
Copyright 2009 Adobe Systems Incorporated. All rights reserved. Adobe confidential. 1

RTMFP Overview
for IETF77 TSV AREA

Matthew Kaufman
Sr. Computer Scientist, Project Lead

Adobe Systems

mkaufman@adobe.com

matthew@matthew.at

®

Copyright 2010 Adobe Systems Incorporated. 2

Yes, we’re crazy

  Designed and implemented a new transport protocol
  Twice!

®

Copyright 2010 Adobe Systems Incorporated. 3

Yes, we’re crazy

  Designed and implemented a new transport protocol
  Twice!

  But we successfully deployed this to almost every Internet host

  So…
  Who are we?

  Why did we do this?

  And what is it?

®

Copyright 2010 Adobe Systems Incorporated. 4

Who are we?

  Matthew Kaufman and Michael Thornburgh
  Background in building ISPs and writing software

  Founded amicima in 2004

  Designed and wrote MFP (Secure Media Flow Protocol), released as open source

  Acquired by Adobe in 2006

  Designed and wrote RTMFP, released in Flash Player 10.0

  Designed and wrote RTMFP Groups, shipping in Flash Player 10.1

®

Copyright 2010 Adobe Systems Incorporated. 5

The other way to deploy a new transport protocol

Worldwide Ubiquity of Adobe Flash Player by Version - December 2009

Flash Player
8 & below Flash Player 9 Flash Player 10

Mature Markets 99.0% 98.9% 94.7%

US/Canada 99.0% 99.0% 94.2%

Europe 99.1% 98.8% 95.6%

Japan 98.0% 97.7% 93.4%

Australia/New Zealand 98.9% 98.6% 94.3%

Emerging Markets 98.2% 98.0% 92.7%

®

Copyright 2010 Adobe Systems Incorporated. 6

Overview of Flash Player Communications

  RTMFP is proprietary transport protocol
  Ships in Flash Player 10.0 and later (client-server and peer-to-peer)

  Used by RTMFP Groups (peer-to-peer overlay) in Flash Player 10.1 and later

  Application-level Multicast, Posting, Directed Routing, Object Replication

  RTMP is a (now published) media transport over TCP
  Variants: RTMPT, RTMPS, RTMPE

  Because RTMFP is presently proprietary I can share:
  Things we’ve learned

  Interesting design points (some covered by patent filings, see IPR disclosure)

  How it coexists with other network protocols

  …but I cannot share:
  Bit-level packet formats, details of cryptosystem

®

Copyright 2010 Adobe Systems Incorporated. 7

Why a new transport protocol?

  To securely deliver media flows over the Internet

  And do it “better” than existing choices
  For our definition of “better”, of course

  To remember:
  MFP designed in early 2004, open source release in July 2005

  RTMFP designed in late 2006, learned from MFP

  MFP predates DCCP (mostly), DTLS, HIP, ICE

®

Copyright 2010 Adobe Systems Incorporated. 8

Things we believe about the Internet

  Delivers datagrams (on a “best effort” basis)

  Lots of end-to-end delay (200km/msec, one way in glass)

  Usually lossless (copper 10-9, glass 10-12, wireless emulates)

  Usually in-order

  Possibly congested
  Signaled by loss (and that loss can be bursty, and is usually near the endpoints)

  Likely path asymmetry

  Isn’t secure
  Lots of scanning and denial-of-service attacks, untraceable address spoofing, some

eavesdropping, some MITM

  Filled with NA(P)T and firewall devices, “end-to-end” gone
  (but not forgotten)

®

Copyright 2010 Adobe Systems Incorporated. 9

Things we believe about Computers

  Fast and still getting faster

  Manipulating data is fast, moving data is slow
  Especially slow to move data over the network (but even off-chip on-system matters)

  O(1) operations are better than O(n) operations
  Especially when n is large

  Anything we want to do must be possible as a normal user on most
popular operating systems

  No raw sockets

  No ECN

  No way to force the source address when bound to INADDR_ANY

  Network availability can and will change as the computer moves
  Even as simple as “unplugged Ethernet cable, let wireless card take over”

®

Copyright 2010 Adobe Systems Incorporated. 10

Things which therefore follow…

  The fewer the round trips, the better

  The shorter the packet, the better
  Especially if you’re encrypting the packet

  Even if it makes the ASCII drawings optimized for 32-bit aligned structures look bad

  The receiver should pick the data structure index when possible

  We must use UDP (NAT/firewall, Operating System, TCP won’t do)

  We must encrypt everything all the time

  We must not consume state (or even respond, if possible) until we are sure we
want to talk to the other end

  We must not think we know our own IP address or UDP port number

  We must not believe that addresses do not change mid-session

  We must respect loss as congestion and respond appropriately

®

Copyright 2010 Adobe Systems Incorporated. 11 1
1

The Problem

  Real-time media delivery for Rich Internet Applications
  Multiple streams of:

  Audio

  Video

  Control

  File transfer

  Over the real Internet

  Congestion

  Packet loss

  Insecure (tapping, active attacks, denial-of-service attacks)

  With Peer-to-Peer capabilities

  NAT and firewall traversal

®

Copyright 2010 Adobe Systems Incorporated. 12 1
2

The Solution

  Connectivity philosophy
  “Just Works”

  In real life, on today’s actual Internet

  Dealing with NAT and firewall not an afterthought

  Congestion control required

  One congestion domain between a pair of endpoints

  Avoid excess round-trip times

  “Call setup” from a cold start needs to be fast

  Avoid repeated work

  Clean solution vs. “glue and tape” on existing protocols (or a deep set of new ones)

  Note: We believe in combined signaling and media
  Avoids extra RTTs, repeated NAT traversal effort, key negotiation, etc.

  Easy to separate if combined… reverse is not necessarily true

®

Copyright 2010 Adobe Systems Incorporated. 13

Layering

  Good:
  Reuse existing solutions (TCP for reliable transfer, SSL for security)

  Avoiding redesigning and rewriting (and the associated risks of doing so)

®

Copyright 2010 Adobe Systems Incorporated. 14

Layering

  Good:
  Reuse existing solutions (TCP for reliable transfer, SSL for security

  Avoiding redesigning and rewriting (and the associated risks of doing so)

  Bad:
  Information can be lost (soft bit decisions on RF links not visible to higher layers)

  Extra overhead (numerous protocols to add framing to TCP byte streams)

  Extra round trips (set up TCP session, set up SSL session, signaling handshake,…)

  Lower layer issues cannot always be solved by upper layers (SSL can’t fix SYN flood)

®

Copyright 2010 Adobe Systems Incorporated. 15 1
5

The Solution: Sessions

  Bidirectional, only one between any pair of endpoints

  Parallel Open (load balancing, NAT and firewall traversal)
  Secure (“always on”, set up in 2 RTT with anti-scan and anti-DOS)

  Congestion controlled (dynamic)
  IP address mobility, fast outage recovery

Session

®

Copyright 2010 Adobe Systems Incorporated. 16 1
6

The Solution: Flows

  Many, no set-up time (“½ RTT”, no rekeying)
  Named

  Unidirectional

  Prioritized

  In- or out-of-order delivery

  Variable reliability

  Buffer management

Flows

®

Copyright 2010 Adobe Systems Incorporated. 17 1
7

The Solution: How It Works

  Request for a Flow to an endpoint for which there is no open session
  Session Established

  Flow(s) Established

  Flow Close or Exception

  RTT measured as necessary

  IP mobility handled as necessary

  Eventually, Session Closed

  No more flows for a period of time

  Or session fails

®

Copyright 2010 Adobe Systems Incorporated. 18 1
8

The Solution: How It Works: Session Establishment

  Session Establishment
  4-way handshake (anti-DOS, anti-scanning)

  Parallel Open

  Security exchange embedded in handshake

  Session IDs chosen (by the receiver who will need to demultiplex by these IDs)

  Session nonce exchanged

  Usable for later signature operations without another RTT to exchange nonces

®

Copyright 2010 Adobe Systems Incorporated. 19 1
9

Session Establishment: Parallel Open

  Initiator Hello message is sent to all candidate addresses for target
  Simultaneously or offset in time

  First to respond with correct certificate wins
  Load balancing without hardware
  Simultaneously open to private (behind NAT) and public address
  Simultaneously open to a forwarding server (NAT traversal)

Target

Target

?

?

Initiator
Forwarder

®

Copyright 2010 Adobe Systems Incorporated. 20 2
0

Session Establishment: Endpoint Discriminator

  Initiator Hello message contains Endpoint Discriminator (EPD)
  A node may Ignore, Respond, Redirect, or Forward

  Ignore: Blocks port-scanning attempts, must know address and EPD
  Respond: Normal case
  Redirect: Supply an alternative (list of) IP address(es), results in more Initiator Hello messages being sent
  Forward: Send the Initiator Hello onward to another (connected) node for NAT traversal

Target Initiator

Forwarder

Target Initiator

Redirector
Initiator

Target

Initiator Target

A

B

C

D

®

Copyright 2010 Adobe Systems Incorporated. 21 2
1

Session Establishment: NAT traversal

  Initiator and Target are both behind port-restricted (firewalling) NAT

  Target has an open Session to the Forwarder host

Initiator

Forwarder

Target

®

Copyright 2010 Adobe Systems Incorporated. 22 2
2

Session Establishment: NAT traversal

  Initiator tries to parallel-open to Target’s EPD at both Target’s address
and Forwarder’s address

  This opens “hole” at Initiator end

  Direct message is blocked by NAT/firewall at Target’s end

Initiator

Forwarder

Target

®

Copyright 2010 Adobe Systems Incorporated. 23 2
3

Session Establishment: NAT traversal

  Forwarder sends Initiator’s IHello (and derived address) to Target over
existing session

Initiator

Forwarder

Target

®

Copyright 2010 Adobe Systems Incorporated. 24 2
4

Session Establishment: NAT traversal

  Target receives forwarded IHello containing Initiator’s address and
sends RHello

  This opens the “hole” necessary at the Target’s end

  At Initiator’s end “hole” is still open

Initiator

Forwarder

Target

®

Copyright 2010 Adobe Systems Incorporated. 25 2
5

Session Establishment: NAT traversal

  Session establishment continues

Initiator

Forwarder

Target

®

Copyright 2010 Adobe Systems Incorporated. 26 2
6

Session Establishment: Lookup and NAT traversal

  Initiator and Target are both behind port-restricted (firewalling) NAT

  Target has an open Session to the Redirector-Forwarder host

Initiator

Redirector
&
Forwarder

Target

®

Copyright 2010 Adobe Systems Incorporated. 27 2
7

Session Establishment: Lookup and NAT traversal

  Initiator tries to open to Target’s EPD at Redirector-Forwarder’s Address
  Doesn’t need to know Target’s address

Initiator

Redirector
&
Forwarder

Target

®

Copyright 2010 Adobe Systems Incorporated. 28 2
8

Session Establishment: Lookup and NAT traversal

  Redirector-Forwarder:
  Sends Target’s IP address(es) to Initiator as a Redirect message

  Forwards Initiator’s IHello message (with derived address) to Target over existing
Session

Initiator

Redirector
&
Forwarder

Target

®

Copyright 2010 Adobe Systems Incorporated. 29 2
9

Session Establishment: Lookup and NAT traversal

  Initiator adds Target’s address to candidate address list and sends IHello
  This opens the “hole” necessary at Initiator’s end

  Target receives forwarded IHello containing Initiator’s address and sends RHello
  This opens the “hole” necessary at the Target’s end

Initiator

Redirector
&
Forwarder

Target

®

Copyright 2010 Adobe Systems Incorporated. 30 3
0

Session Establishment: Lookup and NAT traversal

  Session establishment continues

Initiator

Redirector
&
Forwarder

Target

®

Copyright 2010 Adobe Systems Incorporated. 31 3
1

Session Establishment: 4-way handshake

  Takes 2 round trip times

EPD
Tag Tag Echo

Cookie
Responder Cert.

Initiator Session ID
Cookie Echo
Initiator Cert.
Session Key Initiator Part
Signature Responder Session ID

Session Key Responder Part
Signature

Initiator Hello
Responder Hello

Initiator Initial Keying

Responder Initial Keying

®

Copyright 2010 Adobe Systems Incorporated. 32 3
2

The Solution: How It Works: Sessions

  Once a session is up:
  RTT regularly measured

  IP mobility handled as necessary

  Congestion control

  Dynamic response
  Real-time priority traffic causes sender to more smoothly adjust
  Knowledge that receiver is receiving real-time priority from 3rd party changes

response

  Congestion (packet loss) is determined from data acknowledgements in flows

®

Copyright 2010 Adobe Systems Incorporated. 33 3
3

Session: IP address mobility

  A can determine that B’s address has changed (same Session ID, new IP address)
  No data lost from B to A

  A continues sending data to B’s old address, sends probes to B’s new address
  Prevents hijack (otherwise could replay B’s data from a new address)

  When probe response is received from B’s new address, A switches to sending to new
address

  Data from A to B is lost for one round-trip time to new address

  Sometimes “mobility” is just “someone rebooted the NAT box”

A B A

B

B
1 2

3 4

A

B

B A

B

B

®

Copyright 2010 Adobe Systems Incorporated. 34 3
4

Session: Dynamic Congestion Management

  When A is sending “real-time” traffic it sets the “real-time” bit in its outgoing packets to B
  And also changes its response to packet loss when sending to B to react more smoothly

  As a result B will set the “receiving real-time not from you” bit in its outgoing packets to C

  C will be more “timid” and will react more strongly to packet loss when sending to B
  To leave bandwidth in B’s incoming network connection, since there’s a nearly 50% chance that is where the

congestion is

A

B

C

®

Copyright 2010 Adobe Systems Incorporated. 35 3
5

The Solution: How It Works: Flows

  Flow Establishment
  No handshake or need to pre-establish

  Sending
  Framing
  Each message can have a different reliability

  None, Full, Partial
  Forward sequence number

  Fragmentation
  Sequence numbers (no wrap)

  Receiving
  As-received or sequence number ordering (even with partial/no reliability)
  Acknowledgements sent

  Notification of packet loss
  Buffer flow control

  Either end can close (and receiver can reject immediately)
  Return associations

®

Copyright 2010 Adobe Systems Incorporated. 36

Variable-Length Values

  We use variable-length unsigned integers throughout
  Moving bits in and out of the CPU or L1 cache is expensive

  Twiddling bits is cheap

  We require (in most cases) at least 64 bits of range

  We never wrap or scale

  Example: sequence numbers
  The number of bytes grows if there are many

  But in order to have many, there must be enough bandwidth

  Allows unambiguous selective acknowledgement no matter what the window size

®

Copyright 2010 Adobe Systems Incorporated. 37

Congestion control

  Required
  RFC 2914

  RFC 3714

  Most real-time media doesn’t do it
  Might be ok if your application isn’t popular

  Prioritization requires it

  Window-based works better than equation-based + fine rate control
(e.g., token buckets)

  Instability from increased time constants (including failure to stop when acks stop)

  OS timing granularity

  Burst avoidance
  Send no more than 6 packets per ack, no matter how big CWND is

®

Copyright 2010 Adobe Systems Incorporated. 38

Security

  Always on

  Details are external to protocol
  But protocol defines how to exchange what is needed

  Protocol features can make security even more important
  Example: IP address mobility without security is just “session hijacking support”

  More subtle: Encrypting IP addresses hides them from NAT

  And a false-positive is ok if the retransmission is encrypted differently

®

Copyright 2010 Adobe Systems Incorporated. 39

Session multiplexing

  Don’t rely on source/destination IP and port

  Explicit Session ID
  But scrambled so that it looks more like noise

  Avoids NAT false-positives

  Annoys DPI boxes

Scrambled Session ID (Encrypted) Packet

®

Copyright 2010 Adobe Systems Incorporated. 40

Encapsulated Network-Layer Information

  The specific cryptosystem encapsulates the network layer
  It defines how to encrypt and decrypt everything after the Session ID

  For convenience, the network layer ignores padding

  The encapsulation is also responsible for data integrity

Checksum Network-Layer Information Pad
Encrypted Part

®

Copyright 2010 Adobe Systems Incorporated. 41

Encapsulated Network-Layer Information: Flash Player

  In the Flash Player cryptosystem:
  Integrity is provided by a checksum or HMAC (negotiated at startup)

  The HMAC is outside the encryption
  Doesn’t matter for our block cipher, but does matter for some stream ciphers

  Session-level sequence numbers are optional (negotiated at startup)

Checksum Network-Layer Information Pad HMAC SSEQ
Encrypted Part

®

Copyright 2010 Adobe Systems Incorporated. 42

Network-Layer information

  Flags
  Time-critical Forward notification

  Time-critical Reverse notification

  Timestamp Present

  Timestamp Echo Present

  Initiator/Responder Mark

  If a cryptosystem happens to use the same session key in each direction, this
protects against reflecting packets back at a sender

  Timestamp (optional)
  4 millisecond clock, not opaque (so other end can advance before echoing if needed)

  Timestamp Echo (optional)

  One or more chunks

®

Copyright 2010 Adobe Systems Incorporated. 43

Chunks

  Tag-Length-Value (Fixed-size tag and length for fast parsing)
  Session Setup

  Initiator Hello
  Responder Hello
  Initiator Initial Keying
  Responder Initial keying
  Responder Hello Cookie Change
  Responder Redirect

  Control (In-session)
  Ping, Ping Reply
  Re-keying Initiate, Re-keying Response
  Close, Close Acknowledge
  Forwarded Initiator Hello

  Flows (In-session)
  User Data, Next User Data
  Buffer Probe
  User Data Acknowledge (Bitmap), User Data Acknowledge (Ranges)
  Flow Exception Report

  0x00 and 0xff are reserved so that either may be used to pad

®

Copyright 2010 Adobe Systems Incorporated. 44

Chunks: Initiator Hello

  Sent to one or more candidate addresses for Responder

  Contains Endpoint Discriminator and Tag

  Endpoint Discriminator (EPD)
  Opaque data, understood by cryptosystem

  Cryptosystem sets up the EPD such that a Responder can tell if this is for them

  Preferably via a one-way function, so eavesdroppers cannot tell desired identity
unless they know it (then they can precompute EPD(s) to match against)

  Tag
  Opaque data, understood by sender transport protocol implementation

  Transport can match up a returned tag with an opening session

  Chosen randomly

  A Forwarded Initiator Hello (from introducer) also contains a sockaddr

®

Copyright 2010 Adobe Systems Incorporated. 45

Chunks: Responder Hello

  Sent in response to Initiator Hello or Forwarded Initiator Hello with EPD
of “this” endpoint

  If the EPD is for “another” endpoint the Initiator Hello is ignored (no “port scan”)

  Unless this is an introducer, in which case Responder Redirect is sent instead and/or
Forwarded Initiator Hello sent onward

  Contains a Tag Echo, Cookie, Responder Cert

  Tag Echo

  Cookie
  Generated statelessly, allows Responder to only accept next packet if this was

actually received by Initiator. Eliminates “SYN flood” attacks.

  Responder Cert
  Opaque data, understood by cryptosystem

  Might have things like an identity, public key

®

Copyright 2010 Adobe Systems Incorporated. 46

Canonical EPDs

  Note that more than one EPD might map to a single endpoint

  And that endpoint will have a single Cert

  And we don’t want to have >1 session open to a single endpoint
  If we do, we don’t share the congestion domain, so prioritization is lost

  So we have the concept of a “Canonical EPD”
  A Cert can be turned into a Canonical EPD

  When we receive a Responder Hello back at the Initiator we check to see if the
computed Canonical EPD matches the Canonical EPD of any existing session

  If so, we put the opening flows from the opening session onto the already-open
session, and stop opening the new session

  This is one of the reasons why the API is flows, not sessions

  Another is to make handling Session glare easier… when we detect and resolve
glare, we can move the flows to the winning session

®

Copyright 2010 Adobe Systems Incorporated. 47

Chunks: Initiator Initial Keying

  Contains: Cookie Echo, Initiator Session ID, Initiator Cert, Session Key Initiator
Component, Signature

  Cookie Echo
  Echo of the Cookie provided by Responder. Responder will only process if valid.

  If Responder thinks it is “partially correct” can request a “cookie change” (e.g., source address
changed since cookie generated, but rest of cookie looks good)

  Initiator Session ID
  Session ID to use – picked by the receiver

  Initiator Cert
  Opaque data known by cryptosystem, just like Responder cert

  Session Key Initiator Component
  Opaque data known by cryptosystem. May contain multiple parts (e.g., to negotiate HMAC)

  Signature
  Opaque data understood by cryptosystem. Cryptosystem asked to compute after all previous parts

are computed and serialized.

®

Copyright 2010 Adobe Systems Incorporated. 48

Chunks: Responder Initial Keying

  Contains: Responder Session ID, Session Key Responder Component,
Signature

  Once both end’s cryptosystems reach this point:
  Initiator Component and Responder Component can be combined

  Block cipher key can be changed

  Transport level:
  Switches to using newly chosen Session IDs

  Can begin sending flow data on the newly created Session

  Entire handshake has retransmission rules to deal with lost packets

  Certs and signatures need to be kept compact, as some UDP paths
won’t fragment and have small MTUs

®

Copyright 2010 Adobe Systems Incorporated. 49

Chunks: User Data

  API for flows is “per write” not “per byte” framing

  Writes can be fragmented into multiple User Data chunks if needed

  User Data chunk contains:
  Flags (fragmentation, options-present, abandon, final)

  Flow ID (variable-length)

  Sequence Number (variable-length) – each User Data chunk has one unique #

  Sequence Number (and fragment count) exposed in receiver API

  Forward Sequence Number Offset (variable-length) – for partially-reliable in-order
delivery

  An optional Option List (some of which may be mandatory-to-understand)

  Metadata – instead of “well-known ports”, opaque to protocol itself

  Flow association – to create full-duplex (or more) associations of flows

  Data

®

Copyright 2010 Adobe Systems Incorporated. 50

Metadata

  Opaque to protocol

  Sent with each user data until acknowledged
  Allows a flow to start by just sending data, not waiting for a round trip to “open a flow”

  Allows flows to start with partially-reliable transmission

®

Copyright 2010 Adobe Systems Incorporated. 51

Chunks: Next User Data

  Compact form of User Data when multiple User Data are sent in same
packet

  Multiple small writes in same flow before packet dispatch

  Small fragments when doing PLPMTUD

  Flow ID, Sequence Number, and FSN Offset are implicit, options are
usually not required to be duplicated

  A single packet never contains data from more than one flow
  Priority inversion

  Head-of-line blocking

®

Copyright 2010 Adobe Systems Incorporated. 52

Chunks: Acknowledgements

  True selective acknowledgements
  “No Take-backs”

  Two kinds
  List of ranges

  Bitmap

  Both include cumulative ack point and buffer advertisement

  Buffer Probe exists to force an acknowledgement in case transmitter
finds that advertised buffer has gone to zero

  Flow Exception exists so that receiver can reject a flow or close it early

®

Copyright 2010 Adobe Systems Incorporated. 53

Sending Data: Transmit Priority and congestion control

  Multiple priority levels, some considered “real-time”
  “Real-time” sets the appropriate header bit

  Different AIMD responses

  AIMD responses change if “real-time reverse notification” is being received

  There is “slow start”

  There is “Fast TCP”-style added growth for large delay*bandwidth

  Loss is derived from the selective acknowledgements
  Duplicate missing ack detection

  Ultimately there is RTO

  RTO is capped at a reasonably short value

  And eventually a session will die if acknowledgements stop

  Or can be closed via a two-way handshake agreement (this is done when there are no flows
on a session for a period of time), or an “emergency” close (stack being shut down)

®

Copyright 2010 Adobe Systems Incorporated. 54

Sending Data: Partial Reliability

  Each write into a flow can be fully reliable or partially reliable

  Partially reliable means that:
  It is possible that the resulting User Data chunk(s) may never be sent

  It is possible that the resulting User Data chunk(s) may be sent, but abandoned (not
retransmitted even if not acknowledged) after a period of time

  In-order delivery is supported at the receiver by sending a Forward
Sequence Number, advising of the lowest sequence number which
might still be retransmitted

  Sent as an offset from the Sequence Number to keep the variable-length encoding
size smaller

  If data flow stops, Forward Sequence Number Update(s) (User Data
chunk, but with no actual data) might need to be sent in order to release
data at the receiver as data is abandoned

®

Copyright 2010 Adobe Systems Incorporated. 55 5
5

Implementation

  C++
  ≈13000 lines

  ≈ 100k

  Largely single-threaded
  Slow cryptographic operations can be run in separate work-queue thread(s)

  Platform-independent
  Tested on Win32, MacOS X (PPC, PPC64, x86, x86-64), Linux (x86 and ARM), etc.

  API hides Sessions
  Application deals only with Flows

  Portable and flexible
  Cryptosystem and Metadata plug-ins, Platform Adaptor, API Adaptor

®

Copyright 2010 Adobe Systems Incorporated. 56

RTMFP-based UDP/NAT connectivity test

  Runs in my garage, not a production service:
  http://cc.rtmfp.net

  Establishes an RTMFP session

  Then (using some extra hooks at the server) does what STUN does, in
reverse, using existing RTMFP protocol behavior

  Probes you with IHello and Forwarded IHello and listens for replies

  4 UDP ports across 3 IP addresses on one server

  Tests both mapping and filtering behavior and report results

®

Copyright 2010 Adobe Systems Incorporated. 57

