// // Copyright (c) 2013-2023 The SRS Authors // // SPDX-License-Identifier: MIT or MulanPSL-2.0 // #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef SRS_RTC #include #include #endif #ifdef SRS_SRT #include #endif #ifdef SRS_GB28181 #include #endif #include #include using namespace std; #include #include #if defined(SRS_OSX) || defined(SRS_CYGWIN64) pid_t gettid() { return 0; } #else #if __GLIBC__ == 2 && __GLIBC_MINOR__ < 30 #include #define gettid() syscall(SYS_gettid) #endif #endif // These functions first appeared in glibc in version 2.12. // See https://man7.org/linux/man-pages/man3/pthread_setname_np.3.html #if defined(SRS_CYGWIN64) || (defined(SRS_CROSSBUILD) && ((__GLIBC__ < 2) || (__GLIBC__ == 2 && __GLIBC_MINOR__ < 12))) void pthread_setname_np(pthread_t trd, const char* name) { } #endif extern ISrsLog* _srs_log; extern ISrsContext* _srs_context; extern SrsConfig* _srs_config; extern SrsStageManager* _srs_stages; #ifdef SRS_RTC extern SrsRtcBlackhole* _srs_blackhole; extern SrsResourceManager* _srs_rtc_manager; extern SrsResourceManager* _srs_rtc_manager; extern SrsDtlsCertificate* _srs_rtc_dtls_certificate; #endif #include extern SrsPps* _srs_pps_snack2; extern SrsPps* _srs_pps_snack3; extern SrsPps* _srs_pps_snack4; SrsPps* _srs_pps_aloss2 = NULL; extern SrsPps* _srs_pps_ids; extern SrsPps* _srs_pps_fids; extern SrsPps* _srs_pps_fids_level0; extern SrsPps* _srs_pps_dispose; extern SrsPps* _srs_pps_timer; extern SrsPps* _srs_pps_snack; extern SrsPps* _srs_pps_snack2; extern SrsPps* _srs_pps_snack3; extern SrsPps* _srs_pps_snack4; extern SrsPps* _srs_pps_sanack; extern SrsPps* _srs_pps_svnack; extern SrsPps* _srs_pps_rnack; extern SrsPps* _srs_pps_rnack2; extern SrsPps* _srs_pps_rhnack; extern SrsPps* _srs_pps_rmnack; #if defined(SRS_DEBUG) && defined(SRS_DEBUG_STATS) extern SrsPps* _srs_pps_recvfrom; extern SrsPps* _srs_pps_recvfrom_eagain; extern SrsPps* _srs_pps_sendto; extern SrsPps* _srs_pps_sendto_eagain; extern SrsPps* _srs_pps_read; extern SrsPps* _srs_pps_read_eagain; extern SrsPps* _srs_pps_readv; extern SrsPps* _srs_pps_readv_eagain; extern SrsPps* _srs_pps_writev; extern SrsPps* _srs_pps_writev_eagain; extern SrsPps* _srs_pps_recvmsg; extern SrsPps* _srs_pps_recvmsg_eagain; extern SrsPps* _srs_pps_sendmsg; extern SrsPps* _srs_pps_sendmsg_eagain; extern SrsPps* _srs_pps_epoll; extern SrsPps* _srs_pps_epoll_zero; extern SrsPps* _srs_pps_epoll_shake; extern SrsPps* _srs_pps_epoll_spin; extern SrsPps* _srs_pps_sched_15ms; extern SrsPps* _srs_pps_sched_20ms; extern SrsPps* _srs_pps_sched_25ms; extern SrsPps* _srs_pps_sched_30ms; extern SrsPps* _srs_pps_sched_35ms; extern SrsPps* _srs_pps_sched_40ms; extern SrsPps* _srs_pps_sched_80ms; extern SrsPps* _srs_pps_sched_160ms; extern SrsPps* _srs_pps_sched_s; #endif extern SrsPps* _srs_pps_clock_15ms; extern SrsPps* _srs_pps_clock_20ms; extern SrsPps* _srs_pps_clock_25ms; extern SrsPps* _srs_pps_clock_30ms; extern SrsPps* _srs_pps_clock_35ms; extern SrsPps* _srs_pps_clock_40ms; extern SrsPps* _srs_pps_clock_80ms; extern SrsPps* _srs_pps_clock_160ms; extern SrsPps* _srs_pps_timer_s; #if defined(SRS_DEBUG) && defined(SRS_DEBUG_STATS) extern SrsPps* _srs_pps_thread_run; extern SrsPps* _srs_pps_thread_idle; extern SrsPps* _srs_pps_thread_yield; extern SrsPps* _srs_pps_thread_yield2; #endif extern SrsPps* _srs_pps_rpkts; extern SrsPps* _srs_pps_addrs; extern SrsPps* _srs_pps_fast_addrs; extern SrsPps* _srs_pps_spkts; extern SrsPps* _srs_pps_sstuns; extern SrsPps* _srs_pps_srtcps; extern SrsPps* _srs_pps_srtps; extern SrsPps* _srs_pps_pli; extern SrsPps* _srs_pps_twcc; extern SrsPps* _srs_pps_rr; extern SrsPps* _srs_pps_pub; extern SrsPps* _srs_pps_conn; extern SrsPps* _srs_pps_rstuns; extern SrsPps* _srs_pps_rrtps; extern SrsPps* _srs_pps_rrtcps; extern SrsPps* _srs_pps_aloss2; extern SrsPps* _srs_pps_cids_get; extern SrsPps* _srs_pps_cids_set; extern SrsPps* _srs_pps_objs_msgs; extern SrsPps* _srs_pps_objs_rtps; extern SrsPps* _srs_pps_objs_rraw; extern SrsPps* _srs_pps_objs_rfua; extern SrsPps* _srs_pps_objs_rbuf; extern SrsPps* _srs_pps_objs_rothers; SrsCircuitBreaker::SrsCircuitBreaker() { enabled_ = false; high_threshold_ = 0; high_pulse_ = 0; critical_threshold_ = 0; critical_pulse_ = 0; dying_threshold_ = 0; dying_pulse_ = 0; hybrid_high_water_level_ = 0; hybrid_critical_water_level_ = 0; hybrid_dying_water_level_ = 0; } SrsCircuitBreaker::~SrsCircuitBreaker() { } srs_error_t SrsCircuitBreaker::initialize() { srs_error_t err = srs_success; enabled_ = _srs_config->get_circuit_breaker(); high_threshold_ = _srs_config->get_high_threshold(); high_pulse_ = _srs_config->get_high_pulse(); critical_threshold_ = _srs_config->get_critical_threshold(); critical_pulse_ = _srs_config->get_critical_pulse(); dying_threshold_ = _srs_config->get_dying_threshold(); dying_pulse_ = _srs_config->get_dying_pulse(); // Update the water level for circuit breaker. // @see SrsCircuitBreaker::on_timer() _srs_hybrid->timer1s()->subscribe(this); srs_trace("CircuitBreaker: enabled=%d, high=%dx%d, critical=%dx%d, dying=%dx%d", enabled_, high_pulse_, high_threshold_, critical_pulse_, critical_threshold_, dying_pulse_, dying_threshold_); return err; } bool SrsCircuitBreaker::hybrid_high_water_level() { return enabled_ && (hybrid_critical_water_level() || hybrid_high_water_level_); } bool SrsCircuitBreaker::hybrid_critical_water_level() { return enabled_ && (hybrid_dying_water_level() || hybrid_critical_water_level_); } bool SrsCircuitBreaker::hybrid_dying_water_level() { return enabled_ && dying_pulse_ && hybrid_dying_water_level_ >= dying_pulse_; } srs_error_t SrsCircuitBreaker::on_timer(srs_utime_t interval) { srs_error_t err = srs_success; // Update the CPU usage. srs_update_proc_stat(); SrsProcSelfStat* stat = srs_get_self_proc_stat(); // Reset the high water-level when CPU is low for N times. if (stat->percent * 100 > high_threshold_) { hybrid_high_water_level_ = high_pulse_; } else if (hybrid_high_water_level_ > 0) { hybrid_high_water_level_--; } // Reset the critical water-level when CPU is low for N times. if (stat->percent * 100 > critical_threshold_) { hybrid_critical_water_level_ = critical_pulse_; } else if (hybrid_critical_water_level_ > 0) { hybrid_critical_water_level_--; } // Reset the dying water-level when CPU is low for N times. if (stat->percent * 100 > dying_threshold_) { hybrid_dying_water_level_ = srs_min(dying_pulse_ + 1, hybrid_dying_water_level_ + 1); } else if (hybrid_dying_water_level_ > 0) { hybrid_dying_water_level_ = 0; } // Show statistics for RTC server. SrsProcSelfStat* u = srs_get_self_proc_stat(); // Resident Set Size: number of pages the process has in real memory. int memory = (int)(u->rss * 4 / 1024); // The hybrid thread cpu and memory. float thread_percent = stat->percent * 100; static char buf[128]; string snk_desc; #ifdef SRS_RTC if (_srs_pps_snack2->r10s()) { snprintf(buf, sizeof(buf), ", snk=%d,%d,%d", _srs_pps_snack2->r10s(), _srs_pps_snack3->r10s(), _srs_pps_snack4->r10s() // NACK packet,seqs sent. ); snk_desc = buf; } #endif if (enabled_ && (hybrid_high_water_level() || hybrid_critical_water_level())) { srs_trace("CircuitBreaker: cpu=%.2f%%,%dMB, break=%d,%d,%d, cond=%.2f%%%s", u->percent * 100, memory, hybrid_high_water_level(), hybrid_critical_water_level(), hybrid_dying_water_level(), // Whether Circuit-Break is enable. thread_percent, // The conditions to enable Circuit-Breaker. snk_desc.c_str() ); } return err; } SrsCircuitBreaker* _srs_circuit_breaker = NULL; SrsAsyncCallWorker* _srs_dvr_async = NULL; srs_error_t srs_global_initialize() { srs_error_t err = srs_success; // Root global objects. _srs_log = new SrsFileLog(); _srs_context = new SrsThreadContext(); _srs_config = new SrsConfig(); // The clock wall object. _srs_clock = new SrsWallClock(); // The pps cids depends by st init. _srs_pps_cids_get = new SrsPps(); _srs_pps_cids_set = new SrsPps(); // The global objects which depends on ST. _srs_hybrid = new SrsHybridServer(); _srs_sources = new SrsLiveSourceManager(); _srs_stages = new SrsStageManager(); _srs_circuit_breaker = new SrsCircuitBreaker(); #ifdef SRS_SRT _srs_srt_sources = new SrsSrtSourceManager(); #endif #ifdef SRS_RTC _srs_rtc_sources = new SrsRtcSourceManager(); _srs_blackhole = new SrsRtcBlackhole(); _srs_rtc_manager = new SrsResourceManager("RTC", true); _srs_rtc_dtls_certificate = new SrsDtlsCertificate(); #endif #ifdef SRS_GB28181 _srs_gb_manager = new SrsResourceManager("GB", true); #endif _srs_gc = new SrsLazySweepGc(); // Initialize global pps, which depends on _srs_clock _srs_pps_ids = new SrsPps(); _srs_pps_fids = new SrsPps(); _srs_pps_fids_level0 = new SrsPps(); _srs_pps_dispose = new SrsPps(); _srs_pps_timer = new SrsPps(); _srs_pps_conn = new SrsPps(); _srs_pps_pub = new SrsPps(); #ifdef SRS_RTC _srs_pps_snack = new SrsPps(); _srs_pps_snack2 = new SrsPps(); _srs_pps_snack3 = new SrsPps(); _srs_pps_snack4 = new SrsPps(); _srs_pps_sanack = new SrsPps(); _srs_pps_svnack = new SrsPps(); _srs_pps_rnack = new SrsPps(); _srs_pps_rnack2 = new SrsPps(); _srs_pps_rhnack = new SrsPps(); _srs_pps_rmnack = new SrsPps(); #endif #if defined(SRS_DEBUG) && defined(SRS_DEBUG_STATS) _srs_pps_recvfrom = new SrsPps(); _srs_pps_recvfrom_eagain = new SrsPps(); _srs_pps_sendto = new SrsPps(); _srs_pps_sendto_eagain = new SrsPps(); _srs_pps_read = new SrsPps(); _srs_pps_read_eagain = new SrsPps(); _srs_pps_readv = new SrsPps(); _srs_pps_readv_eagain = new SrsPps(); _srs_pps_writev = new SrsPps(); _srs_pps_writev_eagain = new SrsPps(); _srs_pps_recvmsg = new SrsPps(); _srs_pps_recvmsg_eagain = new SrsPps(); _srs_pps_sendmsg = new SrsPps(); _srs_pps_sendmsg_eagain = new SrsPps(); _srs_pps_epoll = new SrsPps(); _srs_pps_epoll_zero = new SrsPps(); _srs_pps_epoll_shake = new SrsPps(); _srs_pps_epoll_spin = new SrsPps(); _srs_pps_sched_15ms = new SrsPps(); _srs_pps_sched_20ms = new SrsPps(); _srs_pps_sched_25ms = new SrsPps(); _srs_pps_sched_30ms = new SrsPps(); _srs_pps_sched_35ms = new SrsPps(); _srs_pps_sched_40ms = new SrsPps(); _srs_pps_sched_80ms = new SrsPps(); _srs_pps_sched_160ms = new SrsPps(); _srs_pps_sched_s = new SrsPps(); #endif _srs_pps_clock_15ms = new SrsPps(); _srs_pps_clock_20ms = new SrsPps(); _srs_pps_clock_25ms = new SrsPps(); _srs_pps_clock_30ms = new SrsPps(); _srs_pps_clock_35ms = new SrsPps(); _srs_pps_clock_40ms = new SrsPps(); _srs_pps_clock_80ms = new SrsPps(); _srs_pps_clock_160ms = new SrsPps(); _srs_pps_timer_s = new SrsPps(); #if defined(SRS_DEBUG) && defined(SRS_DEBUG_STATS) _srs_pps_thread_run = new SrsPps(); _srs_pps_thread_idle = new SrsPps(); _srs_pps_thread_yield = new SrsPps(); _srs_pps_thread_yield2 = new SrsPps(); #endif _srs_pps_rpkts = new SrsPps(); _srs_pps_addrs = new SrsPps(); _srs_pps_fast_addrs = new SrsPps(); _srs_pps_spkts = new SrsPps(); _srs_pps_objs_msgs = new SrsPps(); #ifdef SRS_RTC _srs_pps_sstuns = new SrsPps(); _srs_pps_srtcps = new SrsPps(); _srs_pps_srtps = new SrsPps(); _srs_pps_rstuns = new SrsPps(); _srs_pps_rrtps = new SrsPps(); _srs_pps_rrtcps = new SrsPps(); _srs_pps_aloss2 = new SrsPps(); _srs_pps_pli = new SrsPps(); _srs_pps_twcc = new SrsPps(); _srs_pps_rr = new SrsPps(); _srs_pps_objs_rtps = new SrsPps(); _srs_pps_objs_rraw = new SrsPps(); _srs_pps_objs_rfua = new SrsPps(); _srs_pps_objs_rbuf = new SrsPps(); _srs_pps_objs_rothers = new SrsPps(); #endif // Create global async worker for DVR. _srs_dvr_async = new SrsAsyncCallWorker(); #ifdef SRS_APM // Initialize global TencentCloud CLS object. _srs_cls = new SrsClsClient(); _srs_apm = new SrsApmClient(); #endif return err; } SrsThreadMutex::SrsThreadMutex() { // https://man7.org/linux/man-pages/man3/pthread_mutexattr_init.3.html int r0 = pthread_mutexattr_init(&attr_); srs_assert(!r0); // https://man7.org/linux/man-pages/man3/pthread_mutexattr_gettype.3p.html r0 = pthread_mutexattr_settype(&attr_, PTHREAD_MUTEX_ERRORCHECK); srs_assert(!r0); // https://michaelkerrisk.com/linux/man-pages/man3/pthread_mutex_init.3p.html r0 = pthread_mutex_init(&lock_, &attr_); srs_assert(!r0); } SrsThreadMutex::~SrsThreadMutex() { int r0 = pthread_mutex_destroy(&lock_); srs_assert(!r0); r0 = pthread_mutexattr_destroy(&attr_); srs_assert(!r0); } void SrsThreadMutex::lock() { // https://man7.org/linux/man-pages/man3/pthread_mutex_lock.3p.html // EDEADLK // The mutex type is PTHREAD_MUTEX_ERRORCHECK and the current // thread already owns the mutex. int r0 = pthread_mutex_lock(&lock_); srs_assert(!r0); } void SrsThreadMutex::unlock() { int r0 = pthread_mutex_unlock(&lock_); srs_assert(!r0); } SrsThreadEntry::SrsThreadEntry() { pool = NULL; start = NULL; arg = NULL; num = 0; tid = 0; err = srs_success; } SrsThreadEntry::~SrsThreadEntry() { srs_freep(err); // TODO: FIXME: Should dispose trd. } SrsThreadPool::SrsThreadPool() { entry_ = NULL; lock_ = new SrsThreadMutex(); hybrid_ = NULL; // Add primordial thread, current thread itself. SrsThreadEntry* entry = new SrsThreadEntry(); threads_.push_back(entry); entry_ = entry; entry->pool = this; entry->label = "primordial"; entry->start = NULL; entry->arg = NULL; entry->num = 1; entry->trd = pthread_self(); entry->tid = gettid(); char buf[256]; snprintf(buf, sizeof(buf), "srs-master-%d", entry->num); entry->name = buf; pid_fd = -1; } // TODO: FIMXE: If free the pool, we should stop all threads. SrsThreadPool::~SrsThreadPool() { srs_freep(lock_); if (pid_fd > 0) { ::close(pid_fd); pid_fd = -1; } } // Setup the thread-local variables, MUST call when each thread starting. srs_error_t SrsThreadPool::setup_thread_locals() { srs_error_t err = srs_success; // Initialize ST, which depends on pps cids. if ((err = srs_st_init()) != srs_success) { return srs_error_wrap(err, "initialize st failed"); } return err; } srs_error_t SrsThreadPool::initialize() { srs_error_t err = srs_success; if ((err = acquire_pid_file()) != srs_success) { return srs_error_wrap(err, "acquire pid file"); } // Initialize the master primordial thread. SrsThreadEntry* entry = (SrsThreadEntry*)entry_; interval_ = _srs_config->get_threads_interval(); srs_trace("Thread #%d(%s): init name=%s, interval=%dms", entry->num, entry->label.c_str(), entry->name.c_str(), srsu2msi(interval_)); return err; } srs_error_t SrsThreadPool::acquire_pid_file() { std::string pid_file = _srs_config->get_pid_file(); // -rw-r--r-- // 644 int mode = S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH; int fd; // open pid file if ((fd = ::open(pid_file.c_str(), O_WRONLY | O_CREAT, mode)) == -1) { return srs_error_new(ERROR_SYSTEM_PID_ACQUIRE, "open pid file=%s", pid_file.c_str()); } // require write lock struct flock lock; lock.l_type = F_WRLCK; // F_RDLCK, F_WRLCK, F_UNLCK lock.l_start = 0; // type offset, relative to l_whence lock.l_whence = SEEK_SET; // SEEK_SET, SEEK_CUR, SEEK_END lock.l_len = 0; if (fcntl(fd, F_SETLK, &lock) == -1) { if(errno == EACCES || errno == EAGAIN) { ::close(fd); srs_error("srs is already running!"); return srs_error_new(ERROR_SYSTEM_PID_ALREADY_RUNNING, "srs is already running"); } return srs_error_new(ERROR_SYSTEM_PID_LOCK, "access to pid=%s", pid_file.c_str()); } // truncate file if (ftruncate(fd, 0) != 0) { return srs_error_new(ERROR_SYSTEM_PID_TRUNCATE_FILE, "truncate pid file=%s", pid_file.c_str()); } // write the pid string pid = srs_int2str(getpid()); if (write(fd, pid.c_str(), pid.length()) != (int)pid.length()) { return srs_error_new(ERROR_SYSTEM_PID_WRITE_FILE, "write pid=%s to file=%s", pid.c_str(), pid_file.c_str()); } // auto close when fork child process. int val; if ((val = fcntl(fd, F_GETFD, 0)) < 0) { return srs_error_new(ERROR_SYSTEM_PID_GET_FILE_INFO, "fcntl fd=%d", fd); } val |= FD_CLOEXEC; if (fcntl(fd, F_SETFD, val) < 0) { return srs_error_new(ERROR_SYSTEM_PID_SET_FILE_INFO, "lock file=%s fd=%d", pid_file.c_str(), fd); } srs_trace("write pid=%s to %s success!", pid.c_str(), pid_file.c_str()); pid_fd = fd; return srs_success; } srs_error_t SrsThreadPool::execute(string label, srs_error_t (*start)(void* arg), void* arg) { srs_error_t err = srs_success; SrsThreadEntry* entry = new SrsThreadEntry(); // Update the hybrid thread entry for circuit breaker. if (label == "hybrid") { hybrid_ = entry; hybrids_.push_back(entry); } // To protect the threads_ for executing thread-safe. if (true) { SrsThreadLocker(lock_); threads_.push_back(entry); } entry->pool = this; entry->label = label; entry->start = start; entry->arg = arg; // The id of thread, should equal to the debugger thread id. // For gdb, it's: info threads // For lldb, it's: thread list static int num = entry_->num + 1; entry->num = num++; char buf[256]; snprintf(buf, sizeof(buf), "srs-%s-%d", entry->label.c_str(), entry->num); entry->name = buf; // https://man7.org/linux/man-pages/man3/pthread_create.3.html pthread_t trd; int r0 = pthread_create(&trd, NULL, SrsThreadPool::start, entry); if (r0 != 0) { entry->err = srs_error_new(ERROR_THREAD_CREATE, "create thread %s, r0=%d", label.c_str(), r0); return srs_error_copy(entry->err); } entry->trd = trd; return err; } srs_error_t SrsThreadPool::run() { srs_error_t err = srs_success; while (true) { vector threads; if (true) { SrsThreadLocker(lock_); threads = threads_; } // Check the threads status fastly. int loops = (int)(interval_ / SRS_UTIME_SECONDS); for (int i = 0; i < loops; i++) { for (int i = 0; i < (int)threads.size(); i++) { SrsThreadEntry* entry = threads.at(i); if (entry->err != srs_success) { // Quit with success. if (srs_error_code(entry->err) == ERROR_THREAD_FINISHED) { srs_trace("quit for thread #%d(%s) finished", entry->num, entry->label.c_str()); srs_freep(err); return srs_success; } // Quit with specified error. err = srs_error_copy(entry->err); err = srs_error_wrap(err, "thread #%d(%s)", entry->num, entry->label.c_str()); return err; } } srs_usleep(1 * SRS_UTIME_SECONDS); } // Show statistics for RTC server. SrsProcSelfStat* u = srs_get_self_proc_stat(); // Resident Set Size: number of pages the process has in real memory. int memory = (int)(u->rss * 4 / 1024); srs_trace("Process: cpu=%.2f%%,%dMB, threads=%d", u->percent * 100, memory, (int)threads_.size()); } return err; } void SrsThreadPool::stop() { // TODO: FIXME: Should notify other threads to do cleanup and quit. } SrsThreadEntry* SrsThreadPool::self() { std::vector threads; if (true) { SrsThreadLocker(lock_); threads = threads_; } for (int i = 0; i < (int)threads.size(); i++) { SrsThreadEntry* entry = threads.at(i); if (entry->trd == pthread_self()) { return entry; } } return NULL; } SrsThreadEntry* SrsThreadPool::hybrid() { return hybrid_; } vector SrsThreadPool::hybrids() { return hybrids_; } void* SrsThreadPool::start(void* arg) { srs_error_t err = srs_success; SrsThreadEntry* entry = (SrsThreadEntry*)arg; // Initialize thread-local variables. if ((err = SrsThreadPool::setup_thread_locals()) != srs_success) { entry->err = err; return NULL; } // Set the thread local fields. entry->tid = gettid(); #ifndef SRS_OSX // https://man7.org/linux/man-pages/man3/pthread_setname_np.3.html pthread_setname_np(pthread_self(), entry->name.c_str()); #else pthread_setname_np(entry->name.c_str()); #endif srs_trace("Thread #%d: run with tid=%d, entry=%p, label=%s, name=%s", entry->num, (int)entry->tid, entry, entry->label.c_str(), entry->name.c_str()); if ((err = entry->start(entry->arg)) != srs_success) { entry->err = err; } // We use a special error to indicates the normally done. if (entry->err == srs_success) { entry->err = srs_error_new(ERROR_THREAD_FINISHED, "finished normally"); } // We do not use the return value, the err has been set to entry->err. return NULL; } // It MUST be thread-safe, global and shared object. SrsThreadPool* _srs_thread_pool = new SrsThreadPool();