPartldxN]>1?0:1) (9-6)
- Otherwise
refldxZeroFlagN = (ref idx 1X[mbPartldxN]>0?0:1) 9-7)

Let condTermN (with N being either A or B) be a variable that is set as follows.
- condTermN is set to 0 if any of the following conditions is true
- mbAddrN is not available or the macroblock mbAddrN is skipped
- The macroblock mbAddrN is coded in Intra prediction mode
- mb_type for the macroblock mbAddrN is equal to B Direct 16x16
- sub_mb_type[mbPartldxN] for the macroblock mbAddrN is equal to B_Direct 8x8
- refldxZeroFlagN is equal to 1
- Otherwise, condTermN is set to 1.

ctxIdxInc is derived as

ctxIdxInc = condTermA + 2 * condTermB (9-8)

172 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT 1SO/IEC 14496-10 : 2002 (E)

9.3.3.1.1.7 Derivation process of ctxldxInc for the syntax eementsmvd_|0 and mvd_11
Inputs to this process are mbPartldx, subMbPartldx, the reference index list suffix 1X, and ctxIdxOffset
Output of this process is ctxIdxInc.

The derivation process for neighbouring partitions specified in subclause 6.4.7.5 is invoked with mbPartldx and
subMbPartldx as input and the output is assigned to mbAddrA\mbPartldxA\subMbPartldxA and
mbAddrB\mbPartldxB\subMbPartIdxB.

Let compldx be a variable specifying the component of the motion vector difference to decode. compldx is set to 0 if
ctxIdxOffset is equal to 40. Otherwise, compldx is set to 1.

Let absMvdCompN (with N being either A or B) be a variable that is set as follows.
- absMvdCompN is set to 0 if any of the following conditions is true

- mbAddrN is not available or the macroblock mbAddrN is skipped

- The macroblock mbAddrN is coded in Intra prediction mode

- mb_type for the macroblock mbAddrN is equal to B_Direct 16x16

- sub_mb_type[mbPartldxN] for the macroblock mbAddrN is equal to B_Direct 8x8
- Otherwise, the following applies

- If compldx is equal to 1, MbaffFrameFlag is equal to 1, the current macroblock is a frame macroblock, and the
macroblock mbAddrN is a field macroblock

absMvdCompN = Abs(mvd_1X[mbPartIldxN][subMbPartldxN][compldx]) * 2 (9-9)

- If compldx is equal to 1, MbaftfFrameFlag is equal to 1, the current macroblock is a field macroblock, and the
macroblock mbAddrN is a frame macroblock

absMvdCompN = Abs(mvd_1X[mbPartldxN][subMbPartldxN][compldx])/2 (9-10)
- Otherwise
absMvdCompN = Abs(mvd_1X[mbPartldxN][subMbPartIldxN][compldx]) (9-11)

ctxIdxInc is derived as follows
- If (absMvdCompA + absMvdCompB) is less than 3, ctxIdxInc is set to 0.
- If (absMvdCompA + absMvdCompB) is greater than 32, ctxIdxInc is set to 2.

- Otherwise, ctxIdxInc is set to 1.

9.3.3.1.1.8 Derivation process of ctxldxInc for the syntax element intra_chroma _pred_mode
Output of this process is ctxIdxInc.

The derivation process for neighbouring macroblocks specified in subclause 6.4.7.1 is invoked and the output is assigned
to mbAddrA and mbAddrB.

Let condTermN (with N being either A or B) be a variable that is set as follows.
- condTermN is set to O if any of the following conditions is true

- mbAddrN is not available

- The macroblock mbAddrN is coded in Inter prediction mode

- mb_type for the macroblock mbAddrN is equal to I PCM

- intra_chroma pred mode for the macroblock mbAddrN is equal to 0
- Otherwise, condTermN is set to 1.

ctxIdxInc is derived as

DRAFT ITU-T Rec. H.264 (2002 E) 173

ctxIdxInc = condTermA + condTermB (9-12)

9.3.3.1.1.9 Derivation process of ctxldxInc for the syntax element coded_block flag

Input to this process is ctxBlockCat, and
- If ctxBlockCat is equal to 1 or 2, luma4x4BlkIdx

- If ctxBlockCat is equal to 3, the chroma component index compldx

- If ctxBlockCat is equal to 4, chroma4x4BlkIdx and the chroma component index compldx

Output of this process is ctxIdxInc(ctxBlockCat).

Let transBlockN (with N being either A or B) be a variable representing a block of transform coefficients, it is set as
follows.

- If ctxBlockCat is equal to 0, the following applies.

The derivation process for neighbouring macroblocks specified in subclause 6.4.7.1 is invoked and the output is
assigned to mbAddrN (with N being either A or B).

If mbAddrN is available and the macroblock mbAddrN is coded in Intra_16x16 prediction mode, the luma DC
block of macroblock mbAddrN is assigned to transBlockN

Otherwise, transBlockN is marked as not available.

- If ctxBlockCat is equal to 1 or 2, the following applies.

The derivation process for neighbouring 4x4 luma blocks specified in subclause 6.4.7.3 is invoked with
luma4x4Blkldx as input and the output is assigned to mbAddrN, luma4x4BlkIdxN (with N being either A or B).

If mbAddrN is available, the macroblock mbAddrN is not skipped, mb_type for the macroblock mbAddrN is not
equal to I PCM, and (CodedBlockPatternLuma >> (luma4x4BIkIdxN >>2)) is not equal to O for the
macroblock mbAddrN, then the 4x4 luma block with luma4x4BIkIdxN of macroblock mbAddrN is assigned to
transBlockN.

Otherwise, transBlockN is marked as not available.

- If ctxBlockCat is equal to 3, the following applies.

The derivation process for neighbouring macroblocks specified in subclause 6.4.7.1 is invoked and the output is
assigned to mbAddrN (with N being either A or B).

If mbAddrN is available, the macroblock mbAddrN is not skipped, mb_type for the macroblock mbAddrN is not
equal to I PCM, and CodedBlockPatternChroma is not equal to 0 for the macroblock mbAddrN, then the chroma
DC block of chroma component compldx of macroblock mbAddrN is assigned to transBlockN.

Otherwise, transBlockN is marked as not available.

- If ctxBlockCat is equal to 4, the following applies.

The derivation process for neighbouring 4x4 chroma blocks specified in subclause 6.4.7.4 is invoked with
chroma4x4BlkIdx as input and the output is assigned to mbAddrN, chroma4x4BIlkIdxN (with N being either A or
B).

If mbAddrN is available, the macroblock mbAddrN is not skipped, mb_type for the macroblock mbAddrN is not
equal to I PCM, and CodedBlockPatternChroma is equal to 2 for the macroblock mbAddrN, then the 4x4 chroma
block with chroma4x4BIkIdxN of the chroma component compldx of macroblock mbAddrN is assigned to
transBlockN.

Otherwise, transBlockN is marked as not available.

Let condTermN (with N being either A or B) be a variable that is set as follows.

- condTermN is set to O if any of the following conditions is true

174

mbAddrN is not available and the current macroblock is coded in Inter prediction mode

mbAddrN is available and transBlockN is not available and mb_type for the macroblock mbAddrN is not equal to
1 PCM

DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT 1SO/IEC 14496-10 : 2002 (E)

- The current macroblock is coded in Intra prediction mode, constrained intra pred flag is equal to 1, the
macroblock mbAddrN is available and coded in Inter prediction mode, and slice data partitioning is in use
(nal_unit type is in the range of 2 through 4, inclusive).

- condTermN is set to 1 if any of the following conditions is true
- mbAddrN is not available and the current macroblock is coded in Intra prediction mode
- mb_type for the macroblock mbAddrN is equal to I PCM

- Otherwise, condTermN is set to the value of the coded block flag of the transform block transBlockN that was
decoded for the macroblock mbAddrN.

ctxIdxInc(ctxBlockCat) is derived as

ctxIdxInc(ctxBlockCat) = condTermA + 2 * condTermB (9-13)

9.3.3.1.2 Assignment process of ctxldxInc using prior decoded bin values

Inputs to this process are ctxIdxOffset and binldx.

Output of this process is ctxIdxInc.

Table 9-31 contains the specification of ctxIdxInc for the given values of ctxIdxOffset and binldx.

For each value of ctxIdxOffset and binldx, ctxldxInc is derived by using some of the values of prior decoded bin values
(by, by, b,,..., by), where the value of the index k is less than the value of binldx.

Table 9-31 — Specification of ctxldxlInc for specific values of ctxl dxOffset and binldx

Value (name) of ctxldxOffset | binldx ctxldxlnc

4 (b; 1= 0)25:6
3

5 (b; 1= 0)26:7
14 2 (b, 1= 1)22:3
17 4 (b; 1= 0)22:3
27 2 (b, 1= 0)24:5
32 4 (b; 1= 0)22:3
36 2 (b, 1= 0)22:3

9.3.3.1.3 Assignment process of ctxldxlnc for syntax elements significant_coeff flag, last_significant_coeff flag,
and coeff_abs level _minusl

Input to this process are ctxIdxOffset and binldx.
Output of this process is ctxIdxInc.

The assignment process of ctxldxInc for syntax elements significant coeff flag, last significant coeff flag, and
coeff abs level minusl as well as for coded block flag depends on categories of different blocks denoted by the
variable ctxBlockCat. The specification of these block categories is given in Table 9-32.

DRAFT ITU-T Rec. H.264 (2002 E) 175

Table 9-32 — Specification of ctxBlockCat for the different blocks

Block description maxNumCoeff ctxBlockCat
block of luma DC coefficients (for macroblock coded in Intral6x16 prediction mode) 16 0:Luma-Intral6-DC
block of luma AC coefficients (for macroblock coded in Intral6x16 prediction mode) 15 1:Luma-Intral6-AC
block of luma coefficients (for macroblock not coded in Intral6x16 prediction mode) 16 2:Luma-4x4
block of chroma DC coefficients 4 3:Chroma-DC
block of chroma AC coefficients 15 4:Chroma-AC

For the syntax elements significant_coeff flag and last significant coeff flag the scanning position scanningPos within
the regarded block is assigned to ctxldxInc, where scanningPos ranges from 0 to maxNumCoeff-2:

ctxIdxInc = scanningPos (9-14)

The scanning position for frame coded blocks relates to the zig-zag scan; the scanning position for field coded blocks
relates to the field scan.

Let numDecodAbsLevelEql denotes the accumulated number of decoded coefficients with absolute value equal to 1, and
let numDecodAbsLevelGtl denotes the accumulated number of decoded coefficients with absolute value greater than 1.
Both numbers are related to the same transform coefficient block, where the current decoding process takes place. Then,
for decoding of coeff abs level minusl, ctxldxInc for coeff abs level minusl is specified depending on binldx as
follows

- If binldx is equal to 0, ctxIdxInc is derived as

ctxIdxInc = ((numDecodAbsLevelGtl !=0) ? 0: Min(4, 1 + numDecodAbsLevelEql)) (9-15)

- Otherwise, ctxIdxInc is derived as

ctxIdxInc =5 + Min(4, numDecodAbsLevelGtl) (9-16)

9.3.3.2 Arithmetic decoding process

Input to this process are the bypassFlag, ctxldx as derived in subclause 9.3.3.1, and the state variables codIRange and
codIOffset of the arithmetic decoding engine.

Output of this process is the value of the bin.

Figure 9-3 illustrates the whole arithmetic decoding process for a single bin. For decoding the value of a bin, the context
index ctxIdx is passed to the arithmetic decoding process DecodeBin(ctxIdx), which is specified as follows.

- If bypassFlag is equal to 1, DecodeBypass() as specified in subclause 9.3.3.2.3 is invoked.

- If bypassFlag is equal to 0 and ctxIdx is equal to 276, DecodeTerminate() as specified in subclause 9.3.3.2.4 is
invoked.

- Otherwise, DecodeDecision() as specified in subclause 9.3.3.2.1 shall be applied.

176 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT 1SO/IEC 14496-10 : 2002 (E)

DecodeBin(ctxldx)

Yesj

DecodeBypass | —

ey

DecodeTerminate

No
+

‘ ‘ DecodeDecision(ctxldx)

Done

Figure 9-3— Overview of the arithmetic decoding processfor a single bin (infor mative)

NOTE - Arithmetic coding is based on the principle of recursive interval subdivision. Given a probability estimation p(0) and

p(1)=1-p(0) of abinary decision (0, 1), an initially given code sub-interval with the range codIRange will be subdivided into

two sub-intervals having range p(0) x codIRange and codIRange — p(0) x codIRange, respectively. Depending on the decision,

which has been observed, the corresponding sub-interval will be chosen as the new code interval, and a binary code string pointing

into that interval will represent the sequence of observed binary decisions. It is useful to distinguish between the most probable

symbol (MPS) and the least probable symbol (LPS), so that binary decisions have to be identified as either MPS or LPS, rather

than 0 or 1. Given this terminology, each context is specified by the probability p, .3 of the LPS and the value of MPS (valMPS),

which is either 0 or 1.

The arithmetic core engine in this Recommendation | International Standard has three distinct properties:

- The probability estimation is performed by means of a finite-state machine with a table-based transition process between

64 different representative probability states { p;ps(pStateldx) | 0 <= pStateldx < 64 } for the LPS probability p,ps. The
numbering of the states is arranged in such a way that the probability state with index pStateldx = 0 corresponds to an
LPS probability value of 0.5, with decreasing LPS probability towards higher state indices.

- The range codIRange representing the state of the coding engine is quantised to a small set {Q,,...,Q,} of pre-set
quantisation values prior to the calculation of the new interval range. Storing a table containing all 64x4 pre-computed
product values of Q; X p.ps(pStateldx) allows a multiplication-free approximation of the product
codIRange X p; ps(pStateldx).

- For syntax elements or parts thereof for which an approximately uniform probability distribution is assumed to be given
a separate simplified encoding and decoding bypass process is used.

9.3.3.2.1 Arithmetic decoding processfor a binary decision
Inputs to this process are ctxldx, codIRange, and codIOffset.
Outputs of this process are the decoded value S, and the updated variables codIRange and codlOffset.

Figure 9-4 shows the flowchart for decoding a single decision (DecodeDecision). In a first step, the value of the variable
codIRangeLPS associated with the coding sub-interval related to the LPS decision is derived as follows.

Given the current value of codlRange, codIRange is mapped to the index of a quantised value of codIRange, which is
denoted by the variable qCodIRangeldx:

gCodIRangeldx =(cod[Range >> 6) & 0x03 9-17)
Given qCodIRangeldx and pStateldx associated with ctxIdx, the value of the variable rangeTabLPS as specified in
Table 9-33 is assigned to codIRangel PS:

codIRangeLPS = rangeTabLPS[pStateldx][qCodIRangeldx] (9-18)
In a second step, the value of codlRange — codIRangeLPS is assigned to codIRange to which the current value of
codlOffset is compared. If codIOffset is larger than or equal to codIRange the logical complement of valMPS is assigned

to the decoded value S, codlOffset is decremented by codlRange and codIRange is set to cod[RangeLPS; otherwise
valMPS is assigned to S.

DRAFT ITU-T Rec. H.264 (2002 E) 177

Given the decoded value, the state transition is performed as specified in subclause 9.3.3.2.1.1. Depending on the current
value of codIRange, renormalization will be performed as specified in subclause 9.3.3.2.2.

9.3.3.21.1 Statetransition process

Inputs to this process are the current pStateldx, the decoded value S and valMPS values of the context variable
associated with ctxIdx.

Outputs of this process are the updated pStateldx and valMPS of the context variable associated with ctxIdx.

Depending on the decoded value S, the update of the two variables pStateldx and valMPS associated with ctxIdx is
derived as follows:

if(S == valMPS)
pStateldx = transIdxMPS(pStateldx)
else { (9-19)
if(pStateldx == 0)
valMPS =1 - vaIMPS
pStateldx = transIdxLPS(pStateldx).

Table 9-34 specifies the transition rules transIdxMPS() and transIdxLLPS() after decoding the value of valMPS and
1 — valMPS, respectively.

178 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT 1SO/IEC 14496-10 : 2002 (E)

GecodeDecision (ctxld@

l

gCodIRangeldx = (codIRange>>6) & 3
codIRangeLPS = rangeTabLPS[pStateldx][CodIRangeldx]
codlRange = codlRange - codlRangeLPS

Yes

codlOffset >= codlRange

S =lvalMPS

codlOffset = codlOffset - codlRange

codIRange = codIRangeLPS

pStateldx =

S =valMPS
transldxMPS[pStateldx]

pStateldx == 0?

Yesj

\ valMPS = 1 - valMPS

No

l:

pStateldx = transldxLPS[pStateldx]

Table 9-33 — Specification of rangeTabL PS depending on pStatel dx and qCodl Rangel dx

v

RenormD

Done

Figure 9-4 — Flowchart for decoding a decision

qCodl Rangel dx gCodl Rangel dx
pStatel dx pStatel dx

0 1 2 3 0 1 2 3
0 128 176 208 240 32 27 33 39 45
1 128 167 197 227 33 26 31 37 43
2 128 158 187 216 34 24 30 35 41
3 123 150 178 205 35 23 28 33 39
4 116 142 169 195 36 22 27 32 37
5 111 135 160 185 37 21 26 30 35
6 105 128 152 175 38 20 24 29 33
7 100 122 144 166 39 19 23 27 31
8 95 116 137 158 40 18 22 26 30
9 90 110 130 150 41 17 21 25 28
10 85 104 123 142 42 16 20 23 27

DRAFT ITU-T Rec. H.264 (2002 E) 179

1 81 99 117 135 43 15 19 22 25
12 77 94 111 128 44 14 18 21 24
13 73 89 105 122 45 14 17 20 23
14 69 85 100 116 46 13 16 19 22
15 66 80 95 110 47 12 15 18 21
16 62 76 90 104 48 12 14 17 20
17 59 72 86 99 49 11 14 16 19
18 56 69 81 94 50 11 13 15 18
19 53 65 77 89 51 10 12 15 17
20 51 62 73 85 52 10 12 14 16
21 48 59 69 80 53 9 11 13 15
22 46 56 66 76 54 9 11 12 14
23 43 53 63 72 55 8 10 12 14
24 41 50 59 69 56 8 9 11 13
25 39 48 56 65 57 7 9 11 12
26 37 45 54 62 58 7 9 10 12
27 35 43 51 59 59 7 8 10 11
28 33 41 48 56 60 6 8 9 11
29 32 39 46 53 61 6 7 9 10
30 30 37 43 50 62 6 7 8 9
31 29 35 41 48 63 2 2 2 2
Table 9-34 — State transition table
pStatel dx 0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
transidxLPS | 0 0 1 2 2 4 4 5 6 7 8 9 9 11 11 12
transldxMPS | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
pStatel dx 16 17 18 19 20 21 2 23 24 25 26 27 28 29 30 31
transidxLPS | 13 13 15 15 16 16 18 18 19 19 21 21 22 22 23 24
transldxMPS | 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
pStatel dx 32 33 34 |35 36 37 38 39 40 41 | 42 43 44 45 46 47
transidxLPS | 24 25 26 26 27 27 28 29 29 30 30 30 31 32 32 33
transldxMPS | 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
pStatel dx 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
transidxLPS | 33 33 34 34 35 35 35 36 36 36 37 37 37 38 38 63
transidxMPS | 49 50 51 52 53 54 55 56 57 58 59 60 61 62 62 63

180

DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT 1SO/IEC 14496-10 : 2002 (E)

9.3.3.2.2 Renormalization processin the arithmetic decoding engine
Inputs to this process are bits from slice data and the variables codIRange and codlOffset.
Outputs of this process are the updated variables codIRange and codIOffset.

A flowchart of the renormalization is shown in Figure 9-5. The current value of codIRange is first compared to 0x0100:
If it is larger than or equal to 0x0100, no renormalization is needed and the RenormD process is finished; otherwise, the
renormalization loop is entered. Within this loop, the value of codIRange is doubled, i.e., left-shifted by 1 and a single bit

is shifted into codIOffset by using read_bits(1).

codlRange< 0x0100

Yes
v

codlRange = codIRange << 1
codlOffset = codlOffset << 1
codlOffset = codlOffset | read_bits(1)

Figure 9-5— Flowchart of renormalization

9.3.3.2.3 Bypass decoding processfor binary decisions
Inputs to this process are bits from slice data and the variables codIRange and codIOffset.
Outputs of this process are the updated variables codIRange and codlOffset, and the decoded value.

The bypass decoding process is invoked when bypassFlag is equal to 1. Figure 9-6 shows a flowchart of the
corresponding process.

First, the value of codlOffset is doubled, i.e., left-shifted by 1 and a single bit is shifted into codIOffset by using
read_bits(1). Then, the value of codIOffset is compared to the value of codIRange. If codlOffset is larger than or equal
to codIRange a value of 1 is decoded and codlOffset is decremented by codIRange; otherwise, a value of 0 is decoded.

DRAFT ITU-T Rec. H.264 (2002 E) 181

DecodeBypass

codlOffset = codlOffset << 1
codlOffset = codlOffset | read_bits(1)

Ves codlOffset >=
f codlRange

S=1 s=0
codlOffset = codlOffset - codIRange

Figure 9-6 — Flowchart of bypass decoding process

9.3.3.2.4 Decoding process for binary decisions beforetermination
Input to this process are bits from slice data and the variables codIRange and codIOffset.
Output of this process are the updated variables codIRange and codlOffset, and the decoded value.

This special decoding routine applies to decoding of end of slice flag and of the bin indicating the I PCM mode
corresponding to ctxIdx equal to 276. Figure 9-7 shows the flowchart of the corresponding decoding process, which is
specified as follows.

First, the value of codIRange is decremented by 2. Then, the value of codlOffset is compared to the value of codIRange.
If codIOffset is larger than or equal to codIRange a value of 1 is decoded; otherwise, a value of 0 is decoded. When the
decoded value is equal to 1 no renormalization is carried out and CABAC decoding is terminated. In such a case the last
bit inserted in register codlOffset is rbsp_stop one_bit.
NOTE - This procedure may also be implemented using DecodeDecision(ctxIdx) with ctxIdx =276. In the case where the
decoded value is equal to 1, seven more bits would be read by DecodeDecision(ctxldx) and a decoding process would have to
adjust its bitstream pointer accordingly to properly decode following syntax elements.

DecodeTerminate

‘ codIRange = codIRange-2 ‘

codlOffset >= codIRange

=

Figure 9-7 — Flowchart of decoding a decision befor e termination

9.34 Arithmetic encoding process (informative)
This subclause does not form an integral part of this Recommendation | International Standard.
Inputs to this process are decisions that are to be encoded and written.

Outputs of this process are bits that are written to the RBSP.

182 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT 1SO/IEC 14496-10 : 2002 (E)

This informative subclause describes an arithmetic encoding engine that matches the arithmetic decoding engine
described in subclause 9.3.3.2. The encoding engine is essentially symmetric with the decoding engine, i.e., procedures
are called in the same order. The following procedures are described in this section: InitEncoder, EncodeDecision,
EncodeBypass, EncodeTerminate, which correspond to InitDecoder, DecodeDecision, DecodeBypass, and
DecodeTerminate, respectively. The state of the arithmetic encoding engine is represented by a value of the variable
codILow pointing to the lower end of a sub-interval and a value of the variable codIRange specifying the corresponding
range of that sub-interval.

9.3.4.1 Initialisation processfor the arithmetic encoding engine (infor mative)
This subclause does not form an integral part of this Recommendation | International Standard.

This process is invoked before encoding the first macroblock of a slice, and after encoding the pcm_alignment zero bit
and all pcm_byte data for a macroblock of type I PCM, if entropy_coding mode flag is equal to 1.

Outputs of this process are the values codlLow, codIRange, firstBitFlag, bitsOutstanding, and symCnt of the arithmetic
encoding engine.

In the initialisation procedure of the encoder, as illustrated in Figure 9-8, codlLow is set to zero, and the range
codIRange is set to 0x01FE. Furthermore, a firstBitFlag is set to 1, and bitsOutstanding, and symCnt counters are set to
Zero.
NOTE — The minimum register precision required for codILow is 10 bits and for CodIRange is 9 bits. The precision required for
the counters bitsOutstanding and symCnt should be sufficiently large to prevent overflow of the related registers. If
MaxBinCountInSlice denotes the maximum total number of binary decisions to encode in one slice, the minimum register
precision required for the variables bitsOutstanding and symCnt is given by Ceil(Log2(MaxBinCountInSlice + 1)).

InitEncoder

codlLow =0
codlRange = 0x01FE
firstBitFlag = 1
bitsOutstanding =0
symCnt =0

Done

Figure 9-8 — Flowchart of initialisation of the encoding engine

9.3.4.2 Encoding processfor a binary decision (informative)
This subclause does not form an integral part of this Recommendation | International Standard.

Inputs to this process are the context index ctxIdx, the decision to be encoded S, and the variables codIRange, codlLow
and symCnt.

Outputs of this process are the variables codIRange, codILow and symCnt.

Figure 9-9 shows the flowchart for encoding a single decision. In a first step, the variable codIRangeLPS associated with
the coding sub-interval related to the LPS decision is derived as follows.

Given the current value of codIRange, codlRange is mapped to the index qCodIRangeldx of a quantised value of
codIRange by using Equation 9-17. The value of qCodIRangeldx and the value of pStateldx associated with ctxIdx are
used to determine the value of the variable rangeTabLPS as specified in Table 9-33, which is assigned to cod[RangeLPS.
The value of codIRange — codIRangeLPS is assigned to codIRange.

In a second step, the value of S is compared to valMPS associated with ctxIdx. If S is different from vaIMPS, codIRange
is added to codlLow and then codIRange is set to the value codlRangel.PS. Given the encoded decision, the state
transition is performed as specified in subclause 9.3.3.2.1.1. Depending on the current value of codIRange,
renormalization is performed as specified in subclause 9.3.4.3. Finally, the variable symCnt is incremented by 1.

DRAFT ITU-T Rec. H.264 (2002 E) 183

EncodeDecision(ctxldx,S)

gCodIRangeldx = (codIRange >>6) & 3
codIRangeLPS =rangeTabLPS[pStateldx][qCodIRangeldx]
codlRange = codlRange - codIRangeLPS

f*

codlLow = codlLow + codIRange No
codIRange = codIRangeLPS

pStateldx !=0

o

valMPS =1 - valMPS

Yes ‘
le
\ 2 v
‘ pStateldx = transldxLPS[p Stateldx] ‘ ‘ pStateldx = transldxMPS[p Stateldx]

!

RenormE

!

‘ symCount =symCount +1 ‘

Figure 9-9 — Flowchart for encoding a decision

9.3.4.3 Renormalization processin the arithmetic encoding engine (infor mative)
This subclause does not form an integral part of this Recommendation | International Standard.
Inputs to this process are the variables codIRange, codlLow, firstBitFlag, and bitsOutstanding.

Outputs of this process are zero or more bits written to the RBSP and the updated variables codIRange, codILow,
firstBitFlag, and bitsOutstanding.

Renormalization is illustrated in Figure 9-10. The current value of codIRange is first compared to 0x0100. If it is larger
than or equal to that value, no renormalization is needed and RenormE is finished. Otherwise, the renormalization loop is
entered. Within this loop, it is first determined if a 0 or a 1 can safely be output, i.e., there is no possibility for a carry
over in a future iteration. Otherwise, the variable bitsOutstanding is incremented by 1. Finally, the values of codlLow
and codIRange are doubled.

184 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT 1SO/IEC 14496-10 : 2002 (E)

RenormE

codlLow < 0x100

ves No codlLow >= 0x200 Yes
codlLow = codILow - 0x100
bitsOutstanding = bitsOutstanding + L codlLow = codlLow - 0x200
No Jv-
PutBit(0) PutBit(1)

4

codlRange = codIRange << 1

codlLow =codlLow << 1

Figure 9-10 — Flowchart of renormalization in the encoder

The PutBit procedure described in Figure 9-11 provides carry over control. It uses the function WriteBits(B, N) that
writes N bits with value B to the bitstream and advances the bitstream pointer by N bit positions. This function assumes
the existence of a bitstream pointer with an indication of the position of the next bit to be written to the bitstream by the
encoding process.

DRAFT ITU-T Rec. H.264 (2002 E) 185

firstBitFlag = 0 WriteBits(B, 1)

bitsOutstanding > 0

YGST

WriteBits(1 - B, 1)
No bitsOutstanding = bitsOutstanding - 1

S T

Figure 9-11 — Flowchart of putting bit

9.3.4.4 Bypassencoding processfor binary decisions (informative)
This subclause does not form an integral part of this Recommendation | International Standard.
Input to this process is a binary symbol S and the variables codILow, codIRange, bitsOutstanding, and symCnt.

Output of this process is a bit written to the RBSP and the updated variables codILow, codIRange, bitsOutstanding, and
symCnt.

This encoding process applies to all binary decisions with bypassFlag equal to 1. Renormalization is included in the
specification of this process as given in Figure 9-12.

186 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT 1SO/IEC 14496-10 : 2002 (E)

EncodeBypass(S)

codlLow =codlLow << 1

JYES 0

codlLow =codlLow + codIRange

codlLow < 0x200

Yes
PutBit(1)
No ¢
PutBit(0) codlLow =codlLow - 0x400

codlLow = codlLow - 0x200
bitsOutstanding = bitsOutstanding + L

|
l

symCount =symCount + 1

Figure 9-12 — Flowchart of encoding bypass

9.3.4.5 Encoding processfor abinary decision beforetermination (informative)
This subclause does not form an integral part of this Recommendation | International Standard.
Inputs to this process are a binary symbol S and the variables codIRange, codILow, bitsOutstanding, and symCnt.

Outputs of this process are zero or more bits written to the RBSP and the updated variables codlLow, codlRange,
bitsOutstanding, and symCnt.

This encoding routine shown in Figure 9-13 applies to encoding of the end of slice flag and of the bin indicating the
I PCM mb_type both associated with ctxldx equal to 276.

DRAFT ITU-T Rec. H.264 (2002 E) 187

EncodeTerminate(S)

codIRange = codIRange - 2

codlLow = codILow + codIRange

RenormE

EncodeFlush I

v

symCount = symCount + 1

Figure 9-13 — Flowchart of encoding a decision before ter mination

When the symbol S to encode is equal to 1 CABAC encoding is terminated and the flushing procedure shown in
Figure 9-14 is applied after encoding the end of slice flag. In such a case the last bit written by WriteBits(B, N)
contains the rbsp_stop_one_bit.

EncodeFlush

codlRange =2

v

RenormE

v

PutBit((codILow >>9) & 1)

!

WriteBits(((codlLow >>7) & 3) | 1, 2)

Figure 9-14 — Flowchart of flushing at termination

9.3.4.6 Bytestuffing process (informative)
This subclause does not form an integral part of this Recommendation | International Standard.
This process is invoked after encoding the last macroblock of the last slice of a picture and after encapsulation.

Inputs to this process are the number of bytes NumBytesInNALunitsTotal of all NAL units of a picture with
nal _unit type equal to 1, 2, 3, 4 or 5, the number of macroblocks PicSizeInMbs in the picture, and the number of binary
symbols BinCountsInNALunits resulting from encoding the contents of all slice layer NAL units of the picture with
nal_unit_type equal to 1,2, 3,4 or 5.

188 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT 1SO/IEC 14496-10 : 2002 (E)

Outputs of this process are zero or more bytes appended to the NAL unit.

Let K be Ceil((Ceil((3 * BinCountsInNALunits — 3 * 96 * PicSizeInMbs) / 32) — NumBytesInNALunitsTotal) / 3).
If K is smaller than or equal to zero, no cabac_zero word is appended to the NAL unit. Otherwise, the 3-byte sequence
0x000003 is appended K times to the NAL unit after encapsulation, where the first two bytes 0x0000 represent a
cabac zero word and the third byte 0x03 represents an emulation _prevention_three byte.

Annex A

Profilesand levels
(This annex forms an integral part of this Recommendation | International Standard)

Profiles and levels specify restrictions on bitstreams and limits on the capabilities needed to decode the bitstream.
Profiles and levels may also be used to indicate interoperability points between individual decoder implementations.

NOTE - This Recommendation | International Standard does not include individually selectable “options” at the decoder, as this
would increase interoperability difficulties.

Each profile specifies a subset of algorithmic features and limits that shall be supported by all decoders conforming to
that profile.
NOTE - Encoders are not required to make use of any particular subset of features supported in a profile.

Each level specifies a set of limits on the values that may be taken by the syntax elements of this
Recommendation | International Standard. The same set of level definitions is used with all profiles, but individual
implementations may support a different level for each supported profile. For any given profile, levels generally
correspond to decoder processing load and memory capability.

A.1 Requirementson video decoder capability

Capabilities of video decoders conforming to this Recommendation | International Standard are specified in terms of the
ability to decode video streams conforming to the constraints of profiles and levels specified in this Annex. For each
such profile, the level supported for that profile shall also be expressed.

Specific values are specified in this annex for the syntax elements profile idc and level idc. All other values of
profile_idc and level idc are reserved for future use by ITU-T | ISO/IEC.

NOTE - Decoders should not infer that if a reserved value of profile idc or level idc falls between the values specified in this
Recommendation | International Standard that this indicates intermediate capabilities between the specified profiles or levels, as
there are no restrictions on the method to be chosen by ITU-T | ISO/IEC for the use of such future reserved values.

A2 Profiles
A.21 Basdineprofile

Bitstreams conforming to the Baseline profile shall obey the following constraints:
— Only I and P slice types may be present.
— NAL unit streams shall not contain nal_unit_type values equal to 2 through 4, inclusive.
— Sequence parameter sets shall have frame mbs_only flag equal to 1.
— Picture parameter sets shall have weighted pred flag and weighted bipred idc both equal to 0.
— Picture parameter sets shall have entropy _coding_mode flag equal to 0.

— Picture parameter sets shall have num_slice_groups minusl less than 8.
Conformance of a bitstream to the Baseline profile is specified by profile_idc being equal to 66.

Decoders conforming to the Baseline profile at a specific level shall be capable of decoding all bitstreams conforming to
the Baseline profile at the specified level and at all levels below the specified level.

A.2.2 Main profile

Bitstreams conforming to the Main profile shall obey the following constraints:
— Only 1, P, and B slice types may be present.
— NAL unit streams shall not contain nal unit type values equal to 2 through 4, inclusive.
— Sequence parameter sets shall have arbitrary slice order allowed flag equal to 0 only.

— Sequence parameter sets shall have more than one slice group allowed flag equal to 0 only.

DRAFT ITU-T Rec. H.264 (2002 E) 189

— Sequence parameter sets shall have redundant pictures allowed flag equal to 0 only.

— For bitstreams conforming to levels 1, 1.1, 1.2, 1.3, 2, 5 and 5.1, sequence parameter sets shall have
frame mbs only flag equal to 1.

Conformance of a bitstream to the Main profile is specified by profile idc being equal to 77.

Decoders conforming to the Main profile at a specified level shall be capable of decoding all bitstreams conforming to
the Main profile at the specified level and at all levels below the specified level.

Decoders conforming to the Main profile at a specified level shall also be capable of decoding all bitstreams conforming
to the Baseline profile (as specified by profile_idc being equal to 66) at the specified level and at all levels below the
specified level in which the following additional sequence parameter set syntax constraints are obeyed:

— more_than one slice group allowed flag is equal to 0,
— arbitrary_slice order allowed flag is equal to 0, and

— redundant pictures_allowed_flag is equal to 0.

A.2.3 Extended profile

Bitstreams conforming to the Extended profile shall obey the following constraints:
— Picture parameter sets shall have entropy coding_mode flag equal to 0.
— Picture parameter sets shall have num_slice groups minus! less than 8.

— For bitstreams conforming to levels 1, 1.1, 1.2, 1.3, 2, 5, and 5.1, sequence parameter sets shall have
frame mbs_only flag equal tol.

Conformance of a bitstream to the Extended profile is specified by profile idc being equal to 88.

Decoders conforming to the Extended profile at a specified level shall be capable of decoding all bitstreams conforming
to the Extended profile at the specified level and at all levels below the specified level.

Decoders conforming to the Extended profile at a specified level shall also be capable of decoding all bitstreams
conforming to the Baseline profile (as specified by profile idc being equal to 66) at the specified level and at all levels
below the specified level.

A3 Levels

A.3.1 Profile-independent level limits
Bitstreams conforming to any profile at a specified level shall obey the following constraints:

a) The difference between consecutive removal times as defined in subclause C.1.2, satisfies the constraint that
t(n) - t(n-1) >= max(PicSizeInMbs + MaxMBPS, FR), where MaxMBPS is specified in Table A-1. If picture
n-1is a frame, FR =1 + 172. If picture n-1 is a field, FR =1 + (172 * 2). [Ed. (->AG): Also include the similar
constraint on output times. |

b) the total number of bytes of NAL unit data (i.e., the total of the NumBytesInNALunit variables for the picture)
associated with the primary coded picture n is <= 256 * ChromaFormatFactor * MaxMBPS * (t(n) - t(n-1)) +
MinCR. [Ed. Note (->AGQG): Also, consider the cases for n=0 and the last picture. Also, consider relationship to
output timing.]

¢) FrameSizeInMbs <= MaxFS, where MaxFS is specified in Table A-1
d) PicWidthInMbs <= Sqrt(MaxFS * 8)
e) FrameHeightiInMbs <= Sqrt(MaxFS * 8)

f) DPB size max_dec_frame buffering <= MaxDPB / (FrameSizeInMbs * 256 * ChromaFormatFactor).
MaxDPB is given in Table A-1 in the unit of bytes. max_dec frame buffering is a sequence VUI parameter.
DPB size is used by the HRD (see Annex C). [Ed. Note (GJS) This should be clarified such that if
max_dec frame buffering is not present, the value here is the default. If max _dec frame buffering is present it
must obey the constraint stated here. And if max dec frame buffering is present, then the constraint expressed
there is the one that must be obeyed rather than the one here.]

g) bit rate[k] <= MaxBR and cpb_size[k] <= the level limit given, where bit rate[k] is given by Equation E-13
and cpb_size[k] is given by Equation E-14 if vcl hrd parameters present flag is equal to 1. MaxBR is
specified in Table A-1. The bitstream shall satisfy these conditions for at least one value of k in the range 0 to

190 DRAFT ITU-T Rec. H.264 (2002 E)

h)

i)
i)
k)
D

Table A-

DRAFT 1SO/IEC 14496-10 : 2002 (E)

cpb_cnt minusl. [Ed. Note (GJS/AG): When HRD parameters not present, the bitstream must still obey
something.]

and bit rate[k | <= 1.2 * MaxBR for bit rate value[k] and cpb size[k] <= 1.2 * MaxCPB, where
bit rate[k] is given by Equation E-13 and cpb size[k] 1is given by Equation E-14 if
nal hrd parameters present flag equal to 1. MaxBR and MaxCPB are specified in Table A-1. The bitstream
shall satisfy these conditions for at least one value of k in the range 0 to cpb_cnt_minusl. [Ed. Note (GJS/AG):
Consider when HRD parameters not present. |

required CPB buffer size is <= the level limit given

vertical motion vector component range does not exceed MaxVmvR in units of luma frame samples, where
MaxVmvR is specified in Table A-1

horizontal motion vector range does not exceed [-2048, 2047.75] in units of luma samples

number of motion vectors per two consecutive macroblocks in decoding order (including from the last
macroblock of a slice to the first macroblock of the next slice in decoding order) does not exceed
MaxMvsPer2Mb, where MaxMvsPer2Mb is specified in Table A-1.

number of bits of macroblock layer() data for any macroblock is not greater than 128 + 2048 *
ChromaFormatFactor. When entropy coding mode flag is equal to 1, the number of bits for the current
macroblock is given by the number of times read bits(1) is called in subclauses 9.3.3.2.2 and 9.3.3.2.3 when
parsing the macroblock layer() associated with the current macroblock.

1 below gives the parameter limits for each level. Entries marked "-" in Table A-1 denote the absence of a

corresponding limit.

Conformance to a particular level shall be specified by setting the syntax element level idc equal to a value of ten times

the level

number specified in Table A-1.

TableA-1—Level limits

Max Max Max Vertical MV
macr oblock Max decoded video component
processing | frame picture bit rate Max range Min Max number of
rate size buffer size | MaxBR CPB size MaxVmvR |compression| MVsper two
Level | MaxMBPS | MaxFS | MaxDPB (1000 MaxCPB (lumaframe ratio consecutive MBs
number (MB/s) (MBs) |(1024 bytes) | bits/s) (1000 bits) samples) MinCR |MaxMvsPer2Mb

1 1485 99 148.5 64 175 [-64,+63.75] 2 -

1.1 3 000 396 337.5 192 500 [-128,+127.75] 2 -

12 6 000 396 891.0 384 1000 [-128,+127.75] 2 -

1.3 11 880 396 891.0 768 2000 [-128,+127.75] 2 -

2 11 880 396 891.0 2 000 2 000 [-128,+127.75] 2 -

2.1 19 800 792 1782.0 4 000 4000 [-256,+255.75] 2 -

2.2 20 250 1620 3037.5 4 000 4 000 [-256,+255.75] 2 -

3 40 500 1620 3037.5 10 000 10 000 [-256,+255.75] 2 32

31 108 000 3 600 6750.0 14 000 14 000 [-512,+511.75] 4 16

3.2 216 000 5120 7 680.0 20 000 20 000 [-512,+511.75] 4 16

4 245 760 8192 12 288.0 20 000 25 000 [-512,+511.75] 4 16
4.1 245 760 8192 12 288.0 50 000 62 500 [-512,+511.75] 2 16

5 552 960 21 696 40 680.0 135 000 135 000 [-512,+511.75] 2 16

51 983 040 36 864 69 120.0 240 000 240 000 [-512,+511.75] 2 16

Levels with non-integer level numbers in Table A-1 are referred to as “intermediate levels”.

NOTE - All levels have the same status, but some applications may choose to use only the integer-numbered levels.

Informative subclause A.3.3 shows the effect of these limits on frame rates for several example picture formats.

DRAFT ITU-T Rec. H.264 (2002 E) 191

A.3.2

a)

b)

d)

Profile-specific level limits

In bitstreams conforming to the Main profile, the difference between consecutive removal times satisfies the
constraint that the number of slices in coded picture n is <= MaxMBperSec * (t(n)-t(n-1)) = SliceRate,
where SliceRate is specified in Table A-3.

In bitstreams conforming to the Main and Extended profiles, direct 8x8 inference flag shall be equal to 1 for
the levels specified in Table A-3 for the Main profile and in Table A-4 for the Extended profile.

In bitstreams conforming to the Main and Extended profiles, the value of sub_mb_type in B macroblocks shall
not be equal to B_Bi 8x4, B Bi 4x8, or B_Bi 4x4 for the levels in which MinLumaBiPredSize is shown as
8x8 in Table A-3 for the Main profile and in Table A-4 for the Extended profile.

In bitstreams conforming to the Baseline and Extended profiles, (xInt,,,, — xInt_,, + 6) * (yInt,,,, — yInt,,, + 6)
<= MaxSubMbRectSize in macroblocks coded with mb_type equal to P_8x8, P 8x8ref0 or B_8x8 for all
invocations of the process specified in subclause 8.4.2.2.1 used to generate the predicted luma sample array for
a single list (list O or list 1) for each 8x8 sub-macroblock, where num_sub_mb_part(sub_mb_type) > 1, where
MaxSubMbRectSize is specified in Table A-2 for the Baseline profile and in Table A-4 for the Extended profile
and

— xInt,;, as the minimum value of xInt; among all luma sample predictions for the sub-macroblock
— xInt,,, as the maximum value of xInt; among all luma sample predictions for the sub-macroblock
— ylnt,;, as the minimum value of yInt; among all luma sample predictions for the sub-macroblock

— ylnt,,, as the maximum value of yInt; among all luma sample predictions for the sub-macroblock

For each level at which a numerical value of MaxSubMbRectSize is specified in Table A-2 for the Baseline profile and
in Table A-4 for the Extended profile, the following constraint shall be true for each 8x8 sub-macroblock:

A.3.2.1 Basdlineprofilelimits

Table A-2 specifies limits for each level that are specific to bitstreams conforming to the Baseline profile. Entries marked

nn

in Table A-2 denote the absence of a corresponding limit.

Table A-2 —Baseline profile level limits

Level number | MaxSubMbRectSize
1 576
11 576
12 576
13 576
2 576
21 576
2.2 576
3 576
31 -
3.2 -
4 -
4.1 -
5 -
5.1 -

A.3.2.2 Main profilelimits

Table A-3 specifies limits for each level that are specific to bitstreams conforming to the Main profile. Entries marked

nn

192

in Table A-3 denote the absence of a corresponding limit.

DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT 1SO/IEC 14496-10 : 2002 (E)

Table A-3—Main profilelevel limits

Level number | SliceRate MinLumaBiPredSize direct_8x8 inference flag
1 - - -
1.1 - - -
1.2 - - -
13 - - -
2 - - -
21 - - -
22 - - -
3 22 - 1
31 60 8x8 1
32 60 8x8 1
4 60 8x8 1
4.1 24 8x8 1
5 24 8x8 1
51 24 8x8 1

A.3.2.3 Extended Profile Limits

Table A-4 specifies limits for each level that are specific to bitstreams conforming to the Extended profile. Entries
marked "-" in Table A-4 denote the absence of a corresponding limit.

Table A-4 — Extended profile level limits

MinLumaBiPredSiz
Level number | MaxSubMbRectSize e direct_8x8 inference flag
1 576 - 1
11 576 - 1
12 576 - 1
13 576 - 1
2 576 - 1
21 576 - 1
2.2 576 - 1
3 576 - 1
31 - 8x8 1
3.2 - 8x8 1
4 - 8x8 1
4.1 - 8x8 1
5 - 8x8 1
51 - 8x8 1

DRAFT ITU-T Rec. H.264 (2002 E) 193

A.3.3 Effect of leve limitson framerate (informative)

This subclause does not form an integral part of this Recommendation | International Standard.

Table A-5—-Maximum frame rates (frames per second) for some example picture sizes

L evel number: 1 11 1.2 13 2 21 2.2
Max frame size (macr oblocks): 99 396 396 396 396 792 1620
M ax macr oblocks/second: 1485 3000 6 000 11880 11 880 19 800 20 250
Max picture size (samples): 25344 101 376 101 376 101 376 101 376 202752 414 720
Max samples/second: 380 160 768 000 1536000| 3041280[3041280 5068 800 5184 000
MBs MBs MBs Luma
Format Width| Height| Total| Samples
SQCIF 128 96 48 12 288 30.9 62.5 125.0 172.0 172.0 172.0 172.0
QCIF 176 144 99 25344 15.0 30.3 60.6 120.0 120.0 172.0 172.0
QVGA 320 240 300 76 800 - 10.0 20.0 39.6 39.6 66.0 67.5
525 SIF 352 240 330 84 480 - 9.1 18.2 36.0 36.0 60.0 61.4
CIF 352 288 396 101 376 - 7.6 15.2 30.0 30.0 50.0 51.1
525HHR 352 480 660 168 960 - - - - - 30.0 30.7
625 HHR 352 576 792| 202752 - - - - - 25.0 25.6
VGA 640 480 1200 307 200 - - - - - - 16.9
525 4SIF 704 480 1320] 337920 - - - - - - 15.3
525 SD 720 480| 1350 345600 - - - - - - 15.0
ACIF 704 576 1584 405 504 - - - - - - 12.8
625 SD 720 576| 1620| 414720 - - - - - - 12.5
SVGA 800 600 1900 486 400 - - - - - - -
XGA 1024 768| 3072| 786432 - - - - - - -
720p HD 1280 720 3600 921 600 - - - - - - -
4VGA 1280 960 4800 [1228800 - - - - - - -
SXGA 1280 1024 5120 1310720 - - - - - - -
525 16SIF 1408 960 5280 1351680 - - - - - - -
16CIF 1408 1152 6336] 1622016 - - - - - - -
4SVGA 1600 1200 7500 1920000 - - - - - - -
1080 HD 1920 1080 8160 2088960 - - - - - - -
2Kx1K 2048 1024 8192| 2097152 - - - - - - -
4AXGA 2048 1536| 12288| 3145728 - - - - - - -
16VGA 2560 1920 19200| 4915200 - - - - - - -
Table A-5 (concluded) — Maximum framerates (frames per second) for some example picture sizes
Level number: 3 3.1 3.2 4 41 5 5.1
Max picture size (macr oblocks): 1620 3600 5120 8192 8192 21 696 36 864
Max macr oblocks/second: 40500 108 000 216 000 245 760 245 760 552 960 983 040
Max picture size (samples): 414 720 921600| 1310720 2097 152| 2097 152 5554176 9437 184
Max samples/second: 10368 000 [27 648 000 | 55 296 000 | 62 914 560 [62 914 560 | 141557 760| 251 658 240
MBs MBs MBs Luma
Format Width| Height Total| Samples
SQCIF 128 96 48 12 288 172.0 172.0 172.0 172.0 172.0 172.0 172.0
QCIF 176 144 99 25344 172.0 172.0 172.0 172.0 172.0 172.0 172.0
QVGA 320 240 300 76 800 135.0 172.0 172.0 172.0 172.0 172.0 172.0
525 SIF 352 240 330 84 480 122.7 172.0 172.0 172.0 172.0 172.0 172.0
CIF 352 288 396 101 376 102.3 172.0 172.0 172.0 172.0 172.0 172.0
525 HHR 352 480 660 168 960 614 163.6 172.0 172.0 172.0 172.0 172.0
625 HHR 352 576 792 202 752 51.1 136.4 172.0 172.0 172.0 172.0 172.0
VGA 640 480| 1200| 307200 33.8 90.0 172.0 172.0 172.0 172.0 172.0
5254SIF 704 480 1320 337920 30.7 81.8 163.6 172.0 172.0 172.0 172.0
525 SD 720 480 1350 345 600 30.0 80.0 160.0 172.0 172.0 172.0 172.0
ACIF 704 576 1584 405 504 25.6 68.2 136.4 155.2 155.2 172.0 172.0
625 SD 720 576 1620 414 720 25.0 66.7 1333 151.7 151.7 172.0 172.0
SVGA 800 600 1900| 486400 - 56.8 113.7 129.3 129.3 172.0 172.0
XGA 1024 768 3072 786 432 - 352 70.3 80.0 80.0 172.0 172.0
720p HD 1280 720 3 600 921 600 - 30.0 60.0 68.3 68.3 153.6 172.0
4VGA 1280 960 4800] 1228800 - - 45.0 51.2 51.2 115.2 172.0
SXGA 1280 1024 5120] 1310720 - - 42.2 48.0 48.0 108.0 172.0
525 16SI F 1408 960 5280| 1351680 - - - 46.5 46.5 104.7 172.0
16CIF 1408 1152 6336| 1622016 - - - 38.8 38.8 87.3 155.2
4SVGA 1600 1200| 7500| 1920000 - - - 32.8 32.8 73.7 131.1
1080 HD 1920 1080 8160 | 2088 960 - - - 30.1 30.1 67.8 120.5
2Kx1K 2048 1024 8192 2097152 - - - 30.0 30.0 67.5 120.0
AXGA 2048 1536| 12288| 3145728 - - - - - 45.0 80.0
16VGA 2560 1920 19200] 4915200 - - - - - 28.8 51.2

The following should be noted.

- This is a variable-picture-size specification. The specific picture sizes in Table A-5 are illustrative examples only.

- As used in Table A-5, "525" refers to typical use for environments using 525 analogue scan lines (of which
approximately 480 lines contain the visible picture region), and "625" refers to environments using 625 analogue
scan lines (of which approximately 576 lines contain the visible picture region).

194 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT 1SO/IEC 14496-10 : 2002 (E)

- XGA is also known as (aka) XVGA, 4SVGA aka UXGA, 16XGA aka 4Kx3K, CIF aka 625 SIF, 625 HHR aka 2CIF
aka half 625 D-1, aka half 625 ITU-R BT.601, 525 SD aka 525 D-1 aka 525 ITU-R BT.601, 625 SD aka 625 D-1 aka
625 ITU-R BT.601.

- Frame rates given are correct for progressive scan modes, and for interlaced if the frame height is divisible by 32.

Annex B

Byte stream format
(This annex forms an integral part of this Recommendation | International Standard)

This annex specifies syntax and semantics of a byte stream format specified for use by systems that transmit some or all
of the NAL unit stream as an ordered stream of bytes or bits within which the locations of NAL unit boundaries need to
be identifiable from patterns in the data, such as ITU-T Recommendation H.222.0 | ISO/IEC 13818-1 systems or ITU-T
Recommendation H.320 systems. For bit-oriented transmission, the network bit order for the byte stream format is
specified to start with the MSB of the first byte, proceed to the LSB of the first byte, followed by the MSB of the second
byte, etc.

The byte stream format consists of a sequence of byte stream NAL unit syntax structures. Each byte stream NAL unit
syntax structure contains one start code prefix followed by one nal_unit(NumBytesInNALunit) syntax structure. It may
(and under some circumstances, it shall) also contain some additional zero byte syntax elements.

B.1 Byte stream NAL unit syntax and semantics

B.1.1 Bytestream NAL unit syntax

byte stream nal unit(NumBytesInNALunit) { C Descriptor
while(next_bits(24) != 0x000001)
zero_byte /* equal to 0x00 */ f(8)
if(more_data_in_byte stream()) {
start_code_prefix_one _3bytes /* equal to 0x000001 */ f(24)
nal_unit(NumBytesInNALunit)
H
H

B.1.2 Bytestream NAL unit semantics

The order of byte stream NAL units in the byte stream shall follow the syntax order of the NAL units contained in the
byte stream NAL units (see subclause 7.4.1.1). The content of each byte stream NAL unit is associated with the same
primary coded picture as the NAL unit contained in the byte stream NAL unit (see subclause 7.4.1.2).

zero_byte s a single byte equal to 0x00.

The minimum required number of zero byte syntax elements preceding the start code prefix one 3bytes is 1 when
either of the following conditions are fulfilled:

— Ifthe nal unit type within the nal unit() is equal to 7 (sequence parameter set) or 8 (picture parameter set), or

— If the byte stream NAL unit syntax structure contains the first NAL unit associated with a primary coded picture in
decoding order, as specified by subclause 7.4.1.2.

Any number of additional zero byte syntax elements may immediately precede the start code prefix within the byte
stream NAL unit syntax structure.

start_code prefix_one 3bytesis a fixed-value string of 3 bytes equal to 0x000001.

B.2 Byte stream NAL unit decoding process

Input to this process consists of an ordered stream of bytes consisting of a sequence of byte stream NAL unit syntax
structures.

Output of this process consists of a sequence of NAL unit syntax structures.

DRAFT ITU-T Rec. H.264 (2002 E) 195

At the beginning of the decoding process, the decoder initialises its current position in the byte stream to the beginning of
the byte stream.

The decoder then performs the following step-wise process repeatedly to extract and decode each NAL unit syntax
structure in the byte stream:

1. The decoder examines the byte stream, starting at the current position, to detect the location of the next byte-
aligned three-byte sequence equal to 0x000001.

NOTE - This three-byte sequence equal to 0x000001 is a start code prefix_one 3bytes syntax element, and all bytes
starting at the current position in the byte stream and preceding the start code prefix one 3bytes, if any, are zero_ byte
syntax elements equal to 0x00.

2. All bytes preceding and including this three-byte sequence are discarded and the current position in the byte
stream 1is set to the position of the byte following this three-byte sequence.

3. NumBytesInNALunit is set equal to the number of byte-aligned bytes starting with the byte at the current
position in the byte stream up to and including the last byte that precedes the location of any of the following
conditions:

a. A subsequent byte-aligned three-byte sequence equal to 0x000000, or
b. A subsequent byte-aligned three-byte sequence equal to 0x000001, or
c. The end of the byte stream, as determined by unspecified means.

4. NumBytesInNALunit bytes are removed from the bitstream and the current position in the byte stream is
advanced by NumBytesInNALunit bytes. This sequence of bytes is nal unit(NumBytesInNALunit) and is
decoded using the NAL unit decoding process.

B.3 Decoder byte-alignment recovery (infor mative)
This subclause does not form an integral part of this Recommendation | International Standard.

Many applications provide data to a decoder in a manner that is inherently byte aligned, and thus have no need for the
bit-oriented byte alignment detection procedure described in this subclause.

If the decoder does not have byte alignment with the encoder’s byte stream, the decoder can examine the incoming
bitstream for the binary pattern '00000000 00000000 00000000 00000001' (31 consecutive bits equal to 0 followed by bit
equal to 1). The bit immediately following this pattern is the first bit of an aligned byte. Upon detecting this pattern, the
decoder will be byte aligned with the encoder.

Once byte aligned with the encoder, the decoder can examine the incoming byte stream for the three-byte sequences
0x000001 and 0x000003.

If the three-byte sequence 0x000001 is detected, this is a start code prefix.

If the three-byte sequence 0x000003 is detected, the third byte (0x03) is an emulation_prevention_three byte to be
discarded as specified in subclause 7.4.1.

The byte alignment detection procedure described in this subclause is equivalent to searching a byte sequence for three
consecutive zero-valued bytes (0x000000), starting at any alignment position. Detection of this pattern indicates that the
next non-zero byte contains the end of a start code prefix, and the first non-zero bit in that next non-zero byte is the last
bit of an aligned byte.

Annex C
Hypothetical refer ence decoder

(This annex forms an integral part of this Recommendation | International Standard)
This annex specifies the hypothetical reference decoder (HRD) and its use to check bitstream conformance
[Ed. Note: update subclause to reflect Pattaya meeting adoptions.]

This annex specifies the hypothetical reference decoder (HRD), which represents a set of normative requirements on
bitstreams. These constraints shall be enforced by an encoder, and can be assumed by a decoder or multiplexor to be
true.

This subclause specifies the normative requirements of the HRD.

196 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT 1SO/IEC 14496-10 : 2002 (E)

Two types of bitstreams are subject to the HRD requirements of this Recommendation | International Standard: a stream
of VCL-only NAL units (that includes all VCL NAL units for all coded pictures) called a VCL NAL unit stream, and
any bitstream (either a byte stream or a NAL unit stream) that includes all VCL NAL units for all coded pictures and
some non-VCL NAL units. Figure C-1 shows how each of these two bitstream types are constructed from the RBSPs.

Accordingly, two sets of HRD parameters are used. The HRD parameter sets are signalled through video usability
information (subclauses E.1 and E.2), which is part of the sequence parameters sets.

In order to check conformance of a bitstream by the HRD, all sequence parameter sets and picture parameters sets
referred to in the VCL NAL units, and appropriate buffering period and picture timing SEI messages shall be conveyed
to the HRD, in a timely manner, either in the bitstream (by non-VCL NAL units), or by other unspecified means.

The syntax elements of non-VCL NAL units (or their default values), required for the HRD, are specified in the semantic
subclauses.

NOTE - When HRD information is contained within the bitstream, it is possible to verify the conformance of a bitstream to the
requirements of this subclause based solely on information contained in the bitstream. If the HRD information is not present, as is
the case for all stand-alone VCL streams, conformance can only be verified if the HRD data is supplied by some means not
specified in this Recommendation | International Standard.

Parameter Set RBSP (7.3.2.1-2) ——— —— Slice Layer RBSP (7.3.2.6)
SEI Message RBSP (7.3.2.3, Annex D) ——— — Data Partition RBSP (7.3.2.7)
Picture Delimiter RBSP (7.3.2.4) — Filler Data RBSP (7.3.2.5)
Video Usability Information (Annex E) f RBSP Trailing Bits (7.3.2.8)
¢ A A 4 AR A
EBSP Encapsulation EBSP Encapsulation
Start Code Emulation Prevention [NAL Unitizer NAL Unitizer | Start Code Emulation Prevention
NAL Unitization NAL Unitization

NAL NAL Units (7.3.1, 8.1)

v Vv VCL NAL Units (731, 81)
Byte Stream v VCL HRD Conformance Point
Adaptation

(Annex B)

H.264 | MPEG-4 Part 10 Byte Stream
NAL HRD Conformance Point

Figure C-1—Structure of byte streamsand NAL unit streamsand HRD confor mance points

The HRD contains a coded picture buffer (CPB), an instantaneous decoder and a decoded picture buffer (DPB) as shown
in Figure C-2:

DRAFT ITU-T Rec. H.264 (2002 E) 197

Conformant
Stream CPB . | Instantaneous .| Reordering v
Buffer (0) Coded | Decoder o Buffer Y
Pictures Output
A Fields
and/or
Decoded
- B (f:fPBl —» Fields Frames
uffer (1) Coded dl .| Reference | |
Pictures anajor > Buffer
° Frames
L]
L]
L CcPB —
Buffer (N-1) | coded
Pictures

Figure C-2—HRD buffer model

The HRD operates as follows: Data associated with primary coded pictures flow into the CPB according to a specified
arrival schedule generated by the stream scheduler. The data associated with each coded picture is removed and decoded
instantaneously by the instantaneous decoding process at CPB removal times. Each decoded picture is placed in the
DPB at its CPB removal time. Finally, each picture is removed from the DPB as needed at the later of the DPB output
time and the time that it is no longer needed as reference for decoding.

The operation of the CPB is specified in subclause C.1. The Instantaneous Decoder operation is specified in clauses 8
and 9. The decoding of a picture is instantaneous. The operation of the DPB is specified in subclause C.2.

HRD information concerning the number of CPBs and their associated bit rates and buffer sizes is specified in
subclauses E.1.1, E.1.2, E.2.1 and E.2.2 as part of the video usability information of the sequence parameter set. The
HRD is initialised as specified by the buffering period SEI message (subclauses D.1.1 and D.2.1). The removal timing
of pictures from the CPB and output timing from the DPB are specified in the picture timing SEI message (subclauses
D.1.2 and D.2.2). All timing information relating to a specific picture shall arrive prior to the CPB removal time of the
first VCL NAL units associated with the picture.

The HRD is used to check conformance of bitstreams and decoders as specified in subclauses C.3 and C.4, respectively.

NOTE - While conformance is guaranteed under the assumption that all frame-rates and clocks used to generate the
bitstream match exactly the values signalled in the bitstream, in a real system each of these may vary from the signalled or
specified value.

All the arithmetic in this annex is done with real values, so that no rounding errors can propagate. For example, the
number of bits in a CPB just prior to or after removal of a transmitted picture is not necessarily an integer.

In the following description, let t, = num units_in_tick + time scale be specified as the clock tick. Also let be[t] and
te[b] be the bit equivalent of a time t and the time equivalent of a number of bits b, with the conversion factor being the
CPB arrival maximum bit rate.

C.1 Operation of coded picture buffer (CPB)

This specification applies independently to each set of CPB parameters within the HRD VUI portion of the sequence
parameter set. The bits associated with each picture include all NAL units associated with the primary coded picture as
specified in subclause 7.4.1.2. This description applies to both Type II and VCL conformance.

C.1.1 Timing of bitstream arrival

The HRD may be initialised by any buffering period SEI message. Prior to the first initialisation, the buffer is initially
empty. The first bit associated with the picture that is associated with the buffering period SEI message begins to enter
the buffer at initial arrival time t,(0)=0. The other bits associated with this first picture arrive continuously at a bit rate
specified by bit_rate[k] associated with the CPB (see subclause E.2.2). The last bit of the first picture finishes arriving at
final arrival time

198 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT 1SO/IEC 14496-10 : 2002 (E)

t,(0) = b(0) + bit_rate[k], (C-1)

where b(n) is the size in bits of the n-th picture in coded order. The final arrival time for each picture is always the sum
of the initial arrival time and the time required for the bits associated with that picture to enter the CPB:

t,(n) = t,(n) + b(n) + bit_rate[k]. (C-2)

If vbr_cbr_flag[k] is equal to 0, the initial arrival time for each subsequent picture n, is equal to the final arrival time of
picture n-1, i.e.

t,i(n) = t(n-1) (C-3)

If vbr cbr flag[k] is equal to 1, the initial arrival time for each subsequent picture n, is

tai(n): max(taf(n_l)a tai,earliest(n)) (C_4)

where:

tyicartiest() = t. * cpb_removal_delay(n) — (initial_cpb_removal_delay_offset + 90000) (C-5)

See subclauses D.1.1, D.1.2, D.2.1 and D.2.2 for the syntax and semantics of cpb _removal delay and
initial cpb removal delay offset.

C.1.2 Timing of coded picture removal

For the first picture after HRD initialisation, the coded data associated with the picture is removed from the CPB at a
removal time equal to the following:

t(0) = initial cpb_removal delay + 90000 (C-6)

where initial cpb_removal_delay is specified in the buffering period SEI message.

After the first picture is removed, the buffer is examined at subsequent points of time, each of which is delayed from the
previous one by an integer multiple of the clock tick t..

The removal time t(n) of coded data for picture n is delayed with respect to that of picture 0; the delay is equal to the
time specified in the cpb_removal_delay syntax element present in the picture timing SEI Message.

t(n) =1(0) +t, * cpb_removal delay(n) (C-7)

At this time, the coded data for coded picture n is removed from the CPB.

If low_delay hrd flag is equal to 1, and if the amount of coded data for picture n, b(n), is so large that it prevents
removal at the computed removal time, the coded data is removed at the delayed removal time, t, ((n, m”), given by

tq(n,m") = t,(0) + . * m’, (C-8)
where m’is such that t,,(n, m"™-1) < t,(n) < t,(n, m"). This is an aspect of low-delay operation.

C.2 Operation of the decoded picture buffer (DPB)

The decoded picture buffer contains frame stores. Each of the frame stores may contain a decoded frame, a decoded
complementary field pair or a single (non-paired) decoded field which are to be used for reference in future decoding
(reference pictures) and/or are held for future output (reordered and delayed pictures). At t(0), the DPB fullness,
measured in frames, is initialised to 0. The following four steps all happen instantaneously at t(n), the CPB removal
time of picture n, and in the sequence listed.

C.2.1 Picturedecoding

Picture n is decoded and its DPB output time t, 4,,(n) is computed by

DRAFT ITU-T Rec. H.264 (2002 E) 199

toap() =t(n)+t * dpb_output delay(n) (C-9)

Ifn is not equal to 0, then the value of At, 4,,(n) shall be computed as:

Ato,dpb(n) = to,dpb(n) - to,dpb(n-1) (C-IO)

The decoded picture is temporarily stored (not in the DPB).

If the decoded picture is an IDR picture, and no_output of prior pics flag is equal to 1, all frame stores in the DPB are
emptied and DPB fullness is reset to 0. If the decoded picture is an IDR picture, and no_output of prior pics flag is
equal to 0, the reference pictures in the DPB are marked as specified in subclause 8.2.7.

C.2.2 Picturesoutput

Any picture m in the DPB with t, 4,,(m) <= t(n) that are not marked as "non-existing" are output from the HRD. If, for
the current decoded picture t, 4,,(m) = t(n), it is also output. The order of output, if more than one picture is output is
according to the values of the associated picture order count. The output pictures are cropped using the cropping
rectangle specified in the picture parameter set for the picture.

C.2.3 Reference picture marking and picture removal (without output)
The reference pictures in the DPB are marked as specified in subclause 8.2.7.
Some pictures are removed from the DPB. Picture m is removed if it satisfies both of the following rules:

- It has been marked as “unused for reference” or "non-reference" during the decoding process of previously decoded
pictures. If it is a reference frame picture, both its fields have to be marked as "unused for reference" in order to be
removed from the DPB

- It is marked as "non-existing" or its DPB output time is less than or equal to the CPB removal time of the current
picture; i.e., t, 4,,(m) < t,(n)

Following the removal of any frame or the removal of the last field in a frame buffer, the DPB fullness is decremented by
one.

C.24 Current decoded picture marking and storage

C.2.4.1 Storage of areference decoded pictureintothe DPB

The decoded picture is stored in the DPB and marked as “used for short-term reference” or "used for long-term
reference" as specified in subclause 8.2.7. If the current decoded picture is not a second field of a complementary
reference field pair, it is stored into an empty frame buffer and the DPB fullness is incremented. If the current decoded
picture is a second field of a complementary reference field pair, it is stored in the same frame buffer as the previous
decoded field.

C.2.4.2 Storage of a non-reference pictureintothe DPB

If the DPB output time of the current decoded picture exceeds its CPB removal time, it is stored in the DPB. If the
current decoded picture is not a second field of a complementary non-reference field pair, it is stored in an empty frame
buffer and the DPB fullness is incremented. If the current decoded picture is a second field (in decoding order) of a
complementary non-reference field pair, it is stored in the same frame buffer as the first field of the pair.

C.3 Bitstream confor mance

A bitstream of coded data conforming to this Recommendation | International Standard fulfills the following
requirements.

The bitstream is constructed according to the syntax and semantics specified in clause 7.

VCL NAL unit streams shall fulfill the HRD requirement for at least one k of the VCL HRD parameters with input bit
rate and CPB size as constrained by Annex D and by Annex A for the Profile and Level specified in the bitstream.

A type II bitstream shall fulfill the HRD requirement for at least one k of the Type II HRD parameters. In addition, it
shall fulfill the requirement for at least one k of the VCL HRD parameters with input bit rate and CPB size as
constrained by Annex D and by Annex A for the profile and level specified in the bitstream, where, for the input bit rate
and CPB storage, only VCL NAL units of the bitstream are counted.

200 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT 1SO/IEC 14496-10 : 2002 (E)

- Removal time consistency. For each picture, the removal times t(n) from the CPB computed using different
buffering periods SEI messages as starting points for conformance verification shall be consistent to within the
precision of the clocks used (90 kHz clock used for initial removal time, t, clock used for subsequent removal time
calculations, and bit_rate[k] used for arrival times).

Note - This can be ensured at the encoder by computing the initial CPB removal delay for a buffering period SEI message from
the arrival and removal times computed using Equations C-4 and C-6. That is, if the last picture before the buffering period SEI
message is picture n-1, then the initial CPB removal delay for the next buffering period SEI message could be computed by

initial cpb_removal delay =90000* (t(n)-t(n-1)+ty(n)) (C-11)

- CPB Underflow and Overflow Prevention. The CPB shall never overflow or underflow.

NOTE - In terms of the arrival and removal schedules, this means that, with the exception of some pictures in low-delay mode that
are described below, all bits from a picture must be in the CPB at the picture's computed removal time t(n). In other words, its
final arrival time must be no later than its removal time: t,(n) < t(n). Further, the removal time t(n) must be no later than the
time-equivalent of the buffer size te[cpb_size[k]]. Note that this prevents both underflow and overflow.

- BigPicture Removal Time, CPB Overflow Prevention and Resynchronisation of Underflow Prevention. If the
final arrival time t,{(n) of picture n to the CPB exceeds its computed removal time t.(n), its size must be such that it
can be removed from the buffer without overflow at t, ((n,m") as specified above.

- Maximum Removal Rate from the CPB. The difference between consecutive removal times, t(n) - t(n-1), shall not
be less than the ratio of the number of macroblocks in picture n to the maximum MB processing rate for the
bitstream’s level in macroblocks per second (see subclause A.3.1).

- DPB Overflow Prevention. Immediately after any picture is added to the DPB, the fullness of the DPB shall be less
than or equal to the DPB size as constrained by Annex D and Annex A for the profile and level specified in the
bitstream.

- Maximum Output Rate from the DPB. The value of At, 4,,(n) as given by Equation C-10, which is the difference
between the output time of a picture and that of the picture output immediately preceding it, shall be larger than the
ratio of the number of macroblocks in the picture to the maximum macroblock processing rate for the bitstream’s
Level in macroblocks per second (see subclause A.3.1).

c4 Decoder conformance

A conformant decoder is conformant to at least one profile and one level. A decoder claiming conformance to a specific
profile and level shall be able decode successfully all conforming bitstreams specified for decoder conformance in
Annex A, provided that all sequence parameter sets and picture parameters sets referred to in the VCL NAL units, and
appropriate buffering period and picture timing SEI messages shall be conveyed to the decoder, in a timely manner,
either in the bitstream (by non-VCL NAL units), or by external means not specified by this
Recommendation | International Standard.

There are two types of conformance that can be claimed by a decoder: Output timing conformance and output order
conformance.

To check a decoder conformance, test bitstreams conforming to the claimed profile and level are delivered by a bitstream
delivery scheduler as described above, both to an HRD and to the decoder under test (DUT). The output of both decoders
shall be the same. I.e., all pictures output by the HRD are also output by the DUT and all decoded sample values are the
same.

For output timing decoder conformance, an HRD as described above is used and the timing (relative to the delivery time
of the first bit) of picture output is the same for both HRD and the DUT up to a fixed delay.

For output order decoder conformance, an HRD as described below is used and the order of picture output is the same
for both HRD and the DUT.

C.4.1 Operation of the output order DPB

The decoded picture buffer contains frame buffers. Each of the frame buffers may contain a decoded frame, a decoded
complementary field pair [Ed. Note (AG): Need a def for a complementary non-reference field pair] or a single (non-
paired) decoded field that are to be used for reference in future decoding (reference pictures) and/or are held for future
output (reordered pictures).

C.4.2 Picturedecoding

Picture n is decoded and is temporarily stored (not in the DPB).

DRAFT ITU-T Rec. H.264 (2002 E) 201

If the decoded picture is an IDR picture, and non ref pic reset flag is equal to 1, all frame buffers in the DPB are
emptied (but not output) and DPB fullness is reset to 0. If the decoded picture is an IDR picture, and
non_ref pic reset flag is equal to 0, the reference pictures in the DPB are marked as specified in subclause 8.2.7.

If the decoded picture is an IDR picture and non_ref pic reset flag is equal to O, the pictures in the DPB are output in
ascending order of PicOrder, all frame buffers in the DPB are emptied and DPB fullness is reset to 0. [Ed. Note (Miska):
Added this last sentence to deal with picture order in the neighbourhood of IDR pictures.]

C.43 Referencepicture marking

The reference pictures in the DPB are marked as specified in subclause 8.2.7.

C.44 Current decoded picture marking and storage

PicOrder is stored with each decoded picture: For a decoded frame, its FrameOrderCnt is stored, for a decoded top field,
its TopFieldOrderCnt is stored and for a decoded bottom field, its BottomFieldOrderCnt is stored.

C.4.4.1 Storageof areferencedecoded pictureintothe DPB

The decoded picture is added to the decoded picture buffer and marked as “used for short-term reference” or "used for
long-term reference", as specified in subclause 8.2.7, and "needed for output". If the current decoded picture is not a
second field of a complementary reference field pair, it is stored in an empty frame buffer and the DPB fullness is
incremented. If there is no empty frame buffer (i.e., DPB capacity is equal to DPB size), one is emptied by the 'bumping"
process described below. If the current decoded picture is a second field (in decoding order) of a complementary
reference field pair, it is stored in the same frame buffer as the first decoded field.

C.4.4.2 Storage and marking of a non-reference decoded pictureintothe DPB

The decode picture is marked as "non-reference" and "needed for output". If the current decoded picture is not a second
field of a complementary non-reference field pair, it is stored in an empty frame buffer and the DPB fullness is
incremented. If there is no empty frame buffer (i.e., DPB capacity is equal to DPB size), one is emptied by the
‘bumping" process described below. If the current decoded picture is a second field (in decoding order) of a
complementary non-reference field pair, it is stored in the same frame buffer as the first field of the pair.

C.4.4.3 "Bumping" process

The "bumping" operation, when an empty frame buffer is needed for a (non IDR) picture, is executed with the following
steps:

a) When an empty frame buffer is needed for a non-reference picture, if this picture has a lower value of POC
than all fields or frames in the DPB marked as "needed for output” , it is output instead of being stored and the
bumping operation is terminated.

b) The field or frame marked as "needed for output" that has a lowest value of POC of all fields or frames in the
DPB marked as "needed for output", is output, and marked as "not needed for output". [Ed.Note(Miska): This
does not take into account that the DPB may contain pictures from multiple video sequences. The output order
of pictures in different sequences cannot be resolved by POC but rather it is determined by the decoding order
relative to the previous IDR picture. See C.4.2 for a proposed solution. |

¢) The frame buffer that included the field or frame output in step (b) is checked, and if one of the following
conditions is satisfied, the frame buffer is emptied, DPB fullness is decremented and the bumping operation is
terminated. Otherwise, steps (b) and (c¢) are repeated until termination.

cl) The frame buffer includes a non-reference frame or a non-reference non-paired field

c2) The frame buffer includes a complementary non-reference field pair with both fields marked as "not
needed for output".

¢3) The frame buffer includes a non-paired reference field marked as "unused for reference".
c4) The frame buffer includes a reference frame with both fields marked as "unused for reference".

c5) The frame buffer includes a complementary reference field pair with both fields marked as "unused
for reference" and "not needed for output".

202 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT 1SO/IEC 14496-10 : 2002 (E)

Annex D

Supplemental enhancement information
(This annex forms an integral part of this Recommendation | International Standard)

This annex specifies syntax and semantic for supplemental enhancement information that provides data constructs that
are synchronous with the video data content. Each sei_payload() specifies payloadType and payloadSize parameters.
This annex specifies supplemental enhancement information (SEI) that provides a data delivery mechanism construct
that is delivered synchronous with the video data content. SEI assists in the processes related to decoding, display or
other purposes. SEI is not required for reconstructing the luma or chroma samples by a video decoder, and decoders are
not required to process this information for output order conformance to this Recommendation | International Standard
(see Annex C for the definition of output order conformance). If present in the bitstream, SEI messages shall follow the
syntax and semantics specified in this annex. If the content of an SEI message is conveyed for the application by some
means other than presence within the bitstream, the representation of the content of the SEI message is not required to
use the same syntax specified in this annex.

[Ed. Note (GJS): Should check on scope/persistence issues for SEL, in particular things that have a scope/persistence of
more than one picture and things that have a scope of only a slice.]

DRAFT ITU-T Rec. H.264 (2002 E) 203

D.1

204

SEI payload syntax

sei_payload(payloadType, payloadSize) {

Descriptor

if(payloadType==10)

buffering period(payloadSize)

else if(payloadType==1)

pic_timing(payloadSize)

else if(payloadType ==2)

pan_scan_rect(payloadSize)

else if(payloadType ==3)

filler_payload(payloadSize)

else if(payloadType ==4)

user_data_registered itu t t35(payloadSize)

else if(payloadType ==15)

user_data_unregistered(payloadSize)

else if(payloadType ==6)

recovery_point(payloadSize)

else if(payloadType ==7)

dec_ref pic_marking repetition(payloadSize)

else if(payloadType ==38)

spare_pic(payloadSize)

else if(payloadType ==9)

scene_info(payloadSize)

else if(payloadType ==10)

sub_seq_info(payloadSize)

else if(payloadType==11)

sub_seq layer characteristics(payloadSize)

else if(payloadType ==12)

sub_seq characteristics(payloadSize)

else if(payloadType ==13)

full frame freeze(payloadSize)

else if(payloadType == 14)

full frame freeze release(payloadSize)

else if(payloadType ==15)

full frame snapshot(payloadSize)

else if(payloadType ==16)

progressive refinement segment_start(payloadSize)

else if(payloadType ==17)

progressive refinement _segment end(payloadSize)

else if(payloadType ==18)

motion_constrained_slice group_set(payloadSize)

else

reserved_sei_message(payloadSize)

if('byte_aligned()) {

bit_equal_to_one /* equal to 1 */

f(1)

while(!byte aligned())

bit_equal_to zero /* equal to 0 */

f(1)

DRAFT ITU-T Rec. H.264 (2002 E)

D.11

D.1.2

DRAFT 1SO/IEC 14496-10 : 2002 (E)

Buffering period SEI message syntax

buffering period(payloadSize) { C | Descriptor
seq_parameter_set_id 5 | ue(v)
if(nal hrd parameters present flag == 1) {
for(k =0; k <= cpb_cnt minusl; k++) {
initial_cpb_removal_delay| k] 5 [uw)
initial_cpb_removal_delay offset[k] 5 [uw)
}
§
if(vel_hrd parameters present flag == 1) {
for(k =0; k <=cpb_cnt minusl; k++) {
initial_cpb_removal_delay[k] 5 |u(v)
initial_cpb_removal_delay_offset[k] 5 [uv)
§
}
§
Picturetiming SEI message syntax
pic_timing(payloadSize) { C | Descriptor
if(nal_hrd parameters_present flag || vcl hrd parameters present flag) {
cpb_removal_delay 5 [uWm)
dpb_output_delay 5 | uW)
§
pic_struct_present_flag 5 | u(l)
if(pic_struct present flag) {
pic_struct 5 [u4)
for(i=0; i <NumClockTS ; i++) {
clock_timestamp_flag[i] 5 | u(l)
if (clock timestamp flag[i]) {
ct_type 5 [u®)
nuit_field_based_flag 5 |u(l)
counting_type 5 | u®)
full_timestamp_flag 5 | u(l)
discontinuity_flag 5 1w
cnt_dropped_flag 5 1u()
nframes 5 | u®)
if(full_timestamp flag) {
seconds_value /* 0..59 */ 5 | u(6)
minutes value /* 0..59 */ 5 | u®)
hours value/* 0..23 */ u(s)
} else {
seconds flag 5 | u(l)

if(seconds_flag) {

DRAFT ITU-T Rec. H.264 (2002 E)

205

seconds value /* range 0..59 */ 5 | u(6)

minutes flag 5 [u)
if(minutes_flag) {
minutes value/* 0..59 */ 5 | u(6)
hours flag 5 [u)
if(hours_flag)
hours value/* 0..23 */ 5 [u®)
}
H
}
if(time_offset length >0)
time_offset 5 i)

D.1.3 Pan-scan rectangle SEI message syntax

[Ed. Note (GJS): Needs persistence indicator and multiple pan-scan count. See disposition notes for JVT-F013.]

pan_scan_rect(payloadSize) { C | Descriptor

pan_scan_rect_id ue(v)

pan_scan_rect_left offset se(v)

5

5
pan_scan_rect_right_offset 5 | se(v)

5

5

pan_scan_rect_top_offset se(v)
pan_scan_rect_bottom_offset se(v)
H
D.1.4 Filler payload SEI message syntax
filler_payload(payloadSize) { C | Descriptor
for(k = 0; k < payloadSize; k++)
ff_byte /* equal to OXxFF */ 5 | f(8)
b

206 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT 1SO/IEC 14496-10 : 2002 (E)

D.15 User dataregistered by ITU-T Recommendation T.35 SEI message syntax

D.1.6

D.1.7

D.1.8

user_data_registered itu t t35(payloadSize) { C | Descriptor
itu_t t35 country code 5 b(8)
if(itu_t t35 country code != OxFF)
i=1
else {
itu_t_t35 country_code extension_byte 5 b(8)
i=2
j
do {
itu_t t35 payload byte 5 b(8)
i++
} while(1 < payloadSize)
H
User data unregistered SEI message syntax
user_data_unregistered(payloadSize) { C | Descriptor
uuid_iso_11578 5 | b(128)
for(i=16; i < payloadSize; i++)
user_data payload byte 5 b(8)
}
Recovery point SEI message syntax
recovery point(payloadSize) { C | Descriptor
recovery frame cnt 5 | ue(v)
exact_match_flag 5 [u(l)
broken_link_flag 5 | u()
changing_slice_group_idc 5 [u?)
H
Decoded reference picture marking repetition SEI message syntax
dec ref pic_marking repetition(payloadSize) { C | Descriptor
original_idr_flag 5 | u(l)
original_frame num 5 | ue(v)
if(!frame mbs_only flag) {
original_field_pic flag 5 | u(l)
if(original field pic flag)
original_bottom_field_flag 5 |ul)
}
dec_ref pic_marking() 5
}

DRAFT ITU-T Rec. H.264 (2002 E)

207

D.1.9

Spar e picture SEI message syntax

spare_pic(payloadSize) { C | Descriptor
target_frame num 5 | ue(v)
spare field_flag 5 | u(l)
if(spare_field flag)
target_bottom_field flag u(l)
num_spare pics minusl ue(v)
for(1=0; 1 <num_ spare pics minusl+l1;i++) {
delta_spare frame num[i] 5 | ue(v)
if(spare_field flag)
spare bottom_field flag[i] u(l)
spare area_idc[i] ue(v)
if(spare area idc[i] == 1)
for(j = 0; j < PicSizeInMapUnits; j++)
spare_unit_flag[i][j] 5 | u(l)
else if(spare _area idc[i] == 2) {
mapUnitCnt =0, j=0
do {
zero_run_length[i][j] 5 | ue(v)
mapUnitCnt += zero_run length[i][j++]+ 1
}+ while(mapUnitCnt< PicSizeInMapUnits)
i
}
H
D.1.10 Sceneinformation SEI message syntax
scene_info(payloadSize) { C | Descriptor
scene_info_known_flag 5 [u)
if(scene_info _known_flag) {
scene id 5 | uev)
scene_transition_type 5 | uev)
if(scene_transition_type >3)
second_scene id 5 | uev)

208

DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT 1SO/IEC 14496-10 : 2002 (E)

D.1.11 Sub-sequenceinformation SEI message syntax

sub_seq_info(payloadSize) { C | Descriptor
sub_seq_layer_num 5 | ue(v)
sub_seq id 5 ue(v)
first_ref_pic flag 5 u(l)
leading_non_ref_pic flag 5 | ul)
last_pic_flag 5 u(l)
sub_seq_frame num_flag 5 | u(l)
if(sub_seq frame num_flag)
sub_seq frame num 5 | ue(v)
H
D.1.12 Sub-sequencelayer characteristics SEI message syntax
sub_seq layer characteristics(payloadSize) { C | Descriptor
num_sub_seq_layers minusl 5 | ue(v)
for(layer = 0; layer <= num_sub_seq_layers minusl; layer++) {
accurate statistics flag 5 | u()
average bit_rate 5 | u(16)
average frame rate 5 | u(l6)
H
H
D.1.13 Sub-sequence characteristics SEI message syntax
sub_seq_characteristics(payloadSize) { C | Descriptor
sub_seq_layer_num 5 | ue(v)
sub_seq_id 5 | ue(v)
duration_flag 5 | u)
if(duration_flag)
sub_seq_duration 5 | u(32)
average rate flag 5 | u(l)
if(average rate flag) {
accurate statistics flag 5 | u(l)
average bit_rate 5 | u(16)
average frame rate 5 | u(l6)
H
num_referenced_subseqs 5 | ue(v)
for(n=0; n <num_referenced subseqs; n++) {
ref_sub_seq_layer_num 5 | ue(v)
ref_sub_seq_id 5 | ue(v)
ref_sub_seq_direction 5 | u()
H
H

DRAFT ITU-T Rec. H.264 (2002 E) 209

D.1.14

D.1.15

D.1.16

D.1.17

D.1.18

D.1.19

210

Full-frame freeze SEI message syntax

full frame freeze(payloadSize) { Descriptor

}

Full-frame freeze release SEI message syntax

full frame freeze release(payloadSize) { Descriptor

}

Full-frame snapshot SEI message syntax

full frame snapshot(payloadSize) { Descriptor
snapshot_id ue(v)

}

Progressive refinement segment start SEI message syntax

progressive refinement segment start(payloadSize) { Descriptor
progressive refinement_id ue(v)
num_refinement_steps minusl ue(v)

}

Progressive refinement segment end SEI message syntax

progressive refinement segment end(payloadSize) { Descriptor
progressive refinement_id ue(v)

}

Mation-constrained slice group set SEI message syntax

motion_constrained_slice_group_set(payloadSize) { Descriptor
num_slice_groups in_set_minusl ue(v)
for(1=0;1<=num_slice groups in set minusl; i++)

dlice group_id[i] u(v)
exact_match_flag u(l)
pan_scan_rect_flag u(l)
if(pan_scan rect flag == 1)
pan_scan_rect_id ue(v)

DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT 1SO/IEC 14496-10 : 2002 (E)

D.1.20 Reserved SEI message syntax

reserved_sei_message(payloadSize) { C | Descriptor
for(i=0; 1 < payloadSize; i++)
reserved_sei_message payload_byte 5 | b(®)
}

D.2 SEI payload semantics

D.21 Buffering period SEI message semantics

If nal_hrd_parameters_present flag and vcl hrd parameters present flag are both equal to 0, no buffering period SEI
messages shall be present in the bitstream for the sequence.

Otherwise, a buffering period SEI message can be associated with any picture in the bitstream, and a buffering period
SEI message shall be associated with each IDR picture and with each picture associated with a recovery point SEI
message.

NOTE - For some applications, the frequent presence of a buffering period SEI message may be desirable.
A buffering period is specified as the set of pictures between two instances of the buffering period SEI message.

seq_parameter _set_id specifies the sequence parameter set that contains the sequence HRD attributes. The value of
seq_parameter_set_id shall be equal to the value of seq_parameter set id in the picture parameter set referenced by the
picture associated with the buffering period SEI message. The value of seq_parameter_set id shall be in the range of 0
to 31, inclusive.

initial_cpb_removal_delay: This syntax element represents the delay between the time of arrival in the CPB of the first
bit of the coded data associated with the picture associated with the buffering period SEI message and the time of
removal from the CPB of the coded data associated with the same picture. The syntax element is a fixed length code
whose length in bits is given by initial cpb_removal delay length minusl + 1. It is in units of a 90 kHz clock. The
initial cpb_removal delay syntax element is used in conjunction with the CPBs as specified in Annex C.
initial cpb_removal delay shall not be equal to 0 and shall not exceed the time-equivalent of the CPB size.

initial_cpb_removal_delay_offset: This syntax element is used in combination with the cpb_removal delay to compute
the initial delivery time of coded pictures to the CPB. It is in units of a 90 kHz clock. The
initial cpb_removal delay offset syntax element is a fixed length code whose length in bits is given by
initial cpb _removal delay length minusl+1. This syntax element is not used by decoders and is needed only for the
delivery scheduler described in Annex C.

Over the entire sequence, the sum of initial cpb_removal delay and initial cpb _removal delay offset shall be constant
and shall not exceed the time-equivalent of the CPB size.

D.2.2 Picturetiming SElI message semantics

If nal_hrd parameters present flag and vcl hrd parameters present flag are both equal to 0, no picture timing SEI
messages shall be present in the bitstream for the sequence.

Otherwise, a picture timing SEI Message shall be associated with each picture subsequent to the first picture in the
bitstream.

cpb_removal_delay specifies how many clock ticks (see Annex C) to wait after removal from the HRD CPB of the
picture associated with the most recent buffering period SEI message before removing from the buffer the picture data
associated with the picture timing SEI message. This value is also used to calculate an earliest possible time of arrival of
picture data into the CPB for the delivery scheduler, as specified in Annex C. The syntax element is a fixed length code

whose length in bits is given by cpb_removal delay length minusl+1. The cpb_removal delay is the remainder of a
2(cpbiremovalﬁdelayﬁlengthiminus1 +1) counter.

dpb_output_delay is used to compute the DPB output time. It specifies how many clock ticks to wait after removal of a
picture from the CPB before it can be output from the DPB (see Annex C).

NOTE - A picture is not removed from the DPB at its output time if it is still marked as "used for short-term reference" or "used
for long-term reference".

NOTE - Only one dpb_output_delay is specified for a decoded picture.

The size of the syntax element dpb output delay shall remain constant for the sequence and is given in bits by
dpb_output_delay length minusl+1.

DRAFT ITU-T Rec. H.264 (2002 E) 211

The picture output order implied by the values of this syntax element shall not contradict the order implied by the values
of PicOrder associated with the same picture (see subclause C.4.4). [Ed. Note (GJS): Need to reword to avoid vagueness
of "not contradict".]

pic_struct_present_flag: If and only if this syntax element is equal to 1, the pic_struct syntax element is present and
follows immediately. [Ed. Note (AG/GJS): Clarify relation to timing, POC, etc.]

pic_struct: This parameter indicates whether a picture should be displayed as a frame or one or more fields, according to
Table D-1.

Table D-1—Interpretation of pic_struct

Value Indicated display of picture Restrictions NumClockTS
0 frame field pic flag shall be 0 1
1 top field field pic flag shall be 1, 1
bottom field flag shall be 0
2 bottom field field pic flag shall be 1, 1
bottom field flag shall be 1
3 top field, bottom field, in that order field pic flag shall be 0 2
4 bottom field, top field, in that order field pic flag shall be 0 2
5 top field, bottom field, top field repeated, in | field pic_flag shall be 0 3
that order
6 bottom field, top field, bottom field repeated, | field pic_flag shall be 0 3
in that order
7 frame doubling field pic flag shall be 0 2
8 frame tripling field pic flag shall be 0 3
9..15 reserved

NumClockTS is determined by pic struct as specified in Table D-1. There are up to NumClockTS sets of clock
timestamp information for a picture, as specified by clock timestamp flag[i] for each set. The sets of clock timestamp
information apply to the field(s) or the frame associated with the picture by pic_struct. In the case of fields, the order of
the timestamps is the same as the output order of the fields, as specified by pic_struct. Two fields associated with a
frame may have different values of ct_type. If EquivalentTimestamp is equal for two fields of opposite parity that are
adjacent in output order, both with ct_type equal to 0 (progressive) or ct_type equal to 2 (unknown), then the two fields
are specified to have come from the same original frame. Two adjacent fields in output order shall have different values
of EquivalentTimestamp if the value of ct_type for either field is 1 (interlaced).

The contents of the clock timestamp SEI message specify an ideal output time computed as

EquivalentTimestamp = ((HH * 60 + MM) * 60 + SS) * time_scale +
NF * (num_units_in_tick * (1 + nuit_field based flag))+ TO, (D-1)

in units of ticks of a clock with clock frequency equal to time scale Hz. The EquivalentTimestamp is the ideal output
time assuming a display that can display frames and fields at any time without regard to a frame or field rate. [Ed.Note:
(TW) no assumptions in normative text] If two or more frames with pic_struct equal to 0 are adjacent in output order and
have equal values of EquivalentTimestamp, the ideal display duration for all such frames except for the last frame in
output order is 0, and ideally only the last frame is displayed. Note that nframes and NF are frame-based counts.

Frame doubling indicates that the frame should be displayed two times consecutively and frame tripling indicates that the
frame should be displayed three times consecutively. Frame doubling and frame tripling can be used for display of
progressive frame rates.

NOTE - Frame doubling facilitates for the decoder to construct and display for example 50p from 25p broadcasted and 59.94p

from 29.97p. Using frame doubling and frame tripling in combination on every other frame facilitates to display and reconstruct
59.94p from 23.98p.

clock_timestamp_flag[i]: If this syntax element is equal to 1, a number of clock timestamp fields are present and
follow immediately.

212 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT ISO/IEC 14496-10 : 2002 (E)
ct_type: This parameter indicates the type (interlaced or progressive) of the original material as follows:

Table D-2 —Mapping of ct_typeto original picture scan

Value pi(c:)tLirg éns?;lan
0 progressive
1 interlaced
2 unknown
3 reserved

nuit_field_based_flag: Used in calculating EquivalentTimestamp, as specified in Equation D-1.

counting_type: Specifies the method of dropping values of the nframes parameter as specified in Table D-3.

Table D-3 — Definition of counting_type values

Value Interpretation

0 no dropping of nframes count values and no use of
time offset

| no dropping of nframes count values

2 dropping of individual zero values of nframes count

3 dropping of individual MaxFPS-1 values of nframes
count

4 dropping of the two lowest (value 0 and 1) nframes

counts when seconds value is equal to 0 and
minutes value is not an integer multiple of 10

5 dropping of unspecified individual nframes count values

6 dropping of unspecified numbers of unspecified nframes
count values

7..31 reserved

full_timestamp_flag specifies whether the nframes parameter is followed by seconds_value or seconds_flag.

discontinuity_flag specifies whether the time difference between the current value of EquivalentTimestamp and the
value of EquivalentTimestamp computed from the previously clock timestamp in decoding order can be interpreted as a
true time difference. A value of 0 specifies that the difference represents a true time difference.

cnt_dropped_flag specifies the skipping of one or more values of nframes using the counting method specified by
counting_type.

nframes specifies the value of NF used to compute the EquivalentTimestamp. nframes shall be less than

MaxFPS = Ceil(time scale + num_units_in_tick) (D-2)

If counting_type is equal to 2 and cnt_dropped flag is equal to 1, nframes shall be equal to 1 and the value of nframes
for the previous picture in output order shall not be equal to 0 unless discontinuity flag is equal to 1.
NOTE — When counting_type is equal to 2, the need for increasingly large magnitudes of TO in Equation D-1 when using fixed
non-integer frame rates (e.g., 12.5 frames per second with time scale equal to 25 and num units in tick equal to 2 and
nuit_field based flag equal to 0) can be avoided by occasionally skipping over the value nframes equal to 0 when counting (e.g.,
counting nframes from 0 to 12, then incrementing seconds value and counting nframes from 1 to 12, then incrementing
seconds_value and counting nframes from 0 to 12, etc.).

If counting_type is equal to 3 and cnt_dropped flag is equal to 1, nframes shall be equal to 0 and the value of nframes
for the previous picture in output order shall not be equal to MaxFPS — 1 unless discontinuity flag is equal to 1.

DRAFT ITU-T Rec. H.264 (2002 E) 213

NOTE — When counting_type is equal to 3, the need for increasingly large magnitudes of TO in Equation D-1 when using fixed
non-integer frame rates (e.g., 12.5 frames per second with time scale equal to 25 and num_units_in_tick equal to 2 and
nuit_field based flag equal to 0) can be avoided by occasionally skipping over the value nframes equal to MaxFPS when counting
(e.g., counting nframes from 0 to 12, then incrementing seconds value and counting nframes from 0 to 11, then incrementing
seconds_value and counting nframes from 0 to 12, etc.).

If counting_type is equal to 4 and cnt_dropped_flag is equal to 1, nframes shall be equal to 2 and the specified value of

SS shall be zero and the specified value of MM shall not be an integer multiple of ten and nframes for the previous

picture in output order shall not be equal to 0 or 1 unless discontinuity flag is equal to 1.
NOTE — When counting_type is equal to 4, the need for increasingly large magnitudes of TO in Equation D-1 when using fixed
non-integer frame rates (e.g., 30000+-1001 frames per second with time scale equal to 60000 and num_units_in_tick equal to
1001 and nuit_field based flag equal to 1) can be reduced by occasionally skipping over the value nframes equal to MaxFPS
when counting (e.g., counting nframes from 0 to 29, then incrementing seconds_value and counting nframes from 0 to 29, etc.,
until the seconds_value is zero and minutes_value is not an integer multiple of ten, then counting nframes from 2 to 29, then
incrementing seconds_value and counting nframes from 0 to 29, etc.). This counting method is well known in industry and is
often referred to as "NTSC drop-frame" counting.

If counting_type is equal to 5 or 6 and cnt_dropped_flag is equal to 1, nframes shall not be equal to 1 plus the value of
nframes for the previous picture in output order modulo MaxFPS unless discontinuity flag is equal to 1.
NOTE — When counting_type is equal to 5 or 6, the need for increasingly large magnitudes of TO in Equation D-1 when using

fixed non-integer frame rates can be avoided by occasionally skipping over some values of nframes when counting. The specific
values of nframes that are skipped are not specified when counting_type is equal to 5 or 6.

seconds flag specifies whether seconds_value is present when full_timestamp_flag is equal to 0.

seconds _value specifies the value of SSused to compute the EquivalentTimestamp. seconds_value shall not exceed 59.
If not present, the previous seconds_value in decoding order shall be used as SSto compute the EquivalentTimestamp.

minutes flag specifies whether seconds_value is present when full timestamp_flag is equal to 0 and seconds flag is
equal to 1.

minutes value specifies the value of MM used to compute the EquivalentTimestamp. minutes_value shall not exceed
59. If not present, the previous minutes value in decoding order shall be used as MM to compute the
EquivalentTimestamp.

hours flag specifies whether seconds_value is present when full_timestamp_flag is equal to 0 and seconds_flag is equal
to 1 and minutes_flag is equal to 1.

hours_value specifies the value of HH used to compute the EquivalentTimestamp. hours_value shall not exceed 23. If
not present, the previous hours_value in decoding order shall be used as HH to compute the EquivalentTimestamp.

time_offset specifies the value of TO used to compute the EquivalentTimestamp. The number of bits used to represent
time_offset shall be equal to time_offset length. If time offset is not present, the value 0 shall be used as TO to compute
the EquivalentTimestamp.

D.2.3 Pan-scan rectangle SEI message semantics

The pan-scan rectangle SEI message parameters define the coordinates of a rectangle relative to the cropping rectangle of
the picture parameter set. Each coordinate of this rectangle is specified in units of one-sixteenth sample spacing relative
to the luma sampling grid.

[Ed. Note (GJS): Needs persistence indicator and multiple pan-scan count. See disposition notes for JVT-F013.]

pan_scan_rect_id contains an identifying number that may be used to identify the purpose of the pan-scan rectangle (for
example, to identify the rectangle as the area to be shown on a particular display device or as the area that contains a
particular actor in the scene). pan_scan_rect_id shall not exceed 2*2-1.

Values of pan_scan_rect_id from 0 to 255 and from 512 to 2°'-1 may be used as determined by the application. Values
of pan_scan_rect_id from 256 to 511 and from 2*' to 2**-1 are reserved for future use by ITU-T | ISO/IEC. Decoders
encountering a value of pan_scan_rect _id in the range of 256 to 511 or in the range of 2*'to 2**-1 shall ignore (remove
from the bitstream and discard) it.

pan_scan_rect_left offset, pan_scan_rect_right_offset, pan_scan_rect_top offset, and
pan_scan_rect_bottom_offset specify, as signed integer quantities in units of one-sixteenth sample spacing relative to
the luma sampling grid, the location of the pan-scan rectangle. The values of each of these four syntax elements shall be
inside the interval from -23' to 23!-1, inclusive.

The pan-scan rectangle is specified, in units of one-sixteenth sample spacing relative to the luma sampling grid, as the
area of the rectangle with horizontal coordinates from 32 * frame crop left offset + pan_scan_rect left offset to 32 * [8
* PicWidthInMbs — frame crop right offset] + pan scan rect right offset — 1 and with vertical coordinates from 32 *
frame crop top offset + pan scan rect top offset to 32 * [8 * PicHeightInMbs — frame crop bottom offset] +

214 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT 1SO/IEC 14496-10 : 2002 (E)

pan_scan_rect_bottom offset — 1, inclusive. If this rectangular area includes samples outside of the cropping rectangle,
the region outside of the cropping rectangle may be filled with synthesized content (such as black video content or
neutral grey video content) for display.

The value of 32 * frame crop left offset + pan scan rect left offset shall be less than or equal to 32 * [8 *
PicWidthInMbs — frame crop right offset] + pan_scan rect right offset— 1.

The value of 32 * frame crop top offset + pan scan rect top offset shall be less than or equal to 32 * [§8 *
PicHeightInMbs — frame crop bottom_offset] + pan_scan_rect bottom_offset — 1. [Ed. Note: The values of the left and
right parameters need also to be limited to guarantee that the indicated rectangule is not empty. (GJS): I believe they
already are — run through the numbers and see.] [Ed. Note (GJS): Probably need to specify such that if frame mbs only
is false, the height of the cropping rectangle is a multiple of 4 luma samples instead of 2 — otherwise, association of
chroma samples to fields gets tricky.]

D.24 Filler payload SEI message semantics
This message contains a series of payloadSize bytes of value OxFF, which can be discarded.

ff_byte shall be a byte having the value OxFF.

D.25 User dataregistered by ITU-T Recommendation T.35 SEI message semantics

This message contains user data registered as specified by ITU-T Recommendation T.35, the contents of which are not
specified by this Recommendation | International Standard.

itu_t_t35 country_code shall be a byte having a value specified as a country code by ITU-T Recommendation T.35
Annex A.

itu_t_t35 country_code extension_byte shall be a byte having a value specified as a country code by ITU-T
Recommendation T.35 Annex B.

itu_t_t35 payload_byte shall be a byte containing data registered as specified by ITU-T Recommendation T.35.

The ITU-T T.35 terminal provider code and terminal provider oriented code shall be contained in the first one or more
bytes of the itu_t t35 payload byte, in the format specified by the Administration that issued the terminal provider code.
Any remaining itu_t t35 payload byte data shall be data having syntax and semantics as specified by the entity
identified by the ITU-T T.35 country code and terminal provider code.

D.2.6 User dataunregistered SEI message semantics

This message contains unregistered user data identified by a UUID, the contents of which are not specified by this
Recommendation | International Standard.

uuid_iso_ 11578 shall have a value specified as a UUID according to the procedures of ISO/IEC 11578:1996 Annex A.

user_data payload_byte shall be a byte containing data having syntax and semantics as specified by the UUID
generator.

D.2.7 Recovery point SEI message semantics

The recovery point SEI message assists a decoder in determining when the decoding process will produce acceptable
pictures for display after the decoder initiates random access or after the encoder indicates a broken link in the sequence.
All decoded pictures at or subsequent to the recovery point in output order specified in this SEI message are indicated to
be correct or approximately correct in content, if the decoding process is started at the first picture in decoding order after
the recovery point SEI message. Decoded pictures produced by random access at or before the picture associated with
the recovery point SEI message need not be correct in content until the indicated recovery point, and the operation of the
decoding process starting at the picture associated with the recovery point SEI message may contain references to
pictures not available in the decoded picture buffer.

In addition, by use of the broken_link flag, the recovery point SEI message can indicate to the decoder the location of
some pictures in the bitstream that can result in serious visual artefacts if displayed, even when the decoding process was
begun at a previous IDR point in decoding order.

NOTE — The broken_link flag can be used by encoders to indicate the location of a splice point after which the decoding process

for the decoding of some pictures may cause references to pictures that, though available for use in the decoding process, are not
the pictures that were used for reference when the bitstream was originally encoded.

The recovery point is specified as a count in units of coded pictures subsequent to the current picture at the position of
the SEI message.

NOTE — If HRD information is present in the bitstream, a buffering period SEI message should be associated with the picture
associated with the recovery point SEI message in order to establish initialisation of the HRD buffer model after a random access.

DRAFT ITU-T Rec. H.264 (2002 E) 215

recovery_frame_cnt specifies the recovery point of output pictures in output order. All decoded pictures in output order
are indicated to be correct or approximately correct in content starting at the output order position of the reference picture
having the frame num equal to the frame num of the next slice incremented by recovery frame cnt in modulo
MaxFrameNum arithmetic. recovery frame_cnt shall not exceed MaxFrameNum-1.

exact_match_flag indicates whether decoded pictures at and subsequent to the specified recovery point in output order
derived by starting the decoding process at the picture associated with the recovery point SEI message shall be an exact
match to the pictures that would be produced by a decoder starting at the previous IDR point in the NAL unit stream.
The value 0 indicates that the match need not be exact and the value 1 indicates that the match shall be exact.

If decoding starts from the location of the recovery point SEI message, all references to unavailable reference pictures
shall be inferred as references to pictures containing only intra macroblocks and having sample values given by
Y=Cb=Cr=128 (mid-level grey) for purposes of determining the conformance of the value of exact match flag.
NOTE — When performing random access, decoders should infer all references to unavailable reference pictures as references to
pictures containing only intra macroblocks and having sample values given by Y=Cb=Cr=128 (mid-level grey), regardless of the
value of exact match flag.

broken_link_flag indicates the presence or absence of a broken link in the NAL unit stream at the location of the
recovery point SEI message. If broken link flag is equal to 1, pictures produced by starting the decoding process at the
previous IDR point may contain undesirable visual artefacts due to splicing operations and the pictures at and subsequent
to the picture associated with the recovery point SEI message in decoding order should not be displayed until the
specified recovery point in output order. If broken link flag is equal to 0, no indication is given regarding any potential
presence of visual artefacts.

Regardless of the value of the broken link flag, pictures subsequent to the specified recovery point in output order are
specified to be correct or approximately correct in content.
NOTE - If a sub-sequence information SEI message is transmitted in conjunction with a recovery point SEI message in which
broken link flag is equal to 1 and if sub_seq layer num is 0, sub_seq id should be different from the latest sub_seq id for
sub_seq_layer num equal to O that was decoded prior to the location of the recovery point SEI message. If broken link flag is
equal to 0, the sub_seq_id in sub-sequence layer 0 should remain unchanged.

changing_slice_group_idc shall be 0, if num_slice_groups minusl is 0 in any picture within the changing slice group
period, i.e., the period between the picture associated with the recovery point SEI message (inclusive) and the specified
recovery point (exclusive) in decoding order. changing slice group idc equal to 0 indicates that if all macroblocks of the
pictures within the changing slice group period are decoded, decoded pictures are correct or approximately correct in
content at and subsequent to the recovery point in output order.

If changing slice group idc equal to 1 or 2, num_ slice groups minusl shall be 1 and the macroblock-to-slice-group
map type 3, 4, or 5 shall be applied in the changing slice group period.

changing slice group idc equal to 1 indicates that within the changing slice group period no sample values outside the
decoded macroblocks covered by slice group 0 are used in inter prediction of any macroblock within slice group 0. In
addition, changing_slice group_idc equal to 1 indicates that if all macroblocks in slice group 0 within the changing slice
group period are decoded, decoded pictures are correct or approximately correct in content at and subsequent to the
specified recovery point in output order regardless of whether any macroblock in slice group 1 within the changing slice
group period are decoded.

changing_slice_group idc equal to 2 indicates that within the changing slice group period no sample values outside the
decoded macroblocks covered by slice group 1 are used in inter prediction of any macroblock within slice group 1. In
addition, changing_slice group_idc equal to 2 indicates that if all macroblocks in slice group 1 within the changing slice
group period are decoded, decoded pictures are correct or approximately correct in content at and subsequent to the
specified recovery point in output order regardless of whether any macroblock in slice group 0 within the changing slice
group period are decoded.

changing_slice group idc shall be in the range of 0 to 2, inclusive.

D.2.8 Decoded reference picture marking repetition SEI message semantics

The decoded reference picture marking repetition SEI message is used to repeat the decoded reference picture marking
syntax structure that was located in the slice header of an earlier picture in the sequence in decoding order.

original_idr_flag shall be equal to 1 if the decoded reference picture marking syntax structure occurred originally in an
IDR picture. original idr flag shall be equal to O if the repeated decoded reference picture marking syntax structure did
not occur in an IDR picture originally.

original_frame_num shall be equal to the frame num of the picture where the repeated decoded reference picture
marking syntax structure originally occurred.

216 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT 1SO/IEC 14496-10 : 2002 (E)

original_field_pic_flag shall be equal to the field pic flag of the picture where the repeated decoded reference picture
marking syntax structure originally occurred.

original_bottom_field_flag shall be equal to the bottom _field flag of the picture where the repeated decoded reference
picture marking syntax structure originally occurred.

dec_ref pic_marking() shall contain a copy of the decoded reference picture marking syntax structure of the picture
whose frame num was original frame num. The nal unit type used for specification of the repeated
dec_ref pic_marking() syntax structure shall be the nal unit_type of the slice header(s) of the picture whose frame num
was original frame num (i.e., nal unit type as used in subclause 7.3.3.3 shall be considered equal to 5 if
original idr flag is equal to 1 and shall not be considered equal to 5 if original idr flag is equal to 0).

D.2.9 Sparepicture SEI message semantics

This SEI message indicates that certain slice group map units, called spare slice group map units, in one or more decoded
reference pictures resemble the co-located slice group map units in a specified decoded picture called the target picture.
A spare slice group map unit may be used to replace a co-located, incorrectly decoded slice group map unit, in the target
picture. A decoded picture containing spare slice group map units is called a spare picture.

For all spare pictures identified in a spare picture SEI message, the value of frame mbs_only flag shall be equal to the
value of frame_mbs_only flag of the target picture in the same SEI message. If the target picture is a decoded field, then
all spare pictures identified in the same SEI message shall be decoded fields. If the target picture is a decoded frame, then
all spare pictures identified in the same SEI message shall be decoded frames. For all spare pictures identified in a spare
picture SEI message, the values of pic width in mbs minusl and pic_height in map units minusl shall be equal to
the values of pic_width in mbs minusl and pic_height in map units minusl, respectively, of the target picture in the
same SEI message. The picture associated (as specified in subclause 7.4.1.2) with this message shall appear after the
target picture, in decoding order.

target_frame _num indicates the frame num of the target picture.

spare_field_flag equal to 0 indicates that the target picture and the spare pictures are decoded frames. spare field flag
equal to 1 indicates that the target picture and the spare pictures are decoded fields.

target_bottom_field_flag equal to 0 indicates that the target picture is a top field. target bottom_field flag equal to 1
indicates that the target picture is a bottom field.

A target picture is a decoded reference picture whose corresponding primary coded picture precedes the current picture,
in decoding order, and in which the values of frame num, field pic flag (if present) and bottom field flag (if present)
are equal to target frame num, spare field flag and target bottom field flag, respectively.

num_spare_pics minusl indicates the number of spare pictures for the specified target picture. The number of spare
pictures equals num_spare pics minusl + 1. num_spare pics minusl shall be in the range of 0 to 15, inclusive.

delta_spare frame _num|[i] is used to identify the spare picture that contains the i-th set of spare slice group map units,
hereafter called the i-th spare picture, as specified below. The delta_spare frame num| i] shall be in the range of 0 to
MaxFrameNum - 1 - Ispare_field flag, inclusive.

The frame num of the i-th spare picture, spareFrameNum|[i], is derived as follows for all values of i from O to
num_spare pics_minusl, inclusive:

candidateSpareFrameNum = target frame num - !spare field flag
for (1=0; 1 <=num_spare pics minusl; i++) {
if (candidateSpareFrameNum < 0)
candidateSpareFrameNum = MaxFrameNum — 1
spareFrameNum| i] = candidateSpareFrameNum — delta_spare frame num[1i]
if(spareFrameNum[i]<0)
spareFrameNum|[i | = MaxFrameNum + spareFrameNum| i]
candidateSpareFrameNum = spareFrameNum| i | - !spare field flag

} (D-3)

spare_bottom_field_flag[i] equal to 0 indicates that the i-th spare picture is a top field. spare_bottom_field flag[i]
equal to 1 indicates that the i-th spare picture is a bottom field.

The 0-th spare picture is a decoded reference picture whose corresponding primary coded picture precedes the target
picture, in decoding order, and in which the values of frame num, field pic flag (if present) and bottom field flag (if
present) are equal to spareFrameNum][O], spare field flag and spare bottom field flag[O], respectively. The i-th
spare picture is a decoded reference picture whose corresponding primary coded picture precedes the (i-1)th spare

DRAFT ITU-T Rec. H.264 (2002 E) 217

picture, in decoding order, and in which the values of frame num, field pic_flag (if present) and bottom field flag (if
present) are equal to spareFrameNum| i], spare_field flag and spare bottom_field flag[i], respectively.

spare _area idc[i] indicates the method used to identify the spare slice group map units in the i-th spare picture.
spare_area_idc[i] shall be in the range of 0 to 2, inclusive. spare area idc[i] equal to 0 indicates that all slice group
map units in the i-th spare picture are spare units. spare area idc[i] equal to 1 indicates that the value of the syntax
element spare unit_flag[i][j] is used to identify the spare slice group map units. spare unit flag[i][]] equal to 0
indicates that the j-th slice group map unit in raster scan order in the i-th spare picture is a spare unit.
spare_unit_flag[i][j] equal to 1 indicates that the that j-th slice group map unit in raster scan order in the i-th spare
picture is not a spare unit. spare_area_idc[i] equal to 2 indicates that the zero_run_length[i][j] syntax element is
used to derive the values of spareUnitFlaginBoxOutOrder[i][j], as described below [Ed. Note: might be better to
assign an equation number? (YKW): Yes.]. In this case, the spare slice group map units identified in
spareUnitFlaginBoxOutOrder[i][j] appear in counter-clockwise box-out order, as specified in subclause 8.2.4.4, for
each spare picture. spareUnitFlaginBoxOutOrder[i][j] equal to 0 indicates that the j-th slice group map unit in counter-
clockwise box-out order in the i-th spare picture is a spare unit. spareUnitFlaginBoxOutOrder[i][j] equal to 1 indicates
that the that j-th slice group map unit unit in counter-clockwise box-out order in the i-th spare picture is not a spare unit.

If spare_area_idc[O] is equal to 2, spareUnitFlaginBoxOutOrder[O][j] is derived as follows:

for(j =0, loop = 0; j < PicSizeInMapUnits; loop++) {
for(k = 0; k <zero run length[O][loop]; k++)
spareUnitFlaginBoxOutOrder[0][j++]=0
spareUnitFlaginBoxOutOrder[0][j++] =1

If spare_area idc[i] is equal to 2 and the value of i is greater than 0, spareUnitFlaginBoxOutOrder[i][j] is derived as
follows:

for(j = 0, loop = 0; j < PicSizeInMapUnits; loop++) {
for(k =0; k <zero_run_length[i][loop]; k++)
spareUnitFlagInBoxOutOrder][i][j] = spareUnitFlaginBoxOutOrder[i- 1][j++]
spareUnitFlaginBoxOutOrder[i][j] = !spareUnitFlaginBoxOutOrder[i - 1][j++]

§
D.2.10 Sceneinformation SEI message semantics

A scene and a scene transition are herein defined as a set of consecutive pictures in output order.

NOTE - Decoded pictures within one scene generally have similar content. The scene information SEI message is used to label
pictures with scene identifiers and to indicate scene changes. The message specifies how the uncoded source pictures for the
labeled pictures were created. The decoder may use the information to select an appropriate algorithm to conceal transmission
errors. For example, a specific algorithm may be used to conceal transmission errors that occurred in pictures belonging to a
gradual scene transition. Furthermore, the scene information SEI message may be used in a manner determined by the application,
such as for indexing the scenes of a coded sequence.

A scene information SEI message labels all pictures, in decoding order, from the primary coded picture to which the SEI
message is associated (inclusive), as specified in subclause [7.4.1.2], to the primary coded picture to which the next
scene information SEI message, in decoding order, is associated (exclusive). These pictures are herein referred to as the
target pictures.

scene_info_known_flag equal to 0 indicates that the scene or scene transition to which the target pictures belong is
unspecified. scene info known flag equal to 1 indicates that the target pictures belong to the same scene or scene
transition.

scene_id identifies the scene to which the target pictures belong. The value of scene_id shall be the same as the value of
the scene_id of the previous picture, in output order, that is marked with a value of scene_transition_type less than 4, if
the value of scene_transition_type of the target pictures is greater than 3 and if the target pictures and the previous
picture (in output order) that is marked with a value of scene_transition_type less than 4 originate from the same uncoded
source scene.

scene_id shall be in the range of 0 to 2**-1, inclusive. Values of scene_id from 0 to 255 and from 512 to 2*'-1 may be
used as determined by the application. Values of scene_id from 256 to 511 and from 2*' to 2*2-1 are reserved for future
use by ITU-T | ISO/IEC. Decoders encountering a value of scene_id in the range of 256 to 511 or in the range of 2°*' to
2%2_1 shall ignore (remove from the bitstream and discard) it.

scene_transition_type specifies in which type of a scene transition, if any, the target pictures are involved. The valid
values of scene_transition_type are specified in Table D-4.

218 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT 1SO/IEC 14496-10 : 2002 (E)

Table D-4 — Scenetransition types.

Value Description

0 No transition

1 Fade to black

2 Fade from black

3 Unspecified transition from or to constant colour
4 Dissolve

5 Wipe

6 Unspecified mixture of two scenes

If scene_transition_type is greater than 3, the target pictures include contents both from the scene labeled by its scene id
and the next scene, in output order, which is labeled by second scene id (see below). The term “the current scene” is
used to indicate the scene labeled by scene id. The term “the next scene” is used to indicate the scene labeled by
second_scene_id. It is not required for any following picture, in output order, to be labeled with scene id equal to
second_scene_id of the current SEI message.

Scene transition types are specified as follows.

“No transition” specifies that the target pictures are not involved in a gradual scene transition.

NOTE - If two consecutive pictures in output order have scene_transition type equal to zero and different values of scene id, a
scene cut occurred between the two pictures.

“Fade to black” indicates that the target pictures are part of a sequence of pictures, in output order, involved in a fade to
black scene transition, i.e., the luma samples of the scene gradually approach zero and the chroma samples of the scene
gradually approach 128. If two pictures are labeled to belong to the same scene transition and their scene_transition_type
is "Fade to black", the later one, in output order, is darker than the previous one.

“Fade from black” indicates that the target pictures are part of a sequence of pictures, in output order, involved in a fade
from black scene transition, i.e., the luma samples of the scene gradually diverge from zero and the chroma samples of
the scene may gradually diverge from 128. If two pictures are labeled to belong to the same scene transition and their
scene_transition_type is "Fade from black”, the later one in output order is lighter than the previous one.

“Dissolve” indicates that the sample values of each target picture (before encoding) were generated by calculating a sum
of co-located weighted sample values of a picture from the current scene and a picture from the next scene. The weight
of the current scene gradually decreases from full level to zero level, whereas the weight of the next scene gradually
increases from zero level to full level. If two pictures are labeled to belong to the same scene transition and their
scene_transition_type is "Dissolve", the weight of the current scene for the later one, in output order, is smaller than the
weight of the current scene for the previous one, and the weight of the next scene for the later one, in output order, is
larger than the weight of the current scene for the previous one.

“Wipe” indicates that some of the sample values of each target picture (before encoding) were generated by copying co-
located sample values of a picture in the next scene. If two pictures are labeled to belong to the same scene transition and
their scene_transition_type is "Wipe", the number of samples copied from the next scene for the later one in output order
is larger than the previous one.

second_scene id identifies another scene in the gradual scene transition in which the target pictures are involved. The
value of second_scene_id shall be the same as the value of scene_id of the next picture, in output order, that is marked
with a value of scene transition_type less than 4, if the target pictures and the next picture (in output order) that is
marked with a value of scene_transition type less than 4 originate from the same uncoded source scene. The value of
second_scene_id shall not be equal to the value of scene id in the previous picture, in output order.

If the value of scene_id of a picture is equal to the value of scene_id of the following picture, in output order, and the
value of scene_transition_type in both of these pictures is equal to 0, these two pictures belong to the same scene. If the
value of scene id of a picture is equal to the value of scene id of the following picture, in output order, and the value of
scene_transition_type in both of these pictures is less than 4, these two pictures originate from the same uncoded source
scene. If the values of scene id, scene_transition type and second scene id of a picture are equal to the values of
scene_id, scene_transition_type and second scene_id (respectively) of the following picture, in output order, these two
pictures belong to the same scene transition.

second_scene_id shall be in the range of 0 to 2*2-1, inclusive. Values of second scene_id from 0 to 255 and from 512 to
2°'-1 may be used as determined by the application. Values of second scene id from 256 to 511 and from 2°' to 2*2-1
are reserved for future use by ITU-T | ISO/IEC. Decoders encountering a value of second scene id in the range of 256
to 511 or in the range of 2*' to 2%2-1 shall ignore (remove from the bitstream and discard) it.

DRAFT ITU-T Rec. H.264 (2002 E) 219

D.2.11 Sub-sequenceinformation SEI message semantics

The sub-sequence information SEI message is used to indicate the position of a picture in data dependency hierarchy that
consists of sub-sequence layers and sub-sequences.

A sub-sequence layer contains a subset of the coded pictures in a sequence. Sub-sequence layers are numbered with non-
negative integers. A layer having a larger layer number is a higher layer than a layer having a smaller layer number. The
layers are ordered hierarchically based on their dependency on each other so that a layer does not depend on any higher
layer and may depend on lower layers. In other words, layer 0 is independently decodable, pictures in layer 1 may be
predicted from layer O, pictures in layer 2 may be predicted from layers 0 and 1, etc.

NOTE: The subjective quality is expected to increase along with the number of decoded layers.

A sub-sequence is a set of coded pictures within a sub-sequence layer. A picture shall reside in one sub-sequence layer
and in one sub-sequence only. A sub-sequence shall not depend on any other sub-sequence in the same or in a higher
sub-sequence layer. A sub-sequence in layer 0 can be decoded independently of any picture that does not belong to the
sub-sequence.

The sub-sequence information SEI message concerns the picture containing the next slice or slice data partition in
decoding order. The picture to which the next slice or slice data partition belongs is herein referred to as the current
picture.

The sub-sequence information SEI message shall not be present unless required frame num_update behaviour flag in
the sequence parameter set referenced by the picture associated with the sub-sequence SEI message is equal to 1.

sub_seq_layer_num specifies the sub-sequence layer number of the current picture. If sub_seq layer num is greater
than 0, memory management control operations shall not be used in any slice header of the current picture. If the current
picture resides in a sub-sequence whose first picture in decoding order is an IDR picture, the value of sub_seq_id shall be
the same as the value of idr_pic_id of the IDR picture. For a non-paired reference field, the value of sub_seq layer num
shall be equal to 0. sub_seq_layer num shall be less than 256.

sub_seq_id identifies the sub-sequence within a layer. If the current picture resides in a sub-sequence whose first picture
in decoding order is an IDR picture, the value of sub_seq id shall be the same as the value of idr_pic_id of the IDR
picture. sub_seq_id shall be less than 65536.

first_ref_pic flag equal to 1 specifies that the current picture is the first reference picture of the sub-sequence in
decoding order. Otherwise, the first ref pic flag shall be equal to 0.

leading_non_ref_pic_flag equal to 1 specifies that the current picture is a non-reference picture preceding any reference
picture in decoding order within the sub-sequence or that the sub-sequence contains no reference pictures. Otherwise, the
leading_non_ref pic flag shall be equal to 0.

last_pic_flag equal to 1 specifies that the current picture is the last picture of the sub-sequence (in decoding order),
including all reference and non-reference pictures of the sub-sequence. For any other pictures, the last_pic_flag shall be
0.

The current picture is the first picture of a sub-sequence in decoding order, if no earlier picture in decoding order is
labelled with the same sub_seq _id and sub_seq layer num as the current picture, or if the leading non_ref pic flag is
equal to 1 and the leading non_ref pic flag is equal to O in the previous picture in decoding order having the same
sub_seq id and sub_seq layer num as the current picture, or if the first ref pic flag is equal to 1 and the
leading_non_ref pic flag is equal to 0 in the previous picture in decoding order having the same sub seq id and
sub_seq layer num as the current picture, or if the last pic flag is equal to 1 in the previous picture in decoding order
having the same sub_seq id and sub_seq layer num as the current picture. Otherwise, the current picture belongs to the
same sub-sequence as the previous picture in decoding order having the same sub_seq id and sub_seq layer num as the
current picture.

sub_seq_frame_num_flag equal to 0 specifies that sub_seq frame num is not present. sub_seq frame num_flag equal
to 1 specifies that sub_seq_frame num is present.

sub_seq_frame_num shall be equal to 0 for the first reference picture of the sub-sequence and for any non-reference
picture preceding the first reference picture of the sub-sequence in decoding order. For each coded picture belonging to
the sub-sequence in decoding order, sub_seq frame num shall be incremented by 1, in modulo MaxFrameNum
operation, relative to the previous reference frame that belongs to the sub-sequence. Both fields of a frame, if present,
shall have the same sub_seq frame num. sub_seq frame num shall be less than MaxFrameNum.

If the current picture is an IDR picture, it shall start a new sub-sequence in sub-sequence layer 0. Thus, the
sub_seq layer num shall be 0, the sub_seq_id shall be different from the previous sub-sequence in sub-sequence layer 0,
first_ref pic flag shall be 1, and leading non_ref pic_flag shall be equal to 0.

220 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT 1SO/IEC 14496-10 : 2002 (E)

If the sub-sequence information SEI message is present for both coded fields of a complementary field pair, the values of
sub_seq layer num, sub_seq id, leading non_ref pic flag and sub_seq frame num, if present, shall be identical for
both of these pictures. If the sub-sequence information SEI message is present only for one coded field of a
complementary field pair, the values of sub seq layer num, sub seq id, leading non ref pic flag and
sub_seq frame num, if present, are also applicable to the other coded field of the complementary field pair.

D.2.12 Sub-sequencelayer characteristics SEI message semantics
The sub-sequence layer characteristics SEI message specifies the characteristics of sub-sequence layers.

num_sub_seq_layers minusl plus 1 specifies the number of sub-sequence layers in the sequence.
num_sub_seq_layers_minus] shall be less than or equal to 255.

A pair of average bit rate and average frame rate characterizes each sub-sequence layer. The first pair of
average bit rate and average frame rate specifies the characteristics of sub-sequence layer 0. The second pair, if
present, specifies the characteristics of sub-sequence layers 0 and 1 jointly. Each pair in decoding order specifies the
characteristics for a range of sub-sequence layers from layer number O to the layer number specified by the layer loop
counter. The values are in effect from the point they are decoded until an update of the values is decoded.

accurate dtatistics flag indicates how reliable the values of average bit rate and average frame rate are.
accurate_statistics_flag equal to 1 indicates that the average bit rate and the average frame rate are rounded from
statistically correct values. accurate statistics flag equal to O indicates that the average bit rate and the
average frame rate are estimates and may deviate somewhat from the correct values.

average bit_rate gives the average bit rate in units of 1000 bits per second. All NAL units in the range of sub-sequence
layers specified above are taken into account in the calculation. The average bit rate is derived according to the picture
removal time specified in Annex C of the Recommendation | International Standard. In the following, B is the number of
bits in all NAL units succeeding a sub-sequence layer characteristics SEI message (including the bits of the NAL units of
the current picture) and preceding the next sub-sequence layer characteristics SEI message or the end of the stream. t, is
the removal time (in seconds) of the current picture, and t, is the removal time (in seconds) of the latest picture before the
next sub-sequence layer characteristics SEI message or the end of the stream. Then, the average bit rate is derived as
follows provided that t, # t,:

average bit rate = Round(B + ((t,—t,) * 1000))) (D-4)

Iftl =12, average bit _rate shall be 0, which indicates an unspecified bit rate.

average frame rate gives the average frame rate in units of frames/(256 seconds). All NAL units in the range of sub-
sequence layers specified above are taken into account in the calculation. In the following, C is the number of frames
between the current picture (inclusive) and the next sub-sequence layer characteristics SEI message or the end of the
stream. t, is the removal time (in seconds) of the current picture, and t, is the removal time (in seconds) of the latest
picture before the next sub-sequence layer characteristics SEI message or the end of the stream. Then, the
average frame rate is derived as follows provided that t, # t,:

average frame rate = Round(C * 256 + (t,—t,)) (D-5)

If't, =t,, average frame rate shall be 0, which indicates an unspecified frame rate.

D.2.13 Sub-sequence characteristics SEI message semantics

The sub-sequence characteristics SEI message indicates the characteristics of a sub-sequence. It also indicates inter
prediction dependencies between sub-sequences.

sub_seq_layer_num specifies the sub-sequence layer number to which the sub-sequence characteristics SEI message
applies. sub_seq layer num shall be less than 256.

sub_seq_id specifies the sub-sequence within a layer to which the sub-sequence characteristics SEI message applies.
sub_seq_id shall be less than 65536.

This message applies to the next sub-sequence in decoding order having the specified sub seq layer num and
sub_seq_id. This sub-sequence is herein called the target sub-sequence.

duration_flag equal to 0 indicates that the duration of the target sub-sequence is not specified.
sub_seq_duration specifies the duration of the target sub-sequence in clock ticks of a 90-kHz clock.

average rate flag equal to 0 indicates that the average bit rate and the average frame rate of the target sub-sequence are
unspecified.

DRAFT ITU-T Rec. H.264 (2002 E) 221

accurate dtatistics flag indicates how reliable the values of average bit rate and average frame rate are.
accurate statistics flag equal to 1, indicates that the average bit rate and the average frame rate are rounded from
statistically correct values. accurate statistics flag equal to O indicates that the average bit rate and the
average frame rate are estimates and may deviate from the statistically correct values.

average bit_rate gives the average bit rate in (1000 bits)/second of the target sub-sequence. All NAL units of the target
sub-sequence are taken into account in the calculation. The average bit rate is derived according to the picture removal
time specified in subclause C.1.2. In the following, B is the number of bits in all NAL units in the sub-sequence. t; is the
removal time (in seconds) of the first picture of the sub-sequence (in decoding order), and t, is the removal time (in
seconds) of the last picture of the sub-sequence (in decoding order). Then, the average bit rate is derived as follows
provided that t, # t,:

average bit rate = Round(B + ((t,—t,) * 1000)) (D-6)

Ift, =t, average_bit_rate shall be 0.

average frame rate gives the average frame rate in units of frames/(256 seconds) of the target sub-sequence. All NAL
units of the target sub-sequence are taken into account in the calculation. The average frame rate is derived according to
the picture removal time specified in subclause C.1.2. In the following, C is the number of frames in the sub-sequence. t,
is the removal time (in seconds) of the first picture of the sub-sequence (in decoding order), and t, is the removal time (in
seconds) of the last picture of the sub-sequence (in decoding order). Then, the average frame rate is derived as follows
provided that t, # t,:

average frame rate = Round(C * 256 + (t,—t,)) (D-7)

If't, =t,, average frame rate shall be 0.

num_referenced_subseqs gives the number of sub-sequences that contain pictures that are used as reference pictures for
inter prediction in the pictures of the target sub-sequence. num_referenced subseqs shall be less than 256.

ref_sub_seq_layer_num, ref_sub_seq id, and ref_sub_seq_direction identify the sub-sequence that contains pictures
that are used as reference pictures for inter prediction in the pictures of the target sub-sequence. If ref sub_seq_direction
is equal to 0, a set of candidate sub-sequences consists of the sub-sequences whose sub seq id is equal to
ref sub_seq id, which reside in the sub-sequence layer having sub_seq layer num equal to ref sub_seq layer num, and
whose first picture in decoding order precedes the first picture of the target sub-sequence in decoding order. If
ref sub_seq direction is equal to 1, a set of candidate sub-sequences consists of the sub-sequences whose sub_seq id is
equal to ref sub seq id, which reside in the sub-sequence layer having sub _seq layer num equal to
ref sub_seq layer num, and whose first picture in decoding order succeeds the first picture of the target sub-sequence in
decoding order. The sub-sequence used as a reference for the target sub-sequence is the sub-sequence among the set of
candidate sub-sequences whose first picture is the closest to the first picture of the target sub-sequence in decoding order.

D.2.14 Full-frame freeze SEI message semantics

The full-frame freeze SEI message indicates that the contents of the entire prior displayed video frame in output order
should be kept unchanged, without updating the display using the contents of the current decoded picture. The displayed
frame should then remain unchanged until a full-frame freeze release SEI message is received, or until timeout occurs,
whichever comes first. The full-frame freeze shall lapse due to timeout after five seconds or five pictures in output
order, whichever is a longer period of time. The timeout can be prevented by the issuance of another full-frame freeze
SEI message prior to or upon expiration of the timeout period.

D.2.15 Full-frame freezerelease SEI message semantics

The full-frame freeze release SEI message indicates that the update of the displayed video frame should resume, starting
with the contents of the current decoded picture and continuing for subsequent pictures in output order. The full-frame
freeze release SEI message cancels the effect of any full-frame freeze SEI message sent with pictures that precede the
current picture in output order.

D.2.16 Full-frame snapshot SEI message semantics

The full-frame snapshot SEI message indicates that the current frame is labelled for use as determined by the application
as a still-image snapshot of the video content.

snapshot_id specifies a snapshot identification number. snapshot id shall not exceed 2%-1.

Values of snapshot_id from 0 to 255 and from 512 to 2*'-1 may be used as determined by the application. Values of
snapshot_id from 256 to 511 and from 2*' to 2*2-1 are reserved for future use by ITU-T | ISO/IEC. Decoders

222 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT 1SO/IEC 14496-10 : 2002 (E)

encountering a value of snapshot_id in the range of 256 to 511 or in the range of 2*' to 2°2-1 shall ignore (remove from
the bitstream and discard) it.

D.2.17 Progressiverefinement segment start SEI message semantics

The progressive refinement segment start SEI message specifies the beginning of a set of consecutive coded pictures that
is labelled as the current picture followed by a sequence of one or more pictures of refinement of the quality of the
current picture, rather than as a representation of a continually moving scene.

The tagged set of consecutive coded pictures shall continue until one of following conditions is true. When a condition
below becomes true, the next slice to be decoded does not belong to the tagged set of consecutive coded pictures.

1. The next slice to be decoded belongs to an IDR picture.

2. num refinement steps minusl is greater than 0 and the frame num of the next slice to be decoded is
(currFrameNum + num_refinement steps minusl + 1) % MaxFrameNum, where currFrameNum is the value of
frame num of the next slice following this SEI message in decoding order.

3. num refinement steps minusl is 0 and a progressive refinement segment end SEI message with the same
progressive refinement id as the one in this SEI message is decoded.

4. num refinement steps minusl is 0 and a timeout of five seconds has elapsed since the decoding of this SEI
message. The timeout can be prevented by the issuance of an identical progressive refinement segment start SEI
message prior to or upon expiration of the timeout period.

The decoding order of picture within the tagged set of consecutive pictures should be the same as their output order.

rogressive refinement_id specifies an identification number for the progressive refinement operation.
prog .| _ p prog p
progressive_refinement id shall not exceed 2°%-1.

Values of progressive refinement id from 0 to 255 and from 512 to 2*'-1 may be used as determined by the application.
Values of progressive refinement id from 256 to 511 and from 2*' to 2*%-1 are reserved for future use by ITU-T |
ISO/IEC. Decoders encountering a value of progressive refinement id in the range of 256 to 511 or in the range of 2*'
to 2*2-1 shall ignore (remove from the bitstream and discard) it.

num_refinement_steps minusl specifies the number of reference frames in the tagged set of consecutive coded
pictures. num_refinement_steps_minusl equal to 0 specifies that the number of reference frames in the tagged set of
consecutive coded pictures is unknown. Otherwise, the number of reference frames in the tagged set of consecutive
coded pictures is equal to num_refinement steps minusl + 1. num_refinement steps minusl shall not exceed
MaxFrameNum-1.

D.2.18 Progressiverefinement segment end SEI message semantics

The progressive refinement segment end SEI message specifies the end of a set of consecutive coded pictures that has
been labelled by use of a progressive refinement segment start SEI message as an initial picture followed by a sequence
of one or more pictures of the refinement of the quality of the initial picture, and ending with the current picture.

progressive refinement_id specifies an identification number for the progressive refinement operation.
progressive_refinement id shall not exceed 2°%-1.

The progressive refinement segment end SEI message specifies the end of any progressive refinement segment
previously started using a progressive refinement segment start SEI message with the same value of
progressive refinement id.

Values of progressive refinement id from 0 to 255 and from 512 to 2°'-1 may be used as determined by the application.
Values of progressive refinement id from 256 to 511 and from 2°' to 2°%-1 are reserved for future use by ITU-T |
ISO/IEC. Decoders encountering a value of progressive refinement id in the range of 256 to 511 or in the range of 2*'
to 2*2-1 shall ignore (remove from the bitstream and discard) it.

D.2.19 Motion-constrained slice group set SEI message semantics

This SEI message indicates that inter prediction over slice group boundaries is constrained as specified below. If
present, it shall only appear where it is associated, as specified in subclause 7.4.1.2, with a primary coded IDR picture.

The target picture set for this SEI message contains all consecutive pictures in decoding order starting with the associated
primary coded IDR picture (inclusive) and ending with the following primary coded IDR picture (exclusive) or with the
very last picture in the bitstream in decoding order if there is no following IDR picture. The slice group set is a collection
of one or more slice groups, identified by the slice_group id[i] syntax element.

DRAFT ITU-T Rec. H.264 (2002 E) 223

This SEI message indicates that, for each picture in the target picture set, the inter prediction process is constrained as
follows: No sample value outside the slice group set, and no sample value at a fractional sample position that is derived
using one or more sample values outside the slice group set is used to inter predict any sample within the slice group set.

num_slice_groups in_set_minusl + 1 specifies the number of slice groups in the slice group set. The allowed range of
num_slice groups in_set minusl is 0 to num slice groups minusl, inclusive. The allowed range of
num_slice groups minus] is specified in Annex A.

slice_group_id[i] identifies the slice group(s) contained within the slice group set. The allowed range is from 0 to
num_slice groups in _set minusl, inclusive. The size of the slice group id[i] syntax element is
Ceil(Log2(num_slice groups minusl + 1)) bits.

[Ed. Note: Should “exact match flag” name be defined in 2 different places in the syntax? (see recovery point SEI
message)|

exact_match_flag equal to 0 indicates that, within the target picture set, when the macroblocks that do not belong to the
slice group set are not decoded, the value of each sample in the slice group set need not be exactly the same as the value
of the same sample when all the macroblocks are decoded. exact match flag equal to 1 indicates that, within the target
picture set, when the macroblocks that do not belong to the slice group set are not decoded, the value of each sample in
the slice group set shall be exactly the same as the value of the same sample when all the macroblocks in the target
picture set are decoded.

Note - if disable deblocking_filter idc equals to 2 in all slices in the target picture set, exact match_flag should be 1.

pan_scan_rect_flag equal to 0 specifies that pan_scan rect id is not present. pan_scan_rect flag equal to 1 specifies
that pan_scan_rect id is present.

pan_scan_rect_id indicates that the specified slice group set covers at least the pan-scan rectangle identified by
pan_scan_rect_id within the target picture set.
Note - Multiple motion_constrained_slice_group set SEI messages may be associated with the same IDR picture. Consequently,
more than one slice group set may be active within a target picture set.
Note - The size, shape, and location of the slice groups in the slice group set may change within the target picture set.

D.2.20 Reserved SEI message semantics

This message consists of data reserved for future backward-compatible use by ITU-T | ISO/IEC. Encoders conforming
to this Recommendation | International Standard shall not send reserved SEI messages until and unless the use of such
messages has been specified by ITU-T | ISO/IEC. Decoders conforming to this
Recommendation | International Standard that encounter reserved SEI messages shall discard their content without effect
on the decoding process, except as specified in future Recommendations | International Standards specified by ITU-T |
ISO/IEC. reserved_sei_message payload byte is a byte reserved for future use by ITU-T | ISO/IEC.

Annex E

Video usability information
(This annex forms an integral part of this Recommendation | International Standard)

This Annex specifies syntax and semantics of those parts of the sequence parameter set that are not required for
determining the decoded values of samples. The parameters specified in this annex can be used to facilitate the use of
the decoded pictures or facilitate the resource allocation of a decoder by restricting certain video parameters beyond
those limits specified by Annex A. Decoders are not required to process VUI parameters for conformance to this
Recommendation | International Standard. [Ed. Note (->AG): Some parameters are needed to interpret the timing
information in the SEI messages. E.g. num units_in tick, time scale, cpb removal delay length minusl, or
dpb_output_delay length minusl.]

For some of the parameters of this Annex, default values are specified in the semantics subclause. The syntax includes
flags that allow avoiding the signalling of groups of parameters. If a specific group of parameters is not coded, the
default values for these parameters become effective.

224 DRAFT ITU-T Rec. H.264 (2002 E)

E.l
E.l1l

VUI syntax

VUI parameters syntax

DRAFT 1SO/IEC 14496-10 : 2002 (E)

vui_parameters() { Descriptor
aspect_ratio_info_present_flag 0 |u)
if(aspect_ratio_info present flag) {
aspect_ratio_idc 0 | u®
if(aspect ratio_idc == Extended SAR) {
sar_width 0 | u(16)
sar_height 0 | u(l6)
H
H
overscan_info_present_flag 0 | u)
if(overscan_info present flag)
overscan_appropriate flag u(l)
video_signal_type present flag u(l)
if(video_signal type present flag) {
video_format 0 [u@®
video_full_range flag 0 | ul)
colour_description_present_flag 0 | u
if(colour_description_present flag) {
colour_primaries 0 |u®
transfer_characteristics 0 | u®
matrix_coefficients 0 |u®
H
H
chroma_loc_info_present_flag 0 |u)
if (chroma loc_info present flag) {
chroma_sample_loc_type top_field 0 | ue(v)
chroma_sample loc_type bottom_field 0 | ue(v)
H
timing_info_present_flag 0 |[u)
if(timing_info_present flag) {
num_units in_tick 0 |u@32)
time_scale 0 | u@32)
fixed_frame rate flag 0 |u)
H
nal_hrd_parameters present_flag 0 |u)
if(nal_hrd parameters present flag == 1)
hrd_parameters()
vcl_hrd_parameters present_flag 0 | u)
if(vel_hrd parameters_present flag == 1)
hrd_parameters()
if(nal_hrd parameters_present flag == 1 ||
vcl hrd parameters present flag == 1)
low_delay hrd_flag 0 |u(l)
bitstream_restriction_flag 0 [u)
if(bitstream_restriction_flag) {

DRAFT ITU-T Rec. H.264 (2002 E) 225

motion_vectors over_pic_boundaries flag 0 | u)
max_bytes per pic_denom 0 | ue(v)
max_bits per_mb_denom 0 | ue®)
log2_max_mv_length_horizontal 0 | ue(v)
log2_max_mv_length_vertical 0 | uev)
num_reorder_frames 0 | ue(v)
max_dec _frame buffering 0 | uev)
H
}
E.1.2 HRD parameters syntax
hrd_parameters() { /* coded picture buffer parameters */ C | Descriptor
cpb_cnt_minusl 0 | uev)
bit_rate scale 0 | u®
cpb_size scale 0 | u®@)
for(k=0; k<=cpb_cnt minusl; k++) {
bit_rate valug k] 0 | ue®)
cpb_size valug k] 0 | ue®)
vbr_cbr_flag[k] 0 | u()
i
initial_cpb_removal_delay length_minusl 0 | u@®)
cpb_removal_delay_length_minusl 0 |u®)
dpb_output_delay length_minusl 0 | u@®)
time_offset_length 0 |u®)

E.2 VUI semantics

E.21 VUI parameters semantics

aspect_ratio_info_present_flag: A flag that, when equal to 1, signals the presence of the aspect_ratio_idc. If the flag is
0, then the default value 0 shall apply to aspect_ratio_idc.

aspect_ratio_idc specifies the value of the sample aspect ratio of the luma samples. Table E-1 shows the meaning of the
code. If aspect ratio idc indicates Extended SAR, the sample aspect ratio is represented by sar width and sar_height.

226 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT 1SO/IEC 14496-10 : 2002 (E)

Table E-1 — Meaning of sample aspect ratio indicator

aspect_ratio_idc | Sample aspect ratio (informative)
Examples of use
0 Unspecified
1 1:1 1280x720 16:9 frame without overscan
(“square”) 1920x1080 16:9 frame without overscan (cropped from

1920x1088)
640x480 4:3 frame without overscan

2 12:11 720x576 4:3 frame with horizontal overscan
352x288 4:3 frame without overscan

3 10:11 720x480 4:3 frame with horizontal overscan
352x240 4:3 frame without overscan

4 16:11 720x576 16:9 frame with horizontal overscan
540x576 4:3 frame with horizontal overscan

5 40:33 720x480 16:9 frame with horizontal overscan
540x480 4:3 frame with horizontal overscan

6 24:11 352x576 4:3 frame without overscan
540x576 16:9 frame with horizontal overscan

7 20:11 352x480 4:3 frame without overscan
480x480 16:9 frame with horizontal overscan

8 32:11 352x576 16:9 frame without overscan

80:33 352x480 16:9 frame without overscan

10 18:11 480x576 4:3 frame with horizontal overscan

11 15:11 480x480 4:3 frame with horizontal overscan

12 64:33 540x576 16:9 frame with horizontal overscan

13 160:99 540x480 16:9 frame with horizontal overscan

14..254 Reserved
255 Extended SAR

sar_width indicates the horizontal size of the sample aspect ratio (in arbitrary units).
sar_height indicates the vertical size of the sample aspect ratio (in the same arbitrary units as sar_width).

The sar_width and sar_height shall be relatively prime or zero. If aspect ratio_idc is zero or if either of sar width or
sar_height are zero, the sample aspect ratio shall be considered unspecified by this Recommendation | International
Standard.

overscan_info_present flag: A flag that, when equal to 1, signals the presence of overscan appropriate flag. If
overscan_info present flag is equal to 0 or is not present, the preferred display method for the video signal is
unspecified.

overscan_appropriate flag: A flag that, when equal to 1, indicates that the video signal is suitable for display using
overscan. When overscan_appropriate_flag is equal to 0, it indicates that the video signal contains visually important
information in the entire region out to the edges of the cropping rectangle of the picture, such that the video signal should
not be displayed using overscan; instead, it should be displayed using either an exact match between the display area and
the cropping rectangle, or using underscan. For example, overscan _appropriate flag equal to 1 might be used for
entertainment television programming, or for a live view of people in a videoconference, and overscan_appropriate flag
equal to 0 might be used for computer screen capture or security camera content.

video_signal_type present_flag: A flag that, when 1, signals the presence of video signal information. If
video_signal type present flag is 0, then the following default values shall apply: video format = 5,
video_full range flag =0, colour description_present flag = 0.

video_format: Indicates the representation of the pictures, as specified in Table E-2, before being coded in accordance
with this Recommendation | International Standard.

DRAFT ITU-T Rec. H.264 (2002 E) 227

Table E-2 — Meaning of video_for mat

video format | Meaning

0 Component

PAL

NTSC

SECAM

MAC

Unspecified video format

Reserved

NN N | R |WIN |~

Reserved

video_full_range flag indicates the nominal black level and range of the luma and chroma signals as derived from E’y,
E’pg, and E’p; analogue component signals as follows:

If video full range flag is equal to O:

Y =Round(219 *E’, + 16) (E-1)
Cb = Round(224 * E’p, + 128) (E-2)
Cr=Round(224 * E’pz + 128) (E-3)

If video full range flag is equal to 1:

Y =Round(255 * E’y) (E-4)
Cb =Round(255 * E’p, + 128) (E-5)
Cr = Round(255 * E’p + 128) (E-6)

colour_description_present_flag indicates the presence of colour primaries, transfer characteristics and
matrix_coefficients in the bitstream.

colour_primaries describes the chromaticity coordinates of the source primaries, and is specified in Table E-3 in terms
of the CIE 1931 definition of x and y as specified by ISO/CIE 10527.

228 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT 1SO/IEC 14496-10 : 2002 (E)

Table E-3—Colour primaries

Value Primaries
0 Reserved
1 ITU-R Recommendation BT.709
primary X y
green 0.300 0.600
blue 0.150 0.060
red 0.640 0.330
white D65 0.3127 0.3290
2 Unspecified
Image characteristics are unknown or as determined by the
application.
3 Reserved
ITU-R Recommendation BT.470-2 System M
primary X y
green 0.21 0.71
blue 0.14 0.08
red 0.67 0.33
white C 0.310 0.316
5 ITU-R Recommendation BT.470-2 System B, G
primary X y
green 0.29 0.60
blue 0.15 0.06
red 0.64 0.33
white D65 0.3127 0.3290
6 Society of Motion Picture and Television Engineers 170M
primary X y
green 0.310 0.595
blue 0.155 0.070
red 0.630 0.340
white D65 0.3127 0.3290
7 Society of Motion Picture and Television Engineers 240M (1987)
primary X y
green 0.310 0.595
blue 0.155 0.070
red 0.630 0.340
white D65 0.3127 0.3290
8 Generic film (colour filters using Illuminant C)
primary X y
green 0.243 0.692 (Wratten 58)
blue 0.145 0.049 (Wratten 47)
red 0.681 0.319 (Wratten 25)
white C 0.310 0.316
9-255 Reserved

If video_signal type present flag is O or colour description_present flag is 0, colour primaries shall have an inferred
value equal to 2 (the chromaticity is unspecified or is determined by the application).

transfer_characteristics: This 8-bit integer describes the opto-electronic transfer characteristic of the source picture,
and is specified in Table E-4 as a function of a linear optical intensity input L, with an analogue range from 0 to 1.

DRAFT ITU-T Rec. H.264 (2002 E) 229

Table E-4 — Transfer characteristics

Value Transfer Characteristic

0 Reserved

1 ITU-R Recommendation BT.709
Vv =1.099 L0435 - 0.099 for 1 >=L,>=0.018
V=4500L, for 0.018 > L,

2 Unspecified
Image characteristics are unknown or are determined by the
application.

3 Reserved

4 ITU-R Recommendation BT.470-2 System M
Assumed display gamma 2.2

5 ITU-R Recommendation BT.470-2 System B, G
Assumed display gamma 2.8

6 Society of Motion Picture and Television Engineers 170M
Vv =1.099 L 045 - 0.099 for 1 >=L,>=0.018
V=4500L, for 0.018 > L,

7 Society of Motion Picture and Television Engineers 240M (1987)
V=11115L945_0.1115 for L>= 0.0228
V=40L, for 0.0228 > L,

8 Linear transfer characteristics
V=L,

9 Logarithmic transfer characteristic (100:1 range)
V=10-LoglO(L,)+2 for 1 >=L,>=0.01
V=0.0 for 0.01 > L,

10 Logarithmic transfer characteristic (316.22777:1 range)
V=10-LoglO(L.,)+2.5 for 1 >=L1L,>=0.0031622777
V=00 for 0.0031622777 > L,

11..255 Reserved

If video_signal type present flag is zero or colour description present flag is 0, transfer characteristics shall have an

inferred value equal to 2 (the transfer characteristics are unspecified or determined by the application).

matrix_coefficients: This 8-bit integer describes the matrix coefficients used in deriving luma and chroma signals from

the green, blue, and red primaries, as specified in Table E-5.

Using the following definitions:

E’x, E’g, and E’; are analogue with values between 0 and 1.

White is specified as having E’; equal to 1, E’ equal to 1, and E’ equal to 1.

Then:

Ey=Kg *ERr+ (1 -Kg-Ky) *E’ + Ky *E’

Ep=05*(E3-Ey)+(1-Kp)

E'pp=05*(ERx-Ey)+(1-Ky)

NOTE — Then E’y is analogue with values between 0 and 1, E’,; and E’,; are analogue with values between -0.5 and 0.5, and

white is equivalently given by E’y =1, E’,; =0, E’,x = 0.

230 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT 1SO/IEC 14496-10 : 2002 (E)

Table E-5 - Matrix coefficients

Value Matrix

0 Reserved

1 ITU-R Recommendation BT.709
Kr =0.2126; K; = 0.0722

2 Unspecified
Image characteristics are unknown or are determined by the
application.

3 Reserved

Federal Communications Commission
K =0.30; K;=0.11

5 ITU-R Recommendation BT.470-2 System B, G:
Kr=0.299; K;=0.114

6 Society of Motion Picture and Television Engineers 170M
Kz =0.299; K;=0.114

7 Society of Motion Picture and Television Engineers 240M (1987)
Kr=0.212; K; = 0.087

8-255 Reserved

If video signal type present flag is zero or colour description present flag is 0, matrix_coefficients shall have an
inferred value equal to 2 (the matrix coefficients shall be inferred to be unspecified or as determined by the application).

chroma _loc_info_present_flag: A flag that, when 1, signals the presence of the chroma location information. If the flag
is 0, then the following default values shall apply: chroma sample loc type top field = 0,
chroma_sample loc_type bottom field =0

chroma_sample loc_type top_field and chroma_sample loc type bottom_field specify the location of chroma
samples for the top field and the bottom field as shown in Figure E-1. The value of chroma sample loc type top field
and chroma_sample loc_type bottom_field shall not exceed 5.

NOTE — In progressive sequences, chroma_sample loc_type top field and chroma_sample loc_type bottom_field should have
the same value.

DRAFT ITU-T Rec. H.264 (2002 E) 231

20X 20X 20X 20X
oV oV oV oV
KAO 8A0O QA0 QA0

20X 20X 20X 20X
oV oVv oV oV
BAO BAO KAO BAQO

20X 20X 20X 20X
oV oV oV oV
KAO OAO BAO QAO

20X 20X 20X £#0X
oV oV oVv oV
BAO BA0O BAO d&AO0

Interpretation of symbols:
Luma sample position indications:

>< = Luma sample top field D = Luma sample bottom field
Chroma sample position indications,

where gray fill indicates a bottom field sample type
and no fill indicates a top field sample type:

O = Chroma sample type 2 O = Chroma sample type 3

O = Chroma sample type 0 v = Chroma sample type 1
<> = Chroma sample type 4 A = Chroma sample type 5

Figure E-1— L ocation of chroma samplesfor top and bottom fields asa function of
chroma_sample loc_type top_field and chroma_sample loc_type bottom_field

timing_info_present_flag: A flag that, when equal to 1, signals the presence of time unit information. If
timing_info_present flag is equal to 0, then the following default values shall be inferred: num units in tick = 0,
time_scale = 0, fixed_frame rate flag=0.

num_units _in_tick is the number of time units of a clock operating at the frequency time_scale Hz that corresponds to
one increment of a clock tick counter. A clock tick is the minimum interval of time that can be represented in the coded
data. For example, if the clock frequency of a video signal is 30000 + 1001 Hz, time scale may be 30 000 and
num_units_in_tick may be 1001. If num_units_in_tick is 0, the duration of the clock tick is unspecified.

time_scale is the number of time units that pass in one second. For example, a time coordinate system that measures
time using a 27 MHz clock has a time_scale of 27 000 000. If time_scale is equal to 0, the duration of the clock tick
specified above is unspecified.

fixed_frame rate flag is a bit that, if equal to 1, indicates that the temporal distance between the HRD output times of
any two consecutive frames or fields in output order is constrained as follows.

If fixed frame rate flag is equal to 1, for all n > 0 where n indicates the n-th picture in output order, the value of
Atg 4o0(1) is computed as follows using At, 4,,(n) as specified in Equation C-10,

Atg gon(1) = Aty g(1) + DeltaTfiDivisor (E-10)

where DeltaTfiDivisor is specified by Table E-6 based on the value of pic_struct present flag, field pic_flag, and
pic_struct for picture n- 1. Entries marked "-" in Table E-6 indicate a lack of dependence of DeltaTfiDivisor on the
corresponding syntax element.

If fixed_frame_rate_flag is equal to 1, then the value computed for Aty 4,,(n) shall be the same for all n > 0. Moreover,
if fixed frame rate flag is equal to 1 and num_units in_tick is not equal to 0 and time_scale is not equal to 0, then the
value computed for At;; ;,(n) shall be equal to num_units_in_tick + time_scale for all n > 0.

232 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT 1SO/IEC 14496-10 : 2002 (E)

Table E-6 — Divisor for computation of Aty 4,,(n)

pic_struct_present_flag | field_pic flag | pic_struct | DeltaTfiDivisor
0 1 - 1
1 - 1 1
1 - 2 1
0 0 - 2
1 - 0 2
1 - 3 2
1 - 4 2
1 - 5 3
1 - 6 3
1 - 7 4
1 - 8 6

nal_hrd_parameters present_flag: If nal hrd parameters present flag is equal to 0, no HRD parameters pertaining to
Type II bitstream conformance as specified in Annex C are present in the bitstream. In this case, the Type II bitstream
conforms to an HRD whose buffer size and bit rate parameters are 20% higher than those given by the maxima specified
in Table A-1 for the level specified by level idc. [Ed. Note(GJS): Not true. There is not enough information in the
bitstream if this data is not present.] If num_units_in_tick is equal to 0, nal _hrd parameters_present_flag shall be equal
to 0. If time_scale is equal to 0, nal _hrd parameters present flag shall be equal to 0.

NOTE — When nal hrd parameters_present flag is equal to 0, the conformance of the bitstream cannot be verified without

provision of the NAL HRD parameters, including the NAL sequence HRD parameter information and all buffering period and
picture timing SEI messages, by some means not specified in this Recommendation | International Standard.

If nal hrd parameters present flag is equal to 1, then Type II HRD parameters (subclauses E.1.2 and E.2.2)
immediately follow the flag. [Ed. Note (AG/GJS): Remove remainder of paragraph if redundant.] At least one set of the
Type Il HRD parameters signalled in the sequence HRD parameters shall have CPB bit rate and buffer size values that
are both less than values 20% higher than the maxima specified in Table A-1 for the level specified by level idc. Some
of the NAL HRD coded picture buffers signalled may have values outside the level limits.

Furthermore, if nal hrd parameters present flag is equal to 1, then a buffering period SEI message (subclauses D.1.1
and D.2.1) shall be present that is associated with the first picture of the sequence, and a picture timing SEI message
(subclauses D.1.1 and D.2.1) shall precede each coded picture.

vcl_hrd_parameters present_flag: If vel hrd parameters present flag is equal to 0, no HRD parameters pertaining to
VCL conformance as specified in Annex C are present in the bitstream. In this case, the VCL bitstream conforms to an
HRD whose buffer size and bit rate parameters are given by the maxima specified in Table A-1 for the level specified by
level idc. If num units in_tick is equal to 0, vl hrd parameters present flag shall be equal to 0. If time scale is equal
to 0, vel_hrd_parameters_present_flag shall be equal to 0.

NOTE — When vel _hrd parameters present flag is equal to 0, the conformance of the VCL bitstream cannot be verified without

provision of the VCL HRD parameters, including the VCL sequence HRD parameter information and all buffering period and
picture timing SEI messages, by some means not specified in this Recommendation | International Standard.

If vel_hrd parameters present flag is equal to 1, then VCL HRD parameters (subclauses E.1.2 and E.2.2) immediately
follow the flag. [Ed. Note (AG/GJS): Remove remainder of paragraph if redundant.] At least one set of the HRD
parameters signalled in the sequence HRD parameters shall have CPB bit rate and buffer size values that are both less
than the maxima specified in Table A-1 for the level specified by level idc. Some of the HRD coded picture buffers
signalled may have values outside the level limits.

Furthermore, if vcl_hrd parameters present flag is equal to 1, then a buffering period SEI message (subclauses D.1.1
and D.2.1) shall be associated with the first picture of the sequence, and a picture timing SEI message (subclauses D.1.2
and D.2.2) shall be associated with each subsequent coded picture.

low_delay hrd flag: If low _delay hrd flag is equal to 0, the HRD operates in delay-tolerant mode as specified in
Annex C. If low_delay hrd flag is equal to 1, the HRD operates in low-delay mode. In low-delay mode, big pictures
that violate the HRD removal time rules at the CPB are permitted.

NOTE - It is expected, but not required, that such big pictures occur only occasionally. [Ed. Note (AG/GJS): Move this note to
Annex C]

[Ed. Note (GJS): Can low_delay hrd flag and fixed frame rate flag both be equal to 1? What would that mean?]

DRAFT ITU-T Rec. H.264 (2002 E) 233

bitstream_restriction_flag: A flag that, when 1, signals the presence of bitstream restriction indication information. If
bitstream_restriction_flag is set to 0, then the following default wvalues shall apply:
motion_vectors_over pic_boundaries flag = 1, max bytes per pic denom = 2, max bits per mb denom = 1,
log2 max_mv_length horizontal = 16, log2 max _mv_length vertical = 16, max dec frame buffering = 16,
num_reorder frames = 16.

motion_vectors over_pic_boundaries flag equal to 0 indicates that no motion vector refers to samples outside the
picture boundaries of the reference picture for all pictures of the sequence. motion_vectors_over pic_boundaries flag
equal to 1 indicates that motion vectors in some pictures in the sequence may refer to samples outside the picture
boundaries of a reference picture.

max_bytes per_pic_denom indicates a number of bytes not exceeded by the sum of the sizes of the slice and slice data
partition NAL units associated with any coded picture in the sequence.

The number of bytes that represent a picture in the NAL unit stream is specified for this purpose as the total number of
bytes of NAL unit data (i.e., the total of the NumBytesInNALunit variables for the picture) that contain slices and slice
data partitions for the picture. The value of max_bytes per pic_denom shall not exceed 16.

If max_bytes per pic_denom is equal to 0, no limits are specified.

If max_bytes per pic_denom is not equal to 0, no coded picture shall be represented in the sequence by more than

(PicSizeInMbs * 256 * ChromaFormatFactor) + max_bytes per pic_denom (E-11)

bytes.

max_bits per_mb_denom indicates the maximum number of coded bits that represent a macroblock in any picture of
the sequence. The value of max_bits_per mb_denom shall not exceed 16.

If max_bits_per mb_denom is equal to 0, no limit is specified. If max_bits_per mb_denom is not equal to 0, no coded
macroblock shall be represented in the bitstream by more than

(2048 * ChromaFormatFactor + 128) + max_bits_per mb_denom (E-12)

bits.
[Ed. Note: Insert reference to method of counting bits for a particular MB, especially for CABAC.]

log2_max_mv_length_horizontal and log2_max_mv_length_vertical indicate the maximum absolute value of a
decoded horizontal and vertical motion vector component, respectively, in ¥ luma sample units. A value of n asserts that
no absolute value of a motion vector component is larger than 2" units of % luma sample displacement. The value of
log2 max_mv_length horizontal shall not exceed 16. The value of log2 max mv_length vertical shall not exceed 16.

NOTE - The maximum absolute value of a decoded vertical or horizontal motion vector component is also constrained by profile
and level limits as specified in Annex A.

num_reorder_frames indicates the maximum amount of frames, complementary field pairs, or non-paired fields that
precede any frame, complementary field pair, or non-paired fields in the sequence in decoding order and follow it in
output order. The value of num_reorder frames shall not exceed the value of max_dec_frame buffering.

max_dec_frame_buffering specifies minimum size of the decoded picture buffer in units of frames. The sequence shall
not require a decoded picture buffer with capacity of more than max_dec frame buffering frames to enable the output of
decoded pictures at the output times of the HRD. The value of max_dec frame buffering shall not exceed 16. [Ed. Note:
(AG): What happens at the "seam" of two consecutive sequences with different values when
no_output_of prior_pics_flag is equal to 0?]

E.22 HRD parameterssemantics

If multiple sequence parameter sets pertain to the bitstream, they shall contain consistent HRD information. [Ed. Note:
What is the definition of consistent?]

cpb_cnt_minusl: This syntax element plus 1 specifies the number of CPB specifications in the bitstream. The value of
cpb_cnt minusl shall not exceed 31. cpb_cnt _minusl shall be equal to zero if low delay hrd flag is equal to 1.

bit_rate scale: Together with bit _rate value[k], this syntax element specifies the maximum input bit rate of the k-th
CPB in an HRD.

cpb_size scaleis used together with cpb_size value[k] to define the CPB size of the k-th CPB in an HRD.

234 DRAFT ITU-T Rec. H.264 (2002 E)

DRAFT 1SO/IEC 14496-10 : 2002 (E)

bit_rate valug k]: Together with bit rate scale, this syntax element specifies the maximum input bit rate for the k-th
CPB. bit rate_value[k] shall not exceed 2**-1. For any k>0, bit rate value[k] shall be greater than
bit rate value[k - 1]. The actual bit rate in bits per second is given by [Ed. change to minus1 values and the upper value
to 2%2-2]

bit_rate[k | = bit_rate_value[k] * 2(¢ " bit-ratescale) (E-13)

cpb_size valueg] k] is used together with cpb_size scale to define the k-th CPB size. cpb_size value[k] shall not
exceed 2*2-1. [Ed. change to minus1 values and the upper value to 2*2-2]

The CPB size in bits is given by

cpb_size[k] =cpb_size value[k] * 2 epb-size_scale) (E-14)

For VCL HRD parameters, there shall be at least one value of k for which bit_rate[k] is within the maximum video bit
rate, and cpb_size[k] is within the maximum CPB size specified in Table A-1. For NAL HRD parameters, there shall
be at least one value of k for which bit rate[k] is less than or equal to 120% of the maximum video bit rate, and
cpb_size[k] is less than or equal to 120% of the maximum CPB size.

vbr_cbr_flag[k] equal to 0 specifies that to decode this bitstream by the HRD using the k-th CPB specification, the
HRD operates in variable bit rate (VBR) mode. vbr cbr_flag[k] equal to 1 specifies constant bit rate (CBR) operation.
[Ed. Note (JVT): Bad syntax element name.]

initial_cpb_removal_delay_length_minusl specifies the length in bits of the initial cpb removal delay syntax
element. The length of initial cpb_removal delay is initial cpb removal delay length minusl+I1.

cpb_removal_delay length_minusl specifies the length in bits of the cpb_removal_delay syntax element. The length
of cpb_removal delay is cpb_removal delay length minusl+1.

dpb_output_delay length_minusl specifies the length in bits of the dpb_output delay syntax element. The length of
dpb_output_delay is dpb_output delay length minusl—+1.

time_offset_length specifies the length in bits of the time_offset syntax element.

DRAFT ITU-T Rec. H.264 (2002 E) 235

