

Reference number
ISO/IEC 14496-1:2010(E)

© ISO/IEC 2010

INTERNATIONAL
STANDARD

ISO/IEC
14496-1

Fourth edition
2010-06-01

Information technology — Coding of
audio-visual objects —
Part 1:
Systems

Technologies de l'information — Codage des objets audiovisuels —

Partie 1: Systèmes

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
,
,
,
,
`
,
`
,
`
,
`
,
`
,
,
`
,
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/IEC 14496-1:2010(E)

PDF disclaimer
This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but
shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In
downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat
accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation
parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In
the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

 COPYRIGHT PROTECTED DOCUMENT

© ISO/IEC 2010
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or
ISO's member body in the country of the requester.

ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Published in Switzerland

ii © ISO/IEC 2010 – All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

--`,`,,,,`,`,`,`,`,,`,``,,,``-`-`,,`,,`,`,,`---

ISO/IEC 14496-1:2010(E)

© ISO/IEC 2010 – All rights reserved iii

Contents Page

Foreword ..iv
0 Introduction...vi
1 Scope ..1
2 Normative references..1
3 Additional references..2
4 Terms and definitions ...2
5 Abbreviated terms ...10
6 Conventions...11
7 Streaming Framework...11
8 Syntactic Description Language..99
9 Profiles..110
Annex A (informative) Time Base Reconstruction ..112
Annex B (informative) Registration procedure ..115
Annex C (informative) The QoS Management Model for ISO/IEC 14496 Content.....................................119
Annex D (informative) Conversion Between Time and Date Conventions ...120
Annex E (informative) Graphical Representation of Object Descriptor and Sync Layer Syntax...........122
Annex F (informative) Elementary Stream Interface..130
Annex G (informative) Upstream Walkthrough ..132
Annex H (informative) Scene and Object Description Carrousel...137
Annex I (normative) Usage of ITU-T Recommendation H.264 | ISO/IEC 14496-10 AVC138
Annex J (informative) Patent statements ...141
Bibliography..144

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

--`,`,,,,`,`,`,`,`,,`,``,,,``-`-`,,`,,`,`,,`---

ISO/IEC 14496-1:2010(E)

iv © ISO/IEC 2010 – All rights reserved

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are members of
ISO or IEC participate in the development of International Standards through technical committees
established by the respective organization to deal with particular fields of technical activity. ISO and IEC
technical committees collaborate in fields of mutual interest. Other international organizations, governmental
and non-governmental, in liaison with ISO and IEC, also take part in the work. In the field of information
technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of the joint technical committee is to prepare International Standards. Draft International
Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as
an International Standard requires approval by at least 75 % of the national bodies casting a vote.

ISO/IEC 14496-1 was prepared by Joint Technical Committee ISO/IEC JTC 1, Information technology,
Subcommittee SC 29, Coding of audio, picture, multimedia and hypermedia information.

This fourth edition cancels and replaces the third edition (ISO/IEC 14496-1:2004), which has been technically
revised. It also incorporates the Amendments ISO/IEC 14496-1:2004/Amd.1:2005,
ISO/IEC 14496-1:2004/Amd.2:2007, ISO/IEC 14496-1:2004/Amd.3:2007 and Technical Corrigenda
ISO/IEC 14496-1:2004/Cor.1:2006 and ISO/IEC 14496-1:2004/Cor.2:2007.

ISO/IEC 14496 consists of the following parts, under the general title Information technology — Coding of
audio-visual objects:

⎯ Part 1: Systems

⎯ Part 2: Visual

⎯ Part 3: Audio

⎯ Part 4: Conformance testing

⎯ Part 5: Reference software

⎯ Part 6: Delivery Multimedia Integration Framework (DMIF)

⎯ Part 7: Optimized reference software for coding of audio-visual objects

⎯ Part 8: Carriage of ISO/IEC 14496 contents over IP networks

⎯ Part 9: Reference hardware description

⎯ Part 10: Advanced Video Coding

⎯ Part 11: Scene description and application engine

⎯ Part 12: ISO base media file format

⎯ Part 13: Intellectual Property Management and Protection (IPMP) extensions

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

--`,`,,,,`,`,`,`,`,,`,``,,,``-`-`,,`,,`,`,,`---

ISO/IEC 14496-1:2010(E)

© ISO/IEC 2010 – All rights reserved v

⎯ Part 14: MP4 file format

⎯ Part 15: Advanced Video Coding (AVC) file format

⎯ Part 16: Animation Framework eXtension (AFX)

⎯ Part 17: Streaming text format

⎯ Part 18: Font compression and streaming

⎯ Part 19: Synthesized texture stream

⎯ Part 20: Lightweight Application Scene Representation (LASeR) and Simple Aggregation Format (SAF)

⎯ Part 21: MPEG-J Graphics Framework eXtensions (GFX)

⎯ Part 22: Open Font Format

⎯ Part 23: Symbolic Music Representation

⎯ Part 24: Audio and systems interaction

⎯ Part 25: 3D Graphics Compression Model

⎯ Part 26: Audio conformance

⎯ Part 27: 3D Graphics conformance

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
,
,
,
,
`
,
`
,
`
,
`
,
`
,
,
`
,
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/IEC 14496-1:2010(E)

vi © ISO/IEC 2010 – All rights reserved

0 Introduction

0.1 Overview

ISO/IEC 14496 specifies a system for the communication of interactive audio-visual scenes. This specification
includes the following elements.

a) The coded representation of natural or synthetic, two-dimensional (2D) or three-dimensional (3D) objects
that can be manifested audibly and/or visually (audio-visual objects) (specified in Parts 2, 3, 10, 11, 16,
19, 20, 23 and 25 of ISO/IEC 14496).

b) The coded representation of the spatio-temporal positioning of audio-visual objects as well as their
behavior in response to interaction (scene description, specified in Parts 11 and 20 of ISO/IEC 14496).

c) The coded representation of information related to the management of data streams (synchronization,
identification, description and association of stream content, specified in this Part and in Part 24 of
ISO/IEC 14496).

d) A generic interface to the data stream delivery layer functionality (specified in Part 6 of ISO/IEC 14496).

e) An application engine for programmatic control of the player: format, delivery of downloadable Java byte
code as well as its execution lifecycle and behavior through APIs (specified in Parts 11 and 21 of
ISO/IEC 14496).

f) A file format to contain the media information of an ISO/IEC 14496 presentation in a flexible, extensible
format to facilitate interchange, management, editing, and presentation of the media specified in Part 12
(ISO File Format), Part 14 (MP4 File Format) and Part 15 (AVC File Format) of ISO/IEC 14496.

g) The coded representation of font data and of information related to the management of text streams and
font data streams (specified in Parts 17, 18 and 22 of ISO/IEC 14496).

The overall operation of a system communicating audio-visual scenes can be paraphrased as follows:

At the sending terminal, the audio-visual scene information is compressed, supplemented with
synchronization information and passed to a delivery layer that multiplexes it into one or more coded binary
streams that are transmitted or stored. At the receiving terminal, these streams are demultiplexed and
decompressed. The audio-visual objects are composed according to the scene description and
synchronization information and presented to the end user. The end user may have the option to interact with
this presentation. Interaction information can be processed locally or transmitted back to the sending terminal.
ISO/IEC 14496 defines the syntax and semantics of the bitstreams that convey such scene information, as
well as the details of their decoding processes.

This part of ISO/IEC 14496 specifies the following tools.

⎯ A terminal model for time and buffer management.

⎯ A coded representation of metadata for the identification, description and logical dependencies of the
elementary streams (object descriptors and other descriptors).

⎯ A coded representation of descriptive audio-visual content information [object content information (OCI)].

⎯ An interface to intellectual property management and protection (IPMP) systems.

⎯ A coded representation of synchronization information (sync layer – SL).

⎯ A multiplexed representation of individual elementary streams in a single stream (M4Mux).

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

--`,`,,,,`,`,`,`,`,,`,``,,,``-`-`,,`,,`,`,,`---

ISO/IEC 14496-1:2010(E)

© ISO/IEC 2010 – All rights reserved vii

These various elements are described functionally in this clause and specified in the normative clauses that
follow.

0.2 Architecture

The information representation specified in ISO/IEC 14496 describes the means to create an interactive
audio-visual scene in terms of coded audio-visual information and associated scene description information.
The entity that composes and sends, or receives and presents such a coded representation of an interactive
audio-visual scene is generically referred to as an “audio-visual terminal” or just “terminal”. This terminal may
correspond to a stand-alone application or be part of an application system.

Multiplexed Streams

Interactive Audiovisual
Scene

Elementary Streams

Composition and Rendering

Display and
User

Interaction

Transmission/Storage Medium

(RTP)
UDP

IP

H223
PSTN

DAB
Mux

Delivery
Layer

M4Mux M4Mux

DMIF Application Interface

SL SLSL SL ... Sync
Layer

Elementary Stream Interface

AV Object
data

Scene
Description
Information

Object
Descriptor

... Compression
Layer

SL

SL-Packetized Streams

(PES)
MPEG-2

TS

AAL2
ATM

Upstream
Information

SL

SL

M4Mux

...

Figure 1 — The ISO/IEC 14496 Terminal Architecture

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
,
,
,
,
`
,
`
,
`
,
`
,
`
,
,
`
,
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/IEC 14496-1:2010(E)

viii © ISO/IEC 2010 – All rights reserved

The basic operations performed by such a receiver terminal are as follows. Information that allows access to
content complying with ISO/IEC 14496 is provided as initial session set up information to the terminal. Part 6
of ISO/IEC 14496 defines the procedures for establishing such session contexts as well as the interface to the
delivery layer that generically abstracts the storage or transport medium. The initial set up information allows,
in a recursive manner, to locate one or more elementary streams that are part of the coded content
representation. Some of these elementary streams may be grouped together using the multiplexing tool
described in ISO/IEC 14496-1.

Elementary streams contain the coded representation of either audio or visual data or scene description
information or user interaction data or text or font data. Elementary streams may as well themselves convey
information to identify streams, to describe logical dependencies between streams, or to describe information
related to the content of the streams. Each elementary stream contains only one type of data.

Elementary streams are decoded using their respective stream-specific decoders. The audio-visual objects
are composed according to the scene description information and presented by the terminal's presentation
device(s). All these processes are synchronized according to the systems decoder model (SDM) using the
synchronization information provided at the synchronization layer.

These basic operations are depicted in Figure 1, and are described in more detail below.

0.3 Terminal Model: Systems Decoder Model

The systems decoder model provides an abstract view of the behavior of a terminal complying with
ISO/IEC 14496-1. Its purpose is to enable a sending terminal to predict how the receiving terminal will behave
in terms of buffer management and synchronization when reconstructing the audio-visual information that
comprises the presentation. The systems decoder model includes a systems timing model and a systems
buffer model which are described briefly in the following Subclauses.

0.3.1 Timing Model

The timing model defines the mechanisms through which a receiving terminal establishes a notion of time that
enables it to process time-dependent events. This model also allows the receiving terminal to establish
mechanisms to maintain synchronization both across and within particular audio-visual objects as well as with
user interaction events. In order to facilitate these functions at the receiving terminal, the timing model
requires that the transmitted data streams contain implicit or explicit timing information. Two sets of timing
information are defined in ISO/IEC 14496-1: clock references and time stamps. The former convey the
sending terminal's time base to the receiving terminal, while the latter convey a notion of relative time for
specific events such as the desired decoding or composition time for portions of the encoded audio-visual
information.

0.3.2 Buffer Model

The buffer model enables the sending terminal to monitor and control the buffer resources that are needed to
decode each elementary stream in a presentation. The required buffer resources are conveyed to the
receiving terminal by means of descriptors at the beginning of the presentation. The terminal can then decide
whether or not it is capable of handling this particular presentation. The buffer model allows the sending
terminal to specify when information may be removed from these buffers and enables it to schedule data
transmission so that the appropriate buffers at the receiving terminal do not overflow or underflow.

0.4 Multiplexing of Streams: The Delivery Layer

The term delivery layer is used as a generic abstraction of any existing transport protocol stack that may be
used to transmit and/or store content complying with ISO/IEC 14496. The functionality of this layer is not
within the scope of ISO/IEC 14496-1, and only the interface to this layer is considered. This interface is the
DMIF Application Interface (DAI) specified in ISO/IEC 14496-6. The DAI defines not only an interface for the
delivery of streaming data, but also for signaling information required for session and channel set up as well
as tear down. A wide variety of delivery mechanisms exist below this interface, with some of them indicated in
Figure 1. These mechanisms serve for transmission as well as storage of streaming data, i.e., a file is

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
,
,
,
,
`
,
`
,
`
,
`
,
`
,
,
`
,
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/IEC 14496-1:2010(E)

© ISO/IEC 2010 – All rights reserved ix

considered to be a particular instance of a delivery layer. For applications where the desired transport facility
does not fully address the needs of a service according to the specifications in ISO/IEC 14496, a simple
multiplexing tool (M4Mux) with low delay and low overhead is defined in ISO/IEC 14496-1.

0.5 Synchronization of Streams: The Sync Layer

Elementary streams are the basic abstraction for any streaming data source. Elementary streams are
conveyed as sync layer-packetized (SL-packetized) streams at the DMIF Application Interface. This
packetized representation additionally provides timing and synchronization information, as well as
fragmentation and random access information. The sync layer (SL) extracts this timing information to enable
synchronized decoding and, subsequently, composition of the elementary stream data.

0.6 The Compression Layer

The compression layer receives data in its encoded format and performs the necessary operations to decode
this data. The decoded information is then used by the terminal's composition, rendering and presentation
subsystems.

0.6.1 Object Description Framework

The purpose of the object description framework is to identify and describe elementary streams and to
associate them appropriately to an audio-visual scene description. Object descriptors serve to gain access to
ISO/IEC 14496 content. Object content information and the interface to intellectual property management and
protection systems are also part of this framework.

An object descriptor is a collection of one or more elementary stream descriptors that provide the
configuration and other information for the streams that relate to either an audio-visual object, or text or font
data, or a scene description. Object descriptors are themselves conveyed in elementary streams. Each object
descriptor is assigned an identifier (object descriptor ID), which is unique within a defined name scope. This
identifier is used to associate audio-visual objects in the scene description with a particular object descriptor,
and thus the elementary streams related to that particular object.

Elementary stream descriptors include information about the source of the stream data, in form of a unique
numeric identifier (the elementary stream ID) or a URL pointing to a remote source for the stream. Elementary
stream descriptors also include information about the encoding format, configuration information for the
decoding process and the sync layer packetization, as well as quality of service requirements for the
transmission of the stream and intellectual property identification. Dependencies between streams can also be
signaled within the elementary stream descriptors. This functionality may be used, for example, in scalable
audio or visual object representations to indicate the logical dependency of a stream containing enhancement
information, to a stream containing the base information. It can also be used to describe alternative
representations for the same content (e.g. the same speech content in various languages).

0.6.1.1 Intellectual Property Management and Protection

The intellectual property management and protection (IPMP) framework for ISO/IEC 14496 content consists of
a normative interface that permits an ISO/IEC 14496 terminal to host one or more IPMP Systems in the form
of monolithic IPMP Systems or modular IPMP Tools. The IPMP interface consists of IPMP elementary
streams and IPMP descriptors. IPMP descriptors are carried as part of an object descriptor stream. IPMP
elementary streams carry time variant IPMP information that can be associated to multiple object descriptors.

The IPMP System, or IPMP Tools themselves are non-normative components that provides intellectual
property management and protection functions for the terminal. The IPMP Systems or Tools uses the
information carried by the IPMP elementary streams and descriptors to make protected ISO/IEC 14496
content available to the terminal.

The intellectual property management and protection (IPMP) framework for ISO/IEC 14496 content consists of
a set of tools that permits an ISO/IEC 14496 terminal to support IPMP functionality. This functionality is

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
,
,
,
,
`
,
`
,
`
,
`
,
`
,
,
`
,
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/IEC 14496-1:2010(E)

x © ISO/IEC 2010 – All rights reserved

provided by the following two different complementary technologies, supporting different levels of
interoperability.

a) The IPMP framework as defined in 7.2.3, consists of a normative interface that permits an ISO/IEC 14496
terminal to host one or more IPMP Systems. The IPMP interface consists of IPMP elementary streams
and IPMP descriptors. IPMP descriptors are carried as part of an object descriptor stream. IPMP
elementary streams carry time variant IPMP information that can be associated to multiple object
descriptors. The IPMP System itself is a non-normative component that provides intellectual property
management and protection functions for the terminal. The IPMP System uses the information carried by
the IPMP elementary streams and descriptors to make protected ISO/IEC 14496 content available to the
terminal.

b) The IPMP framework extension, as specified in ISO/IEC 14496-13 allows, in addition to the functionality
specified in ISO/IEC 14496-1, a finer granularity of governance. ISO/IEC 14496-13 provides normative
support for individual IPMP components, referred to as IPMP Tools, to be normatively placed at identified
points of control within the terminal systems model. Additionally ISO/IEC 14496-13 provides normative
support for secure communications to be performed between IPMP Tools. ISO/IEC 14496-1 also
specifies specific normative extensions at the Systems level to support the IPMP functionality described
in ISO/IEC 14496-13.

An application may choose not to use an IPMP System, thereby offering no management and protection
features.

0.6.1.2 Object Content Information

Object content information (OCI) descriptors convey descriptive information about audio-visual objects. The
main content descriptors are: content classification descriptors, keyword descriptors, rating descriptors,
language descriptors, textual descriptors, and descriptors about the creation of the content. OCI descriptors
can be included directly in the related object descriptor or elementary stream descriptor or, if it is time variant,
it may be carried in an elementary stream by itself. An OCI stream is organized in a sequence of small,
synchronized entities called events that contain a set of OCI descriptors. OCI streams can be associated to
multiple object descriptors.

0.6.2 Scene Description Streams

Scene description addresses the organization of audio-visual objects in a scene, in terms of both spatial and
temporal attributes. This information allows the composition and rendering of individual audio-visual objects
after the respective decoders have reconstructed the streaming data for them. For visual data,
ISO/IEC 14496-11 does not mandate particular composition algorithms. Hence, visual composition is
implementation dependent. For audio data, the composition process is defined in a normative manner in
ISO/IEC 14496-11 and ISO/IEC 14496-3.

The scene description is represented using a parametric approach (BIFS - Binary Format for Scenes). The
description consists of an encoded hierarchy (tree) of nodes with attributes and other information (including
event sources and targets). Leaf nodes in this tree correspond to elementary audio-visual data, whereas
intermediate nodes group this material to form audio-visual objects, and perform grouping, transformation, and
other such operations on audio-visual objects (scene description nodes). The scene description can evolve
over time by using scene description updates.

In order to facilitate active user involvement with the presented audio-visual information, ISO/IEC 14496-11
provides support for user and object interactions. Interactivity mechanisms are integrated with the scene
description information, in the form of linked event sources and targets (routes) as well as sensors (special
nodes that can trigger events based on specific conditions). These event sources and targets are part of
scene description nodes, and thus allow close coupling of dynamic and interactive behavior with the specific
scene at hand. ISO/IEC 14496-11, however, does not specify a particular user interface or a mechanism that
maps user actions (e.g., keyboard key presses or mouse movements) to such events.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
,
,
,
,
`
,
`
,
`
,
`
,
`
,
,
`
,
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/IEC 14496-1:2010(E)

© ISO/IEC 2010 – All rights reserved xi

Such an interactive environment may not need an upstream channel, but ISO/IEC 14496 also provides means
for client-server interactive sessions with the ability to set up upstream elementary streams and associate
them to specific downstream elementary streams.

0.6.3 Audio-visual Streams

The coded representation of audio and visual information are described in ISO/IEC 14496-3 (Audio) and
ISO/IEC 14496-2 (Visual) and ISO/IEC 14496-10 (Advanced Video Coding) respectively. The reconstructed
audio-visual data are made available to the composition process for potential use during the scene rendering.

0.6.4 Upchannel Streams

Downchannel elementary streams may require upchannel information to be transmitted from the receiving
terminal to the sending terminal (e.g., to allow for client-server interactivity). Figure 1 indicates the flowpath for
an elementary stream from the receiving terminal to the sending terminal. The content of upchannel streams
is specified in the same part of the specification that defines the content of the downstream data. For example,
upchannel control streams for video downchannel elementary streams are defined in ISO/IEC 14496-2.

0.6.5 Interaction Streams

The coded representation of user interaction information is not in the scope of ISO/IEC 14496. But this
information shall be translated into scene modification and the modifications made available to the
composition process for potential use during the scene rendering.

0.6.6 Text and Font data Streams

Scene description often contains information presented in textual format. The audio-visual data encoded in the
scene may also be accompanied by supplemental text information such as subtitles. In order to enable time-
based updates of text data and to insure the text appearance and layout, both elementary streams carrying
timed text information and font data are used. The coded representation of the timed text stream is described
in ISO/IEC 14496-17. The font data format and encoded representation of font data stream are described in
ISO/IEC 14496-18 (font data stream) and ISO/IEC 14496-22 (font data format).

0.7 Application Engine

The MPEG-J is a programmatic system (as opposed to a conventional parametric system) which specifies
API(s) for interoperation of MPEG-4 media players with Java code. By combining MPEG-4 media and safe
executable code, content creators may embed complex control and data processing mechanisms with their
media data to intelligently manage the operation of the audio-visual session. The parametric MPEG-4 System
forms the Presentation Engine while the MPEG-J subsystem controlling the Presentation Engine forms the
Application Engine.

The Java application is delivered as a separate elementary stream to the MPEG-4 terminal. There it will be
directed to the MPEG-J run time environment, from where the MPEG-J program will have access to the
various components and required data of the MPEG-4 player to control it.

In addition to the basic packages of the language (java.lang, java.io, java.util) a few categories of APIs have
been defined for different scopes. For the Scene graph API the objective is to provide access to the scene
graph specified in ISO/IEC 14496-11: to inspect the graph, to alter nodes and their fields, and to add and
remove nodes within the graph. The Resource API is used for regulation of performance: it provides a
centralized facility for managing resources. This is used when the program execution is contingent upon the
terminal configuration and its capabilities, both static (that do not change during execution) and dynamic.
Decoder API allows the control of the decoders that are present in the terminal. The Net API provides a way to
interact with the network, being compliant to the MPEG-4 DMIF Application Interface. Complex applications
and enhanced interactivity are possible with these basic packages. The architecture of MPEG-J is presented
in more detail in ISO/IEC 14496-11.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

--`,`,,,,`,`,`,`,`,,`,``,,,``-`-`,,`,,`,`,,`---

ISO/IEC 14496-1:2010(E)

xii © ISO/IEC 2010 – All rights reserved

0.8 Extensible MPEG-4 Textual Format (XMT)

The Extensible MPEG-4 Textual (XMT) format is a textual representation of the multimedia content described
in ISO/IEC 14496 using the Extensible Markup Language (XML). XMT is designed to facilitate the creation
and maintenance of MPEG-4 multimedia content, whether by human authors or by automated machine
programs. XMT is specified in ISO/IEC 14496-11.

The textual representation of MPEG-4 content has high-level abstractions, XMT-O, that allow authors to
exchange their content easily with other authors or authoring tools, while at the same time preserving
semantic intent. XMT also has low-level textual representations, XMT-A, covering the full scope and function
of MPEG-4. The high-level XMT-O is designed to facilitate interoperability with the Synchronized Multimedia
Integration Language (SMIL) 2.0, a recommendation from the W3C consortium, and also with Extensible 3D
specification, X3D, developed by the Web3D consortium as the next generation of Virtual Reality Modeling
Language (VRML).

The XMT language has grammars that are specified using the W3C XML Schema language. The grammars
contain rules for element placement and attribute values, etc. These rules for XMT, defined using the Schema
language, follow the binary coding rules defined in ISO/IEC 14496-11 and help ensure that the textual
representation can be coded into correct binary according to ISO/IEC 14496-11 coding rules.

All constructs in the ISO/IEC 14496 specification have their parallel in the XMT textual format. For the Visual
and Audio parts, XMT provides a means to reference external media streams of either pre-encoded or raw
audiovisual binary content. While XMT does not contain a textual format for audiovisual media, it does contain
hints in a textual format that allow an XMT tool to encode and embed the audiovisual media into a complete
MPEG-4 presentation.

0.9 Patent Rights

The International Organization for Standardization (ISO) and International Electrotechnical Commission (IEC)
draw attention to the fact that it is claimed that compliance with this document may involve the use of a patent.

The ISO and IEC take no position concerning the evidence, validity and scope of this patent right.

The holder of this patent right has assured the ISO and IEC that he is willing to negotiate licences under
reasonable and non-discriminatory terms and conditions with applicants throughout the world. In this respect,
the statement of the holder of this patent right is registered with the ISO and IEC. Information may be obtained
from the companies listed in Annex J.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights other than those identified in Annex J. ISO and IEC shall not be held responsible for identifying any or
all such patent rights.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
,
,
,
,
`
,
`
,
`
,
`
,
`
,
,
`
,
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

INTERNATIONAL STANDARD ISO/IEC 14496-1:2010(E)

© ISO/IEC 2010 – All rights reserved 1

Information technology — Coding of audio-visual objects —

Part 1:
Systems

1 Scope

This part of ISO/IEC 14496 specifies system level functionalities for the communication of interactive audio-
visual scenes, i.e. the coded representation of information related to the management of data streams
(synchronization, identification, description and association of stream content).

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.

ISO 639-2:1998, Codes for the representation of names of languages — Part 2: Alpha-3 code

ISO/IEC 10646-1:2000, Information technology — Universal Multiple-Octet Coded Character Set (UCS) —
Part 1: Architecture and Basic Multilingual Plane

ISO/IEC 11172-2:1993, Information technology — Coding of moving pictures and associated audio for digital
storage media at up to about 1,5 Mbit/s — Part 2: Video

ISO/IEC 11172-3:1993, Information technology — Coding of moving pictures and associated audio for digital
storage media at up to about 1,5 Mbit/s — Part 3: Audio

ISO/IEC 13818-3:1998, Information technology — Generic coding of moving pictures and associated audio
information — Part 3: Audio

ISO/IEC 13818-7:2006, Information technology — Generic coding of moving pictures and associated audio
information — Part 7: Advanced Audio Coding (AAC)

ISO/IEC 14496-2:2004, Information technology — Coding of audio-visual objects — Part 2: Visual

ISO/IEC 14496-10:2009, Information technology — Coding of audio-visual objects — Part 10: Advanced
Video Coding

ISO/IEC 14496-15:2004, Information technology — Coding of audio-visual objects — Part 15: Advanced
Video Coding (AVC) file format

ISO/IEC 14496-16:2006, Information technology — Coding of audio-visual objects — Part 16: Animation
Framework eXtension (AFX)

ISO/IEC 14496-18:2004, Information technology — Coding of audio-visual objects — Part 18: Font
compression and streaming

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

--`,`,,,,`,`,`,`,`,,`,``,,,``-`-`,,`,,`,`,,`---

ISO/IEC 14496-1:2010(E)

2 © ISO/IEC 2010 – All rights reserved

ISO/IEC 13818-2:2000, Information technology — Generic coding of moving pictures and associated audio
information — Part 2: Video

ISO/IEC 10918-1:1994, Information technology — Digital compression and coding of continuous-tone still
images — Part 1: Requirements and guidelines

ANSI/SMPTE 291M:1996, Television — Ancillary Data Packet and Space Formatting

SMPTE 315M:1999, Television — Camera Positioning Information Conveyed by Ancillary Data Packets

W3C Recommendation: 28 October 2004 — XML Schema, http://www.w3.org/TR/xmlschema-0/

3 Additional references

For additional references see the Bibliography.

4 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

4.1
access unit
AU
smallest individually accessible portion of data within an elementary stream to which unique timing
information can be attributed

4.2
alpha map
representation of the transparency parameters associated with a texture map

4.3
audio-visual object
representation of a natural or synthetic object that has an audio and/or visual manifestation

NOTE The representation corresponds to a node or a group of nodes in the BIFS scene description. Each audio-
visual object is associated with zero or more elementary streams using one or more object descriptors.

4.4
audio-visual scene
AV scene
set of audio-visual objects together with scene description information that defines their spatial and temporal
attributes including behaviors resulting from object and user interactions

4.5
AVC parameter set
sequence parameter set or a picture parameter set

4.6
AVC access unit
access unit made up of NAL Units as defined in ISO/IEC 14496-10 with the structure defined in
ISO/IEC 14496-15:2004, 5.2.3

4.7
AVC parameter set access unit
access unit made up only of sequence parameter set NAL units or picture parameter set NAL units having
same timestamps to be applied

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
,
,
,
,
`
,
`
,
`
,
`
,
`
,
,
`
,
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

http://www.w3.org/TR/xmlschema-0/

ISO/IEC 14496-1:2010(E)

© ISO/IEC 2010 – All rights reserved 3

4.8
AVC parameter set elementary stream
elementary stream containing made up only of AVC parameter set access units

4.9
AVC video elementary stream
elementary stream containing access units made up of NAL units for coded picture data

4.10
binary format for scene
BIFS
coded representation of a parametric scene description format as specified in ISO/IEC 14496-11

4.11
buffer model
model that defines how a terminal complying with ISO/IEC 14496 manages the buffer resources that are
needed to decode a presentation

4.12
byte aligned
position in a coded bit stream with a distance of a multiple of 8-bits from the first bit in the stream

4.13
clock reference
special time stamp that conveys a reading of a time base

4.14
composition
process of applying scene description information in order to identify the spatio-temporal attributes and
hierarchies of audio-visual objects

4.15
composition memory
CM
random access memory that contains composition units

4.16
composition time stamp
CTS
indication of the nominal composition time of a composition unit

4.17
composition unit
CU
individually accessible portion of the output that a decoder produces from access units

4.18
compression layer
layer of a system according to the specifications in ISO/IEC 14496 that translates between the coded
representation of an elementary stream and its decoded representation. It incorporates the decoders

4.19
control point
point on a given elementary stream in a terminal where IPMP Processing on stream data is carried out

4.20
decoder
entity that translates between the coded representation of an elementary stream and its decoded
representation

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

--`,`,,,,`,`,`,`,`,,`,``,,,``-`-`,,`,,`,`,,`---

ISO/IEC 14496-1:2010(E)

4 © ISO/IEC 2010 – All rights reserved

4.21
decoding buffer
DB
buffer at the input of a decoder that contains access units

4.22
decoder configuration
configuration of a decoder for processing its elementary stream data by using information contained in its
elementary stream descriptor

4.23
decoding time stamp
DTS
indication of the nominal decoding time of an access unit

4.24
delivery layer
generic abstraction for delivery mechanisms (computer networks, etc.) able to store or transmit a number of
multiplexed elementary streams or M4Mux streams

4.25
descriptor
data structure that is used to describe particular aspects of an elementary stream or a coded audio-visual
object

4.26
DMIF application interface
DAI
interface specified in ISO/IEC 14496-6 used to model the exchange of SL-packetized stream data and
associated control information between the sync layer and the delivery layer

4.27
elementary stream
ES
consecutive flow of mono-media data from a single source entity to a single destination entity on the
compression layer

4.28
elementary stream descriptor
structure contained in object descriptors that describes the encoding format, initialization information, sync
layer configuration, and other descriptive information about the content carried in an elementary stream

4.29
elementary stream interface
ESI
conceptual interface modeling the exchange of elementary stream data and associated control information
between the compression layer and the sync layer

4.30
M4Mux channel
FMC
label to differentiate between data belonging to different constituent streams within one M4Mux stream

NOTE A sequence of data in one M4Mux channel within a M4Mux stream corresponds to one single SL-packetized
stream.

4.31
M4Mux packet
smallest data entity managed by the M4Mux tool consisting of a header and a payload

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

--`,`,,,,`,`,`,`,`,,`,``,,,``-`-`,,`,,`,`,,`---

ISO/IEC 14496-1:2010(E)

© ISO/IEC 2010 – All rights reserved 5

4.32
M4Mux stream
sequence of M4Mux Packets with data from one or more SL-packetized streams that are each identified by
their own M4Mux channel

4.33
M4Mux tool
tool that allows the interleaving of data from multiple data streams

4.34
graphics profile
profile that specifies the permissible set of graphical elements of the BIFS tool that may be used in a scene
description stream

NOTE BIFS comprises both graphical and scene description elements.

4.35
inter
mode for coding parameters that uses previously coded parameters to construct a prediction

4.36
interaction stream
elementary stream that conveys user interaction information

4.37
intra
mode for coding parameters that does not make reference to previously coded parameters to perform the
encoding

4.38
initial object descriptor
special object descriptor that allows the receiving terminal to gain initial access to portions of content encoded
according to ISO/IEC 14496 and that conveys profile and level information to describe the complexity of the
content

4.39
intellectual property identification
IPI
unique identification of one or more elementary streams corresponding to parts of one or more audio-visual
objects

4.40
intellectual property management and protection system
IPMP system
generic term for mechanisms and tools to manage and protect intellectual property

NOTE This part of ISO/IEC 14496 defines the interface to such systems as well as the following.

⎯ The provision for the identification of IPMP tools either through the use of a registration authority or through the use
of a functional description of the IPMP tools' capabilities in a parametric fashion.

⎯ Controlling the time of instantiation of IPMP tools either by the inclusion of references to the required IPMP tools or at
the request of already instantiated IPMP tools.

⎯ Providing secure messaging between IPMP tools and the terminal and between IPMP tools and the user.

⎯ Notification of the instantiation of IPMP tools to IPMP tools requesting such notification.

⎯ Interaction between IPMP tools, and/or the terminal and the user.

⎯ The carriage of IPMP tools within the bitstream.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
,
,
,
,
`
,
`
,
`
,
`
,
`
,
,
`
,
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/IEC 14496-1:2010(E)

6 © ISO/IEC 2010 – All rights reserved

4.41
IPMP information
Information directed to a given IPMP Tool to enable, assist or facilitate its operation

4.42
IPMP system
monolithic IPMP protection scheme which requires implementation dependant access to protected streams at
required Control Points and must provide any intra-communication within an IPMP System on an
implementation basis

NOTE In this standard the use of the term “IPMP System” is used in some cases to indicate either an actual IPMP
System or a combination of IPMP Tools whose combination provides the functionality of an IPMP System. In cases where
the distinction is important the proper respective terms are used.

4.43
IPMP tool
module that performs (one or more) IPMP functions such as authentication, decryption, watermarking

NOTE Conceptually the use of one or more IPMP tools is combined to perform the functionality of an IPMP system.
IPMP tools, as opposed to IPMP systems, are normatively identified as to which control points they function at as well as
are provided normative methods for secure communications both within as well as outside of a given IPMP tools
comprised functional “IPMP system”. An additional difference between IPMP tools and IPMP systems is that IPMP tools,
or a combination thereof, may be used for the protection of object streams.

4.44
IPMP tool identifier
unambiguous identifier for IPMP tools at the presentation level or at a universal level

NOTE Two different identifiers are provided to support the differentiation between the use of IPMP systems and
IPMP tools.

4.45
IPMP tool list
list of selectable IPMP tools required to process the content

4.46
media node
time dependent BIFS node that refers to a media stream through a URL field in

⎯ AnimationStream,

⎯ AudioBuffer,

⎯ AudioClip,

⎯ AudioSource,

⎯ Inline, and

⎯ MovieTexture

4.47
media stream
one or more elementary streams whose ES descriptors are aggregated in one object descriptor and that are
jointly decoded to form a representation of an AV object

4.48
media time line
time line expressing normal play back time of a media stream

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
,
,
,
,
`
,
`
,
`
,
`
,
`
,
,
`
,
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/IEC 14496-1:2010(E)

© ISO/IEC 2010 – All rights reserved 7

4.49
MP4 file
name of the file format described in ISO/IEC 14496-14

4.50
object clock reference
OCR
clock reference that is used by a decoder to recover the time base of the encoder of an elementary stream

4.51
object content information
OCI
additional information about content conveyed through one or more elementary streams; either aggregated to
individual elementary stream descriptors or is itself conveyed as an elementary stream.

4.52
object descriptor
OD
descriptor that aggregates one or more elementary streams by means of their elementary stream descriptors
and defines their logical dependencies

4.53
object descriptor command
command that identifies the action to be taken on a list of object descriptors or object descriptor IDs, e.g.,
update or remove

4.54
object descriptor profile
profile that specifies the configurations of the object descriptor tool and the sync layer tool that are allowed

4.55
object descriptor stream
elementary stream that conveys object descriptors encapsulated in object descriptor commands

4.56
object time base
OTB
time base valid for a given elementary stream, and hence for its decoder; conveyed to the decoder via object
clock references and which is used by all time stamps relating to this object's decoding process

4.57
parametric audio decoder
set of tools for representing and decoding speech signals coded at bit rates between 6 Kbps and 16 Kbps,
according to the specifications in ISO/IEC 14496-3

4.58
parametric description
SDL declaration that describes the parametric configuration and other interface message(s) that drive the tool
and the behaviour defined for fulfilment of such a description

4.59
quality of service
QoS
performance that an elementary stream requests from the delivery channel through which it is transported.
QoS is characterized by a set of parameters (bit rate, delay jitter, bit error rate, etc.)

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
,
,
,
,
`
,
`
,
`
,
`
,
`
,
,
`
,
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/IEC 14496-1:2010(E)

8 © ISO/IEC 2010 – All rights reserved

4.60
random access
process of beginning to read and decode a coded representation at an arbitrary point within the elementary
stream

4.61
reference point
location in the data or control flow of a system that has some defined characteristics

4.62
rendering
action of transforming a scene description and its constituent audio-visual objects from a common
representation space to a specific presentation device (i.e. speakers and a viewing window)

4.63
rendering area
portion of the display device's screen into which the scene description and its constituent audio-visual objects
are to be rendered

4.64
scene description
information that describes the spatio-temporal positioning of audio-visual objects as well as their behavior
resulting from object and user interactions and which makes reference to elementary streams with
audio-visual data by means of pointers to object descriptors

4.65
scene description stream
elementary stream that conveys scene description information

4.66
scene graph elements
elements of the BIFS language that relate only to the structure of the audio-visual scene (spatio-temporal
positioning of audio-visual objects as well as their behavior resulting from object and user interactions)
excluding the audio, visual and graphics nodes as specified in ISO/IEC 14496-11

4.67
scene graph profile
profile that defines the permissible set of scene graph elements of the BIFS tool that may be used in a scene
description stream

NOTE BIFS comprises both graphical and scene description elements.

4.68
seekable
property of a media stream for which the play back is possible from any position

4.69
SL-packetized stream
SPS
sequence of sync layer packets that encapsulate one elementary stream

4.70
stream object
media stream or a segment thereof, referenced through a URL field in the scene in the form “OD:n” or
“OD:n#<segmentName>”

4.71
structured audio
method of describing synthetic sound effects and music as defined by ISO/IEC 14496-3

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
,
,
,
,
`
,
`
,
`
,
`
,
`
,
,
`
,
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/IEC 14496-1:2010(E)

© ISO/IEC 2010 – All rights reserved 9

4.72
sync layer
SL
layer to adapt elementary stream data for communication across the DMIF Application Interface, providing
timing and synchronization information, as well as fragmentation and random access information

NOTE The sync layer syntax is configurable and can be configured to be empty.

4.73
sync layer configuration
configuration of the sync layer syntax for a particular elementary stream using information contained in its
elementary stream descriptor

4.74
sync layer packet
SL-packet
smallest data entity managed by the sync layer consisting of a configurable header and a payload which may
consist of one complete access unit or a partial access unit

4.75
syntactic description language SDL
language defined in ISO/IEC 14496-1:2010, Clause 8 that allows the description of a bitstream's syntax

4.76
systems decoder model
SDM
model that provides an abstract view of the behavior of a terminal compliant to ISO/IEC 14496 which consists
of the buffer model and the timing model

4.77
system time base
STB
time base of the terminal whose resolution is implementation-dependent and according to which all operations
in the terminal are performed

4.78
terminal
system that sends, or receives and presents the coded representation of an interactive audio-visual scene as
defined by ISO/IEC 14496-11 which can be a standalone system, or part of an application system complying
with ISO/IEC 14496

4.79
time base
clock, equivalent to a counter that is periodically incremented

4.80
timing model
model that specifies the semantic meaning of timing information, how it is incorporated (explicitly or implicitly)
in the coded representation of information, and how it can be recovered at the receiving terminal

4.81
time stamp
indication of a particular time instant relative to a time base

4.82
track
collection of related samples in an MP4 file

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
,
,
,
,
`
,
`
,
`
,
`
,
`
,
,
`
,
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/IEC 14496-1:2010(E)

10 © ISO/IEC 2010 – All rights reserved

5 Abbreviated terms

AU access unit

AV audio-visual

AVC advanced video coding (see ISO/IEC 14496-10)

BIFS binary format for scene

CM composition memory

CTS composition time stamp

CU composition unit

DAI DMIF application interface (see ISO/IEC 14496-6)

DB decoding buffer

DTS decoding time stamp

ES elementary stream

ESI elementary stream interface

ESID elementary stream identifier

FMC M4Mux channel

IP intellectual property

IPI intellectual property identification

IPMP intellectual property management and protection

NAL network abstraction layer

OCI object content information

OCR object clock reference

OD object descriptor

ODID object descriptor identifier

OTB object time base

PLL phase locked loop

QOS quality of service

SDL syntactic description language

SDM systems decoder model

SEI supplementary enhancement information

SL synchronization layer

SL-packet synchronization layer packet

SPS SL-packetized stream

STB system time base

URL universal resource locator

VOP video object plane

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
,
,
,
,
`
,
`
,
`
,
`
,
`
,
,
`
,
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/IEC 14496-1:2010(E)

© ISO/IEC 2010 – All rights reserved 11

6 Conventions

For the purpose of unambiguously defining the syntax of the various bitstream components defined by the
normative parts of ISO/IEC 14496 a syntactic description language is used. This language allows the
specification of the mapping of the various parameters in a binary format as well as how they are placed in a
serialized bitstream. The definition of the language is provided in Clause 8 of this specification.

7 Streaming Framework

7.1 Systems Decoder Model

7.1.1 Introduction

The purpose of the systems decoder model (SDM) is to provide an abstract view of the behavior of a terminal
complying with ISO/IEC 14496. It may be used by the sender to predict how the receiving terminal will behave
in terms of buffer management and synchronization when decoding data received in the form of elementary
streams. The systems decoder model includes a timing model and a buffer model.

The systems decoder model specifies:

1. the interface for accessing demultiplexed data streams (DMIF Application Interface),

2. decoding buffers for coded data for each elementary stream,

3. the behavior of elementary stream decoders,

4. composition memory for decoded data from each decoder, and

5. the output behavior of composition memory towards the compositor.

These elements are depicted in Figure 2. Each elementary stream is attached to one single decoding buffer.
More than one elementary stream may be connected to a single decoder (e.g., in a decoder of a scalable
audio-visual object).

Decoding
Buffer DB

1
Decoder

(encapsulates
Demultiplexer)

DMIF Appli-
cation Interface

Decoding
Buffer DBn

Decoding
Buffer DB

2 Decoder
Memory

2

Compositor

Elementary Stream Interface

Decoding
Buffer DB

3

Memory
1

Composition

Composition

Memory
n

CompositionDecoder

1

2

n

Figure 2 — Systems Decoder Model

7.1.2 Concepts of the systems decoder model

This Subclause defines the concepts necessary for the specification of the timing and buffering model. The
sequence of definitions corresponds to a walk from the left to the right side of the SDM illustration in Figure 2.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
,
,
,
,
`
,
`
,
`
,
`
,
`
,
,
`
,
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/IEC 14496-1:2010(E)

12 © ISO/IEC 2010 – All rights reserved

7.1.2.1 DMIF Application Interface (DAI)

For the purposes of the systems decoder model, the DMIF Application Interface encapsulates the
demultiplexer and provides access to streaming data that is consumed by the decoding buffers. The
streaming data received through the DAI consists of SL-packetized streams. The required properties of the
DAI are described in 7.3.3. The DAI semantics are fully specified in ISO/IEC 14496-6.

7.1.2.2 SL-Packetized Stream (SPS)

An SL-packetized stream consists of a sequence of packets, according to the syntax and semantics specified
in 7.3.2, that encapsulate a single elementary stream. The packets contain elementary stream data partitioned
in access units as well as side information, e.g., for timing and access unit labeling. SPS data payload enters
the decoding buffers, i.e., the side information is removed at the input to the decoding buffers.

7.1.2.3 Access Units (AU)

Elementary stream data is partitioned into access units. The delineation of an access unit is completely
determined by the entity that generates the elementary stream (e.g., the compression layer). An access unit is
the smallest data entity to which timing information can be attributed. Two access units from the same
elementary stream shall never refer to the same decoding or composition time. Any further partitioning of the
data in an elementary stream is not visible for the purposes of the systems decoder model. Access units are
conveyed by SL-packetized streams and are received by the decoding buffers. The decoders consume
access units with the necessary side information (e.g., time stamps) from the decoding buffers.

NOTE — An ISO/IEC 14496-1 compliant terminal implementation is not required to process each incoming access unit as
a whole. It is furthermore possible to split an access unit into several fragments for transmission as specified in 7.3. This
allows the sending terminal to dispatch partial AUs immediately as they are generated during the encoding process. Such
partial AUs may have significance for improved error resilience.

7.1.2.4 Decoding Buffer (DB)

The decoding buffer is a buffer at the input of an elementary stream decoder in the receiving terminal that
receives and stores access units. The systems buffer model enables the sending terminal to monitor the
decoding buffer resources that are used during a presentation.

7.1.2.5 Elementary Streams (ES)

Streaming data received at the output of a decoding buffer, independent of its content, is considered as an
elementary stream for the purpose of ISO/IEC 14496. The elementary streams are produced and consumed
by the compression layer entities (encoders and decoders, respectively). ISO/IEC 14496 assumes that the
integrity of an elementary stream is preserved from end to end.

7.1.2.6 Elementary Stream Interface (ESI)

The elementary stream interface is a concept that models the exchange of elementary stream data and
associated control information between the compression layer and the sync layer. It is explained further in 7.3.

7.1.2.7 Decoder

For the purposes of this model, the decoder extracts access units from the decoding buffer at precisely
defined points in time and places composition units, the results of the decoding processes, in the composition
memory. A decoder may be attached to several decoding buffers.

7.1.2.8 Composition Units (CU)

Decoders consume access units and produce composition units. An access unit corresponds to an integer
number of composition units. In case of multiple elementary streams attached to a single decoder (scalable

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
,
,
,
,
`
,
`
,
`
,
`
,
`
,
,
`
,
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/IEC 14496-1:2010(E)

© ISO/IEC 2010 – All rights reserved 13

coding), each composition unit is derived from access units from one or more of these streams. Composition
units reside in composition memory.

7.1.2.9 Composition Memory (CM)

The composition memory is a random access memory that contains composition units. The size of this
memory is not normatively specified.

7.1.2.10 Compositor

The compositor takes composition units out of the composition memory and either consumes them (e.g.
composes and presents them, in the case of audio-visual data) or skips them. The compositor is not specified
in ISO/IEC 14496-1, as the details of this operation are not relevant within the context of the systems decoder
model. 7.1.3.5 defines which composition units are available to the compositor at any instant of time.

7.1.3 Timing Model Specification

The timing model relies on clock references and time stamps to synchronize audio-visual data conveyed by
one or more elementary streams. The concept of a clock with its associated clock references is used to
convey the notion of time to a receiving terminal. Time stamps are used to indicate the precise time instants at
which the receiving terminal consumes the access units in the decoding buffers or may access the
composition units resident in the composition memory. The time stamps are therefore associated with access
units and composition units. The semantics of the timing model are defined in the subsequent clauses. The
syntax for conveying timing information is specified in 7.3.2.

NOTE — This timing model is designed for rate-controlled (“push”) applications.

7.1.3.1 System Time Base (STB)

The system time base (STB) defines the terminal’s notion of time. The resolution of the STB is implementation
dependent. All actions of the terminal are scheduled according to this time base for the purpose of this timing
model.

NOTE — This does not imply that all terminals compliant with ISO/IEC 14496 operate on one single STB.

7.1.3.2 Object Time Base (OTB)

The object time base (OTB) defines the notion of time for a given data stream. The resolution of this OTB can
be selected as required by the application or as defined by a profile. All time stamps that the sending terminal
inserts in a coded data stream refer to this time base. The OTB of a data stream is known at the receiving
terminal either by means of object clock reference information inserted in the stream or by an indication that
its time base is slaved to a time base conveyed with another stream, as specified in 7.3.2.3.

NOTE 1 — Elementary streams may be created for the sole purpose of conveying time base information.

NOTE 2 — The receiving terminal’s system time base need not be locked to any of the available object time bases.

7.1.3.3 Object Clock Reference (OCR)

A special kind of time stamps, object clock references (OCR), are used to convey the OTB to the elementary
stream decoder. The value of the OCR corresponds to the value of the OTB at the time the sending terminal
generates the object clock reference time stamp. OCR time stamps are placed in the SL packet header as
described in 7.3.2.4. The receiving terminal shall evaluate the OCR when its last bit is extracted at the input of
the decoding buffer.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

--`,`,,,,`,`,`,`,`,,`,``,,,``-`-`,,`,,`,`,,`---

ISO/IEC 14496-1:2010(E)

14 © ISO/IEC 2010 – All rights reserved

7.1.3.4 Decoding Time Stamp (DTS)

Each access unit has an associated nominal decoding time, the time at which it must be available in the
decoding buffer for decoding. The AU is not guaranteed to be available in the decoding buffer either before or
after this time. Decoding is assumed to occur instantaneously when the instant of time indicated by the DTS is
reached.

This point in time can be implicitly specified if the (constant) temporal distance between successive access
units is indicated in the setup of the elementary stream (see 7.3.2.3). Otherwise a decoding time stamp (DTS)
whose syntax is defined in 7.3.2.4 conveys this point in time.

A decoding time stamp shall only be conveyed for an access unit that carries a composition time stamp as
well, and only if the DTS and CTS values are different. Presence of both time stamps in an AU may indicate a
reversal between coding order and composition order.

7.1.3.5 Composition Time Stamp (CTS)

Each composition unit has an associated nominal composition time, the time at which it must be available in
the composition memory for composition. The CU is not guaranteed to be available in the composition
memory for composition before this time. Since the SDM assumes an instantaneous decoding process, the
CU is available to the decoder, at that instant in time corresponding to the DTS of the corresponding AU, for
further use (e.g. in prediction processes).

This instant in time is implicitly known, if the (constant) temporal distance between successive composition
units is indicated in the setup of the elementary stream. Otherwise a composition time stamp (CTS) whose
syntax is defined in 7.3.2.4 conveys this instant in time.

The current CU is instantaneously accessible by the compositor anytime between its composition time and the
composition time of the subsequent CU. If a subsequent CU does not exist, the current CU becomes
unavailable at the end of the lifetime of its elementary stream (i.e., when its elementary stream descriptor is
removed).

In case of audio decoders, the following additionally applies to the audio samples within a composition unit:
the composition time applies to the n-th audio sample within the composition unit. The value of n is 1 unless
explicitly specified in ISO/IEC 14496-3, 1.6.6 Interface between Audio and Systems.

7.1.3.6 Occurrence and Precision of Timing Information in Elementary Streams

The frequency at which DTS, CTS and OCR values are to be inserted in the bitstream as well as the precision,
jitter and drift are application and profile dependent. Some usage considerations can be found in 7.3.2.7.

7.1.3.7 Time Stamps for Dependent Elementary Streams

An audio-visual object may refer to multiple elementary streams that constitute a scalable content
representation (see 7.2.7.1.5). Such a set of elementary streams shall adhere to a single object time base.
Temporally co-located access units for such elementary streams are then identified by identical DTS or CTS
values.

EXAMPLE

The example in Figure 3 illustrates the arrival of two access units at the Systems Decoder. Due to the constant delay
assumption of the model (see 7.1.4.2 below), the arrival times correspond to the instants in time when the sending
terminal has sent the respective AUs. The sending terminal must select this instant in time so that the Decoding Buffer at
the receiving terminal never overflows or underflows. At the receiving terminal, an AU is instantaneously decoded, at that
instant in time corresponding to its DTS, and the resulting CU(s) are placed in the composition memory and remain there
until the subsequent CU(s) arrive or the associated object descriptor is removed.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
,
,
,
,
`
,
`
,
`
,
`
,
`
,
,
`
,
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/IEC 14496-1:2010(E)

© ISO/IEC 2010 – All rights reserved 15

Composition
Memory

Decoding
Buffer

AU0

AU1

Arrival(AU0)
Arrival(AU1)

DTS (AU0)
DTS (AU1)

CTS (CU0) CTS (CU1)
= available for
 composition

...................

...................CU0

CU1

Figure 3 — Composition unit availability

7.1.4 Buffer Model Specification

7.1.4.1 Elementary Decoder Model

Figure 4 indicates one branch of the systems decoder model (Figure 2). This simplified model is used to
specify the buffer model. It treats each elementary stream separately and therefore, associates a composition
memory with only one decoder. The legend following Figure 4 elaborates on the symbols used in this figure.

CUAUDecoding
Buffer DB Decoder

Composition
Memory CM Compositor

Legend:

DB Decoding buffer for the elementary stream.

CM Composition memory for the elementary stream.

AU The current access unit input to the decoder.

CU The current composition unit input to the composition memory. CU results from decoding AU. There may be
several composition units resulting from decoding one access unit.

Figure 4 — Flow diagram for the systems decoder model

7.1.4.2 Assumptions

7.1.4.2.1 Constant end-to-end delay

Data transmitted in real time have a timing model in which the end-to-end delay from the encoder input at the
sending terminal, to the decoder output at the receiving terminal, is constant. This delay is equal to the sum of
the delay due to the encoding process, subsequent buffering, multiplexing at the sending terminal, the delay

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
,
,
,
,
`
,
`
,
`
,
`
,
`
,
,
`
,
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/IEC 14496-1:2010(E)

16 © ISO/IEC 2010 – All rights reserved

due to the delivery layers and the delay due to the demultiplexing, decoder buffering and decoding processes
at the receiving terminal.

Note that the receiving terminal is free to add a temporal offset (delay) to the absolute values of all time
stamps if it can cope with the additional buffering needed. However, the temporal difference between two time
stamps (that determines the temporal distance between the associated AUs or CUs) has to be preserved for
real-time performance.

NOTE — Two elementary streams that adhere to different time bases may be synchronized tightly in case of constant
end-to-end delay as assumed by this model. If an application cannot implement this model assumption, such tight
synchronization may not be achievable. Tolerances for the constant end-to-end delay assumption need to be defined
through the profile and level mechanism.

7.1.4.2.2 Demultiplexer

The end-to-end delay between multiplexer output, at the sending terminal, and demultiplexer input, at the
receiving terminal, is constant.

7.1.4.2.3 Decoding Buffer

The needed decoding buffer size is known by the sending terminal and conveyed to the receiving terminal as
specified in 7.2.6.6.

The size of the decoding buffer is measured in bytes.

The decoding buffer is filled at the rate given by the maximum bit rate for this elementary stream while data is
available and with a zero rate otherwise. The maximum bit rate is conveyed by the sending terminal as a part
of the decoder configuration information during the set up phase for each elementary stream (see 7.2.6.6).

Information is received from the DAI in the form of SL packets. The SL packet headers are removed at the
input to the decoding buffers.

7.1.4.2.4 Decoder

The decoding processes are assumed to be instantaneous for the purposes of the systems decoder model.

7.1.4.2.5 Composition Memory

The mapping of an AU to one or more CUs (by the decoder) is known implicitly at both the sending and the
receiving terminals.

7.1.4.2.6 Compositor

The composition processes are assumed to be instantaneous for the purposes of the systems decoder model.

7.1.4.3 Managing Buffers: A Walkthrough

In this example, we assume that the model is used in a “push” scenario. In applications where non-real time
content is to be delivered, flow control by suitable signaling may be established to request access units at the
time they are needed at the receiving terminal. The mechanisms for doing so are application-dependent, and
are not specified in ISO/IEC 14496.

The behaviors of the various elements in the SDM are modeled as follows:

• The sending terminal signals the required decoding buffer resources to the receiving terminal before
starting the delivery. This is done as specified in 7.2.6.6 either explicitly, by requesting the decoding buffer
sizes for individual elementary streams, or implicitly, by indicating a profile (see Clause 9). The decoding
buffer size is measured in bytes.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
,
,
,
,
`
,
`
,
`
,
`
,
`
,
,
`
,
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/IEC 14496-1:2010(E)

© ISO/IEC 2010 – All rights reserved 17

• The sending terminal models the behavior of the decoding buffers by making the following assumptions :

• Each decoding buffer is filled at the maximum bitrate specified for its associated elementary stream as
long as data is available.

• At the instant of time corresponding to its DTS, an AU is instantaneously decoded and removed from the
decoding buffer.

• At the instant of time corresponding to its DTS, a known amount of CUs corresponding to the just
decoded AU are put in the composition memory.

The current CU is available to the compositor between instants of time corresponding to the CTS of the
current CU and the CTS of the subsequent CU. If a subsequent CU does not exist, the current CU becomes
unavailable at the end of lifetime of its data stream.

Using these assumptions on the buffer model, the sending terminal may freely use the space in the decoding
buffers. For example, it may deliver data for several AUs of a stream, for non real time usage, to the receiving
terminal, and pre-store them in the DB long before they have to be decoded (assuming sufficient space is
available). Subsequently, the full delivery bandwidth may be used to transfer data of a real time stream just in
time. The composition memory may be used, for example, as a reordering buffer. In the case of visual
decoding, it may contain the decoded P-frames needed by a video decoder for the decoding of intermediate
B-frames, before the arrival of the CTS of the latest P-frame.

7.2 Object Description Framework

7.2.1 Introduction

The scene description (specified in ISO/IEC 14496-11) and the elementary streams that convey streaming
data are the basic building blocks of the architecture of ISO/IEC 14496-1. Elementary streams carry data for
audio or visual objects as well as for the scene description itself. The object description framework provides
the link between elementary streams and the scene description. The scene description declares the
spatio-temporal relationship of audio-visual objects, while the object description framework specifies the
elementary stream resources that provide the time-varying data for the scene. This indirection facilitates
independent changes to the scene structure, the properties of the elementary streams (e.g. its encoding) and
their delivery.

The object description framework consists of a set of descriptors that allows to identify, describe and properly
associate elementary streams to each other and to audio-visual objects used in the scene description.
Numeric identifiers, called ObjectDescriptorIDs, associate object descriptors to appropriate nodes in the scene
description. Object descriptors are themselves conveyed in elementary streams to allow time stamped
changes to the available set of object descriptors to be made.

Each object descriptor is itself a collection of descriptors that describe one or more elementary streams that
are associated to a single node and that usually relate to a single audio or visual object. This allows to indicate
a scalable content representation as well as multiple alternative streams that convey the same content, e.g., in
multiple qualities or different languages.

An elementary stream descriptor within an object descriptor identifies a single elementary stream with a
numeric identifier, called ES_ID. Each elementary stream descriptor contains the information necessary to
initiate and configure the decoding process for the elementary stream, as well as intellectual property
identification. Optionally, additional information may be associated to a single elementary stream, most
notably quality of service requirements for its transmission or a language indication. Both, object descriptors
and elementary stream descriptors may use URLs to point to remote object descriptors or a remote
elementary stream source, respectively.

The object description framework provides the hooks to implement intellectual property management and
protection (IPMP) systems. IPMP information is conveyed both through IPMP descriptors as part of the object
descriptor stream and through IPMP streams that carry time variant IPMP information. The structure of IPMP

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
,
,
,
,
`
,
`
,
`
,
`
,
`
,
,
`
,
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/IEC 14496-1:2010(E)

18 © ISO/IEC 2010 – All rights reserved

descriptors and IPMP streams is specified in this Clause while their internal syntax and semantics and, hence,
the operation of the IPMP system is outside the scope of ISO/IEC 14496.

Object content information allows the association of metadata with a whole presentation or with individual
object descriptors or with elementary stream descriptors. A set of OCI descriptors is defined that either form
an integral part of an object descriptor or elementary stream descriptor or are conveyed by means of a proper
OCI stream that allows the conveyance of time variant object content information.

Access to ISO/IEC 14496 content is gained through an initial object descriptor that needs to be made
available through means not defined in ISO/IEC 14496. The initial object descriptor in the simplest case points
to the scene description stream and the corresponding object descriptor stream. The access scenario is
outlined in 7.2.7.3.

100

Visual Stream (e.g. temporal enhancement)

Visual Stream (e.g. base layer)

Scene Description Stream

Object Descriptor Stream

e.g. Movie
Texture

Scene Description

ObjectDescriptorID

ES_ID

ES_ID

ES_ID

ES_ID

ObjectDescriptor

:

ES_Descriptor

ES_Descriptor

initial
ObjectDescriptor

 :

ES_Descriptor

ES_Descriptor

Object
Descriptor

Object
Descriptor

ObjectDescriptorUpdate

ES_D ES_D

ES_D

... ...

......

BIFS Command (Replace Scene)

e.g. Audio
Source

Audio Stream

Figure 5 — Object descriptors linking scene description to elementary streams

The remainder of this Clause is structured in the following way:

• 7.2.2 specifies the data structures on which the object descriptor framework is based.

• 7.2.3 specifies the concepts of the IPMP elements in the object description framework.

• 7.2.4 specifies the object content information elements in the object description framework.

• 7.2.5 specifies the object descriptor stream and the syntax and semantics of the command set that allows
the update or removal of object descriptor components.

• 7.2.6 specifies the syntax and semantics of the object descriptor and its component descriptors.

• 7.2.7 specifies rules for object descriptor usage as well as the procedure to access content through object
descriptors.

• 7.2.8 specifies the usage of the IPMP system interface.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

--`,`,,,,`,`,`,`,`,,`,``,,,``-`-`,,`,,`,`,,`---

ISO/IEC 14496-1:2010(E)

© ISO/IEC 2010 – All rights reserved 19

7.2.2 Common data structures

7.2.2.1 Overview

The commands and descriptors defined in this Subclause constitute self-describing classes, identified by
unique class tags. Each class encodes explicitly its size in bytes. This facilitates future compatible extensions
of the commands and descriptors. A class may be expanded with additional syntax elements that are ignored
by an OD decoder that expects an earlier revision of a class. In addition, anywhere in a syntax where a set of
tagged classes is expected it is permissible to intersperse expandable classes with unknown class tag values.
These classes shall be skipped, using the encoded size information.

The remainder of this Clause defines the syntax and semantics of the command and descriptor classes. Some
commands and descriptors contain themselves a set of component descriptors. They are said to aggregate a
set of component descriptors.

Table 1 — List of Class Tags for Descriptors

Tag value Tag name
0x00 Forbidden
0x01 ObjectDescrTag
0x02 InitialObjectDescrTag
0x03 ES_DescrTag
0x04 DecoderConfigDescrTag
0x05 DecSpecificInfoTag
0x06 SLConfigDescrTag
0x07 ContentIdentDescrTag
0x08 SupplContentIdentDescrTag
0x09 IPI_DescrPointerTag
0x0A IPMP_DescrPointerTag
0x0B IPMP_DescrTag
0x0C QoS_DescrTag
0x0D RegistrationDescrTag
0x0E ES_ID_IncTag
0x0F ES_ID_RefTag
0x10 MP4_IOD_Tag
0x11 MP4_OD_Tag
0x12 IPL_DescrPointerRefTag
0x13 ExtensionProfileLevelDescrTag
0x14 profileLevelIndicationIndexDescrTag
0x15-0x3F Reserved for ISO use
0x40 ContentClassificationDescrTag
0x41 KeyWordDescrTag
0x42 RatingDescrTag
0x43 LanguageDescrTag
0x44 ShortTextualDescrTag
0x45 ExpandedTextualDescrTag
0x46 ContentCreatorNameDescrTag
0x47 ContentCreationDateDescrTag
0x48 OCICreatorNameDescrTag
0x49 OCICreationDateDescrTag
0x4A SmpteCameraPositionDescrTag
0x4B SegmentDescrTag

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
,
,
,
,
`
,
`
,
`
,
`
,
`
,
,
`
,
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/IEC 14496-1:2010(E)

20 © ISO/IEC 2010 – All rights reserved

Tag value Tag name
0x4C MediaTimeDescrTag
0x4D-0x5F Reserved for ISO use (OCI extensions)
0x60 IPMP_ToolsListDescrTag
0x61 IPMP_ToolTag
0x62 M4MuxTimingDescrTag
0x63 M4MuxCodeTableDescrTag
0x64 ExtSLConfigDescrTag
0x65 M4MuxBufferSizeDescrTag
0x66 M4MuxIdentDescrTag
0x67 DependencyPointerTag
0x68 DependencyMarkerTag
0x69 M4MuxChannelDescrTag
0x6A-0xBF Reserved for ISO use
0xC0-0xFE User private
0xFF Forbidden

7.2.2.2 BaseDescriptor

7.2.2.2.1 Syntax

abstract aligned(8) expandable(228-1) class BaseDescriptor : bit(8) tag=0 {
 // empty. To be filled by classes extending this class.
}

7.2.2.2.2 Semantics

This class is an abstract base class that is extended by the descriptor classes specified in 7.2.6. Each
descriptor constitutes a self-describing class, identified by a unique class tag. This abstract base class
establishes a common name space for the class tags of these descriptors. The values of the class tags are
defined in Table 1. As an expandable class the size of each class instance in bytes is encoded and accessible
through the instance variable sizeOfInstance (see 8.3.3).

A class that allows the aggregation of classes of type BaseDescriptor may actually aggregate any of the
classes that extend BaseDescriptor.

NOTE — User private descriptors may have an internal structure, for example to identify the country or manufacturer that
uses a specific descriptor. The tags and semantics for such user private descriptors may be managed by a registration
authority if required.

The following additional symbolic names are introduced:

ExtDescrTagStartRange = 0x6A

ExtDescrTagEndRange = 0xFE

OCIDescrTagStartRange = 0x40

OCIDescrTagEndRange = 0x5F

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

--`,`,,,,`,`,`,`,`,,`,``,,,``-`-`,,`,,`,`,,`---

ISO/IEC 14496-1:2010(E)

© ISO/IEC 2010 – All rights reserved 21

7.2.2.3 BaseCommand

7.2.2.3.1 Syntax

abstract aligned(8) expandable(228-1) class BaseCommand : bit(8) tag=0 {
 // empty. To be filled by classes extending this class.
}

7.2.2.3.2 Semantics

This class is an abstract base class that is extended by the command classes specified in 7.2.5.5. Each
command constitutes a self-describing class, identified by a unique class tag. This abstract base class
establishes a common name space for the class tags of these commands. The values of the class tags are
defined in Table 2. As an expandable class the size of each class instance in bytes is encoded and accessible
through the instance variable sizeOfInstance (see 8.3.3).

Table 2 — List of Class Tags for Commands

Tag value Tag name
0x00 forbidden
0x01 ObjectDescrUpdateTag
0x02 ObjectDescrRemoveTag
0x03 ES_DescrUpdateTag
0x04 ES_DescrRemoveTag
0x05 IPMP_DescrUpdateTag
0x06 IPMP_DescrRemoveTag
0x07 ES_DescrRemoveRefTag
0x08 ObjectDescrExecuteTag
0x09-0xBF Reserved for ISO (command tags)
0xC0-0xFE User private
0xFF forbidden

A class that allows the aggregation of classes of type BaseCommand may actually aggregate any of the
classes that extend BaseCommand.

NOTE — User private commands may have an internal structure, for example to identify the country or manufacturer that
uses a specific command. The tags and semantics for such user private command may be managed by a registration
authority if required.

7.2.3 Intellectual Property Management and Protection Framework (IPMP)

7.2.3.1 Overview

The intellectual property management and protection (IPMP) framework for ISO/IEC 14496 content consists of
a normative interface that permits an ISO/IEC 14496 terminal to host one or more IPMP Systems or IPMP
Tools. Additionally, the framework contains a secure messaging system usable between IPMP Tools as well
as IPMP Tools and the Terminal and IPMP Tools and the User which is specified in ISO/IEC 14496-13.

An IPMP System or IPMP Tools are non-normative components that provide intellectual property
management and protection functions for the terminal.

The IPMP interface consists of IPMP elementary streams and IPMP descriptors. The normative structure of
IPMP elementary streams is specified in this Subclause. IPMP descriptors are carried as part of an object
descriptor stream and are specified in 7.2.6.14. The IPMP interface allows applications (or derivative

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

--`,`,,,,`,`,`,`,`,,`,``,,,``-`-`,,`,,`,`,,`---

ISO/IEC 14496-1:2010(E)

22 © ISO/IEC 2010 – All rights reserved

application standards) to build specialized IPMP Systems or IPMP Tools. Alternatively, an application may
choose not to use an IPMP System or IPMP Tools, thereby offering no management and protection features.
The IPMP System and IPMP Tools use the information carried by the IPMP elementary streams and
descriptors to make protected ISO/IEC 14496 content available to the terminal. The detailed semantics and
decoding process of the IPMP System or IPMP Tools are not in the scope of ISO/IEC 14496. The usage of
the IPMP System/Tools Interface, however, is explained in 7.2.8 with the usage of the IPMP framework being
explained.

7.2.3.2 IPMP Streams

7.2.3.2.1 Structure of the IPMP Stream

The IPMP stream is an elementary stream that passes time-varying information to one or more IPMP Systems
or Tools. This is accomplished by periodically sending a sequence of IPMP messages along with the content
at a period determined by the IPMP System(s) or Tool(s).

7.2.3.2.2 Access Unit Definition

An IPMP access unit consists of one or more IPMP messages, as defined in 7.2.3.2.5. All IPMP messages
that are to be processed at the same instant in time shall constitute a single access unit. Access units in IPMP
streams shall be labeled and time-stamped by suitable means. This shall be done via the related flags and the
composition time stamps, respectively, in the SL packet header (see 7.3.2.4). The composition time indicates
the point in time at which an IPMP access unit becomes valid, i.e., when the embedded IPMP messages shall
be evaluated. Decoding and composition time for an IPMP access unit shall always have the same value.

An access unit does not necessarily convey or update the complete set of IPMP messages that are currently
required. In that case it just modifies the persistent state of the IPMP system. However, if an access unit
conveys the complete set of IPMP messages required at a given point in time it shall set the
randomAccessPointFlag in the SL packet header to ‘1’ for this access unit. Otherwise, the
randomAccessPointFlag shall be set to ‘0’.

NOTE — An SL packet with randomAccessPointFlag=1 but with no IPMP messages in it indicates that at the current
time instant no IPMP messages are required for operation.

7.2.3.2.3 Time Base for IPMP Streams

The time base associated to an IPMP stream shall be indicated by suitable means. This shall be done by
means of object clock reference time stamps in the SL packet headers (see 7.3.2.4) for this stream or by
indicating the elementary stream from which this IPMP stream inherits the time base (see 7.3.2.3). All time
stamps in the SL-packetized IPMP stream refer to this time base.

An IPMP stream shall adhere to the same time base as the one or more content elementary streams to which
it is associated (see 7.2.8). Consequently, an IPMP stream may not be associated to multiple content
elementary streams that themselves adhere to different time bases.

7.2.3.2.4 IPMP Decoder Configuration

7.2.3.2.4.1 Syntax

class IPMPDecoderConfiguration extends DecoderSpecificInfo : bit(8)
tag=DecSpecificInfoTag {
 // IPMP system specific configuration information
}

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
,
,
,
,
`
,
`
,
`
,
`
,
`
,
,
`
,
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/IEC 14496-1:2010(E)

© ISO/IEC 2010 – All rights reserved 23

7.2.3.2.4.2 Semantics

An IPMP system may require information to initialize its operation. This information shall be conveyed by
extending the decoderSpecificInfo class as specified in 7.2.6.7. If utilized,
IPMPDecoderConfiguration shall be conveyed in the ES_Descriptor declaring the IPMP stream.

7.2.3.2.5 IPMP message syntax and semantics

7.2.3.2.5.1 Syntax

aligned(8) expandable(228-1) class IPMP_Message
{
 bit(16) IPMPS_Type;
 if (IPMPS_Type == 0)
 (
 bit(8) URLString[sizeOfInstance-2];
)
 else (if (IPMPS_Type == 0xFFFF)
 (
 bit(16) IPMP_DescriptorIDEx;
 IPMP_Data_BaseClass IPMP_ExtendedData[]
 } else {
 bit(8) IPMP_data[sizeOfInstance-2];
 }
}

7.2.3.2.5.2 Semantics

The IPMP_Message conveys time-varying IPMP information for associated IPMP System or IPMP Tool
instances.

IPMPS_Type – The type of the IPMP System, in “Hooks” compliant Terminals as specified in
ISO/IEC 14496-1. The values “0x0002” to “0x2000” are reserved for future ISO use. A Registration Authority,
as designated by ISO/IEC JTC 1, shall assign a unique valid value for this field for a specific IPMP System
Type. If the IPMP_DescriptorID is “0”, another URL is referenced. This process continues until an
IPMP_Message with a non-zero IPMP_DescriptorID is accessed.

URLString[] - contains a UTF-8 [6] encoded URL that shall point to the location of a remote
IPMP_Message.

IPMP_DescriptorID – this is one of the IPMP_DescriptorIDs in the scope of service of this IPMP
Stream and identifies the recipient(s) of the IPMP_Message.

IPMP_ExtendedData - The IPMP data that is extended from IPMP_Data_BaseClass to be delivered to
the IPMP tool.

IPMP_data - opaque data to be delivered to the IPMP Tool.

The IPMP_Message is backward compatible with the IPMP_Message of ISO/IEC 14496-1:2001. However, in
order to unambiguously identify the version of the IPMP stream, the ObjectTypeIndication shall be set to
“0x02” for streams complying with this part of the specification. IPMP Streams complying with
ISO/IEC 14496-1 shall use an ObjectTypeIndication of “0xFF” as specified for in 7.2.6.6.2.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

--`,`,,,,`,`,`,`,`,,`,``,,,``-`-`,,`,,`,`,,`---

ISO/IEC 14496-1:2010(E)

24 © ISO/IEC 2010 – All rights reserved

7.2.3.2.6 Extension tags for the IPMP_Data_BaseClass

7.2.3.2.6.1 IPMP_Data_BaseClass

The IPMP_Data_BaseClass is intended to be extended to provide the carriage of ISO defined as well as
user defined IPMP related data.

7.2.3.2.6.2 Syntax

abstract aligned(8) expandable(2^28-1) class IPMP_Data_BaseClass:
 bit(8) tag=0…255
{
 bit(8) Version;
 bit(32) dataID;
 // Fields and data extending this message.
}

7.2.3.2.6.3 Semantics

Version - indicates the version of syntax used in the IPMP Data and shall be set to “0x01”.

dataID – used for the purpose of identifying the message. Tools replying directly to a message shall include
the same dataID in any response.

tag indicates the tag for the extended IPMP data. The exact values for the extension tags are defined in
ISO/IEC 14496-13.

IPMP data extending from IPMP_Data_BaseClass can be carried in the following three places:

• IPMP_Descriptor

• IPMP_Message defined in ISO/IEC 14496-13 which is subsequently carried in IPMP Stream.

• Messages defined in ISO/IEC 14496-13 specified to carry messages between IPMP tools.

7.2.4 Object Content Information (OCI)

7.2.4.1 Overview

Audio-visual objects that are associated with elementary stream data through an object descriptor may have
additional object content information attached to them. For this purpose, a set of OCI descriptors is defined in
7.2.6.18. OCI descriptors may directly be included as part of an object descriptor or ES_Descriptor as
defined in 7.2.6.

In order to accommodate time variant OCI that is separable from the object descriptor stream, OCI descriptors
may as well be conveyed in an OCI stream. An OCI stream is referred to through an ES_Descriptor, with the
streamType field set to OCI_Stream. How OCI streams may be aggregated to object descriptors is defined
in 7.2.7.1.3. The structure of the OCI stream is defined in this Subclause.

7.2.4.2 OCI Streams

7.2.4.2.1 Structure of the OCI Stream

The OCI stream is an elementary stream that conveys time-varying object content information, termed OCI
events. Each OCI event consists of a number of OCI descriptors.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

--`,`,,,,`,`,`,`,`,,`,``,,,``-`-`,,`,,`,`,,`---

ISO/IEC 14496-1:2010(E)

© ISO/IEC 2010 – All rights reserved 25

7.2.4.2.2 Access Unit Definition

An OCI access unit consists of one or more OCI_Events, as described in 7.2.4.2.5. Access units in OCI
elementary streams shall be labelled and time stamped by suitable means. This shall be done by means of
the related flags and the composition time stamp, respectively, in the SL packet header (see 7.3.2.4). The
composition time indicates the point in time when an OCI access unit becomes valid, i.e., when the embedded
OCI events shall be added to the list of events. Decoding and composition time for an OCI access unit shall
always have the same value.

An access unit may or may not convey or update the complete set of OCI events that are currently valid. In
the latter case, it just modifies the persistent state of the OCI decoder. However, if an access unit conveys the
complete set of OCI events valid at a given point in time it shall set the randomAccessPointFlag in the SL
packet header to ‘1’ for this access unit. Otherwise, the randomAccessPointFlag shall be set to ‘0’.

NOTE — An SL packet with randomAccessPointFlag=1 but with no OCI events in it indicates that at the current time
instant no valid OCI events exist.

7.2.4.2.3 Time Base for OCI Streams

The time base associated with an OCI stream shall be indicated by suitable means. This shall be done by the
use of object clock reference time stamps in the SL packet headers (see 7.3.2.4) for this stream or by
indicating the elementary stream from which this OCI stream inherits the time base (see 7.3.2.3). All time
stamps in the SL-packetized OCI stream refer to this time base.

7.2.4.2.4 OCI Decoder Configuration

7.2.4.2.4.1 Syntax

class OCIDecoderConfiguration extends DecoderSpecificInfo : bit(8)
tag=DecSpecificInfoTag {
 const bit(8) versionLabel = 0x01;
}

7.2.4.2.4.2 Semantics

This information is needed to initialize operation of the OCI decoder. It shall be conveyed by extending the
decoderSpecificInfo class as specified in 7.2.6.7. OCIDecoderConfiguration shall be conveyed in
the ES_Descriptor declaring the OCI stream.

versionLabel – indicates the version of OCI specification used on the corresponding OCI data stream.
Only the value 0x01 is allowed; all the other values are reserved.

7.2.4.2.5 OCI_Events syntax and semantics

7.2.4.2.5.1 Syntax

aligned(8) expandable(228-1) class OCI_Event {
 bit(15) eventID;
 bit(1) absoluteTimeFlag;
 bit(32) startingTime;
 bit(32) duration;
 OCI_Descriptor OCI_Descr[1 .. 255];
}

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

--`,`,,,,`,`,`,`,`,,`,``,,,``-`-`,,`,,`,`,,`---

ISO/IEC 14496-1:2010(E)

26 © ISO/IEC 2010 – All rights reserved

7.2.4.2.5.2 Semantics

eventID – contains the identification number of the described event that is unique within the scope of this
OCI stream.

absoluteTimeFlag – indicates the time base for startingTime as described below.

startingTime – indicates the starting time of the event in hours, minutes, seconds and hundredth of
seconds. The format is 8 digits, the first 6 digits expressing hours, minutes and seconds with 4 bits each in
binary coded decimal and the last two expressing hundredth of seconds in hexadecimal using 8 bits.

EXAMPLE ⎯ 02:36:45:89 is coded as “0x023645” concatenated with “0b0101.1001” (89 in binary), resulting to
“0x02364559”.

If absoluteTimeFlag is set to zero, startingTime is relative to the object time base of the
corresponding object. In that case it is the responsibility of the application to ensure that this object time base
is conveyed such that startingTime can be identified unambiguously (see 7.3.2.7). If
absoluteTimeFlag is set to one, startingTime is expressed as an absolute value, refering to wall clock
time.

duration – contains the duration of the corresponding object in hours, minutes, seconds and hundredth of
seconds. The format is 8 digits, the first 6 digits expressing hours, minutes and seconds with 4 bits each in
binary coded decimal and the last two expressing hundredth of seconds in hexadecimal using 8 bits.

OCI_Descr[] – an array of one up to 255 OCI_Descriptor classes as specified in 7.2.6.18.2.

7.2.5 Object Descriptor Stream

7.2.5.1 Structure of the Object Descriptor Stream

Similar to the scene description, object descriptors are transported in a dedicated elementary stream, termed
object descriptor stream. Within such a stream, it is possible to dynamically convey, update and remove
complete object descriptors, or their component descriptors, the ES_Descriptors, and IPMP descriptors. The
update mechanism allows, for example, to advertise new elementary streams for an audio-visual object as
they become available, or to remove references to streams that are no longer available. Updates are time
stamped to indicate the instant in time they take effect.

This Subclause specifies the structure of the object descriptor elementary stream including the syntax and
semantics of its constituent elements, the object descriptor commands (OD commands).

7.2.5.2 Access Unit Definition

An OD access unit consists of one or more OD commands, as described in 7.2.5.5. All OD commands that
are to be processed at the same instant in time shall constitute a single access unit. Access units in object
descriptor elementary streams shall be labelled and time stamped by suitable means. This shall be done by
means of the related flags and the composition time stamp, respectively, in the SL packet header (see 7.3.2.4).
The composition time indicates the point in time when an OD access unit becomes valid, i.e., when the
embedded OD commands shall be executed. Decoding and composition time for an OD access unit shall
always have the same value.

An access unit may not convey or update the complete set of object descriptors that are currently required. In
that case it just modifies the persistent state of the object descriptor decoder. However, if an access unit
conveys the complete set of object descriptors required at a given point in time it shall set the
randomAccessPointFlag in the SL packet header to ‘1’ for this access unit. Otherwise, the
randomAccessPointFlag shall be set to ‘0’.

NOTE — An SL packet with randomAccessPointFlag=1 but with no OD commands in it indicates that at the current
time instant no valid object descriptors exist.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
,
,
,
,
`
,
`
,
`
,
`
,
`
,
,
`
,
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/IEC 14496-1:2010(E)

© ISO/IEC 2010 – All rights reserved 27

7.2.5.3 Time Base for Object Descriptor Streams

The time base associated to an object descriptor stream shall be indicated by suitable means. This shall be
done by means of object clock reference time stamps in the SL packet headers (see 7.3.2.4) for this stream or
by indicating the elementary stream from which this object descriptor stream inherits the time base (see
7.3.2.3). All time stamps in the SL-packetized object descriptor stream refer to this time base.

7.2.5.4 OD Decoder Configuration

The object descriptor decoder does not require additional configuration information.

7.2.5.5 OD Command Syntax and Semantics

7.2.5.5.1 Overview

Object descriptors and their components as defined in 7.2.6 shall always be conveyed as part of one of the
OD commands specified in this Subclause. The commands describe the action to be taken on the
components conveyed with the command, specifically ‘update’ or ‘remove’. Each command affects one or
more object descriptors, ES_Descriptors or IPMP descriptors.

7.2.5.5.2 ObjectDescriptorUpdate

7.2.5.5.2.1 Syntax

class ObjectDescriptorUpdate extends BaseCommand : bit(8)
tag=ObjectDescrUpdateTag {
 ObjectDescriptorBase OD[0 .. 255];
}

7.2.5.5.2.2 Semantics

The ObjectDescriptorUpdate class conveys a list of new or updated object descriptors. If an object
descriptor is updated, the streams refered to by the old object descriptor shall be closed and the streams
refered to by the new object descriptor may be accessed by the content access procedure (see 7.2.7.3.6.2).

NOTE - The ES_DescriptorUpdate or ES_DescriptorRemove commands may be used to add or remove individual
ES_Descriptors of an existing object descriptor.

OD[] – an array of object descriptors as defined in 7.2.6.3 and 7.2.6.4. The array shall have any number of
one up to 255 elements.

7.2.5.5.3 ObjectDescriptorRemove

7.2.5.5.3.1 Syntax

class ObjectDescriptorRemove extends BaseCommand : bit(8)
tag=ObjectDescrRemoveTag {
 bit(10) objectDescriptorId[(sizeOfInstance*8)/10];
}

7.2.5.5.3.2 Semantics

The ObjectDescriptorRemove class renders unavailable a set of object descriptors. The BIFS nodes
associated to these object descriptors shall have no reference any more to the elementary streams that have

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
,
,
,
,
`
,
`
,
`
,
`
,
`
,
,
`
,
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/IEC 14496-1:2010(E)

28 © ISO/IEC 2010 – All rights reserved

been listed in the removed object descriptors. An objectDescriptorID that does not refer to a valid object
descriptor is ignored.

NOTE — It is possible that a scene description node references an OD_ID which does not currently have an associated
OD.

ObjectDescriptorId[] – an array of ObjectDescriptorIDs that indicates the object descriptors that
are removed.

7.2.5.5.4 ES_DescriptorUpdate

7.2.5.5.4.1 Syntax

class ES_DescriptorUpdate extends BaseCommand : bit(8) tag=ES_DescrUpdateTag {
 bit(10) objectDescriptorId;
 ES_Descriptor esDescr[1 .. 255];
}

7.2.5.5.4.2 Semantics

The ES_DescriptorUpdate class conveys a list of new ES_Descriptors for the object descriptor labeled
objectDescriptorID. ES_Descriptors with ES_IDs that have already been received within the same name
scope shall be ignored.

To update the characterstics of an elementary stream, it is required that its original ES_Descriptor be removed
and the changed ES_Descriptor be conveyed.

When an IPMP stream is added, the affected elementary streams, as defined in 7.2.8.2, shall be processed
under the new IPMP conditions starting at the point in time that this ES_DescriptorUpdate command becomes
valid (see 7.2.5.2).

ES_DescriptorUpdate shall not be applied on object descriptors that have set URL_Flag to '1'
(see 7.2.6.3).

An elementary stream identified with a given ES_ID may be attached to more than one object descriptor. All
corresponding ES_Descriptors refering to this ES_ID that are conveyed through either
ES_DescriptorUpdate or ObjectDescriptorUpdate commands shall have identical content.

objectDescriptorID - identifies the object descriptor for which ES_Descriptors are updated. If the
objectDescriptorID does not refer to any valid object descriptor, then this command is ignored.

esDescr[] – an array of ES_Descriptors as defined in 7.2.6.5. The array shall have any number of one
up to 255 elements.

7.2.5.5.5 ES_DescriptorRemove

7.2.5.5.5.1 Syntax

class ES_DescriptorRemove extends BaseCommand : bit(8) tag=ES_DescrRemoveTag {
 bit(10) objectDescriptorId;
 aligned (8) bit(16) ES_ID[1..255];
}

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
,
,
,
,
`
,
`
,
`
,
`
,
`
,
,
`
,
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/IEC 14496-1:2010(E)

© ISO/IEC 2010 – All rights reserved 29

7.2.5.5.5.2 Semantics

The ES_DescriptorRemove class removes the reference to an elementary stream from an object
descriptor and renders this stream unavailable for nodes referencing this object descriptor.

When an IPMP stream is removed, the affected elementary streams, as defined in 7.2.8.2, shall be processed
under the new IPMP conditions starting at the point in time that this ES_DescriptorRemove command
becomes valid (see 7.2.5.2).

ES_DescriptorRemove shall not be applied on object descriptors that have set URL_Flag to '1'
(see 7.2.6.3).

objectDescriptorID - identifies the object descriptor from which ES_Descriptors are removed. If the
objectDescriptorID does not refer to a valid object descriptor in the same scope, then this command is ignored.

ES_ID[] – an array of ES_IDs that labels the ES_Descriptors to be removed from
objectDescriptorID. If any of the ES_IDs do not refer to an ES_Descriptor currently referenced by the
OD, then those ES_IDs are ignored. The array shall have any number of one up to 255 elements.

7.2.5.5.6 IPMP_DescriptorUpdate

7.2.5.5.6.1 Syntax

class IPMP_DescriptorUpdate extends BaseCommand : bit(8) tag=IPMP_DescrUpdateTag
{
 IPMP_Descriptor ipmpDescr[1..255];
}

7.2.5.5.6.2 Semantics

The IPMP_DescriptorUpdate class conveys a list of new or updated IPMP_Descriptors. An
IPMP_Descriptor identified by an IPMP_DescriptorID that has already been received within the same
name scope shall be replaced by the new descriptor.

Updates to an IPMP_Descriptor shall be propagated at the time this IPMP_DescriptorUpdate becomes
valid (see 7.2.5.2) to all IPMP Systems that refer to this IPMP_Descriptor through an
IPMP_DescriptorPointer (see 7.2.6.13). The handling of the descriptors by the IPMP systems is not
normative.

IPMP_Descriptors remain valid until they are replaced by another IPMP_DescriptorUpdate command
or removed.

ipmpDescr[] – an array of IPMP_Descriptor as specified in 7.2.6.14.

7.2.5.5.7 IPMP_DescriptorRemove

7.2.5.5.7.1 Syntax

class IPMP_DescriptorRemove extends BaseCommand : bit(8) tag=IPMP_DescrRemoveTag
{
 bit(8) IPMP_DescriptorID[1..255];
}

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

--`,`,,,,`,`,`,`,`,,`,``,,,``-`-`,,`,,`,`,,`---

ISO/IEC 14496-1:2010(E)

30 © ISO/IEC 2010 – All rights reserved

7.2.5.5.7.2 Semantics

The IPMP_DescriptorRemove class conveys a list of IPMP_DescriptorsIDs that identify the
IPMP_Descriptors that shall be removed.

The removal of IPMP_Descriptors shall be notified to all IPMP systems at the time this
IPMP_DescriptorRemove becomes valid (see 7.2.5.2). The handling of the descriptors by the IPMP systems
is not normative.

IPMP_DescriptorID[] - is a list of IPMP_DescriptorIDs.

7.2.5.5.8 ObjectDescriptorExecute

7.2.5.5.8.1 Syntax

class ObjectDescriptorExecute extends BaseCommand : bit(8) tag=
ObjectDescriptorExecuteTag {
 bit(10) objectDescriptorId[(sizeOfInstance*8)/10];
}

7.2.5.5.8.2 Semantics

The ObjectDescriptorExecute class instructs the terminal that Elementary streams contained therein
shall be opened as the server will transmit data on one or more of the streams. Failure by the terminal to
comply may result in data loss and/or other undefined behavior.

7.2.6 Object Descriptor Components

7.2.6.1 Overview

Object descriptors contain various additional descriptors as their components, in order to describe individual
elementary streams and their properties. They shall always be conveyed as part of one of the OD commands
specified in the previous Subclause. This Subclause defines the syntax and semantics of object descriptors
and their component descriptors.

7.2.6.2 ObjectDescriptorBase

7.2.6.2.1 Syntax

abstract class ObjectDescriptorBase extends BaseDescriptor : bit(8)
tag=[ObjectDescrTag..InitialObjectDescrTag] {
// empty. To be filled by classes extending this class.
}

7.2.6.2.2 Semantics

This is an abstract base class for the different types of object descriptor classes defined subsequently. The
term “object descriptor” is used to generically refer to any such derived object descriptor class or instance
thereof.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
,
,
,
,
`
,
`
,
`
,
`
,
`
,
,
`
,
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/IEC 14496-1:2010(E)

© ISO/IEC 2010 – All rights reserved 31

7.2.6.3 ObjectDescriptor

7.2.6.3.1 Syntax

class ObjectDescriptor extends ObjectDescriptorBase : bit(8) tag=ObjectDescrTag {
 bit(10) ObjectDescriptorID;
 bit(1) URL_Flag;
 const bit(5) reserved=0b1111.1;
 if (URL_Flag) {
 bit(8) URLlength;
 bit(8) URLstring[URLlength];
 } else {
 ES_Descriptor esDescr[1 .. 255];
 OCI_Descriptor ociDescr[0 .. 255];
 IPMP_DescriptorPointer ipmpDescrPtr[0 .. 255];
 IPMP_Descriptor ipmpDescr [0 .. 255];
 }
 ExtensionDescriptor extDescr[0 .. 255];
}

When an ObjectDescriptor is used in the OD track of an MP4 file, the ObjectDescrTag is replaced by
MP4_OD_Tag.

7.2.6.3.2 Semantics

The ObjectDescriptor consists of three different parts.

The first part uniquely labels the object descriptor within its name scope (see 7.2.7.2.4) by means of an
objectDescriptorId. Nodes in the scene description use objectDescriptorID to refer to the related
object descriptor. An optional URLstring indicates that the actual object descriptor resides at a remote
location.

The second part consists of a list of ES_Descriptors, each providing parameters for a single elementary as
well as an optional set of object content information descriptors and pointers to IPMP descriptors for the
contents for elementary stream content described in this object descriptor.

The third part is a set of optional descriptors that support the inclusion of future extensions as well as the
transport of private data in a backward compatible way.

objectDescriptorId – This syntax element uniquely identifies the ObjectDescriptor within its name
scope. The value 0 is forbidden and the value 1023 is reserved.

URL_Flag – a flag that indicates the presence of a URLstring.

URLlength – the length of the subsequent URLstring in bytes.

URLstring[] – A string with a UTF-8 (ISO/IEC 10646-1) encoded URL that shall point to another
ObjectDescriptor. Only the content of this object descriptor shall be returned by the delivery entity upon
access to this URL. Within the current name scope, the new object descriptor shall be referenced by the
objectDescriptorId of the object descriptor carrying the URLstring. On name scopes see 7.2.7.2.4.
Permissible URLs may be constrained by profile and levels as well as by specific delivery layers.

esDescr[] – an array of ES_Descriptors as defined in 7.2.6.5. The array shall have any number of one
up to 255 elements.

ociDescr[] – an array of OCI_Descriptors, as defined in 7.2.6.18.2, that relates to the audio-visual
object(s) described by this object descriptor. The array shall have any number of zero up to 255 elements.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

--`,`,,,,`,`,`,`,`,,`,``,,,``-`-`,,`,,`,`,,`---

ISO/IEC 14496-1:2010(E)

32 © ISO/IEC 2010 – All rights reserved

ipmpDescrPtr[] – an array of IPMP_DescriptorPointer, as defined in 7.2.6.13, that points to the
IPMP_Descriptors related to the elementary stream(s) described by this object descriptor. The array shall
have any number of zero up to 255 elements.

ipmpDescr[] – a list of IPMP_Descriptors that may be referenced by streams declared in esDescr. The
array shall have any number of zero up to 255 elements. The following scope and usage rules apply:

i. Entries in the ipmpDescr table define IPMP System/Tools that can be referenced by
IPMP_DescriptorPointers located in the OD itself or ESDs declared in this OD.

ii. OD contained IPMP_Descriptors have scope within the given OD only and shall not
be referenced by subsequently declared IODs, ODs, streams nor available for updating
via IPMP_DescriptorUpdates.

iii. The OD contained IPMP_Descriptors shall not be referenced by IODs, ODs or
streams declared in OD declared OD or Scene streams.

extDescr[] – an array of ExtensionDescriptors as defined in 7.2.6.16. The array shall have any
number of zero up to 255 elements.

7.2.6.4 InitialObjectDescriptor

7.2.6.4.1 Syntax

class InitialObjectDescriptor extends ObjectDescriptorBase : bit(8)
tag=InitialObjectDescrTag {
 bit(10) ObjectDescriptorID;
 bit(1) URL_Flag;
 bit(1) includeInlineProfileLevelFlag;
 const bit(4) reserved=0b1111;
 if (URL_Flag) {
 bit(8) URLlength;
 bit(8) URLstring[URLlength];
 } else {
 bit(8) ODProfileLevelIndication;
 bit(8) sceneProfileLevelIndication;
 bit(8) audioProfileLevelIndication;
 bit(8) visualProfileLevelIndication;
 bit(8) graphicsProfileLevelIndication;
 ES_Descriptor esDescr[1 .. 255];
 OCI_Descriptor ociDescr[0 .. 255];
 IPMP_DescriptorPointer ipmpDescrPtr[0 .. 255];
 IPMP_Descriptor ipmpDescr [0 .. 255];
 IPMP_ToolListDescriptor toolListDescr[0 .. 1];
 }
 ExtensionDescriptor extDescr[0 .. 255];
}

When an InitialObjectDescriptor is used in the OD track in an MP4 file, the InitialObjectDescrTag is replaced
by MP4_IOD_Tag.

7.2.6.4.2 Semantics

The InitialObjectDescriptor is a variation of the ObjectDescriptor specified in the previous
Subclause that allows to signal profile and level information for the content refered by it. It shall be used to
gain initial access to ISO/IEC 14496 content (see 7.2.7.3).

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

--`,`,,,,`,`,`,`,`,,`,``,,,``-`-`,,`,,`,`,,`---

ISO/IEC 14496-1:2010(E)

© ISO/IEC 2010 – All rights reserved 33

Profile and level information indicated in the InitialObjectDescriptor indicates the profile and level
supported by at least the first base layer stream (i.e. an elementary stream with a streamDependenceFlag
set to 0) in each object descriptor depending on this initial object descriptor.

objectDescriptorId – This syntax element uniquely identifies the InitialObjectDescriptor within
its name scope (see 7.2.7.2.4). The value 0 is forbidden and the value 1023 is reserved.

URL_Flag – a flag that indicates the presence of a URLstring.

includeInlineProfileLevelFlag – a flag that, if set to one, indicates that the subsequent profile
indications take into account the resources needed to process any content that might be inlined.

URLlength – the length of the subsequent URLstring in bytes.

URLstring[] – A string with a UTF-8 (ISO/IEC 10646-1) encoded URL that shall point to another
InitialObjectDescriptor. Only the content of this object descriptor shall be returned by the delivery
entity upon access to this URL. Within the current name scope, the new object descriptor shall be referenced
by the objectDescriptorId of the object descriptor carrying the URLstring. On name scopes see 7.2.7.2.4.
Permissible URLs may be constrained by profile and levels as well as by specific delivery layers.

ODProfileLevelIndication – an indication as defined in Table 3 of the object descriptor profile and level
required to process the content associated with this InitialObjectDescriptor.

Table 3 — ODProfileLevelIndication Values

Value Profile Level

0x00 Forbidden -
0x01 Reserved for ISO use (no SL extension) -
0x02-0x7F Reserved for ISO use (SL extension) -
0x03-0x7F Reserved for ISO use
0x80-0xFD user private -
0xFE No OD profile specified -
0xFF No OD capability required -

NOTE — Usage of the value 0xFE indicates that the content described by this InitialObjectDescriptor does not comply
to any OD profile specified in ISO/IEC 14496-1. Usage of the value 0xFF indicates that none of the OD profile
capabilities are required for this content. Usage of the value 0x01 also indicates that the SL extension mechanism is
not present .

sceneProfileLevelIndication – an indication as defined in ISO/IEC 14496-11 of the scene graph
profile and level required to process the content associated with this InitialObjectDescriptor.

audioProfileLevelIndication – an indication as defined in ISO/IEC 14496-3 of the audio profile and
level required to process the content associated with this InitialObjectDescriptor.

visualProfileLevelIndication – an indication as defined in ISO/IEC 14496-2 and in Table 4 of the
visual profile and level required to process the content associated with this InitialObjectDescriptor.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
,
,
,
,
`
,
`
,
`
,
`
,
`
,
,
`
,
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/IEC 14496-1:2010(E)

34 © ISO/IEC 2010 – All rights reserved

Table 4 — visualProfileLevelIndication Values

Value Profile Level

0x00-0x7E defined in ISO/IEC 14496-2 Annex G -

0x7F ISO/IEC 14496-10 Advanced Video Coding -

0x80-0xFD defined in ISO/IEC 14496-2 Annex G -

0xFE no visual profile specified -

0xFF no visual capability required

NOTE 1 Usage of the value 0x7F indicates the use of any profile and level of ISO/IEC 14496-10 AVC. For the real
profile and level numbers for ISO/IEC 14496-10 refer to the DecoderSpecificInfo.

NOTE 2 Usage of the value 0xFE indicates that the content described by this InitialObjectDescriptor does
not comply to any visual profile specified in ISO/IEC 14496-2 or -10. Usage of the value 0xFF indicates that none of
the visual profile capabilities are required for this content.

graphicsProfileLevelIndication – an indication as defined in ISO/IEC 14496-11 of the graphics
profile and level required to process the content associated with this InitialObjectDescriptor.

esDescr[] – an array of ES_Descriptors as defined in 7.2.6.5. The array shall have any number of one
up to 255 elements.

ociDescr[] – an array of OCI_Descriptors as defined in 7.2.6.18 that relates to the set of audio-visual
objects that are described by this initial object descriptor. The array shall have any number of zero up to
255 elements.

ipmpDescrPtr[] – an array of IPMP_DescriptorPointer, as defined in 7.2.6.13, that points to the
IPMP_Descriptors related to the elementary stream(s) described by this object descriptor. The array shall
have any number of zero up to 255 elements.

ipmpDescr [] – a list of IPMP_Descriptors that may be referenced by streams declared in esDescr. The
array shall have any number of zero up to 255 elements. The following scope and usage rules apply:

i. Entries in the ipmpDescr table define IPMP System/Tools that can be referenced by
IPMP_DescriptorPointers located in the IOD itself or ESDs declared in this IOD.

ii. IOD contained IPMP_Descriptors have scope within the given IOD only and shall not be
referenced by subsequently declared IODs, ODs, streams nor available for updating via
IPMP_DescriptorUpdates.

iii. The IOD contained IPMP_Descriptors shall not be referenced by IODs, ODs, streams
declared in IOD declared OD or Scene streams.

toolListDescr – a list of all IPMP tools required for the processing of the content. The array shall have zero or
1 element.

extDescr[] – an array of ExtensionDescriptors as defined in 7.2.6.16. The array shall have any
number of zero up to 255 elements.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

--`,`,,,,`,`,`,`,`,,`,``,,,``-`-`,,`,,`,`,,`---

ISO/IEC 14496-1:2010(E)

© ISO/IEC 2010 – All rights reserved 35

7.2.6.5 ES_Descriptor

7.2.6.5.1 Syntax

class ES_Descriptor extends BaseDescriptor : bit(8) tag=ES_DescrTag {
 bit(16) ES_ID;
 bit(1) streamDependenceFlag;
 bit(1) URL_Flag;
 bit(1) OCRstreamFlag;
 bit(5) streamPriority;
 if (streamDependenceFlag)
 bit(16) dependsOn_ES_ID;
 if (URL_Flag) {
 bit(8) URLlength;
 bit(8) URLstring[URLlength];
 }
 if (OCRstreamFlag)
 bit(16) OCR_ES_Id;
 DecoderConfigDescriptor decConfigDescr;
 if (ODProfileLevelIndication==0x01) //no SL extension.
 {
 SLConfigDescriptor slConfigDescr;
 }
 else // SL extension is possible.
 {
 SLConfigDescriptor slConfigDescr;
 }
 IPI_DescrPointer ipiPtr[0 .. 1];
 IP_IdentificationDataSet ipIDS[0 .. 255];
 IPMP_DescriptorPointer ipmpDescrPtr[0 .. 255];
 LanguageDescriptor langDescr[0 .. 255];
 QoS_Descriptor qosDescr[0 .. 1];
 RegistrationDescriptor regDescr[0 .. 1];
 ExtensionDescriptor extDescr[0 .. 255];
}

7.2.6.5.2 Semantics

The ES_Descriptor conveys all information related to a particular elementary stream and has three major
parts.

The first part consists of the ES_ID which is a unique reference to the elementary stream within its name
scope (see 7.2.7.2.4), a mechanism to describe dependencies of elementary streams within the scope of the
parent object descriptor and an optional URL string. Dependencies and usage of URLs are specified in 7.2.7.

The second part consists of the component descriptors which convey the parameters and requirements of the
elementary stream.

The third part is a set of optional extension descriptors that support the inclusion of future extensions as well
as the transport of private data in a backward compatible way.

ES_ID – This syntax element provides a unique label for each elementary stream within its name scope. The
values 0 and 0xFFFF are reserved.

streamDependenceFlag – If set to one indicates that a dependsOn_ES_ID will follow.

URL_Flag – if set to 1 indicates that a URLstring will follow.

OCRstreamFlag – indicates that an OCR_ES_ID syntax element will follow.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
,
,
,
,
`
,
`
,
`
,
`
,
`
,
,
`
,
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/IEC 14496-1:2010(E)

36 © ISO/IEC 2010 – All rights reserved

streamPriority – indicates a relative measure for the priority of this elementary stream. An elementary stream with a
higher streamPriority is more important than one with a lower streamPriority. The absolute values of
streamPriority are not normatively defined.

dependsOn_ES_ID – is the ES_ID of another elementary stream on which this elementary stream depends.
The stream with dependsOn_ES_ID shall also be associated to the same object descriptor as the current
ES_Descriptor.

URLlength – the length of the subsequent URLstring in bytes.

URLstring[] – contains a UTF-8 (ISO/IEC 10646-1) encoded URL that shall point to the location of an SL-
packetized stream by name. The parameters of the SL-packetized stream that is retrieved from the URL are
fully specified in this ES_Descriptor. See also 7.2.7.3.3. Permissible URLs may be constrained by profile
and levels as well as by specific delivery layers.

OCR_ES_ID – indicates the ES_ID of the elementary stream within the name scope (see 7.2.7.2.4) from
which the time base for this elementary stream is derived. Circular references between elementary streams
are not permitted.

decConfigDescr – is a DecoderConfigDescriptor as specified in 7.2.6.6.

slConfigDescr – is an SLConfigDescriptor as specified in 7.2.6.8. If ODProfileLevelIndication
is different from 0x01, it may be an extension of SLConfigDescriptor (i.e. and extended class) as defined
in 7.2.6.8.

ipiPtr[] – an array of zero or one IPI_DescrPointer as specified in 7.2.6.12.

ipIDS[] – an array of zero or more IP_IdentificationDataSet as specified in 7.2.6.9.

Each ES_Descriptor shall have either one IPI_DescrPointer or zero up to
255 IP_IdentificationDataSet elements. This allows to unambiguously associate an IP Identification to
each elementary stream.

ipmpDescrPtr[] – an array of IPMP_DescriptorPointer, as defined in 7.2.6.13, that points to the
IPMP_Descriptors related to the elementary stream described by this ES_Descriptor. The array shall have
any number of zero up to 255 elements.

langDescr[] – an array of zero or one LanguageDescriptor structures as specified in 7.2.6.18.6. It
indicates the language attributed to this elementary stream.

NOTE — Multichannel audio streams may be treated as one elementary stream with one ES_Descriptor by
ISO/IEC 14496. In that case different languages present in different channels of the multichannel stream are not
identifyable with a LanguageDescriptor.

qosDescr[] – an array of zero or one QoS_Descriptor as specified in 7.2.6.15.

extDescr[] – an array of ExtensionDescriptor structures as specified in 7.2.6.16.

7.2.6.6 DecoderConfigDescriptor

7.2.6.6.1 Syntax

class DecoderConfigDescriptor extends BaseDescriptor : bit(8)
tag=DecoderConfigDescrTag {
 bit(8) objectTypeIndication;
 bit(6) streamType;
 bit(1) upStream;
 const bit(1) reserved=1;

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
,
,
,
,
`
,
`
,
`
,
`
,
`
,
,
`
,
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/IEC 14496-1:2010(E)

© ISO/IEC 2010 – All rights reserved 37

 bit(24) bufferSizeDB;
 bit(32) maxBitrate;
 bit(32) avgBitrate;
 DecoderSpecificInfo decSpecificInfo[0 .. 1];
 profileLevelIndicationIndexDescriptor profileLevelIndicationIndexDescr
[0..255];
}

7.2.6.6.2 Semantics

The DecoderConfigDescriptor provides information about the decoder type and the required decoder
resources needed for the associated elementary stream. This is needed at the receiving terminal to determine
whether it is able to decode the elementary stream. A stream type identifies the category of the stream while
the optional decoder specific information descriptor contains stream specific information for the set up of the
decoder in a stream specific format that is opaque to this layer.

ObjectTypeIndication – an indication of the object or scene description type that needs to be supported
by the decoder for this elementary stream as per Table 5.

Table 5 — objectTypeIndication Values

Value ObjectTypeIndication Description
0x00 Forbidden
0x01 Systems ISO/IEC 14496-1 a
0x02 Systems ISO/IEC 14496-1 b
0x03 Interaction Stream
0x04 Systems ISO/IEC 14496-1 Extended BIFS Configuration c
0x05 Systems ISO/IEC 14496-1 AFX d
0x06 Font Data Stream
0x07 Synthesized Texture Stream
0x08 Streaming Text Stream
0x09-0x1F reserved for ISO use
0x20 Visual ISO/IEC 14496-2 e
0x21 Visual ITU-T Recommendation H.264 | ISO/IEC 14496-10 f
0x22 Parameter Sets for ITU-T Recommendation H.264 | ISO/IEC 14496-10 f
0x23-0x3F reserved for ISO use
0x40 Audio ISO/IEC 14496-3 g
0x41-0x5F reserved for ISO use
0x60 Visual ISO/IEC 13818-2 Simple Profile
0x61 Visual ISO/IEC 13818-2 Main Profile
0x62 Visual ISO/IEC 13818-2 SNR Profile
0x63 Visual ISO/IEC 13818-2 Spatial Profile
0x64 Visual ISO/IEC 13818-2 High Profile
0x65 Visual ISO/IEC 13818-2 422 Profile
0x66 Audio ISO/IEC 13818-7 Main Profile
0x67 Audio ISO/IEC 13818-7 LowComplexity Profile
0x68 Audio ISO/IEC 13818-7 Scaleable Sampling Rate Profile
0x69 Audio ISO/IEC 13818-3
0x6A Visual ISO/IEC 11172-2
0x6B Audio ISO/IEC 11172-3
0x6C Visual ISO/IEC 10918-1
0x6D reserved for registration authority i

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
,
,
,
,
`
,
`
,
`
,
`
,
`
,
,
`
,
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/IEC 14496-1:2010(E)

38 © ISO/IEC 2010 – All rights reserved

Value ObjectTypeIndication Description
0x6E Visual ISO/IEC 15444-1
0x6F - 0x9F reserved for ISO use
0xA0 - 0xBF reserved for registration authority i
0xC0 - 0xE0 user private
0xE1 reserved for registration authority i
0xE2 - 0xFE user private
0xFF no object type specified h
a This type is used for all 14496-1 streams unless specifically indicated to the contrary. Scene Description
scenes, which are identified with StreamType=0x03, using this object type value shall use the BIFSConfig
specified in ISO/IEC 14496-11.
b This object type shall be used, with StreamType=0x03, for Scene Description streams that use the
BIFSv2Config specified in ISO/IEC 14496-11. Its use with other StreamTypes is reserved.
c This object type shall be used, with StreamType=0x03, for Scene Description streams that use the
BIFSConfigEx specified in 7.2.6.7 of this specification. Its use with other StreamTypes is reserved.
d This object type shall be used, with StreamType=0x03, for Scene Description streams that use the
AFXConfig specified in 7.2.6.7 of this specification. Its use with other StreamTypes is reserved.
e Includes associated Amendment(s) and Corrigendum(a). The actual object types are defined in
ISO/IEC 14496-2 and are conveyed in the DecoderSpecificInfo as specified in ISO/IEC 14496-2, Annex K.
f Includes associated Amendment(s) and Corrigendum(a). The actual object types are defined in ITU-T
Recommendation H.264 | ISO/IEC 14496-10 and are conveyed in the DecoderSpecificInfo as specified in this
amendment, I.2.
g Includes associated Amendment(s) and Corrigendum(a). The actual object types are defined in
ISO/IEC 14496-3 and are conveyed in the DecoderSpecificInfo as specified in ISO/IEC 14496-3 subpart 1
subclause 6.2.1.
h Streams with this value with a StreamType indicating a systems stream (values 1,2,3, 6, 7, 8, 9) shall be
treated as if the ObjectTypeIndication had been set to 0x01.
i The latest entries registered can be found at http://www.mp4ra.org/object.html.

When the objectTypeIndication value is 0x6C (Visual ISO/IEC 10918-1, which is JPEG) the stream may
contain one or more Access Units, where one Access Unit is defined to be a complete JPEG (as defined in
Visual ISO/IEC 10918-1). Note, that timing and other Access Unit and packetization information is to be
carried in the transport layer such as the MPEG-4 Sync Layer.

When the objectTypeIndication value is 0x6E (Visual ISO/IEC 15444-1, which is JPEG 2000) the stream may
contain one or more Access Units, where one Access Unit is defined to be a complete JPEG 2000 (as defined
in Visual ISO/IEC 15444-1). Note, that timing and other Access Unit and packetization information is to be
carried in the transport layer such as the MPEG-4 Sync Layer.

NOTE The format defined in ISO/IEC 15444-3 is preferred for the storage of JPEG 2000 sequences in file format of the
ISO/IEC 14496-12 family, including MP4.

streamType – conveys the type of this elementary stream as per Table 6.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
,
,
,
,
`
,
`
,
`
,
`
,
`
,
,
`
,
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

http://www.mp4ra.org/object.html

ISO/IEC 14496-1:2010(E)

© ISO/IEC 2010 – All rights reserved 39

Table 6 — streamType Values

streamType value Stream type description
0x00 Forbidden
0x01 ObjectDescriptorStream (see 7.2.5)
0x02 ClockReferenceStream (see 7.3.2.5)
0x03 SceneDescriptionStream (see ISO/IEC 14496-11)
0x04 VisualStream
0x05 AudioStream
0x06 MPEG7Stream
0x07 IPMPStream (see 7.2.3.2)
0x08 ObjectContentInfoStream (see 7.2.4.2)
0x09 MPEGJStream
0x0A Interaction Stream
0x0B IPMPToolStream (see [ISO/IEC 14496-13])
0x0C - 0x1F reserved for ISO use
0x20 - 0x3F user private

upStream – indicates that this stream is used for upstream information.

bufferSizeDB – is the size of the decoding buffer for this elementary stream in byte.

maxBitrate – is the maximum bitrate in bits per second of this elementary stream in any time window of
one second duration.

avgBitrate – is the average bitrate in bits per second of this elementary stream. For streams with variable
bitrate this value shall be set to zero.

decSpecificInfo[] – an array of zero or one decoder specific information classes as specified in 7.2.6.7.

ProfileLevelIndicationIndexDescr [0..255] – an array of unique identifiers for a set of profile and
level indications as carried in the ExtensionProfileLevelDescr defined in 7.2.6.19.

7.2.6.7 DecoderSpecificInfo

7.2.6.7.1 Syntax

abstract class DecoderSpecificInfo extends BaseDescriptor : bit(8)
tag=DecSpecificInfoTag
{
 // empty. To be filled by classes extending this class.
}

7.2.6.7.2 Semantics

The decoder specific information constitutes an opaque container with information for a specific media decoder.
The existence and semantics of decoder specific information depends on the values of
DecoderConfigDescriptor.streamType and DecoderConfigDescriptor.objectTypeIndication.

For values of DecoderConfigDescriptor.objectTypeIndication that refer to streams complying
with ISO/IEC 14496-2 the syntax and semantics of decoder specific information are defined in Annex K of that
part.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

--`,`,,,,`,`,`,`,`,,`,``,,,``-`-`,,`,,`,`,,`---

ISO/IEC 14496-1:2010(E)

40 © ISO/IEC 2010 – All rights reserved

For values of DecoderConfigDescriptor.objectTypeIndication that refer to streams complying
with ISO/IEC 14496-3 the syntax and semantics of decoder specific information are defined in subpart 1,
subclause 1.6 of that part.

For values of DecoderConfigDescriptor.objectTypeIndication that refer to scene description
streams the semantics of decoder specific information is defined in ISO/IEC 14496-11.

For values of DecoderConfigDescriptor.objectTypeIndication that refer to streams complying with
ISO/IEC 13818-7 the decoder specific information consists of an „adif_header()“ and an access unit is a
„raw_data_block()“ as defined in ISO/IEC 13818-7.

For values of DecoderConfigDescriptor.objectTypeIndication that refer to streams complying with
ISO/IEC 11172-3 or ISO/IEC 13818-3 the decoder specific information is empty since all necessary data is
contained in the bitstream frames itself. The access units in this case are the „frame()“ bitstream element as is
defined in ISO/IEC 11172-3.

For values of DecoderConfigDescriptor.objectTypeIndication that refer to streams complying
with ISO/IEC 10918-1, the decoder specific information is:

class JPEG_DecoderConfig extends DecoderSpecificInfo : bit(8)
tag=DecSpecificInfoTag {
 int(16) headerLength;
 int(16) Xdensity;
 int(16) Ydensity;
 int(8) numComponents;
}

with

headerLength –indicates the number of bytes to skip from the beginning of the stream to find the first pixel
of the image.

Xdensity and Ydensity – specify the pixel aspect ratio.

numComponents – indicates whether the image has Y component only or is Y, Cr, Cb. It shall be equal to 1
or 3.

For values of DecoderConfigDescriptor.objectTypeIndication that refer to interaction streams,
the decoder specific information is:

class UIConfig extends DecoderSpecificInfo : bit(8) tag=DecSpecificInfoTag {
 bit(8) deviceNamelength;
 bit(8) deviceName[deviceNamelength];
 bit(8) devSpecInfo[sizeOfInstance – deviceNamelength - 1];
}

with

deviceNameLength –indicates the number of bytes in the deviceName field

deviceName –indicates the name of the class of device, which allows the terminal to invoke the appropriate
interaction decoder.

devSpecInfo –is a opaque container with information for a device specific handler.

For values of DecoderConfigDescriptor.objectTypeIndication that refers to extended BIFS
configuration (0x04), the decoder specific information is:

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

--`,`,,,,`,`,`,`,`,,`,``,,,``-`-`,,`,,`,`,,`---

ISO/IEC 14496-1:2010(E)

© ISO/IEC 2010 – All rights reserved 41

class BIFSConfigEx extends DecoderSpecificInfo : bit (8) tag = DecSpecificInfoTag
{
 ExtendedBIFSConfig extBIFSConfig;
}

abstract aligned(8) expandable (..) class ExtendedBIFSConfig : bit (8) tag =
0x01..0xFF {
 //empty. To be filled by classes extending this class.
}

The class BIFSConfigEx contains an ExtendedBIFSConfig. ExtendedBIFSConfig is the base class for
new classes ment to hold decoder specific info. With this approach, new BIFS streams will have streamType 3
and objectTypeIndication 0x04, but will use decoder configuration depending on the tag of the
ExtendedBIFSConfig.

For values of DecoderConfigDescriptor.objectTypeIndication that refers to AFX streams (0x05),
the decoder specific information is:

class AFXConfig extends DecoderSpecificInfo : bit(8) tag=DecSpecificInfoTag {
 AFXExtDescriptor afxext;
}
abstract class AFXExtDescriptor extends BaseDescriptor : bit(8) tag = 0..100
{
}

AFXExtDescriptor is an abstract class used as a placeholder for an optional DecoderSpecificInfo defined
in table "DecoderSpecificInfo for AFX streams" in ISO/IEC 14496-16. The tag refers to a specific node
compression scheme as defined in table "AFX object code" in ISO/IEC 14496-16.

For values of DecoderConfigDescriptor.objectTypeIndication that refer to streams complying
with ISO/IEC 15444-1, the decoder specific information is:

class JPEG2000_DecoderConfig extends DecoderSpecificInfo : bit(8)
tag=DecSpecificInfoTag {
 int(32) height;
 int(32) width;
 int(16) nc;
 int(8) BPC;
 int(8) C;
 int(8) UnkC;
 int(8) IPR;
}

The definition of the fields is extracted from ISO/IEC 15444-1 and is formulated as follows:

height: Image area height. The value of this parameter indicates the height of the image area. This field is
stored as a 4-byte big endian unsigned integer.

width: Image area width. The value of this parameter indicates the width of the image area. This field is
stored as a 4-byte big endian unsigned integer.

nc: Number of components. This parameter specifies the number of components in the codestream and is
stored as a 2-byte big endian unsigned integer. The value of this field shall be equal to the value of the Csiz
field in the SIZ marker in the codestream.

BPC: Bits per component. This parameter specifies the bit depth of the components in the codestream, minus
1, and is stored as a 1-byte field.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
,
,
,
,
`
,
`
,
`
,
`
,
`
,
,
`
,
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/IEC 14496-1:2010(E)

42 © ISO/IEC 2010 – All rights reserved

C: Compression type. This parameter specifies the compression algorithm used to compress the image data.
The value of this field shall be 7. It is encoded as a 1-byte unsigned integer. Other values are reserved for ISO
use.

UnkC: Colourspace Unknown. This field specifies if the actual colourspace of the image data in the
codestream is known. This field is encoded as a 1-byte unsigned integer. Legal values for this field are 0, if
the colourspace of the image is known and correctly specified in the Colourspace Specification boxes within
the file, or 1, if the colourspace of the image is not known. A value of 1 will be used in cases such as the
transcoding of legacy images where the actual colourspace of the image data is not known. In those cases,
while the colourspace interpretation methods specified in the file may not accurately reproduce the image with
respect to some original, the image should be treated as if the methods do accurately reproduce the image.
Values other than 0 and 1 are reserved for ISO use.

IPR: Intellectual Property. This parameter indicates whether this JP2 file contains intellectual property rights
information. If the value of this field is 0, this file does not contain rights information, and thus the file does not
contain an IPR box. If the value is 1, then the file does contain rights information and thus does contain an IPR
box as defined in I.6. Other values are reserved for ISO use.

The set of parameters defined above may all be extracted from the JP2 header box and are informal for
setting up the JPEG 2000 decoder. However, if any conflict occurs with parameters from the JPEG 2000
header box in the Access Unit, the later have precedence.

7.2.6.8 SLConfigDescriptor

This descriptor defines the configuration of the sync layer header for this elementary stream. The specification
of this descriptor is provided together with the specification of the sync layer in 7.3.2.3.

7.2.6.9 IP_IdentificationDataSet

7.2.6.9.1 Syntax

abstract class IP_IdentificationDataSet extends BaseDescriptor
 : bit(8) tag=ContentIdentDescrTag..SupplContentIdentDescrTag
{
 // empty. To be filled by classes extending this class.
}

7.2.6.9.2 Semantics

This class is an abstract base class that is extended by the descriptor classes that implement IP identification.
A descriptor that allows to aggregate classes of type IP_IdentificationDataSet may actually aggregate any of
the classes that extend IP_IdentificationDataSet.

7.2.6.10 ContentIdentificationDescriptor

7.2.6.10.1 Syntax

class ContentIdentificationDescriptor extends IP_IdentificationDataSet
 : bit(8) tag=ContentIdentDescrTag
{
 const bit(2) compatibility=0;
 bit(1) contentTypeFlag;
 bit(1) contentIdentifierFlag;
 bit(1) protectedContent;
 bit(3) reserved = 0b111;
 if (contentTypeFlag)
 bit(8) contentType;

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
,
,
,
,
`
,
`
,
`
,
`
,
`
,
,
`
,
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/IEC 14496-1:2010(E)

© ISO/IEC 2010 – All rights reserved 43

 if (contentIdentifierFlag) {
 bit(8) contentIdentifierType;
 bit(8) contentIdentifier[sizeOfInstance-2-contentTypeFlag];
 }
}

7.2.6.10.2 Semantics

The content identification descriptor is used to identify content. All types of elementary streams carrying
content can be identified using this mechanism. The content types include audio, visual and scene description
data. Multiple content identification descriptors may be associated to one elementary stream. These
descriptors shall never be detached from the ES_Descriptor.

compatibility – must be set to 0.

contentTypeFlag – flag to indicate if a definition of the type of content is available.

contentIdentifierFlag – flag to indicate presence of creation ID.

protectedContent - if set to one indicates that the elementary streams that refer to this
IP_IdentificationDataSet are protected by a method outside the scope of ISO/IEC 14496. The behavior of the
terminal compliant with the ISO/IEC 14496 specifications when processing such streams is undefined.

contentType – defines the type of content using one of the values specified in Table 7.

Table 7 — contentType Values

0 Audio-visual
1 Book
2 Serial
3 Text
4 Item or Contribution (e.g. article in book or serial)
5 Sheet music
6 Sound recording or music video
7 Still Picture
8 Musical Work
9-254 Reserved for ISO use
255 Others

contentIdentifierType – defines a type of content identifier using one of the values specified in
Table 8.

Table 8 — contentIdentifierType Values

0 ISAN International Standard Audio-Visual Number
1 ISBN International Standard Book Number
2 ISSN International Standard Serial Number
3 SICI Serial Item and Contribution Identifier
4 BICI Book Item and Component Identifier
5 ISMN International Standard Music Number
6 ISRC International Standard Recording Code
7 ISWC-T International Standard Work Code (Tunes)
8 ISWC-L International Standard Work Code (Literature)
9 SPIFF Still Picture ID
10 DOI Digital Object Identifier
11-255 Reserved for ISO use

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
,
,
,
,
`
,
`
,
`
,
`
,
`
,
,
`
,
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/IEC 14496-1:2010(E)

44 © ISO/IEC 2010 – All rights reserved

contentIdentifier – international code identifying the content according to the preceding
contentIdentifierType.

7.2.6.11 SupplementaryContentIdentificationDescriptor

7.2.6.11.1 Syntax

class SupplementaryContentIdentificationDescriptor extends
 IP_IdentificationDataSet : bit(8) tag= SupplContentIdentDescrTag
{
 bit(24) languageCode;
 bit(8) supplContentIdentifierTitleLength;
 bit(8) supplContentIdentifierTitle[supplContentIdentifierTitleLength];
 bit(8) supplContentIdentifierValueLength;
 bit(8) supplContentIdentifierValue[supplContentIdentifierValueLength];
}

7.2.6.11.2 Semantics

The supplementary content identification descriptor is used to provide extensible identifiers for content that are
qualified by a language code. Multiple supplementary content identification descriptors may be associated to
one elementary stream. These descriptors shall never be detached from the ES_Descriptor.

language code – This 24 bits field contains the ISO 639-2:1998 bibliographic three character language
code of the language of the following text fields.

supplementaryContentIdentifierTitleLength – indicates the length of the subsequent
supplementaryContentIdentifierTitle in bytes.

supplementaryContentIdentifierTitle – identifies the title of a supplementary content identifier that
may be used when a numeric content identifier (see 7.2.6.11) is not available.

supplementaryContentIdentifierValueLength – indicates the length of the subsequent
supplementaryContentIdentifierValue in bytes.

supplementaryContentIdentifierValue – identifies the value of a supplementary content identifer
associated to the preceding supplementaryContentIdentifierTitle.

7.2.6.12 IPI_DescrPointer

7.2.6.12.1 Syntax

class IPI_DescrPointer extends BaseDescriptor : bit(8) tag=IPI_DescrPointerTag {
 bit(16) IPI_ES_Id;
}

7.2.6.12.2 Semantics

The IPI_DescrPointer class contains a reference to the elementary stream that includes the
IP_IdentificationDataSets that are valid for this stream. This indirect reference mechanism allows to
convey such descriptors only in one elementary stream while making references to it from any
ES_Descriptor that shares the same information.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

--`,`,,,,`,`,`,`,`,,`,``,,,``-`-`,,`,,`,`,,`---

ISO/IEC 14496-1:2010(E)

© ISO/IEC 2010 – All rights reserved 45

ES_Descriptors for elementary streams that are intended to be accessible regardless of the availability of a
referred stream shall explicitly include their IP_IdentificationDataSets instead of using an
IPI_DescrPointer.

IPI_ES_Id – the ES_ID of the elementary stream whose ES_Descriptor contains the IP Information valid
for this elementary stream. If the ES_Descriptor for IPI_ES_Id is not available, the IPI status of this
elementary stream is undefined.

7.2.6.13 IPMP_DescriptorPointer

7.2.6.13.1 Syntax

class IPMP_DescriptorPointer extends BaseDescriptor :
bit(8) tag = IPMP_DescrPtrTag
{
 bit(8) IPMP_DescriptorID;
 if (IPMP_DescriptorID == 0xff){
 bit(16) IPMP_DescriptorIDEx;
 bit(16) IPMP_ES_ID;
 }
}

7.2.6.13.2 Semantics

The IPMP_DescriptorPointer appears in the ipmpDescPtr section of an OD or ESD structures.

The presence of this descriptor in an object descriptor indicates that all streams referred to by embedded
ES_Descriptors are subject to protection and management by the IPMP System or IPMP Tool specified in
the referenced IPMP_Descriptor.

The presence of this descriptor in an ES_Descriptor indicates that the stream associated with this
descriptor is subject to protection and management by the IPMP System or IPMP Tool specified in the
referenced IPMP_Descriptor.

The IPMP_DescriptorPointer supports the ability to identify which specific IPMP stream or streams the
IPMP tools declared in the corresponding IPMP_Descriptor, identified by the IPMP_DescriptorIDEx,
wish to receive. Multiple IPMP tools may receive updates from the same stream.

IPMP_DescriptorID is the ID of the IPMP_Descriptor being referred to. The bit(8) field is to support
backward compatibility, for which support for extended IPMP stream association is not provided for.

IPMP_DescriptorIDEx is the ID of the IPMP_Descriptor being referred to. The bit(16) field refers to
extension defined IPMP_Descriptors and also supporting the extended IPMP stream association.

IPMP_ES_ID is the id of an IPMP stream that may carry messages intended to the tool pointed to by
IPMP_DescriptorIDEx. In case more than one IPMP stream is needed to feed the IPMP tool, several
IPMP_DescriptorPointer can be given with the same IPMP_DescriptorIDEx and different
IPMP_ES_ID. If the IPMP_ES_ID is null, it means the IPMP tool does not require an IPMP stream. A value of
2^16-1 for IPMP_ES_ID indicates that this field should be ignored, meaning that the tool pointed to by
IPMP_DescriptorIDEx may receive messages from any IPMP stream within the presentation.

The list of IPMP streams identified by occurrences of the IPMP_ES_ID field (with a value different than 2^16-
1) for a single IPMP_DescriptorIDEx is exhaustive: the IPMP tool identified by the
IPMP_DescriptorIDEx may not receive messages from any other IPMP streams than the ones identified in
this list. In order to facilitate editing, the IPMP_DescriptorPointer must be modified when stored in a file:

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

--`,`,,,,`,`,`,`,`,,`,``,,,``-`-`,,`,,`,`,,`---

ISO/IEC 14496-1:2010(E)

46 © ISO/IEC 2010 – All rights reserved

the IPMP_ES_ID field must be replaced with the corresponding index in the OD track’s ‘mpod’ table as
defined in ISO/IEC 14496-14.

7.2.6.14 IPMP Descriptor

7.2.6.14.1 Syntax

class IPMP_Descriptor() extends BaseDescriptor : bit(8) tag = IPMP_DescrTag
{
 bit(8) IPMP_DescriptorID;
 unsigned int(16) IPMPS_Type;
 if (IPMP_DescriptorID == 0xFF && IPMPS_Type == 0xFFFF){
 bit(16) IPMP_DescriptorIDEx;
 bit(128) IPMP_ToolID;
 bit(8) controlPointCode;
 if (controlPointCode > 0x00)
 bit(8) sequenceCode;
 IPMP_Data_BaseClass IPMPX_data[];
 }
 else if (IPMPS_Type == 0)
 bit(8) URLString[sizeOfInstance-3];
 else
 bit(8) IPMP_data[sizeOfInstance-3];
}

7.2.6.14.2 Semantics

The IPMP_Descriptor carries IPMP information for one or more IPMP System or IPMP Tool instances. It
shall also contain optional instantiation information for one or more IPMP Tool instances.

IPMP_Descriptors are conveyed in either initial object descriptors, object descriptors or object descriptor
streams via IPMP_DescriptorUpdate commands. Multiple definitions of the same IPMP_Descriptor
within a single IPMP_DescriptorUpdate command or a single decoder specific information structure for
an IPMP stream are not allowed. The behavior in such a situation is undefined. Note that, however, an
IPMP_Descriptor may be modified/updated through subsequent IPMP_DescriptorUpdate commands
received in the OD stream. IPMP_Descriptors shall be referenced by object descriptors or
ES_Descriptors, using IPMP_DescriptorPointer.

IPMP_DescriptorID - a unique ID for this IPMP_Descriptor within its name scope. Values of “0x00”
and “0xFF” are forbidden in the case of signaling an extension descriptor. The scope of the
IPMP_DescriptorID is suggested to be the same as the OD, or IOD in which is it contained.
IPMP_DescriptorID is for use in systems conforming to the previous definition as well as a signal
indicating the use of IPMP_DescriptorIDEx for IPMP extensions.

Note 1: Although it is possible to implement an application supporting both the use of IPMP protection schemes defined
through the use of IPMP_Descriptors some of which contain IPMP_DescriptorID and some of which contain
IPMP_DescriptorIDEx to protect separate streams, the behavior of the association of a single stream to both types of
IPMP_Descriptors is undefined.

IPMP_DescriptorIDEx - a unique ID for this IPMP_Descriptor within its name scope. Values of
“0x0000” and “0xFFFF” are forbidden. The scope of the IPMP_DescriptorIDEx is suggested to be the
same as the OD, or IOD in which is it contained.

IPMP_ToolID – the IPMP_ToolID of the IPMP Tool described by this IPMP_Descriptor. A zero, “0” value
does not correspond to an IPMP Tool but is used to indicate the presence of a URL.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
,
,
,
,
`
,
`
,
`
,
`
,
`
,
,
`
,
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/IEC 14496-1:2010(E)

© ISO/IEC 2010 – All rights reserved 47

URLString[] - contains a UTF-8 encoded URL that shall point to the location of a remote
IPMP_Descriptor. If the IPMPS_Type of this IPMP_Descriptor is 0, another URL is referenced.
This process continues until an IPMP_Descriptor with a non-zero IPMPS_Type is accessed.

controlPointCode – specifies the IPMP control point at which the IPMP Tool resides, and is one of the
following values:

controlPointCode Description

0x00 No control point.

0x01 Control Point between the decode buffer and the decoder. This is between
the decode buffer and class loader for MPEG-J streams.

0x02 Control Point between the decoder and the composition buffer.

0x03 Control Point between the composition buffer and the compositor.

0x04 BIFS Tree

0x05-0xDF ISO Reserved

0xE0-0xFE User defined

0xFF Forbidden

Note 2: The only difference between receiving composition units before the CB and after the CB in the MPEG-4 Systems
decoder model is the order in which the units are received when the associated DTS is different from the CTS; in this case
the decoding order is different from the composition order. For example, suppose that a watermark payload is embedded
in more than a single video frame; if the watermark payload was embedded in decoding order, it has to be extracted
before the CB; instead, if it was embedded in composition order, it has to be extracted after the CB.

Note 3: For streams of type “0x01”, ObjectDescriptor and of type “0x02”, ClockReferenceStream, only a
controlPointCode of “0x00”, “0x01” or the range “0xE0-0xFE” are meaningful.

sequenceCode - The higher the sequence code, the higher the sequencing priority of the IPMP Tool instance
at the given control point. Thus the tool with the highest sequenceCode for a given control point on a given
stream shall process data first for that control point for that stream. Two tools shall not have the same
sequence number at the same control point for the same stream.

IPMPX_data - The IPMP data that is extended from IPMP_Data_BaseClass, for the given IPMP tool.

IPMP_data – Data of unspecified format.

7.2.6.14.3 IPMP Tool List Specification

For each tool, this includes

1. IPMP Tool Identifier

2. Optional Parametric Description of the Tool.

3. Alternative Tools to the given Tool, any one of which replace the others without loss of functionality.

The Tool List shall be in the IOD, in an IPMP_ToolListDescriptor. Binary IPMP Tools are carried in
separate elementary streams associated with the IOD. The specification of the syntax for the Tool List is as
follows.

The IPMP_ToolListDescriptor conveys the list of IPMP tools required to access the content associated
with the InitialObjectDescriptor in which it is described, and may include a list of alternate IPMP tools
or parametric descriptions of tools required to access the content.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
,
,
,
,
`
,
`
,
`
,
`
,
`
,
,
`
,
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/IEC 14496-1:2010(E)

48 © ISO/IEC 2010 – All rights reserved

7.2.6.14.3.1 IPMP_ToolListDescriptor

This Subclause defines syntax and semantics for the carriage of a list of IPMP Tools required for the
processing of the presentation.

7.2.6.14.3.1.1 Syntax

class IPMP_ToolListDescriptor extends BaseDescriptor :
 bit(8) tag= IPMP_ToolsListDescrTag
{
 IPMP_Tool ipmpTool[0 .. 255];

}

7.2.6.14.3.1.2 Semantics

IPMP_Tool – a class describing a logical IPMP Tool required to access the content.

7.2.6.14.3.2 IPMP_Tool

The IPMP Tool Identifier (or IPMP_ToolID) is 128-bits long, and shall contain a unique identification number
for the IPMP Tool. A registration authority for IPMP Tools that use a unique ID is required. The registration
authority shall maintain an optional association of the download URLs for various implementations of the given
tool for various platforms. These platforms will be described to adequate detail using a structured
representation. The IPMP_ToolID identifies a specific IPMP Tool (not a specific implementation of such a
tool), unless in the reserved range for parametrically defined tools. Currently assigned 16-bit IPMPS_Types
shall be directly mapped to a 128-bit ID by prepending with 112 zero bits; the RA will be initialized with such
values. Specific values within this 128-bit space are reserved for indicating parametric tools, the bitstream, the
terminal, and other special addresses. These values shall not be assigned to registered Tools.

Table 9 — Values of IPMP_ToolID

IPMP_ToolID Semantics

0x0000 Forbidden

0x0001 Content

0x0002 Terminal

0x0003 - 0x2000 Reserved for ISO use

0x2001 - 0xFFFF Carry over from 14496-1 RA

0x10000 - 0x100FF Parametric Tools or Alternative Tools

0x100FF – 2^128-2 Open for registration

2^128-1 Forbidden

7.2.6.14.3.2.1 Syntax

class IPMP_Tool extends BaseDescriptor :
 bit(8) tag= IPMP_ToolTag
{
 bit(128) IPMP_ToolID;
 bit(1) isAltGroup;
 bit(1) isParametric;
 const bit(6) reserved=0b0000.00;

 if(isAltGroup){
 bit(8) numAlternates;

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
,
,
,
,
`
,
`
,
`
,
`
,
`
,
,
`
,
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/IEC 14496-1:2010(E)

© ISO/IEC 2010 – All rights reserved 49

 bit(128) specificToolID[numAlternates];
 }
 if(isParametric)
 IPMP_ParamtericDescription toolParamDesc;
 ByteArray ToolURL[];
}

7.2.6.14.3.2.2 Semantics

Each instance of Class IPMP_Tool identifies one IPMP Tool that is required by the Terminal to Consume
the Content. This Tool shall be specified either as a unique implementation, as one of a list of alternatives, or
through a parametric description.

A unique implementation is indicated by the isAltGroup and isParametric fields both set to zero. In
this case, the IPMP_ToolID shall be from the range reserved for specific implementations of an IPMP Tool
and shall directly indicate the required Tool.

In all other cases, the IPMP_ToolID serves as a Content-specific abstraction for an IPMP Tool ID since the
actual IPMP Tool ID of the Tool is not known at the time of authoring the Content, and will depend on the
Terminal implementation at a given time for a given piece of Content.

A parametric description is indicated by setting the isParametric field to one. In this case, the Terminal
shall select an IPMP Tool that meets the criteria specified in the following parametric description. In this case,
the IPMP_ToolID shall be from the range reserved for Parametric Tools or Alternative Tools. The actual
IPMP Tool ID of the Tool that the terminal implementation selects to fulfill this parametric description is known
only to the Terminal. All the Content, and other tools, will refer to this Tool, for this Content, via the
IPMP_ToolID specified. Note, this is not for message addressing.

A list of alternative Tools is indicated by setting the isAltGroup flag to ”1”. The subsequent specific Tool
IDs indicate the Tools that are equivalent alternatives to each other. If the isParametric field is also set to
one, any Tool that is selected under the conditions for parametric tools (as discussed in the paragraph above)
shall be considered by the Terminal to be another equivalent alternative to those specified via specific Tool
IDs. The Terminal shall choose one from these equivalent alternatives at its discretion. The actual IPMP Tool
ID of this Tool is known only to the Terminal.

IPMP_ToolID – the identifier of the IPMP Tool, as discussed above.

isAltGroup – if set to one, this IPMP_Tool contains a list of alternate IPMP Tools.

numAlternates – the number of alternative IPMP Tools specified in IPMP_Tool.

specificToolID – an array of the IDs of specific alternative IPMP Tools that can allow consumption of the
content.

isParametric – IPMP_Tool contains a parametric description of an IPMP Tool. In this case,
IPMP_ToolID is an identifier for the parametrically described IPMP Tool, and the Terminal shall route
information specified in the bitstream for IPMP_ToolID to the specific IPMP Tool instantiated by the terminal.

ToolURL – An array of informative URLs from which one or more tools specified in IPMP_Tool may be
obtained in a manner defined outside the scope of these specifications.

7.2.6.14.3.3 IPMP_ParametricDescription

Using a parametric description, the content provider can now describe what type of IPMP tool is required to
playback the content, instead of using fixed tool IDs. For example, the content provider can specify that an
AES tool, with block size of 128 bits is required to decrypt video stream. The IPMP terminal, upon receiving
such description specifying this tool, can then choose an optimised AES tool from the embedded tools.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
,
,
,
,
`
,
`
,
`
,
`
,
`
,
,
`
,
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/IEC 14496-1:2010(E)

50 © ISO/IEC 2010 – All rights reserved

This Subclause contains an illustration of the hierarchy that a parametric description would follow. It does not
attempt to define any specific scheme for any specific Tool type. We anticipate that only a basic framework
will appear in the current version of the specification, and enhancements to the same will be left for future
addendums and/or versions.

1. Optional comment

2. Version of parametric description syntax

3. Class of Tool

e.g. Decryption, Rights Language Parser

4. Sub-class of Tool

a. e.g. for Decryption: AES, DES, NESSIE etc
b. e.g. for Watermarking: “Panos’s watermarking tool” etc
c. e.g. for Rights Language Parser: “Fred’s Rights Parser”
d. e.g. for Protocol Parser: “Mary’s Protocol Parser”

5. Sub-class-specific information

a. e.g. for DES: number of bits, stream and/or block decipher capability
b. e.g. for Rights Language Parser : version

The parametric description is defined to allow a generic description of any type of IPMP tool, no matter the
type of tool.

7.2.6.14.3.3.1 Syntax

class IPMP_ParamtericDescription extends IPMP_Data_BaseClass:
bit(8) tag = IPMP_ParamtericDescription_tag = 0x10
{
 ByteArray descriptionComment;
 bit(8) majorVersion;
 bit(8) minorVersion;
 bit(32) numOfDescriptions;
 For (int i = 0; i<numOfDescriptions; i++){
 ByteArray class;
 ByteArray subClass;
 ByteArray typeData;
 ByteArray type;
 ByteArray addedData;
 }
}

7.2.6.14.3.3.2 Semantics

class - class of the parametrically described tool, for example, decryption.

subClass - sub-class of the parametrically described tool, for example, AES under decryption class.

typeData - specific type data to describe a particular type of tool, for example, Block_length, to further
specify a AES decryption tool.

type - value of the type data above, for example, 128 for the Block_length.

addedData - Any additional data which may help to further describe the parametrically defined tool.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

--`,`,,,,`,`,`,`,`,,`,``,,,``-`-`,,`,,`,`,,`---

ISO/IEC 14496-1:2010(E)

© ISO/IEC 2010 – All rights reserved 51

7.2.6.14.3.4 ByteArray

This Subclause defines syntax and semantics to carry a generic string or array of bytes which is used
extensively throughout the IPMP specifications.

7.2.6.14.3.4.1 Syntax

expandable class ByteArray
{
 bit(8) data[sizeOfInstance()];
}

7.2.6.14.3.4.2 Semantics

data - the string or array of bytes carried.

7.2.6.14.4 Implementation of a Registration Authority (RA)

CISAC will serve as the JTC 1 Registration Authority for the IPMPS_Type as defined in this Subclause. The
Registration Authority shall execute its duties in compliance with Annex E of the JTC 1 Directives. The
registered IPMPS_Type is hereafter referred to as the Registered Identifier (RID).

The Registration Management Group (RMG) will review appeals filed by organizations whose request for an
RID to be used in conjunction with ISO/IEC 14496 has been denied by the Registration Authority.

Annex B provides information on the procedure for registering a unique IPMPS_Type value.

7.2.6.15 QoS_Descriptor

7.2.6.15.1 Syntax

class QoS_Descriptor extends BaseDescriptor : bit(8) tag=QoS_DescrTag {
 bit(8) predefined;
 if (predefined==0) {
 QoS_Qualifier qualifiers[];
 }
}

7.2.6.15.2 Semantics

The QoS_descriptor conveys the requirements that the ES has on the transport channel and a description of
the traffic that this ES will generate. A set of predefined values is to be determined; customized values can be
used by setting the predefined field to 0.

predefined – a value different from zero indicates a predefined QoS profile according to Table 10.

Table 10 — Predefined QoS Profiles

predefined value description

0x00 Custom

0x01 - 0xff Reserved

qualifier – an array of one or more QoS_Qualifiers.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
,
,
,
,
`
,
`
,
`
,
`
,
`
,
,
`
,
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/IEC 14496-1:2010(E)

52 © ISO/IEC 2010 – All rights reserved

7.2.6.15.3 QoS_Qualifier

7.2.6.15.3.1 Syntax

abstract aligned(8) expandable(228-1) class QoS_Qualifier : bit(8) tag=0x01..0xff
{
 // empty. To be filled by classes extending this class.
}

class QoS_Qualifier_MAX_DELAY extends QoS_Qualifier : bit(8) tag=0x01 {
 unsigned int(32) MAX_DELAY;
}

class QoS_Qualifier_PREF_MAX_DELAY extends QoS_Qualifier : bit(8) tag=0x02 {
 unsigned int(32) PREF_MAX_DELAY;
}

class QoS_Qualifier_LOSS_PROB extends QoS_Qualifier : bit(8) tag=0x03 {
 double(32) LOSS_PROB;
}

class QoS_Qualifier_MAX_GAP_LOSS extends QoS_Qualifier : bit(8) tag=0x04 {
 unsigned int(32) MAX_GAP_LOSS;
}

class QoS_Qualifier_MAX_AU_SIZE extends QoS_Qualifier : bit(8) tag=0x41 {
 unsigned int(32) MAX_AU_SIZE;
}

class QoS_Qualifier_AVG_AU_SIZE extends QoS_Qualifier : bit(8) tag=0x42 {
 unsigned int(32) AVG_AU_SIZE;
}

class QoS_Qualifier_MAX_AU_RATE extends QoS_Qualifier : bit(8) tag=0x43 {
 unsigned int(32) MAX_AU_RATE;
}

class QoS_Qualifier_REBUFFERING_RATIO extends QoS_Qualifier : bit(8) tag=0x44 {
 bit(8) REBUFFERING_RATIO;
}

7.2.6.15.3.2 Semantics

QoS qualifiers are defined as derived classes from the abstract QoS_Qualifier class. They are identified
by means of their class tag. Unused tag values up to and including 0x7F are reserved for ISO use. Tag values
from 0x80 up to and including 0xFE are user private. Tag values 0x00 and 0xFF are forbidden.

MAX_DELAY – Maximum end to end delay for the stream in microseconds.

PREF_MAX_DELAY – Preferred end to end delay for the stream in microseconds.

LOSS_PROB – Allowable loss probability of any single AU as a fractional value between 0.0 and 1.0.

MAX_GAP_LOSS – Maximum allowable number of consecutively lost AUs.

MAX_AU_SIZE – Maximum size of an AU in bytes.

AVG_AU_SIZE – Average size of an AU in bytes.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

--`,`,,,,`,`,`,`,`,,`,``,,,``-`-`,,`,,`,`,,`---

ISO/IEC 14496-1:2010(E)

© ISO/IEC 2010 – All rights reserved 53

MAX_AU_RATE – Maximum arrival rate of AUs in AUs/second.

REBUFFERING_RATIO – Ratio of the decoding buffer that should be filled in case of prebuffering or
rebuffering. The ratio is expressed in percentage, with an integer value between 0 and 100. Values outside
that range are reserved.

7.2.6.15.3.2.1 Rebuffering

In certain scenarios the System Decoder Model cannot be strictly observed. This is the case of e.g. file
retrieval scenarios in which the data is pulled from a remote server over a network with unpredictable
performances. In such a case prebuffering and/or rebuffering may be required in order to allow for a better
quality in the user experience. Note that scenarios involving real time streaming servers do not fall in this
category, since a streaming server presumably delivers content according to the appropriate timeline.

An elementary stream is prebuffered when the decoder waits until the decodingBuffer has been filled up to a
certain threshold before starting fetching data from it.

An elementary stream is rebuffered when a decoder stops fetching data from the decodingBuffer and before
resuming fetching data waits until that buffer has been filled again up to a certain threshold.

In order to inform a receiver whether a certain elementary stream requires prebuffering and/or rebuffering the
QoS_Qualifier_REBUFFERING_RATIO qualifier can be included in the Elementary Stream Descriptor
(see 7.2.6.15.3.1). By default, in the absence of such qualifier, an elementary stream does not require
pre-buffering or rebuffering.

7.2.6.16 ExtensionDescriptor

7.2.6.16.1 Syntax

abstract class ExtensionDescriptor extends BaseDescriptor
: bit(8) tag = ExtensionProfileLevelDescrTag, ExtDescrTagStartRange ..
ExtDescrTagEndRange {
 // empty. To be filled by classes extending this class.
}

7.2.6.16.2 Semantics

This class is an abstract base class that may be extended for defining additional descriptors in future. The
available range of class tag values allow ISO defined extensions as well as private extensions. A descriptor
that allows to aggregate ExtensionDescriptor classes may actually aggregate any of the classes that extend
ExtensionDescriptor. Extension descriptors may be ignored by a terminal that conforms to ISO/IEC 14496-1.

7.2.6.17 RegistrationDescriptor

The registration descriptor provides a method to uniquely and unambiguously identify formats of private data
streams.

7.2.6.17.1 Syntax

class RegistrationDescriptor extends BaseDescriptor : bit(8)
tag=RegistrationDescrTag {
 bit(32) formatIdentifier;
 bit(8) additionalIdentificationInfo[sizeOfInstance-4];
}

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

--`,`,,,,`,`,`,`,`,,`,``,,,``-`-`,,`,,`,`,,`---

ISO/IEC 14496-1:2010(E)

54 © ISO/IEC 2010 – All rights reserved

7.2.6.17.2 Semantics

formatIdentifier – is a value obtained from a Registration Authority as designated by ISO.

additionalIdentificationInfo – The meaning of additionalIdentificationInfo, if any, is
defined by the assignee of that formatIdentifier, and once defined, shall not change.

The registration descriptor is provided in order to enable users of ISO/IEC 14496-1 to unambiguously carry
elementary streams with data whose format is not recognized by ISO/IEC 14496-1. This provision will permit
ISO/IEC 14496-1 to carry all types of data streams while providing for a method of unambiguous identification
of the characteristics of the underlying private data streams.

In the following Subclause and Annex B, the benefits and responsibilities of all parties to the registration of
private data format are outlined.

7.2.6.17.2.1 Implementation of a Registration Authority (RA)

ISO/IEC JTC 1/SC 29 shall issue a call for nominations from Member Bodies of ISO or National Committees
of IEC in order to identify suitable organizations that will serve as the Registration Authority for the
formatIdentifier as defined in this Subclause. The selected organization shall serve as the Registration
Authority. The so-named Registration Authority shall execute its duties in compliance with Annex E of the
JTC 1 Directives. The registered private data formatIdentifier is hereafter referred to as the Registered
Identifier (RID).

Upon selection of the Registration Authority, JTC 1 shall require the creation of a Registration Management
Group (RMG) which will review appeals filed by organizations whose request for an RID to be used in
conjunction with ISO/IEC 14496-1 has been denied by the Registration Authority.

Annex B provides information on the procedure for registering a unique format identifier.

7.2.6.18 Object Content Information Descriptors

7.2.6.18.1 Overview

This Subclause defines the descriptors that constitute the object content information. These descriptors may
either be included in an OCI_Event in an OCI stream or be part of an object descriptor or ES_Descriptor
as defined in 7.2.6.

7.2.6.18.2 OCI_Descriptor Class

7.2.6.18.2.1 Syntax

abstract class OCI_Descriptor extends BaseDescriptor
 : bit(8) tag= OCIDescrTagStartRange .. OCIDescrTagEndRange
{
 // empty. To be filled by classes extending this class.
}

7.2.6.18.2.2 Semantics

This class is an abstract base class that is extended by the classes specified in the subsequent Clauses. A
descriptor or an OCI_Event that allows to aggregate classes of type OCI_Descriptor may actually aggregate
any of the classes that extend OCI_Descriptor.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
,
,
,
,
`
,
`
,
`
,
`
,
`
,
,
`
,
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/IEC 14496-1:2010(E)

© ISO/IEC 2010 – All rights reserved 55

7.2.6.18.3 Content classification descriptor

7.2.6.18.3.1 Syntax

class ContentClassificationDescriptor extends OCI_Descriptor
: bit(8) tag= ContentClassificationDescrTag {

 bit(32) classificationEntity;
 bit(16) classificationTable;
 bit(8) contentClassificationData[sizeOfInstance-6];
}

7.2.6.18.3.2 Semantics

The content classification descriptor provides one or more classifications of the event information. The
classificationEntity field indicates the organization that classifies the content. The possible values
have to be registered with a registration authority to be identified.

classificationEntity – indicates the content classification entity. The values of this field are to be
defined by a registration authority to be identified.

classificationTable – indicates which classification table is being used for the corresponding
classification. The classification is defined by the corresponding classification entity. 0x00 is a reserved value.

contentClassificationData[] – this array contains a classification data set using a non-default
classification table.

7.2.6.18.4 Key Word Descriptor

7.2.6.18.4.1 Syntax

class KeyWordDescriptor extends OCI_Descriptor : bit(8) tag=KeyWordDescrTag {
 int i;
 bit(24) languageCode;
 bit(1) isUTF8_string;
 aligned(8) unsigned int(8) keyWordCount;
 for (i=0; i<keyWordCount; i++) {
 unsigned int(8) keyWordLength[[i]];
 if (isUTF8_string) then {
 bit(8) keyWord[[i]][keyWordLength[i]];
 } else {
 bit(16) keyWord[[i]][keyWordLength[i]];
 }
 }
}

7.2.6.18.4.2 Semantics

The key word descriptor allows the OCI creator/provider to indicate a set of key words that characterize the
content. The choice of the key words is completely free but each time the key word descriptor appears, all the
key words given are for the language indicated in languageCode. This means that, for a certain event, the
key word descriptor must appear as many times as the number of languages for which key words are to be
provided.

languageCode – contains the ISO 639-2:1998 bibliographic three character language code of the language
of the following text fields.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

--`,`,,,,`,`,`,`,`,,`,``,,,``-`-`,,`,,`,`,,`---

ISO/IEC 14496-1:2010(E)

56 © ISO/IEC 2010 – All rights reserved

isUTF8_string – indicates that the subsequent string is encoded with one byte per character (UTF-8). Else
it is two byte per character.

keyWordCount – indicates the number of key words to be provided.

keyWordLength – specifies the length in characters of each key word.

keyWord[] – a Unicode (ISO/IEC 10646-1) encoded string that specifies the key word.

7.2.6.18.5 Rating Descriptor

7.2.6.18.5.1 Syntax

class RatingDescriptor extends OCI_Descriptor : bit(8) tag=RatingDescrTag {
 bit(32) ratingEntity;
 bit(16) ratingCriteria;
 bit(8) ratingInfo[sizeOfInstance-6];
}

7.2.6.18.5.2 Semantics

This descriptor gives one or more ratings, originating from corresponding rating entities, valid for a specified
country. The ratingEntity field indicates the organization which is rating the content. The possible values
have to be registered with a registration authority to be identified. This registration authority shall make the
semantics of the rating descriptor publicly available.

ratingEntity – indicates the rating entity. The values of this field are to be defined by a registration
authority to be identified.

ratingCriteria – indicates which rating criteria are being used for the corresponding rating entity. The
value 0x00 is reserved.

ratingInfo[] – this array contains the rating information.

7.2.6.18.6 Language Descriptor

7.2.6.18.6.1 Syntax

class LanguageDescriptor extends OCI_Descriptor : bit(8) tag=LanguageDescrTag {
 bit(24) languageCode;
}

7.2.6.18.6.2 Semantics

This descriptor identifies the language of the corresponding audio/speech or text object that is being described.

languageCode – contains the ISO 639-2:1998 bibliographic three character language code of the
corresponding audio/speech or text object that is being described.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

--`,`,,,,`,`,`,`,`,,`,``,,,``-`-`,,`,,`,`,,`---

ISO/IEC 14496-1:2010(E)

© ISO/IEC 2010 – All rights reserved 57

7.2.6.18.7 Short Textual Descriptor

7.2.6.18.7.1 Syntax

class ShortTextualDescriptor extends OCI_Descriptor : bit(8)
tag=ShortTextualDescrTag {
 bit(24) languageCode;
 bit(1) isUTF8_string;
 aligned(8) unsigned int(8) nameLength;
 if (isUTF8_string) then {
 bit(8) eventName[nameLength];
 unsigned int(8) textLength;
 bit(8) eventText[textLength];
 } else {
 bit(16) eventName[nameLength];
 unsigned int(8) textLength;
 bit(16) eventText[textLength];
 }
}

7.2.6.18.7.2 Semantics

The short textual descriptor provides the name of the event and a short description of the event in text form.

languageCode – contains the ISO 639-2:1998 bibliographic three character language code of the language
of the following text fields.

isUTF8_string – indicates that the subsequent string is encoded with one byte per character (UTF-8). Else
it is two byte per character.

nameLength – specifies the length in characters of the event name.

eventName[]– a Unicode (ISO/IEC 10646-1) encoded string that specifies the event name.

textLength – specifies the length in characters of the following text describing the event.

eventText[] – a Unicode (ISO/IEC 10646-1) encoded string that specifies the text description for the event.

7.2.6.18.8 Expanded Textual Descriptor

7.2.6.18.8.1 Syntax

class ExpandedTextualDescriptor extends OCI_Descriptor : bit(8)
tag=ExpandedTextualDescrTag {
 int i;
 bit(24) languageCode;
 bit(1) isUTF8_string;
 aligned(8) unsigned int(8) itemCount;
 for (i=0; i<itemCount; i++){
 unsigned int(8) itemDescriptionLength[[i]];
 if (isUTF8_string) then {
 bit(8) itemDescription[[i]][itemDescriptionLength[i];
 } else {
 bit(16) itemDescription[[i]][itemDescriptionLength[i]];
 }
 unsigned int(8) itemLength[[i]];
 if (isUTF8_string) then {

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
,
,
,
,
`
,
`
,
`
,
`
,
`
,
,
`
,
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/IEC 14496-1:2010(E)

58 © ISO/IEC 2010 – All rights reserved

 bit(8) itemText[[i]][itemLength[i]];
 } else {
 bit(16) itemText[[i]][itemLength[i]];
 }
 }
 unsigned int(8) textLength;
 int nonItemTextLength=0;
 while(textLength == 255) {
 nonItemTextLength += textLength;
 bit(8) textLength;
 }
 nonItemTextLength += textLength;
 if (isUTF8_string) then {
 bit(8) nonItemText[nonItemTextLength];
 } else {
 bit(16) nonItemText[nonItemTextLength];
 }
}

7.2.6.18.8.2 Semantics

The expanded textual descriptor provides a detailed description of an event, which may be used in addition to,
or independently from, the short event descriptor. In addition to direct text, structured information in terms of
pairs of description and text may be provided. An example application for this structure is to give a cast list,
where for example the item description field might be “Producer” and the item field would give the name of the
producer.

languageCode - contains the ISO 639-2:1998 bibliographic three character language code of the language
of the following text fields.

isUTF8_string – indicates that the subsequent string is encoded with one byte per character (UTF-8). Else
it is two byte per character.

itemCount – specifies the number of items to follow (itemised text).

itemDescriptionLength – specifies the length in characters of the item description.

itemDescription[] – a Unicode (ISO/IEC 10646-1) encoded string that specifies the item description.

itemLength – specifies the length in characters of the item text.

itemText[] – a Unicode (ISO/IEC 10646-1) encoded string that specifies the item text.

textLength – specifies the length in characters of the non itemised expanded text. The value 255 is used
as an escape code, and it is followed by another textLength field that contains the length in bytes above
255. For lengths greater than 511 a third field is used, and so on.

nonItemText[] – a Unicode (ISO/IEC 10646-1) encoded string that specifies the non itemised expanded
text.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
,
,
,
,
`
,
`
,
`
,
`
,
`
,
,
`
,
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/IEC 14496-1:2010(E)

© ISO/IEC 2010 – All rights reserved 59

7.2.6.18.9 Content Creator Name Descriptor

7.2.6.18.9.1 Syntax

class ContentCreatorNameDescriptor extends OCI_Descriptor
: bit(8) tag= ContentCreatorNameDescrTag {

 int i;
 unsigned int(8) contentCreatorCount;
 for (i=0; i<contentCreatorCount; i++){
 bit(24) languageCode[[i]];
 bit(1) isUTF8_string[[i]];
 aligned(8) unsigned int(8) contentCreatorLength[[i]];
 if (isUTF8_string[[i]]) then {
 bit(8) contentCreatorName[[i]][contentCreatorLength[i]];
 } else {
 bit(16) contentCreatorName[[i]][contentCreatorLength[i]];
 }
 }
}

7.2.6.18.9.2 Semantics

The content creator name descriptor indicates the name(s) of the content creator(s). Each content creator
name may be in a different language.

contentCreatorCount – indicates the number of content creator names to be provided.

languageCode – contains the ISO 639-2:1998 bibliographic three character language code of the language
of the following text fields. Note that for languages that only use Latin characters, just one byte per character
is needed in Unicode (O/IEC 10646-1).

isUTF8_string – indicates that the subsequent string is encoded with one byte per character (UTF-8). Else
it is two byte per character.

contentCreatorLength[[i]] – specifies the length in characters of each content creator name.

contentCreatorName[[i]][] – a Unicode (ISO/IEC 10646-1) encoded string that specifies the content
creator name.

7.2.6.18.10 Content Creation Date Descriptor

7.2.6.18.10.1 Syntax

class ContentCreationDateDescriptor extends OCI_Descriptor
: bit(8) tag= ContentCreationDateDescrTag {

 bit(40) contentCreationDate;
}

7.2.6.18.10.2 Semantics

This descriptor identifies the date of the content creation.

contentCreationDate – contains the content creation date of the data corresponding to the event in
question, in Universal Time, Co-ordinated (UTC) and Modified Julian Date (MJD) (see Annex A). This field is
coded as 16 bits giving the 16 least significant bits of MJD followed by 24 bits coded as 6 digits in 4-bit Binary
Coded Decimal (BCD). If the content creation date is undefined all bits of the field are set to 1.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
,
,
,
,
`
,
`
,
`
,
`
,
`
,
,
`
,
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/IEC 14496-1:2010(E)

60 © ISO/IEC 2010 – All rights reserved

7.2.6.18.11 OCI Creator Name Descriptor

7.2.6.18.11.1 Syntax

class OCICreatorNameDescriptor extends OCI_Descriptor
: bit(8) tag=OCICreatorNameDescrTag {

 int i;
 unsigned int(8) OCICreatorCount;
 for (i=0; i<OCICreatorCount; i++) {
 bit(24) languageCode[[i]];
 bit(1) isUTF8_string;
 aligned(8) unsigned int(8) OCICreatorLength[[i]];
 if (isUTF8_string) then {
 bit(8) OCICreatorName[[i]][OCICreatorLength];
 } else {
 bit(16) OCICreatorName[[i]][OCICreatorLength];
 }
 }
}

7.2.6.18.11.2 Semantics

The name of OCI creators descriptor indicates the name(s) of the OCI description creator(s). Each OCI
creator name may be in a different language.

OCICreatorCount – indicates the number of OCI creators.

languageCode[[i]] – contains the ISO 639-2:1998 bibliographic three character language code of the
language of the following text fields.

isUTF8_string – indicates that the subsequent string is encoded with one byte per character (UTF-8). Else
it is two byte per character.

OCICreatorLength[[i]] – specifies the length in characters of each OCI creator name.

OCICreatorName[[i]] – a Unicode (ISO/IEC 10646-1) encoded string that specifies the OCI creator name.

7.2.6.18.12 OCI Creation Date Descriptor

7.2.6.18.12.1 Syntax

class OCICreationDateDescriptor extends OCI_Descriptor
: bit(8) tag=OCICreationDateDescrTag {

 bit(40) OCICreationDate;
}

7.2.6.18.12.2 Semantics

This descriptor identifies the creation date of the OCI description.

OCICreationDate - This 40-bit field contains the OCI creation date for the OCI data corresponding to the
event in question, in Co-ordinated Universal Time (UTC) and Modified Julian Date (MJD) (see Annex A). This
field is coded as 16 bits giving the 16 least significant bits of MJD followed by 24 bits coded as 6 digits in 4-bit
Binary Coded Decimal (BCD). If the OCI creation date is undefined all bits of the field are set to 1.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

--`,`,,,,`,`,`,`,`,,`,``,,,``-`-`,,`,,`,`,,`---

ISO/IEC 14496-1:2010(E)

© ISO/IEC 2010 – All rights reserved 61

7.2.6.18.13 SMPTE Camera Position Descriptor

7.2.6.18.13.1 Syntax

class SmpteCameraPositionDescriptor extends OCI_Descriptor : bit (8)
tag=SmpteCameraPositionDescrTag {
 unsigned int (8) cameraID;
 unsigned int (8) parameterCount;
 for (i=0; i<parameterCount; i++) {
 bit (8) parameterID;
 bit (32) parameter;
 }
}

7.2.6.18.13.2 Semantics

The SMPTE metadata descriptor provides metadata defined by the Proposed SMPTE Standard 315M of
“camera positioning information conveyed by ancillary data packets.” The SMPTE 315M defines IDs and data
formats for the following parameters:

 - camera relative position

 - camera pan

 - camera tilt

 - camera roll

 - origin of world coordinate longitude

 - origin of world coordinate latitude

 - origin of world coordinate altitude

 - vertical angle of view

 - focus distance

 - lens opening (iris or F-value)

 - time address information

 - object relative position

cameraID - contains the b(0-7) of C-ID of the UDW in Figure 6.

parameterCount - specifies the number of parameters and is equal to (the Data Count Word (DC) – 18) / 5.

parameterID - contains the b(0-7) of i-th IDn of the UDW.

parameter - contains the i-th Parameter n of the UDW (b(0-7) of each word).

7.2.6.18.13.3 Packet structure defined by SMPTE 315M

Ancillary data packet and space format is defined by ANSI/SMPTE 291M. The SMPTE 315M is one of the
registered formats for a specific application of user data space defined by the 291M. The structure of binary-
type camera positioning data packets described in the SMPTE 315M is illustrated in Figure 6.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

--`,`,,,,`,`,`,`,`,,`,``,,,``-`-`,,`,,`,`,,`---

ISO/IEC 14496-1:2010(E)

62 © ISO/IEC 2010 – All rights reserved

Figure 6 — Binary-type camera positioning data packets (SMPTE 315M)

Ancillary data is defined as 10-bit words. B(0-7), b8 and b9 represent actual data, even parity for b(0-7) and
not b8 respectively except ADF.

ADF: Ancillary Data Flag (000 h, 3ff h, 3ff h)

DID: Data Identification Word (2f0 h)

DBN: Data Block Number Word

DC: Data Count Word

UDW: User Data Words (up to 255 words)

LABEL: SMPTE label for metadata of class “camera positioning information” (16 words)

FORM: Data Type Identification Flag Word (1 word)

C-ID: Camera Identification Word (1 word)

IDn: Parameter Identification Word (1 word for each parameter)

Parameter n: Parameter Data Words (4 words for each parameter)

CS: Checksum Word

The 4 words LABEL(8-11) of LABEL(0-15) shall be set to ‘C’, ‘A’, ‘P’, ‘O’. The Data Type Identification Flag
Word (FORM) indicates the data type of the camera identification word (C-ID), parameter identification word
(IDn) and parameter data word (Parameter n) contained in the packet. In case of binary-type camera
positioning data FORM(0-1) shall be set to 0 h.

7.2.6.18.14 Segment Descriptor

7.2.6.18.14.1 Syntax

class SegmentDescriptor extends OCI_Descriptor : bit(8) tag=SegmentDescriptorTag
{
 double start;
 double duration;
 bit(8) segmentNameLength;
 bit(8) segmentName [segmentNameLength];
};

7.2.6.18.14.2 Semantics

The segment descriptor defines labeled segments within a media stream with respect to the media time line. A
segment for a given media stream is declared by conveying a segment descriptor with appropriate values as
part of the object descriptor that declares that media stream. Conversely, when a segment descriptor exists in
an object descriptor, it refers to all the media streams in that object descriptor. Segments can be referenced
from the scene description through url fields of media nodes.

Parameter
1

(4 words)

A
D
F

A
D
F

A
D
F

D
I
D

D
B
N

D
C

F
O
R
M

C
-
I
D

I
D
1

I
D
2

I
D
n

C
S

LABEL
(16 words)

Parameter
2

(4 words)

Parameter
n

(4 words)

UDW

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
,
,
,
,
`
,
`
,
`
,
`
,
`
,
,
`
,
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/IEC 14496-1:2010(E)

© ISO/IEC 2010 – All rights reserved 63

In order to use segment descriptors for the declaration of segments within a media stream, the notion of a
media time line needs to be established. The media time line of a media stream may be defined through use
of media time descriptor (see 7.2.6.18.15.1). In the absence of such explicit definitions, media time of the first
composition unit of a media stream is assumed to be zero. In applications where random access into a media
stream is supported, the media time line is undefined unless the media time descriptor mechanism is used.

start – specifies the media time (in seconds) of the start of the segment within the media stream.

duration – specifies the duration of the segment in seconds. A negative value denotes an infinite duration.

SegmentNameLength – the length of the segmentName field in characters.

segmentName – a Unicode [3] encoded string that labels the segment. The first character of the
segmentName shall be an alphabetic character. The other characters may be alphanumeric, _, -, or a space
character.

7.2.6.18.15 MediaTimeDescriptor

7.2.6.18.15.1 Syntax

class MediaTimeDescriptor extends OCI_Descriptor : bit(8) tag=MediaTimeDescrTag {
 double mediaTimeStamp;
};

7.2.6.18.15.2 Semantics

The media time descriptor conveys a media time stamp. The descriptor establishes the mapping between the
object time base and the media time line of a media stream. This descriptor shall only be conveyed within an
OCI stream. The startingTime, absoluteTimeFlag and duration fields of the OCI event carrying this
descriptor shall be set to 0. The association between the OCI stream and the corresponding media stream is
defined by an object descriptor that aggregates ES descriptors for both of them (see 7.2).

mediaTimeStamp – a time stamp indicating the media time (MT, in seconds) of the associated media
stream corresponding to the composition time (CT) of the access unit conveying the media time descriptor.
Media time values MT(AUn) of other access units of the media stream can be calculated from the composition
time CT(AUn) for that access unit as follows:

MT(AUn) = CT(AUn) – CT + MT

with MT and CT being the mediaTimeStamp and compositionTimeStamp (converted to seconds) values,
respectively, for the access unit conveying the media time descriptor.

Note – When media time descriptor is used to associate a media time line with a media stream, the notion of “media time
zero” does not necessarily correspond to the notion of “beginning of the stream”.

7.2.6.19 Extension Profile Level Descriptor

7.2.6.19.1 Syntax

class ExtensionProfileLevelDescriptor() extends ExtensionDescriptor : bit(8)
ExtensionProfileLevelDescrTag {

bit(8) profileLevelIndicationIndex;
bit(8) ODProfileLevelIndication;
bit(8) sceneProfileLevelIndication;
bit(8) audioProfileLevelIndication;
bit(8) visualProfileLevelIndication;
bit(8) graphicsProfileLevelIndication;

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
,
,
,
,
`
,
`
,
`
,
`
,
`
,
,
`
,
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/IEC 14496-1:2010(E)

64 © ISO/IEC 2010 – All rights reserved

bit(8) MPEGJProfileLevelIndication;
bit(8) TextProfileLevelIndication;
bit(8) 3DCProfileLevelIndication;

}

7.2.6.19.2 Semantics

The ExtensionProfileLevelDescriptor conveys profile and level extension information. This
descriptor is used to signal a profile and level indication set and its unique index and can be extended by ISO
to signal any future set of profiles and levels.

profileLevelIndicationIndex – a unique identifier for the set of profile and level indications described
in this descriptor within the name scope defined by the IOD.

ODProfileLevelIndication – an indication of the profile and level required to process object descriptor
streams associated with the InitialObjectDescriptor containing this Extension Profile and Level
descriptor.

sceneProfileLevelIndication – an indication of the profile and level required to process the scene
graph nodes within scene description streams associated with the InitialObjectDescriptor containing
this Extension Profile and Level descriptor.

audioProfileLevelIndication – an indication of the profile and level required to process audio streams
associated with the InitialObjectDescriptor containing this Extension Profile and Level descriptor.

visualProfileLevelIndication – an indication of the profile and level required to process visual
streams associated with the InitialObjectDescriptor containing this Extension Profile and Level
descriptor.

graphicsProfileLevelIndication – an indication of the profile and level required to process graphics
nodes within scene description streams associated with the InitialObjectDescriptor containing this
Extension Profile and Level descriptor.

MPEGJProfileLevelIndication – an indication as defined in Table 11 of the MPEG-J profile and level
required to process the content associated with the InitialObjectDescriptor containing this Extension Profile
and Level descriptor.

Table 11 — MPEGJProfileLevelIndication Values

Value Profile Level
0x00 Reserved for ISO use -
0x01 Personal profile L1
0x02 Main profile L1
0x03-0x7F reserved for ISO use -
0x80-0xFD user private -
0xFE no MPEG-J profile specified -
0xFF no MPEG-J capability required -

Note Usage of the value 0xFE may indicate that the content described by this InitialObjectDescriptor does not
comply to any conformance point specified in ISO/IEC 14496-1

TextProfileLevelIndication – an indication as defined in Table 12, of the Text Profile and Level
specified in ISO/IEC 14496-18 and required to process the content associated with the InitialObjectDescriptor
containing this Text Profile and Level descriptor.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

--`,`,,,,`,`,`,`,`,,`,``,,,``-`-`,,`,,`,`,,`---

ISO/IEC 14496-1:2010(E)

© ISO/IEC 2010 – All rights reserved 65

Table 12 — TextProfileLevelIndication Values

Value Profile Level
0x00 Reserved for ISO use -
0x01 Simple Text profile L1
0x02 Simple Text profile L2
0x03 Simple Text profile L3
0x04 Advanced Simple Text profile L1
0x05 Advanced Simple Text profile L2
0x06 Advanced Simple Text profile L3
0x07 Main Text profile L1
0x08 Main Text profile L2
0x09 Main Text profile L3
0x0A-0x7F reserved for ISO use -
0x80-0xFD user private -
0xFE no Text profile specified -
0xFF no text rendering capability required -

Note: Usage of the value 0xFE may indicate that the content described by this descriptor does not comply to any
conformance point specified in ISO/IEC 14496-18.

3DCProfileLevelIndication – an indication of the 3D Compression Profile and Level specified in
ISO/IEC 14496-16 and required to process the content associated with the InitialObjectDescriptor containing
this 3D Compression Profile and Level descriptor

7.2.6.20 Profile Level Indication Index Descriptor

7.2.6.20.1 Syntax

class ProfileLevelIndicationIndexDescriptor () extends BaseDescriptor
: bit(8) ProfileLevelIndicationIndexDescrTag {
 bit(8) profileLevelIndicationIndex;
}

7.2.6.20.2 Semantics

profileLevelIndicationIndex – a unique identifier for the set of profile and level indications described
in this descriptor within the name scope defined by the IOD.

7.2.7 Rules for Usage of the Object Description Framework

7.2.7.1 Aggregation of Elementary Stream Descriptors in a Single Object Descriptor

7.2.7.1.1 Overview

An object descriptor shall aggregate the descriptors for the set of elementary streams that is intended to be
associated to a single node of the scene description and that usually relate to a single audio-visual object. The
set of streams may convey a scaleable content representation as well as multiple alternative content
representations, e.g., multiple qualities or different languages. Additional streams with IPMP and object
content information may be attached.

These options are described by the ES_Descriptor syntax elements streamDependenceFlag,
dependsOn_ES_ID, as well as streamType. The semantic rules for the aggregation of elementary stream
descriptors within one object descriptor (OD) are specified in this Subclause.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

--`,`,,,,`,`,`,`,`,,`,``,,,``-`-`,,`,,`,`,,`---

ISO/IEC 14496-1:2010(E)

66 © ISO/IEC 2010 – All rights reserved

7.2.7.1.2 Aggregation of Elementary Streams with the same streamType

An OD may aggregate multiple ES_Descriptors with the same streamType of either visualStream,
audioStream or SceneDescriptionStream. However, descriptors for streams with two of these types shall not
be mixed within one OD.

7.2.7.1.3 Aggregation of Elementary Streams with Different streamTypes

In the following cases ESs with different streamType may be aggregated:

• An OD may aggregate zero or one additional ES_Descriptor with streamType =
ObjectContentInfoStream (see 7.2.4.2). This ObjectContentInfoStream shall be valid for the content
conveyed through the other visual, audio or scene description streams whose descriptors are aggregated
in this OD.

• An OD may aggregate zero or one additional ES_Descriptors with streamType =
ClockReferenceStream (see 7.3.2.5). This ClockReferenceStream shall be valid for the ES within the
name scope that refer to the ES_ID of this ClockReferenceStream in their SLConfigDescriptor.

• An OD may aggregate zero or more additional ES_Descriptors with streamType = IPMPStream (see
7.2.3.2). This IPMPStream shall be valid for the content conveyed through the other visual, audio or scene
description streams whose descriptors are aggregated in this OD.

7.2.7.1.4 Aggregation of scene description streams and object descriptor streams

An object descriptor that aggregates one or more ES_Descriptors of streamType = SceneDescriptionStream
may aggregate any number of additional ES_Descriptors with streamType = ObjectDescriptorStream.
ES_Descriptors of streamType = ObjectDescriptorStream shall not be aggregated in object descriptors that
do not contain ES_Descriptors of streamType = SceneDescriptionStream.

This means that scene description and object descriptor streams are always combined within one object
descriptor. The dependencies between these streams are defined in 7.2.7.1.5.2.

7.2.7.1.5 Elementary Stream Dependencies

7.2.7.1.5.1 Independent elementary streams

ES_Descriptors within one OD with the same streamType of either audioStream, visualStream or
SceneDescriptionStream that have streamDependenceFlag=0 refer to independent elementary streams.
Such independent elementary streams shall convey alternative representations of the same content. Only one
of these representations shall be selected for use in the scene.

NOTE — Independent ESs should be ordered within an OD according to the content creator’s preference. The ES that is
first in the list of ES aggregated to one object descriptor should be preferable over an ES that follows later. In case of
audio streams, however, the selection should for obvious reasons be done according to the prefered language of the
receiving terminal.

7.2.7.1.5.2 Dependent elementary streams

ES_Descriptors within one OD with the same streamType of either audioStream, visualStream,
SceneDescriptionStream or ObjectDescriptorStream that have streamDependenceFlag=1 refer to
dependent elementary streams. The ES_ID of the stream on which the dependent elementary stream
depends is indicated by dependsOn_ES_ID. The ES_Descriptor with this ES_ID shall be aggregated to the
same OD. One independent elementary stream per object descriptor and all its dependent elementary
streams may be selected for concurrent use in the scene.

Stream dependencies are governed by the following rules:

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
,
,
,
,
`
,
`
,
`
,
`
,
`
,
,
`
,
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/IEC 14496-1:2010(E)

© ISO/IEC 2010 – All rights reserved 67

• For dependent ES of streamType equal to either audioStream or visualStream the dependent ES shall
have the same streamType as the ES on which it depends. This implies that the dependent stream
contains enhancement information to the one it depends on. The precise semantic meaning of the
dependencies is opaque at this layer.

• An ES with a streamType of SceneDescriptionStream shall only depend on an ES with streamType of
SceneDescriptionStream or ObjectDescriptorStream.

⎯ Dependency on an ObjectDescriptorStream implies that the ObjectDescriptorStream contains the object
descriptors that are refered to by this SceneDescriptionStream.

⎯ Dependency on a SceneDescriptionStream implies that the dependent stream contains enhancement
information to the one it depends on. The dependent SceneDescriptionStream shall depend on the same
ObjectDescriptorStream on which the other SceneDescriptionStream depends.

• An ES with a streamType of ObjectDescriptionStream shall only depend on an ES with streamType of
SceneDescriptionStream or ObjectDescriptorStream.

⎯ Dependency on a SceneDescriptorStream implies that there shall be one or more ESs with a streamType
of SceneDescriptionStream depending on this ObjectDescriptorStream.

⎯ Dependency on an ObjectDescriptionStream implies that the dependent stream contains additional object
descriptors comprising the presentation described by SceneDescriptionStreams which are aggregated in
the same object descriptor.

• An ES that flows upstream, as indicated by DecoderConfigDescriptor.upStream = 1 shall always
depend upon another ES that has the upStream flag set to zero. This implies that this upstream is
associated to the downstream it depends on. If the downstream is an ObjectDescriptorStream or
SceneDescriptionStream, the upstream shall be associated to all downstreams specified in that
ObjectDescriptorStream or SceneDescriptionStream.

• The availability of the dependent stream is undefined if an ES_Descriptor for the stream it depends upon
is not available.

7.2.7.2 Linking Scene Description and Object Descriptors

7.2.7.2.1 Associating Object Descriptors to BIFS Nodes

Some BIFS nodes contain an url field. Such nodes are associated to their elementary stream resources (if
any) via an object descriptor. The association is established by means of the objectDescriptorID, as
specified in ISO/IEC 14496-11. The name scope for this ID is specified in 7.2.7.2.4.

Each BIFS node requires a specific streamType (audio, visual, inlined scene description, etc.) for its
associated elementary streams. The associated object descriptor shall contain ES_Descriptors with this
streamType. The behavior of the terminal is undefined if an object descriptor contains ES_Descriptors with
stream types that are incompatible with the associated BIFS node.

Note that commands adding or removing object descriptors need not be co-incident in time with the addition or
removal of BIFS nodes in the scene description that refer to such an object descriptor. However, the behavior
of the terminal is undefined if a BIFS node in the scene description references an object descriptor that is no
longer valid.

At times that the object descriptor is not available at the terminal, the terminal shall behave as if the the URL
referencing the object descriptor was empty. In the case of visual streams for which the object descriptor has
been deleted, the terminal shall render the last composition unit in the scene.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
,
,
,
,
`
,
`
,
`
,
`
,
`
,
,
`
,
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/IEC 14496-1:2010(E)

68 © ISO/IEC 2010 – All rights reserved

7.2.7.2.2 Multiple scene description and object description streams

An object descriptor that is associated to an Inline node of the scene description or that represents the
primary access to content compliant with the ISO/IEC 14496 specifications (initial object descriptor)
aggregates as a minimum, one scene description stream and the corresponding object descriptor stream (if
additional elementary streams need to be referenced).

However, it is permissible to split both the scene description and the object descriptors in multiple streams.
This allows a bandwidth-scaleable encoding of the scene description. Each stream shall contain a valid
sequence of access units as defined in ISO/IEC 14496-11, and 7.2.5.2, respectively. All resulting scene
description streams and object descriptor streams shall remain aggregated in a single object descriptor. The
dependency mechanism shall be used to indicate how the streams depend on each other.

All streams shall continue to be processed by a single scene description and object descriptor decoding
process, respectively. The time stamps of the access units in different streams shall be used to re-establish
the original order of access units.

NOTE — This form of partitioning of the scene description and the object descriptor streams in multiple streams is not
visible in the scene description itself.

7.2.7.2.3 Scene and Object Description in Case of Inline Nodes

The BIFS scene description allows to recursively partition a scene through the use of Inline nodes (see
ISO/IEC 14496-11). Each Inline node is associated to an object descriptor that points to at least one
additional scene description stream as well as another object descriptor stream (if additional elementary
streams need to be referenced). An example for such a hierarchical scene description can be found in
7.2.7.3.8.2.

7.2.7.2.4 Name Scope of Identifiers

The scope of the objectDescriptorID, ES_ID and IPMP_DescriptorID identifiers that label the
object descriptors, elementary stream descriptors and IPMP descriptors, respectively, is defined as follows.
This definition is based on the restriction that associated scene description and object descriptor streams shall
always be aggregated in a single object descriptor, as specified in 7.2.7.1.4. The following rule defines the
name scope:

• Two scene related identifiers (objectDescriptorID, nodeID , ROUTEID or protoID) belong to the
same name scope if and only if these identifiers occur in elementary streams with a streamType of either
ObjectDescriptorStream or SceneDescriptionStream that are aggregated in a single initial object
descriptor or a single object descriptor associated to an Inline node.

• Two stream related identifiers (ES_ID or IPMP_DescriptorID) belong to the same name scope if and only
if these identifiers relate to streams that are attached to the same communication session that is
established as described in 7.2.7.3.6.

NOTE 1 — Hence, the difference between the two methods specified in 7.2.7.2.2 and 7.2.7.2.3 above to partition a scene
description in multiple streams is that the first method allows multiple scene description streams that refer to the same
name scope while an Inline node opens a new name scope.

NOTE 2 — This implies that a URL in an object descriptor opens a new name scope since it points to an object descriptor
that is not carried in the same ObjectDescriptorStream.

7.2.7.2.5 Reuse of identifiers

Within a single name scope an ES_ID identifier shall always refer to a single instance of an elementary stream.

Note: If two ES_Descriptors within two object descriptors reference a given ES_ID, this means that the second reference
may not receive the stream content from the beginning if the first reference has already started the stream.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
,
,
,
,
`
,
`
,
`
,
`
,
`
,
,
`
,
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/IEC 14496-1:2010(E)

© ISO/IEC 2010 – All rights reserved 69

For reasons of error resilience, it is recommended not to reuse objectDescriptorID and ES_ID
identifiers to identify more than one object or elementary stream, respectively, within one presentation. That
means, if an object descriptor or elementary stream descriptor is removed by means of an OD command and
later on reinstalled with another OD command, then it shall still point to the same content item as before.

7.2.7.3 ISO/IEC 14496 Content Access

7.2.7.3.1 Introduction

In order to access ISO/IEC 14496 compliant content it is a pre-condition that an initial object descriptor to such
content is known through means outside the scope of ISO/IEC 14496. The subsequent content access
procedure is specified conceptually, using a number of walk throughs. Its precise definition depends on the
chosen delivery layer.

For applications that implement the DMIF Application Interface (DAI) specified in ISO/IEC 14496-6 which
abstracts the delivery layer, a mapping of the conceptual content access procedure to calls of the DAI is
specified in 7.2.7.3.9.

The content access procedure determines the set of required elementary streams, requests their delivery and
associates them to the scene description. The selection of a subset of elementary streams suitable for a
specific ISO/IEC 14496 terminal is possible, either based on profiles or on inspection of the set of object
descriptors.

7.2.7.3.2 The Initial Object Descriptor

Initial object descriptors convey information about the profiles required by the terminal compliant with
ISO/IEC 14496 specifications to be able to process the described content. This profile information summarizes
the complexity of the content referenced directly or indirectly through this initial object descriptor, i.e., it
indicates the overall terminal capabilities required to decode and present this content. Therefore initial object
descriptors constitute self-contained access points to content compliant with ISO/IEC 14496 specifications.

There are two constraints to this general statement:

• If the includeInlineProfileLevelFlag of the initial object descriptor is not set, the complexity of
any inlined content is not included in the profile indications.

• In addition to the elementary streams that are decodable by the terminal conforming to the indicated
profiles, alternate content representations might be available. This is further explained in 7.2.7.3.4.

An initial object descriptor may be conveyed by means not defined in ISO/IEC 14496. The content may be
accessed starting from the elementary streams that are described by this initial object descriptor, usually one
or more scene description streams and zero or more object descriptor streams.

Content refered to by an initial object descriptor may itself be referenced from another piece of ISO/IEC 14496
content. In this case, the initial object descriptor will be conveyed in an object descriptor stream and the
OD_IDs of both initial object descriptors and ordinary object descriptors belong to the same name scope.

Ordinary object descriptors may be used as well to describe scene description and object descriptor streams.
However, since they do not carry profile information, they can only be used to access content if that
information is either not required by the terminal or is obtained by other means.

7.2.7.3.3 Usage of URLs in the Object Descriptor Framework

URLs in the object description framework serve to locate either inlined ISO/IEC 14496 content or the
elementary stream data associated to individual audio-visual objects.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
,
,
,
,
`
,
`
,
`
,
`
,
`
,
,
`
,
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/IEC 14496-1:2010(E)

70 © ISO/IEC 2010 – All rights reserved

URLs in ES_Descriptors locate elementary stream data that shall be delivered as SL-packetized stream by
the delivery entity associated to the current name scope. The complete description of the stream (its
ES_Descriptor) is available locally.

URLs in object descriptors locate an object descriptor at a remote location. Only the content of this object
descriptor shall be returned by the delivery entity upon access to this URL. This implies that the description of
the resources for the associated BIFS node or the inlined content is only available at the remote location. Note,
however, that depending on the value of includeInlineProfileLevelFlag in the initial object descriptor,
the global resources needed may already be known (i.e., including remote, inlined portions).

7.2.7.3.4 Selection of Elementary Streams for an Audio-Visual Object

Elementary streams are attached through their object descriptor to appropriate BIFS nodes which, in most
cases, constitute the representation of a single audio-visual object in the scene. The selection of one or more
ESs for each BIFS node may be governed by the profile indications that are conveyed in the initial object
descriptor. All object descriptors shall at least include one elementary stream with suitable object type to
satisfy the initially signaled profiles.

Additionally, object descriptors may aggregate ES_Descriptors for elementary streams that require more
computing or bandwidth resources. Those elementary streams may be used by the receiving terminal if it is
capable of processing them.

In case initial object descriptors do not indicate any profile and level or if profile and level indications are
disregarded, an alternative to the profile driven selection of streams exists. The receiving terminal may
evaluate the ES_Descriptors of all available elementary streams for each BIFS node and choose by some
non-standardized way for which subset it has sufficient resources to decode them while observing the
constraints specified in this Subclause.

NOTE — Some restrictions on the selection of and access to elementary streams might exist if a set of elementary
streams shares a single object time base (see 7.3.2.6).

7.2.7.3.5 Content access in “push” and “pull” scenarios

In an interactive, or “pull” scenario, the receiving terminal actively requests the establishment of sessions and
the delivery of content, i.e., streams. This usually involves a session and channel set up protocol between
sender and receiver. This protocol is not specified here. However, the conceptual steps to be performed are
the same in all cases and are specified in the subsequent Clauses.

In a broadcast, or “push” scenario, the receiving terminal passively processes what it receives. Instead of
issuing requests for session or channel set up the receiving terminal shall evaluate the relevant descriptive
information that associates ES_IDs to their transport channel. The syntax and semantics of this information is
outside the scope of ISO/IEC 14496, however, it needs to be present in any delivery layer implementation.
This allows the terminal to gain access to the elementary streams forming part of the content.

7.2.7.3.6 Content access through a known Object Descriptor

7.2.7.3.6.1 Pre-conditions

• An object descriptor has been acquired. This may be an initial object descriptor.

• The object descriptor contains ES_Descriptors pointing to object descriptor stream(s) and scene
description stream(s) using ES_IDs.

• A communication session to the source of these streams is established.

• A mechanism exists to open a channel that takes user data as input and provides some returned data as
output.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
,
,
,
,
`
,
`
,
`
,
`
,
`
,
,
`
,
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/IEC 14496-1:2010(E)

© ISO/IEC 2010 – All rights reserved 71

7.2.7.3.6.2 Content Access Procedure

The content access procedure shall be equivalent to the following:

1. The object descriptor is evaluated and the ES_ID for the streams that are to be opened are determined.

2. Requests for opening the selected ESs are made, using a suitable channel set up mechanism with the
ES_IDs as parameter.

3. The channel set up mechanism shall return handles to the streams that correspond to the requested list of
ESs.

4. Requests for delivery of the selected ESs are made.

5. Interactive scenarios: Delivery of streams starts. All scenarios: The streams now become accessible.

6. Scene description and object descriptor stream are evaluated.

7. Further streams are opened as needed with the same procedure, starting at step 1.

7.2.7.3.7 Content access through a URL in an Object Desciptor

7.2.7.3.7.1 Pre-conditions

• A URL to an object descriptor or an initial object descriptor has been acquired.

• A mechanism exists to open a communication session that takes a URL as input and provides some
returned data as output.

7.2.7.3.7.2 Content access procedure

The content access procedure shall be equivalent to the following:

1. A connection to the source of the URL is made, using a suitable service set up call.

2. The service set up call shall return data consisting of a single object descriptor.

3. Continue at step 1 in 7.2.7.3.6.2.

7.2.7.3.8 Content access through a URL in an elementary stream descriptor

7.2.7.3.8.1 Pre-conditions

• An ES_Descriptor pointing to a stream through a URL has been aquired. (Note that the ES_Descriptor
fully specifies the configuration of the stream.)

• A mechanism exists to open a communication session that takes a URL as input and provides some
returned data as output.

• A mechanism exists to open a channel that takes user data as input and provides some returned data as
output.

7.2.7.3.8.2 Content access procedure

The content access procedure shall be equivalent to the following:

1. A request to open the communication session is made, using a suitable session set up mechanism with the
URL as parameter.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
,
,
,
,
`
,
`
,
`
,
`
,
`
,
,
`
,
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/IEC 14496-1:2010(E)

72 © ISO/IEC 2010 – All rights reserved

2. The session set up mechanism shall return a handle to the session that corresponds to the requested URL.

3. Request to open the stream is made, using a suitable channel set up mechanism.

4. The channel set up mechanism shall return a handle to the stream that corresponds to the originally
requested URL.

5. Requests for delivery of the selected stream are made.

6. Interactive scenarios: Delivery of stream starts. All scenarios: The stream now becomes accessible.

EXAMPLE ⎯ Access to Complex Content

The example in Figure 7 shows a complex piece of ISO/IEC 14496 content, consisting of three parts. The upper part is a
scene accessed through its initial object descriptor. It contains, among others a visual and an audio stream. A second part
of the scene is inlined and accessed through its initial object descriptor that is pointed to (via URL) in the object descriptor
stream of the first scene. Utilization of the initial object descriptor allows the signaling of profile information for the second
scene. Therefore this scene may also be used without the first scene. The second scene contains, among others, a
scaleably encoded visual object and an audio object. A third scene is inlined and accessed via the ES_IDs of its object
descriptor and scene description streams. These ES_IDs are known from an object descriptor conveyed in the object
descriptor stream of the second scene. Note that this third scene is not accessed through an initial object descriptor.
Therefore the profile information for this scene need to be included in the profile information for the second scene.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

--`,`,,,,`,`,`,`,`,,`,``,,,``-`-`,,`,,`,`,,`---

ISO/IEC 14496-1:2010(E)

© ISO/IEC 2010 – All rights reserved 73

initial
ObjectDescriptor

initial
ObjectDescriptor

ES_DescrES_Descr

ES_DescrES_Descr

Visual Stream

Scene Description Stream

Object Descriptor Stream

ObjectDescriptorID

ES_ID

ES_ID

ES_ID

ObjectDescriptorObjectDescriptor

ES_DescriptorES_Descriptor

initial
ObjectDescriptor

initial
ObjectDescriptor

ES_DescrES_Descr

ES_DescrES_Descr

Object
Descriptor

Object
Descriptor

Initial
Object

Descriptor
URL

Initial
Object

Descriptor
URL

ObjectDescriptorUpdate

ES_DES_D

... ...

......

e.g. Movie
Texture

e.g. Movie
Texture

Scene Description

BIFS Command (Replace Scene)

e.g. Audio
Source

e.g. Audio
Source

InlineInline

Audio Stream

Visual Stream (e.g. temporal enhancement)

Visual Stream (e.g. base layer)

Scene Description Stream

Object Descriptor Stream

ObjectDescriptorID

ES_ID

ES_ID

ES_ID

ES_ID

ObjectDescriptorObjectDescriptor

ES_DescriptorES_Descriptor

ES_DescriptorES_Descriptor

Object
Descriptor

Object
Descriptor

Object
Descriptor

Object
Descriptor

ObjectDescriptorUpdate

ES_DES_D
ES_DES_D

ES_DES_D

... ...

......

Audio Stream

Scene Description Stream

Object Descriptor Stream

Scene Description

ES_ID

ES_ID

ES_ID

ObjectDescriptorObjectDescriptor

ES_DescriptorES_Descriptor

Object
Descriptor

Object
Descriptor

Object
Descriptor

Object
Descriptor

ObjectDescriptorUpdate

ES_DES_D

... ...

......

BIFS Command (Replace Scene)

e.g. Audio
Source

e.g. Audio
Source

Audio Stream

ES_DES_D

e.g. Movie
Texture

e.g. Movie
Texture

Scene Description

BIFS Command (Replace Scene)

e.g. Audio
Source

e.g. Audio
Source

InlineInline

Figure 7 — Complex content example

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
,
,
,
,
`
,
`
,
`
,
`
,
`
,
,
`
,
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/IEC 14496-1:2010(E)

74 © ISO/IEC 2010 – All rights reserved

7.2.7.3.9 Mapping of Content Access Procedure to DAI calls

The following two DAI primitives, quoted from 10.4 of ISO/IEC 14496-6, are required to implement the content
access procedure described in 7.2.7.3.6 to 7.2.7.3.8:

DA_ServiceAttach (IN: URL, uuDataInBuffer, uuDataInLen;

OUT: response, serviceSessionId, uuDataOutBuffer, uuDataOutLen)

DA_ChannelAdd (IN: serviceSessionId, loop(qosDescriptor, direction, uuDataInBuffer, uuDataInLen);

OUT: loop(response, channelHandle, uuDataOutBuffer, uuDataOutLen))

DA_ServiceAttach is used to implement steps 1 and 2 of 7.2.7.3.7.2. The URL shall be passed to the IN: URL
parameter. UuDataInBuffer shall remain empty. The returned serviceSessionId shall be kept for future
reference to this URL. UuDataOutBuffer shall contain a single object descriptor.

DA_ChannelAdd is used to implement steps 0 and 3 of 7.2.7.3.6.2. serviceSessionId shall be the identifier for
the service session that has supplied the object descriptor that includes the ES_Descriptor that is currently
processed. QosDescriptor shall be the QoS_Descriptor of this ES_Descriptor, direction shall indicate
upstream or downstream channels according to the DecoderConfigDescriptor.upstream flag.
UuDataInBuffer shall contain the ES_ID of this ES_Descriptor. On successful return, channelHandle shall
contain a valid, however, not normative handle to the accessible stream.

DA_ChannelAdd is used to implement steps 1 and 2 of 7.2.7.3.8.2. serviceSessionId shall be the identifier for
the service session that has supplied the object descriptor that includes the ES_Descriptor that is currently
processed. QosDescriptor shall be the QoS_Descriptor of this ES_Descriptor, direction shall indicate
upstream or downstream channels according to the DecoderConfigDescriptor.upstream flag.
UuDataInBuffer shall contain the URL of this ES_Descriptor. On successful return, channelHandle shall
contain a valid, however, not normative handle to the accessible stream.

NOTE1 — It is a duty of the service to discriminate between the two cases with either ES_ID or URL as parameters to
uuDataInBuffer in DA_ChannelAdd.

NOTE2 ⎯ Step 4 in 7.2.7.3.6.2and step 3 in 7.2.7.3.8.2 are currently not mapped to a DAI call in a normative way. It may
be implemented using the DA_UserCommand() primitive.

The set up example in the following figure conveys an initial object descriptor that points to one
SceneDescriptionStream, an optional ObjectDescriptorStream and additional optional
SceneDescriptionStreams or ObjectDescriptorStreams. The first request to the DAI will be a
DA_ServiceAttach() with the content address as a parameter. This call will return an initial object descriptor.
The ES_IDs in the contained ES_Descriptors will be used as parameters to a DA_ChannelAdd() that will
return handles to the corresponding channels.

Additional streams (if any) that are identified when processing the content of the object descriptor stream(s)
are subsequently opened using the same procedure. The object descriptor stream is not required to be
present if no further audio- or visual streams or inlined scene description streams form part of the content.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
,
,
,
,
`
,
`
,
`
,
`
,
`
,
,
`
,
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/IEC 14496-1:2010(E)

© ISO/IEC 2010 – All rights reserved 75

Content Address

Initial
Object
Descriptor

•
•
•

D

A

I

•
•
•

ES_descriptor (optional)
for ObjectDescriptorStream

ES_ID_a

ES_descriptor
for SceneDescriptionStream

ES_descriptor (optional)
for SceneDescriptionStream
or ObjectDescriptorStream

ES_ID_b

ES_ID_x

handle for
ObjectDescriptorStream

handle for
SceneDescriptionStream

handle for
SceneDescriptionStream or
ObjectDescriptorStream

Figure 8 — Requesting stream delivery through the DAI

7.2.8 Usage of the IPMP System interface

7.2.8.1 Overview

IPMP elementary streams and descriptors may be used in a variety of ways. For instance, IPMP elementary
streams may convey time-variant IPMP information such as keys that change periodically. An IPMP
elementary stream may be associated with a given elementary stream or set of elementary streams. Similarly,
IPMP descriptors may be used to convey time-invariant or slowly changing IPMP information associated with
a given elementary stream or set of elementary streams. This Subclause specifies methods how to associate
an IPMP system to an elementary stream or a set of elementary streams. ISO/IEC 14496-13 specifies the
following IPMP tools related methods:

a. Indicate IPMP Tools required for the processing of a given MPEG-4 presentation.
b. Associate an IPMP Tool to a specified Control Point of an elementary stream or set of

elementary Streams.
c. Perform Mutual Authentication between IPMP Tools and between IPMP Tools and the

Terminal.
d. Request the instantiation of one or more IPMP Tools by another IPMP Tool.
e. Request and receive notification of the instantiation of IPMP Tools.
f. Provide a communication channel between IPMP Tools and the User.

7.2.8.2 Association of an IPMP System with ISO/IEC 14496 content

7.2.8.2.1 Association in the initial object descriptor

An IPMP System may be associated with ISO/IEC 14496 content in the initial object descriptor. In that case
the initial object descriptor shall aggregate in addition to the ES_Descriptors for scene description and object

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

--`,`,,,,`,`,`,`,`,,`,``,,,``-`-`,,`,,`,`,,`---

ISO/IEC 14496-1:2010(E)

76 © ISO/IEC 2010 – All rights reserved

descriptor streams one or more ES_Descriptors that reference one or more IPMP elementary streams. This
implies that all the elementary streams that are described through this initial object descriptor are governed by
the one or more IPMP Systems that are identified within the one or more IPMP streams.

7.2.8.2.2 Association in other object descriptors

An IPMP System may be associated with ISO/IEC 14496 content in an object descriptor in three ways:

In the first case, the object descriptor aggregates in addition to the ES_Descriptors for the content elementary
streams one or more ES_Descriptors that reference one or more IPMP elementary streams. This implies that
all the content elementary streams described through this object descriptor are governed by the one or more
IPMP Systems that are identified within the one or more IPMP streams. Note that an ES_Descriptor that
describes an IPMP stream may contain references to IPMP_Descriptors.

The second method is to include one or more IPMP_DescriptorPointers in the object descriptor. This implies
that all content elementary streams described by this object descriptor are governed by the IPMP System(s)
that is/are identified within the referenced IPMP descriptor(s).

The third method is to include IPMP_DescriptorPointers in the ES_Descriptors embedded in this object
descriptor. This implies that the elementary stream referenced by such an ES_Descriptor is controlled by an
IPMP System.

7.2.8.3 IPMP of Object Descriptor streams

Object Descriptor streams shall not be affected by IPMP Systems, i.e., they shall always be available without
protection by IPMP Systems. However, management may be applied using IPMP Tools.

IPMP_Descriptors, which reference one or more IPMP Tools, may be directly included in an Object Descriptor
for use by elementary streams referenced within the same Object Descriptor.

The scope of the IPMP_Descriptors included and used in this way is limited to only the Object Descriptor itself
and the streams defined by reference within the Object Descriptor and may not be referenced by any
subsequent descriptors which may be included in the streams referenced in the Object Descriptor.

Additionally, IPMP_Tools referenced in this way shall not receive updates either by IPMP Streams or IPMP
descriptor updates.

7.2.8.4 IPMP of Scene Description streams

Scene description streams are treated like any media stream, i.e. they may be managed by an IPMP System.

An IPMP_Descriptor associated with a scene description stream implies that the IPMP System controls this
scene description stream.

There are two ways to protect part of a scene description (or to apply different IPMP Systems to different
components of a given scene):

The first method exploits the fact that it is permissible to have more than one scene description stream
associated with one object descriptor (see 7.2.7.2.2). Such a split of the scene description can be freely
designed by a content author, for example, putting a basic scene description into the first stream and adding
one or more additional scene description streams that enhance this basic scene using BIFS updates.

The second method is to structure the scene using one or more Inline nodes (see ISO/IEC 14496-11). Each
Inline node refers to one or more additional scene description streams, each of which might use a different
IPMP System.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

--`,`,,,,`,`,`,`,`,,`,``,,,``-`-`,,`,,`,`,,`---

ISO/IEC 14496-1:2010(E)

© ISO/IEC 2010 – All rights reserved 77

7.2.8.5 Usage of URLs in managed and protected content

7.2.8.5.1 URLs in the BIFS Scene Description

ISO/IEC 14496 does not specify compliance points for content that uses BIFS URLs that do not point to an
object descriptor. Equally, no normative way to apply an IPMP System to such links exists. The behavior of an
IPMP-enabled terminal that encounters such links is undefined.

7.2.8.5.2 URLs in Object Descriptors

URLs in object descriptors point to other remote object descriptors. This merely constitutes an indirection and
should not adversely affect the behavior of the IPMP System that might be invoked through this remote object
descriptor.

NOTE — The only difference is that while the original site might be trusted, the referred one might not. Further corrective
actions to guard against this condition are not in the scope of ISO/IEC 14496.

7.2.8.5.3 URLs in ES_Descriptors

URLs in ES descriptors are used to access elementary streams remotely. This merely constitutes an
indirection and therefore does not adversely affect the behavior of the IPMP System that might be invoked
through this remote object descriptor.

NOTE — The only difference is that while the original site might be trusted, the referred one might not. Further corrective
actions to guard against this condition are not in the scope of ISO/IEC 14496.

7.2.8.6 IPMP Decoding Process

Figure 9 — IPMP system in the ISO/IEC 14496 terminal architecture

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
,
,
,
,
`
,
`
,
`
,
`
,
`
,
,
`
,
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/IEC 14496-1:2010(E)

78 © ISO/IEC 2010 – All rights reserved

Figure 9 depicts the injection of IPMP systems or tools with respect to the MPEG-4 terminal. IPMP specific
data is supplied to the IPMP systems or tools via IPMP streams and/or IPMP descriptors, and the IPMP
systems or tools releases protected content after the sync layer.

Each elementary stream under the control of IPMP systems or tools has the conceptual element of a stream
flow controller. Stream flow control can take place between the the SyncLayer decoder and the decoder buffer.
As the figure indicates, elements of IPMP control may take place at other points in the terminal including, after
decoding (as with some watermarking systems) or in the decoded BIFS stream, or after the composition
buffers have been written, or in the BIFS scene tree. Stream flow controllers either enable or disable
processing of an elementary stream in a non-normative way that depends on the status information provided
by the IPMP systems or tools.

Finally, the IPMP systems or tools must at a minimum:

1. Process the IPMP stream and descriptor

2. Appropriately manage (e.g. decrypt and release) protected elementary streams.

The initialization process of the IPMP systems or tools is not specified except that it shall not unduly delay the
content access process as specified in 7.2.7.3.

7.3 Synchronization of Elementary Streams

7.3.1 Introduction

This Subclause defines the tools to maintain temporal synchronisation within and among elementary streams.
The conceptual elements that are required for this purpose, namely time stamps and clock reference
information, have already been introduced in 7.1. The syntax and semantics to convey these elements to a
receiving terminal are embodied in the sync layer, specified in 7.3.2. This syntax is configurable to adapt to
the needs of different types of elementary streams. The required configuration information is specified
in 7.3.2.3.

On the sync layer, an elementary stream is mapped into a sequence of packets, called an SL-packetized
stream (SPS). Packetization information has to be exchanged between the entity that generates an
elementary stream and the sync layer. This relation may be described by a conceptual elementary stream
interface (ESI) between both layers (see Annex G). The ESI is a concept to explain the information flow
between layers, however, need not be accessible in an implementation.

SL-packetized streams are conveyed through a delivery mechanism that is outside the scope of
ISO/IEC 14496-1. This delivery mechanism is only described in terms of the DMIF Application Interface (DAI)
whose semantics are specified in ISO/IEC 14496-6. It specifies the information that needs to be exchanged
between the sync layer and the delivery mechanism. The basic data transport feature that this delivery
mechanism shall provide is the framing of the data packets generated by the sync layer. The DAI is a
reference point that need not be accessible in an implementation. The required properties of the DAI are
described in 7.3.3.

The items specified in this Clause are depicted in Figure 10 below.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

--`,`,,,,`,`,`,`,`,,`,``,,,``-`-`,,`,,`,`,,`---

ISO/IEC 14496-1:2010(E)

© ISO/IEC 2010 – All rights reserved 79

DMIF Application Interface

Elementary Stream Interface

SL-Packetized Streams

Elementary Streams

Sync LayerSL SLSL SL.............

Figure 10 — The Sync Layer

7.3.2 Sync Layer

7.3.2.1 Overview

The sync layer (SL) specifies a syntax for the packetization of elementary streams into access units or parts
thereof. Such a packet is called SL packet. The sequence of SL packets resulting from one elementary stream
is called an SL-packetized stream (SPS). Access units are the only semantic entities at this layer that need to
be preserved from end to end. Their content is opaque. Access units are used as the basic unit for
synchronisation.

An SL packet consists of an SL packet header and an SL packet payload. The SL packet header provides
means for continuity checking in case of data loss and carries the coded representation of the time stamps
and associated information. The detailed semantics of the time stamps are specified in 7.1.3 that defines the
timing aspects of the systems decoder model. The SL packet header is configurable as specified in 7.3.2.3.
The SL packet header itself is specified in 7.3.2.4.

An SL packet does not contain an indication of its length. Therefore, SL packets must be framed by a suitable
lower layer protocol using, e.g., the M4Mux tool specified in 7.4. Consequently, an SL-packetized stream is
not a self-contained data stream that can be stored or decoded without such framing.

An SL-packetized stream does not provide identification of the ES_ID associated to the elementary stream
(see 7.2.6.5) in the SL packet header. This association must be conveyed through a stream map table using
the appropriate signalling means of the delivery mechanism.

7.3.2.2 SL Packet Specification

7.3.2.2.1 Syntax

class SL_Packet (SLConfigDescriptor SL) {
 aligned(8) SL_PacketHeader slPacketHeader(SL);
 aligned(8) SL_PacketPayload slPacketPayload;
}

7.3.2.2.2 Semantics

In order to properly parse an SL_Packet, it is required that the SLConfigDescriptor for the elementary
stream to which the SL_Packet belongs is known, since the SLConfigDescriptor conveys the
configuration of the syntax of the SL packet header.

slPacketHeader – an SL_PacketHeader element as specified in 7.3.2.4.

slPacketPayload – an SL_PacketPayload that contains an opaque payload.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

--`,`,,,,`,`,`,`,`,,`,``,,,``-`-`,,`,,`,`,,`---

ISO/IEC 14496-1:2010(E)

80 © ISO/IEC 2010 – All rights reserved

7.3.2.3 SL Packet Header Configuration

7.3.2.3.1 Syntax

class SLConfigDescriptor extends BaseDescriptor : bit(8) tag=SLConfigDescrTag {
 bit(8) predefined;
 if (predefined==0) {
 bit(1) useAccessUnitStartFlag;
 bit(1) useAccessUnitEndFlag;
 bit(1) useRandomAccessPointFlag;
 bit(1) hasRandomAccessUnitsOnlyFlag;
 bit(1) usePaddingFlag;
 bit(1) useTimeStampsFlag;
 bit(1) useIdleFlag;
 bit(1) durationFlag;
 bit(32) timeStampResolution;
 bit(32) OCRResolution;
 bit(8) timeStampLength; // must be ≤ 64
 bit(8) OCRLength; // must be ≤ 64
 bit(8) AU_Length; // must be ≤ 32
 bit(8) instantBitrateLength;
 bit(4) degradationPriorityLength;
 bit(5) AU_seqNumLength; // must be ≤ 16
 bit(5) packetSeqNumLength; // must be ≤ 16
 bit(2) reserved=0b11;
 }
 if (durationFlag) {
 bit(32) timeScale;
 bit(16) accessUnitDuration;
 bit(16) compositionUnitDuration;
 }
 if (!useTimeStampsFlag) {
 bit(timeStampLength) startDecodingTimeStamp;
 bit(timeStampLength) startCompositionTimeStamp;
 }
}

class ExtendedSLConfigDescriptor extends SLConfigDescriptor : bit(8)
tag=ExtSLConfigDescrTag {
 SLExtensionDescriptor slextDescr[1..255];
}

7.3.2.3.2 Semantics

The SL packet header may be configured according to the needs of each individual elementary stream.
Parameters that can be selected include the presence, resolution and accuracy of time stamps and clock
references. This flexibility allows, for example, a low bitrate elementary stream to incur very little overhead on
SL packet headers.

For each elementary stream the configuration is conveyed in an SLConfigDescriptor, which is part of the
associated ES_Descriptor within an object descriptor.

The configurable parameters in the SL packet header can be divided in two classes: those that apply to each
SL packet (e.g. OCR, sequenceNumber) and those that are strictly related to access units (e.g. time stamps,
accessUnitLength, instantBitrate, degradationPriority).

predefined – allows to default the values from a set of predefined parameter sets as detailed below.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
,
,
,
,
`
,
`
,
`
,
`
,
`
,
,
`
,
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/IEC 14496-1:2010(E)

© ISO/IEC 2010 – All rights reserved 81

NOTE — This table will be updated by amendments to ISO/IEC 14496 to include predefined configurations as required by
future profiles.

Table 13 — Overview of predefined SLConfigDescriptor values

Predefined field value Description

0x00 Custom

0x01 null SL packet header

0x02 Reserved for use in MP4 files

0x03 – 0xFF Reserved for ISO use

Table 14 — Detailed predefined SLConfigDescriptor values

Predefined field value 0x01 0x02

UseAccessUnitStartFlag 0 0

UseAccessUnitEndFlag 0 0

UseRandomAccessPointFlag 0 0

UsePaddingFlag 0 0

UseTimeStampsFlag 0 1

UseIdleFlag 0 0

DurationFlag 0 0

TimeStampResolution 1000 -

OCRResolution - -

TimeStampLength 32 0

OCRlength - 0

AU_length 0 0

InstantBitrateLength - 0

DegradationPriorityLength 0 0

AU_seqNumLength 0 0

PacketSeqNumLength 0 0

useAccessUnitStartFlag – indicates that the accessUnitStartFlag is present in each SL packet
header of this elementary stream.

useAccessUnitEndFlag – indicates that the accessUnitEndFlag is present in each SL packet header of
this elementary stream.

If neither useAccessUnitStartFlag nor useAccessUnitEndFlag are set this implies that each SL
packet corresponds to a complete access unit.

useRandomAccessPointFlag – indicates that the RandomAccessPointFlag is present in each SL
packet header of this elementary stream.

hasRandomAccessUnitsOnlyFlag – indicates that each SL packet corresponds to a random access point.
In that case the randomAccessPointFlag need not be used.

usePaddingFlag – indicates that the paddingFlag is present in each SL packet header of this
elementary stream.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
,
,
,
,
`
,
`
,
`
,
`
,
`
,
,
`
,
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/IEC 14496-1:2010(E)

82 © ISO/IEC 2010 – All rights reserved

UseTimeStampsFlag: indicates that time stamps are used for synchronisation of this elementary stream.
They are conveyed in the SL packet headers. Otherwise, the parameters accessUnitDuration,
compositionUnitDuration, startDecodingTimeStamp and startCompositionTime-Stamp
conveyed in this SL packet header configuration shall be used for synchronisation.

NOTE — The use of start time stamps and durations (useTimeStampsFlag=0) may only be feasible under some
conditions, including an error free environment. Random access is not easily possible.

useIdleFlag – indicates that idleFlag is used in this elementary stream.

durationFlag – indicates that the constant duration of access units and composition units for this
elementary stream is subsequently signaled.

timeStampResolution – is the resolution of the time stamps in clock ticks per second.

OCRResolution – is the resolution of the object time base in cycles per second.

timeStampLength – is the length of the time stamp fields in SL packet headers. timeStampLength shall
take values between zero and 64 bit.

OCRlength – is the length of the objectClockReference field in SL packet headers. A length of zero
indicates that no objectClockReferences are present in this elementary stream. If OCRstreamFlag is
set, OCRLength shall be zero. Else OCRlength shall take values between zero and 64 bit.

AU_Length – is the length of the accessUnitLength fields in SL packet headers for this elementary stream.
AU_Length shall take values between zero and 32 bit.

instantBitrateLength – is the length of the instantBitrate field in SL packet headers for this
elementary stream.

degradationPriorityLength – is the length of the degradationPriority field in SL packet headers
for this elementary stream.

AU_seqNumLength – is the length of the AU_sequenceNumber field in SL packet headers for this
elementary stream.

packetSeqNumLength – is the length of the packetSequenceNumber field in SL packet headers for this
elementary stream.

timeScale – used to express the duration of access units and composition units. One second is evenly
divided in timeScale parts.

accessUnitDuration – the duration of an access unit is accessUnitDuration * 1/timeScale seconds.

compositionUnitDuration – the duration of a composition unit is compositionUnitDuration *
1/timeScale seconds.

startDecodingTimeStamp – conveys the time at which the first access unit of this elementary stream shall
be decoded. It is conveyed in the resolution specified by timeStampResolution.

startCompositionTimeStamp – conveys the time at which the composition unit corresponding to the first
access unit of this elementary stream shall be decoded. It is conveyed in the resolution specified by
timeStampResolution.

slextDescr – is an array of ExtensionDescriptors defined for ExtendedSLConfigDescriptor as
specified in 7.3.2.3.1.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
,
,
,
,
`
,
`
,
`
,
`
,
`
,
,
`
,
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/IEC 14496-1:2010(E)

© ISO/IEC 2010 – All rights reserved 83

7.3.2.3.3 SLExtentionDescriptor Syntax

abstract class SLExtensionDescriptor : bit(8) tag=0 {
}

class DependencyPointer extends SLExtensionDescriptor: bit(8) tag=
DependencyPointerTag {
 bit(6) reserved;
 bit(1) mode;
 bit(1) hasESID;
 bit(8) dependencyLength;
 if (hasESID)
 {
 bit(16) ESID;
 }
}
class MarkerDescriptor extends SLExtensionDescriptor: bit(8)
tag=DependencyMarkerTag {
 int(8) markerLength;
}

7.3.2.3.4 SLExtentionDescriptor Semantics

SLExtensionDescriptor is an abstract class specified so as to be the base class of sl extensions.

7.3.2.3.4.1 DependencyPointer Semantics

DependencyPointer extends SLExtensionDescriptor and specifies that access units from this stream depend
on another stream.

If mode equals 0, the latter stream can be identified through the ESID field or if no ESID is present, using the
dependsOn_ES_ID ESID, and access units from this stream will point to the decodingTimeStamps of that
stream.

If mode equals 1, access units from this stream will convey identifiers, for which the system (e.g. IPMP tools)
are responsible to know whether dependent resources (e.g. keys) are available.

In both cases, the length of this pointer or identifier is dependencyLength.

If mode is 0 then dependencyLength shall be the length of the decodingTimeStamp.

7.3.2.3.4.2 MarkerDescriptor Semantics

MarkerDescriptor extends SLExtensionDescriptor and allows to tag access units so as to be able to refer to
them independently from their decodingTimeStamp.

markerLength – is the length for identifiers tagging access units.

7.3.2.4 SL Packet Header Specification

7.3.2.4.1 Syntax

aligned(8) class SL_PacketHeader (SLConfigDescriptor SL) {
 if (SL.useAccessUnitStartFlag)
 bit(1) accessUnitStartFlag;
 if (SL.useAccessUnitEndFlag)
 bit(1) accessUnitEndFlag;
 if (SL.OCRLength>0)

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
,
,
,
,
`
,
`
,
`
,
`
,
`
,
,
`
,
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/IEC 14496-1:2010(E)

84 © ISO/IEC 2010 – All rights reserved

 bit(1) OCRflag;
 if (SL.useIdleFlag)
 bit(1) idleFlag;
 if (SL.usePaddingFlag)
 bit(1) paddingFlag;
 if (paddingFlag)
 bit(3) paddingBits;

 if (!idleFlag && (!paddingFlag || paddingBits!=0)) {
 if (SL.packetSeqNumLength>0)
 bit(SL.packetSeqNumLength) packetSequenceNumber;
 if (SL.degradationPriorityLength>0)
 bit(1) DegPrioflag;
 if (DegPrioflag)
 bit(SL.degradationPriorityLength) degradationPriority;
 if (OCRflag)
 bit(SL.OCRLength) objectClockReference;

 if (accessUnitStartFlag) {
 if (SL.useRandomAccessPointFlag)
 bit(1) randomAccessPointFlag;
 if (SL.AU_seqNumLength >0)
 bit(SL.AU_seqNumLength) AU_sequenceNumber;
 if (SL.useTimeStampsFlag) {
 bit(1) decodingTimeStampFlag;
 bit(1) compositionTimeStampFlag;
 }
 if (SL.instantBitrateLength>0)
 bit(1) instantBitrateFlag;
 if (decodingTimeStampFlag)
 bit(SL.timeStampLength) decodingTimeStamp;
 if (compositionTimeStampFlag)
 bit(SL.timeStampLength) compositionTimeStamp;
 if (SL.AU_Length > 0)
 bit(SL.AU_Length) accessUnitLength;
 if (instantBitrateFlag)
 bit(SL.instantBitrateLength) instantBitrate;
 }
 if (SL.tag == ExtSLConfigDescrTag)
 {
 for (int i=0; i<SL.slextDescr.length;i++)
 {
 switch(SL.slextDescr[i].tag)
 {
 case DependencyPointerTag:
 Marker(SL.slextDescr[i].dependencyLength) value;
 break;
 case DependencyMarkerTag:
 Marker(SL.slextDescr[i].markerLength) value;
 break;
 default:
 break;
 }
 }
 }
 }
}

aligned expandable class Marker(int length) {
 bit(length) value;
}

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
,
,
,
,
`
,
`
,
`
,
`
,
`
,
,
`
,
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/IEC 14496-1:2010(E)

© ISO/IEC 2010 – All rights reserved 85

7.3.2.4.2 Semantics

accessUnitStartFlag – when set to one indicates that the first byte of the payload of this SL packet is the
start of an access unit. If this syntax element is omitted from the SL packet header configuration its default
value is known from the previous SL packet with the following rule:

 accessUnitStartFlag = (previous-SL packet has accessUnitEndFlag==1) ? 1 : 0.

accessUnitEndFlag – when set to one indicates that the last byte of the SL packet payload is the last byte
of the current access unit. If this syntax element is omitted from the SL packet header configuration its default
value is only known after reception of the subsequent SL packet with the following rule:

 accessUnitEndFlag = (subsequent-SL packet has accessUnitStartFlag==1) ? 1 : 0.

If neither AccessUnitStartFlag nor AccessUnitEndFlag are configured into the SL packet header this
implies that each SL packet corresponds to a single access unit, hence both accessUnitStartFlag =
accessUnitEndFlag = 1.

NOTE — When the SL packet header is configured to use accessUnitStartFlag but neither accessUnitEndFlag
nore accessUnitLength, it is not guaranteed that the terminal can determine the end of an access unit before the
subsequent one is received.

OCRflag – when set to one indicates that an objectClockReference will follow. The default value for
OCRflag is zero.

idleFlag – indicates that this elementary stream will be idle (i.e., not produce data) for an undetermined
period of time. This flag may be used by the decoder to discriminate between deliberate and erroneous
absence of subsequent SL packets.

paddingFlag – indicates the presence of padding in this SL packet. The default value for paddingFlag is
zero.

paddingBits – indicate the mode of padding to be used in this SL packet. The default value for
paddingBits is zero.

If paddingFlag is set and paddingBits is zero, this indicates that the subsequent payload of this SL
packet consists of padding bytes only. accessUnitStartFlag, randomAccessPointFlag and
OCRflag shall not be set if paddingFlag is set and paddingBits is zero.

If paddingFlag is set and paddingBits is greater than zero, this indicates that the payload of this SL
packet is followed by paddingBits of zero stuffing bits for byte alignment of the payload.

packetSequenceNumber – if present, it shall be continuously incremented for each SL packet as a modulo
counter. A discontinuity at the decoder corresponds to one or more missing SL packets. In that case, an error
shall be signalled to the sync layer user. If this syntax element is omitted from the SL packet header
configuration, continuity checking by the sync layer cannot be performed for this elementary stream.

Duplication of SL packets: elementary streams that have a sequenceNumber field in their SL packet
headers may use duplication of SL packets for error resilience. The duplicated SL packet(s) shall immediately
follow the original. The packetSequenceNumber of duplicated SL packets shall have the same value and
each byte of the original SL packet shall be duplicated, with the exception of an objectClockReference
field, if present, which shall encode a valid value for the duplicated SL packet.

degPrioFlag - when set to one indicates that degradationPriority is present in this packet.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
,
,
,
,
`
,
`
,
`
,
`
,
`
,
,
`
,
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/IEC 14496-1:2010(E)

86 © ISO/IEC 2010 – All rights reserved

degradationPriority – indicates the importance of the payload of this SL packet. The streamPriority
defines the base priority of an ES. degradationPriority defines a decrease in priority for this SL packet
relative to the base priority. The priority for this SL packet is given by:

 SL_PacketPriority = streamPriority – degradationPriority

degradationPriority remains at this value until its next occurrence. This indication may be for graceful
degradation by the decoder of this elementary stream as well as by the adaptor to a specific delivery layer
instance. The relative amount of complexity degradation among SL packets of different elementary streams
increases as SL_PacketPriority decreases.

objectClockReference – contains an Object Clock Reference time stamp. The OTB time value t is
reconstructed from this OCR time stamp according to the following formula:

t = (objectClockReference/SL.OCRResolution)+ k*(2SL.OCRLength/SL.OCRResolution)

where k is the number of times that the objectClockReference counter has wrapped around.

objectClockReference is only present in the SL packet header if OCRflag is set.

NOTE — It is possible to convey just an OCR value and no payload within an SL packet.

The following is the semantics of the syntax elements that are only present at the start of an access unit when
explicitly signaled by accessUnitStartFlag in the bitstream:

randomAccessPointFlag – when set to one indicates that random access to the content of this elementary
stream is possible here. randomAccessPointFlag shall only be set if accessUnitStartFlag is set. If
this syntax element is omitted from the SL packet header configuration, its default value is the value of
SLConfigDescriptor.hasRandomAccessUnitsOnlyFlag for this elementary stream.

AU_sequenceNumber – if present, successive access units shall either have the same sequence number or
the value be continuously incremented as a modulo counter. A discontinuity at the decoder corresponds to
one or more missing access units. In that case, an error shall be signaled to the sync layer user.

Duplication of access units: Access units sent using the same sequence number as the immediately
preceding AU shall be ignored if and only if the second access unit is a random access point. Such a repeated
access unit, where the first did not have RAP set but the repeated one does, allows random access points to
be added to a broadcast stream, permitting clients to enter the stream at defined points during its transmission,
whilst not disrupting clients already receiving the stream. On the other hand, reception of two access units
with the same sequence number, when the second is not a RAP, means that the two access units refer to the
same key state of the scene. I.e. the second access unit can be safely processed by the decoder even if it is
known to the decoder that one or more access units that originally existed between the two were lost on the
network.

decodingTimeStampFlag – indicates that a decoding time stamp is present in this packet.

compositionTimeStampFlag – indicates that a composition time stamp is present in this packet.

accessUnitLengthFlag – indicates that the length of this access unit is present in this packet.

instantBitrateFlag – indicates that an instantBitrate is present in this packet.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
,
,
,
,
`
,
`
,
`
,
`
,
`
,
,
`
,
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/IEC 14496-1:2010(E)

© ISO/IEC 2010 – All rights reserved 87

decodingTimeStamp – is a decoding time stamp as configured in the associated SLConfigDescriptor.
The decoding time td of this access unit is reconstructed from this decoding time stamp according to the
formula:

td = (decodingTimeStamp/SL.timeStampResolution + k *
2SL.timeStampLength/SL.timeStampResolution

where k is the number of times that the decodingTimeStamp counter has wrapped around.

A decodingTimeStamp shall only be present if the decoding time is different from the composition time for
this access unit.

compositionTimeStamp – is a composition time stamp as configured in the associated
SLConfigDescriptor. The composition time tc of the first composition unit resulting from this access unit
is reconstructed from this composition time stamp according to the formula:

td = (compositionTimeStamp/SL.timeStampResolution + k *
2SL.timeStampLength/SL.timeStampResolution

where k is the number of times that the compositionTimeStamp counter has wrapped around.

accessUnitLength – is the length of the access unit in bytes. If this syntax element is not present or has
the value zero, the length of the access unit is unknown.

instantBitrate – is the instantaneous bit rate in bits per second of this elementary stream until the next
instantBitrate field is found.

If the SLConfigDescriptor is an ExtendedSLConfigDescriptor (i.e. its tag is
ExtSLConfigDescrTag), then descriptors associated with the array of SLExtensionDescriptors are
appended to the end of the SLPacket Header.

Note – Since those descriptors conveying the extended SL information; carry their size, they can be skipped by a decoder.

DependencyPointerDescriptor and MarkerDescriptor define their associated descriptors as follows :

For DependencyPointerDescriptor a Marker of length dependencyLength will be encoded. It shall resolve
either to an identifier or to a decodingTimeStamp as specified in 7.3.2.3.4.1.

For MarkerDescriptor a marker of length markerLength is encoded.

7.3.2.5 Clock Reference Stream

An elementary stream of streamType = ClockReferenceStream may be declared by means of the object
descriptor. It is used for the sole purpose of conveying Object Clock Reference time stamps. Multiple
elementary streams in a name scope may make reference to such a ClockReferenceStream by means of the
OCR_ES_ID syntax element in the SLConfigDescriptor to avoid redundant transmission of Clock
Reference information. Note, however, that circular references between elementary streams using
OCR_ES_ID are not permitted.

On the sync layer a ClockReferenceStream is realized by configuring the SL packet header syntax for this SL-
packetized stream such that only OCR values of the required OCRresolution and OCRlength are present
in the SL packet header.

There shall not be any SL packet payload present in an SL-packetized stream of streamType =
ClockReferenceStream.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
,
,
,
,
`
,
`
,
`
,
`
,
`
,
,
`
,
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/IEC 14496-1:2010(E)

88 © ISO/IEC 2010 – All rights reserved

In the DecoderConfigDescriptor for a clock reference stream ObjectTypeIndication shall be set to
'0xFF', hasRandomAccessUnitsOnlyFlag to one and bufferSizeDB to '0'.

The following indicates recommended values for the SLConfigDescriptor of a Clock Reference Stream:

Table 15 — SLConfigDescriptor parameter values for a ClockReferenceStream

useAccessUnitStartFlag 0
useAccessUnitEndFlag 0
useRandomAccessPointFlag 0
usePaddingFlag 0
useTimeStampsFlag 0
useIdleFlag 0
durationFlag 0
timeStampResolution 0
timeStampLength 0
AU_length 0
degradationPriorityLength 0
AU_seqNumLength 0

7.3.2.6 Restrictions for elementary streams sharing the same object time base

While it is possible to share an object time base between multiple elementary streams through OCR_ES_ID, a
number of restrictions for the access to and processing of these elementary streams exist as follows:

1. When several elementary streams share a single object time base, the elementary streams without
embedded object clock reference information shall not be used by the player, even if accessible, until the
elementary stream carrying the object clock reference information becomes accessible (see 7.2.7.3 for the
stream access procedure).

2. If an elementary stream without embedded object clock reference information is made available to the
terminal at a later point in time than the elementary stream carrying the object clock reference information,
it shall be delivered in synchronization with the other stream(s). Note that this implies that such a stream
might not start playing from its beginning, depending on the current value of the object time base.

3. When an elementary stream carrying object clock reference information becomes unavailable or is
otherwise manipulated in its delivery (e.g., paused), all other elementary streams which use the same
object time base shall follow this behavior, i.e., become unavailable or be manipulated in the same way.

4. When an elementary stream without embedded object clock reference information becomes unavailable
this has no influence on the other elementary streams that share the same object time base.

7.3.2.7 Usage of configuration options for object clock reference and time stamp values

7.3.2.7.1 Resolution of ambiguity in object time base recovery

Due to the limited length of objectClockReference values these time stamps may be ambiguous. The
OTB time value can be reconstructed each time an objectClockReference is transmitted in the headers of
an SL packet according to the following formula:

tOTB_reconstructed=(objectClockReference/SL.OCRResolution)+k*(2SL.OCRLength/SL.OCRResolution)

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
,
,
,
,
`
,
`
,
`
,
`
,
`
,
,
`
,
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/IEC 14496-1:2010(E)

© ISO/IEC 2010 – All rights reserved 89

with k being an integer value denoting the number of wrap-arounds. The resulting time base tOTB_reconstructed is
measured in seconds.

When the first objectClockReference for an elementary stream is acquired, the value k shall be set to
one. For each subsequent occurence of objectClockReference the value k is estimated as follows:

The terminal shall implement a mechanism to estimate the value of the object time base for any time instant.

Each time an objectClockReference is received, the current estimated value of the OTB tOTB_estimated shall
be sampled. Then, tOTB_rec(k) is evaluated for different values of k. The value k that minimizes the term |
tOTB_estimated - tOTB_rec(k)| shall be assumed to yield the correct value of tOTB_reconstructed. This value may be used
as new input to the object time base estimation mechanism.

The application shall ensure that this procedure yields an unambiguous value of k by selecting an appropriate
length and resolution of the objectClockReference element and a sufficiently high frequency of insertion
of objectClockReference values in the elementary stream. The choices for these values depend on the
delivery jitter for SL packets as well as the anticipated maximum drift between the clocks of the transmitting
and receiving terminal.

7.3.2.7.2 Resolution of ambiguity in time stamp recovery

Due to the limited length of decodingTimeStamp and compositionTimeStamp values these time stamps
may become ambiguous according to the following formula:

tts(m)=(TimeStamp/SL.timeStampResolution)+m*(2SL.timeStampLength/SL.timeStampResolution)

with TimeStamp being either a decodingTimeStamp or a compositionTimeStamp and m being an
integer value denoting the number of wrap-arounds.

The correct value ttimestamp of the time stamp can be estimated as follows:

Each time a TimeStamp is received, the current estimated value of the OTB tOTB_estimated shall be sampled.
tts(m) is evaluated for different values of m. The value m that minimizes the term | tOTB_estimated – tts(m)| shall be
assumed to yield the correct value of ttimestamp.

The application may choose, separately for every individual elementary stream, the length and resolution of
time stamps so as to match its requirements on unambiguous positioning of time events. This choice depends
on the maximum time that an SL packet with a TimeStamp may be sent prior to the point in time indicated by
the TimeStamp as well as the required precision of temporal positioning.

7.3.2.7.3 Usage considerations for object clock references and time stamps

The time line of an object time base allows to discriminate two time instants separated by more than
1/SL.OCRResolution. OCRResolution should be chosen sufficiently high to match the accuracy needed
by the application to synchronize a set of elementary streams.

The decoding and composition time stamp allow to discriminate two time instants separated by more than
1/SL.timeStampResolution. timeStampResolution should be chosen sufficiently high to match the
accuracy needed by the application in terms of positioning of access units for a given elementary stream.

A TimeStampResolution higher than the OCRResolution will not achieve better discrimination between
events. If TimeStampResolution is lower than the OCRResolution, events for this specific stream
cannot be positioned with the maximum precision possible with this given OCRResolution.

The parameter OCRLength is signaled in the SL header configuration. 2SL.OCRLength/SL.OCRResolution is
the time interval covered by the objectClockReference counter before it wraps around. OCRLength

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

--`,`,,,,`,`,`,`,`,,`,``,,,``-`-`,,`,,`,`,,`---

ISO/IEC 14496-1:2010(E)

90 © ISO/IEC 2010 – All rights reserved

should be chosen sufficiently high to match the application needs for unambiguous positioning of time events
from a set of elementary streams.

When an application knows the value k defined in 7.3.2.7.1, the OTB time line is unambiguous for any time
value. When the application cannot reconstruct the k factor, as for example in any application that permits
random access without additional side information, the OTB time line is ambiguous modulo
2SL.OCRLength/SL.OCRResolution. Therefore, any time stamp refering to this OTB is ambiguous. Therefore,
any time stamp refering to this OTB is ambiguous. It may, however, be considered unambiguous within an
application environment through knowledge about the maximum expected delivery jitter and constraints on the
time by which an access unit can be sent prior to its decoding time.

Note that elementary streams that choose the time interval 2SL.timeStampLength/SL.timeStampResolution
higher than 2SL.OCRLength/SL.OCRResolution can still only position time events unambiguously in the
smaller of the two intervals.

In cases, where k and m can not be estimated correctly, the buffer model may be violated, resulting in
unpredictable performance of the decoder.

EXAMPLE ⎯ Let’s assume an application that wants to synchronize elementary streams with a precision of 1 ms.
OCRResolution should be chosen equal to or higher than 1000 (the time between two successive ticks of the OCR is
then equal to 1ms). Let’s assume OCRResolution=2000.

The application assumes a drift between the STB and the OTB of 0.1% (i.e. 1ms every second). The clocks
need therefore to be adjusted at least every second (i.e. in the worst case, the clocks will have drifted 1ms
which is the precision constraint). Let’s assume that objectClockReference are sent every 1s.

The application wants to have an unambiguous OTB time line of 24h without need to reconstruct the k factor.
The OCRLength is therefore chosen accordingly such that 2SL.OCRLength/SL.OCRResolution=24h.

Let’s assume now that the application wants to synchronize events within a single elementary stream with a
precision of 10 ms. TimeStampResolution should be chosen equal to or higher than 100 (the time
between two successive ticks of the TimeStamp is then equal to 10ms). Let’s assume
TimeStampResolution=200.

The application wants to be able to send access units at maximum 1 minute ahead of their decoding or
composition time. The timeStampLength is therefore chosen as

2SL.timeStampLength/SL.timeStampResolution = 2 minutes.

7.3.3 DMIF Application Interface

The DMIF Application Interface is a conceptual interface that specifies which data need to be exchanged
between the sync layer and the delivery mechanism. Communication between the sync layer and the delivery
mechanism includes SL-packetized data as well as additional information to convey the length of each SL
packet.

An implementation of ISO/IEC 14496-1 does not have to expose the DMIF Application Interface. A terminal
compliant with ISO/IEC 14496-1, however, shall have the functionality described by the DAI to be able to
receive the SL packets that constitute an SL-packetized stream. Specifically, the delivery mechanism below
the sync layer shall supply a method to frame or otherwise encode the length of the SL packets transported
through it.

The DMIF Application Interface specified in ISO/IEC 14496-6 embodies a superset of the required data
delivery functionality. The DAI has data primitives to receive and send data, which include indication of the
data size. With this interface, each invocation of a DA_Data or a DA_DataCallback shall transfer one SL
packet between the sync layer and the delivery mechanism below.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

--`,`,,,,`,`,`,`,`,,`,``,,,``-`-`,,`,,`,`,,`---

ISO/IEC 14496-1:2010(E)

© ISO/IEC 2010 – All rights reserved 91

7.4 Multiplexing of Elementary Streams

7.4.1 Introduction

Elementary stream data encapsulated in SL-packetized streams are sent/received through the DMIF
Application Interface, as specified in 7.3. Multiplexing procedures and the architecture of the delivery protocol
layers are outside the scope of ISO/IEC 14496-1. However, care has been taken to define the sync layer
syntax and semantics such that SL-packetized streams can be easily embedded in various transport protocol
stacks.

The analysis of existing transport protocol stacks has shown that, for stacks with fixed length packets (e.g.,
MPEG-2 Transport Stream) or with high multiplexing overhead (e.g., RTP/UDP/IP), it may be advantageous to
have a generic, low complexity multiplexing tool that allows interleaving of data with low overhead and low
delay. This is particularly important for low bit rate applications. Such a multiplex tool is specified in this
Subclause. Its use is optional.

7.4.2 M4Mux Tool

7.4.2.1 Overview

The M4Mux tool is a flexible multiplexer that accommodates interleaving of SL-packetized streams with
varying instantaneous bit rate. The basic data entity of the M4Mux is a M4Mux packet, which has a variable
length. One or more SL packets are embedded in a M4Mux packet as specified in detail in the remainder of
this Subclause. The M4Mux tool provides identification of SL packets originating from different elementary
streams by means of M4Mux Channel numbers. Each SL-packetized stream is mapped into one M4Mux
Channel. M4Mux packets with data from different SL-packetized streams can therefore be arbitrarily
interleaved. The sequence of M4Mux packets that are interleaved into one stream are called a M4Mux Stream.

A M4Mux Stream retrieved from storage or transmission may be parsed as a single data stream. However,
framing of M4Mux packets by the underlying layer is required for random access or error recovery. There is no
requirement to frame each individual M4Mux packet. The M4Mux also requires reliable error detection by the
underlying layer. This design has been chosen acknowledging the fact that framing and error detection
mechanisms are in many cases provided by the transport protocol stack below the M4Mux.

Two different modes of operation of the M4Mux providing different features and complexity are defined. They
are called Simple Mode and MuxCode Mode. A M4Mux Stream may contain an arbitrary mixture of M4Mux
packets using either Simple Mode or MuxCode Mode. The syntax and semantics of both modes are specified
below.

The delivery timing of the M4Mux Stream can be conveyed by means of M4Mux clock reference time stamps.
This functionality may be used to establish a multiplex buffer model on the delivery layer. Both the time
stamps and the MuxCode Mode require out-of-band configuration prior to usage.

7.4.2.2 Simple Mode

In the simple mode one SL packet is encapsulated in one M4Mux packet and tagged by an index which is
equal to the M4Mux Channel number as indicated in Figure 11. This mode does not require any configuration
or maintenance of state by the receiving terminal.

 M4Mux-Packet

Payload Header

SL-Packet length index

Figure 11 — Structure of M4Mux packet in simple mode

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
,
,
,
,
`
,
`
,
`
,
`
,
`
,
,
`
,
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/IEC 14496-1:2010(E)

92 © ISO/IEC 2010 – All rights reserved

7.4.2.3 MuxCode mode

In the MuxCode mode one or more SL packets are encapsulated in one M4Mux packet as indicated in Figure
12. This mode requires configuration and maintenance of state by the receiving terminal. The configuration
describes how M4Mux packets are shared between multiple SL packets. In this mode the index value is
used to dereference configuration information that defines the allocation of the M4Mux packet payload to
different M4Mux Channels.

....... SL-Packet SL-Packetversion SL-Packet length index

....... H PayloadH Payld H Payload

M4Mux-Packet

Figure 12 — Structure of M4Mux packet in MuxCode mode

7.4.2.4 M4Mux packet specification

7.4.2.4.1 Syntax

class M4MuxPacket (MuxCodeTableEntry mct[],
 M4MuxTimingDescriptor FM,
 M4MuxIDDescriptor mde) {
 unsigned int(8) index;
 if (mde == NULL | mde.Muxtype == 0) {
 bit(8) length;
 } else if (mde.Muxtype == 1) {
 length = 0;
 bit(1) nextByte;
 bit(7) length;
 while(nextByte) {
 bit(1) nextByte;
 bit(7) sizeByte;
 length = length<<7 | sizeByte;
 }
 }
 if (index<238) {
 if (length!=0) {
 SL_Packet sPayload;
 } else {
 bit(5) FMC_version_number;
 const bit(3) reserved=0b111;
 }
 } else if (index == 238) {
 bit(FM.FCR_Length) fmxClockReference;
 bit(FM.fmxRateLength) fmxRate;
 for (i=0; i<(length-FM.FCR_Length-FM.fmxRateLength); i++) {
 M4Mux_descriptor()
 }
 } else if (index == 239) {
 bit(8) stuffing[length];
 } else {
 bit(4) version;
 const bit(4) reserved=0b1111;
 multiple_SL_Packet mPayload(mct[index-240]);
 }
}

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
,
,
,
,
`
,
`
,
`
,
`
,
`
,
,
`
,
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/IEC 14496-1:2010(E)

© ISO/IEC 2010 – All rights reserved 93

7.4.2.4.2 Semantics

length – the length of the M4Mux packet payload in bytes. This is equal to the length of the single
encapsulated SL packet in Simple Mode and to the total length of the multiple encapsulated SL packets in
MuxCode Mode. If the M4MuxIDDescriptor is not used, or if it is used and if the Muxtype is designing the first
M4Mux tool, the length field is on one byte. If the M4MuxIDDescriptor is used and if the Muxtype is designing
the second M4Mux tool, the length calculation relies on the combination of the nextByte and sizeByte
fields that can be spread over several bytes. In Simple Mode, when this length is equal to zero, the M4Mux
packet carries one byte that contains the FMC_version_number field. In Simple Mode, M4Mux packets with a
length equal to zero (each carrying a FMC_version_number)can be duplicated.

FMC_version_number – This 5 bit field indicates the current version of the M4MuxChannelDescriptor that is
applicable. FMC_version_number is used for error resilience purposes. If this version number does not
match the version of the referenced M4MuxChannelDescriptor that has most recently been received, the
following M4Mux packets belonging to the same M4Mux Channel cannot be parsed. The implementation is
free to either wait until the required version of M4MuxChannelDescriptor becomes available or to discard the
following M4Mux packets belonging to the same M4Mux Channel. In Simple Mode, the value given to the
FMC_version_number field is identical in subsequent duplicated M4Mux packets with a length equal to zero.

7.4.2.5 Configuration and usage of MuxCode Mode

7.4.2.5.1 Syntax

aligned(8) class MuxCodeTableEntry {
 int i, k;
 bit(8) length;
 bit(4) MuxCode;
 bit(4) version;
 bit(8) substructureCount;
 for (i=0; i<substructureCount; i++) {
 bit(5) slotCount;
 bit(3) repetitionCount;
 for (k=0; k<slotCount; k++){
 bit(8) m4MuxChannel[[i]][[k]];
 bit(8) numberOfBytes[[i]][[k]];
 }
 }
}

7.4.2.5.2 Semantics

The configuration for MuxCode Mode is signaled by MuxCodeTableEntry messages. The transport of the
MuxCodeTableEntry shall be defined during the design of the transport protocol stack that makes use of
the M4Mux tool. Part 6 of this Final Committee Draft of International Standard defines a method to convey this
information using the DN_TransmuxConfig primitive.

The basic requirement for the transport of the configuration information is that data arrives reliably in a timely
manner. However, no specific performance bounds are required for this control channel since version
numbers allow to detect M4Mux packets that cannot currently be decoded and, hence, trigger suitable action
in the receiving terminal.

length – the length in bytes of the remainder of the MuxCodeTableEntry following the length element.

MuxCode – the number through which this MuxCode table entry is referenced.

version – indicates the version of the MuxCodeTableEntry. Only the latest received version of a
MuxCodeTableEntry is valid.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

--`,`,,,,`,`,`,`,`,,`,``,,,``-`-`,,`,,`,`,,`---

ISO/IEC 14496-1:2010(E)

94 © ISO/IEC 2010 – All rights reserved

substructureCount – the number of substructures of this MuxCodeTableEntry.

slotCount – the number of slots with data from different M4Mux Channels that are described by this
substructure.

repetitionCount – indicates how often this substructure is to be repeated. A repetitionCount zero
indicates that this substructure is to be repeated infinitely. repetitionCount zero is only permitted in the
last substructure of a MuxCodeTableEntry.

M4MuxChannel[i][k] – the M4Mux Channel to which the data in this slot belongs.

numberOfBytes[i][k] – the number of data bytes in this slot associated to m4MuxChannel[i][k]. This
number of bytes corresponds to one SL packet.

7.4.2.5.3 Usage

The MuxCodeTableEntry describes how a M4Mux packet is partitioned into slots that carry data from
different M4Mux Channels. This is used as a template for parsing M4Mux packets. If a M4Mux packet is
longer than the template, parsing shall resume from the beginning of the template. If a M4Mux packet is
shorter than the template, the remainder of the template is ignored.

Note that the usage of MuxCode mode may not be efficient if SL packets for a given elementary stream do not
have a constant length. Given the overhead for an update of the associated MuxCodeTableEntry, usage of
simple mode might be more efficient.

Note further that data for a single M4Mux channel may be conveyed through an arbitrary sequence of M4Mux
packets with both simple mode and MuxCode mode.

EXAMPLE ⎯

In this example we assume the presence of three substructures. Each one has a different slot count as well as repetition
count. The exact parameters are as follows:

substructureCount = 3

slotCount[i] = 2, 3, 2 (for the corresponding substructure)

repetitionCount[i] = 3, 2, 1 (for the corresponding substructure)

We further assume that each slot configures channel number FMCn (m4MuxChannel) with a number of bytes Bytesn
(numberOfBytes). This configuration would result in a splitting of the M4Mux packet payload to:

FMC1 (Bytes1), FMC2 (Bytes2) repeated 3 times, then

FMC3 (Bytes3), FMC4 (Bytes4), FMC5 (Bytes5) repeated 2 times, then

FMC6 (Bytes6), FMC7 (Bytes7) repeated once

The layout of the corresponding M4Mux packet would be as shown in Figure 13.

M4Mux-Packet

F
M
C
1

v
e
r
s
i
o
n

l
e
n
g
t
h

I
n
d
e
x

F
M
C
2

F
M
C
1

F
M
C
2

F
M
C
1

F
M
C
2

F
M
C
3

F
M
C
4

F
M
C
5

F
M
C
3

F
M
C
4

F
M
C
5

F
M
C
6

F
M
C
7

Figure 13 — Example for a M4Mux packet in MuxCode mode

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

--`,`,,,,`,`,`,`,`,,`,``,,,``-`-`,,`,,`,`,,`---

ISO/IEC 14496-1:2010(E)

© ISO/IEC 2010 – All rights reserved 95

7.4.2.6 Configuration and usage of M4Mux clock references

7.4.2.6.1 Syntax

aligned(8) class M4MuxTimingDescriptor {
 bit(16) FCR_ES_ID;
 bit(32) FCRResolution;
 bit(8) FCRLength;
 bit(8) FmxRateLength;
}

7.4.2.6.2 Semantics

The sequence of fmxClockReference time stamps in a M4Mux stream constitutes a clock reference
stream, albeit with a different syntax as specified in 7.3. Elementary streams shall be associated to the time
base established by this clock reference by referencing the FCR_ES_ID as their OCR_ES_ID in the
SLConfigDescriptor. The transport of the M4MuxTimingDescriptor shall be defined during the design
of the transport protocol stack that makes use of the M4Mux tool.

7.4.2.6.3 Usage

The M4Mux clock reference time stamps may be used to establish and verify a multiplex buffer model. The
fmxClockReference information determines the arrival time t(i) of individual bytes i of the M4Mux stream in
the following way:

)(
''

Re
)''()(

ifmxRate
ii

solutionFCR
iFCRit −+=

where:

i is the index of any byte in the M4Mux stream for i'' < i < i'

i'' is the index of the byte containing the last bit of the most recent fmxClockReference field
in the M4Mux stream

FCR(i'') is the time encoded in the fmxClockReference in units of FCRResolution

fmxRate(i) indicates the rate specified by the fmxRate field for byte i

7.4.2.7 M4Mux buffer descriptor

7.4.2.7.1 Syntax

aligned(8) class M4MuxBufferDescriptor {
 bit(8) m4MuxChannel;
 bit(24) FB_BufferSize;
}

7.4.2.7.2 Semantics

The size of multiplex buffers for each M4Mux channel is signaled by M4MuxBufferDescriptors. One
descriptor per M4Mux channel is required unless the DefaultM4MuxBufferDescriptor is used. The
transport of the M4MuxBufferDescriptors shall be defined during the design of the transport protocol
stack that makes use of the M4Mux tool.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
,
,
,
,
`
,
`
,
`
,
`
,
`
,
,
`
,
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/IEC 14496-1:2010(E)

96 © ISO/IEC 2010 – All rights reserved

m4MuxChannel - the number of a M4Mux channel

FB_BufferSize - the size of the M4Mux buffer for this M4Mux channel in bytes.

7.4.2.8 Default M4Mux buffer descriptor

7.4.2.8.1 Syntax

aligned(8) class DefaultM4MuxBufferDescriptor {
 bit(24) FB_DefaultBufferSize;
}

7.4.2.8.2 Semantics

The default size of multiplex buffers for each individual channel in a M4Mux stream is signaled by the
DefaultM4MuxBufferDescriptor. M4Mux channels that use a different buffer size may signal this using
the M4MuxBufferDescriptor. The transport of the DefaultM4MuxBufferDescriptor shall be defined
during the design of the transport protocol stack that makes use of the M4Mux tool.

FB_DefaultBufferSize - the default size of M4Mux buffers for this M4Mux stream in bytes.

7.4.2.9 M4Mux buffer model

Rbx

FB 1

FB 2

FB m

FBn is the M4Mux buffer for the elementary stream in M4Mux channel n

Rbx is the rate at which data enters the M4Mux buffers.

The M4Mux buffer model applies to M4Mux streams that utilize M4Mux Clock reference channel packets to
define the delivery timing of the M4Mux stream. The M4Mux stream enters the M4Mux buffer model at the
rate and timing as defined by the fmxClockReference and fmxRate fields. There may be some periods of time
during which there are no bytes at the input of the M4Mux buffer model, but the bytes of all M4Mux packets
that preceed the next M4Mux Clock reference channel packet shall be delivered to the M4Mux buffer model
prior to the delivery of any byte of the next M4Mux Clock reference channel packet.

For each M4Mux channel i the M4Mux packet is stored in M4Mux Buffer FBi. The bytes in buffer FBi are
removed at a rate specified by the InstantRate field in the SL header of the contained SL-packetized stream.
Upon removal each byte enters the elementary stream buffer DBi. The M4Mux stream shall be constructed so
that the following condition is met :

• Buffer FBi shall not overflow.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

--`,`,,,,`,`,`,`,`,,`,``,,,``-`-`,,`,,`,`,,`---

ISO/IEC 14496-1:2010(E)

© ISO/IEC 2010 – All rights reserved 97

7.4.2.10 M4MuxID Descriptor

7.4.2.10.1 Syntax

aligned(8) class M4MuxIDDescriptor {
 bit(8) MuxID;
 bit(4) Muxtype;
 bit(4) Muxmanagement;
}

7.4.2.10.2 Semantics

MuxID – the ID of the M4Mux stream.

Muxtype – the type of the Multiplexing tool used to generate the M4Mux stream. Indicated type value shall
comply with the following Table 16 — Multiplexing type table.

Muxmanagement – the mode of management used by the Multiplexing tool, to generate the M4Mux stream.
Indicated mode value shall comply with Table 17 — Multiplexing management mode table.

Table 16 — Multiplexing type table

Type Multiplexing tool

0 M4Mux tool
1 M4Mux_2 tool
2-7 ISO/IEC 14496-1 Reserved
8-15 User Private

Table 17 — Multiplexing management mode table

Type management mode

0 Static
1 Dynamic
2-7 ISO/IEC 14496-1 Reserved
8-15 User Private

7.4.3 M4Mux Descriptors

Directly derived from the M4Mux descriptor classes, hereafter are defined the M4Mux descriptors pointed to
by the “List of Class Tags for Descriptors” table.

7.4.3.1 M4MuxChannelDescriptor

7.4.3.1.1 Syntax

class M4MuxChannelDescriptor extends BaseDescriptor
: bit(8) tag= M4MuxChannelDescrTag {

 bit(5) version_number;
 bit(1) current_next_indicator;
 const bit(2) reserved=0b11;
 for (i=0; i<(sizeOfInstance-2); i += 3) {
 bit(16) ES_ID;
 bit(8) M4MuxChannel;
 }
}

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
,
,
,
,
`
,
`
,
`
,
`
,
`
,
,
`
,
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/IEC 14496-1:2010(E)

98 © ISO/IEC 2010 – All rights reserved

7.4.3.1.2 Semantics

version_number -- This 5 bit field is the version number of the complete M4MuxChannelDescriptor.
The version number shall be incremented by 1 whenever the definition of the M4MuxChannelDescriptor
changes. Upon reaching the value 31, it wraps around to 0. When the current_next_indicator is set to
'1', then the version_number shall be that of the currently applicable M4MuxChannelDescriptor. When
the current_next_indicator is set to '0', then the version_number shall be that of the next applicable
M4MuxChannelDescriptor.

current_next_indicator -- A 1 bit indicator, which when set to '1' indicates that the received
M4MuxChannelDescriptor is currently applicable. When the bit is set to '0', it indicates that the received
M4MuxChannelDescriptor is not yet applicable and shall be the next M4MuxChannelDescriptor to
become valid.

A validity period of time is associated with each version_number of a M4MuxChannelDescriptor. It is
only within that validity period of time, that M4Mux packets refer to the version identified by that
version_number. The validity period of time of one version starts as soon as the first
M4MuxChannelDescriptor is sent with the current_next_indicator == 1.

The validity period of time of one version ends as soon as an empty M4MuxChannelDescriptor is sent
with the current_next_indicator == 1, meaning that the assignements of that version of the
M4MuxChannelDescriptor are not any more relevant.

An empty M4MuxChannelDescriptor is a M4MuxChannelDescriptor shall be sent with
sizeOfInstance == 1, such that there are no elementary streams described.

ES_ID – this 16-bit field specifies the identifier of an ISO/IEC 14496-1 SL-packetized stream.

M4MuxChannel - This 8-bit field specifies the number of the M4Mux channel used for this SL-packetized
stream.

7.4.3.2 M4MuxBufferSize Descriptor

7.4.3.2.1 Syntax

class M4MuxBufferSizeDescriptor extends BaseDescriptor
 : bit(8) tag= M4MuxBufferSizeDescrTag {
 DefaultM4MuxBufferDescriptor()
 for (i=0; i<(sizeOfInstance-3); i += 4) {
 M4MuxBufferDescriptor()
 }
}

7.4.3.2.2 Semantics

DefaultM4MuxBufferDescriptor - the default size of multiplex buffers for each individual channel in a
M4Mux stream is signalled by the DefaultM4MuxBufferDescriptor class.

M4MuxBufferDescriptor - the exact size of multiplex buffers for each channel in a M4Mux stream can be
signalled by the M4MuxBufferDescriptor class.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
,
,
,
,
`
,
`
,
`
,
`
,
`
,
,
`
,
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/IEC 14496-1:2010(E)

© ISO/IEC 2010 – All rights reserved 99

7.4.3.3 M4MuxTiming Descriptor

7.4.3.3.1 Syntax

class M4MuxTimingDescriptor extends BaseDescriptor
 : bit(8) tag= M4MuxTimingDescrTag {
 M4MuxTimingDescriptor()
}

7.4.3.3.2 Semantics

M4MuxTimingDescriptor – This descriptor class defines FCR_ES_ID, FCRResolution, FCRLength,
FmxRateLength.

7.4.3.4 M4MuxCodeTable Descriptor

7.4.3.4.1 Syntax

class M4MuxCodeTableDescriptor extends BaseDescriptor
 : bit(8) tag= M4MuxCodeTableDescrTag {

for(i =0; i < sizeOfInstance; i += sizeof (MuxCodeTableEntry ()))
{

 MuxCodeTableEntry ()
 }
}

7.4.3.4.2 Semantics

MuxCodeTableEntry () – This class defines the M4Mux configuration of one M4Mux channel.

Several M4MuxCodeTableDescriptor may be used with different instances of the MuxCodeTableEntry
class.

7.4.3.5 M4MuxIdent Descriptor

7.4.3.5.1 Syntax

class M4MuxIdentDescriptor extends BaseDescriptor
 : bit(8) tag= M4MuxIdentDescrTag {
 M4MuxIDDescriptor ()
}

7.4.3.5.2 Semantics

M4MuxIDDescriptor – This class defines MuxID, Muxtype, Muxmanagement.

8 Syntactic Description Language

8.1 Introduction

This Subclause describes the mechanism with which bitstream syntax is documented in ISO/IEC 14496. This
mechanism is based on a Syntactic Description Language (SDL), documented here in the form of syntactic

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
,
,
,
,
`
,
`
,
`
,
`
,
`
,
,
`
,
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/IEC 14496-1:2010(E)

100 © ISO/IEC 2010 – All rights reserved

description rules. It directly extends the C-like syntax used in ISO/IEC 11172-1:1993 and
ISO/IEC 13818-1:2007 into a well-defined framework that lends itself to object-oriented data representations.
In particular, SDL assumes an object-oriented underlying framework in which bitstream units consist of
“classes.” This framework is based on the typing system of the C++ and Java programming languages. SDL
extends the typing system by providing facilities for defining bitstream-level quantities, and how they should be
parsed.

The elementary constructs are described first, followed by the composite syntactic constructs, and arithmetic
and logical expressions. Finally, syntactic control flow and built-in functions are addressed. Syntactic flow
control is needed to take into account context-sensitive data. Several examples are used to clarify the
structure.

8.2 Elementary Data Types

8.2.1 Introduction

The SDL uses the following elementary data types:

1. Constant-length direct representation bit fields or Fixed Length Codes — FLCs. These describe the
encoded value exactly as it is to be used by the appropriate decoding process.

2. Variable length direct representation bit fields, or parametric FLCs. These are FLCs for which the actual
length is determined by the context of the bitstream (e.g., the value of another parameter).

3. Constant-length indirect representation bit fields. These require an extra lookup into an appropriate table or
variable to obtain the desired value or set of values.

4. Variable-length indirect representation bit fields (e.g., Huffman codes).

These elementary data types are described in more detail in the Clauses to follow immediately.

All quantities shall be represented in the bitstream with the most significant byte first, and also with the most
significant bit first.

8.2.2 Constant-Length Direct Representation Bit Fields

Constant-length direct representation bit fields shall be represented as:

Rule E.1: Elementary Data Types

[aligned] type[(length)] element_name [= value]; // C++-style comments allowed

The type may be any of the following: int for signed integer, unsigned int for unsigned integer, double
for floating point, and bit for raw binary data. The length attribute indicates the length of the element in bits,
as it is actually stored in the bitstream. Note that a data type equal to double shall only use 32 or 64 bit
lengths. The value attribute shall be present only when the value is fixed (e.g., start codes or object IDs), and
it may also indicate a range of values (i.e., ‘0x01..0xAF’). The type and the optional length attributes are
always present, except if the data is non-parsable, i.e., it is not included in the bitstream. The keyword
aligned indicates that the data is aligned on a byte boundary. As an example, a start code would be
represented as:

aligned bit(32) picture_start_code=0x00000100;

An optional numeric modifier, as in aligned(32), may be used to signify alignment on other than byte
boundary. Allowed values are 8, 16, 32, 64, and 128. Any skipped bits due to alignment shall have the value
‘0’. An entity such as temporal reference would be represented as:

unsigned int(5) temporal_reference;

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
,
,
,
,
`
,
`
,
`
,
`
,
`
,
,
`
,
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/IEC 14496-1:2010(E)

© ISO/IEC 2010 – All rights reserved 101

where unsigned int(5) indicates that the element shall be interpreted as a 5-bit unsigned integer. By
default, data shall be represented with the most significant bit first, and the most significant byte first.

The value of parsable variables with declarations that fall outside the flow of declarations shall be set to 0.

Constants shall be defined using the keyword const.

EXAMPLE ⎯

const int SOME_VALUE=255; // non-parsable constant
const bit(3) BIT_PATTERN=1; // this is equivalent to the bit string “001”

To designate binary values, the 0b prefix shall be used, similar to the 0x prefix for hexadecimal numbers. A
period (‘.’) may be optionally placed after every four digits for readability. Hence 0x0F is equivalent to
0b0000.1111.

In several instances, it may be desirable to examine the immediately following bits in the bitstream, without
actually consuming these bits. To support this behavior, a ‘*’ character shall be placed after the parse size
parentheses to modify the parse size semantics.

Rule E.2: Look-ahead parsing

[aligned] type (length)* element_name;

For example, the value of next 32 bits in the bitstream can be checked to be an unsigned integer without
advancing the current position in the bitstream using the following representation:

aligned unsigned int (32)* next_code;

8.2.3 Variable Length Direct Representation Bit Fields

This case is covered by Rule E.1, by allowing the length attribute to be a variable included in the bitstream, a
non-parsable variable, or an expression involving such variables.

EXAMPLE ⎯

unsigned int(3) precision;
int(precision) DC;

8.2.4 Constant-Length Indirect Representation Bit Fields

Indirect representation indicates that the actual value of the element at hand is indirectly specified by the
bitstream through the use of a table or map. In other words, the value extracted from the bitstream is an index
to a table from which the final desired value is extracted. This indirection may be expressed by defining the
map itself:

Rule E.3: Maps

map MapName (output_type) {
index, {value_1, … value_M},
 …

}

These tables are used to translate or map bits from the bitstream into a set of one or more values. The input
type of a map (the index specified in the first column) shall always be bit. The output_type entry shall be
either a predefined type or a defined class (classes are defined in 8.3.1). The map is defined as a set of pairs

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
,
,
,
,
`
,
`
,
`
,
`
,
`
,
,
`
,
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/IEC 14496-1:2010(E)

102 © ISO/IEC 2010 – All rights reserved

of such indices and values. Keys are binary string constants while values are output_type constants. Values
shall be specified as aggregates surrounded by curly braces, similar to C or C++ structures.

EXAMPLE ⎯

class YUVblocks {// classes are fully defined later on
 int Yblocks;
 int Ublocks;
 int Vblocks;
}

// a table that relates the chroma format with the number of blocks
// per signal component
map blocks_per_component (YUVblocks) {
 0b00, {4, 1, 1}, // 4:2:0
 0b01, {4, 2, 2}, // 4:2:2
 0b10, {4, 4, 4} // 4:4:4
}

The next rule describes the use of such a map.

Rule E.4: Mapped Data Types

type (MapName) name;

The type of the variable shall be identical to the type returned from the map.

EXAMPLE ⎯

YUVblocks(blocks_per_component) chroma_format;

Using the above declaration, a particular value of the map may be accessed using the construct:
chroma_format.Ublocks.

8.2.5 Variable Length Indirect Representation Bit Fields

For a variable length element utilizing a Huffman or variable length code table, an identical specification to the
fixed length case shall be used:

class val {
 unsigned int foo;
 int bar;
}

map sample_vlc_map (val) {
 0b0000.001, {0, 5},
 0b0000.0001, {1, -14}
}

The only difference is that the indices of the map are now of variable length. The variable-length codewords
are (as before) binary strings, expressed by default in ‘0b’ or ‘0x’ format, optionally using the period (‘.’) every
four digits for readability.

Very often, variable length code tables are partially defined. Due to the large number of possible entries, it
may be inefficient to keep using variable length codewords for all possible values. This necessitates the use of
escape codes, that signal the subsequent use of a fixed-length (or even variable length) representation. To
allow for such exceptions, parsable type declarations are allowed for map values.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
,
,
,
,
`
,
`
,
`
,
`
,
`
,
,
`
,
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/IEC 14496-1:2010(E)

© ISO/IEC 2010 – All rights reserved 103

EXAMPLE ⎯ This example uses the class type ‘val’ as defined above.

map sample_map_with_esc (val) {
 0b0000.001, {0, 5},
 0b0000.0001, {1, -14},
 0b0000.0000.1, {5, int(32)},
 0b0000.0000.0, {0, -20}
}

When the codeword 0b0000.0000.1 is encountered in the bitstream, then the value ‘5’ is assigned to the first
element (val.foo). The following 32 bits are parsed and assigned as the value of the second element
(val.bar). Note that, in case more than one element utilizes a parsable type declaration, the order is
significant and is the order in which elements are parsed. In addition, the type within the map declaration shall
match the type used in the class declaration associated with the map’s return type.

8.3 Composite Data Types

8.3.1 Classes

Classes are the mechanism with which definitions of composite types or objects is performed. Their definition
is as follows.

Rule C.1: Classes

[aligned] [abstract] [expandable[(maxClassSize)]] class object_name [extends parent_class]
[: bit(length) [id_name=] object_id | id_range | extended_id_range] {
[element; …] // zero or more elements

}

The different elements within the curly braces are the definitions of the elementary bitstream components
discussed in 12.2 or control flow elements that will be discussed in a subsequent Subclause.

The optional keyword extends specifies that the class is “derived” from another class. Derivation implies
that all information present in the base class is also present in the derived class, and that, in the bitstream,
all such information precedes any additional bitstream syntax declarations specified in the new class.

The optional attribute id_name allows to assign an object_id, and, if present, is the key demultiplexing entity
which allows differentiation between base and derived objects. It is also possible to have a range of possible
values: the id_range is specified as start_id .. end_id, inclusive of both bounds. It is also possible to have a
combination of id_range and object_id: the extended_id_range is specified as a comma-separated list of
object_id and range_id; for example, id_name=object_id1, object_id2, start_id .. end_id.

If the attribute id_name is used, a derived class may appear at any point in the bitstream where its base
class is specified in the syntax. This allows to express polymorphism in the SDL syntax description. The
actual class to be parsed is determined as follows:

• The base class declaration shall assign a constant value or range of values to object_id.

• Each derived class declaration shall assign a constant value or ranges of values to object_id. This value
or set of values shall correspond to legal object_id value(s) for the base class.

NOTE 1 — Derivation of classes is possible even when object_ids are not used. However, in that case derived classes
may not replace their base class in the bitstream.

NOTE 2 — Derived classes may use the same object_id value as the base class. In that case classes can only be
discriminated through context information.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
,
,
,
,
`
,
`
,
`
,
`
,
`
,
,
`
,
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/IEC 14496-1:2010(E)

104 © ISO/IEC 2010 – All rights reserved

EXAMPLE ⎯

class slice: aligned bit(32) slice_start_code=0x00000101 .. 0x000001AF {
 // here we get vertical_size_extension, if present
 if (scalable_mode==DATA_PARTITIONING) {
 unsigned int(7) priority_breakpoint;
 }
 …
}

class foo {
 int(3) a;
 ...
}

class bar extends foo {
 int(5) b; // this b is preceded by the 3 bits of a
 int(10) c;
 ...
}

The order of declaration of the bitstream components is important: it is the same order in which the elements appear in the
bitstream. In the above examples, bar.b immediately precedes bar.c in the bitstream.

Objects may also be encapsulated within other objects. In this case, the element in Rule C.1 is an object itself.

8.3.2 Abstract Classes

When the abstract keyword is used in the class declaration, it indicates that only derived classes of this
class shall be present in the bitstream. This implies that the derived classes may use the entire range of IDs
available. The declaration of the abstract class requires a declaration of an ID, with the value 0.

EXAMPLE ⎯

abstract class Foo : bit(1) id=0 { // the value 0 is not really used
 ...
}

// derived classes are free to use the entire range of IDs
class Foo0 extends Foo : bit(1) id=0 {
 ...
}

class Foo1 extends Foo : bit(1) id=1 {
 ...
}

class Example {
 Foo f; // can only be Foo0 or Foo1, not Foo
}

8.3.3 Expandable classes

When the expandable keyword is used in the class declaration, it indicates that the class may contain
implicit arrays or undefined trailing data, called the "expansion". In this case the class encodes its own size
in bytes explicitly. This may be used for classes that require future compatible extension or that may include
private data. A legacy device is able to decode an expandable class up to the last parsable variable that has
been defined for a given revision of this class. Using the size information, the parser shall skip the class
data following the last known syntax element. Anywhere in the syntax where a set of expandable classes with
object_id is expected it is permissible to intersperse expandable classes with unknown object_id values.
These classes shall be skipped, using the size information.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

--`,`,,,,`,`,`,`,`,,`,``,,,``-`-`,,`,,`,`,,`---

ISO/IEC 14496-1:2010(E)

© ISO/IEC 2010 – All rights reserved 105

The size encoding precedes any parsable variables of the class. If the class has an object_id, the encoding
of the object_id precedes the size encoding. The size information shall not include the number of bytes
needed for the size and the object_id encoding. Instances of expandable classes shall always have a size
corresponding to an integer number of bytes. The size information is accessible within the class as class
instance variable sizeOfInstance.

If the expandable keyword has a maxClassSize attribute, then this indicates the maximum permissible size
of this class in bytes, including any expansion.

The length encoding is itself defined in SDL as follows:

int sizeOfInstance = 0;
bit(1) nextByte;
bit(7) sizeOfInstance;
while(nextByte) {
 bit(1) nextByte;
 bit(7) sizeByte;
 sizeOfInstance = sizeOfInstance<<7 | sizeByte;
}

8.3.4 Parameter types

A parameter type defines a class with parameters. This is to address cases where the data structure of the
class depends on variables of one or more other objects. Since SDL follows a declarative approach,
references to other objects, in such cases, cannot be performed directly (none is instantiated). Parameter
types provide placeholders for such references, in the same way as the arguments in a C function declaration.
The syntax of a class definition with parameters is as follows.

Rule C.2: Class Parameter Types
[aligned] [abstract] class object_name [(parameter list)] [extends parent_class]

[: bit(length) [id_name=] object_id | id_range] {
[element; …] // zero or more elements

}

The parameter list is a list of type names and variable name pairs separated by commas. Any element of the
bitstream, or value derived from the bitstream with a variable-length codeword, or a constant, can be passed
as a parameter.

A class that uses parameter types is dependent on the objects in its parameter list, whether class objects
or simple variables. When instantiating such a class into an object, the parameters have to be instantiated
objects of their corresponding classes or types.

EXAMPLE ⎯

class A {
 // class body
 ...
 unsigned int(4) format;
}

class B (A a, int i) { // B uses parameter types
 unsigned int(i) bar;
 ...
 if(a.format == SOME_FORMAT) {
 ...
 }
 ...
}

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
,
,
,
,
`
,
`
,
`
,
`
,
`
,
,
`
,
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/IEC 14496-1:2010(E)

106 © ISO/IEC 2010 – All rights reserved

class C {
 int(2) i;
 A a;
 B foo(a, I); // instantiated parameters are required
}

8.3.5 Arrays

Arrays are defined in a similar way as in C/C++, i.e., using square brackets. Their length, however, can
depend on run-time parameters such as other bitstream values or expressions that involve such values. The
array declaration is applicable to both elementary as well as composite objects.

Rule A.1: Arrays

typespec name [length];

typespec is a type specification (including bitstream representation information, e.g. ‘int(2)’). The
attribute name is the name of the array, and length is its length.

EXAMPLE ⎯

unsigned int(4) a[5];
int(10) b;
int(2) c[b];

Here ‘a’ is an array of 5 elements, each of which is represented using 4 bits in the bitstream and interpreted as an
unsigned integer. In the case of ‘c’, its length depends on the actual value of ‘b’. Multi-dimensional arrays are allowed as
well. The parsing order from the bitstream corresponds to scanning the array by incrementing first the right-most index of
the array, then the second, and so on .

8.3.6 Partial Arrays

In several situations, it is desirable to load the values of an array one by one, in order to check, for example, a
terminating or other condition. For this purpose, an extended array declaration is allowed in which individual
elements of the array may be accessed.

Rule A.2: Partial Arrays

typespec name[[index]];

Here index is the element of the array that is defined. Several such partial definitions may be given, but they
shall all agree on the type specification. This notation is also valid for multidimensional arrays.

EXAMPLE ⎯

int(4) a[[3]][[5]];

indicates the element a(5, 3) of the array (the element in the 6th row and the 4th column), while

int(4) a[3][[5]];

indicates the entire sixth column of the array, and

int(4) a[[3]][5];

indicates the entire fourth row of the array, with a length of 5 elements.

NOTE ⎯ a[5] means that the array has five elements, whereas a[[5]] implies that there are at least six.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
,
,
,
,
`
,
`
,
`
,
`
,
`
,
,
`
,
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/IEC 14496-1:2010(E)

© ISO/IEC 2010 – All rights reserved 107

8.3.7 Implicit Arrays

When a series of polymorphic classes is present in the bitstream, it may be represented as an array of the
same type as that of the base class. Let us assume that a set of polymorphic classes is defined, derived
from the base class Foo (may or may not be abstract):

class Foo : int(16) id = 0 {
 ...
}

For an array of such objects, it is possible to implicitly determine the length by examining the validity of the
class ID. Objects are inserted in the array as long as the ID can be properly resolved to one of the IDs
defined in the base (if not abstract) or its derived classes. This behavior is indicated by an array declaration
without a length specification.

EXAMPLE 1 ⎯

class Example {
 Foo f[]; // length implicitly obtained via ID resolution
}

To limit the minimum and maximum length of the array, a range specification may be inserted in the specification of the
length.

EXAMPLE 2 ⎯

class Example {
 Foo f[1 .. 255]; // at least 1, at most 255 elements
}

In this example, ‘f’ may have at least 1 and at most 255 elements.

8.4 Arithmetic and Logical Expressions

All standard arithmetic and logical operators of C++ are allowed, including their precedence rules.

8.5 Non-Parsable Variables

In order to accommodate complex syntactic constructs, in which context information cannot be directly
obtained from the bitstream but only as a result of a non-trivial computation, non-parsable variables are
allowed. These are strictly of local scope to the class they are defined in. They may be used in expressions
and conditions in the same way as bitstream-level variables. In the following example, the number of non-zero
elements of an array is computed.

unsigned int(6) size;
int(4) array[size];
…
int i; // this is a temporary, non-parsable variable
for (i=0, n=0; i<size; i++) {
 if (array[[i]]!=0)
 n++;
}

int(3) coefficients[n];
// read as many coefficients as there are non-zero elements in array

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

--`,`,,,,`,`,`,`,`,,`,``,,,``-`-`,,`,,`,`,,`---

ISO/IEC 14496-1:2010(E)

108 © ISO/IEC 2010 – All rights reserved

8.6 Syntactic Flow Control

The syntactic flow control provides constructs that allow conditional parsing, depending on context, as well as
repetitive parsing. The familiar C/C++ if-then-else construct is used for testing conditions. Similarly to C/C++,
zero corresponds to false, and non-zero corresponds to true.

Rule FC.1: Flow Control Using If-Then-Else

if (condition) {
…

} [else if (condition) {
…

}] [else {
…

}]

EXAMPLE 1 ⎯

class conditional_object {
 unsigned int(3) foo;
 bit(1) bar_flag;
 if (bar_flag) {
 unsigned int(8) bar;
 }
 unsigned int(32) more_foo;
}

Here the presence of the entity ‘bar’ is determined by the ‘bar_flag’.

EXAMPLE 2 ⎯

class conditional_object {
 unsigned int(3) foo;
 bit(1) bar_flag;
 if (bar_flag) {
 unsigned int(8) bar;
 } else {
 unsigned int(some_vlc_table) bar;
 }
 unsigned int(32) more_foo;
}

Here we allow two different representations for ‘bar’, depending on the value of ‘bar_flag’. We could equally well have
another entity instead of the second version (the variable length one) of ‘bar’ (another object, or another variable). Note
that the use of a flag necessitates its declaration before the conditional is encountered. Also, if a variable appears twice
(as in the example above), the types shall be identical.

In order to facilitate cascades of if-then-else constructs, the ‘switch’ statement is also allowed.

Rule FC.2: Flow Control Using Switch

switch (condition) {
 [case label1: …]
 [default:]

}

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
,
,
,
,
`
,
`
,
`
,
`
,
`
,
,
`
,
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/IEC 14496-1:2010(E)

© ISO/IEC 2010 – All rights reserved 109

The same category of context-sensitive objects also includes iterative definitions of objects. These simply
imply the repetitive use of the same syntax to parse the bitstream, until some condition is met (it is the
conditional repetition that implies context, but fixed repetitions are obviously treated the same way). The
familiar structures of ‘for’, ‘while’, and ‘do’ loops can be used for this purpose.

Rule FC.3: Flow Control Using For

for (expression1; expression2; expression3) {
 …

}

expression1 is executed prior to starting the repetitions. Then expression2 is evaluated, and if it is non-zero
(true) the declarations within the braces are executed, followed by the execution of expression3. The process
repeats until expression2 evaluates to zero (false).

Note that it is not allowed to include a variable declaration in expression1 (in contrast to C++).

Rule FC.4: Flow Control Using Do

do {
 …

} while (condition);

Here the block of statements is executed until condition evaluates to false. Note that the block will be
executed at least once.

Rule FC.5: Flow Control Using While

while (condition) {
 …

}

The block is executed zero or more times, as long as condition evalutes to non-zero (true).

8.7 Built-In Operators

The following built-in operators are defined.

Rule O.1: lengthof() Operator

lengthof(variable)

This operator returns the length, in bits, of the quantity contained in parentheses. The length is the number of
bits that was most recently used to parse the quantity at hand. A return value of 0 means that no bits were
parsed for this variable.

8.8 Scoping Rules

All parsable variables have class scope, i.e., they are available as class member variables.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

--`,`,,,,`,`,`,`,`,,`,``,,,``-`-`,,`,,`,`,,`---

ISO/IEC 14496-1:2010(E)

110 © ISO/IEC 2010 – All rights reserved

For non-parsable variables, the usual C++/Java scoping rules are followed (a new scope is introduced by
curly braces: ‘{‘ and ‘}’). In particular, only variables declared in class scope are considered class member
variables, and are thus available in objects of that particular type.

9 Profiles

9.1.1 Introduction

This Subclause defines profiles and levels for the usage of the tools defined in this part of ISO/IEC 14496.
Each profile at a given level constitutes a subset of this part of ISO/IEC 14496 to which system manufacturers
and content creators can claim conformance in order to ensure interoperability.

The object descriptor profiles (OD profiles) specify the allowed configurations of the object descriptor tool and
the sync layer tool.

Profile definitions, by themselves, are not sufficient to provide a full characterization of a receiving terminal’s
capabilities and the resources needed for a presentation. For this reason, levels are defined within each
profile. Levels constrain the values of parameters in a given profile in order to specify an upper complexity
bound.

9.1.2 OD Profile Definitions

9.1.2.1 Overview

The object descriptor profiles (OD profiles) specify the configurations of the object descriptor tool and the sync
layer tool that are allowed. The object descriptor tool provides a structure for all descriptive information. The
sync layer tool provides the syntax to convey, among others, timing information for elementary streams. object
descriptor profiles are used, in particular, to reduce the amount of asynchronous operations as well as the
amount of permanent storage.

9.1.2.2 OD Profiles Tools

The following tools are available to construct OD profiles:

• Object descriptor (OD) tool as defined in 7.2.5.

• Sync layer (SL) tool as defined in 7.3.2

• Object content information (OCI) tool as defined in 7.2.4.

• Intellectual property management and protection (IPMP) tool as defined in 7.2.3.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

--`,`,,,,`,`,`,`,`,,`,``,,,``-`-`,,`,,`,`,,`---

ISO/IEC 14496-1:2010(E)

© ISO/IEC 2010 – All rights reserved 111

9.1.2.3 OD Profiles

The OD profiles are defined in the following table. Currently, only one profile is defined, comprising all the
tools. No additional profiles are foreseen at the moment, but the possibility of adding Profiles through
amendments is left open.

Table 18 — OD Profiles

 OD Profiles

OD Tools Core

SL X

OD X

OCI X

IPMP X

Decoders that claim compliance to a given profile shall implement all the tools with an ‘X’ entry for that profile.

9.1.2.4 OD Profiles@Levels

9.1.2.4.1 Levels for the Core Profile

No levels are defined yet for the OD Core profile. Future definition of Levels is anticipated; this will happen by
means of an amendment to this part of the standard.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
,
,
,
,
`
,
`
,
`
,
`
,
`
,
,
`
,
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/IEC 14496-1:2010(E)

112 © ISO/IEC 2010 – All rights reserved

Annex A
(informative)

Time Base Reconstruction

A.1 Time Base Reconstruction

The time stamps present in the sync layer are the means to synchronize events related to decoding,
composition and overall buffer management. In particular, the clock references are the sole means of
reconstructing the sending terminal’s clock at the receiving terminal, when required (e.g., for broadcast
applications). A normative method for this reconstruction is not specified. The following describes the process
at a conceptual level.

A.1.1 Adjusting the Receiving Terminal’s OTB

Each elementary stream may be generated by an encoder at the sending terminal with a different object time
base (OTB). For each stream that conveys OCR information, it is possible for the receiving terminal to adjust a
local OTB to the sending terminals’ OTB. This is done by using well-known PLL techniques. The notion of time
for each data stream can therefore be recovered at the receiving end.

A.1.2 Mapping Time Stamps to the STB

The OTBs of all data streams may run at a different speed than the STB of the receiving terminal. Therefore, a
method is needed to map the value of time stamps expressed in any OTB to the STB of the receiving terminal.
This step may be done jointly with the recovery of individual OTB’s as described in the previous Subclause.

Note that the receiving terminals’ system time base need not be locked to any of the available object time
bases.

The composition time tSCT of a composition unit, expressed in terms of STB of the receiving terminal, can be
calculated from the composition time stamp value tOCT, expressed in terms of the OTB of the relevant sending
terminal, by a linear transformation:

STARTSTBSTARTOTB
OTB

STB
OCT

OTB

STB
SCT tt

t
tt

t
tt −− +⋅

∆
∆−⋅

∆
∆=

with:

SCTt composition time of a composition unit measured in units of STBt

STBt current time in the receiving terminal’s STB

OCTt composition time of a composition unit measured in units of OTBt

OTBt current time in the data stream’s OTB, conveyed by an OCR

STARTSTBt − value of receiving terminal’s STB when the first byte of the OCR time stamp of the data stream is
encountered

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
,
,
,
,
`
,
`
,
`
,
`
,
`
,
,
`
,
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/IEC 14496-1:2010(E)

© ISO/IEC 2010 – All rights reserved 113

STARTOTBt − value of the first OCR time stamp of the data stream

STARTOTBOTBOTB ttt −−=∆

STARTSTBSTBSTB ttt −−=∆

The quotient OTBSTB tt ∆∆ is the instantaneous scaling factor between the two time bases. In cases where the
clock speed and resolution of the sending terminal and of the receiving terminal are nominally identical, this
quotient is very near 1. To avoid long term rounding errors, the quotient OTBSTB tt ∆∆ should always be
recalculated whenever the formula is applied to a newly received composition time stamp. The quotient can
be updated each time an OCR time stamp is encountered.

A similar formula can be derived for decoding times by replacing composition time stamps with decoding time
stamps. If time stamps for some access units or composition units are only known implicitly, e.g., given by
known update rates, these have to be mapped with the same mechanism.

With this procedure it is possible to synchronize the STB at a receiving terminal to several OTBs so that
correct decoding and composition from several data streams is possible.

A.1.3 Adjusting the STB to an OTB

When all data streams in a presentation use the same OTB, it is possible to lock the STB at the receiving
terminal to this OTB using well-known PLL techniques. In this case the mapping described in the previous
Subclause is not necessary and the following mapping may be used.

OCTSCT

OTBSTB

STARTOTBSTARTSTB

tt
tt

tt

=
∆=∆

= −−

A.1.4 System Operation without Object Time Base

If a time base for an elementary stream is neither conveyed by OCR information nor derived from another
elementary stream, time stamps can still be used by a receiving terminal but not in applications that require
flow-control. For example, file-based playback may not require time base reconstruction: time stamps alone
are sufficient for synchronization if a single time base is assumed for all the data streams.

In the absence of time stamps, the receiving terminal may only operate under the assumption that each
access unit is to be decoded and presented as soon as it is received. In this case the systems decoder model
does not apply and cannot be used as a model for the terminal’s behavior.

In the case that a universal clock is available which can be shared between peer terminals, it may be used as
a common time base. It is then possible to use the systems decoder model without explicit OCR transmission.
The procedures for doing so are application-dependent and are not defined in ISO/IEC 14496-1.

A.2 Temporal aliasing and audio resampling

A receiving terminal compliant with ISO/IEC 14496 is not required to synchronize decoding of AUs and
composition of CUs. In other words, its STB does not have to be identical to any of the OTBs of received data
streams. The number of decoded and actually presented (displayed/played back) units per second may
therefore differ. Temporal aliasing may then manifest itself as composition units being either presented
multiple times or skipped.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
,
,
,
,
`
,
`
,
`
,
`
,
`
,
,
`
,
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/IEC 14496-1:2010(E)

114 © ISO/IEC 2010 – All rights reserved

If audio signals are encoded on a system with an OTB different from the STB of the receiving terminal, even
nominally identical sampling rates of the audio samples may not match exactly, so that audio samples may be
dropped or repeated.

Proper re-sampling techniques may of course in both cases be applied at the receiving terminal.

A.3 Reconstruction of a Synchronised Audio-visual Scene: A Walkthrough

The different steps to reconstruct a synchronized scene are as follows:

1. The time base for each data stream is recovered either from the OCR conveyed with the SL-packetized
elementary stream of this data stream or from another data stream present in the presentation.

2. Object time stamps are mapped to the STB of the receiving terminal according to a suitable algorithm (e.g.,
the one detailed above).

3. Received access units are placed in the decoding buffer.

4. Each access unit is instantaneously decoded by the decoder at instants of time (in terms of the receiver
terminal’s STB) corresponding to its implicit or explicit DTS and the resulting one or more composition units
are placed in the composition memory.

The compositor may access each CU at time instants between the one corresponding its CTS and the one
corresponding to the CTS of the subsequent CU.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
,
,
,
,
`
,
`
,
`
,
`
,
`
,
,
`
,
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/IEC 14496-1:2010(E)

© ISO/IEC 2010 – All rights reserved 115

Annex B
(informative)

Registration procedure

B.1 Procedure for the request of a Registration ID (RID)

Requesters of a RID shall apply to the Registration Authority. Registration forms shall be available from the
Registration Authority. The requester shall provide the information specified in B.3. Companies and
organizations are eligible to apply.

B.2 Responsibilities of the Registration Authority

The primary responsibilities of the Registration Authority administrating the registration of either the private
data format identifiers or the IPMP system type values are outlined in this annex; certain other responsibilities
may be found in the JTC 1 Directives. The Registration Authority shall:

a) implement a registration procedure for application for a unique RID in accordance with the JTC 1
Directives;

b) receive and process the applications for allocation of an identifier from application providers;

c) ascertain which applications received are in accordance with this registration procedure, and to inform the
requester within 30 days of receipt of the application of their assigned RID;

d) inform application providers whose request is denied in writing with 30 days of receipt of the application,
and to consider resubmissions of the application in a timely manner;

e) maintain an accurate register of the allocated identifiers. Revisions to format specifications shall be
accepted and maintained by the Registration Authority;

f) make the contents of this register available upon request to National Bodies of JTC 1 that are members of
ISO or IEC, to liaison organizations of ISO or IEC and to any interested party;

g) maintain a data base of RID request forms, granted and denied. Parties seeking technical information on
the format of private data which has a RID shall have access to such information which is part of the data
base maintained by the Registration Authority;

h) report its activities annually to JTC 1, the ITTF, and the SC 29 Secretariat, or their respective designees;
and

i) accommodate the use of existing RIDs whenever possible.

B.3 Contact information for the Registration Authority
CISAC
20-26 boulevard du Parc
92200 Neuilly sur Seine
FRANCE
Tel: +33 1 55 62 08 50
Fax: +33 1 55 62 08 60
E-mail: info@ipmp-ra.org
Web: http://www.mpegra.org

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

--`,`,,,,`,`,`,`,`,,`,``,,,``-`-`,,`,,`,`,,`---

ISO/IEC 14496-1:2010(E)

116 © ISO/IEC 2010 – All rights reserved

B.4 Responsibilities of Parties Requesting a RID

The party requesting a format identifier or an IPMP system type identifier shall:

a) apply using the Form and procedures supplied by the Registration Authority;

b) include a description of the purpose of the registered bitstream, and the required technical details as
specified in the application form;

c) provide contact information describing how a complete description can be obtained on a non-
discriminatory basis;

d) agree to institute the intended use of the granted RID within a reasonable time frame; and

e) to maintain a permanent record of the application form and the notification received from the Registration
Authority of a granted RID.

B.5 Appeal Procedure for Denied Applications

The Registration Management Group is formed to have jurisdiction over appeals to denied request for a RID.
The RMG shall have a membership who is nominated by P- and L-members of the ISO technical committee
responsible for ISO/IEC 14496. It shall have a convenor and secretariat nominated from its members. The
Registration Authority is entitled to nominate one non-voting observing member.

The responsibilities of the RMG shall be:

a) to review and act on all appeals within a reasonable time frame;

b) to inform, in writing, organizations which make an appeal for reconsideration of its petition of the RMGs
disposition of the matter;

c) to review the annual report of the Registration Authorities summary of activities; and

d) to supply Member Bodies of ISO and National Committees of IEC with information concerning the scope
of operation of the Registration Authority.

B.6 Registration Application Form

B.6.1 Contact Information of organization requesting a RID

Organization Name:
Address:

Telephone:
Fax:
E-mail:
Telex:

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

--`,`,,,,`,`,`,`,`,,`,``,,,``-`-`,,`,,`,`,,`---

ISO/IEC 14496-1:2010(E)

© ISO/IEC 2010 – All rights reserved 117

B.6.2 Request for a specific RID

NOTE — If the system has already been implemented and is in use, fill in this item and item B.6.3 and skip to B.6.5,
otherwise leave this space blank and skip to B.6.3)

B.6.3 Short description of RID that is in use and date system was implemented

B.6.4 Statement of an intention to apply the assigned RID

B.6.5 Date of intended implementation of the RID

B.6.6 Authorized representative

Name:

Title:

Address:

Email:

Signature __________________________________

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
,
,
,
,
`
,
`
,
`
,
`
,
`
,
,
`
,
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/IEC 14496-1:2010(E)

118 © ISO/IEC 2010 – All rights reserved

B.6.7 For official use of the Registration Authority

 Registration Rejected _____

 Reason for rejection of the application:

 Registration Granted ______ Registration Value ____________________

Attachment 1 ⎯ Attachment of technical details of the registered data format.

Attachment 2 ⎯ Attachment of notification of appeal procedure for rejected applications.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
,
,
,
,
`
,
`
,
`
,
`
,
`
,
,
`
,
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/IEC 14496-1:2010(E)

© ISO/IEC 2010 – All rights reserved 119

Annex C
(informative)

The QoS Management Model for ISO/IEC 14496 Content

The Quality of Service (QoS) aspects deserve particular attention in ISO/IEC 14496: the ability of the standard
to adapt to different service scenarios is affected by its ability to consistently manage QoS requirements.
Current techniques on error resilience are already effective, but are not and will not be able to satisfy every
possible requirement.

In general terms, the end-user acceptance of a particular service varies depending on the kind of service. As
an example, person to person communication is severely affected by the audio quality, while it can tolerate
variations in the video quality. However, a television broadcast with higher video and lower audio quality may
be acceptable depending on the program being transmitted. The acceptability of a particular service thus
depends very much on the service itself. It is not possible to define universal Quality of Service levels that may
be suitable for all circumstances. Thus the most suitable solution is to let the content creator decide what QoS
the end-user should obtain for every particular elementary stream: the author has the best knowledge of the
service.

The QoS so defined represents the QoS that should be offered to the end-user, i.e., the QoS at the output of
the receiving terminal. This may be the output of the decoder, but may also take into account the compositor
and renderer if they significantly impact the QoS of the presentation as seen by the end-user, and if a capacity
for processing a specific stream can be quantified. Note that the QoS information is not mandatory. In the
absence of QoS requirements, a best effort approach should be pursued. This QoS concept is defined as total
QoS.

In ISO/IEC 14496-1 the information concerning the total QoS of a particular elementary stream is carried in a
QoS Descriptor as part of its elementary stream descriptor (ES_Descriptor). The receiving terminal, upon
reception of the ES_Descriptor, is therefore aware of the characteristics of the elementary stream and of the
total QoS to be offered to the end-user. Moreover the receiving terminal knows about its own performance
capabilities. It is therefore the only possible entity able to compute the Quality of Service to be requested to
the delivery layer in order to fit the user requirements. Note that this computation could also ignore/override
the total QoS parameters.

The QoS that is requested to the delivery layer is named media QoS, since it is expressed with a semantic
which is media oriented. The delivery layer will process the requests, determine whether to bundle multiple
elementary streams into a single network connection (TransMux) and compute the QoS for the network
connection, using the QoS parameters as defined by the network infrastructure. This QoS concept is named
network QoS, since it is specific for a particular network technology.

The above categorization of the various QoS concepts managed in ISO/IEC 14496 may suggest that this
issue is only relevant when operating in a network environment. However the concepts are of general value,
and are applicable to systems operating on local files as well, when taking into account the overall capacity of
the system.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
,
,
,
,
`
,
`
,
`
,
`
,
`
,
,
`
,
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/IEC 14496-1:2010(E)

120 © ISO/IEC 2010 – All rights reserved

Annex D
(informative)

Conversion Between Time and Date Conventions

D.1 Conversion Between Time and Date Conventions

This Subclause is informative. The types of conversions that may be required are summarized in the diagram
below.

Figure D.1 — Conversion routes between Modified Julian Date (MJD) and
Coordinated Universal Time (UTC)

The conversion between MJD + UTC and the “local” MJD + local time is simply a matter of adding or
subtracting the local offset. This process may, of course, involve a “carry” or “borrow” from the UTC affecting
the MJD. The other five conversion routes shown on the diagram are detailed in the formulas below.

Symbols used:

MJD: Modified Julian Day

UTC: Co-ordinated Universal Time

Y: Year from 1900 (e.g. for 2003, Y = 103)

M: Month from January (= 1) to December (= 12)

D: Day of month from 1 to 31

WY: "Week number" Year from 1900

MN: Week number according to ISO 2015

WD: Day of week from Monday (= 1) to Sunday (= 7)

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

--`,`,,,,`,`,`,`,`,,`,``,,,``-`-`,,`,,`,`,,`---

ISO/IEC 14496-1:2010(E)

© ISO/IEC 2010 – All rights reserved 121

K, L ,M' , W, Y': Intermediate variables

×: Multiplication

int: Integer part, ignoring remainder

mod 7: Remainder (0-6) after dividing integer by 7

a) To find Y, M, D from MJD

Y' = int [(MJD - 15 078,2) / 365,25]

M' = int { [MJD - 14 956,1 - int (Y' × 365,25)] / 30,6001 }

D = MJD - 14 956 - int (Y' × 365,25) - int (M' × 30,6001)

If M' = 14 or M' = 15, then K = 1; else K = 0

Y = Y' + K

M = M' - 1 - K × 12

b) To find MJD from Y, M, D

If M = 1 or M = 2, then L = 1; else L = 0

MJD = 14 956 + D + int [(Y - L) × 365,25] + int [(M + 1 + L × 12) × 30,6001]

c) To find WD from WJD

WD = [(MJD + 2) mod 7] + 1

d) To find MJD from WY, WN, WD

MJD = 15 012 + WD + 7 × { WN + int [(WY × 1 461 / 28) + 0,41] }

e) To find WY, WN from MJD

W = int [(MJD / 7) - 2 144,64]

WY = int [(W × 28 / 1 461) - 0,0079]

WN = W - int [(WY × 1 461 / 28) + 0,41]

EXAMPLE ⎯

 MJD = 45 218 W = 4 315

 Y = (19)82 WY = (19)82

 M = 9 (September) WN = 36

 D = 6 WD = 1 (Monday)

NOTE — These formulas are applicable between the inclusive dates 1 900 March 1 to 2 100 February 28.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

--`,`,,,,`,`,`,`,`,,`,``,,,``-`-`,,`,,`,`,,`---

ISO/IEC 14496-1:2010(E)

122 © ISO/IEC 2010 – All rights reserved

Annex E
(informative)

Graphical Representation of

Object Descriptor and Sync Layer Syntax

E.1 Length encoding of descriptors and commands

« Length field » : from one byte, up to four bytes

length

71

1 length

71

1 length

71

1 length

71

0length

71

0 --------------

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
,
,
,
,
`
,
`
,
`
,
`
,
`
,
,
`
,
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/IEC 14496-1:2010(E)

© ISO/IEC 2010 – All rights reserved 123

E.2 Object Descriptor Stream and OD commands

8/16/24/32

Object
Descriptor

ID
ES_D [1..255]

« Length
 field »

10

OD [1...255]

ES_DescriptorUpdate

ObjectDescriptorUpdate

TAG=
0x03

TAG=
0x01

8

8

ObjectDescriptorRemove

ES_DescriptorRemove

ObjectDescriptor
ID[(« Lengthfield »*8)/10]

TAG=
0x02

Object
Descriptor

ID

ES_ID [1..255]TAG=
0x04

Reserved=1111.11

108 6 n*16

8

ObjectDescriptor
Update

... ...

IPMP_Descriptor
Update

ES_Descriptor
Update

... ...

ObjectDescriptor
Remove

IPMP_Descriptor
Remove

...

ES_Descriptor
Remove

ObjectDescriptor
Update

...

« Length
 field »

« Length
 field »

« Length
 field »

IPMP_DescriptorUpdate TAG=
0x05

8

« Length
 field »

IPMP_Descriptor [1..255]

IPMP_DescriptorRemove TAG=
0x06

8

« Length
 field »

IPMP_DescriptorID [1..255]

Object Descriptor Stream

8/16/24/32

8/16/24/32

8/16/24/32

8/16/24/32

8/16/24/32

n*10

6

Reserved=1111.11

n*8

E.3 OCI stream

An OCI_Descr can be any descriptor among the OCI descriptors detailed in 7.2.6.18: ContentClassification,
Keyword, Rating; Language, ShorttTextual, ExpandedTextual, ContentCreationDate, ContentCreationName,
OCICreationName, OCICreationDate, and 22 other ISO reserved descriptors.

OCI Descr[1...255]OCI_Events

15

« Length
 field »

1

absolute
TimeFlag

event
 ID

starting
 Time

duration

32 32 8/16/24/32

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
,
,
,
,
`
,
`
,
`
,
`
,
`
,
,
`
,
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/IEC 14496-1:2010(E)

124 © ISO/IEC 2010 – All rights reserved

E.4 Object descriptor and its components

One descriptor appears several times: the ExtensionDescriptor (extDescr), the tag of which being among a range of
valuesstarting at 0x60 and ending at 0xFE.

Object
Descriptor

ID

URL_
Flag

Reserved

=1111.1

10 51

URL_Flag == 1

Optional
Fields

TAG=

0x1

ObjectDescriptor

URL_Flag == 0

8

ociDescr
 [0...255]

esDescr
 [1...30]

extDescr
[0...255]

length
 field

 URLstring URL
length

[0...255]
ipmpDescrPtr

8 8*URLlength

8/16/24/32

« Length
 field »

8

Object
Descriptor

ID

URL_
Flag Reserved

=1111

10 1 4

8

1

extDescr
[0...255]

Include
Inline

Profiles
Flag

URL_Flag == 1

Optional

Fields
TAG=
0x2

8/16/24/32

InitialObjectDescriptor

 URL String
 URL
length

8*URLlength

88 8

URL_Flag == 0
 graphics
 Profile
 Level
Indication

ESD [1...30] ociDescr

[0...255]

 audio
 Profile
 Level
Indication

 OD
 Profile
 Level
Indication

 scene
 Profile
 Level
Indication

 visual
 Profile
 Level
Indication

[0...255]

ipmpDescrPtr

8 8

ipIDS

[0….255]

 qos
Descr
[0….1]

lang
Descr

[0….255]

 ipmp
DescrPtr

[0….255]

extDescr

[0….255]

sl ipiPtr

[0….1]

ES_Descriptor

ES_ID

8/16/24/32

« Length
 field »

1

stream

Dependence
Flag

URL_
Flag

OCR
stream
 flag

.stream
Priority

 dec
Config
Descr

Config
Descr

dependsOn
_ES_ID URLstring

1 116 165 8

TAG=
0x03

8

 URL
length

 8*URLlength

 reg
Descr
[0….1]

OCR
 ES
 ID

16

8 6

object
Type

Indication

upStream

1

stream
Type reserved

=1
bufferSizeDB

24

TAG
=0x04

DecoderConfigDescriptor maxBitRate
 avg

BitRate

 dec
Specific

Info[0..1]

18 32 32

« Length
 field »

8/16/24/32

profileLevel
Indication
IndexDescr

[0..255]

When present, the decSpecificInfo descriptor is an opaque descriptor (tag=0x05), configured according to the
ObjectDescriptorID and to the streamType.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
,
,
,
,
`
,
`
,
`
,
`
,
`
,
,
`
,
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/IEC 14496-1:2010(E)

© ISO/IEC 2010 – All rights reserved 125

C ontentIdentificationDescriptor

8/16/24/32

« Length
 field »

2

Com patibility
 =0

contentType
 F lag

1 11 3

T AG =
0x07

8 8

Content
Identifier
 Flag

protected
 Content

reserved
 = 111

content
 T ype

Content
Identifier
 Type

Content
Identifier

 8 n*8

SupplementaryContentIdentificationDescriptor

8/16/24/32

« Length
 field »

24

TAG=

0x8

8

languageCode

 Suppl
 Content
Identifier
 Title
 Length

8*TitleLength8

 Suppl
 Content
Identifier
 Title

 Suppl
 Content
Identifier
 Value
 Length

 Suppl
 Content
Identifier
 Value

8*ValueLength8

IPI_DescrPointer

IPI_ES_ID

8/16/24/32

« Length
 field »

16

T AG =
0x09

8

QoS_Descriptor

8/16/24/32

« Length
 field »

8

predefined

TAG=
0x0C

8

Optional
 Fields

 QoS_
Qualifier
 Tag

 _

« Length
field »

 QoS_
Qualifier
 Data

 QoS_
Qualifier
 Tag

 _

 QoS_
Qualifier
 Data

Length*8

if predefined == 0

Length*88 8

« Length
field »

8/16/24/32 8/16/24/32

RegistrationDescriptor

formatIdentifier

8/16/24/32

« Length
 field »

32

TAG=
0x0D

8

additionalIdentificationInfo

n*8

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
,
,
,
,
`
,
`
,
`
,
`
,
`
,
,
`
,
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/IEC 14496-1:2010(E)

126 © ISO/IEC 2010 – All rights reserved

E.5 OCI Descriptors

ContentClassificationDescriptor

classificationEntity

8/16/24/32

« Length
 field »

32

TAG=
0x40

8 n*8

classificationTable contentClassificationData

16

KeyWordDescriptor

languageCode

8/16/24/32

« Length
 field »

24

TAG=
0x41

8

keyWord
 Count

8 8

8*

keyWord
 Length ---

keyWord
 Length keyWord[---]keyWord[---]

8

keyWordLength

keyWordLength

If isUTF8_string

keyWordLength

keyWordLength

first keyWord

last keyWord

8*

16*16*

isUTF8
_string

1 7

Resv.
111.1111

else

RatingDescriptor

8/16/24/32

« Length
 field »

TAG=
0x42

8 32

ratingEntity ratingCriteria ratingInfo

16 n*8

ShortTextualDescriptor

8/16/24/32

« Length
 field »

24

TAG=
0x44

8

nameLength

nameLength

8

languageCode textLength

textLengthIf isUTF8_string

else nameLength textLength

eventName eventText

8

8* 8*

16*16*

isUTF8
_string

Resv.
111.1111

1 7

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
,
,
,
,
`
,
`
,
`
,
`
,
`
,
,
`
,
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/IEC 14496-1:2010(E)

© ISO/IEC 2010 – All rights reserved 127

ExpandedTextualDescriptor

8/16/24/32

« Length
 field »

24

TAG=
0x45

8
itemDescriptionLength

8

languageCode

itemLengthIf isUTF8_string

else itemLength

 item
Description
 Length

8

 item
Description

itemDescriptionLength

 item
 Length

 item
Text

8

 first item last item

 item
Count

 text
 Length

nonItem
 Text

8* (text Length)

 text Length (

n*8
8*8*

16* 16* 16*

isUTF8
_string

Resv.
111.1111

1 7

)

If < 255

...

ContentCreatorNameDescriptor

8/16/24/32

« Length
 field »

24

TAG=
0x46

8

Language
 Code

contentCreatorLength

8

content
Creator
 Count

First item

If isUTF8_string

else

8*

content
Creator
 Length

content
Creator
 Name

8

contentCreatorLength 16*

isUTF8
_string

Reserv.
111.1111

1 7

Last item

...

ContentCreationDateDescriptor

8/16/24/32

« Length
 field »

TAG=
0x47

8 40

contentCreationDate

LanguageDescriptor

languageCode

8/16/24/32

« Length
 field »

24

TAG=
0x43

8

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

--`,`,,,,`,`,`,`,`,,`,``,,,``-`-`,,`,,`,`,,`---

ISO/IEC 14496-1:2010(E)

128 © ISO/IEC 2010 – All rights reserved

OCICreatorNameDescriptor

8/16/24/32

« Length
 field »

24

TAG=
0x48

8

Language
 Code

 OCICreatorLength

8

OCI
Creator
 Count

If isUTF8_string

else

8*

 OCI
Creator
 Length

 OCI
Creator
 Name

8

OCICreatorLength 16*

isUTF8
_string

Reserv .
111.1111

1 7

Last item

...

OCICreationDateDescriptor

8/16/24/32

« Length
 field »

TAG=
0x49

8 40

OCICreationDate

SmpteCameraPositionDescriptor

8/16/24/32

« Length
 field »

8

TAG=
0x4A

8

Parameter
 ID

8

Camera
 ID

Parameter

32

Parameter
 Count

8

First item Last item

...

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
,
,
,
,
`
,
`
,
`
,
`
,
`
,
,
`
,
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/IEC 14496-1:2010(E)

© ISO/IEC 2010 – All rights reserved 129

E.6 Sync layer configuration and syntax

8

timeStamp
Resolution

OCR
Resolution

timeStamp
Length

OCR
Length

32
8 8 8 832

AU_
Length

instant
BitRate
Length

degradation
Priority
Length

4 5

AU_seq
 Num
Length

timeScale

32

accessUnit
Duration

composition
Unit

Duration

16 16

« Length
 field »

8/16/24/32

Predefined

8

 First set
of Optional
 flieds

startDecoding
TimeStamp

startComposition
TimeStamp

timeStamp
Length

timeStamp
Length

TAG=
0x06

SLConfigDescriptor

8

packetSeq
 Num
Length

2

reserved

=11

5

startDecoding

 second set
of Optional
 flieds

 third set
of Optional
 flieds

Flags

If false
1 1 1 1 1 1 1 1

 duration
Flag

 useIdle
Flag

 useAccess
UnitStart

Flag

 useAccess
UnitEnd

Flag

useRandom
AccessPoint

Flag

hasRandom
AccessUnit
OnlyFlag

 usePadding
Flag

 useTime
Stamps

Flag

32

SL_PDU

access
Unit
Start
 Flag

1

instant
Bitrate

Flag

1

decoding
TimeStamp

composition
TimeStamp

OCR
flag

access
Unit
End
 Flag

idle
Flag

padding
Flag

 packet
Sequence
Number

Object
Clock

Reference

Optional
Fields

1 1 1 1

padding
Bits

Optional
Fields

3

decoding
TimeStamp

Flag

composition
TimeStamp

Flag

accessUnit
Length

instant
BitRate

SL_Packet
Header

SL_Packet
Payload

from
SLConfigDescriptor

SL_Packet Header:

when non idle and
when the payload is
not only padding bytes

lengths

SL_Packet Payload:

Payloadaccording to padding flag and bits, it is either Payload padding
 bits

or Padding bytesor only

lengths

random
Access
Point
Flag

1 1 1

 AU_
sequence
Number

 degprio
 flag

 degradation
 priority

1

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
,
,
,
,
`
,
`
,
`
,
`
,
`
,
,
`
,
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/IEC 14496-1:2010(E)

130 © ISO/IEC 2010 – All rights reserved

Annex F
(informative)

Elementary Stream Interface

The elementary stream interface (ESI) is a conceptual interface that specifies which data need to be
exchanged between the entity that generates an elementary stream and the sync layer. Communication
between the coding and sync layers cannot only include compressed media, but requires additional
information such as time codes, length of access units, etc.

An implementation of ISO/IEC 14496-1, however, does not have to implement the elementary stream
interface. It is possible to integrate parsing of the SL-packetized stream and media data decompression in one
decoder entity. Note that even in this case the decoder receives a sequence of packets at its input through the
DMIF Application Interface rather than a data stream.

The interface to receive elementary stream data from the sync layer has a number of parameters that reflect
the side information that has been retrieved while parsing the incoming SL-packetized stream:

ESI.receiveData (ESdata, dataLength, idleFlag, objectClockReference, decodingTimeStamp,
compositionTimeStamp, accessUnitStartFlag, randomAccessFlag, accessUnitEndFlag, accessUnitLength,
AU_sequenceNumber, degradationPriority, instantBitrate , errorStatus)

ESdata - a number of dataLength data bytes for this elementary stream

dataLength - the length in byte of Esdata

idleFlag – if set to one it indicates that this elementary stream will not produce further data for an
undetermined period of time. This flag may be used by the decoder to discriminate between deliberate and
erroneous absence of subsequent SL packets.

objectClockReference – contains a reading of the object time base valid for the point in time when the first
byte of ESdata enters the decoder buffer.

decodingTimeStamp - the decoding time for the access unit to which this ESdata belongs

compositionTimeStamp - the composition time for the access unit to which this ESdata belongs

accessUnitStartFlag - indicates that the first byte of ESdata is the start of an access unit

randomAccessFlag - indicates that the first byte of ESdata is the start of an access unit allowing for random
access

accessUnitEndFlag - indicates that the last byte of ESdata is the end of an access unit

accessUnitLength - the length of the access unit to which this Esdata belongs in byte

AU_sequenceNumber - if present, it shall be continuously incremented for each access unit as a modulo
counter. A discontinuity at the decoder corresponds to one or more missing access units. In that case, an
error shall be signalled by the means of errorStatus. If this syntax element is not present, access unit
continuity checking cannot be performed for this elementary stream.

degradationPriority - indicates the importance of the ESdata bytes. The streamPriority defines the base priority
of an ES. degradationPriority defines a decrease in priority for the ESdata bytes relative to the base priority.
The priority for the ESdata bytes is given by:

 ESdata bytes priority = streamPriority – degradationPriority

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
,
,
,
,
`
,
`
,
`
,
`
,
`
,
,
`
,
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/IEC 14496-1:2010(E)

© ISO/IEC 2010 – All rights reserved 131

degradationPriority remains at this value until its next occurrence. This indication may be for graceful
degradation by the decoder of this elementary stream as well as by the adaptor to a specific delivery layer
instance. The relative amount of complexity degradation among ESdata bytes of different elementary streams
increases as ESdata bytes decreases.

instantBitrate, – is the instantaneous bit rate in bits per second of this elementary stream until the next
instantBitrate field is found

errorStatus - indicates whether ESdata is error free, possibly erroneous or whether data has been lost
preceding the current ESdata bytes

A similar interface to send elementary stream data to the sync layer requires the following parameters that will
subsequently be encoded on the sync layer:

ESI.sendData (ESdata, dataLength, idleFlag, objectClockReference, decodingTimeStamp,
compositionTimeStamp, accessUnitStartFlag, randomAccessFlag, accessUnitEndFlag, accessUnitLength,
AU_sequenceNumber, instantBitrate , degradationPriority)

ESdata - a number of dataLength data bytes for this elementary stream

dataLength - the length in byte of ESdata

idleFlag – if set to one it indicates that this elementary stream will not produce further data for an
undetermined period of time. This flag may be used by the decoder to discriminate between deliberate and
erroneous absence of subsequent SL packets.

objectClockReference – contains a reading of the object time base valid for the point in time when the first
byte of ESdata enters the decoder buffer.

decodingTimeStamp - the decoding time for the access unit to which this ESdata belongs

compositionTimeStamp - the composition time for the access unit to which this ESdata belongs

accessUnitStartFlag - indicates that the first byte of ESdata is the start of an access unit

randomAccessFlag - indicates that the first byte of ESdata is the start of an access unit allowing for random
access

accessUnitEndFlag - indicates that the last byte of ESdata is the end of an access unit

accessUnitLength - the length of the access unit to which this Esdata belongs in byte

AU_sequenceNumber - if present, it shall be continuously incremented for each access unit as a modulo
counter. A discontinuity at the decoder corresponds to one or more missing access units. In that case, an
error shall be signalled by the means of errorStatus. If this syntax element is not present, access unit
continuity checking cannot be performed for this elementary stream.

degradationPriority - indicates the importance of the ESdata bytes. The streamPriority defines the base priority
of an ES. degradationPriority defines a decrease in priority for the ESdata bytes relative to the base priority.
The priority for the ESdata bytes is given by:

 ESdata bytes priority = streamPriority – degradationPriority

degradationPriority remains at this value until its next occurrence. This indication may be for graceful
degradation by the decoder of this elementary stream as well as by the adaptor to a specific delivery layer
instance. The relative amount of complexity degradation among ESdata bytes of different elementary streams
increases as ESdata bytes decreases.

instantBitrate, – is the instantaneous bit rate in bits per second of this elementary stream until the next
instantBitrate field is found.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
,
,
,
,
`
,
`
,
`
,
`
,
`
,
,
`
,
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/IEC 14496-1:2010(E)

132 © ISO/IEC 2010 – All rights reserved

Annex G
(informative)

Upstream Walkthrough

G.1 Introduction

Upstream messages from a client terminal to the server terminal are categorized in two types, application
specific command messages and media stream specific messages. Application specific command messages
are general messages applied to a set of different media streams, for example, stream control messages.
These messages may be defined based on the BIFS ServerCommand node. Media stream specific messages
are used to establish communication between a specific media stream decoder and its encoder. This may be
used, for example, to control the encoder remotely from the client terminal side as a result of the decoding
process or user interaction. The syntax and semantics of media stream specific messages are defined in the
relevant part of the standard. For example, the syntax and semantics of messages for the visual NEWPRED
tool are defined in ISO/IEC 14496-2, defining the Visual tools of this specification.

The need for an upstream channel is signaled to the client terminal by supplying an appropriate elementary
stream descriptor declaring the parameters for that stream. The client terminal opens this upstream channel in
a similar manner as it opens the downstream channels. The entities (e.g. media encoders & decoders) that
are connected through an upstream channel are known from the parameters in its elementary stream
descriptor and from the association of the elementary stream descriptor to a specific object descriptor.

Packetization of upstream messages for transmission and synchronization with downstream channel data is
done by the synchronization layer. The configuration of the SL packet header for upstreams may be selected
as appropriate. All messages that are related to a single point in time should be packetized into a single
access unit.

G.2 Configuration

An upstream can be associated to a single downstream or a group of downstreams. The scope of the
upstream is defined by the stream type of the downstream to which the upstream is associated. When the
upstream is associated to a single downstream it carries messages about the downstream it is associated to.
If the upstream should carry messages related to a group of downstreams, its elementary stream descriptor is
associated to the ObjectDescriptorStream containing object descriptors or the SceneDescriptionStream
describing the scene, as specified in 7.2.7.1.5.2.

In the case that the upstream is attached to the ObjectDescriptorStream, only the object descriptors grouped
together for this single upstream would be carried by it. The other object descriptors outside the scope of this
upstream would be carried by other ObjectDescriptorStreams. This implies that the object descriptors
requiring a single upstream should be carried separately from the other object descriptors. If the upstream
depends on a SceneDescriptionStream, all the objects inside the scene would get the upstream messages
from this upstream.

Detailed configuration rules for each case are as described below.

G.2.1 Upstream for single ES

In this case the upstream is attached to a single independent ES and will carry media specific information
valid for a single downstream it is dependent on. Because only one of the independent elementary streams
defined in the same OD can be selected for use in the scene, the upstream is not related to the ES itself but
rather to the object represented by this OD.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
,
,
,
,
`
,
`
,
`
,
`
,
`
,
,
`
,
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/IEC 14496-1:2010(E)

© ISO/IEC 2010 – All rights reserved 133

a) The ObjectDescriptor has one or more additional ES_Descriptors defining upstream configuration for
each ES which needs a backchannel.

b) ES_Descriptor of upstream shall be defined as follows

streamDependenceFlag shall be set to ‘1’ to indicate this stream depends on a downstream.

dependsOn_ES_ID shall be set to the ES_ID value of the downstream.

c) DecoderConfigDescriptor in ES_Descriptor of upstream shall be defined as follows.

objectTypeIndication and streamType shall be set to the same value of the downstream

upStream flag shall be set to ‘1’ to indicate this is a backchannel stream.

bufferSizeDB, maxBitrate, avgBitrate and DecoderSpecificInfor shall be set appropriately.

G.2.2 Upstream for a group of ESs

In this case the upstream is attached to an ObjectDescriptorStream or a SceneDescriptionStream to be used
as an upstream for a group of elementary streams. The basic configuration rules for the ObjectDescriptor are
the same as in the case of upstream for a single ES. The scope and type of messages carried by the
upstream is decided by the following rules.

a) If an upstream is configured to be dependent on a certain ObjectDescriptorStream and its streamType is
either VisualStream or AudioStream, it carries media stream specific information that may relate to more
than one of the downstreams that are described by the ObjectDescriptors transmitted within the
ObjectDescriptorStream upon which the upstream depends. All decoders for streams with matching
streamType within that set of streams may use the upstream channel to send messages.

b) If an upstream is configured to be dependent on a certain SceneDescriptionStream and its streamType is
either VisualStream or AudioStream, it carries media specific information for downstreams in the whole
scene as described by the SceneDescriptionStream upon which the upstream depends. All decoders for
streams with matching streamType within that set of streams may use the upstream channel to send
messages.

c) If an upstream is configured to be dependent on a certain SceneDescriptionStream and its streamType is
SceneDescriptionStream, it will carry messages related to the BIFS scene or to application signaling (e.g.
based on the ServerCommand specification).

G.3 Content access procedure with DAI

When the receiving terminal receives a DecoderConfigDescriptor whose upStream flag is set to ‘1’, it opens a
logical channel for the upstream ES by setting the ‘direction’ field of the DA_ChannelAdd primitive to
UPSTREAM. Other procedures and rules for accessing and managing content at the client terminal are
basically the same as for the case of downstream. The syntax and semantics of upstream messages, defining
their functionality and the expected interaction between encoder and decoder, are defined in the appropriate
part of ISO/IEC 14496. Messages related to streams of streamType SceneDescriptionStream and
ObjectDescriptorStream are defined in this part of the specification. Concerning upstream management at the
sending terminal, this standard does not normatively specify any behavioral procedures or rules.

G.4 Example

This section describes an example of the setup and the usage of MPEG-4 upstreams, according to the rules
described in the above sections

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
,
,
,
,
`
,
`
,
`
,
`
,
`
,
,
`
,
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/IEC 14496-1:2010(E)

134 © ISO/IEC 2010 – All rights reserved

G.4.1 Example scene having objects with upstream

Figure G.1 shows a simple scene with 3 objects (1 natural video and 2 synthetic objects) for which information
is gathered through different upstreams:

• ServerCommand upstream is used to control the animation (start, stop, …) of all objects (natural video
and SNHC) in the scene (possibly also audio objects).

• NewPred upstream is used for error correction of a single natural video object.

• SNHC_QoS upstream conveys information of the client terminal w.r.t. its decoding and rendering
capabilities for all 3D (SNHC) objects.

The example scene of Figure G.1 is described through the object descriptor Full_Scene, which points to
different streams:

InitialObjectDescriptor Full_Scene{
 bit(10) Full_Scene_ID (=OD_ID);
 bit(1) 0 (=URL_Flag);
 bit(1) 1 (=includeInlineProfileLevelFlag);
 const bit(4) reserved=0b1111;
 bit(8) ODProfileLevelIndication;
 bit(8) sceneProfileLevelIndication;
 bit(8) audioProfileLevelIndication;
 bit(8) visualProfileLevelIndication;
 bit(8) graphicsProfileLevelIndication;
 ES_Descriptor SceneDescriptionStream_Scene_1_down;
 ES_Descriptor SceneDescriptionStream_Scene_1_up;
 ES_Descriptor ObjectDescriptorStream_Scene_1_down;
 ES_Descriptor ObjectDescriptorStream_Scene_1_up;
}

InitialObjectDescriptor Full_Scene

Object 1
(video)

Scene 1

Object 2
(3D)

Object 3
(3D)

SNHC_QoS

NewPred

ServerCommand

Figure G.1 — Backchannel information transport in a simple audio-visual scene

G.4.2 Stream configuration

Graphical summaries of the stream configuration for the example scene shown in Figure G.1 are given in
Figure G.2 to Figure G.4. In those figures configuration rules of the important fields and stream dependencies
are described in detail.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

--`,`,,,,`,`,`,`,`,,`,``,,,``-`-`,,`,,`,`,,`---

ISO/IEC 14496-1:2010(E)

© ISO/IEC 2010 – All rights reserved 135

InitialObjectDescriptor Full_Scene{
ES_Descriptor SceneDescriptionStream_Scene_1_down;
ES_Descriptor SceneDescriptionStream_Scene_1_up;
ES_Descriptor ObjectDescriptorStream_Scene_1_down;
ES_Descriptor ObjectDescriptorStream_Scene_1_up;
}

ES_Descriptor SceneDescriptionStream_Scene_1_down {
bit(16) SceneDescriptionStream_Scene_1_down_ID (=ES_ID);
bit(1) 0 (=streamDependenceFlag);
DecoderConfigDescriptor dec_config_SceneDescriptionStream_Scene_1_down;

}

DecoderConfigDescriptor dec_config_SceneDescriptionStream_Scene_1_down {
bit(8) 0x01 (=objectTypeIndication); // System ISO/IEC 14496-1
bit(6) 0x03 (=streamType); // SceneDescriptionStream
bit(1) 0 (=down/upstream); // Downstream

}

ES_Descriptor SceneDescriptionStream_Scene_1_up {
bit(16) SceneDescriptionStream_Scene_1_up_ID (=ES_ID);
bit(1) 1 (=streamDependenceFlag);
bit(16) SceneDescriptionStream_Scene_1_down_ID;
DecoderConfigDescriptor dec_config_SceneDescriptionStream_Scene_1_up;

}

DecoderConfigDescriptor dec_config_SceneDescriptionStream_Scene_1_up {
bit(8) 0x01 (=objectTypeIndication); // System ISO/IEC 14496-1
bit(6) 0x03 (=streamType); // SceneDescriptionStream

// => conveys ServerCommand
bit(1) 1 (=down/upstream); // Upstream

}

2

3
4

1

Figure G.2 — Syntax for SceneDescription streams

InitialObjectDescriptor Full_Scene{
ES_Descriptor SceneDescriptionStream_Scene_1_down;
ES_Descriptor SceneDescriptionStream_Scene_1_up;
ES_Descriptor ObjectDescriptorStream_Scene_1_down;
ES_Descriptor ObjectDescriptorStream_Scene_1_up;
}

ES_Descriptor ObjectDescriptorStream_Scene_1_down {
bit(16) ObjectDescriptorStream_Scene_1_down_ID (=ES_ID);
bit(1) 0 (=streamDependenceFlag);
DecoderConfigDescriptor dec_config_ObjectDescriptorStream_Scene_1_down;

}

DecoderConfigDescriptor dec_config_ObjectDescriptorStream_Scene_1_down {
bit(8) 0x01 (=objectTypeIndication); // System ISO/IEC 14496-1
bit(6) 0x01 (=streamType); // ObjectDescriptorStream
bit(1) 0 (=down/upstream); // Downstream

}

ES_Descriptor ObjectDescriptorStream_Scene_1_up {
bit(16) ObjectDescriptorStream_Scene_1_up_ID (=ES_ID);
bit(1) 1 (=streamDependenceFlag);
bit(16) ObjectDescriptorStream_Scene_1_down_ID;
DecoderConfigDescriptor dec_config_ObjectDescriptorStream_Scene_1_up;

}

DecoderConfigDescriptor dec_config_ObjectDescriptorStream_Scene_1_up {
bit(8) 0x20 (=objectTypeIndication); // Visual ISO/IEC 14496-2
bit(6) 0x01 (=streamType); // ObjectDescriptorStream

// => conveys SNHC_QoS
bit(1) 1 (=down/upstream); // Upstream

}

6

7 8

5

Figure G.3 — Syntax for ObjectDescriptor streams

In Figure G.2, dependencies and configurations of two SceneDescriptionStreams are shown. Upstream
SceneDescriptionStream_Scene_1_up is dependent on downstream

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
,
,
,
,
`
,
`
,
`
,
`
,
`
,
,
`
,
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/IEC 14496-1:2010(E)

136 © ISO/IEC 2010 – All rights reserved

SceneDescriptionStream_Scene_1_down (see arrows 1 and 2 in figure). Its streamType is set to
SceneDescriptionStream since it will carry ServerCommand messages (see arrows 3 and 4 in figure).

In Figure G.3, dependencies and configurations of two ObjectDescriptionStreams are shown. Upstream
ObjectDescriptionStream_Scene_1_up is dependent on downstream
ObjectDescriptionStream_Scene_1_down (see arrows 5 and 6 in figure). Its streamType is set to
VisualStream since it will carry SNHC_QoS messages for object 2 and object 3 in this example (see arrows
7 and 8 in figure). ObjectDescriptorStream_Scene_1_up conveys SNHC_QoS information that is related to all
SNHC objects of the underlying group of objects (possibly single object). This SNHC_QoS information is
basically attached to all Visual objects (see dashed box in Figure G.1), but the definition of SNHC_QoS
constrains the scope of application to SNHC objects only. Whether the Visual objects are of type SNHC or
Natural cannot be determined at the system level : it is determined at the Visual syntax level, by the
visual_object_type, in accordance to table 6-5 of ISO/IEC14496-2.

ObjectDescriptor Object_1 {
bit(10) Object_1_ID (=OD_ID);
ES_Descriptor Object_1_down;
ES_Descriptor Object_1_up;

}

ES_Descriptor Object_1_down{
bit(16) Object_1_down_ID (=ES_ID);
bit(1) 0 (=streamDependenceFlag);
DecoderConfigDescriptor dec_config_Object_1_down;

}

DecoderConfigDescriptor dec_config_Object_1_down {
bit(8) 0x20 (=objectTypeIndication); // Visual ISO/IEC 14496-2
bit(6) 0x04 (=streamType); // Visual stream
bit(1) 0 (=down/upstream); // Downstream

}

ES_Descriptor Object_1_up{
bit(16) Object_1_up_ID (=ES_ID);
bit(1) 1 (=streamDependenceFlag);
bit(16) Object_1_down_ID;
DecoderConfigDescriptor dec_config_Object_1_up;

}

DecoderConfigDescriptor dec_config_Object_1_up {
bit(8) 0x20 (=objectTypeIndication); // Visual ISO/IEC 14496-2
bit(6) 0x04 (=streamType); // Visual stream

// => conveys NewPred
bit(1) 1 (=down/upstream); // Upstream

}

10

11 12

9

Figure G.4 — Syntax for Object_1 streams

In Figure G.4, dependencies and configurations of two Elementary Streams are shown. Upstream
Object_1_up is dependent on downstream Object_1_down (see arrows 9 and 10 in figure). Its streamType is
set to VisualStream since it will carry NewPred messages for object 1 in this example (see arrows 11 and
12 in figure). Object_1_up conveys NewPred information for the corresponding natural video object. The
definition of NewPred automatically constrains its application to single natural video objects, i.e. the behavior
of the server-client system is undefined if a NewPred command is associated to a group of objects and/or a
single non-natural video object.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
,
,
,
,
`
,
`
,
`
,
`
,
`
,
,
`
,
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/IEC 14496-1:2010(E)

© ISO/IEC 2010 – All rights reserved 137

Annex H
(informative)

Scene and Object Description Carrousel

The “scene carousel”, also called “BIFS carousel”, is a mechanism that allows the use of dynamic scenes in
broadcast environments. In the broadcast scenarios, it is necessary to supply full scene description
periodically, so that terminals that tune in at the middle of the session will be able to construct the presentation.
On the other hand, it is desirable that terminals that are already tuned will receive only scene updates. This is
necessary because sometimes the user at the receiving terminal side interacts with the scene and changes it
locally, applying changes that might be lost if a full scene refresh is performed. Another use of the scene
carousel is in situations when data is transmitted over unreliable channels. In this case, data, including scene
updates, can be lost and therefore a periodical full scene refresh is necessary to recover from such losses.

The scene carousel is constructed using a tool provided by the Synchronization Layer. SL-packet headers
may contain a field called AU_sequenceNumber. This field is regarded as the semantical sequence number
of the access unit. When the terminal encounters two consecutive access units with the same sequence
number, it understands that the second carries the same information as the first one and therefore can be
ignored. In a scene carousel, a sequence of scene updates is followed by a Scene Replace command that
conveys the full description of the scene. The scene as described by the Scene Replace command is identical
to the scene as described by the preceding accumulated updates, therefore the command is delivered as an
access unit with the same sequence number as the preceding access unit. Terminals that have successfully
processed the update commands will ignore the Scene Replace command, while terminals that need a full
scene refresh, whether because they have just tuned in, or lost data on the network, skip the updates and
process the Scene Replace command.

The above description refers to the situation when two consecutive access units with the same
AU_sequenceNumber are received and the second is a random access point. The decoder should behave
differently if the second access unit is not a random access point. In that case, the appearance of an identical
sequence number in the two access units indicates that the two access units refer to the same key state of the
scene. I.e. the second access unit can be safely processed by the decoder even if it is known to the decoder
that one or more access units that originally existed between the two were lost on the network. The
mechanism is called “BIFS carousel” because it is in common use for BIFS and Animation streams, but since
the SL is a general tool in MPEG-4, it can be used for any kind of stream.

The following example demonstrates the use of the scene carousel and the AU_sequenceNumber field:

AU_sequenceNumber RAP Receiving Terminal Behavior

0 Yes
1 No
2 No player tunes in, waits for RAP
3 No
3 yes RAP arrived, player starts processing AUs
4 no process update
4 no process update (even though it’s same number as preceding AU)
4 yes this is the carousel sync point, ignored by player
4 no packet lost
4 no process update, even though preceding AU was lost
5 no packet lost
5 no cannot process update since it depends on a lost packet
6 no ignore, needs a RAP
6 yes recover – resume processing

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
,
,
,
,
`
,
`
,
`
,
`
,
`
,
,
`
,
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/IEC 14496-1:2010(E)

138 © ISO/IEC 2010 – All rights reserved

Annex I
(normative)

Usage of ITU-T Recommendation H.264 | ISO/IEC 14496-10 AVC

I.1 SL packet encapsulation of AVC Access Unit

The definition of AVC Access Unit is specified in 7.4.1.2 of ITU-T H.264 | ISO/IEC 14496-10. Following
restrictions and recommendation are applied when it is encapsulated as an SL packet.

• Start Codes shall not be present in the stream. The field indicating the size of each following NAL unit
shall be added before NAL unit. The size of this field is defined in DecoderSpecificInfo.

• SL packet whose randomAccessPointFlag in the header is set to ‘1’ and subsequent SL packets shall
carry access units that parameter sets required to decode are provided prior to their use.

• The Picture Timing SEI message that defines the timing information may be present in the video
elementary stream, as this message contains other information than timing, and may be required for
conformance testing of decoder. However, when it is encapsulated as SL packets, those time
information carried by the Picture Timing SEI message shall not be used to decide decoding time or
composition time of access unit. Timing information for decoding and composition shall be provided
by SL packet header.

• It is recommended encapsulating one NAL unit in one SL packet when it is delivered over lossy
environment.

I.2 Handling of Parameter Sets

I.2.1 Usage of DecoderSpecificInfo

Parameter Sets of AVC contents may be updated dynamically. However, DecoderSpecificInfo carrying
Parameter Sets shall not be changed through the session. Parameter Sets carried in the DecoderSpecificInfo
shall be updated by one of two way as follows:

• Sequence or Picture Parameter Set NAL units may be inserted in the video stream;

• A parameter set elementary stream, containing only parameter set access units, may be used to carry
parameter sets separately from AVC video elementary stream. When the parameter set elementary
stream is used, access units in AVC video elementary stream shall not carry parameter sets. The
parameter sets shall be updated when the decoding time defined in the header of SL packet carrying
those parameter sets is reached.

I.2.1.1 Decoder Specific Information

This Subclause defines the DecoderSpecificInfo descriptor for an AVC elementary stream.

I.2.1.1.1 Syntax

aligned(8) class AVCDecoderSpecificInfo extends DecoderSpecificInfo : bit(8)
tag=DecSpecificInfoTag {
 AVCVideoConfigurationRecord config;
}

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
,
,
,
,
`
,
`
,
`
,
`
,
`
,
,
`
,
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/IEC 14496-1:2010(E)

© ISO/IEC 2010 – All rights reserved 139

I.2.1.1.2 Semantics

The decoder specific information for an AVC stream contains an AVC video stream decoder configuration
record, which is defined in 5.2.4 of ISO/IEC 14496-15:2004.

config contains the decoder configuration record for the AVC elementary stream decoder configuration.

I.2.1.2 Object type indication

The DecoderConfigDescriptor shall set the value of streamtype equal to 0x04 for both AVC video
elementary stream and the AVC parameter set elementary streams.

The DecoderConfigDescriptor for an AVC video elementary stream, possibly including in-line sequence
or picture parameter sets, shall set objectTypeIndication to be 0x21 (ITU-T Recommendation H.264 |
ISO/IEC 14496-10). For the AVC parameter set elementary stream, the objectTypeIndication value
shall equal 0x22 (Parameter Sets from ITU-T Recommendation H.264 | ISO/IEC 14496-10).

I.2.1.3 Stream dependency

If the parameter set elementary stream is present, the elementary stream descriptors for the two streams shall
satisfy the following conditions:

(1) The video elementary stream is dependent on the parameter set elementary stream and the
ES_Descriptor for the video elementary stream shall have a streamDependenceFlag equal to
true and indicate the ESID of the parameter set elementary stream in the dependsOnESID field. The
streamDependenceFlag in the ES_Descriptor for the parameter set elementary stream shall be
false.

(2) The elementary stream clocks for the parameter set elementary stream and the video elementary
stream shall be the same and synchronized. The OCRstreamflag and OCR_ES_Id fields in the
ESDescriptor for the video elementary stream and parameter set elementary streams shall be used
to indicate that both streams share the same OCR.

I.3 Usage of ISO/IEC 14496-14 AVC File Format in MPEG-4 Systems

This Subclause specifies how the AVC file format shall be used when the file is marked as being compatible
with the MPEG-4 file format specified in ISO/IEC 14496-14. This Subclause applies when the file is branded
with the MPEG-4 file format brand of 'mp41' or 'mp42', and the AVC video data must be used in an MPEG-4
systems context.

I.3.1 Elementary Stream Descriptor

As is normal for MPEG-4 streams, the TrackID is related to the ElementaryStreamID, and the
SLConfigDescriptor is generated following the rules for any MPEG-4 stream. The format of the ES descriptor
is specified in 7.2.6.5.

If the ES descriptor should contain any other descriptors than SLConfigDescriptor or DecoderConfigDescriptor,
they are stored in the Sample Description as defined in 5.3.4.1 of ISO/IEC 14496-15:2004.

The use of multiple non-dependent ES descriptors may also be indicated by the presence of more than one
independent AVC ES descriptors in an object descriptor.

I.3.2 Forming the DecoderConfigDescriptor

The buffersizeDB, maxBitrate, and avgBitrate fields can be filled by inspection of the VUI Sequence
Parameters, if present in the sequence parameter set for the AVC stream. The DecoderSpecificInfo is formed
using the contents of the AVCConfigurationBox.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

--`,`,,,,`,`,`,`,`,,`,``,,,``-`-`,,`,,`,`,,`---

ISO/IEC 14496-1:2010(E)

140 © ISO/IEC 2010 – All rights reserved

I.3.3 Switching Picture Tracks

Switching picture tracks are not MPEG-4 elementary streams and shall not be included within an MPEG-4
object descriptor.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

--`,`,,,,`,`,`,`,`,,`,``,,,``-`-`,,`,,`,`,,`---

ISO/IEC 14496-1:2010(E)

© ISO/IEC 2010 – All rights reserved 141

Annex J
(informative)

Patent statements

J.1 General

The International Organization for Standardization and the International Electrotechnical Commission (IEC)
draw attention to the fact that it is claimed that compliance with this part of ISO/IEC 14496 may involve the
use of patents.

ISO and IEC take no position concerning the evidence, validity and scope of these patent rights.

The holders of these patent right have assured the ISO and IEC that they are willing to negotiate licences
under reasonable and non-discriminatory terms and conditions with applicants throughout the world. In this
respect, the statements of the holders of these patents right are registered with ISO and IEC. Information may
be obtained from the companies listed below.

Attention is drawn to the possibility that some of the elements of this part of ISO/IEC 14496 may be the
subject of patent rights other than those identified in this annex. ISO and IEC shall not be held responsible for
identifying any or all such patent rights.

J.2 Patent Statements for Version 1

The table summarises the formal patent statements received and indicates the parts of the standard to which
the statement applies. (S: Systems, V: Visual, A: Audio, R: Reference Software, D: DMIF) The list includes all
organisations that have submitted informal patent statements. However, if no "X" is present, no formal patent
statement has yet been received from that organisation.

 Company S V A R D
 Alcatel x x x x x
 AT&T
 BBC x x x x x
 Bosch x x x
 British Telecommunications x x x x x
 Canon x x x x x
 CCETT x x x x x
 Columbia University x x x x x
 Creative x x x
 CSELT x
 DEmoGraFX x x
 DirecTV x x x
 Dolby x x x x x
 EPFL x x x
 ETRI x x x x x
 FhG x x x x x
 France Telecom x x x x x
 Fujitsu Limited x x x x x

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

--`,`,,,,`,`,`,`,`,,`,``,,,``-`-`,,`,,`,`,,`---

ISO/IEC 14496-1:2010(E)

142 © ISO/IEC 2010 – All rights reserved

 Company S V A R D
 GC Technology Corporation x x x
 General Instrument x x
 Hitachi x x x x x
 Hyundai x x x x x
 IBM
 Institut für Rundfunktechnik x x x x
 InterTrust
 JVC x x x x x
 KDD Corporation x x
 KPN x x x x x
 LG Semicon
 Lucent
 Matsushita x x x x x
 Microsoft x x x x x
 MIT
 Mitsubishi x x x x
 Motorola x x
 NEC Corporation x x x x x
 NHK x x x x x
 Nokia x x x
 NTT x x x x x
 OKI x x x x x
 Philips x x x x x
 PictureTel Corporation x x
 Rockwell x x x x x
 Samsung x x x
 Sarnoff x x x x x
 Scientific Atlanta x x x x x
 Sharp x x x x x
 Siemens x x x
 Sony x x x x x
 Telenor x x x x x
 Teltec DCU x x
 Texas Instruments
 Thomson x x x
 Toshiba x
 Unisearch Ltd. x x
 Vector Vision x

J.3 Patent Statements for Version 2

The table summarises the patent statements received for Version 2 and indicates the parts of the Version 2
standard to which the statement applies. A Legend to interpret the table is given below.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
,
,
,
,
`
,
`
,
`
,
`
,
`
,
,
`
,
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/IEC 14496-1:2010(E)

© ISO/IEC 2010 – All rights reserved 143

Legend: The presence of a name of a company in the list below indicates that a patent statement has been received
from that company

 The presence of a cross indicates that the statement identifies the part of the MPEG-4 version 2 standard
to which the statement applies

 No cross in a line indicates that the statement does not identify which part of the standard the statement
applies

 Company S V A R D
 Apple x x
 British Telecommunications
 Bosch x x x x x
 CCETT x x x x x
 Columbia Innovation Enterprise x x x x x
 DemoGraFX x x x x x
 DirecTV x x x
 Dolby x x x x x
 EPFL x x x
 France Telecom x x x x x
 Fraunhofer x x
 Fujitsu x x
 Hitachi x x x x x
 Hyundai x x x x x
 IBM x x x x x
 Intertrust
 JVC x x x x x
 KPN x
 Lucent
 Matsushita Electric Industrial Co., Ltd. x x x x x
 Microsoft x x x x x
 Mitsubishi x x x x x
 NEC x x x x x
 NHK x x x x x
 Nokia x x x x x
 NTT x
 NTT Mobile Communication Networks x
 OKI x x x
 Optibase x x
 Philips
 Samsung x x x x
 Sarnoff x x x x x
 Sharp x x x x x
 Siemens x x x x x
 Sony x x x x x
 Sun x
 Thomson x x x x x
 Toshiba x

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
,
,
,
,
`
,
`
,
`
,
`
,
`
,
,
`
,
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/IEC 14496-1:2010(E)

144 © ISO/IEC 2010 – All rights reserved

Bibliography

[1] ELEFTHERIADIS, A. Flavor: A Language for Media Representation. Proceedings, ACM Multimedia ’97
Conference, Seattle, Washington, November 1997, pp. 1–9

[2] HERPEL, C. Elementary Stream Management in MPEG-4. IEEE Trans. on Circuits and Systems for
Video Technology, 1998, Vol. 9, Issue 2, March 1999, pp. 315-324

[3] Flavor web site, http://flavor.sourceforge.net./

[4] CHIARIGLIONE, L. et al. MPEG-4: Context and Objectives. Signal Processing: Image Communication,
Special Issue on MPEG-4, Vol. 9, Nr. 4, May 1997

[5] KOENEN, R and PEREIRA, F. Very Low Bitrate Audio-Visual Applications. Signal Processing: Image
Communication, Vol. 9, Nr. 1, November 1996, pp. 55-77

[6] ELEFTHERIADIS, A. and PURI, A. MPEG-4: An Object-Based Multimedia Coding Standard Supporting
Mobile Application. ACM Mobile Networks and Applications Journal, 1998 (to appear)

[7] EBRAHIM, T. and PEREIRA, F. The MPEG-4 Book, Prentice Hall, 2003 (ISBN-10: 0130616214)

[8] ISO 3166-1:1997, Codes for the representation of names of countries and their subdivisions — Part 1:
Country codes

[9] ISO 9613-1:1993, Acoustics — Attenuation of sound during propagation outdoors — Part 1:
Calculation of the absorption of sound by the atmosphere

[10] ISO/IEC 13818-1:2007, Information technology — Generic coding of moving pictures and associated
audio information: Systems

[11] ISO/IEC 13522-6:1998, Information technology — Coding of multimedia and hypermedia
information — Part 6: Support for enhanced interactive applications

[12] ISO/IEC 14772-1:1997, Information technology — Computer graphics and image processing — The
Virtual Reality Modeling Language — Part 1: Functional specification and UTF-8 encoding

[13] ISO/IEC 16262: 2002, Information technology — ECMAScript language specification

[14] IEEE Std 754-1985, Standard for Binary Floating-Point Arithmetic

[15] CHAN, P. et al. Java Class Libraries Vol. 1, Addison-Wesley,Second edition, 1998 (ISBN 0201310023)

[16] CHAN, P. and ROSANNA, L. Java Class Libraries Vol. 2, Addison-Wesley,Second edition, 1998
(ISBN 0201310031)

[17] GOSLING et al. The Java Language Specification, Addison-Wesley,1996 (ISBN 0201634511)

[18] GOSLING, J. and YELLIN, F. Java API, The Java Application Programming Interface, Volume 1: Core
Packages, Addison-Wesley, 1996 (ISBN 0201634538)

[19] LINDHOLM, T. and YELLIN, F. The Java Virtual Machine Specification, Addison-Wesley, 1996
(ISBN 020163452X)

[20] DAVIC 1.4.1 specification, Part 9: Information Representation

[21] W3C Recommendation: August 2001 — Synchronized Multimedia Integration Language (SMIL 2.0),
http://www.w3.org/TR/smil20/

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

--`,`,,,,`,`,`,`,`,,`,``,,,``-`-`,,`,,`,`,,`---

http://flavor.sourceforge.net./
http://www.iso.ch/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=33835&ICS1=35&ICS2=60&ICS3=
http://www.w3.org/TR/smil20/

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
,
,
,
,
`
,
`
,
`
,
`
,
`
,
,
`
,
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/IEC 14496-1:2010(E)

ICS 35.040
Price based on 144 pages

© ISO/IEC 2010 – All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=Hong Kong Polytechnic Univ/9976803100

Not for Resale, 06/09/2010 06:14:44 MDTNo reproduction or networking permitted without license from IHS

-
-
`
,
`
,
,
,
,
`
,
`
,
`
,
`
,
`
,
,
`
,
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

	Overview
	Architecture
	Terminal Model: Systems Decoder Model
	Timing Model
	Buffer Model

	Multiplexing of Streams: The Delivery Layer
	Synchronization of Streams: The Sync Layer
	The Compression Layer
	Object Description Framework
	Intellectual Property Management and Protection
	Object Content Information

	Scene Description Streams
	Audio-visual Streams
	Upchannel Streams
	Interaction Streams
	Text and Font data Streams

	Application Engine
	Extensible MPEG-4 Textual Format (XMT)
	Patent Rights
	Scope
	Normative references
	Additional references
	Terms and definitions
	Abbreviated terms
	Conventions
	Streaming Framework
	Systems Decoder Model
	Introduction
	Concepts of the systems decoder model
	DMIF Application Interface (DAI)
	SL-Packetized Stream (SPS)
	Access Units (AU)
	Decoding Buffer (DB)
	Elementary Streams (ES)
	Elementary Stream Interface (ESI)
	Decoder
	Composition Units (CU)
	Composition Memory (CM)
	Compositor

	Timing Model Specification
	System Time Base (STB)
	Object Time Base (OTB)
	Object Clock Reference (OCR)
	Decoding Time Stamp (DTS)
	Composition Time Stamp (CTS)
	Occurrence and Precision of Timing Information in Elementary
	Time Stamps for Dependent Elementary Streams

	Buffer Model Specification
	Elementary Decoder Model
	Assumptions
	Constant end-to-end delay
	Demultiplexer
	Decoding Buffer
	Decoder
	Composition Memory
	Compositor

	Managing Buffers: A Walkthrough

	Object Description Framework
	Introduction
	Common data structures
	Overview
	BaseDescriptor
	Syntax
	Semantics

	BaseCommand
	Syntax
	Semantics

	Intellectual Property Management and Protection Framework (I
	Overview
	IPMP Streams
	Structure of the IPMP Stream
	Access Unit Definition
	Time Base for IPMP Streams
	IPMP Decoder Configuration
	Syntax
	Semantics

	IPMP message syntax and semantics
	Syntax
	Semantics

	Extension tags for the IPMP_Data_BaseClass
	IPMP_Data_BaseClass
	Syntax
	Semantics

	Object Content Information (OCI)
	Overview
	OCI Streams
	Structure of the OCI Stream
	Access Unit Definition
	Time Base for OCI Streams
	OCI Decoder Configuration
	Syntax
	Semantics

	OCI_Events syntax and semantics
	Syntax
	Semantics

	Object Descriptor Stream
	Structure of the Object Descriptor Stream
	Access Unit Definition
	Time Base for Object Descriptor Streams
	OD Decoder Configuration
	OD Command Syntax and Semantics
	Overview
	ObjectDescriptorUpdate
	Syntax
	Semantics

	ObjectDescriptorRemove
	Syntax
	Semantics

	ES_DescriptorUpdate
	Syntax
	Semantics

	ES_DescriptorRemove
	Syntax
	Semantics

	IPMP_DescriptorUpdate
	Syntax
	Semantics

	IPMP_DescriptorRemove
	Syntax
	Semantics

	ObjectDescriptorExecute
	Syntax
	Semantics

	Object Descriptor Components
	Overview
	ObjectDescriptorBase
	Syntax
	Semantics

	ObjectDescriptor
	Syntax
	Semantics

	InitialObjectDescriptor
	Syntax
	Semantics

	ES_Descriptor
	Syntax
	Semantics

	DecoderConfigDescriptor
	Syntax
	Semantics

	DecoderSpecificInfo
	Syntax
	Semantics

	SLConfigDescriptor
	IP_IdentificationDataSet
	Syntax
	Semantics

	ContentIdentificationDescriptor
	Syntax
	Semantics

	SupplementaryContentIdentificationDescriptor
	Syntax
	Semantics

	IPI_DescrPointer
	Syntax
	Semantics

	IPMP_DescriptorPointer
	Syntax
	Semantics

	IPMP Descriptor
	Syntax
	Semantics
	IPMP Tool List Specification
	IPMP_ToolListDescriptor
	IPMP_Tool
	7.2.6.14.3.2.1 Syntax
	7.2.6.14.3.2.2 Semantics

	IPMP_ParametricDescription
	7.2.6.14.3.3.1 Syntax
	7.2.6.14.3.3.2 Semantics

	ByteArray
	7.2.6.14.3.4.1 Syntax
	7.2.6.14.3.4.2 Semantics

	Implementation of a Registration Authority (RA)

	QoS_Descriptor
	Syntax
	Semantics
	QoS_Qualifier
	Syntax
	Semantics
	7.2.6.15.3.2.1 Rebuffering

	ExtensionDescriptor
	Syntax
	Semantics

	RegistrationDescriptor
	Syntax
	Semantics
	Implementation of a Registration Authority (RA)

	Object Content Information Descriptors
	Overview
	OCI_Descriptor Class
	Syntax
	Semantics

	Content classification descriptor
	Syntax
	Semantics

	Key Word Descriptor
	Syntax
	Semantics

	Rating Descriptor
	Syntax
	Semantics

	Language Descriptor
	Syntax
	Semantics

	Short Textual Descriptor
	Syntax
	Semantics

	Expanded Textual Descriptor
	Syntax
	Semantics

	Content Creator Name Descriptor
	Syntax
	Semantics

	Content Creation Date Descriptor
	Syntax
	Semantics

	OCI Creator Name Descriptor
	Syntax
	Semantics

	OCI Creation Date Descriptor
	Syntax
	Semantics

	SMPTE Camera Position Descriptor
	Syntax
	Semantics
	Packet structure defined by SMPTE 315M

	Segment Descriptor
	Syntax
	Semantics

	MediaTimeDescriptor
	Syntax
	Semantics

	Extension Profile Level Descriptor
	Syntax
	Semantics

	Profile Level Indication Index Descriptor
	Syntax
	Semantics

	Rules for Usage of the Object Description Framework
	Aggregation of Elementary Stream Descriptors in a Single Obj
	Overview
	Aggregation of Elementary Streams with the same streamType
	Aggregation of Elementary Streams with Different streamTypes
	Aggregation of scene description streams and object descript
	Elementary Stream Dependencies
	Independent elementary streams
	Dependent elementary streams

	Linking Scene Description and Object Descriptors
	Associating Object Descriptors to BIFS Nodes
	Multiple scene description and object description streams
	Scene and Object Description in Case of Inline Nodes
	Name Scope of Identifiers
	Reuse of identifiers

	ISO/IEC€14496 Content Access
	Introduction
	The Initial Object Descriptor
	Usage of URLs in the Object Descriptor Framework
	Selection of Elementary Streams for an Audio-Visual Object
	Content access in “push” and “pull” scenarios
	Content access through a known Object Descriptor
	Pre-conditions
	Content Access Procedure

	Content access through a URL in an Object Desciptor
	Pre-conditions
	Content access procedure

	Content access through a URL in an elementary stream descrip
	Pre-conditions
	Content access procedure

	Mapping of Content Access Procedure to DAI calls

	Usage of the IPMP System interface
	Overview
	Association of an IPMP System with ISO/IEC€14496 content
	Association in the initial object descriptor
	Association in other object descriptors

	IPMP of Object Descriptor streams
	IPMP of Scene Description streams
	Usage of URLs in managed and protected content
	URLs in the BIFS Scene Description
	URLs in Object Descriptors
	URLs in ES_Descriptors

	IPMP Decoding Process

	Synchronization of Elementary Streams
	Introduction
	Sync Layer
	Overview
	SL Packet Specification
	Syntax
	Semantics

	SL Packet Header Configuration
	Syntax
	Semantics
	SLExtentionDescriptor Syntax
	SLExtentionDescriptor Semantics
	DependencyPointer Semantics
	MarkerDescriptor Semantics

	SL Packet Header Specification
	Syntax
	Semantics

	Clock Reference Stream
	Restrictions for elementary streams sharing the same object
	Usage of configuration options for object clock reference an
	Resolution of ambiguity in object time base recovery
	Resolution of ambiguity in time stamp recovery
	Usage considerations for object clock references and time st

	DMIF Application Interface

	Multiplexing of Elementary Streams
	Introduction
	M4Mux Tool
	Overview
	Simple Mode
	MuxCode mode
	M4Mux packet specification
	Syntax
	Semantics

	Configuration and usage of MuxCode Mode
	Syntax
	Semantics
	Usage

	Configuration and usage of M4Mux clock references
	Syntax
	Semantics
	Usage

	M4Mux buffer descriptor
	Syntax
	Semantics

	Default M4Mux buffer descriptor
	Syntax
	Semantics

	M4Mux buffer model
	M4MuxID Descriptor
	Syntax
	Semantics

	M4Mux Descriptors
	M4MuxChannelDescriptor
	Syntax
	Semantics

	M4MuxBufferSize Descriptor
	Syntax
	Semantics

	M4MuxTiming Descriptor
	Syntax
	Semantics

	M4MuxCodeTable Descriptor
	Syntax
	Semantics

	M4MuxIdent Descriptor
	Syntax
	Semantics

	Syntactic Description Language
	Introduction
	Elementary Data Types
	Introduction
	Constant-Length Direct Representation Bit Fields
	Variable Length Direct Representation Bit Fields
	Constant-Length Indirect Representation Bit Fields
	Variable Length Indirect Representation Bit Fields

	Composite Data Types
	Classes
	Abstract Classes
	Expandable classes
	Parameter types
	Arrays
	Partial Arrays
	Implicit Arrays

	Arithmetic and Logical Expressions
	Non-Parsable Variables
	Syntactic Flow Control
	Built-In Operators
	Scoping Rules

	Profiles
	Introduction
	OD Profile Definitions
	Overview
	OD Profiles Tools
	OD Profiles
	OD Profiles@Levels
	Levels for the Core Profile

