/** * The MIT License (MIT) * * Copyright (c) 2013-2020 John * * Permission is hereby granted, free of charge, to any person obtaining a copy of * this software and associated documentation files (the "Software"), to deal in * the Software without restriction, including without limitation the rights to * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of * the Software, and to permit persons to whom the Software is furnished to do so, * subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include #include #include #include using namespace std; #include #include #include #include SrsRtpNackInfo::SrsRtpNackInfo() { generate_time_ = srs_update_system_time(); pre_req_nack_time_ = 0; req_nack_count_ = 0; } SrsRtpNackForReceiver::SrsRtpNackForReceiver(SrsRtpQueue* rtp_queue, size_t queue_size) { max_queue_size_ = queue_size; rtp_queue_ = rtp_queue; pre_check_time_ = 0; srs_info("max_queue_size=%u, nack opt: max_count=%d, max_alive_time=%us, first_nack_interval=%ld, nack_interval=%ld" max_queue_size_, opts_.max_count, opts_.max_alive_time, opts.first_nack_interval, opts_.nack_interval); } SrsRtpNackForReceiver::~SrsRtpNackForReceiver() { } void SrsRtpNackForReceiver::insert(uint16_t seq) { // FIXME: full, drop packet, and request key frame. SrsRtpNackInfo& nack_info = queue_[seq]; (void)nack_info; } void SrsRtpNackForReceiver::remove(uint16_t seq) { queue_.erase(seq); } SrsRtpNackInfo* SrsRtpNackForReceiver::find(uint16_t seq) { std::map::iterator iter = queue_.find(seq); if (iter == queue_.end()) { return NULL; } return &(iter->second); } void SrsRtpNackForReceiver::check_queue_size() { if (queue_.size() >= max_queue_size_) { srs_verbose("NACK list full, queue size=%u, max_queue_size=%u", queue_.size(), max_queue_size_); rtp_queue_->notify_nack_list_full(); } } void SrsRtpNackForReceiver::get_nack_seqs(vector& seqs) { srs_utime_t now = srs_update_system_time(); int interval = now - pre_check_time_; if (interval < opts_.nack_interval / 2) { return; } pre_check_time_ = now; std::map::iterator iter = queue_.begin(); while (iter != queue_.end()) { const uint16_t& seq = iter->first; SrsRtpNackInfo& nack_info = iter->second; int alive_time = now - nack_info.generate_time_; if (alive_time > opts_.max_alive_time || nack_info.req_nack_count_ > opts_.max_count) { srs_verbose("NACK, drop seq=%u alive time %d bigger than max_alive_time=%d OR nack count %d bigger than %d", seq, alive_time, opts_.max_alive_time, nack_info.req_nack_count_, opts_.max_count); rtp_queue_->notify_drop_seq(seq); queue_.erase(iter++); continue; } // TODO:Statistics unorder packet. if (now - nack_info.generate_time_ < opts_.first_nack_interval) { break; } if (now - nack_info.pre_req_nack_time_ >= opts_.nack_interval && nack_info.req_nack_count_ <= opts_.max_count) { ++nack_info.req_nack_count_; nack_info.pre_req_nack_time_ = now; seqs.push_back(seq); srs_verbose("NACK, resend seq=%u, count=%d", seq, nack_info.req_nack_count_); } ++iter; } } void SrsRtpNackForReceiver::update_rtt(int rtt) { rtt_ = rtt * SRS_UTIME_MILLISECONDS; srs_verbose("NACK, update rtt from %ld to %d", opts_.nack_interval, rtt_); // FIXME: limit min and max value. opts_.nack_interval = rtt_; } SrsRtpRingBuffer::SrsRtpRingBuffer(size_t capacity) { nn_seq_flip_backs = 0; high_ = low_ = 0; capacity_ = capacity; initialized_ = false; queue_ = new SrsRtpPacket2*[capacity_]; memset(queue_, 0, sizeof(SrsRtpPacket2*) * capacity); } SrsRtpRingBuffer::~SrsRtpRingBuffer() { srs_freepa(queue_); } uint16_t SrsRtpRingBuffer::low() { return low_; } uint16_t SrsRtpRingBuffer::high() { return high_; } void SrsRtpRingBuffer::advance_to(uint16_t seq) { low_ = seq; } void SrsRtpRingBuffer::set(uint16_t at, SrsRtpPacket2* pkt) { SrsRtpPacket2* p = queue_[at % capacity_]; if (p) { srs_freep(p); } queue_[at % capacity_] = pkt; } void SrsRtpRingBuffer::remove(uint16_t at) { set(at, NULL); } void SrsRtpRingBuffer::reset(uint16_t low, uint16_t high) { for (uint16_t s = low; s != high; ++s) { queue_[s % capacity_] = NULL; } } bool SrsRtpRingBuffer::overflow() { return high_ - low_ < capacity_; } bool SrsRtpRingBuffer::is_heavy() { return high_ - low_ >= capacity_ / 2; } uint16_t SrsRtpRingBuffer::next_start_of_frame() { if (low_ == high_) { return low_; } for (uint16_t s = low_ + 1 ; s != high_; ++s) { SrsRtpPacket2*& pkt = queue_[s % capacity_]; if (pkt && pkt->is_first_packet_of_frame) { return s; } } return low_; } uint16_t SrsRtpRingBuffer::next_keyframe() { if (low_ == high_) { return low_; } for (uint16_t s = low_ + 1 ; s != high_; ++s) { SrsRtpPacket2*& pkt = queue_[s % capacity_]; if (pkt && pkt->is_key_frame && pkt->is_first_packet_of_frame) { return s; } } return low_; } uint32_t SrsRtpRingBuffer::get_extended_highest_sequence() { return nn_seq_flip_backs * 65536 + high_; } void SrsRtpRingBuffer::update(uint16_t seq, bool startup, uint16_t& nack_low, uint16_t& nack_high) { if (!initialized_) { initialized_ = true; low_ = high_ = seq; return; } // Normal sequence, seq follows high_. if (srs_rtp_seq_distance(high_, seq)) { nack_low = high_ + 1; nack_high = seq; // When distance(seq,high_)>0 and seq0 and 1<65535. if (seq < high_) { srs_verbose("warp around, flip_back=%" PRId64, nn_seq_flip_backs); ++nn_seq_flip_backs; } high_ = seq; return; } // Out-of-order sequence, seq before low_. if (srs_rtp_seq_distance(seq, low_)) { // When startup, we may receive packets in chaos order. // Because we don't know the ISN(initiazlie sequence number), the first packet // we received maybe no the first packet client sent. if (startup) { nack_low = seq + 1; nack_high = low_; srs_info("head seq=%u, cur seq=%u, update head seq because recv less than it.", low_, seq); low_ = seq; } else { srs_verbose("seq=%u, rtx success, too old", seq); } } } SrsRtpPacket2* SrsRtpRingBuffer::at(uint16_t seq) { return queue_[seq % capacity_]; } SrsRtpQueue::SrsRtpQueue(size_t capacity, bool one_packet_per_frame) { nn_collected_frames = 0; queue_ = new SrsRtpRingBuffer(capacity); nack_ = new SrsRtpNackForReceiver(this, capacity * 2 / 3); jitter_ = 0; last_trans_time_ = -1; pre_number_of_packet_received_ = 0; pre_number_of_packet_lossed_ = 0; num_of_packet_received_ = 0; number_of_packet_lossed_ = 0; one_packet_per_frame_ = one_packet_per_frame; request_key_frame_ = false; } SrsRtpQueue::~SrsRtpQueue() { srs_freep(queue_); srs_freep(nack_); } srs_error_t SrsRtpQueue::consume(SrsRtpPacket2* pkt) { srs_error_t err = srs_success; // TODO: FIXME: Update time for each packet, may hurt performance. srs_utime_t now = srs_update_system_time(); uint16_t seq = pkt->rtp_header.get_sequence(); SrsRtpNackInfo* nack_info = nack_->find(seq); if (nack_info) { int nack_rtt = nack_info->req_nack_count_ ? ((now - nack_info->pre_req_nack_time_) / SRS_UTIME_MILLISECONDS) : 0; (void)nack_rtt; srs_verbose("seq=%u, alive time=%d, nack count=%d, rtx success, resend use %dms", seq, now - nack_info->generate_time_, nack_info->req_nack_count_, nack_rtt); nack_->remove(seq); } // Calc jitter time, ignore nack packets. // TODO: FIXME: Covert time to srs_utime_t. if (last_trans_time_ == -1) { last_trans_time_ = now / 1000 - pkt->rtp_header.get_timestamp() / 90; } else if (!nack_info) { int trans_time = now / 1000 - pkt->rtp_header.get_timestamp() / 90; int cur_jitter = trans_time - last_trans_time_; if (cur_jitter < 0) { cur_jitter = -cur_jitter; } last_trans_time_ = trans_time; jitter_ = (jitter_ * 15.0 / 16.0) + (static_cast(cur_jitter) / 16.0); srs_verbose("jitter=%.2f", jitter_); } // OK, we got one new RTP packet, which is not in NACK. if (!nack_info) { ++num_of_packet_received_; uint16_t nack_low = 0, nack_high = 0; queue_->update(seq, !nn_collected_frames, nack_low, nack_high); if (srs_rtp_seq_distance(nack_low, nack_high)) { srs_trace("update nack seq=%u, startup=%d, nack range [%u, %u]", seq, !nn_collected_frames, nack_low, nack_high); insert_into_nack_list(nack_low, nack_high); } } // When packets overflow, collect frame and move head to next frame start. if (queue_->overflow()) { srs_verbose("try collect packet becuase seq out of range"); collect_packet(); uint16_t next = queue_->next_start_of_frame(); // Note that low_ mean not found, clear queue util one packet. if (next == queue_->low()) { next = queue_->high() - 1; } srs_trace("seqs out of range, seq range [%u, %u]", queue_->low(), next); for (uint16_t s = queue_->low(); s != next; ++s) { nack_->remove(s); queue_->remove(s); } srs_trace("force update, update head seq from %u to %u when seqs out of range", queue_->low(), next + 1); queue_->advance_to(next + 1); } // Save packet at the position seq. queue_->set(seq, pkt); // Collect packets to frame when: // 1. Marker bit means the last packet of frame received. // 2. Queue has lots of packets, the load is heavy. // 3. The frame contains only one packet for each frame. if (pkt->rtp_header.get_marker() || queue_->is_heavy() || one_packet_per_frame_) { collect_packet(); } return err; } void SrsRtpQueue::collect_frames(std::vector >& frames) { frames.swap(frames_); } bool SrsRtpQueue::should_request_key_frame() { if (request_key_frame_) { request_key_frame_ = false; return true; } return request_key_frame_; } void SrsRtpQueue::notify_drop_seq(uint16_t seq) { uint16_t next = queue_->next_start_of_frame(); // Note that low_ mean not found, clear queue util one packet. if (next == queue_->low()) { next = queue_->high() - 1; } // When NACK is timeout, move to the next start of frame. srs_trace("nack drop seq=%u, drop range [%u, %u]", seq, queue_->low(), next + 1); queue_->advance_to(next + 1); } void SrsRtpQueue::notify_nack_list_full() { uint16_t next = queue_->next_keyframe(); // Note that low_ mean not found, clear queue util one packet. if (next == queue_->low()) { next = queue_->high() - 1; } // When NACK is overflow, move to the next keyframe. srs_trace("nack overflow drop range [%u, %u]", queue_->low(), next + 1); queue_->advance_to(next + 1); } void SrsRtpQueue::request_keyframe() { request_key_frame_ = true; } uint32_t SrsRtpQueue::get_extended_highest_sequence() { return queue_->get_extended_highest_sequence(); } uint8_t SrsRtpQueue::get_fraction_lost() { int64_t total = (number_of_packet_lossed_ - pre_number_of_packet_lossed_ + num_of_packet_received_ - pre_number_of_packet_received_); uint8_t loss = 0; if (total > 0) { loss = (number_of_packet_lossed_ - pre_number_of_packet_lossed_) * 256 / total; } pre_number_of_packet_lossed_ = number_of_packet_lossed_; pre_number_of_packet_received_ = num_of_packet_received_; return loss; } uint32_t SrsRtpQueue::get_cumulative_number_of_packets_lost() { return number_of_packet_lossed_; } uint32_t SrsRtpQueue::get_interarrival_jitter() { return static_cast(jitter_); } void SrsRtpQueue::get_nack_seqs(vector& seqs) { nack_->get_nack_seqs(seqs); } void SrsRtpQueue::update_rtt(int rtt) { nack_->update_rtt(rtt); } void SrsRtpQueue::insert_into_nack_list(uint16_t seq_start, uint16_t seq_end) { for (uint16_t s = seq_start; s != seq_end; ++s) { srs_verbose("loss seq=%u, insert into nack list", s); nack_->insert(s); ++number_of_packet_lossed_; } nack_->check_queue_size(); } void SrsRtpQueue::collect_packet() { while (queue_->low() != queue_->high()) { vector frame; uint16_t s = queue_->low(); for (; s != queue_->high(); ++s) { SrsRtpPacket2* pkt = queue_->at(s); // In NACK, never collect frame. if (nack_->find(s) != NULL) { srs_verbose("seq=%u, found in nack list when collect frame", s); return; } // Ignore when the first packet not the start. if (s == queue_->low() && pkt->nn_original_payload && !pkt->is_first_packet_of_frame) { return; } // OK, collect packet to frame. frame.push_back(pkt); // Not the last packet, continue to process next one. if (!pkt->rtp_header.get_marker() && !one_packet_per_frame_) { continue; } // Done, we got the last packet of frame. nn_collected_frames++; frames_.push_back(frame); break; } if (queue_->low() != s) { // Reset the range of packets to NULL in buffer. queue_->reset(queue_->low(), s); srs_verbose("head seq=%u, update to %u because collect one full farme", queue_->low(), s + 1); queue_->advance_to(s + 1); } } }