
1.

2.
3.

4.
5.
6.

A Guide To The Kafka Protocol
Introduction
Overview
Preliminaries

Network
Partitioning and bootstrapping
Partitioning Strategies
Batching
Versioning and Compatibility

The Protocol
Protocol Primitive Types
Notes on reading the request format grammars
Common Request and Response Structure

Requests
Responses
Message sets
Compression

The APIs
Metadata API

Topic Metadata Request
Metadata Response

Produce API
Produce Request
Produce Response

Fetch API
Fetch Request
Fetch Response

Offset API
Offset Request
Offset Response

Offset Commit/Fetch API
Consumer Metadata Request
Consumer Metadata Response
Offset Commit Request
Offset Commit Response
Offset Fetch Request
Offset Fetch Response

Constants
Api Keys
Error Codes

Some Common Philosophical Questions

Introduction

This document covers the protocol implemented in Kafka 0.8 and beyond. It is meant to give a readable guide to the protocol that covers the
available requests, their binary format, and the proper way to make use of them to implement a client. This document assumes you understand
the basic design and terminology described .here

The and earlier is similar to this, but we chose to make a one time (we hope) break in compatibility to be able to clean up cruftprotocol used in 0.7
and generalize things.

Overview

The Kafka protocol is fairly simple, there are only six client requests APIs.

Metadata - Describes the currently available brokers, their host and port information, and gives information about which broker hosts
which partitions.
Send - Send messages to a broker
Fetch - Fetch messages from a broker, one which fetches data, one which gets cluster metadata, and one which gets offset information
about a topic.
Offsets - Get information about the available offsets for a given topic partition.
Offset Commit - Commit a set of offsets for a consumer group
Offset Fetch - Fetch a set of offsets for a consumer group

Each of these will be described in detail below.

https://kafka.apache.org/documentation.html#design
https://cwiki.apache.org/confluence/display/KAFKA/Wire+Format

1.
2.
3.

1.
2.

Preliminaries

Network

Kafka uses a binary protocol over TCP. The protocol defines all apis as request response message pairs. All messages are size delimited and are
made up of the following primitive types.

The client initiates a socket connection and then writes a sequence of request messages and reads back the corresponding response message.
No handshake is required on connection or disconnection. TCP is happier if you maintain persistent connections used for many requests to
amortize the cost of the TCP handshake, but beyond this penalty connecting is pretty cheap.

The client will likely need to maintain a connection to multiple brokers, as data is partitioned and the clients will need to talk to the server that has
their data. However it should not generally be necessary to maintain multiple connections to a single broker from a single client instance (i.e.
connection pooling).

The server guarantees that on a single TCP connection, requests will be processed in the order they are sent and responses will return in that
order as well. The broker's request processing allows only a single in-flight request per connection in order to guarantee this ordering. Note that
clients can (and ideally should) use non-blocking IO to implement request pipelining and achieve higher throughput. i.e., clients can send requests
even while awaiting responses for preceding requests since the outstanding requests will be buffered in the underlying OS socket buffer. All
requests are initiated by the client, and result in a corresponding response message from the server except where noted.

The server has a configurable maximum limit on request size and any request that exceeds this limit will result in the socket being disconnected.

Partitioning and bootstrapping

Kafka is a partitioned system so not all servers have the complete data set. Instead recall that topics are split into a pre-defined number of
partitions, P, and each partition is replicated with some replication factor, N. Topic partitions themselves are just ordered "commit logs" numbered
0, 1, ..., P.

All systems of this nature have the question of how a particular piece of data is assigned to a particular partition. Kafka clients directly control this
assignment, the brokers themselves enforce no particular semantics of which messages be published to a particular partition. Rather, toshould
publish messages the client directly addresses messages to a particular partition, and when fetching messages, fetches from a particular
partition. If two clients want to use the same partitioning scheme they must use the same method to compute the mapping of key to partition.

These requests to publish or fetch data must be sent to the broker that is currently acting as the leader for a given partition. This condition is
enforced by the broker, so a request for a particular partition to the wrong broker will result in an the NotLeaderForPartition error code (described
below).

How can the client find out which topics exist, what partitions they have, and which brokers currently host those partitions so that it can direct its
requests to the right hosts? This information is dynamic, so you can't just configure each client with some static mapping file. Instead all Kafka
brokers can answer a metadata request that describes the current state of the cluster: what topics there are, which partitions those topics have,
which broker is the leader for those partitions, and the host and port information for these brokers.

In other words, the client needs to somehow find one broker and that broker will tell the client about all the other brokers that exist and what
partitions they host. This first broker may itself go down so the best practice for a client implementation is to take a list of two or three urls to
bootstrap from. The user can then choose to use a load balancer or just statically configure two or three of their kafka hosts in the clients.

The client does not need to keep polling to see if the cluster has changed; it can fetch metadata once when it is instantiated cache that metadata
until it receives an error indicating that the metadata is out of date. This error can come in two forms: (1) a socket error indicating the client cannot
communicate with a particular broker, (2) an error code in the response to a request indicating that this broker no longer hosts the partition for
which data was requested.

Cycle through a list of "bootstrap" kafka urls until we find one we can connect to. Fetch cluster metadata.
Process fetch or produce requests, directing them to the appropriate broker based on the topic/partitions they send to or fetch from.
If we get an appropriate error, refresh the metadata and try again.

Partitioning Strategies

As mentioned above the assignment of messages to partitions is something the producing client controls. That said, how should this functionality
be exposed to the end-user?

Partitioning really serves two purposes in Kafka:

It balances data and request load over brokers
It serves as a way to divvy up processing among consumer processes while allowing local state and preserving order within the partition.
We call this semantic partitioning.

For a given use case you may care about only one of these or both.

To accomplish simple load balancing a simple approach would be for the client to just round robin requests over all brokers. Another alternative,
in an environment where there are many more producers than brokers, would be to have each client chose a single partition at random and

publish to that. This later strategy will result in far fewer TCP connections.

Semantic partitioning means using some key in the message to assign messages to partitions. For example if you were processing a click
message stream you might want to partition the stream by the user id so that all data for a particular user would go to a single consumer. To
accomplish this the client can take a key associated with the message and use some hash of this key to choose the partition to which to deliver
the message.

Batching

Our apis encourage batching small things together for efficiency. We have found this is a very significant performance win. Both our API to send
messages and our API to fetch messages always work with a sequence of messages not a single message to encourage this. A clever client can
make use of this and support an "asynchronous" mode in which it batches together messages sent individually and sends them in larger clumps.
We go even further with this and allow the batching across multiple topics and partitions, so a produce request may contain data to append to
many partitions and a fetch request may pull data from many partitions all at once.

The client implementer can choose to ignore this and send everything one at a time if they like.

Versioning and Compatibility

The protocol is designed to enable incremental evolution in a backward compatible fashion. Our versioning is on a per-api basis, each version
consisting of a request and response pair. Each request contains an API key that identifies the API being invoked and a version number that
indicates the format of the request and the expected format of the response.

The intention is that clients would implement a particular version of the protocol, and indicate this version in their requests. Our goal is primarily to
allow API evolution in an environment where downtime is not allowed and clients and servers cannot all be changed at once.

The server will reject requests with a version it does not support, and will always respond to the client with exactly the protocol format it expects
based on the version it included in its request. The intended upgrade path is that new features would first be rolled out on the server (with the
older clients not making use of them) and then as newer clients are deployed these new features would gradually be taken advantage of.

Currently all versions are baselined at 0, as we evolve these APIs we will indicate the format for each version individually.

The Protocol

Protocol Primitive Types

The protocol is built out of the following primitive types.

Fixed Width Primitives

int8, int16, int32, int64 - Signed integers with the given precision (in bits) stored in big endian order.

Variable Length Primitives

bytes, string - These types consist of a signed integer giving a length N followed by N bytes of content. A length of -1 indicates null. string uses an
int16 for its size, and bytes uses an int32.

Arrays

This is a notation for handling repeated structures. These will always be encoded as an int32 size containing the length N followed by N
repetitions of the structure which can itself be made up of other primitive types. In the BNF grammars below we will show an array of a structure
foo as [foo].

Notes on reading the request format grammars

The s below give an exact context free grammar for the request and response binary format. For each API I will give the request andBNF
response together followed by all the sub-definitions. The BNF is intentionally not compact in order to give human-readable name (for example I
define a production for ErrorCode even though it is just an int16 in order to give it a symbolic name). As always in a BNF a sequence of
productions indicates concatenation, so the MetadataRequest given below would be a sequence of bytes containing first a VersionId, then a
ClientId, and then an array of TopicNames (each of which has its own definition). Productions are always given in camel case and primitive types
in lower case. When there are multiple possible productions these are separated with '|' and may be enclosed in parenthesis for grouping. The
top-level definition is always given first and subsequent sub-parts are indented.

Common Request and Response Structure

All requests and responses originate from the following grammar which will be incrementally describe through the rest of this document:

http://en.wikipedia.org/wiki/Backus%E2%80%93Naur_Form

RequestOrResponse => Size (RequestMessage | ResponseMessage)
 Size => int32

Field Description

MessageSize The MessageSize field gives the size of the subsequent request or response message in bytes. The client can read requests
by first reading this 4 byte size as an integer N, and then reading and parsing the subsequent N bytes of the request.

Requests

Requests all have the following format:

RequestMessage => ApiKey ApiVersion CorrelationId ClientId RequestMessage
 ApiKey => int16
 ApiVersion => int16
 CorrelationId => int32
 ClientId => string
 RequestMessage => MetadataRequest | ProduceRequest | FetchRequest | OffsetRequest |
OffsetCommitRequest | OffsetFetchRequest

Field Description

ApiKey This is a numeric id for the API being invoked (i.e. is it a metadata request, a produce request, a fetch request, etc).

ApiVersion This is a numeric version number for this api. We version each API and this version number allows the server to properly
interpret the request as the protocol evolves. Responses will always be in the format corresponding to the request version.
Currently the supported version for all APIs is 0.

CorrelationId This is a user-supplied integer. It will be passed back in the response by the server, unmodified. It is useful for matching request
and response between the client and server.

ClientId This is a user supplied identifier for the client application. The user can use any identifier they like and it will be used when
logging errors, monitoring aggregates, etc. For example, one might want to monitor not just the requests per second overall, but
the number coming from each client application (each of which could reside on multiple servers). This id acts as a logical
grouping across all requests from a particular client.

The various request and response messages will be described below.

Responses

Response => CorrelationId ResponseMessage
CorrelationId => int32
ResponseMessage => MetadataResponse | ProduceResponse | FetchResponse | OffsetResponse
| OffsetCommitResponse | OffsetFetchResponse

Field Description

CorrelationId The server passes back whatever integer the client supplied as the correlation in the request.

The response will always match the paired request (e.g. we will send a MetadataResponse in return to a MetadataRequest).

Message sets

One structure common to both the produce and fetch requests is the message set format. A message in kafka is a key-value pair with a small
amount of associated metadata. A message set is just a sequence of messages with offset and size information. This format happens to be used
both for the on-disk storage on the broker and the on-the-wire format.

A message set is also the unit of compression in Kafka, and we allow messages to recursively contain compressed message sets to allow batch

compression.

N.B., MessageSets are not preceded by an int32 like other array elements in the protocol.

MessageSet => [Offset MessageSize Message]
 Offset => int64
 MessageSize => int32

Message format

Message => Crc MagicByte Attributes Key Value
 Crc => int32
 MagicByte => int8
 Attributes => int8
 Key => bytes
 Value => bytes

Field Description

Offset This is the offset used in kafka as the log sequence number. When the producer is sending messages it doesn't actually know the
offset and can fill in any value here it likes.

Crc The CRC is the CRC32 of the remainder of the message bytes. This is used to check the integrity of the message on the broker
and consumer.

MagicByte This is a version id used to allow backwards compatible evolution of the message binary format. The current value is 0.

Attributes This byte holds metadata attributes about the message. The lowest 2 bits contain the compression codec used for the message.
The other bits should be set to 0.

Key The key is an optional message key that was used for partition assignment. The key can be null.

Value The value is the actual message contents as an opaque byte array. Kafka supports recursive messages in which case this may
itself contain a message set. The message can be null.

Compression

Kafka supports compressing messages for additional efficiency, however this is more complex than just compressing a raw message. Because
individual messages may not have sufficient redundancy to enable good compression ratios, compressed messages must be sent in special
batches (although you may use a batch of one if you truly wish to compress a message on its own). The messages to be sent are wrapped
(uncompressed) in a MessageSet structure, which is then compressed and stored in the Value field of a single "Message" with the appropriate
compression codec set. The receiving system parses the actual MessageSet from the decompressed value. The outer MessageSet should
contain only one compressed "Message" (see for details).KAFKA-1718

Kafka currently supports two compression codecs with the following codec numbers:

Compression Codec

None 0

GZIP 1

Snappy 2

The APIs

This section gives details on each of the individual APIs, their usage, their binary format, and the meaning of their fields.

Metadata API

This API answers the following questions:

https://issues.apache.org/jira/browse/KAFKA-1718

What topics exist?
How many partitions does each topic have?
Which broker is currently the leader for each partition?
What is the host and port for each of these brokers?

This is the only request that can be addressed to any broker in the cluster.

Since there may be many topics the client can give an optional list of topic names in order to only return metadata for a subset of topics.

The metadata returned is at the partition level, but grouped together by topic for convenience and to avoid redundancy. For each partition the
metadata contains the information for the leader as well as for all the replicas and the list of replicas that are currently in-sync.

Topic Metadata Request

TopicMetadataRequest => [TopicName]
 TopicName => string

Field Description

TopicName The topics to produce metadata for. If empty the request will yield metadata for all topics.

Metadata Response

The response contains metadata for each partition, with partitions grouped together by topic. This metadata refers to brokers by their broker id.
The brokers each have a host and port.

MetadataResponse => [Broker][TopicMetadata]
 Broker => NodeId Host Port (any number of brokers may be returned)
 NodeId => int32
 Host => string
 Port => int32
 TopicMetadata => TopicErrorCode TopicName [PartitionMetadata]
 TopicErrorCode => int16
 PartitionMetadata => PartitionErrorCode PartitionId Leader Replicas Isr
 PartitionErrorCode => int16
 PartitionId => int32
 Leader => int32
 Replicas => [int32]
 Isr => [int32]

Field Description

Leader The node id for the kafka broker currently acting as leader for this partition. If no leader exists because we are in the middle of a
leader election this id will be -1.

Replicas The set of alive nodes that currently acts as slaves for the leader for this partition.

Isr The set subset of the replicas that are "caught up" to the leader

Broker The node id, hostname, and port information for a kafka broker

Produce API

The produce API is used to send message sets to the server. For efficiency it allows sending message sets intended for many topic partitions in a
single request.

The produce API uses the generic message set format, but since no offset has been assigned to the messages at the time of the send the
producer is free to fill in that field in any way it likes.

Produce Request

ProduceRequest => RequiredAcks Timeout [TopicName [Partition MessageSetSize
MessageSet]]
 RequiredAcks => int16
 Timeout => int32
 Partition => int32
 MessageSetSize => int32

Field Description

RequiredAcks This field indicates how many acknowledgements the servers should receive before responding to the request. If it is 0 the
server will not send any response (this is the only case where the server will not reply to a request). If it is 1, the server will
wait the data is written to the local log before sending a response. If it is -1 the server will block until the message is
committed by all in sync replicas before sending a response. For any number > 1 the server will block waiting for this
number of acknowledgements to occur (but the server will never wait for more acknowledgements than there are in-sync
replicas).

Timeout This provides a maximum time in milliseconds the server can await the receipt of the number of acknowledgements in
RequiredAcks. The timeout is not an exact limit on the request time for a few reasons: (1) it does not include network
latency, (2) the timer begins at the beginning of the processing of this request so if many requests are queued due to server
overload that wait time will not be included, (3) we will not terminate a local write so if the local write time exceeds this
timeout it will not be respected. To get a hard timeout of this type the client should use the socket timeout.

TopicName The topic that data is being published to.

Partition The partition that data is being published to.

MessageSetSize The size, in bytes, of the message set that follows.

MessageSet A set of messages in the standard format described above.

Produce Response

ProduceResponse => [TopicName [Partition ErrorCode Offset]]
 TopicName => string
 Partition => int32
 ErrorCode => int16
 Offset => int64

Field Description

Topic The topic this response entry corresponds to.

Partition The partition this response entry corresponds to.

ErrorCode The error from this partition, if any. Errors are given on a per-partition basis because a given partition may be unavailable or
maintained on a different host, while others may have successfully accepted the produce request.

Offset The offset assigned to the first message in the message set appended to this partition.

Fetch API

The fetch API is used to fetch a chunk of one or more logs for some topic-partitions. Logically one specifies the topics, partitions, and starting
offset at which to begin the fetch and gets back a chunk of messages. In general, the return messages will have offsets larger than or equal to the
starting offset. However, with compressed messages, it's possible for the returned messages to have offsets smaller than the starting offset. The
number of such messages is typically small and the caller is responsible for filtering out those messages.

Fetch requests follow a long poll model so they can be made to block for a period of time if sufficient data is not immediately available.

As an optimization the server is allowed to return a partial message at the end of the message set. Clients should handle this case.

One thing to note is that the fetch API requires specifying the partition to consume from. The question is how should a consumer know what
partitions to consume from? In particular how can you balance the partitions over a set of consumers acting as a group so that each consumer

gets a subset of partitions. We have done this assignment dynamically using zookeeper for the scala and java client. The downside of this
approach is that it requires a fairly fat client and a zookeeper connection. We haven't yet created a Kafka API to allow this functionality to be
moved to the server side and accessed more conveniently. A simple consumer client can be implemented by simply requiring that the partitions
be specified in config, though this will not allow dynamic reassignment of partitions should that consumer fail. We hope to address this gap in the
next major release.

Fetch Request

FetchRequest => ReplicaId MaxWaitTime MinBytes [TopicName [Partition FetchOffset
MaxBytes]]
 ReplicaId => int32
 MaxWaitTime => int32
 MinBytes => int32
 TopicName => string
 Partition => int32
 FetchOffset => int64
 MaxBytes => int32

Field Description

ReplicaId The replica id indicates the node id of the replica initiating this request. Normal client consumers should always specify this as
-1 as they have no node id. Other brokers set this to be their own node id. The value -2 is accepted to allow a non-broker to
issue fetch requests as if it were a replica broker for debugging purposes.

MaxWaitTime The max wait time is the maximum amount of time in milliseconds to block waiting if insufficient data is available at the time the
request is issued.

MinBytes This is the minimum number of bytes of messages that must be available to give a response. If the client sets this to 0 the
server will always respond immediately, however if there is no new data since their last request they will just get back empty
message sets. If this is set to 1, the server will respond as soon as at least one partition has at least 1 byte of data or the
specified timeout occurs. By setting higher values in combination with the timeout the consumer can tune for throughput and
trade a little additional latency for reading only large chunks of data (e.g. setting MaxWaitTime to 100 ms and setting MinBytes
to 64k would allow the server to wait up to 100ms to try to accumulate 64k of data before responding).

TopicName The name of the topic.

Partition The id of the partition the fetch is for.

FetchOffset The offset to begin this fetch from.

MaxBytes The maximum bytes to include in the message set for this partition. This helps bound the size of the response.

Fetch Response

FetchResponse => [TopicName [Partition ErrorCode HighwaterMarkOffset MessageSetSize
MessageSet]]
 TopicName => string
 Partition => int32
 ErrorCode => int16
 HighwaterMarkOffset => int64
 MessageSetSize => int32

Field Description

TopicName The name of the topic this response entry is for.

Partition The id of the partition this response is for.

HighwaterMarkOffset The offset at the end of the log for this partition. This can be used by the client to determine how many messages
behind the end of the log they are.

MessageSetSize The size in bytes of the message set for this partition

MessageSet The message data fetched from this partition, in the format described above.

Offset API

This API describes the valid offset range available for a set of topic-partitions. As with the produce and fetch APIs requests must be directed to
the broker that is currently the leader for the partitions in question. This can be determined using the metadata API.

The response contains the starting offset of each segment for the requested partition as well as the "log end offset" i.e. the offset of the next
message that would be appended to the given partition.

We agree that this API is slightly funky.

Offset Request

OffsetRequest => ReplicaId [TopicName [Partition Time MaxNumberOfOffsets]]
 ReplicaId => int32
 TopicName => string
 Partition => int32
 Time => int64
 MaxNumberOfOffsets => int32

Field Decription

Time Used to ask for all messages before a certain time (ms). There are two special values. Specify -1 to receive the latest offset (i.e. the
offset of the next coming message) and -2 to receive the earliest available offset. Note that because offsets are pulled in descending
order, asking for the earliest offset will always return you a single element.

Offset Response

OffsetResponse => [TopicName [PartitionOffsets]]
 PartitionOffsets => Partition ErrorCode [Offset]
 Partition => int32
 ErrorCode => int16
 Offset => int64

Offset Commit/Fetch API

These APIs allow for centralized management of offsets. Read more . As per comments on these API calls areOffset Management KAFKA-993
not fully functional in releases until Kafka 0.8.1.1. It will be available in the 0.8.2 release.

Consumer Metadata Request

The offsets for a given consumer group are maintained by a specific broker called the offset coordinator. i.e., a consumer needs to issue its offset
commit and fetch requests to this specific broker. It can discover the current offset coordinator by issuing a consumer metadata request.

ConsumerMetadataRequest => ConsumerGroup
 ConsumerGroup => string

Consumer Metadata Response

https://cwiki.apache.org/confluence/display/KAFKA/Offset+Management
https://issues.apache.org/jira/browse/KAFKA-993

ConsumerMetadataResponse => ErrorCode CoordinatorId CoordinatorHost CoordinatorPort
 ErrorCode => int16
 CoordinatorId => int32
 CoordinatorHost => string
 CoordinatorPort => int32

Offset Commit Request

v0 (supported in 0.8.1 or later)
OffsetCommitRequest => ConsumerGroupId [TopicName [Partition Offset Metadata]]
 ConsumerGroupId => string
 TopicName => string
 Partition => int32
 Offset => int64
 Metadata => string

v1 (supported in 0.8.2 or later)
OffsetCommitRequest => ConsumerGroupId ConsumerGroupGenerationId ConsumerId [TopicName
[Partition Offset TimeStamp Metadata]]
 ConsumerGroupId => string
 ConsumerGroupGenerationId => int32
 ConsumerId => string
 TopicName => string
 Partition => int32
 Offset => int64
 TimeStamp => int64
 Metadata => string

v2 (supported in 0.8.3 or later)
OffsetCommitRequest => ConsumerGroup ConsumerGroupGenerationId ConsumerId
RetentionTime [TopicName [Partition Offset Metadata]]
 ConsumerGroupId => string
 ConsumerGroupGenerationId => int32
 ConsumerId => string
 RetentionTime => int64
 TopicName => string
 Partition => int32
 Offset => int64
 Metadata => string

In v0 and v1, the time stamp of each partition is defined as the commit time stamp, and the offset coordinator will retain the committed offset until
its commit time stamp + offset retention time specified in the broker config; if the time stamp field is not set, brokers will set the commit time as the
receive time before committing the offset, users can explicitly set the commit time stamp if they want to retain the committed offset longer on the
broker than the configured offset retention time.

In v2, we removed the time stamp field but add a global retention time field (see for details); brokers will then always set the commitKAFKA-1634
time stamp as the receive time, but the committed offset can be retained until its commit time stamp + user specified retention time in the commit
request. If the retention time is not set, the broker offset retention time will be used as default.

Offset Commit Response

https://issues.apache.org/jira/browse/KAFKA-1634

v0, v1 and v2:
OffsetCommitResponse => [TopicName [Partition ErrorCode]]]
 TopicName => string
 Partition => int32
 ErrorCode => int16

Offset Fetch Request

Per the comment on , v0 and v1 are identical on - KAFKA-1841 OffsetCommitRequest API - timestamp field is not versioned RESOLVED

the wire, but v0 (supported in 0.8.1 or later) reads offsets from zookeeper, while v1 (supported in 0.8.2 or later) reads offsets from kafka.

OffsetFetchRequest => ConsumerGroup [TopicName [Partition]]
 ConsumerGroup => string
 TopicName => string
 Partition => int32

Offset Fetch Response

OffsetFetchResponse => [TopicName [Partition Offset Metadata ErrorCode]]
 TopicName => string
 Partition => int32
 Offset => int64
 Metadata => string
 ErrorCode => int16

Note that if there is no offset associated with a topic-partition under that consumer group the broker does not set an error code (since it is not
really an error), but returns empty metadata and sets the offset field to -1.

Constants

Api Keys

The following are the numeric codes that the ApiKey in the request can take for each of the above request types.

API name ApiKey Value

ProduceRequest 0

FetchRequest 1

OffsetRequest 2

MetadataRequest 3

Non-user facing control APIs 4-7

OffsetCommitRequest 8

OffsetFetchRequest 9

ConsumerMetadataRequest 10

Error Codes

We use numeric codes to indicate what problem occurred on the server. These can be translated by the client into exceptions or whatever the

https://issues.apache.org/jira/browse/KAFKA-1841

appropriate error handling mechanism in the client language. Here is a table of the error codes currently in use:

Error Code Description

NoError 0 No error--it worked!

Unknown -1 An unexpected server error

OffsetOutOfRange 1 The requested offset is outside the range of offsets maintained by the server for the given
topic/partition.

InvalidMessage 2 This indicates that a message contents does not match its CRC

UnknownTopicOrPartition 3 This request is for a topic or partition that does not exist on this broker.

InvalidMessageSize 4 The message has a negative size

LeaderNotAvailable 5 This error is thrown if we are in the middle of a leadership election and there is currently no
leader for this partition and hence it is unavailable for writes.

NotLeaderForPartition 6 This error is thrown if the client attempts to send messages to a replica that is not the
leader for some partition. It indicates that the clients metadata is out of date.

RequestTimedOut 7 This error is thrown if the request exceeds the user-specified time limit in the request.

BrokerNotAvailable 8 This is not a client facing error and is used mostly by tools when a broker is not alive.

ReplicaNotAvailable 9 If replica is expected on a broker, but is not (this can be safely ignored).

MessageSizeTooLarge 10 The server has a configurable maximum message size to avoid unbounded memory
allocation. This error is thrown if the client attempt to produce a message larger than this
maximum.

StaleControllerEpochCode 11 Internal error code for broker-to-broker communication.

OffsetMetadataTooLargeCode 12 If you specify a string larger than configured maximum for offset metadata

OffsetsLoadInProgressCode 14 The broker returns this error code for an offset fetch request if it is still loading offsets (after
a leader change for that offsets topic partition).

ConsumerCoordinatorNotAvailableCode 15 The broker returns this error code for consumer metadata requests or offset commit
requests if the offsets topic has not yet been created.

NotCoordinatorForConsumerCode 16 The broker returns this error code if it receives an offset fetch or commit request for a
consumer group that it is not a coordinator for.

Some Common Philosophical Questions

Some people have asked why we don't use HTTP. There are a number of reasons, the best is that client implementors can make use of some of
the more advanced TCP features--the ability to multiplex requests, the ability to simultaneously poll many connections, etc. We have also found
HTTP libraries in many languages to be surprisingly shabby.

Others have asked if maybe we shouldn't support many different protocols. Prior experience with this was that it makes it very hard to add and
test new features if they have to be ported across many protocol implementations. Our feeling is that most users don't really see multiple protocols
as a feature, they just want a good reliable client in the language of their choice.

Another question is why we don't adopt XMPP, STOMP, AMQP or an existing protocol. The answer to this varies by protocol, but in general the
problem is that the protocol does determine large parts of the implementation and we couldn't do what we are doing if we didn't have control over
the protocol. Our belief is that it is possible to do better than existing messaging systems have in providing a truly distributed messaging system,
and to do this we need to build something that works differently.

A final question is why we don't use a system like Protocol Buffers or Thrift to define our request messages. These packages excel at helping you
to managing lots and lots of serialized messages. However we have only a few messages. Support across languages is somewhat spotty
(depending on the package). Finally the mapping between binary log format and wire protocol is something we manage somewhat carefully and
this would not be possible with these systems. Finally we prefer the style of versioning APIs explicitly and checking this to inferring new values as
nulls as it allows more nuanced control of compatibility.

	A Guide To The Kafka Protocol

