International Telecommunication Union

ITU-T H.264

TELECOMMUNICATION (01/2012)
STANDARDIZATION SECTOR
OF ITU

SERIES H: AUDIOVISUAL AND MULTIMEDIA SYSTEMS

Infrastructure of audiovisual services — Coding of moving
video

Advanced video coding for generic audiovisual
services

Recommendation ITU-T H.264

i

IR

Iinternationsl
Telscommunication
Union

ITU-T H-SERIES RECOMMENDATIONS
AUDIOVISUAL AND MULTIMEDIA SYSTEMS

CHARACTERISTICS OF VISUAL TELEPHONE SYSTEMS
INFRASTRUCTURE OF AUDIOVISUAL SERVICES
General
Transmission multiplexing and synchronization
Systems aspects
Communication procedures
Coding of moving video
Related systems aspects
Systems and terminal equipment for audiovisual services
Directory services architecture for audiovisual and multimedia services
Quality of service architecture for audiovisual and multimedia services
Supplementary services for multimedia
MOBILITY AND COLLABORATION PROCEDURES
Overview of Mobility and Collaboration, definitions, protocols and procedures
Mobility for H-Series multimedia systems and services
Mobile multimedia collaboration applications and services
Security for mobile multimedia systems and services
Security for mobile multimedia collaboration applications and services
Mobility interworking procedures
Mobile multimedia collaboration inter-working procedures
BROADBAND, TRIPLE-PLAY AND ADVANCED MULTIMEDIA SERVICES
Broadband multimedia services over VDSL
Advanced multimedia services and applications
Ubiquitous sensor network applications and Internet of Things
IPTV MULTIMEDIA SERVICES AND APPLICATIONS FOR IPTV
General aspects
IPTV terminal devices
IPTV middleware
IPTV application event handling
IPTV metadata
IPTV multimedia application frameworks
IPTV service discovery up to consumption
Digital Signage

H.100-H.199

H.200-H.219
H.220-H.229
H.230-H.239
H.240-H.259
H.260-H.279
H.280-H.299
H.300-H.349
H.350-H.359
H.360-H.369
H.450-H.499

H.500-H.509
H.510-H.519
H.520-H.529
H.530-H.539
H.540-H.549
H.550-H.559
H.560-H.569

H.610-H.619
H.620-H.629
H.640-H.649

H.700-H.719
H.720-H.729
H.730-H.739
H.740-H.749
H.750-H.759
H.760-H.769
H.770-H.779
H.780-H.789

For further details, please refer to the list of ITU-T Recommendations.

Recommendation ITU-T H.264

Advanced video coding for generic audiovisual services

Summary

Recommendation ITU-T H.264 | International Standard ISO/IEC 14496-10 represents an evolution of the existing video
coding standards (ITU-T H.261, ITU-T H.262, and ITU-T H.263) and it was developed in response to the growing need
for higher compression of moving pictures for various applications such as videoconferencing, digital storage media,
television broadcasting, Internet streaming, and communication. It is also designed to enable the use of the coded video
representation in a flexible manner for a wide variety of network environments. The use of this Recommendation |
International Standard allows motion video to be manipulated as a form of computer data and to be stored on various
storage media, transmitted and received over existing and future networks and distributed on existing and future
broadcasting channels.

The revision approved 2005-03 contained modifications of the video coding standard to add four new profiles, referred
to as the High, High 10, High 4:2:2, and High 4:4:4 profiles, to improve video quality capability and to extend the range
of applications addressed by the standard (for example, by including support for a greater range of picture sample
precision and higher-resolution chroma formats). Additionally, a definition of new types of supplemental data was
specified to further broaden the applicability of the video coding standard. Finally, a number of corrections to errors in
the published text were included.

Corrigendum 1 to Rec. ITU-T H.264 corrected and updated various minor aspects to bring the ITU-T version of the text
up to date relative to the April 2005 output status approved as a new edition of the corresponding jointly-developed and
technically-aligned text ISO/IEC 14496-10. It additionally fixed a number of minor errors and needs for clarification and
defined three previously-reserved sample aspect ratio indicators.

Amendment 1 "Support of additional colour spaces and removal of the High 4:4:4 Profile" contained alterations to Rec.
ITU-T H.264 | ISO/IEC 14496-10 Advanced Video Coding to specify the support of additional colour spaces and to
remove the definition of the High 4:4:4 profile.

NOTE — Rec. ITU-T H.264 is a twin text with ISO/IEC 14496-10 and this amendment was published in two different documents
in the ISO/IEC series:

— The removal of the High 4:4:4 profile was found in ISO/IEC 14496-10:2005/Cor.2.
— The specification for support of additional colour spaces was found in ISO/IEC 14496-10:2005/Amd.1.

Amendment 2 '"New profiles for professional applications" contained extensions to Rec.ITU-T H.264 |
ISO/IEC 14496-10 Advanced Video Coding to specify the support of five additional profiles intended primarily for
professional applications (the High 10 Intra, High 4:2:2 Intra, High 4:4:4 Intra, CAVLC 4:4:4 Intra, and High 4:4:4
Predictive profiles) and two new types of supplemental enhancement information (SEI) messages (the post-filter hint SEI
message and the tone mapping information SEI message).

Amendment 3 "Scalable video coding" contained extensions to Rec. ITU-T H.264 | ISO/IEC 14496-10 Advanced Video
Coding to specify a scalable video coding extension in three profiles (the Scalable Baseline, Scalable High, and Scalable
High Intra profiles).

The ITU-T H.264 edition published in 2005-11 included the text approved 2005-03 and its Corrigendum 1 approved
2005-09. ITU-T H.264 (2005) Amd.2 (2007) was available only as pre-published text since it was superseded by
ITU-T H.264 Amd.3 (2007-11) before its publication; further, ITU-T H.264 Amd.3 was not published separately. This
third edition integrated into the ITU-T H.264 edition published in 2005-11 all changes approved in Amendments 1
(2006-06), 2 (2007-04) and 3 (2007-11).

Corrigendum 1 (2009) provides a significant number of minor corrections, clarifications, consistency improvements and
formatting improvements drafted in response to accumulated errata reports collected since publication of the 2nd edition
(dated 2005-03, which included a Cor.1 approved 2005-09).

The ITU-T H.264 edition published in 2009-05 contained enhancement extensions to support multiview video coding
(MVC), specification of a "Constrained Baseline Profile", and some miscellaneous corrections and clarifications.

The ITU-T H.264 edition published in 2010-03 contained the specification of a new profile (the Stereo High profile) for
two-view video coding with support of interlaced coding tools, the specification a new SEI message (the frame packing
arrangement SEI message), and some miscellaneous corrections and clarifications.

Rec. ITU-T H.264 (01/2012) i

The ITU-T H.264 edition approved in 2011-06 contained the specification of a new level (Level 5.2) supporting higher
processing rates in terms of maximum macroblocks per second, a new profile (the Progressive High profile) to enable
implementation of decoders supporting only the frame coding tools of the previously specified High profile, and includes
miscellaneous corrections and clarifications.

This edition of Rec. ITU-T H.264 approved in 2012-01 contains the specification of three additional profiles intended
primarily for communication applications (the Constrained High, Scalable Constrained Baseline, and Scalable
Constrained High profiles).

History
Edition Recommendation Approval Study Group
1.0 ITU-T H.264 2003-05-30 16
1.1 ITU-T H.264 (2003) Cor. 1 2004-05-07 16
2.0 ITU-T H.264 2005-03-01 16
2.1 ITU-T H.264 (2005) Cor. 1~ 2005-09-13 16
22 ITU-T H.264 (2005) Amd. I~ 2006-06-13 16
2.3 ITU-T H.264 (2005) Amd. 2 2007-04-06 16
3.0 ITU-T H.264 2007-11-22 16
3.1 ITU-T H.264 (2007) Cor. 1~ 2009-01-13 16
4.0 ITU-T H.264 2009-03-16 16
5.0 ITU-T H.264 2010-03-09 16
6.0 ITU-T H.264 2011-06-29 16
7.0 ITU-T H.264 2012-01-13 16

il Rec. ITU-T H.264 (01/2012)

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of
telecommunications, information and communication technologies (ICTs). The ITU Telecommunication
Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical,
operating and tariff questions and issuing Recommendations on them with a view to standardizing
telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years,
establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on these
topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are
prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a
telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain
mandatory provisions (to ensure, e.g., interoperability or applicability) and compliance with the
Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some
other obligatory language such as "must" and the negative equivalents are used to express requirements. The
use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may
involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence,
validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others
outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had received notice of intellectual property,
protected by patents, which may be required to implement this Recommendation. However, implementers are
cautioned that this may not represent the latest information and are therefore strongly urged to consult the
TSB patent database at http://www.itu.int/ITU-T/ipr/.

© ITU 2012

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the
prior written permission of ITU.

Rec. ITU-T H.264 (01/2012) il

http://www.itu.int/ITU-T/ipr/

0

O N S

v

Table of Contents

Page

TIETOAUCTION ..ttt ettt s a e s h et e bt e et eh e e bt e bt et e e bt eateseeesbee bt e bt enteentesnaenbeabean 1
0.1 PLOLOZUEcuvieieete ettt ettt ettt et e e st eesbeetaesbe et e esseesseesaesseesseesseenseesseesse et sese e s e esseenbeeseeeseenneenseenseans 1
0.2 PUIPOSE ittt ettt ettt ettt et e ettt e at e e bt e e et e e bt e e ab e e bt e e at e ettt e e nbe ettt e eabe e st e e enbeennbeennbeenntes 1
0.3 APPIICALIONSeeuvieeiieeiieiieetteettete et e et e et e st e te e seesaeeseeeseesseesseesseassassseassesseesseensesssesseesseenseesteeseeseenseenseenseesaenraenees 1
0.4 Publication and versions of this SPECITICALIONc.ccveriiiriieiiciecieieete ettt b e eeteesreennees 1
0.5 Profiles and IEVEIS.......couiiiiieieeee ettt bbbttt b et eb et 2
0.6 Overview of the design ChArACIETISLICSeivieriieiiiieiieiteeie ettt ettt et et e e e beesaesseesseesseesseesseessesssesssesens 3
0.6.1 PrediCtiVe COMIME ...oovieiiieiieeeieeieee ettt ettt et et e e st e esae st eesse e s e ensesnaesseesseenseanseenseensenssensaesenn 4
0.6.2 Coding of progressive and interlaced VIAEO0ocuvecierierieriieiieiecesee et nees 4
0.6.3 Picture partitioning into macroblocks and smaller partitions.............ceceeeeereiereenieneeieeeeeeseee e 4
0.6.4 Spatial redundancy rEAUCION.......cc.eeuiiie ettt ettt et et sa ettt et e s e beeteeeeeneeene 4
0.7 How to read this SPECTIICALIONeiiuiiiiieieiieti ettt ettt ettt et e e et e e st et e e et enteeneeeneeeseeneas 4
1T) 1RSSR 5
INOTMALIVE TETETEIICES ...ttt ettt ettt b ettt et e at e s aeeeb e b e et e ea e ee b e sb e e beebeemeeeaeesatesueenbeenaeentens 5
DIETINITIONS ...ttt sttt et ettt b e bt e bt ea e s et et e s bt e bt e bt e bt ea b et et e sb et e bt eb e eb e entea b et et e bt ebeebeeneensentens 5
AADDTEVIALIONSttt ettt ettt b et b e a e b et et e b st e bt sh e eh e e st ea b en et e b e sb e e bt e bt eh e eb e e aeen s et et e bt eheebe e bt enb et et e 13
COMVEIEIONS ...ttt ettt ettt et ettt s bbbt ebeeb b et ea b et e eb e e bt eh e e bt ebtea b et et et e e bt e bt ebeeh e eatea b et e st e abesbeebeentenbensensen 14
5.1 ATTEIMETIC OPEIATOLS ..entieitieiieeiieetieie ettt ce st ettt et e e st e bt e te e teemeeeaeessee et eneeeaseesee st et eenseeneesseenseeseenseeneeenes 14
ST e Yo T2 0] 013 21101 o OSSPSR 14
BT T O E] -1 10 4 T I 0 1S) 1) OSSR 15
R 8 31 g TR o) o1 110 4SS 15
5.5 ASSIZNMENE OPEIALTOLSeeeetietietieieeeteettestteateeteeateeste et eeseenteeneeeseeaseeaseaseeaeeemeesaeesseanseanseenseeneesseenseeseenseenseenes 15
5.6 RANEE NOTATION .ottt ettt ettt et ettt e eb e bt e bt et e este s bt e sbeesbeen bt eateeaeeeabeebeesbaenbeebeenbeennesneesaes 15
5.7 Mathematical fUNCHIONS.c.eitiitietiete ettt ettt sttt b e st e st et et e be et e ebesaeeseeneenseaseaseaaesaeeseeneensesens 15
5.8 Order of OPEration PrECEAEIICEcuiivieirietierieeieetieeteeste et eteete e e steesteeseesseeaseeseeeseesbeesseesseessesssesseesseenseessennns 16
5.9 Variables, syntax elements, and tables............ccoiiiiiiiiiieee ettt 17
5.10 Text description Of [0ZICAl OPETATIONS.cueitirtiruietieiieiete sttt ettt et et et e te bttt eseeat et e neestesaeeseeaesaeeseeneenseeens 18
S.LT PIOCESSESeeutieutieuieetteettet ettt ettt ettt et et ea e e b et e bt et ea e eb e e eh e e bt e bt e bt e at e eh e e e bt e bt en bt en bt eheeeb e e bt e be e bt e bt enteeaes 19
Source, coded, decoded and output data formats, scanning processes, and neighbouring relationships 19
6.1 BItSIIEAIM FOTIMALS.etitiiieiieitet ettt sttt et ettt b e e bt bt e bt e st e st e e nb et e ebesbeebeeneente e 19
6.2 Source, decoded, and output PICtUIE fOIMALSccieriieriieiieierierie ettt e e eaeesseenseenseens 19
6.3 Spatial subdivision Of PICtUIES AN SHICESevvieriieiieiiiie ettt s sreesseesesnaesaeessaenseenseens 24
6.4 Inverse scanning processes and derivation processes for neighbours............ccvecveeiirienieiiececie e 25
6.4.1 Inverse MacrobloCK SCANNING PIOCESSeccverieriierrieriieieeteeiesetesteeteeteesessaessaesseesseesseesesnsesssesseenseensenns 25
6.4.2 Inverse macroblock partition and sub-macroblock partition SCaNNINg Process.........c.evverererververeereeereenns 26
6.4.2.1 Inverse macroblock partition SCANNING PIOCESScecveevreerruieruiertieeeeieeteeseesseesteeseeeeeeeesaeeseeenseeeeens 26
6.4.2.2 Inverse sub-macroblock partition SCANNING PrOCESSeecvieuereuierrieriieieeieeeeetestee e eneeeeeseeseeeseeeneeens 27
6.4.3 Inverse 4x4 [uma blOCK SCANNING PIOCESSveeuvrreireiertietieteeieeeteeteesteeteeteeneesseesseesseenseseesneesseesaeenseenseans 27
6.4.4 Inverse 4x4 Cb or Cr block scanning process for ChromaArrayType equal to 3........cccoevevieieiieieieneenne. 27
6.4.5 Inverse 8x8 luma DlOCK SCANNING PIOCESScuveveterteriiatertietienieneestertestesteetesteeseeseeeesestessesseseeeaeeneeneeneenees 27
6.4.6 Inverse 8x8 Cb or Cr block scanning process for ChromaArrayType equal to 3........ccceeeveeieieenieieneenne. 28
6.4.7 Inverse 4x4 chroma block SCANNING PrOCESSccveiieriieriieriieiieteeterteesreeteesesaeseesseesseessesssesseesseensessenns 28
6.4.8 Derivation process of the availability for macroblock addresses..........ccuevuererenenieninininieieeeeee, 28
6.4.9 Derivation process for neighbouring macroblock addresses and their availability...........c.cccoecveiirienenne 28
6.4.10 Derivation process for neighbouring macroblock addresses and their availability in MBAFF frames..... 29
6.4.11 Derivation processes for neighbouring macroblocks, blocks, and partitions............cccccevvervecirrcienvennenns 30
6.4.11.1 Derivation process for neighbouring macroblocksccecerieiieiieiinieieeee e 31
6.4.11.2 Derivation process for neighbouring 8x8 luma blocK..........ccoocviiiiiiiiiiiiieeeee e 31
6.4.11.3 Derivation process for neighbouring 8x8 chroma blocks for ChromaArrayType equal to 3.............. 32
6.4.11.4 Derivation process for neighbouring 4x4 1Tuma bIOCKScceriririiiiiiieieee e 32
6.4.11.5 Derivation process for neighbouring 4x4 chroma blOCKScccceeiriiiiieiiriniie e 32
6.4.11.6 Derivation process for neighbouring 4x4 chroma blocks for ChromaArrayType equal to 3.............. 33
6.4.11.7 Derivation process for neighbouring partitionsc.cceceeerieierienenenencreeetetee e 33
6.4.12 Derivation process for neighbouring l0CAtIONSc.cccverrieriieriieiieriesiesieecieeeeseesee e esaeeeeeseesseesseesseens 34
6.4.12.1 Specification for neighbouring locations in fields and non-MBAFF frames.........c.ccccceeveveienennnnnn 35

Rec. ITU-T H.264 (01/2012)

6.4.12.2 Specification for neighbouring locations in MBAFF frames...........cccccceveievienieiiincienieeee e 35

6.4.13 Derivation processes for block and partition iNdiCESc.eeverurerieriierieriereere et eee e eeeeseeeneeens 37
6.4.13.1 Derivation process for 4x4 [uma bIOCK INAICES..........cecvereiirierieiieieeie et 37
6.4.13.2 Derivation process for 4x4 chroma block indiCes...........ccceeruieiirirrieiieieee et 37
6.4.13.3 Derivation process for 8x8 [uma block INdIiCeS..........ceoeriiriirierieieeee e 37
6.4.13.4 Derivation process for macroblock and sub-macroblock partition indices...........cccoeverierrecienrienncnne 37

SYNAX ANA SEIMANTICSe.veeteeuieuieteeteete ettt et et e et e te e bt eteeteeteesteaeensesbe et e eseeseeseemeensesenseabeeeeeseeneensensanseaseeseeneeneensenseneas 38

7.1 Method of specifying syntax in tabular fOTM..........ccoiiiiiiiiiieeee e 38
7.2 Specification of syntax functions, categories, and deSCTIPLOTS.cuiieruirerereeeieieieie et 39
7.3 Syntax N tabUIAr fOIMNc.ooiiiiiiieicce ettt e e e b e s saestaesbeesseesaesaeessaenseensaens 41

7.3.1 INAL UNIE SYNEAX.10.ttetientieieeeiietieeteesteeteeseesesstesseesseesseesseesseassesssesseesseessesssesssesssesssesseessesssesssesssesseessesssenss 41

7.3.2 Raw byte sequence payloads and RBSP trailing bits SyNtaX..........cceceeervuereeriierieiieeiieneenieeseeeeeseesseeseeens 41
7.3.2.1 Sequence parameter set RBSP SYNtaX........coocuiiiiiiiiiiiiiiiiie ettt 41
7.3.2.2 Picture parameter set RBSP SYNtAX.......c.ccciiiiiiiieiieiieic ettt e e enseens 45
7.3.23 Supplemental enhancement information RBSP Syntax...........cceccovierieniieiiniieiiesieeee e 46
7.3.2.4 Access unit delimiter RBSP SYNtaXccooiiiieiiiiiiiieiieiieeee et 46
7.3.2.5 End of sequence RBSP SYNtAX.........cciiiiiiiiiiie ettt et e e ens 47
7.3.2.6 End of stream RBSP SYNTAXc.coiiiiiiiiitieitiesieee ettt ettt ae e e ens 47
7.3.2.7 Filler data RBSP SYNTAXccuoiuiiiitiitiiiet ettt ettt sttt ettt e e et e beseeebeeneeneeneaneenee 47
7.3.2.8 Slice layer without partitioning RBSP SYNtax..........ccccceiiriiiiieieieesie et 47
7.3.2.9 Slice data partition RBSP SYNEAXc..coouiiiiiiiiiiiieie et 47
7.3.2.10 RBSP slice trailing Dits SYNEAX.......ceouerteriertirieriietieieeiteetetete ettt ettt st bbbt eae e e e 48
7.3.2.11 RBSP trailing Dits SYMEAXceouerueruirtirtirtieiieiieieteie sttt ettt ettt seeeb et eat et et et sbeebesaeeseeneense e 48
7.3.2.12 Prefix NAL unit RBSP SYNEAXcc.ooiiiiiiiiiiiiieeeee et 49
7.3.2.13 Slice layer extension RBSP SYNEAXcccceieriiriiriiriniiiininitetetert ettt sttt 49

733 STEE NEAAET SYINEAXeiuiiniiieiieierieeitet ettt ettt et ettt et b e sbe bt et ea et e st e sbesaeebe et ensensens 49
7.3.3.1 Reference picture list MOdifiCation SYNTAX........cceverieiirieriiniirine ettt 51
7332 Prediction Weight table SYNEAXcciiiieiiiie ettt ettt ettt e e ens 52
7.3.33 Decoded reference picture marking SYNAX.........cccverueeruieriieieeienierteeieeieeee st ee st esee e seesaeeseeeneeeneeens 53

7.3.4 N YOS B g 1L QSRR 54

7.3.5 MaACTODIOCK TAYET SYIEAXveueieuieiieiieieiteeteete ettt ettt sttt ettt eat et e et et e e bt sseebe e st ensense s eeeseeeseeneenseneenean 55
7.3.5.1 Macroblock PrediCtion SYMEAXcc.erererieerietieiieiete ettt ettt ettt eseeseeeestesbeseeebeeaeebeeneeneenseneeneenes 56
7.3.5.2 Sub-macroblock PrediCtion SYMEAXccevererereririeeeiiee ettt ettt ettt sbe st ebe et et e e enee e ee 57
7.3.5.3 ReSIAUAl data SYNEAX ..c..eeuieieiiieiieetere ettt bbb sttt ettt 58

T4 SEIMAITICS ...eueenteiteeteete ettt ettt ettt et e et e e st e bt s bt e bt ea e e st en b e s e e bt e bt eb e es e ea s en s et e b e e bt e bt e bt ea b eb e en e e st e te et e ebeeheebeeneententen 62

74.1 INAL UNIE SEMANTICS ..veuvetitiiieetieitetete sttt ettt ettt et et et sttt e bt ebeest et e e s s e st e ebesbeebeeseen s et et enbesbeebeeneenseneensen 62
74.1.1 Encapsulation of an SODB within an RBSP (informative)ccccooevevierieniiiesieneee e 65
7.4.1.2 Order of NAL units and association to coded pictures, access units, and video sequences................ 66

7.4.2 Raw byte sequence payloads and RBSP trailing bits SEManticsccecveevereeereierieneenieeeeeeeseeneeeeens 71
74.2.1 Sequence parameter set RBSP SEMANTICSeeverieiiiiiiiieie et 71
7422 Picture parameter set RBSP SEMANTICSeoveiuiiiiieiiieiieie ettt 79
7423 Supplemental enhancement information RBSP SEmManticsccoevvevueeriieieiieieeneeie e 82
7.4.2.4 Access unit delimiter RBSP SEMANtICScouiruiiiiiiieieieieeie ettt 82
7.4.2.5 End of sequence RBSP SEMANTICS.........ccccoiiriiiiiiiiicieicteeteeteere et steesteeveeaestae e e saeebeesneeaeesaeesseenseens 82
7.4.2.6 End of stream RBSP SEMANTICScc.ceiiiiriiiiiiiiiiricei ettt st st 83
7.4.2.7 Filler data RBSP SEMANTICS.cc.couirtiiiiiiiieieiesieetescet ettt ettt st et 83
7.4.2.8 Slice layer without partitioning RBSP SEMANtiCScccuevveviirieriieiieieeeereeie e e 83
7429 Slice data partition RBSP SEMANtICS........c.eeuerieriieiieiicie ettt sseene e eee 83
7.4.2.10 RBSP slice trailing DitS SEMANTICSc..ccuerieriieriieiieeiesiesieseerieeteseesee et eeeeresseesseesseenseensesssessaenseas 84
7.4.2.11 RBSP trailing DitS SEMANTICS.c.eccverieriertieriieiteeieeteesteeteeseetestesseesseesseensesnsesseesseesseensesssesssessaessees 84
7.4.2.12 Prefix NAL unit RBSP SEMANTICS......cuteiiieiiitieiieiieie ettt et eneas 84
7.4.2.13 Slice layer extension RBSP SEMANtiCS.........ccouieiiieiieieiieiieieeie ettt 84

743 STICE NEAACT SEIMANTICSeueieietietieie ettt et ettt et e e e e e ee e st e e bt e saeebeemteemeeeseeeseenseeneeeneeeneesneennean 85
7.4.3.1 Reference picture list modification SEMANTICSccvierveerirerieeiiieeieecieeereeeieesreeereesreessaeeseeeeneees 90
7.4.3.2 Prediction weight table SEMANTICS........eeuieieieieitieteee ettt ettt e seeebe st eseeneenee e 91
7433 Decoded reference picture marking SEMANTICSc.eouerieririiririeieieieee ettt 92

744 STCE AALA SEIMANTICS .. .veuteuteiiitietieiteitet ettt ettt et et st b e sbe bt eat et e e st e ekt e bt ebeestentense st enbeabesaeebeeneensensens 95

7.4.5 MacCTObIOCK 1aYEr SEMANTICS.eivieiieiiiiiiieciieie et ettt et et e et e eetestaesteesseessesssesssesseesseessesseesseanseensenns 96
7.4.5.1 Macroblock Prediction SEMANTICSccvieevieierieriierieteeteseesreeteeteseeesseesseesseeseesseesseesseessesssesseenses 104
7.4.5.2 Sub-macroblock prediction SEMANTICScc.verveerieerieiieriereere et eteetessee e eeeeaessaesseesseeseensesnsesnees 105
7.4.5.3 Residual data SEMANTICSeouerueririirieeiieieietert ettt ettt sttt sttt ettt st st be et ebeeeeneen 107

Rec. ITU-T H.264 (01/2012) v

8

vi

DIECOMINE PIOCESS. ... e euvieeieeeietieteeteeteetesttesteesteeteestesetesse e st enseasseassessaenseenseansesnsesseesseenssenseanseasseassansaensennsesnsesnnennes 109
8.1 NAL UNit dECOAINE PIOCESS ...cnvvenvienrieieeiesieeiesttesteeteateetesseesseeseessesssesssesseesseesseesseansesssesssesseensesssesssesseessens 110
8.2 STICE AECOAING PIOCESS ... eeuveeeeieietieieeteeteetesttett et esteesaessaesseeseenseessesasesseesseenseenseanseassesseessaenseensennsesnsennnesees 111

8.2.1 Decoding process for picture 0rder COUNToorieiiiriiieiertieie ettt eeeeeee st e e saeeseeeeeas 111

8.2.1.1 Decoding process for picture order count type 0c.oooeeiuieiieienieniereee e 112
8.2.1.2 Decoding process for picture order count type 1occoevieiieiiriienieriereee e 113
8.2.1.3 Decoding process for picture order COUNt tYPE 2c.eeueeueeieierieierieeieeieeiteeeeee e see e s eee e eeeeeeneas 114
8.2.2 Decoding process for macroblock to SIiCE Sroup MaPcccuerierieieiriiiiieieiee et 115
8.2.2.1 Specification for interleaved slice Sroup Map tyPe.......cceevverieiereiiiieieieee ettt 116
8.2.2.2 Specification for dispersed Slice Zroup MAP tYPE ..ccveerveevieieriierieriereerte e eveeeesreesreereereeeaeeseensees 116
8.2.2.3 Specification for foreground with left-over slice group map typeccevevveeieeierierieriereeve e 116
8224 Specification for box-out Slice Zroup MAP tYPES....ccueerreerrierierererieriereerteeteeeeeeesreesseeseesessaesseessees 117
8.2.2.5 Specification for raster scan slice Sroup MAP LYPES ...ecvverueerreerreereerierieriierteereeeeeeeesreeseeseesesneesnees 117
8.2.2.6 Specification for wipe SliCe SroUP MAP LYPES ...eevvverrierrieriieierieseestierteesteeeeeeesetesseeseenseesessaesseenseas 117
8.2.2.7 Specification for explicit SIICE Zroup MAP LYPEC.....eervierrirrueeierierieriereerteereeeee e seeesseeseenseesesneesnees 118
8.2.2.8 Specification for conversion of map unit to slice group map to macroblock to slice group map 118
823 Decoding process for slice data Partitionsc.ceeeeerierieriieie ettt seee e eeas 118
8.24 Decoding process for reference picture lists CONStIUCION.ccueevereieriieriieieeie e 119
8.2.4.1 Decoding process for picture MUMDETScooeeruieiiiienientieieeie ettt stee ettt et e e e eeeeseeenaeas 119
8.2.4.2 Initialisation process for reference PiCture liStSccvevvierierieiieii ettt 120
8.2.43 Modification process for reference PiCture IiStS..........ccvieiiriereeriieiicie ittt 123
825 Decoded reference picture Marking PrOCESSecveriieriieciieieiieseeie e seeseesteeseeaeeseesseeseessesssessseses 125
8.2.5.1 Sequence of operations for decoded reference picture marking processocceevvevverveecrencveneenenn 126
8.2.5.2 Decoding process for gaps in frame NUML...........coeeiieierienienieeie et eee e eseeneeeneas 126
8.2.53 Sliding window decoded reference picture marking ProCess..........ceeevereeerirereeesiereeneerieesreeeeseennees 127
8.2.54 Adaptive memory control decoded reference picture marking proCesscecvevveeveervereeesresvennnns 127
8.3 INtra PrediCtion PrOCESS. . .eeiuietieieeeieetiett ettt et et e st e et et e et eeaeeett e et en et eseeeseess e e seenseeneesmeenseensesneesaeesaeenaeenseens 129
8.3.1 Intra_4x4 prediction process for lTuma SAmMPLES..........c.oecueeiirieiieiieie e 130
8.3.1.1 Derivation process for Intradx4PredMOode..........ccveiiiiiiiiiieiieeee e 130
8.3.1.2 Intra_4x4 sample PrediCtionooeeiiiiiee ettt ettt neenean 132
8.3.2 Intra_8x8 prediction process for luma SAMPIES.coeiiririieieiiiee e 135
8.3.2.1 Derivation process for Intra8X8PredMOde.........cccuvivviiiiieiiieciiecieeeiee et sve e sveesae e 136
8.3.2.2 Intra_8X8 SAMPIE PrEdICtIONocuviieieiieiieii ettt ettt et sre e beeaeeseesteesseesseenseessesseensens 137
833 Intra_16x16 prediction process for Tuma SAMPIES.........cceevierrieriieiiirieiieseere et eeesseeseees 142
8.3.3.1 Specification of Intra_16x16_Vertical prediction MOde...........ccvveevieiiiiiiieiienieniieie e eeees 143
8.3.3.2 Specification of Intra_16x16_Horizontal prediction mode............cceeevereeriierienienieieeeeeeeie e 143
8.3.3.3 Specification of Intra_16x16_DC prediction MOAEccvereerieeriierieeie et eees 143
8334 Specification of Intra_16x16_Plane prediction MOdE...........ceoveeeirierieniieriieieeie e 144
834 Intra prediction process for chroma SAmMpPIES.............ccueeiieiiriieiieriee et 144
8.34.1 Specification of Intra_Chroma DC prediction modececeeeiiierienierieeeeeceee e 146
8.3.4.2 Specification of Intra_Chroma Horizontal prediction mode...........cocceeoeeviirienienieieeeeeie e 147
8.343 Specification of Intra_Chroma_Vertical prediction Modeccorueieiininininieieieeeeee e 147
8344 Specification of Intra_Chroma_Plane prediction mode...........ccoceeeeieieiieniineneserceceeeeeee e 147
8.34.5 Intra prediction for chroma samples with ChromaArrayType equal to 3cccoiiviiiiininiiieenee. 148

83.5 Sample construction process for [PCM macrobloCKsccieeveriirierieeniiiieiie e seesveeieens 149
8.4 INtET PIOICTION PIOCESS....eeuvieureiererriertiesteeseesteetesteesseeseasseassesseesssesseesseesseessesssasssesssesseessesssesssesssesssesseesseessenns 149

8.4.1 Derivation process for motion vector components and reference indices...........ccvevveevverierienieesrennennen. 151

8.4.1.1 Derivation process for luma motion vectors for skipped macroblocks in P and SP slices................ 152
8.4.1.2 Derivation process for luma motion vectors for B_Skip, B Direct 16x16, and B Direct 8x8....... 153
8.4.1.3 Derivation process for luma motion vector prediCtionc.ecceeveriereereesiesieneeseee e eeeeeeeeees 160
8.4.14 Derivation process for chroma motion VECOTScecueeuiertierieerieeieeieseeesieenee e eneeseeeseeeeeeneeeneeeneas 162
8.4.2 Decoding process for Inter prediction SAMPLEScceeeeruierieiiieiieie et 163
8.4.2.1 Reference picture SEIECION PIOCESSueiueerueereeeieeieetiertteiteteetesstesteesteesteeeeeneesseesteeseenteenseeneenneas 164
8.4.2.2 Fractional sample interpolation PrOCESS........c.ccverrieiieiieierieesteereeteeeesteesteeaeeeseereesreesseeseessesssesseas 165
8423 Weighted sample prediction PrOCESSouiiiirierieiieieeiertent ettt ettt ettt et seeesaean 170

8.4.3 Derivation process for prediction WEIZNLScceiiiiiiiiiieeee et 171
8.5 Transform coefficient decoding process and picture construction process prior to deblocking filter process 173

8.5.1 Specification of transform decoding process for 4x4 luma residual bIOCKS............coevvevveviiiciieiinieienns 174

8.5.2 Specification of transform decoding process for luma samples of Intra_16x16 macroblock prediction

TTIOME ..ttt ettt b et bbbttt h e h bbbt e a e st b e eh bt bt eb e st e st et e st bbbt ebeent et ens 174

8.5.3 Specification of transform decoding process for 8x8 luma residual blocks............ccoeeverierieiiiniiinieins 175

8.54 Specification of transform decoding process for chroma samples............cccceeeevierienieriecieeieeeeene 176

Rec. ITU-T H.264 (01/2012)

8.5.5 Specification of transform decoding process for chroma samples with ChromaArrayType equal to 3.. 178

8.5.6 Inverse scanning process for 4x4 transform coefficients and scaling lists...........cccocevververiiecieeeeneennen. 178
8.5.7 Inverse scanning process for 8x8 transform coefficients and scaling lists...........cccccevverveciiecienieneennen. 179
8.5.8 Derivation process for chroma quantisation Parameterscceceeuerieriereerieenieeeeeeeeseeeneeeeeeeeseeeeeas 180
8.5.9 Derivation process for scaling funCtiONS...........ccierieiiieiiiiieniereee e eeas 181
8.5.10 Scaling and transformation process for DC transform coefficients for Intra_16x16 macroblock type... 182
8.5.11 Scaling and transformation process for chroma DC transform coefficientscccccoceecereieniiencenienenne 183
8.5.11.1 Transformation process for chroma DC transform coefficients..........c.cccceeveveieviiieineenrieieeieeeens 183
8.5.11.2 Scaling process for chroma DC transform coefficientsccccevieiririieiieieiereee e 183
8.5.12 Scaling and transformation process for residual 4X4 DIOCKS........ccceevieviieiieienieieiieieeeeeee e 184
8.5.12.1 Scaling process for residual 4X4 DIOCKS........eevuieviiiierieriieiieie ettt er e e seeeseesaees 185
8.5.12.2 Transformation process for residual 4X4 DIOCKSccuevieriieriieiiiiieiiece ettt 185
8.5.13 Scaling and transformation process for residual 8X8 DIOCKS..........ccevieiiieiiiriirieiieeeeeeeee e, 187
8.5.13.1 Scaling process for residual 8X8 DIOCKScevuiriiiiirieiieieieeeee ettt 187
8.5.13.2 Transformation process for residual 8X8 BIOCKSccueruierieiiiriiiiieieeeee e 187
8.5.14 Picture construction process prior to deblocking filter Process..........ccecvereereereerieiieiesiereeseee e 190
8.5.15 Intra residual transform-bypass deCOdiNG PIrOCESSccuerueeruirrierrieiieeie sttt ettt ee e seeeeeas 191
8.6 Decoding process for P macroblocks in SP slices or ST macroblockscccceereeriroieiienieniereeeeceeee 191
8.6.1 SP decoding process for NON-SWItChING PICLUIES.eeueiuiemieiiieie ettt 192
8.6.1.1 Luma transform coefficient decoOding PrOCESSccerueririeierieiesie ettt 192
8.6.1.2 Chroma transform coefficient decoding PrOCESS........ceuveierierieririereeieeieeeieeie ettt 193
8.6.2 SP and SI slice decoding process for SWitching PICLUIEScc.evererreriririeieieriene et 194
8.6.2.1 Luma transform coefficient deCOding PrOCESSccueruererieierienienienienierieetteee e 194
8.6.2.2 Chroma transform coefficient decoding PrOCESS........cc.veieierieriinierirereeiceiteeete e 195
8.7 DeblOCKING fIltET PIOCESS . .evvevietieieeiieeiierteeteeteeteste st e et et e et e s ste st e e st esseensessaesseeseensesnsesseansesnsesseesseenseansenns 196
8.7.1 Filtering process fOr BIOCK ©AZESeeivieiiiiiiiieeiet ettt ettt sttt e e e saaessaenneas 200
8.7.2 Filtering process for a set of samples across a horizontal or vertical block edge.........cccccoevvevivrcirnnnnnen. 201
8.7.2.1 Derivation process for the luma content dependent boundary filtering strengthcccceeeeee. 202
8.7.2.2 Derivation process for the thresholds for each block edgeccooeeiieiiiiiiiiiiee e, 204
8.7.23 Filtering process for edges with bS less than 4c.ooiiiiiiiiiie e 205
8.7.2.4 Filtering process for edges for bS equal t0 4ccooiiiiiiieieeee s 206

O PATSINE PIOCESS -uveeutientientieiieetteattente et et e ate st e sbe e bt eateeuteeuee bt en bt embeaatesaeesb e e st embeeateeheeebe e bt e b e en bt embeemtesatesueenbeenbeenteane 207
9.1 Parsing process for EXp-Golomb COUEScouiiiiiiiriieiiiii ettt ettt eae e sreesbeeaessaesseesse e seenseens 207
9.1.1 Mapping process for signed EXp-Golomb COAESoccviriiriiiiiiiiiiiiie ettt 209
9.1.2 Mapping process for coded DlOCK PAtternccceviiviieciieiiiiereeie et aees 209
9.2 CAVLC parsing process for transform coefficient leVels.........c.ccoereriiieniininininiiecccerese e 212
9.2.1 Parsing process for total number of non-zero transform coefficient levels and number of trailing ones 212
9.2.2 Parsing process for level INfOrmationcecuecieiiiriiniiiiincnce ettt 216
9.2.2.1 Parsing process for 1eVel PIefiX........ccccoiiririniiiniiiiieteetee ettt 217
9.23 Parsing process for run informationcooieiieii i 218
9.2.4 Combining level and run informationcooierieiieiieesee e 221
9.3 CABAC parsing process for SICe datacc.eoieriiiiiiiiiiieee ettt 221
9.3.1 TNTEIAlISAtION PTOCESS ..vveeuvieierieeiieiiieeteeeteeerteeeteeeteeeteeaseessseeesseessseesssaeasseesnseeasseessseessseessseessseesnseennseens 223
9.3.1.1 Initialisation process for CONteXt Variables.........cocieiiieiiieiiieiiiecieeee e e 224
9.3.1.2 Initialisation process for the arithmetic decoding engine.............ccocevererieieieiiererere e 246
9.3.2 BiNATiZAtION PIOCESS .. .cuvieuiierieeriertiesteeteetestesteesseeseesteeseesseesseesseessesssesseessaessesssesssesssesseessesssenssesssesssensens 246
9.3.2.1 Unary (U) DINAriZAtiOn PIOCESSccverrierrierriereeresieesteesseessessessesseesseesseesseessesssessssssesssesssesssessesssees 249
9.3.2.2 Truncated unary (TU) binarization PrOCESScccvervieviriueriereesreeieetesreseesseesseessesssesssesseessesssessees 250
9.3.23 Concatenated unary/ k-th order Exp-Golomb (UEGKk) binarization processcceeverveeevervennen. 250
9.3.2.4 Fixed-length (FL) binarization PrOCESS.........ceevereeriierieeieeeeseesteerteesaesstesseesseesseessesssessaesseessesssensens 251
9.3.2.5 Binarization process for macroblock type and sub-macroblock typecccocvevvveciiniinieniiiieeieen. 251
9.3.2.6 Binarization process for coded block pattern.............ooceeiiiiiiiiiiie e 254
9.3.2.7 Binarization process for mb_qp deltacooiiiiiiiiiii e 254
933 DECOAING PrOCESS FlOWeuiiuieieiiieee ettt ettt ettt s e e eb e st et et et e sbeseeeaeeaeeseebeeneeneeneens 254
9.3.3.1 Derivation process fOr CIXIAX ...ccuiiiiiiiiiiiiieiiecce ettt e e tee st e et esbeesnbeessbeeensneenns 255
9.3.32 ArithmeticC dECOAING PIOCESSeoueeuieuieieieiteetiete ettt ettt ettt ettt est st et e eestesbeebe st ebeeseeneeneeneensenes 268
9.3.4 Arithmetic encoding process (INfOrMAtiVe)..........ecuieriieriieiinieiieieeie ettt seeesre b e esseeeseseaenees 275
9.3.4.1 Initialisation process for the arithmetic encoding engine (informative)ccoeeveevereenreecveenenen. 275
9.342 Encoding process for a binary decision (InfOrmative)cceeeveeeieiiereeneenieeieeieseeeere e 276
9.343 Renormalization process in the arithmetic encoding engine (informative)............cccecvreverveneenennen. 277
9.3.4.4 Bypass encoding process for binary decisions (Iinformative)..........ccoocververierieeienieneereeeeeee e 279
9.34.5 Encoding process for a binary decision before termination (informative)...........cccveeververeereennennen. 280

Rec. ITU-T H.264 (01/2012) vii

9.3.4.6 Byte stuffing process (INfOrmMatiVe)ccuerierieriieiieiesieeee ettt e ste e enseenaeeseeneas 282

ANNEX A — Profiles and IEVEIScouiiiiiiiiiini ettt ettt et 283
A.1 Requirements on video decoder Capabilityccoeceeierieiiiiieie et e 283
N s o) i 1 TSRS 283

A2l BaSEIiNe PIOTIIEcoeieiieieee ettt ettt ettt et a ettt e e neeeneennean 283
A2.1.1 Constrained Baseline Profile............ceiieiiriiiiiiiiieiiece ettt et e e 284
A2.2 LY 1 0 U0 1 (OSSPSR 284
A2.3 5 41 116 T 1500 o) 1 (T USSR 284
A28 HIH PIOTILE. ...ttt ettt et a ettt et h e h e bt et et et e te bt ebeebeeneeneentenean 285
A2.4.1 Progressive High Profilecciiiiiiiiioiiiciecicciecece ettt st ae e s aeesaeeseense e 285
A242 Constrained High Profileccoceiiiiiioiiiiiic ettt reesbessae st e sseeseenseens 286
A25 High 10 PIOfIIE...ceeiiiieiicieeeee ettt ettt ettt eesb e s taesbaesbeesseeseeeseessaenseesseessesssensaensens 286
F N N = (T ed s S A o) (o) 1 (<SR 286
A.2.7 High 4:4:4 Predictive ProOfile.......cciiiiiiiieieeieeeeee ettt sttt et e e n e eneeens 287
A.2.8 High 10 INtra Profilec.cooieiiiiieiieeiee ettt ettt et e st est e e s e esaessaeseenseenneennennes 287
A29 High 4:2:2 INtra Profile ...cooueioiiiieeieee ettt ettt et ene 288
A2.10 High 4:4:4 INtra Profile ...oooueeeiiiieeeee ettt et ettt et b e ae e e ene 288
A2.11 CAVLC 4:4:4 INtra PIOfIle.....ee oottt ettt et e et ettt e s e st e b eaeeaeeaeeene 289
AL L OVRIS e h ettt a e b e bt e bt et it et e bt e bt et eat e bt e ebeenbeenbean 289
A3.1 Level limits common to the Baseline, Constrained Baseline, Main, and Extended profiles................... 289

A.3.2 Level limits common to the High, Progressive High, Constrained High, High 10, High 4:2:2,
High 4:4:4 Predictive, High 10 Intra, High 4:2:2 Intra, High 4:4:4 Intra, and CAVLC 4:4:4 Intra profiles

.. 292
A33 Profile-specific 16VE] TIMILSc.eevuieiieiicieciesieesic ettt ettt teesbe b e esaeeseesaaesseesseessesssessaensens 293
A.3.3.1 Level limits of the Baseline and Constrained Baseline profileccoeeeiienienieiiiceicienieeee 295
A.3.3.2 Level limits of the Main, High, Progressive High, Constrained High, High 10, High 4:2:2,
High 4:4:4 Predictive, High 10 Intra, High 4:2:2 Intra, High 4:4:4 Intra, and CAVLC 4:4:4 Intra
0210 1 PR 296
A333 Level limits of the Extended profilecccoooiiiiiiiiie et 297
A34 Effect of level limits on frame rate (INfOrmative)ocueeeiiieiiiiiii e e 299
A35 Effect of level limits on maximum DPB size in units of frames (informative)............ccccceevvevreeveennennen. 302
Annex B — Byte Stream fOrMAtoouiiiiiiiiiiieeeee ettt sttt sttt ettt sttt 304
B.1 Byte stream NAL unit Syntax and SEMANTICSceerreerueervieriieiesieesteereeseseeseesseesseessesseesseessesssesssesssesssessens 304
B.1.1 Byte stream NAL UNIE SYNTAX.........ccieriieeieiieiiesiesieeteeeesteesteeseesesssessaesseesseessesssesssesseessesssesssesssesssessens 304
B.1.2 Byte stream NAL UNit SEMANTICSeeovieriiiiieiieitiesiierieeteeeeseesseesseesessaesseesseessesssesssesssessesssesssesssesseessens 304
B.2 Byte stream NAL unit decoding PrOCESScccoirierueruieieniinieniinienieeieeitetete sttt sttt et et et sbe e bt eseensenaens 305
B.3 Decoder byte-alignment recovery (InfOrMAatiVe)........cueruieierierieriieieeieeieseeseesee e eee e seeeseeneeeneesnsesseeseas 305
Annex C — Hypothetical reference deCOUETccuiiiiriiriieiieieeieeie ettt ettt et e e enseeneesseeseenneas 306
C.1 Operation of coded picture buffer (CPB)..........cooiiiiiieieeee et 309
C.1.1 Timing of DItStream AITIVALcoouiiiiiieii ettt et e e b et et e e e sneeneeas 309
C.l.2 Timing of coded PICtUre TeMOVAL........c.eoiuiiiiiiii ettt ettt neeeeas 310
C.2 Operation of the decoded picture buffer (DPB).......cccooiiieiiiiiiieciicceeeeeceee e e 311
C2.1 Decoding of gaps in frame num and storage of "non-existing" frames............ccccererereneniceiiniieneeene 312
C.2.2 Picture decoding and OULPUL........c.eeueeuiiieieieieite ettt ettt ettt teeee st e st e e e ste s e stesteebeeseeneeneeneeneens 312
C23 Removal of pictures from the DPB before possible insertion of the current picturecccceeveenennen. 313
C24 Current decoded picture marking and StOFAZE.........c.evveerveeriiriieiierieieeieeeesee e ereereeeeesseesseeseessesssesens 314
C.24.1 Marking and storage of a reference picture into the DPB...........cccccoieiiiiinieiieiceeeeeee e 314
C.2.4.2 Storage of a non-reference picture into the DPBcccccooiiiiiiiiiiiieeeee e 315
C.3 BitStream CONTOIMANCEcc.eouiruiriiriiiieiteteterte sttt ettt ettt ettt ettt b e bt bt e st et et e s e e te b e sbeebeebeensentens 315
C.4 DecOder CONTOIMANCEevuiiiriirieeiieiieiteteet ettt ettt ettt ettt et et et sbe bt bt ebe et et et e se et e s besbeebeebeensentens 316
C4.1 Operation of the output 0rder DPBc.oooiiiiiiiei et 317
C4.2 Decoding of gaps in frame num and storage of "non-existing" pictures...........cccceeeeeeereeneesierseeneennenn 318
C43 PACture d@COMING .. .eoueieiieiieeeieet ettt ettt et e e e b e b e ettt e et e neeeae et et e enteeneeeneennean 318
C44 Removal of pictures from the DPB before possible insertion of the current picturecccceeeeereennen. 318
C4.5 Current decoded picture marking and SEOTAZE.cc.eeueeirieierieieite ettt ettt 319
C.4.5.1 Storage and marking of a reference decoded picture into the DPBccccooiiiiiiiiininieie 320
C.4.52 Storage and marking of a non-reference decoded picture into the DPB.............ccccoiiiiiiiinnnnnnn. 320
C.4.5.3 "BUIMPING" PIOCESS .veeveeveerierieiierttesteesteeseesesseesseesseesesssesssesssesseessesssesssesssssseessesssesssesseessesssesssesses 321

viii Rec. ITU-T H.264 (01/2012)

Annex D — Supplemental enhancement infOrmationcc.eoiririririnieieie ettt 323

D.1 SEIPAYIOAA SYNLAX ..ueieiiieiieiieiieieeieeiestteste et ete st e seee et esseessessaesseeseesseassesnsesseesssenseenseassesseanseenseessesssenseenses 323
D.1.1 Buffering period SEI MESSAZE SYNTAXccuievvieeieeieriieriieieeiesiiesteesteetesaesseesseesseesseessesseenseenseessesssesseenses 325
D.1.2 Picture timing SEI MESSAZE SYNTAXccueertieitieiieiieetieniierieeteeeeeetesteesteeteeteeneeeseeseenseenseeneesseesneensesaeesnes 325
D.1.3 Pan-scan rectangle SEI MEeSSAZE SYNTAX.......ueiuierieriieiieieetieetieie et etestee st este ettt e et e esee et eteeneeeneesneeneas 327
D.1.4 Filler payload SEI MESSAZE SYNAXccueertieriieiieiieniientierteeteeeeseeesteesteeteeneesneesseesseenseenseeneesneesneensesneesnee 327
D.1.5 User data registered by Rec. ITU-T T.35 SEI MeSSAZE SYNAX ..c.veverueruieuienieiieieniesieseeeieeieeeceieeneeeeseeneas 327
D.1.6 User data unregistered SEI MeSSAZE SYNEAXccueiueruiriieieieieierie sttt ettt ee e stesee bt seeeeeeseeneeneeeeneas 328
D.1.7 Recovery point SEI MESSAZE SYNTAXeertietiriiriieniieniieteeteetesetestte st ettt saee st enbeesbeesaeeseesbeesbeenaesaeesae 328
D.1.8 Decoded reference picture marking repetition SEI message SYNtaxccceevveevvereervenreenieerveeneneenseennens 328
D.1.9 Spare picture SEI MESSAZE SYNTAX.......ceiierieeriiiieiieriesiiesteeteeteesteesseesseesesssesseesseesseessesssesssesseesseessesssenns 329
D.1.10 Scene information SEI MESSAZE SYNEAXccveeruirrieriierieriierieeteetesteseeeseeeeeeaesseesseesseensesssesseesseensessnesnes 329
D.1.11 Sub-sequence information SEI MeSSAZE SYNAXcerieriirrieriieiierierieeteeteeeteeseereeseeaeeaeseeesneesseeneeens 330
D.1.12 Sub-sequence layer characteristics SEI MeSSage SYNAXeccveruiereierieeiieieneienteeieeeeeaesaesseessesnesenesees 330
D.1.13 Sub-sequence characteristics SEI MeSSaZe SYNEAXceiuieriirriiiiirienieeie et steete e 330
D.1.14 Full-frame freeze SEI MeSSAZE SYNTAXc.eertieruirieriieiierteete et eeeesttesteeteeeeeneesseeteenseeneeeseesseenneeeesneesne 331
D.1.15 Full-frame freeze release SEI MESSAZE SYNTAXverveeruirrieriieriieiierieesieeteeeeseeesteenteeneeeseesseesseesesneesneesnes 331
D.1.16 Full-frame snapshot SEI MESSAZE SYNTAXccueruirueriiitiieeiieiieieie ettt ete et et et e seeseestesbe e eeeeneenseeeneas 331
D.1.17 Progressive refinement segment start SEI message SyNtax.........ccoveeveeiirienieniieniieienieseenieee e 331
D.1.18 Progressive refinement segment end SEI MeSSaZE SYNTAXccueruiriirieriieieieieieiere e 331
D.1.19 Motion-constrained slice group set SEI MeSSAZE SYNTAXecvvervierieereiieiierieenieeieereseesseesseesesssesseessens 331
D.1.20 Film grain characteristics SEI MESSAZE SYNEAXceevviervieiieieriierieereieesresteesseeaeseeesseesseesseessesssesseesses 332
D.1.21 Deblocking filter display preference SEI MesSage SYNtaXcccecveeeveecveriereenieeieeeeseesseeseesesseesseessens 332
D.1.22 Stereo video information SEI MESSAZE SYNIAXccueervierieriierierieriierieeteetesetesseeseesseesaessaesseesseesesssenees 333
D.1.23 Post-filter hint SEI MESSAZE SYNEAX........ccruieruieirrieriientierieeieetesteseeesteeseeeeeeeesseeseesseessesssesseessesnsesnnesnes 333
D.1.24 Tone mapping information SEI MeSSaZe SYNtAX........cccverrerrierirerieriesieieeieeeteeseesseeseeaesaeseeesneesaeeneeens 334
D.1.25 Frame packing arrangement SEI MeSSAZE SYNTAXeecuieiiiriiiieieienierie et eeie sttt see e 335
D.1.26 Reserved SEI MESSAZE SYMEAXeecuteueieuiertierteeteeteeiteateerteeteeeesneesaeesseenseeneeeseasseaseenseensesseesseensesnsesneesnes 335

D.2 SEI PAYload SEMANTICSc.eeitieiieiieieeiiestierte ettt ce et et et e eaeeesee s s ee st eneeemeesaeesaeesseenseenseeseenseenseenseeneenseasean 335
D.2.1 Buffering period SEI MesSage SEMANTICS.........couerueruirtietirieiieieiestesteete sttt eseeneeeestesteseesaesseeseeneeeenseneens 335
D.2.2 Picture timing SEI MESSAZE SEMANTICSc..eeuterirtientieriieieriiesitesteerte ettt steestcete et eseesbeesbeenbeenaeseaesaeesae 336
D23 Pan-scan rectangle SEI MeSSage SEMANTICScc.eeruieiirieriieniieiieieeite sttt ee et seee st ettt eeee e enbeeaeas 341
D.2.4 Filler payload SEI MESSAZE SEMANTICSccovieerereierrieiiereeiesiiesteeteesesaesseesseesseessesssesseesseessesssessessseesses 342
D.2.5 User data registered by Rec. ITU-T T.35 SEI message SemMantiCs..........ccvevveerverevereeseerieereeseeseenseesnenns 342
D.2.6 User data unregistered SEI meSSage SCMANTICS.........ccvverveecveeierierieesreestesteseeesseesseeseessesseesseessesssesssessees 343
D.2.7 Recovery point SEI MeSSage SCMANTICSccueecurrrerrieriierieriestesiesteesteeteeeesseesseesseessesssesseesseessesssesnsenses 343
D.2.8 Decoded reference picture marking repetition SEI message Semanticsc.ecvervverveevesvereeneeenuesnennes 345
D.2.9 Spare picture SEI MESSaZEe SCMANTICSecveeruerierieriieniieteeteetesttesteeteesessesseesseesseessessesssesseesseensesnsenns 345
D.2.10 Scene information SEI Message SEMANTICSc.eevueeruerieriieriieiieieeieetcesteeieeeieeeeeseee e e e eae e seeeseeeeeene 347
D.2.11 Sub-sequence information SEI mesSSage SEMANtICScereeruerierienieniieieeieetiesieeie e enee e 348
D.2.12 Sub-sequence layer characteristics SEI message Semantics.cocvereerueerieeienienieeieee e sieeseeesee e 350
D.2.13 Sub-sequence characteristics SEI message SEMAaNtiCs.......ccoueeuirierienieniieienieniienieeie et 351
D.2.14 Full-frame freeze SEI MeSSaZe SEMANTICS.eeuvirteertieriieieiieeite ittt ettt stte st et et eetesieesbeeseeeneesaeesaee 352
D.2.15 Full-frame freeze release SEI MeSSaZe SEMANTICS.........ccveevieieiieriienreeieiieseeesieesteeseeesesseesseesseessesssesses 352
D.2.16 Full-frame snapshot SEI MeSSaZE SCMANTICSccvervievieieriieriierieereieeseesseeseesesseesseesseessesssesssessesssees 353
D.2.17 Progressive refinement segment start SEI message SemMantiCs.........ccvveververeereereerieeseeneesesneseesseesnens 353
D.2.18 Progressive refinement segment end SEI Message SEMAaNtiCs.........ccevvervrerireieriesieenieeeeeaeseesseennesnennns 353
D.2.19 Motion-constrained slice group set SEI message SemMantiCsccuerueervierierieneiesierieereseeseeseeeseeene e 354
D.2.20 Film grain characteristics SEI mesSage SEMANICSccverueerveeierieniietieieeeteeeeesteeseesesaesseesseesseennesns 354
D.2.21 Deblocking filter display preference SEI message SemMantiCs.........cevverueerieeierienienieeeeie e seeeseeeee e 360
D.2.22 Stereo video information SEI MeSSage SEMANTICS.ccueeruerrurererrierieriieteeieeeeeetceteeieeee e seeeseeeee e ens 361
D.2.23 Post-filter hint SEI MesSaZE SEMANTICScecveeutiriieriieriieiteeie ettt ettt e eeeeeeee ettt eneeeseesreesbeeeeeeeeaeeens 362
D.2.24 Tone mapping information SEI message SEMANTICScoveeruiriirienieniiiieeienienieee et 363
D.2.25 Frame packing arrangement SEI MeSSage SEMANLICS........ccuerverueruirtirierieiieieieeeseesteseesiesieeeeeeeeneeeeseeneas 365
D.2.26 Reserved SEI MESSAZE SEMANTICSco.eeuieuieieieierteetieteeteeteetetestestestesaeeteeseeseensenseasesseesesseeseeneeneensensansan 374

Annex E — Video usability INfOrMAtiON..........c.cccveriiriieiiiiie ettt ettt et ebe e saeseesaeesaeessesseessaesseesseessesssensessens 375

D I VA U 153 L b OO USRI 375
E.1.1 VUI PATAMELETS SYNMEAX ...vieuviieiieiitieeiieeitie ettt ertteeite ettt ettesbteebte ettt ebtesabeeebeesabeeebtesnbeesnbaesaseesabeesaseess 375
E.1.2 HRD PArameters SYINEAXveeeruieriuieeitieiiieeiteeteeeitesteeeteesateeebtesabeesbeesateesabeesaseesabeesateesabeesaseesnbeesnseess 376

E.2 VUL SEIMANTICS ..eeuvitiiiiieeiieieiete sttt ettt sttt ettt et ettt b e s bt et et e et et e bt sb e e bt eateat et et e besbeebeebeeneennens 377
E.2.1 VUL PArameters SCIMANTICSecuveruverteerreerteetertesseesseeseasessaesseesseessesssesssesssesseesseessesssesssessesssesssessesseensens 377
E2.2 HRD parameters SEIMANTICSccuverueeruierteeeeeieetiesteeteeteetesteesseesteensesaeesseesseesseeneeeneeeneesseenseenseeneesseensenn 387

Rec. ITU-T H.264 (01/2012) X

Gl SCOPE ettt ettt ettt e sh e s h e e s h e h et e bt e e h et e e bt e e bt e e bt e e bt e e bt e e bt e e hte et e s bt e e beesabeeeabeesabeeeabee s 390
G2 NOIMATIVE TEIETEICES ...ttt ettt sttt ettt ettt b e bttt et ettt s bt bt e bt et et e s et e b e sbeebeebeebsentens 390
G.3 DETINILIONS ..ttt sttt ettt b et a ettt s bt b e bt e bt et et e bt sb e e bt s bt eb e et eaeeut et et e b e sbeebeebeentennens 390
G4 ADDIEVIALIONS .c..eteiieiieitetertee ettt ettt ettt b e bbbt e et et et et sh e bt e bt bt et eb e ea b et et b e b e bt bt ententens 394
[25 T) 133151013 1RSSR 394
G.6 Source, coded, decoded and output data formats, scanning processes, neighbouring and reference layer
U] 18 00 1S 4 U1 USSPt 394
G.6.1 Derivation process for reference layer macrobloCKscoviiiiiiiiiiiii e 394
G.6.1.1 Field-to-frame reference layer macroblock CONVETrSiON PrOCESSceveeerierueriesiereseeeeenieneeneeeens 396
G.6.1.2 Frame-to-field reference layer macroblock CONVErSiON PrOCESSceeevereerueruesuereeeieeaneeeeseeneees 396
G.6.2 Derivation process for reference layer partitionsc.cceoeevuerierieriineeie e 396
G.6.3 Derivation process for reference layer sample locations in reSampling...........ccceevveeeeeiereenreecieecvennennens 397
G.6.4 SVC derivation process for macroblock and sub-macroblock partition indicescceevevvreverrennenns 399
G.7 SyNtax and SCIMANTICSccuieetieiieiieiestiesteesteetestesteesseeseesseessesseesseesseessaassesssesseesseessesssesssesseessesssenssenssesseensens 399
G.7.1 Method of specifying syntax in tabular formi.............ccecieiiieiieiiienieeee e 399
G.7.2 Specification of syntax functions, categories, and deSCIIPLOrS.eervierieeriereieiieriereerie et eee e 400
G.7.3 Syntax in tabular fOIMcciiiiiiiieee ettt et et r et e 400
(€ 27 T8 B N R 13V 7 L OSSPSR 400
G.7.3.2 Raw byte sequence payloads and RBSP trailing bits Syntaxcccecceveereenieiiniienieneeeeee e 400
(€ 27 TG TN (T s (< T [) 4 1 2 - QOSSPSR 402
G.7.3.4 SHCE data SYNMTAX ..eetieiiiieiie ittt ettt ettt b e bt et e e et et e s atesb e e bt et es b e ebteab e e b e e beenaesaeenaee 405
G.7.3.5 MacroblOCk 1aYEr SYNEAX.coueriiiieieietieieetieii ettt ettt ettt bttt e se et e be e ebe et ene e e enee s 406
G.7.3.6 Macroblock layer in scalable eXteNSION SYNTAX........ceeeieierierieierieeteeie ettt 407
.74 SEIMANLICS ...ttt ittt ettt ettt sttt he b e et e st et et e e bt s bt eb e e bt et e e st en b e besb e eb e e bt ehtestenben s e st e b et e nbeebeebeebeeneententens 410
G.7.4.1 NAL UNIE SEIMANTICS ..uvevteueeiienieteterteeteete et eitet e e steste sttt ettestessessebeabesbeebeeatestentenbenbesseebesbeeneeneensenee 411
G.7.4.2 Raw byte sequence payloads and RBSP trailing bits SEmManticsc.cecueeverreerreecieseereeseernesnennes 419
G.7.4.3 Slice header SEIMANTICSc.eeuveieriiriertieterieeit ettt sttt ettt ettt ettt sbeebe et e s et ettt ebesbeeae et eneenee 425
G.7.4.4 SHiCE data SEIMANTICS ..c..eoueeueeuieietirtertceteeit ettt sttt ettt et et b e bt bt eat et et et e besbesbesbesbeebeeneeneenee 438
G.7.4.5 Macroblock 1ayer SEMANTICScecveevirierieiieiteeitesteste sttt eee et esteeteenbeseaesseesseeseensesnnesnnessesnnenens 438
G.7.4.6 Macroblock layer in scalable eXtension SEMANLICScccereereierieriieieeie et e 439
G.8 SV ACCOMINE PIOCESS ...uveueeeeietieteeteeeteettestte et e et eteeateeaeesteeste e et enteeneaeseeseenseemeesmeesneesseenseenseanseenseensenseansean 442
G.8.1 SVC initialisation and deCOAING PrOCESSESeerueeruieruieireieetiertiente et eteeete et eesseeseeeeeeeeseesneesseenseeneeens 443
G.8.1.1 Derivation process for the set of layer representations required for decoding...........ccceceeeeieneennne. 444
G.8.1.2 Array assignment, initialisation, and restructuring ProCESSESereererrereerueruenieresreseaseeeeeeneenes 444
G.8.1.3 Layer representation deCOAING PrOCESSES. ... ccueruerueruieririeierientertesteeteeteeseeseeeesessessessesseeseeseeseeeensenes 447
G.8.1.4 SIiCE dECOAINZ PIOCESSES ..eovvervreererieriereeteesterttesseesessesstesseesseesseessesssesssesseesseesseessesssesseessessesssesses 449
G.8.1.5 Macroblock initialisation and decOding PrOCESSES.ccververierieriierieeieeeerieeteereesesseesseesseesessnenens 450
G.8.2 SVC reference picture lists construction and decoded reference picture marking process..................... 462
G.8.2.1 SVC decoding process for picture Order COUNLceveeriereierierieii e eteeteieeeeeete e sreesseeseenneees 464
G.8.2.2 SVC decoding process for pICture NUMDELS.........ccverierrieriieriesierie e eeeseeeseeeeeesessaesseesseensesnesenenes 464
G.8.2.3 SVC decoding process for reference picture lists CONSLIUCHION.ccueeveeierieriieiieieeieieee e 465
G.8.24 SVC decoded reference picture Marking PrOCESScueereerueeruerrueeruerienseeneeeseeeeeeneesseesseesseenseeeennes 466
G.8.2.5 SVC decoding process for gaps in frame NUIML..........covieiiieiiiiiinieeee e 472
G.8.3 SVC INtra deCOAING PrOCESSES. .. .eveeteeuieuieuieuieterteateeteeteetteuteseeeentesseteaseseeeseeseaseeneensesensesesseaseeneensensanean 472
G.8.3.1 SVC derivation process for intra prediction MOAESc.eecvievieiirrieneerieieeeese et ere e 472
G.8.3.2 SVC intra sample prediction and CONSIIUCTION PIOCESS.......ccvverviervieeeereesreenreereereereesreesseeseessessnesns 476
G.8.4 SVC INter PrediCtion PIOCESSccvecvereerreereeieitereesteesteeseeseesseesseesseesseessesssesseessesssesssesssesssessessseessesssenns 482
G.8.4.1 SVC derivation process for motion vector components and reference indices...........ccoceververurennenne. 482
G.8.4.2 SVC decoding process for Inter prediction SAMPIEScccveveeriieriieiinienieieeie e 488
G.8.5 SVC transform coefficient decoding and sample array construction proCesses.cervervrecververeerennns 493
G.8.5.1 Transform coefficient scaling and refineMENt PrOCESSccverveereerreerierieriieieeteeeeesreere e eae e 494
G.8.5.2 Transform coefficient level scaling process prior to transform coefficient refinement 501
G.8.5.3 Residual construction and accumMulation PrOCESS........covverueeierierierieeieeee et eeteete e seee e seeeee e 502
G.8.54 Sample array acCUMUIATION PLOCESScoueeteeterieerrierteerteeteeeeseeesteeteeeeeseesseesseenteeneesseesseesseeseeneesnes 506
G.8.5.5 Sample array re-initialiSAtioN PrOCESSceverurerteerteeieriierierteerteeneeeeeeeesseesteeeeeneeeneesseesseeseesesneennes 509
G.8.6 Resampling processes for prediction data, intra samples, and residual samples............cccceceeveerennnenene 509
G.8.6.1 Derivation process for inter-layer predictors for macroblock type, sub-macroblock type, reference
INdICeS, ANd MOLION VECTOISeeiiieviiiiieieeiiieie e ettt e et eeseeeeeeeeteeeeeaeeesesaaeesssaaeesseaaeeesasaeessaneeesaanes 509
G.8.6.2 Resampling process for iNtra SAMPIES..........ccvieevieieiieriere ettt sreesreeaeerseesaesaeesaeees 518
G.8.6.3 Resampling process for residual SAMPIESccvevveeriieriiiiieiieiiee ettt e e ae e ees 530

X Rec. ITU-T H.264 (01/2012)

G.8.7 SVC debloCKing fllter PrOCESSESveruveruieriierieeteeteeieettesteeteeetesetesseeteeseesesssessaesseensessesnsesssesseenseensenns 537

G.8.7.1 Deblocking filter process for Intra Base predictioncccevverieriieieeienieeeieeie e 537
G.8.7.2 Deblocking filter process for target repreSentationsceecververeerieerieerierieseeeeeeeeeeeseeseesseeneees 537
G.8.7.3 Derivation process for quantisation parameters used in the deblocking filter process 538
G.8.7.4 Macroblock deblocking filter PrOCESS.......ccueruieriieriieiieie ettt 539
G.8.8 Specification of DItStream SUDSELS.......cccuiiuiiieiieiiee ettt ettt s saeesae e e eneeens 549
G.8.8.1 Sub-bitStream eXtraCtion PIOCESSccverreerreerriereieerieesteerteeteereesseesseesesssesssesssesseesseessesssesseessessssses 549
G.8.8.2 Specification of the base layer DitStreamcociiieiiieieeee e 550
(G.O PATSIINZ PIOCESS ..eeuveemteenteenteiiteettentt et et ette st e e st e e bt et e eatesheesbeesaeemeeeateeseeeb e et e enbeembeeseesbeesbeeseee bt enseenteesteeseenbeansean 550
G.9.1 Alternative parsing process for coded block pattern...........ccooeiiiiiiiiiiiiiiie s 551
G.9.2 Alternative CAVLC parsing process for transform coefficient levelscoccevvvevcvenienieciiecienienieennens 551
G.9.2.1 Additional parsing process for total number of non-zero transform coefficient levels and number of
ELATLIIEZ OTIES ..eeuvvetieiieie et eteste st et et e et e et et e et e ente e st e ssaesseesseesseenseensesseaseanseenseansesssenseenseensennsesnnennns 552
G.9.2.2 Alternative parsing process for run informationceceeeerierieriesiieieeereee e 554
G.9.3 Alternative CABAC parsing process for slice data in scalable eXtension............cceeeveververerecreneeneennens 555
G.9.3.1 INItIAlISATION PIOCESS ...uveeuverueerueerteeteeteeuteeteesteeteenteeneeeseesseesseeseeneeemeesaeesseeneeenseeneeeseenseenseenseensesneennes 555
(G.9.3.2 BiNATIZAtION PIOCESS. . cuveeuteeueeiueerteertteteeteeneestteteeteeaeeasaeaseesseeaseaneeaneesneesseenseaneeenseeneesseeseanseensesneesnes 556
G.9.3.3 Decoding ProCess flOW........c.ieiui ittt ettt ettt ettt et et nee e ne et e eee 557
G100 Profiles and IEVEISeouiiuiieee ettt ettt ettt bbbt et et et et e bt ebe bt e st eneentens 558
GLL0.1 PLOTILES 1ottt ettt b ettt e e e s bt e s bt e bt e et e et e saeenbe e bt enteeateebeenbeenbean 558
G.10.1.1 Scalable Baseline ProOfilecccuevriiiiiiiieiieiiccieeteeie ettt te v b eeseetaeste e beesbeesseenneees 558
G.10.1.2 Scalable High Profilecccoiiiiiiiriieiiciecieteie ettt st st ettt sra e e e s e esseesaesnaenes 561
G.10.1.3 Scalable High Intra profile..........cccccveviieiiiiiiiiiiieieeieee ettt eeseesaessneees 563
GL10.2 L VRIS ettt ettt b et b e bt h et a et b e et bt bt bt e st e et e et e bbbt et et entens 564
G.10.2.1 Level limits common to Scalable Baseline, Scalable Constrained Baseline, Scalable High, Scalable
Constrained High, and Scalable High Intra profilescccoooerieririiiicenieeeeeeeeeee e 564
G.10.2.2 Profile Specific IEVEL LIMILSccueeriieieieieeierieie ettt ettt ettt enteenaessaesseesseensesnnenes 566
(20 O 2 T3 (T2 10 B o) 4 T | SRS 568
G.12 Hypothetical reference deCOUETocuiiiiiiiiieie ettt st e st e e et e eneesneeneas 568
G.13 Supplemental enhancement INfOIMATION.cueiuiiiiriere ettt eee sttt e see et eeee et e sseeeeeneeeneesneenean 569
G.13.1 SEIL PAYLOAA SYNAX ...eetietieiieiieeiieeiiestee ittt ete et et e et et et e et esbe e be e seeaeesaeesaeesaeenseenseeneesseenseenseeneenseensenn 569
G.13.1.1 Scalability information SEI MeSSAZE SYNTAX....cc.eerteertirriirierierieenieete ettt nice et eetesbee st e e e s neee 569
G.13.1.2 Sub-picture scalable layer SEI MeSSaZE SYNTAXcc.eeuieieiieniirieiieeiieieeiteiieee et 571
G.13.1.3 Non-required layer representation SEI mesSage SYNtaX........cccereririreeirieiieienienie e 572
G.13.1.4 Priority layer information SEI MeSSaZE SYNAX......c.cceeruieriiiierieriieriieieeeeeeesteeseeseesaesseesseesseesseenns 572
G.13.1.5 Layers not present SEI MESSAZE SYNTAXeevuvieriverriierieeniieeriieeriteerieeeieeesireeteessseesseessseesseesssesssseess 572
G.13.1.6 Layer dependency change SEI MESSAZE SYNTAXeevveervieiiiierieniieiieieeeeeseesteesseesesseesseesseessessnesens 572
G.13.1.7 Scalable nesting SEI MESSAZE SYNTAXeecverireriierieriieiieiieeeeseeseeeeeeeeseeeseeesseensesnsessaesseesseensesnnesnns 573
G.13.1.8 Base layer temporal HRD SEI MESSAZE SYNAX ...ecvvevieiieieiiereieriieieeieeeiesieeieeneesnsessnesseesseesesnnesns 573
G.13.1.9 Quality layer integrity check SEI MeSSage SYNAXccveruerierieriieiieieeieeeieteeteeaesenesseesseenseenneses 574
G.13.1.10 Redundant picture property SEI meSSage SYNTAXccceeruerrierierieniieieeieeteeseeenieeteeee e see e eneeenes 574
G.13.1.11 Temporal level zero dependency representation index SEI message Syntaxccceceeveereeeneereenne. 574
G.13.1.12 Temporal level switching point SEI Message SyNtaX.........ccccereerieriierieeienienieeieeie et siceseenee e 575
G.13.2 SEI PAYload SEIMANTICS -.....euvetiitiiiietieiieiieieriete sttt ettt et tese e e stestesbesbeebeeseese e e e sensesseabesseeseeneeseeneeneanseneens 575
G.13.2.1 Scalability information SEI meSSage SEMANTICScc.eeruirierieriiiriieieeiienieenieeie et eite et s 576
G.13.2.2 Sub-picture scalable layer SEI message SEMAantiCsccerueruererieirieieiesienieseeeie e eeeeieeeeee e 591
G.13.2.3 Non-required layer representation SEI message SemMantiCscvevvvevveeverieneenieerieneesneseenseennennns 592
G.13.2.4 Priority layer information SEI message SCMANtICSccveervierereerreerieereeienieesseeseeaesenesseesseessenens 592
G.13.2.5 Layers not present SEI MmesSage SEMANTICS........cuevveriieriierieiierieriiesiieteeseseesseeseessessaesseesseessesssenens 593
G.13.2.6 Layer dependency change SEI mesSage SEMANtICS.........cccveevereerierieeriieeeeiesiieieesesaeseesseenseesesens 593
G.13.2.7 Scalable nesting SEI MeSSAZE SCMANTICSceuveevverrieriieieeeeiteseereeeteeeeestesseesseeseensesssesseesseenseesennes 595
G.13.2.8 Base layer temporal HRD SEI mesSage SeMAantiCscecveuereerieniienieeieeieneeenieeeeeee e seeeseeeee s 596
G.13.2.9 Quality layer integrity check SEI message Semantics.ceeverierierieeienienieenieeieeee e see e 597
G.13.2.10 Redundant picture property SEI message SEMANLICSc.eeoverueeruiereieriieieeiienieeieeie e seeeseee e eee s 597
G.13.2.11 Temporal level zero dependency representation index SEI message semantics............cccecveeeeenee. 599
G.13.2.12 Temporal level switching point SEI message SemMAantiCscceeeereeienienenienieee e eeeeceneeee e 600
G.14 Video usability INFOIMAtIONco.iiiiiiiiiee ettt ettt b e e et bt et et et e tesbeseeebeeneeneeneans 601
G.14.1 SVC VUI parameters eXteNSION SYIMEAK.coueeuuerurerueerteeieetenteenteenteetestesteesseenseeeeeneesseesseensesnsesseesseenses 601
G.14.2 SVC VUI parameters eXtenSiON SEMANTICSccveevereerreerreeirerseseesseesseesseseesseesseessesssesssessesssesssesssessees 601

Rec. ITU-T H.264 (01/2012) Xi

B8 S 10 o 1O OO OO UURUPRUPPRRTI 604
H.2 NOIMAIVE TEIETEICES ...ttt ettt ettt ettt ettt s b e sbe bt et et e b et e bt saeebeebeebeentens 604
B0 T B 1c5 14 V101 4T3 SSSPS 604
5 B N 010} (74 T 15 10 4TRSS 606
H.5 COMVEINTIONS ...ttt ittt ettt ettt ettt e bt e bt et eaeees e et e e eeem b e emeees e e seenseemeeemeesmeesnee st enseenseeneeeneenseannean 606
H.6 Source, coded, decoded and output data formats, scanning processes, and neighbouring relationships 606
H.7 Syntax and SEIMANTICScc.eeuieiieieetieitiete ettt ettt ettt e et e e te et eateesteeseesseeaseeseeneesneesseeseenseenseeneenseansean 606
H.7.1 Method of specifying syntax in tabular formi.............ccoooieiiiiiiiiiee e 606
H.7.2 Specification of syntax functions, categories, and deSCIIPLOTS.c..eeuerieierierieierieie e eeees 607
H.7.3 Syntax in tabULAT FOIMoiuiiiii ettt st be b eneeeeneas 607
H.7.3.1 NAL UNIE SYNEAX c.vtevievieieiieiiestiesteesteeteestesteesseesseessesssesssesssesseesseessesssesssesssessesssesssesssesssensesssesssesses 607
H.7.3.2 Raw byte sequence payloads and RBSP trailing bits Syntaxccceceerveerieriiecienienieneereeve e 607
H.7.3.3 SHCE hEader SYNTAXccueeiiiiiiieiiesiieie ettt ettt ete st e e e teesaeeaaesaeesseesseesseesseessessaeseessaessesssenens 609

= B T S V(TR 1) 4 11 - D QO RPPR 610
H.7.3.5 Macroblock 1ayer SYNTAX........ccuerieriieiieiieieetee ettt ettt e st st esteeteenseensessaenseenseenseensesnnenes 610
H.7:4 SEIMANTICS ..ottt ettt h et a et ettt e b s a e e bt e bt bt et et et sbe st e b st e ebeebeeae et eneen 611
H.7.4.1 NAL UNI SEIMANTICS ...euvteteiieiiieeiientteie ettt et teste e e eteeetesstesseesseeeeeaeeeaeesseenseenseanseeseeaseenseeseensesneesnes 611
H.7.4.2 Raw byte sequence payloads and RBSP trailing bits S€mManticsccecueeeerererieerienieneeneee e 618
H.7.4.3 Slice header SEMANTICSc.cueiueiriieiieie ettt ettt ettt et e et e st et e e e enteeneeeseesseeseenaeeneeens 621
H.7.4.4 SIiCE data SEMANTICS ...c..eeruiiiiiiieiiieitiete ettt ettt sttt ettt et sb et e bt ent e eetesbeesbe e beenaesaeenae 623
H.7.4.5 Macroblock 1ayer SEMANTICSccueiieriiriiiiiieiie ettt sttt e e s e e s 623

H.8 MVC ECOAING PIOCESS. .. .eveeuieuietiatietietteueeuteteate ekt eteettestetetesseeteeseeseeseeneanseasesseaseaseaseeneanseasaseaseeseeneeneensensans 624
H.8.1 MVC decoding process for picture 0rder COUNL............ccuieviriierieriieieeieseeseeste e eeeeseeesseeseesseeesessaeseas 624
H.8.2 MVC decoding process for reference picture lists CONStrUCHIONcecveevirieriieriierieieneeerieereereeeeeeens 625
H.8.2.1 Initialisation process for reference picture list for inter-view prediction references...........c............. 626
H.8.2.2 Modification process for reference picture liStS..........eccvevieriierierieniieiecie et 626
H.8.3 MVC decoded reference picture marking ProCesscueeverierieereeiieriesieseenee e eeeseeeseeeeeeeesaesseensens 629
H.8.4 MVC inter prediction and inter-view prediCtion PIrOCESSc.erververueerreerueerenseesseeseesesaesseesseessesssennes 629
H.8.5 Specification of DItStream SUDSELS.......cccuiiuiiieiieiiee ettt et st see e e e et ens 629
H.8.5.1 Derivation process for required anchor view COMPONENLS...........cceevieriieriieiierieniieneeie e eee e 629
H.8.5.2 Derivation process for required non-anchor view COMPONENtSccceeeuerierierieererienieseeseeeeeeees 630
H.8.5.3 Sub-bitStream eXtraCtion PIOCESScuerveerreeireereieeieesieesteeteereesreesseesesssesssesseesseesseessesssesseesseesessnes 630
H.8.5.4 Specification of the base VIEW DItStICaAM........c.cccuiiiiiiiriieii ettt 632
H.8.5.5 Creation of a base view during sub-bitstream extraction (informative)............ccceeeevierierienienenennnn 632

H.O PAISINZ PIOCESS ..eevvevienrietieeieittesteesteeteesteestestsesseesseessesssesseesseesseasseasseassessensesssesssesssesseesssesseensesnsenssenssensennsens 633
H.10 Profiles and IEVEISeiiiuiiiiieieieee ettt b e sb e bttt et et be s b bt et eneeneens 633
HLTO.T PIOFIIES ¢ttt et st b e bbbt a e st e e e et e st e e b e sbeebe et enteneens 633
H.10.1.1 Multiview High profile..........cccoviiriiiiiiiiiciieeeceeeee ettt et sbeesae e ees 633
H.10.1.2 Stereo High Profilec.oooiioiiiieieees ettt sttt et esa e s e s e esseensesnnenns 634
HUT0.2 LoVRIS ettt ettt et s a bt st b et e et sa e bt sb e bbbt et et be et ebeebe bt et eneen 635
H.10.2.1 Level limits common to Multiview High and Stereo High profiles...........cccoeoeeiiniiniiienieree 635
H.10.2.2 Profile Specific Vel LIMILSccueeriiiiieieeiei ettt ettt ae e e ees 638

o OO 2 T8 (T2 40 B o) 4 T | ST 638
H.12 MVC hypothetical reference deCOETcoiiiiiiiieieieeiereee ettt e e e nee s eneas 638
H.I3 MVC SELMESSAZES «..eeuveentieniieiieeiieetienttete et ettt stte st e et et eateshteeb e e bt en bt eateebtesbeesbee bt emaeeateseee bt enseenteesteesaenbeansean 638
H.I3.1 SEIMESSAZE SYMEAX..c..eeitiitiitiiieeiieeteenteet et eite et testee bt e bt sateseeesbeesaee bt emteeaeesbee bt enbeenseesseeseenbeensesnaesaeenae 638
H.13.1.1 Parallel decoding information SEI message SYNtaXcceoueruereruirireeieieieiesieee e 638
H.13.1.2 MVC scalable nesting SEI MESSAZE SYNTAXcc.eiveruieuirieiieieierieseeete et eteeseeeeeeseeseeseeseeebesseeseeeeneenes 639
H.13.1.3 View scalability information SEI meSSage SYNtaX..........cccervuereerieriieniiereeiesieesieeresnesneseesseessesnns 639
H.13.1.4 Multiview scene information SEI MeSSage SYNtAXccveecverierierieniieieeieniesieeseeseseneseeesseesseesneenns 640
H.13.1.5 Multiview acquisition information SEI mesSage SYNaAX.......c.cccverueerueerierierierieeeeeeeseesseesseessesnenens 640
H.13.1.6 Non-required view component SEI mesSage SYNtaX.........cceeeverierieriienieeienieniieieeiesaeseeesseenseeeeses 642
H.13.1.7 View dependency change SEI MeSSaZE SYNAX........ccueerierrierierieriieieeieeeeesieeieeseeaessaesseesseesesnnennns 642
H.13.1.8 Operation point not present SEI message SYNtaAXcccceerierierierieriieieeiesiesieeieeie e seee e see e 642
H.13.1.9 Base view temporal HRD SEI MeSSage SYNtaX........ccceeruerrierierieniieiieieeiie et et eeee e seee e ee e 643
H.13.2 SEI MESSAZE SCIMANTICScveeivieiieuieeiiietientieteeteettesttestee bt eteeeeesaeesaeesaeenseeneeeneeeseeseenseenseeneesaeeseensesneesnee 643
H.13.2.1 Parallel decoding information SEI message SeMAantiCs.........ccereruerererieieieieiene e 644
H.13.2.2 MVC scalable nesting SEI MeSSage SEMANLICSeeverueeuieieieriereieiesieeteeeeeiete e sie e seeeie e eneeeeee s 645
H.13.2.3 View scalability information SEI message Semanticsccccerererieienienienieniese e e 646
H.13.2.4 Multiview scene information SEI message SEMANTICSccuevveerueeriieiereerieenieereeresreesseeseesesnenens 649

xii Rec. ITU-T H.264 (01/2012)

H.13.2.5 Multiview acquisition information SEI message SEemanticscoceeereeieienieneneneneneneeeeeenne 649

H.13.2.6 Non-required view component SEI message SEMAaNtiCsccevverereierierienieesieeieseesseesseenesnenens 652
H.13.2.7 View dependency change SEI mesSage SEMANLICSeevververierierireieereeiesiieteeseseesseesseenseensesnns 653
H.13.2.8 Operation point not present SEI message SEMANTICS.......cccuereerierieriieriieieeieneeeieeieeee e seeenee e 653
H.13.2.9 Base view temporal HRD SEI message SEMANtICScevueeuerieruieniieieeieeieneeenieeieeee e seeeneeeee s 654
H.14 Video usability INfOIMAtIONeeiuiiiiieieitieie ettt ettt ettt e bt eaeeee st e seeesee e teenteeneeeneenseennenn 655
H.14.1 MVC VUI parameters eXteNSION SYNMEAKcecueeuereeruierueerieeeeeeesseesseeseeeesseesseenseansessesssesseessesssesnsesnes 655
H.14.2 MVC VUI parameters eXteNSION SEMANTICSccveerveerureerreerieeereeenseeesseeesseessseessseessseessseessseessseesssesssees 655
List of Figures
Figure 6-1 — Nominal vertical and horizontal locations of 4:2:0 luma and chroma samples in a frame.............ccccccocu..... 21
Figure 6-2 — Nominal vertical and horizontal sampling locations of 4:2:0 samples in top and bottom fields.................. 22
Figure 6-3 — Nominal vertical and horizontal locations of 4:2:2 luma and chroma samples in a frame........................... 22
Figure 6-4 — Nominal vertical and horizontal sampling locations of 4:2:2 samples top and bottom fields...................... 23
Figure 6-5 — Nominal vertical and horizontal locations of 4:4:4 luma and chroma samples in a frame...............ccc......... 23
Figure 6-6 — Nominal vertical and horizontal sampling locations of 4:4:4 samples top and bottom fields...................... 24
Figure 6-7 — A picture with 11 by 9 macroblocks that is partitioned into tWo SIICES........ccceeereerieriininieninencecieecene, 25
Figure 6-8 — Partitioning of the decoded frame into MAacroblOCK PAITScccvreiirierieriieiieie et 25
Figure 6-9 — Macroblock partitions, sub-macroblock partitions, macroblock partition scans, and sub-macroblock partition
SCATLS .euvtetteteenteenteemteeuee et te bt et e en bt ea et euteebee bt e bt eae e e a et ea et eh e e bt en ke eat e ea et eRteeh e e b e e bt e bt ea et eh e e ehe et e en bt eateen e e eheenbee bt e beenbeeaeenaes 26
Figure 6-10 — Scan for 4X4 TUMa DIOCKSco.tiuiiiiiiieee ettt st b ettt et be bt ebeeneene e e eneeee 27
Figure 6-11 — Scan for 8X8 TUMa DIOCKS.........coiiiiiiiiciieieeieceee ettt sttt e b e esbeesaessaesbeesseesseesseenseees 28
Figure 6-12 — Neighbouring macroblocks for a given macrobloCKcccuerieriieriieiiieiieiesieseeie e 29
Figure 6-13 — Neighbouring macroblocks for a given macroblock in MBAFF frames..........cccccccecueviineninincncneneenenn 30
Figure 6-14 — Determination of the neighbouring macroblock, blocks, and partitions (informative)cccceveenee.e. 31
Figure 7-1 — Structure of an access unit not containing any NAL units with nal unit_type equal to 0, 7, 8, or in the range
of 12 to 18, inclusive, or in the range of 20 t0 31, INCIUSIVEcoueiuiiieieiiiee et 69
Figure 8-1 — Intra_4x4 prediction mode directions (INfOrmMative)eeeeieieriirieie et 131
Figure 8-2 — Example for temporal direct-mode motion vector inference (informative)cccceeerererenerienienenenne. 160
Figure 8-3 — Directional segmentation prediction (INfOrmative)ccecveeierierieiieeiesieeesie et ns 161
Figure 8-4 — Integer samples (shaded blocks with upper-case letters) and fractional sample positions (un-shaded blocks
with lower-case letters) for quarter sample luma Interpolation.ccoeovevierierieii e 167
Figure 8-5 — Fractional sample position dependent variables in chroma interpolation and surrounding integer position
SAMPIES A, B, C, QN Dottt ettt e be b e e ra e e rae e reeeae et e eabeeebeetaestaeteenraas 169
Figure 8-6 — Assignment of the indices of dcY to Iumadx4BIKIAXc.cccveviiriieciieiecieiee et 175
Figure 8-7 — Assignment of the indices of dcC to chroma4x4Blkldx: (a) ChromaArrayType equal to 1, (b)
ChromaAITay TYPE SQUAL L0 2oevieiieiiieiietieie ettt sttt et ettt et estt et e esteesaesssesseeseenseensesneesseesseenseanseensenssensennsenn 177
Figure 8-8 — 4x4 block scans. (a) Zig-zag scan. (b) Field scan (informative)cecceveverieniererienieneere e 178
Figure 8-9 — 8x8 block scans. (a) 8x8 zig-zag scan. (b) 8x8 field scan (informative)...........cceeeeereereenieienereeseeee 179
Figure 8-10 — Boundaries in @ macroblock to be filteredcooriiiiiiiiiieeee e 197
Figure 8-11 — Convention for describing samples across a 4x4 block horizontal or vertical boundary 201
Figure 9-1 — Illustration of CABAC parsing process for a syntax element SE (informative)ccoevevvevireveneennnnns 223
Figure 9-2 — Overview of the arithmetic decoding process for a single bin (informative)...........c.ccoecvevierveiieiiervennnnns 269
Figure 9-3 — Flowchart for decoding @ d@CISIONccuerieriieriieieiiesie sttt ettt ae st e seeseenaessaesaeesseenseannenns 271
Figure 9-4 — Flowchart of r€normaliZationc.eecuieiirieiieieee ettt ettt sr et e saeetesneesaeesaeeneeeneeene 273
Figure 9-5 — Flowchart of bypass deCOAING PrOCESS.......ccuieuiruieieieieieiteeteete ettt te et be ettt et e et e stesbeseeebeeneeneeneeneas 274
Figure 9-6 — Flowchart of decoding a decision before terminationceoueierererinereeieieee e 275
Figure 9-7 — Flowchart for encoding @ dCISIONc.cccuirieriieriieieiieiteste ettt et eetees e ebeeebeesaessaesseeseessesssesaeesseessesnsenns 277
Figure 9-8 — Flowchart of renormalization in the €nCOAETcceieiiiierierieiieieceeeeeee e e 278

Rec. ITU-T H.264 (01/2012) Xiii

Figure 9-9 — Flowchart 0f PULBIt(B)cc.iooiiiiiiiiiieiieie ettt sttt ettt te et e b e e b e ste e baesseessessaesanesseensesnnenns 279

Figure 9-10 — Flowchart 0f encOdiNg DYPaSS........ccvieiieieiieitieitieie sttt ettt e et et eteentessaesseeseenseensessnesseesseensesnsenns 280
Figure 9-11 — Flowchart of encoding a decision before terminationceoeerieieeienieneere e 281
Figure 9-12 — Flowchart of flushing at termination.............cceeiiriiiiiiieii ettt st ne 281
Figure C-1 — Structure of byte streams and NAL unit streams for HRD conformance checksccccoceeoiiiiienennee. 306
Figure C-2 — HRD DUFTEr MOAECL........ccuiiiiiiiiiieiecieeieeeeeteet ettt et sttt et e esa e st eba e baesseessesssesseeseensesnsenns 307
Figure D-1 — Rearrangement and upconversion of checkerboard interleaving (frame packing arrangement type equal

0 0) ettt a et h e sh bbb ettt H b bt b bt ea e et e nh e bt eh e bt e heeh b et et et bt b e ebeebeentene s 369
Figure D-2 — Rearrangement and upconversion of column interleaving with frame packing_arrangement type equal

to 1, quincunx_sampling_flag equal to 0, and (X, y) equal to (0, 0) or (4, 8) for both constituent frames.............. 370

Figure D-3 — Rearrangement and upconversion of column interleaving with frame packing arrangement_type equal
to 1, quincunx_sampling_flag equal to 0, (x, y) equal to (0, 0) or (4, 8) for constituent frame 0 and (x, y) equal to
(12, 8) OT CONSHILUENIE TTAIME 1iieiiiiiiieeiie ettt ettt e et e st e e stae e stbeestaeessbeessseesnseessseesnseessseesnseennseens 370

Figure D-4 — Rearrangement and upconversion of row interleaving with frame packing arrangement type equal to 2,
quincunx_sampling_flag equal to 0, and (x, y) equal to (0, 0) or (8, 4) for both constituent frames...................... 371

Figure D-5 — Rearrangement and upconversion of row interleaving with frame packing arrangement type equal to 2,
quincunx_sampling_flag equal to 0, (x, y) equal to (0, 0) or (8, 4) for constituent frame 0, and (X, y) equal to (8, 12)
fOr CONSHITUETIE TTAME ©...ueiiiiiiiiiiieet ettt et sttt et et aesa e s b s bt ebe et ennennens 371

Figure D-6 — Rearrangement and upconversion of side-by-side packing arrangement with
frame packing_arrangement_type equal to 3, quincunx_sampling_flag equal to 0, and (x, y) equal to (0, 0) or (4, 8)
fOr DOth CONSHILUETIE FIAIMESeoueeiieiiie ettt ettt ettt a et e e te e e e bestesbeeseeneeneenseneens 372

Figure D-7 — Rearrangement and upconversion of side-by-side packing arrangement with
frame packing arrangement type equal to 3, quincunx_sampling_flag equal to 0, (x, y) equal to (12, 8) for
constituent frame 0, and (x, y) equal to (0, 0) or (4, 8) for constituent frame 1...........ccoovvreeercienienierieeeieeeeen. 372

Figure D-8 — Rearrangement and upconversion of top-bottom packing arrangement with
frame packing_arrangement type equal to 4, quincunx_sampling_flag equal to 0, and (x, y) equal to (0, 0) or (8, 4)
fOr both CONSHITUEIE FIAMIEScovviiieiiiiiicree ettt ettt ettt e ae st bbbt eanennens 373

Figure D-9 — Rearrangement and upconversion of top-bottom packing arrangement with
frame packing arrangement_type equal to 4, quincunx_sampling_flag equal to 0, (x, y) equal to (8, 12) for

constituent frame 0, and (x, y) equal to (0, 0) or (8, 4) for constituent frame 1..........cccceeieeieieiininiinieiieeceee 373
Figure D-10 — Rearrangement and upconversion of side-by-side packing arrangement with quincunx sampling
(frame_packing_arrangement type equal to 3 with quincunx sampling_flag equal to 1)ccccooeviiiiiiniiinnnenen. 374
Figure D-11 — Rearrangement of a temporal interleaving frame arrangement (frame packing arrangement type equal to
) ettt et h et h e a et h e Rt R e Rttt R e h e e et a e Rt a e Rt ekt a ettt et st s a et ene et ne e e enen 374
Figure E-1 — Location of chroma samples for top and bottom fields for chroma format idc equal to 1 (4:2:0 chroma
format) as a function of chroma _sample loc_type top_field and chroma_sample loc_type bottom field.......... 384
List of Tables
Table 5-1 — Operation precedence from highest (at top of table) to lowest (at bottom of table)ccccevvrivrerienenne. 17
Table 6-1 — SubWidthC, and SubHeightC values derived from chroma format idc and separate colour plane flag..20
Table 6-2 — Specification of input and output assignments for clauses 6.4.11.1 10 6.4.11.7 ...c.cccvevveviirciercienieneee e 30
Table 6-3 — Specification Of MDAAAINooiiiiiiiieieeee ettt et e et e e ste et e esbeesaessaesseesseesseenseensennns 35
Table 6-4 — Specification of MBAAAIN and YMoccuiiiiiiieieieeee ettt ettt e b e seenseensesnneens 36
Table 7-1 — NAL unit type codes, syntax element categories, and NAL unit type classes.......ccceveererrenieneeneeneeeee 63
Table 7-2 — Assignment of mnemonic names to scaling list indices and specification of fall-back rule.......................... 74
Table 7-3 — Specification of default scaling lists Default 4x4 Intra and Default 4x4 Interccccocevineiinencnncennnne. 74
Table 7-4 — Specification of default scaling lists Default 8x8 Intra and Default 8x8 Interccccccevvververieeeenennne. 75
Table 7-5 — Meaning Of PriMAry PIC LYPEC ...cccveeeerierireriieieeiesteeteeteesseeteseesseesseesseeseassesseesseesseassesssesssesseesseensesssesnsesnns 82
Table 7-6 — Name assoCiation t0 SIICE TYPE ..eveevirierieriieiieieeiesitete et eteseesttesteeaeetesstesseesseenseansesssessaesseesseenseensesnsesans 85
Table 7-7 — modification_of pic_nums_idc operations for modification of reference picture lists...........cccoceeveenreennne. 91
Table 7-8 — Interpretation of adaptive ref pic_marking mode flag...........ccooiiiiiiiiiiiiiiiie e 93

Xiv Rec. ITU-T H.264 (01/2012)

Table 7-9 — Memory management control operation (memory management_control_operation) values....................... 94

Table 7-10 — Allowed collective macroblock types for SIICE tYPe......cvieriirriirierierieeeie et 96
Table 7-11 — Macroblock tyPes fOr T SIICEScc.eeiiiriieiieieeietee ettt ettt et e bt e b e aeeeeemeeenes 98
Table 7-12 — Macroblock type with value 0 for ST SHCESeeiiiieiieee e 99
Table 7-13 — Macroblock type values 0 to 4 for P and SP SICES.......cceeuieieiieiiiereie e 100
Table 7-14 — Macroblock type values 0 t0 22 fOr B SHICES ...veevvieiiiiiiieriieiieiceeeete ettt ettt e et sae e saeeseenne e 101
Table 7-15 — Specification of CodedBlockPatternChroma valuesc.occuerierieiiieiiiiieneesie et 103
Table 7-16 — Relationship between intra_chroma pred mode and spatial prediction modes............cceeveeverceervenirennnn. 104
Table 7-17 — Sub-macroblock types in P macroblOCKS.ooiiiiiiiiiieiiei e 105
Table 7-18 — Sub-macroblock types in B MmacrobloCKsc.ceouiiiiiiiiieii e 106
Table 8-1 — Refined SIiCE Sroup MAP LYPE...coueeueeieieriieieete ettt ettt sttt et ettt e e et e s tesbeseeebe e st essensesseasesaeebeeneeneeneenean 115
Table 8-2 — Specification of Intradx4PredMode[luma4x4BlkIdx | and associated names............ccoeeeveerreevieeeneennenns 130
Table 8-3 — Specification of Intra8x8PredMode[luma8x8BIlkIdx | and associated names............cccoceveerreeveeeeneennnnns 136
Table 8-4 — Specification of Intral 6x16PredMode and associated NAMEScccevererereeierienierenenere e 143
Table 8-5 — Specification of Intra chroma prediction modes and associated NAMESccveereeierierieneeieeeeseeeeane 146
Table 8-6 — Specification of the variable COIPICoiiiiiiiieiiee ettt ee 154
Table 8-7 — Specification of PICCOAINZSLIUCH X).uverviruiruieiieieieieeeete ettt sttt et e e e ebesaeeseeneeneas 154
Table 8-8 — Specification of mbAddrCol, yM, and VErtMVSCAlEc.cccverrieriieiieieeieceeie et es 155
Table 8-9 — Assignment of prediction Utilization flags...........ccieeiiiiiiiiiiiiei e enne e 157
Table 8-10 — Derivation of the vertical component of the chroma vector in field coding modeccccecveieicncnncnne. 163
Table 8-11 — Differential full-sample Tuma I0CAtIONScoiuieiiiiiiie et 167
Table 8-12 — Assignment of the luma prediction sample predPartLX [X, YL] cceeoeeeeererrenieniereereee e 169
Table 8-13 — Specification of mapping of idx to ¢; for zig-zag and field scan..............cccoovviiiiiiiiiiie 179
Table 8-14 — Specification of mapping of idx to c;; for 8x8 zig-zag and 8x8 field scan..............ccceiiviiiiiiiiiins 180
Table 8-15 — Specification of QPc as @ function Of QPccueeieiieiieiei et 181
Table 8-16 — Derivation of offset dependent threshold variables o’ and B’ from indexA and indexBcc.ccceenene. 205
Table 8-17 — Value of variable t'cq as a function of indeXA and DSooviiiiiiiiiiie e 205
Table 9-1 — Bit strings with "prefix" and "suffix" bits and assignment to codeNum ranges (informative).................... 208
Table 9-2 — Exp-Golomb bit strings and codeNum in explicit form and used as ue(v) (informative).............ccccereuenee. 208
Table 9-3 — Assignment of syntax element to codeNum for signed Exp-Golomb coded syntax elements se(V) 209
Table 9-4 — Assignment of codeNum to values of coded block pattern for macroblock prediction modes 210
Table 9-5 — coeff token mapping to TotalCoeff(coeff token) and TrailingOnes(coeff token)..........cccceeevvrverrennnne 214
Table 9-6 — Codeword table for level prefix (InfOrmatiVe)cceecveeierierieii et enee e 217
Table 9-7 — total_zeros tables for 4x4 blocks with tZVIcINdeX 1 t0 7coviiuieiiieiieiieieeeee e 219
Table 9-8 — total zeros tables for 4x4 blocks with tzVIcIndex 8 to 15 ...ocooiiiiiiiiii e 219
Table 9-9 — total_zeros tables for chroma DC 2X2 and 2X4 DIOCKScccvevieriieiiieierieieeie ettt sreesee s e 220
Table 9-10 — Tables fOr TUN DEIOTEc.ciiiiieiiciieieeee ettt et et e et e et e esbeesbeste e beesseessesssesssesseenseensenns 221
Table 9-11 — Association of ctxIdx and syntax elements for each slice type in the initialisation process...................... 225
Table 9-12 — Values of variables m and n for ctxIdx from 0 t0 10.......cccooiiriiiiiiieiieee e 226
Table 9-13 — Values of variables m and n for ctxIdx from 11 t0 23cooiiiiiiiiiieeeeee e 226
Table 9-14 — Values of variables m and n for ctxIdx from 24 t0 39........cooiiiiiiiiiiie e 227
Table 9-15 — Values of variables m and n for ctxIdx from 40 t0 53cccooiiiiiiriiiieeee e 227
Table 9-16 — Values of variables m and n for ctxIdx from 54 t0 59, and 399 t0 401ccvoeiivieiiiiiiieeeeee e 227
Table 9-17 — Values of variables m and n for ctxIdx from 60 t0 69...........ccceeiiiirinininiininiitceeee e 228
Table 9-18 — Values of variables m and n for ctxIdx from 70 t0 104ccoeiiiiiiiiieiee e 228
Table 9-19 — Values of variables m and n for ctxIdx from 105 t0 165coiiiieiieiieee e 229

Rec. ITU-T H.264 (01/2012) XV

Table 9-20 — Values of variables m and n for ctXIdX from 166 t0 226..........ooooeueiiiiriiiieeee et 230

Table 9-21 — Values of variables m and n for ctxIdx from 227 t0 275cc.coeviirinininiretcteceeee e 231
Table 9-22 — Values of variables m and n for ctxIdx from 277 10 337 ...cceirieiieiieeeeee et 232
Table 9-23 — Values of variables m and n for ctxIdx from 338 t0 398.......ccooiiiiiiiieeeee e 233
Table 9-24 — Values of variables m and n for ctxIdx from 402 t0 459coiiiiriiiiieee e 234
Table 9-25 — Values of variables m and n for ctxIdx from 460 t0 483ccueiiriiiiiiiireeeeee e 235
Table 9-26 — Values of variables m and n for ctxIdx from 484 t0 571ccoooeiiriiiiiiiireeeeeeee e 235
Table 9-27 — Values of variables m and n for ctxIdx from 572 t0 659........ccccoirinininininiiiiicceee e 237
Table 9-28 — Values of variables m and n for ctxIdx from 660 t0 717cccoeriieiieiieieiiee et 239
Table 9-29 — Values of variables m and n for ctxIdx from 718 t0 775 ...cceiriiiieiieieeecee e 240
Table 9-30 — Values of variables m and n for ctxIdx from 776 t0 863cccoiiiiiiiiiieieeee e 241
Table 9-31 — Values of variables m and n for ctxIdx from 864 t0 951cc.ooiiiiiiiiiiiii e 243
Table 9-32 — Values of variables m and n for ctxIdx from 952 t0 1011 ...c.occiiiiiiiiiiiniiieee e 245
Table 9-33 — Values of variables m and n for ctxIdx from 1012 t0 1023cccocoiiiiiinininininieeetecee e 246
Table 9-34 — Syntax elements and associated types of binarization, maxBinldxCtx, and ctxIdxOffset.............c.cccu.... 247
Table 9-35 — Bin string of the unary binarization (INfOrmative)...........cerierieiiiieeeeeeee e 250
Table 9-36 — Binarization for macroblock types in I SHCESc.eouiiiriiiiieieieee e 252
Table 9-37 — Binarization for macroblock types in P, SP, and B SHCES.........cccveviieiiriienieiieiccecieeee e 253
Table 9-38 — Binarization for sub-macroblock types in P, SP, and B SIiCeS...........ccceevierieriieriiiieiiereee s 254
Table 9-39 — Assignment of ctxIdxInc to binldx for all ctxIdxOffset values except those related to the syntax elements
coded block flag, significant coeff flag, last significant coeff flag, and coeff abs level minusl................... 256
Table 9-40 — Assignment of ctxIdxBlockCatOffset to ctxBlockCat for syntax elements coded block flag,
significant coeff flag, last significant coeff flag, and coeff abs level minuslccocooiiiiiiniiiiiiiiniineeee 257
Table 9-41 — Specification of ctxIdxInc for specific values of ctxIdxOffset and binldX...........cceevvevieiieviiiiiiieiienes 265
Table 9-42 — Specification of ctxBlockCat for the different bloCKSc.cccveriieviieciieiiiiieiececee s 266
Table 9-43 — Mapping of scanning position to ctxIdxInc for ctxBlockCat == 5,9, 0r 13....ccccooiininininininneneees 267
Table 9-44 — Specification of rangeTabLPS depending on pStateldx and qCodIRangeldX...........cccceriervecirrcienrennnnns 272
Table 9-45 — State transition TADLEuiiiiiieii ettt ettt ettt ettt ettt et sneesaeeee et ene 273
TaBIE A-1 — LEVE] LIMILS ...ttt ettt ettt ettt e et e bt et e ebt e st em e e s e et e beseeebeeneenseneensebesaeebeeneeneeneenean 292
Table A-2 — Specification of cpbBrVclFactor and cpbBrNalFactor........c.eccvievieiieiiieiicieieesieeie et 295
Table A-3 — Baseline and Constrained Baseline profile level Hmitsccoovieviieciiiienieieeiececeereee e 296
Table A-4 — Main, High, Progressive High, Constrained High, High 10, High 4:2:2, High 4:4:4 Predictive, High 10 Intra,
High 4:2:2 Intra, High 4:4:4 Intra, and CAVLC 4:4:4 Intra profile level limits..........ccccecevivenenenencnncneneenes 297
Table A-5 — Extended profile 16Vel LIMILScc.eiiiieiiiieieeeeee ettt ettt st esaeeee e ene 298
Table A-6 — Maximum frame rates (frames per second) for some example frame SiZes..........ccceevereeerierieneecienieniens 299
Table A-7 — Maximum DPB size (frames) for some example frame SiZes..........c..ccueeeeriereeniieieiieieerie e sve s 302
Table D-1 — Interpretation Of PIC_ SIIUCEicciiiiisiieiieieeteseeste et ete st et e et e e e e s teesseesseesseesaessaesseesseessesssesssesseessesssenns 338
Table D-2 — Mapping of Ct_type tO SOUICE PICTUIE SCAMN......ccueerrirrerreriertiesreeteeeeeseesseesseeseessesssesseesseessesssesssesseessesssenss 339
Table D-3 — Definition of couNting_ type VAIUEScccveriieiiieiieeiesieseesie ettt et e et et e e e eseessesaesneesseenseenseans 340
Table D-4 — scene_transition_ fYPE VAIUEScecueiiiriiiiieiieieeie ettt ettt ettt et e st e e e teeteeneesaeesneeeeeneeens 347
Table D-5 — MOAE] 10 VAIUCS........ooiiiiiiie ettt et ettt e st e et et e st e e st e eb e e bt eteentesmeesneesneenseeneeans 355
Table D-6 — blending mMOde 1d VAIUEScouiiiiiiiiiieie ettt ettt s ee bt et es et et e besaeebeeseeneeneenean 356
Table D-7 — filter hint t¥Pe VAIUCSeccvieiieieciieiieieet ettt ettt st steebe e e st e ste e seesseesseesaesseesseessesssesssesssesseensenssens 363
Table D-8 — Definition of frame packing arrangement tyPe.........ccceevuerierieriieriieieeiesieeieeieseeseesseenseesessesseesseensenns 366
Table D-9 — Definition of content INterpretation tYPEcceereerreriierieriereieteeeeeeesteesteeseesessaesseesseessessesseesseessesssenns 367
Table E-1 — Meaning of sample aspect ratio iNAICALOTc.eeiuiriuirritiieriieie ettt e eeeteseesaeeseeeeeeneeens 377
Table E-2 — Meaning of VIAE0 fOIMALo.iiiiiiieiiieie ettt ettt et be e b eseeseeneeneas 378

xvi Rec. ITU-T H.264 (01/2012)

Table E-3 — COLOUT PIIMATIESc.veevieieiieiiiesitesteeteettesteesteesseeseesaessaesseessesssesseesseesseesseassesssesssesseessesssesssesssesssesseessesssenss 379

Table E-4 — Transfer CharacteriStiCScouetiriiriiriririeri ettt ettt ettt et ettt s be b bt eneen 380
Table E-5 — MatrixX COCTIICIENESc..eiitieiieiieieetiettete ettt et ettt ettt et e et e et e et e et e e st e es e e beenteemeesseesneenseeneeennens 383
Table E-6 — Divisor for computation of Atg gpn(1) coeveviiiiiiiiiiiiiiiiciiccc 385
Table G-1 — Name association to slice_type for NAL units with nal unit type equal to 20..........cccocevieiiniiniiniennne 428
Table G-2 — Interpretation of adaptive_ref base pic_marking mode flag.........ccoooiriiiiiniiiiiiiii e, 437
Table G-3 — Memory management base control operation (memory management base control operation) values... 437
Table G-4 — Allowed collective macroblock types for SHICE tYPE. ...cuiviirierieriieiieieeieeee ettt es 440
Table G-5 — Inferred macroblock type I BL for EI SHCES.covuiiriiiiiiiesiieieit et 441
Table G-6 — Scale values ¢S for transform coefficient level SCAlINGcccoevieiiiiiriiiiee e 501
Table G-7 — Macroblock type predictors MBTYPEILPIEd.ccoiiiiiiiieiiee ettt 517
Table G-8 — Sub-macroblock type predictors subMbTypelLPred] mbPartldx]ccocoeoeeiieieiiniiiiiceeeeeeee 518
Table G-9 — 16-phase luma interpolation filter for resampling in Intra Base prediction...........ccccccevvverievienieneenieenenns 527
Table G-10 — Mapping of (nX, nY) to coeffTokenldx and VICE VEISa..........ccceevueeieriesiieiieeiesiesiesie e 552
Table G-11 — Association of ctxIdx and syntax elements for each slice type in the initialisation process..................... 556
Table G-12 — Values of variables m and n for ctxIdx from 1024 t0 1026cocieiieiirieiieeee e 556
Table G-13 — Values of variables m and n for ctxIdx from 1027 t0 1030cccoiiiiiiieieeieeee e 556
Table G-14 — Syntax elements and associated types of binarization, maxBinldxCtx, and ctxIdxOffset........................ 557
Table G-15 — Assignment of ctxIdxInc to binldx for the ctxIdxOffset values related to the syntax elements

base_mode flag and residual prediction flag..........cocceecuieieiieiieiieie et e 557
Table G-16 — Scalable Baseline and Scalable Constrained Baseline profile level limitscccccceveverierierceniieniienne 568
Table G-17 — Specification of cpbBrVclFactor and cpbBrNalFactor..........c.ooouiiiiiiiiieieeeeee e 568
Table H-1 — modification_of pic nums_idc operations for modification of reference picture lists..........ccccceevueruenncnne 623
Table H-2 — Association between camera parameter variables and syntax elements.ccccooererenenenieceniesieenne. 652

Rec. ITU-T H.264 (01/2012) XVvii

Recommendation ITU-T H.264

Advanced video coding for generic audiovisual services

0 Introduction

This clause does not form an integral part of this Recommendation | International Standard.

0.1 Prologue
This clause does not form an integral part of this Recommendation | International Standard.

As the costs for both processing power and memory have reduced, network support for coded video data has diversified,
and advances in video coding technology have progressed, the need has arisen for an industry standard for compressed
video representation with substantially increased coding efficiency and enhanced robustness to network environments.
Toward these ends the ITU-T Video Coding Experts Group (VCEG) and the ISO/IEC Moving Picture Experts Group
(MPEG) formed a Joint Video Team (JVT) in 2001 for development of a new Recommendation | International Standard.

0.2 Purpose
This clause does not form an integral part of this Recommendation | International Standard.

This Recommendation | International Standard was developed in response to the growing need for higher compression of
moving pictures for various applications such as videoconferencing, digital storage media, television broadcasting,
internet streaming, and communication. It is also designed to enable the use of the coded video representation in a
flexible manner for a wide variety of network environments. The use of this Recommendation | International Standard
allows motion video to be manipulated as a form of computer data and to be stored on various storage media, transmitted
and received over existing and future networks and distributed on existing and future broadcasting channels.

0.3 Applications
This clause does not form an integral part of this Recommendation | International Standard.

This Recommendation | International Standard is designed to cover a broad range of applications for video content
including but not limited to the following:

CATV Cable TV on optical networks, copper, etc.

DBS Direct broadcast satellite video services

DSL Digital subscriber line video services

DTTB Digital terrestrial television broadcasting

ISM Interactive storage media (optical disks, etc.)

MMM Multimedia mailing

MSPN Multimedia services over packet networks

RTC Real-time conversational services (videoconferencing, videophone, etc.)
RVS Remote video surveillance

SSM Serial storage media (digital VTR, etc.)

0.4 Publication and versions of this Specification
This clause does not form an integral part of this Recommendation | International Standard.

This Specification has been jointly developed by ITU-T Video Coding Experts Group (VCEG) and the ISO/IEC Moving
Picture Experts Group. It is published as technically-aligned twin text in both organizations ITU-T and ISO/IEC.

Rec. ITU-T H.264 | ISO/IEC 14496-10 version 1 refers to the first approved version of this Recommendation |
International Standard. Version 1 was approved by ITU-T on 30 May 2003. The first published version in ISO/IEC
corresponded to version 1.

Rec. ITU-T H.264 | ISO/IEC 14496-10 version 2 refers to the integrated text containing the corrections specified in the
first technical corrigendum. The first fully-published version in the ITU-T was version 2 as approved by ITU-T on

Rec. ITU-T H.264 (01/2012) 1

7 May 2004, due to the development of the corrigendum during the publication process. Version 2 was also published in
integrated form by ISO/IEC.

Rec. ITU-T H.264 | ISO/IEC 14496-10 version 3 refers to the integrated text containing both the first technical
corrigendum (2004) and the first amendment, which is referred to as the "Fidelity range extensions". Version 3 was
approved by ITU-T on 1 March 2005.

Rec. ITU-T H.264 | ISO/IEC 14496-10 version 4 refers to the integrated text containing the first technical corrigendum
(2004), the first amendment (the "Fidelity range extensions"), and an additional technical corrigendum (2005). Version 4
was approved by ITU-T on 13 September 2005. In both ITU-T and ISO/IEC, the next complete published version after
version 2 was version 4.

Rec. ITU-T H.264 | ISO/IEC 14496-10 version 5 refers to the integrated version 4 text with its specification of the
High 4:4:4 profile removed.

Rec. ITU-T H.264 | ISO/IEC 14496-10 version 6 refers to the integrated version 5 text after its amendment to support
additional colour space indicators. In the ITU-T, the changes for versions 5 and 6 were approved on 13 June 2006 and
were published as a single amendment.

Rec. ITU-T H.264 | ISO/IEC 14496-10 version 7 refers to the integrated version 6 text after its amendment to define five
new profiles intended primarily for professional applications (the High 10 Intra, High 4:2:2 Intra, High 4:4:4 Intra,
CAVLC 4:4:4 Intra, and High 4:4:4 Predictive profiles) and two new types of supplemental enhancement information
(SEI) messages (the post-filter hint SEI message and the tone mapping information SEI message). Version 7 was
approved by ITU-T on 6 April 2007.

Rec. ITU-T H.264 | ISO/IEC 14496-10 version 8 refers to the integrated version 7 text after its amendment to specify
scalable video coding in three profiles (Scalable Baseline, Scalable High, and Scalable High Intra profiles). Version 8
was approved by ITU-T on 22 November 2007.

Rec. ITU-T H.264 | ISO/IEC 14496-10 version 9 refers to the integrated version § text after applying the corrections
specified in a third technical corrigendum. Version 9 was approved by ITU-T on 13 January 2009.

Rec. ITU-T H.264 | ISO/IEC 14496-10 version 10 refers to the integrated version 9 text after its amendment to specify a
profile for multiview video coding (the Multiview High profile) and to define additional SEI messages.

Rec. ITU-T H.264 | ISO/IEC 14496-10 version 11 refers to the integrated version 10 text after its amendment to define a
new profile (the Constrained Baseline profile) intended primarily to enable implementation of decoders supporting only
the common subset of capabilities supported in various previously-specified profiles. In the ITU-T, the changes for
versions 10 and 11 were approved on 16 March 2009.

Rec. ITU-T H.264 | ISO/IEC 14496-10 version 12 refers to the integrated version 11 text after its amendment to define a
new profile (the Stereo High profile) for two-view video coding with support of interlaced coding tools and to specify an
additional SEI message specified as the frame packing arrangement SEI message. The changes for versions 11 and 12
were processed as a single amendment in the ISO/IEC approval process.

Rec. ITU-T H.264 | ISO/IEC 14496-10 version 13 refers to the integrated version 12 text with various minor corrections
and clarifications as specified in a fourth technical corrigendum. In the ITU-T, the changes for versions 12 and 13 were
approved on 9 March 2010.

Rec. ITU-T H.264 | ISO/IEC 14496-10 version 14 refers to the integrated version 13 text after its amendment to define a
new level (Level 5.2) supporting higher processing rates in terms of maximum macroblocks per second and a new profile
(the Progressive High profile) to enable implementation of decoders supporting only the frame coding tools of the
previously-specified High profile.

Rec. ITU-T H.264 | ISO/IEC 14496-10 version 15 refers to the integrated version 14 text with miscellaneous corrections
and clarifications as specified in a fifth technical corrigendum. In the ITU-T, the changes for versions 14 and 15 were
approved on 29 June 2011.

Rec. ITU-T H.264 | ISO/IEC 14496-10 version 16 (the current Specification) refers to the integrated version 15 text after
its amendment to define three new profiles intended primarily for communication applications (the Constrained High,
Scalable Constrained Baseline, and Scalable Constrained High profiles). In the ITU-T, the changes for version 16 were
approved on 13 January 2012.

0.5 Profiles and levels
This clause does not form an integral part of this Recommendation | International Standard.

This Recommendation | International Standard is designed to be generic in the sense that it serves a wide range of
applications, bit rates, resolutions, qualities, and services. Applications should cover, among other things, digital storage

2 Rec. ITU-T H.264 (01/2012)

media, television broadcasting and real-time communications. In the course of creating this Specification, various
requirements from typical applications have been considered, necessary algorithmic elements have been developed, and
these have been integrated into a single syntax. Hence, this Specification will facilitate video data interchange among
different applications.

Considering the practicality of implementing the full syntax of this Specification, however, a limited number of subsets
of the syntax are also stipulated by means of "profiles" and "levels". These and other related terms are formally defined
in clause 3.

A "profile" is a subset of the entire bitstream syntax that is specified by this Recommendation | International Standard.
Within the bounds imposed by the syntax of a given profile it is still possible to require a very large variation in the
performance of encoders and decoders depending upon the values taken by syntax elements in the bitstream such as the
specified size of the decoded pictures. In many applications, it is currently neither practical nor economic to implement a
decoder capable of dealing with all hypothetical uses of the syntax within a particular profile.

In order to deal with this problem, "levels" are specified within each profile. A level is a specified set of constraints
imposed on values of the syntax elements in the bitstream. These constraints may be simple limits on values.
Alternatively they may take the form of constraints on arithmetic combinations of values (e.g., picture width multiplied
by picture height multiplied by number of pictures decoded per second).

Coded video content conforming to this Recommendation | International Standard uses a common syntax. In order to
achieve a subset of the complete syntax, flags, parameters, and other syntax elements are included in the bitstream that
signal the presence or absence of syntactic elements that occur later in the bitstream.

0.6 Overview of the design characteristics
This clause does not form an integral part of this Recommendation | International Standard.

The coded representation specified in the syntax is designed to enable a high compression capability for a desired image
quality. With the exception of the transform bypass mode of operation for lossless coding in the High 4:4:4 Intra,
CAVLC 4:4:4 Intra, and High 4:4:4 Predictive profiles, and the I PCM mode of operation in all profiles, the algorithm is
typically not lossless, as the exact source sample values are typically not preserved through the encoding and decoding
processes. A number of techniques may be used to achieve highly efficient compression. Encoding algorithms (not
specified in this Recommendation | International Standard) may select between inter and intra coding for block-shaped
regions of each picture. Inter coding uses motion vectors for block-based inter prediction to exploit temporal statistical
dependencies between different pictures. Intra coding uses various spatial prediction modes to exploit spatial statistical
dependencies in the source signal for a single picture. Motion vectors and intra prediction modes may be specified for a
variety of block sizes in the picture. The prediction residual is then further compressed using a transform to remove
spatial correlation inside the transform block before it is quantised, producing an irreversible process that typically
discards less important visual information while forming a close approximation to the source samples. Finally, the
motion vectors or intra prediction modes are combined with the quantised transform coefficient information and encoded
using either variable length coding or arithmetic coding.

Scalable video coding is specified in Annex G allowing the construction of bitstreams that contain sub-bitstreams that
conform to this Specification. For temporal bitstream scalability, i.e., the presence of a sub-bitstream with a smaller
temporal sampling rate than the bitstream, complete access units are removed from the bitstream when deriving the
sub-bitstream. In this case, high-level syntax and inter prediction reference pictures in the bitstream are constructed
accordingly. For spatial and quality bitstream scalability, i.e., the presence of a sub-bitstream with lower spatial
resolution or quality than the bitstream, NAL units are removed from the bitstream when deriving the sub-bitstream. In
this case, inter-layer prediction, i.e., the prediction of the higher spatial resolution or quality signal by data of the lower
spatial resolution or quality signal, is typically used for efficient coding. Otherwise, the coding algorithm as described in
the previous paragraph is used.

Multiview video coding is specified in Annex H allowing the construction of bitstreams that represent multiple views.
Similar to scalable video coding, bitstreams that represent multiple views may also contain sub-bitstreams that conform
to this Specification. For temporal bitstream scalability, i.e., the presence of a sub-bitstream with a smaller temporal
sampling rate than the bitstream, complete access units are removed from the bitstream when deriving the sub-bitstream.
In this case, high-level syntax and inter prediction reference pictures in the bitstream are constructed accordingly. For
view bitstream scalability, i.e. the presence of a sub-bitstream with fewer views than the bitstream, NAL units are
removed from the bitstream when deriving the sub-bitstream. In this case, inter-view prediction, i.e., the prediction of
one view signal by data of another view signal, is typically used for efficient coding. Otherwise, the coding algorithm as
described in the previous paragraph is used.

Rec. ITU-T H.264 (01/2012) 3

0.6.1 Predictive coding
This clause does not form an integral part of this Recommendation | International Standard.

Because of the conflicting requirements of random access and highly efficient compression, two main coding types are
specified. Intra coding is done without reference to other pictures. Intra coding may provide access points to the coded
sequence where decoding can begin and continue correctly, but typically also shows only moderate compression
efficiency. Inter coding (predictive or bi-predictive) is more efficient using inter prediction of each block of sample
values from some previously decoded picture selected by the encoder. In contrast to some other video coding standards,
pictures coded using bi-predictive inter prediction may also be used as references for inter coding of other pictures.

The application of the three coding types to pictures in a sequence is flexible, and the order of the decoding process is
generally not the same as the order of the source picture capture process in the encoder or the output order from the
decoder for display. The choice is left to the encoder and will depend on the requirements of the application. The
decoding order is specified such that the decoding of pictures that use inter-picture prediction follows later in decoding
order than other pictures that are referenced in the decoding process.

0.6.2 Coding of progressive and interlaced video
This clause does not form an integral part of this Recommendation | International Standard.

This Recommendation | International Standard specifies a syntax and decoding process for video that originated in either
progressive-scan or interlaced-scan form, which may be mixed together in the same sequence. The two fields of an
interlaced frame are separated in capture time while the two fields of a progressive frame share the same capture time.
Each field may be coded separately or the two fields may be coded together as a frame. Progressive frames are typically
coded as a frame. For interlaced video, the encoder can choose between frame coding and field coding. Frame coding or
field coding can be adaptively selected on a picture-by-picture basis and also on a more localized basis within a coded
frame. Frame coding is typically preferred when the video scene contains significant detail with limited motion. Field
coding typically works better when there is fast picture-to-picture motion.

0.6.3 Picture partitioning into macroblocks and smaller partitions
This clause does not form an integral part of this Recommendation | International Standard.

As in previous video coding Recommendations and International Standards, a macroblock, consisting of a 16x16 block
of luma samples and two corresponding blocks of chroma samples, is used as the basic processing unit of the video
decoding process.

A macroblock can be further partitioned for inter prediction. The selection of the size of inter prediction partitions is a
result of a trade-off between the coding gain provided by using motion compensation with smaller blocks and the
quantity of data needed to represent the data for motion compensation. In this Recommendation | International Standard
the inter prediction process can form segmentations for motion representation as small as 4x4 luma samples in size, using
motion vector accuracy of one-quarter of the luma sample grid spacing displacement. The process for inter prediction of
a sample block can also involve the selection of the picture to be used as the reference picture from a number of stored
previously-decoded pictures. Motion vectors are encoded differentially with respect to predicted values formed from
nearby encoded motion vectors.

Typically, the encoder calculates appropriate motion vectors and other data elements represented in the video data
stream. This motion estimation process in the encoder and the selection of whether to use inter prediction for the
representation of each region of the video content is not specified in this Recommendation | International Standard.

0.6.4 Spatial redundancy reduction
This clause does not form an integral part of this Recommendation | International Standard.

Both source pictures and prediction residuals have high spatial redundancy. This Recommendation | International
Standard is based on the use of a block-based transform method for spatial redundancy removal. After inter prediction
from previously-decoded samples in other pictures or spatial-based prediction from previously-decoded samples within
the current picture, the resulting prediction residual is split into 4x4 blocks. These are converted into the transform
domain where they are quantised. After quantisation many of the transform coefficients are zero or have low amplitude
and can thus be represented with a small amount of encoded data. The processes of transformation and quantisation in
the encoder are not specified in this Recommendation | International Standard.

0.7 How to read this Specification
This clause does not form an integral part of this Recommendation | International Standard.

It is suggested that the reader starts with clause 1 (Scope) and moves on to clause 3 (Definitions). Clause 6 should be
read for the geometrical relationship of the source, input, and output of the decoder. Clause 7 (Syntax and semantics)

4 Rec. ITU-T H.264 (01/2012)

specifies the order to parse syntax elements from the bitstream. See clauses 7.1-7.3 for syntactical order and see
clause 7.4 for semantics; i.e., the scope, restrictions, and conditions that are imposed on the syntax elements. The actual
parsing for most syntax elements is specified in clause 9 (Parsing process). Finally, clause 8 (Decoding process) specifies
how the syntax elements are mapped into decoded samples. Throughout reading this Specification, the reader should
refer to clauses 2 (Normative references), 4 (Abbreviations), and 5 (Conventions) as needed. Annexes A through E, G,
and H also form an integral part of this Recommendation | International Standard.

Annex A specifies fourteen profiles (Baseline, Constrained Baseline, Main, Extended, High, Progressive High,
Constrained High, High 10, High 4:2:2, High 4:4:4 Predictive, High 10 Intra, High 4:2:2 Intra, High 4:4:4 Intra, and
CAVLC 4:4:4 Intra), each being tailored to certain application domains, and defines the so-called levels of the profiles.
Annex B specifies syntax and semantics of a byte stream format for delivery of coded video as an ordered stream of
bytes. Annex C specifies the hypothetical reference decoder and its use to check bitstream and decoder conformance.
Annex D specifies syntax and semantics for supplemental enhancement information message payloads. Annex E
specifies syntax and semantics of the video usability information parameters of the sequence parameter set.

Annex G specifies scalable video coding (SVC). The reader is referred to Annex G for the entire decoding process for
SVC, which is specified there with references being made to clauses 2-9 and Annexes A-E. Clause G.10 specifies five
profiles for SVC (Scalable Baseline, Scalable Constrained Baseline, Scalable High, Scalable Constrained High, and
Scalable High Intra).

Annex H specifies multiview video coding (MVC). The reader is referred to Annex H for the entire decoding process for
MVC, which is specified there with references being made to clauses 2-9 and Annexes A-E. Clause H.10 specifies two
profiles for MVC (Multiview High and Stereo High).

Throughout this Specification, statements appearing with the preamble "NOTE -" are informative and are not an integral
part of this Recommendation | International Standard.

1 Scope

This document specifies ITU-T Recommendation H.264 | ISO/IEC International Standard ISO/IEC 14496-10 Advanced
video coding.

2 Normative references

The following Recommendations and International Standards contain provisions which, through reference in this text,
constitute provisions of this Recommendation | International Standard. At the time of publication, the editions indicated
were valid. All Recommendations and Standards are subject to revision, and parties to agreements based on this
Recommendation | International Standard are encouraged to investigate the possibility of applying the most recent
edition of the Recommendations and Standards listed below. Members of IEC and ISO maintain registers of currently
valid International Standards. The Telecommunication Standardization Bureau of the ITU maintains a list of currently
valid ITU-T Recommendations.

— Recommendation ITU-T T.35 (2000), Procedure for the allocation of ITU-T defined codes for
non-standard facilities.

— ISO/IEC 11578:1996, Information technology — Open Systems Interconnection — Remote Procedure
Call (RPC).

— IS0 11664-1:2007, Colorimetry — Part 1: CIE standard colorimetric observers.

3 Definitions
For the purposes of this Recommendation | International Standard, the following definitions apply:

3.1 access unit: A set of NAL units that are consecutive in decoding order and contain exactly one primary coded
picture. In addition to the primary coded picture, an access unit may also contain one or more redundant coded
pictures, one auxiliary coded picture, or other NAL units not containing slices or slice data partitions of a
coded picture. The decoding of an access unit always results in a decoded picture.

3.2 AC transform coefficient: Any transform coefficient for which the frequency index in one or both dimensions
is non-zero.
33 adaptive binary arithmetic decoding process: An entropy decoding process that derives the values of bins

from a bitstream produced by an adaptive binary arithmetic encoding process.

Rec. ITU-T H.264 (01/2012) 5

34

3.5

3.6

3.7

3.8

3.9
3.10
3.11

3.12

3.13

3.14

3.15

3.16

3.17

3.18

3.19

3.20

3.21

3.22

adaptive binary arithmetic encoding process: An entropy encoding process, not normatively specified in this
Recommendation | International Standard, that codes a sequence of bins and produces a bitstream that can be
decoded using the adaptive binary arithmetic decoding process.

alpha blending: A process not specified by this Recommendation | International Standard, in which an
auxiliary coded picture is used in combination with a primary coded picture and with other data not specified
by this Recommendation | International Standard in the display process. In an alpha blending process, the
samples of an auxiliary coded picture are interpreted as indications of the degree of opacity (or, equivalently,
the degrees of transparency) associated with the corresponding /uma samples of the primary coded picture.

arbitrary slice order (ASO): A decoding order of slices in which the macroblock address of the first
macroblock of some slice of a slice group may be less than the macroblock address of the first macroblock of
some other preceding slice of the same slice group or, in the case of a picture that is coded using three separate
colour planes, some other preceding s/ice of the same slice group within the same colour plane, or in which the
slices of a slice group of a picture may be interleaved with the slices of one or more other slice groups of the
picture or, in the case of a picture that is coded using three separate colour planes, with the slices of one or
more other slice groups within the same colour plane.

auxiliary coded picture: A picture that supplements the primary coded picture that may be used in
combination with other data not specified by this Recommendation | International Standard in the display
process. An auxiliary coded picture has the same syntactic and semantic restrictions as a monochrome
redundant coded picture. An auxiliary coded picture must contain the same number of macroblocks as the
primary coded picture. Auxiliary coded pictures have no normative effect on the decoding process. See also
primary coded picture and redundant coded picture.

B slice: A slice that may be decoded using intra prediction or inter prediction using at most two motion vectors
and reference indices to predict the sample values of each block.

bin: One bit of a bin string.
binarization: A set of bin strings for all possible values of a syntax element.

binarization process: A unique mapping process of all possible values of a syntax element onto a set of bin
strings.

bin string: A string of bins. A bin string is an intermediate binary representation of values of syntax elements
from the binarization of the syntax element.

bi-predictive slice: See B slice.

bitstream: A sequence of bits that forms the representation of coded pictures and associated data forming one
or more coded video sequences. Bitstream is a collective term used to refer either to a NAL unit stream or a
byte stream.

block: An MxN (M-column by N-row) array of samples, or an MxN array of transform coefficients.

bottom field: One of two fields that comprise a frame. Each row of a bottom field is spatially located
immediately below a corresponding row of a fop field.

bottom macroblock (of a macroblock pair): The macroblock within a macroblock pair that contains the
samples in the bottom row of samples for the macroblock pair. For a field macroblock pair, the bottom
macroblock represents the samples from the region of the bottom field of the frame that lie within the spatial
region of the macroblock pair. For a frame macroblock pair, the bottom macroblock represents the samples of
the frame that lie within the bottom half of the spatial region of the macroblock pair.

broken link: A location in a bitstream at which it is indicated that some subsequent pictures in decoding order
may contain serious visual artefacts due to unspecified operations performed in the generation of the bitstream.

byte: A sequence of 8 bits, written and read with the most significant bit on the left and the least significant bit
on the right. When represented in a sequence of data bits, the most significant bit of a byte is first.

byte-aligned: A position in a bitstream is byte-aligned when the position is an integer multiple of 8 bits from
the position of the first bit in the bitstream. A bit or byte or syntax element is said to be byte-aligned when the
position at which it appears in a bitstream is byte-aligned.

byte stream: An encapsulation of a NAL unit stream containing start code prefixes and NAL units as specified
in Annex B.

can: A term used to refer to behaviour that is allowed, but not necessarily required.

Rec. ITU-T H.264 (01/2012)

3.23

3.24

3.25

3.26

3.27

3.28

3.29
3.30
3.31
3.32

3.33

3.34

3.35

3.36

3.37

3.38
3.39

3.40

3.41

3.42

3.43

3.44

3.45

category: A number associated with each syntax element. The category is used to specify the allocation of
syntax elements to NAL units for slice data partitioning. It may also be used in a manner determined by the
application to refer to classes of syntax elements in a manner not specified in this
Recommendation | International Standard.

chroma: An adjective specifying that a sample array or single sample is representing one of the two colour
difference signals related to the primary colours. The symbols used for a chroma array or sample are Cb and
Cr.

NOTE — The term chroma is used rather than the term chrominance in order to avoid the implication of the use of linear
light transfer characteristics that is often associated with the term chrominance.

coded field: A coded representation of a field.
coded frame: A coded representation of a frame.

coded picture: A coded representation of a picture. A coded picture may be either a coded field or a coded
frame. Coded picture is a collective term referring to a primary coded picture or a redundant coded picture, but
not to both together.

coded picture buffer (CPB): A first-in first-out buffer containing access units in decoding order specified in
the hypothetical reference decoder in Annex C.

coded representation: A data element as represented in its coded form.
coded slice data partition NAL unit: A NAL unit containing a slice data partition.
coded slice NAL unit: A NAL unit containing a s/ice that is not a slice of an auxiliary coded picture.

coded video sequence: A sequence of access units that consists, in decoding order, of an IDR access unit
followed by zero or more non-IDR access units including all subsequent access units up to but not including
any subsequent /DR access unit.

component: An array or single sample from one of the three arrays (/luma and two chroma) that make up a
field or frame in 4:2:0, 4:2:2, or 4:4:4 colour format or the array or a single sample of the array that make up a
field or frame in monochrome format.

complementary field pair: A collective term for a complementary reference field pair or a complementary
non-reference field pair.

complementary non-reference field pair: Two non-reference fields that are in consecutive access units in
decoding order as two coded fields of opposite parity and share the same value of the frame num syntax
element, where the first field is not already a paired field.

complementary reference field pair: Two reference fields that are in consecutive access units in decoding
order as two coded fields and share the same value of the frame num syntax element, where the second field in
decoding order is not an IDR picture and does not include a memory management control operation syntax
element equal to 5.

context variable: A variable specified for the adaptive binary arithmetic decoding process of a bin by an
equation containing recently decoded bins.

DC transform coefficient: A transform coefficient for which the frequency index is zero in all dimensions.

decoded picture: A decoded picture is derived by decoding a coded picture. A decoded picture is either a
decoded frame, or a decoded field. A decoded field is either a decoded top field or a decoded bottom field.

decoded picture buffer (DPB): A buffer holding decoded pictures for reference, output reordering, or output
delay specified for the hypothetical reference decoder in Annex C.

decoder: An embodiment of a decoding process.

decoder under test (DUT): A decoder that is tested for conformance to this Recommendation | International
Standard by operating the hypothetical stream scheduler to deliver a conforming bitstream to the decoder and
to the hypothetical reference decoder and comparing the values and timing of the output of the two decoders.

decoding order: The order in which syntax elements are processed by the decoding process.

decoding process: The process specified in this Recommendation | International Standard that reads a
bitstream and derives decoded pictures from it.

direct prediction: An inter prediction for a block for which no motion vector is decoded. Two direct
prediction modes are specified that are referred to as spatial direct prediction and temporal prediction mode.

Rec. ITU-T H.264 (01/2012) 7

3.46

3.47

3.48

3.49

3.50

3.51

3.52

3.53

3.54

3.55

3.56

3.57
3.58

3.59

3.60

3.61

3.62

3.63

3.64

3.65
3.66

3.67

3.68

display process: A process not specified in this Recommendation | International Standard having, as its input,
the cropped decoded pictures that are the output of the decoding process.

emulation prevention byte: A byte equal to 0x03 that may be present within a NAL unit. The presence of
emulation prevention bytes ensures that no sequence of consecutive byte-aligned bytes in the NAL unit contains
a start code prefix.

encoder: An embodiment of an encoding process.

encoding process: A process, not specified in this Recommendation | International Standard, that produces a
bitstream conforming to this Recommendation | International Standard.

field: An assembly of alternate rows of a frame. A frame is composed of two fields, a top field and a bottom
field.

field macroblock: A macroblock containing samples from a single field. All macroblocks of a coded field are
field macroblocks. When macroblock-adaptive frame/field decoding is in use, some macroblocks of a coded
frame may be field macroblocks.

field macroblock pair: A macroblock pair decoded as two field macroblocks.

field scan: A specific sequential ordering of transform coefficients that differs from the zig-zag scan by
scanning columns more rapidly than rows. Field scan is used for transform coefficients in field macroblocks.

flag: A variable that can take one of the two possible values 0 and 1.

frame: A frame contains an array of /uma samples in monochrome format or an array of /uma samples and two
corresponding arrays of chroma samples in 4:2:0, 4:2:2, and 4:4:4 colour format. A frame consists of two
fields, a top field and a bottom field.

frame macroblock: A macroblock representing samples from the two fields of a coded frame. When
macroblock-adaptive frame/field decoding is not in use, all macroblocks of a coded frame are frame
macroblocks. When macroblock-adaptive frame/field decoding is in use, some macroblocks of a coded frame
may be frame macroblocks.

frame macroblock pair: A macroblock pair decoded as two frame macroblocks.

frequency index: A one-dimensional or two-dimensional index associated with a transform coefficient prior to
an inverse transform part of the decoding process.

hypothetical reference decoder (HRD): A hypothetical decoder model that specifies constraints on the
variability of conforming NAL unit streams or conforming byte streams that an encoding process may produce.

hypothetical stream scheduler (HSS): A hypothetical delivery mechanism for the timing and data flow of the
input of a bitstream into the hypothetical reference decoder. The HSS is used for checking the conformance of
a bitstream or a decoder.

I slice: A slice that is not an S/ slice that is decoded using intra prediction only.

informative: A term used to refer to content provided in this Recommendation | International Standard that is
not an integral part of this Recommendation | International Standard. Informative content does not establish
any mandatory requirements for conformance to this Recommendation | International Standard.

instantaneous decoding refresh (IDR) access unit: An access unit in which the primary coded picture is an
IDR picture.

instantaneous decoding refresh (IDR) picture: A coded picture for which the variable IdrPicFlag is equal
to 1. An IDR picture causes the decoding process to mark all reference pictures as "unused for reference"
immediately after the decoding of the IDR picture. All coded pictures that follow an IDR picture in decoding
order can be decoded without inter prediction from any picture that precedes the IDR picture in decoding
order. The first picture of each coded video sequence in decoding order is an IDR picture.

inter coding: Coding of a block, macroblock, slice, or picture that uses inter prediction.

inter prediction: A prediction derived from decoded samples of reference pictures other than the current
decoded picture.

interpretation sample value: A possibly-altered value corresponding to a decoded sample value of an
auxiliary coded picture that may be generated for use in the display process. Interpretation sample values are
not used in the decoding process and have no normative effect on the decoding process.

intra coding: Coding of a block, macroblock, slice, or picture that uses intra prediction.

Rec. ITU-T H.264 (01/2012)

3.69
3.70
3.71

3.72

3.73

3.74
3.75

3.76

3.77

3.78

3.79

3.80

3.81

3.82

3.83

3.84

3.85

intra prediction: A prediction derived from the decoded samples of the same decoded s/ice.
intra slice: See / slice.

inverse transform: A part of the decoding process by which a set of transform coefficients are converted into
spatial-domain values, or by which a set of transform coefficients are converted into DC transform coefficients.

layer: One of a set of syntactical structures in a non-branching hierarchical relationship. Higher layers contain
lower layers. The coding layers are the coded video sequence, picture, slice, and macroblock layers.

level: A defined set of constraints on the values that may be taken by the syntax elements and variables of this
Recommendation | International Standard. The same set of levels is defined for all profiles, with most aspects
of the definition of each level being in common across different profiles. Individual implementations may,
within specified constraints, support a different level for each supported profile. In a different context, a level is
the value of a transform coefficient prior to scaling (see the definition of transform coefficient level).

list: A one-dimensional array of syntax elements or variables.

list 0 (list 1) motion vector: A motion vector associated with a reference index pointing into reference picture
list 0 (list 1).

list 0 (list 1) prediction: Inter prediction of the content of a slice using a reference index pointing into
reference picture list 0 (list 1).

luma: An adjective specifying that a sample array or single sample is representing the monochrome signal
related to the primary colours. The symbol or subscript used for luma is Y or L.
NOTE — The term luma is used rather than the term luminance in order to avoid the implication of the use of linear

light transfer characteristics that is often associated with the term luminance. The symbol L is sometimes used instead
of the symbol Y to avoid confusion with the symbol y as used for vertical location.

macroblock: A 16x16 block of luma samples and two corresponding blocks of chroma samples of a picture
that has three sample arrays, or a 16x16 block of samples of a monochrome picture or a picture that is coded
using three separate colour planes. The division of a slice or a macroblock pair into macroblocks is a
partitioning.

macroblock-adaptive frame/field decoding: A decoding process for coded frames in which some
macroblocks may be decoded as frame macroblocks and others may be decoded as field macroblocks.

macroblock address: When macroblock-adaptive frame/field decoding is not in use, a macroblock address is
the index of a macroblock in a macroblock raster scan of the picture starting with zero for the top-left
macroblock in a picture. When macroblock-adaptive frame/field decoding is in use, the macroblock address of
the top macroblock of a macroblock pair is two times the index of the macroblock pair in a macroblock pair
raster scan of the picture, and the macroblock address of the bottom macroblock of a macroblock pair is the
macroblock address of the corresponding top macroblock plus 1. The macroblock address of the fop
macroblock of each macroblock pair is an even number and the macroblock address of the bottom macroblock
of each macroblock pair is an odd number.

macroblock location: The two-dimensional coordinates of a macroblock in a picture denoted by (x,y). For
the top left macroblock of the picture (x,y) is equal to (0, 0). x is incremented by 1 for each macroblock
column from left to right. When macroblock-adaptive frame/field decoding is not in use, y is incremented by 1
for each macroblock row from top to bottom. When macroblock-adaptive frame/field decoding is in use, y is
incremented by 2 for each macroblock pair row from top to bottom, and is incremented by an additional 1
when a macroblock is a bottom macroblock.

macroblock pair: A pair of vertically contiguous macroblocks in a frame that is coupled for use in
macroblock-adaptive frame/field decoding. The division of a slice into macroblock pairs is a partitioning.

macroblock partition: A block of luma samples and two corresponding blocks of chroma samples resulting
from a partitioning of a macroblock for inter prediction for a picture that has three sample arrays or a block of
luma samples resulting from a partitioning of a macroblock for inter prediction for a monochrome picture or a
picture that is coded using three separate colour planes.

macroblock to slice group map: A means of mapping macroblocks of a picture into slice groups. The
macroblock to slice group map consists of a list of numbers, one for each coded macroblock, specifying the
slice group to which each coded macroblock belongs.

map unit to slice group map: A means of mapping slice group map units of a picture into slice groups. The
map unit to slice group map consists of a list of numbers, one for each slice group map unit, specifying the
slice group to which each coded slice group map unit belongs.

Rec. ITU-T H.264 (01/2012) 9

3.86
3.87

3.88

3.89

3.90

391

3.92
3.93
3.94

3.95
3.96
3.97
3.98

3.99

3.100
3.101
3.102

3.103

3.104
3.105

3.106
3.107

3.108

3.109
3.110

3.111
3.112

3.113

10

matrix: A two-dimensional array of syntax elements or variables.

may: A term used to refer to behaviour that is allowed, but not necessarily required. In some places where the
optional nature of the described behaviour is intended to be emphasized, the phrase "may or may not" is used
to provide emphasis.

memory management control operation: Seven operations that control reference picture marking.

motion vector: A two-dimensional vector used for inter prediction that provides an offset from the coordinates
in the decoded picture to the coordinates in a reference picture.

must: A term used in expressing an observation about a requirement or an implication of a requirement that is
specified elsewhere in this Recommendation | International Standard. This term is used exclusively in an
informative context.

NAL unit: A syntax structure containing an indication of the type of data to follow and byfes containing that
data in the form of an RBSP interspersed as necessary with emulation prevention bytes.

NAL unit stream: A sequence of NAL units.
non-paired field: A collective term for a non-paired reference field or a non-paired non-reference field.

non-paired non-reference field: A decoded non-reference field that is not part of a complementary
non-reference field pair.

non-paired reference field: A decoded reference field that is not part of a complementary reference field pair.
non-reference field: A field coded with nal_ref idc equal to 0.
non-reference frame: A frame coded with nal_ref idc equal to 0.

non-reference picture: A picture coded with nal _ref idc equal to 0. A non-reference picture is not used for
inter prediction of any other pictures.

note: A term used to prefix informative remarks. This term is used exclusively in an informative context.
opposite parity: The opposite parity of top is bottom, and vice versa.
output order: The order in which the decoded pictures are output from the decoded picture buffer.

P slice: A slice that is not an SP slice that may be decoded using intra prediction or inter prediction using at
most one motion vector and reference index to predict the sample values of each block.

parameter: A syntax element of a sequence parameter set or a picture parameter set. Parameter is also used as
part of the defined term quantisation parameter.

parity: The parity of a field can be fop or bottom.

partitioning: The division of a set into subsets such that each element of the set is in exactly one of the
subsets.

picture: A collective term for a field or a frame.

picture parameter set: A syntax structure containing syntax elements that apply to zero or more entire coded
pictures as determined by the pic_parameter_set _id syntax element found in each slice header.

picture order count: A variable that is associated with each coded field and each field of a coded frame and
has a value that is non-decreasing with increasing field position in output order relative to the first output field
of the previous IDR picture in decoding order or relative to the first output field of the previous picture, in
decoding order, that contains a memory management control operation that marks all reference pictures as
"unused for reference".

prediction: An embodiment of the prediction process.

prediction process: The use of a predictor to provide an estimate of the sample value or data element currently
being decoded.

predictive slice: See P slice.

predictor: A combination of specified values or previously decoded sample values or data elements used in the
decoding process of subsequent sample values or data elements.

primary coded picture: The coded representation of a picture to be used by the decoding process for a
bitstream conforming to this Recommendation | International Standard. The primary coded picture contains all

Rec. ITU-T H.264 (01/2012)

3.114
3.115
3.116

3.117

3.118

3.119

3.120

3.121

3.122

3.123

3.124
3.125

3.126

3.127

3.128

3.129

3.130

3.131
3.132

macroblocks of the picture. The only pictures that have a normative effect on the decoding process are primary
coded pictures. See also redundant coded picture.

profile: A specified subset of the syntax of this Recommendation | International Standard.
quantisation parameter: A variable used by the decoding process for scaling of transform coefficient levels.

random access: The act of starting the decoding process for a bitstream at a point other than the beginning of
the stream.

raster scan: A mapping of a rectangular two-dimensional pattern to a one-dimensional pattern such that the
first entries in the one-dimensional pattern are from the first top row of the two-dimensional pattern scanned
from left to right, followed similarly by the second, third, etc., rows of the pattern (going down) each scanned
from left to right.

raw byte sequence payload (RBSP): A syntax structure containing an integer number of byfes that is
encapsulated in a NAL unit. An RBSP is either empty or has the form of a string of data bits containing syntax
elements followed by an RBSP stop bit and followed by zero or more subsequent bits equal to 0.

raw byte sequence payload (RBSP) stop bit: A bit equal to 1 present within a raw byte sequence payload
(RBSP) after a string of data bits. The location of the end of the string of data bits within an RBSP can be
identified by searching from the end of the RBSP for the RBSP stop bit, which is the last non-zero bit in the
RBSP.

recovery point: A point in the bitstream at which the recovery of an exact or an approximate representation of
the decoded pictures represented by the bitstream is achieved after a random access or broken link.

redundant coded picture: A coded representation of a picture or a part of a picture. The content of a
redundant coded picture shall not be used by the decoding process for a bitstream conforming to this
Recommendation | International Standard. A redundant coded picture is not required to contain all
macroblocks in the primary coded picture. Redundant coded pictures have no normative effect on the decoding
process. See also primary coded picture.

reference field: A reference field may be used for inter prediction when P, SP, and B slices of a coded field or
field macroblocks of a coded frame are decoded. See also reference picture.

reference frame: A reference frame may be used for inter prediction when P, SP, and B slices of a coded
frame are decoded. See also reference picture.

reference index: An index into a reference picture list.

reference picture: A picture with nal_ref idc not equal to 0. A reference picture contains samples that may be
used for inter prediction in the decoding process of subsequent pictures in decoding order.

reference picture list: A list of reference pictures that is used for inter prediction of a P, B, or SP slice. For
the decoding process of a P or SP slice, there is one reference picture list. For the decoding process of a B
slice, there are two reference picture lists.

reference picture list 0: A reference picture list used for inter prediction of a P, B, or SP slice. All inter
prediction used for P and SP slices uses reference picture list 0. Reference picture list 0 is one of two reference
picture lists used for inter prediction for a B slice, with the other being reference picture list 1.

reference picture list 1: A reference picture list used for inter prediction of a B slice. Reference picture list 1
is one of two reference picture lists used for inter prediction for a B slice, with the other being reference
picture list 0.

reference picture marking: Specifies, in the bitstream, how the decoded pictures are marked for inter
prediction.

reserved: The term reserved, when used in the clauses specifying some values of a particular syntax element,
are for future use by ITU-T | ISO/IEC. These values shall not be used in bitstreams conforming to this
Recommendation | International Standard, but may be wused in future extensions of this
Recommendation | International Standard by ITU-T | ISO/IEC.

residual: The decoded difference between a prediction of a sample or data element and its decoded value.

run: A number of consecutive data elements represented in the decoding process. In one context, the number
of zero-valued transform coefficient levels preceding a non-zero transform coefficient level in the list of
transform coefficient levels generated by a zig-zag scan or a field scan. In other contexts, run refers to a
number of macroblocks.

Rec. ITU-T H.264 (01/2012) 11

3.133

3.134

3.135

3.136

3.137

3.138

3.139

3.140

3.141

3.142

3.143

3.144
3.145

3.146
3.147

3.148

3.149

3.150

12

sample aspect ratio: Specifies, for assisting the display process, which is not specified in this
Recommendation | International Standard, the ratio between the intended horizontal distance between the
columns and the intended vertical distance between the rows of the /uma sample array in a frame. Sample
aspect ratio is expressed as A:v, where & is horizontal width and v is vertical height (in arbitrary units of spatial
distance).

scaling: The process of multiplying transform coefficient levels by a factor, resulting in transform coefficients.

sequence parameter set: A syntax structure containing syntax elements that apply to zero or more entire
coded video sequences as determined by the content of a seq parameter set id syntax element found in the
picture parameter set referred to by the pic_parameter set id syntax element found in each slice header.

shall: A term used to express mandatory requirements for conformance to this Recommendation | International
Standard. When used to express a mandatory constraint on the values of syntax elements or on the results
obtained by operation of the specified decoding process, it is the responsibility of the encoder to ensure that the
constraint is fulfilled. When used in reference to operations performed by the decoding process, any decoding
process that produces identical results to the decoding process described herein conforms to the decoding
process requirements of this Recommendation | International Standard.

should: A term used to refer to behaviour of an implementation that is encouraged to be followed under
anticipated ordinary circumstances, but is not a mandatory requirement for conformance to this
Recommendation | International Standard.

SI slice: A slice that is coded using intra prediction only and using quantisation of the prediction samples. An
SI slice can be coded such that its decoded samples can be constructed identically to an SP slice.

skipped macroblock: A macroblock for which no data is coded other than an indication that the macroblock is
to be decoded as "skipped". This indication may be common to several macroblocks.

slice: An integer number of macroblocks or macroblock pairs ordered consecutively in the raster scan within a
particular slice group. For the primary coded picture, the division of each slice group into slices is a
partitioning. Although a slice contains macroblocks or macroblock pairs that are consecutive in the raster scan
within a slice group, these macroblocks or macroblock pairs are not necessarily consecutive in the raster scan
within the picture. The macroblock addresses are derived from the first macroblock address in a slice (as
represented in the slice header) and the macroblock to slice group map, and, when a picture is coded using
three separate colour planes, a colour plane identifier.

slice data partition: A non-empty subset of the syntax elements of the slice data syntax structure for a slice.
The syntax elements of a slice data partition are associated with the same category.

slice data partitioning: A method of partitioning selected syntax elements into syntax structures based on a
category associated with each syntax element.

slice group: A subset of the macroblocks or macroblock pairs of a picture. The division of the picture into
slice groups is a partitioning of the picture. The partitioning is specified by the macroblock to slice group map.

slice group map units: The units of the map unit to slice group map.

slice header: A part of a coded slice containing the data elements pertaining to the first or all macroblocks
represented in the slice.

source: Term used to describe the video material or some of its attributes before encoding.

SP slice: A slice that may be coded using intra prediction or inter prediction with quantisation of the
prediction samples using at most one motion vector and reference index to predict the sample values of each
block. An SP slice can be coded such that its decoded samples can be constructed identically to another SP
slice or an ST slice.

start code prefix: A unique sequence of three byfes equal to 0x000001 embedded in the byte stream as a prefix
to each NAL unit. The location of a start code prefix can be used by a decoder to identify the beginning of a
new NAL unit and the end of a previous NAL unit. Emulation of start code prefixes is prevented within NAL
units by the inclusion of emulation prevention bytes.

string of data bits (SODB): A sequence of some number of bits representing syntax elements present within a
raw byte sequence payload prior to the raw byte sequence payload stop bit. Within an SODB, the left-most bit
is considered to be the first and most significant bit, and the right-most bit is considered to be the last and least
significant bit.

sub-macroblock: One quarter of the samples of a macroblock, i.e., an 8x8 luma block and two corresponding
chroma blocks of which one corner is located at a corner of the macroblock for a picture that has three sample

Rec. ITU-T H.264 (01/2012)

3.151

3.152
3.153
3.154
3.155
3.156

3.157

3.158

3.159

3.160

3.161

3.162

3.163
3.164

4

arrays or an 8x8 luma block of which one corner is located at a corner of the macroblock for a monochrome
picture or a picture that is coded using three separate colour planes.

sub-macroblock partition: A block of luma samples and two corresponding blocks of chroma samples
resulting from a partitioning of a sub-macroblock for inter prediction for a picture that has three sample arrays
or a block of luma samples resulting from a partitioning of a sub-macroblock for inter prediction for a
monochrome picture or a picture that is coded using three separate colour planes.

switching I slice: See S/ slice.

switching P slice: See SP slice.

syntax element: An element of data represented in the bitstream.

syntax structure: Zero or more syntax elements present together in the bitstream in a specified order.

top field: One of two fields that comprise a frame. Each row of a top field is spatially located immediately
above the corresponding row of the bottom field.

top macroblock (of a macroblock pair): The macroblock within a macroblock pair that contains the samples
in the top row of samples for the macroblock pair. For a field macroblock pair, the top macroblock represents
the samples from the region of the fop field of the frame that lie within the spatial region of the macroblock
pair. For a frame macroblock pair, the top macroblock represents the samples of the frame that lie within the
top half of the spatial region of the macroblock pair.

transform coefficient: A scalar quantity, considered to be in a frequency domain, that is associated with a
particular one-dimensional or two-dimensional frequency index in an inverse transform part of the decoding
process.

transform coefficient level: An integer quantity representing the value associated with a particular
two-dimensional frequency index in the decoding process prior to scaling for computation of a transform
coefficient value.

universal unique identifier (UUID): An identifier that is unique with respect to the space of all universal
unique identifiers.

unspecified: The term unspecified, when used in the clauses specifying some values of a particular syntax
element, indicates that the values have no specified meaning in this Recommendation | International Standard
and will not have a specified meaning in the future as an integral part of this Recommendation | International
Standard.

variable length coding (VLC): A reversible procedure for entropy coding that assigns shorter bit strings to
symbols expected to be more frequent and longer bit strings to symbols expected to be less frequent.

VCL NAL unit: A collective term for coded slice NAL units and coded slice data partition NAL units.

zig-zag scan: A specific sequential ordering of transform coefficient levels from (approximately) the lowest
spatial frequency to the highest. Zig-zag scan is used for transform coefficient levels in frame macroblocks.

Abbreviations

For the purposes of this Recommendation | International Standard, the following abbreviations apply:

CABAC
CAVLC
CBR
CPB
DPB
DUT
FIFO
HRD
HSS
IDR

Context-based Adaptive Binary Arithmetic Coding
Context-based Adaptive Variable Length Coding
Constant Bit Rate

Coded Picture Buffer

Decoded Picture Buffer

Decoder under test

First-In, First-Out

Hypothetical Reference Decoder

Hypothetical Stream Scheduler

Instantaneous Decoding Refresh

Rec. ITU-T H.264 (01/2012) 13

LSB Least Significant Bit

MB Macroblock

MBAFF Macroblock-Adaptive Frame-Field Coding
MSB Most Significant Bit

MVC Multiview Video Coding

NAL Network Abstraction Layer

RBSP Raw Byte Sequence Payload

SEI Supplemental Enhancement Information
SODB String Of Data Bits

SVC Scalable Video Coding

UUID Universal Unique Identifier

VBR Variable Bit Rate

VCL Video Coding Layer

VLC Variable Length Coding

VUI Video Usability Information

5 Conventions

NOTE — The mathematical operators used in this Specification are similar to those used in the C programming language.
However, integer division and arithmetic shift operations are specifically defined. Numbering and counting conventions generally

begin from 0.

5.1 Arithmetic operators

The following arithmetic operators are defined as follows:

~

x
y
> /)

x%y

Addition
Subtraction (as a two-argument operator) or negation (as a unary prefix operator)
Multiplication, including matrix multiplication

Exponentiation. Specifies x to the power of y. In other contexts, such notation is used for superscripting
not intended for interpretation as exponentiation.

Integer division with truncation of the result toward zero. For example, 7/4 and —7/—4 are truncated to 1
and —7/4 and 7/—4 are truncated to —1.

Used to denote division in mathematical equations where no truncation or rounding is intended.

Used to denote division in mathematical equations where no truncation or rounding is intended.

The summation of f(1) with i taking all integer values from x up to and including y.

Modulus. Remainder of x divided by y, defined only for integers x and y with x >= 0 and y > 0.

5.2 Logical operators

The following logical operators are defined as follows:

X && y

x ||y
|

x?y:z

Boolean logical "and" of x and y.
Boolean logical "or" of x and y.
Boolean logical "not".

If x is TRUE or not equal to 0, evaluates to the value of y; otherwise, evaluates to the value of z.

14 Rec. ITU-T H.264 (01/2012)

5.3

Relational operators

The following relational operators are defined as follows:

Greater than.

Greater than or equal to.
Less than.

Less than or equal to.
Equal to.

Not equal to.

When a relational operator is applied to a syntax element or variable that has been assigned the value "na" (not
applicable), the value "na" is treated as a distinct value for the syntax element or variable. The value "na" is considered
not to be equal to any other value.

5.4

Bit-wise operators

The following bit-wise operators are defined as follows:

5.5

&

x>>y

x<<y

Bit-wise "and". When operating on integer arguments, operates on a two's complement representation
of the integer value. When operating on a binary argument that contains fewer bits than another
argument, the shorter argument is extended by adding more significant bits equal to 0.

Bit-wise "or". When operating on integer arguments, operates on a two's complement representation of
the integer value. When operating on a binary argument that contains fewer bits than another argument,
the shorter argument is extended by adding more significant bits equal to 0.

Bit-wise "exclusive or". When operating on integer arguments, operates on a two's complement
representation of the integer value. When operating on a binary argument that contains fewer bits than
another argument, the shorter argument is extended by adding more significant bits equal to 0.

Arithmetic right shift of a two's complement integer representation of x by y binary digits. This
function is defined only for positive integer values of y. Bits shifted into the MSBs as a result of the
right shift have a value equal to the MSB of x prior to the shift operation.

Arithmetic left shift of a two's complement integer representation of x by y binary digits. This function
is defined only for positive integer values of y. Bits shifted into the LSBs as a result of the left shift
have a value equal to 0.

Assignment operators

The following arithmetic operators are defined as follows:

5.6

++

Assignment operator.

Increment, i.e., x++ is equivalent to x = x + 1; when used in an array index, evaluates to the value of the
variable prior to the increment operation.

Decrement, i.e., x—— is equivalent to x = x — 1; when used in an array index, evaluates to the value of
the variable prior to the decrement operation.

Increment by amount specified, i.e., x += 3 is equivalent to x = x + 3, and x += (-3) is equivalent
tox =x+(-3).

Decrement by amount specified, i.e., x —= 3 is equivalent to x = x — 3, and x —= (—3) is equivalent
tox =x—(-3).

Range notation

The following notation is used to specify a range of values:

5.7

X=Yy.z

x takes on integer values starting from y to z, inclusive, with x, y, and z being integer numbers.

Mathematical functions

The following mathematical functions are defined as follows:

Rec. ITU-T H.264 (01/2012) 15

5.8

Abs(x)=) X 5 x>=0
-x ; x<0

Ceil(x) the smallest integer greater than or equal to x.

Cliply(x) = Clip3(0, (1 << BitDepthy) - 1, x)

Cliple(x)= Clip3(0, (1 << BitDepthc) — 1, x)

x 5 z<x
Clip3(x,y,z)= y 5 z>y
z ; otherwise

Floor(x) the greatest integer less than or equal to x.

(a%(d/b))*b

InverseRasterScan(a, b, c,d, e)=
(a/(d/b))*c

Log2(x) returns the base-2 logarithm of x.

Log10(x) returns the base-10 logarithm of x.

Median(x,y,z)=x+y+z—Min(x, Min(y, z)) — Max(x, Max(y,z))

Min(x,y)=1" > X<V
y 5 x>y
Max(x,y)=1% * *77Y
y ; x<y

Round(x) = Sign(x) * Floor(Abs(x)+0.5)

Sign(x)=J 1 3 x>=0
-1 ; x<0

Sqrt(x) = vx

Order of operation precedence

(5-1

(3-2)
(3-3)

(5-4)

(3-5)

(5-6)

(3-7)

(5-8)
(5-9)

(5-10)

(5-11)

(5-12)

(5-13)

(5-14)

(5-15)

When order of precedence in an expression is not indicated explicitly by use of parentheses, the following rules apply:

operations of a higher precedence are evaluated before any operation of a lower precedence,

operations of the same precedence are evaluated sequentially from left to right.

Table 5-1 specifies the precedence of operations from highest to lowest; a higher position in the table indicates a higher
precedence.

16

Rec. ITU-T H.264 (01/2012)

NOTE - For those operators that are also used in the C programming language, the order of precedence used in this Specification
is the same as used in the C programming language.

Table 5-1 — Operation precedence from highest (at top of table) to lowest (at bottom of table)

operations (with operands x, y, and z)

"X++”, "y— "

nn

"1x", "—x" (as a unary prefix operator)

xY

nn nn - nn x

”X*y,X/y,Xiy, ","X%y”
Y

"x +y","x —y" (as a two-argument operator), " Z f@"

i=x

HX << yH HX >> ylV

)

" n nn

”X<y , X<:y , X>y", "X>:y”

”X::y , X!:y"

HX & ylV

HX | yll
HX && yVl

HX | | yH

"x?y:z"

nn "
)

" = yn’ " 4= y X—=y

5.9 Variables, syntax elements, and tables

Syntax elements in the bitstream are represented in bold type. Each syntax element is described by its name (all lower
case letters with underscore characters), its one or two syntax categories, and one or two descriptors for its method of
coded representation. The decoding process behaves according to the value of the syntax element and to the values of
previously decoded syntax elements. When a value of a syntax element is used in the syntax tables or the text, it appears
in regular (i.e., not bold) type.

In some cases the syntax tables may use the values of other variables derived from syntax elements values. Such
variables appear in the syntax tables, or text, named by a mixture of lower case and upper case letter and without any
underscore characters. Variables starting with an upper case letter are derived for the decoding of the current syntax
structure and all depending syntax structures. Variables starting with an upper case letter may be used in the decoding
process for later syntax structures without mentioning the originating syntax structure of the variable. Variables starting
with a lower case letter are only used within the clause in which they are derived.

In some cases, "mnemonic" names for syntax element values or variable values are used interchangeably with their
numerical values. Sometimes "mnemonic" names are used without any associated numerical values. The association of
values and names is specified in the text. The names are constructed from one or more groups of letters separated by an
underscore character. Each group starts with an upper case letter and may contain more upper case letters.

NOTE - The syntax is described in a manner that closely follows the C-language syntactic constructs.

Functions that specify properties of the current position in the bitstream are referred to as syntax functions. These
functions are specified in clause 7.2 and assume the existence of a bitstream pointer with an indication of the position of
the next bit to be read by the decoding process from the bitstream. Syntax functions are described by their names, which
are constructed as syntax element names and end with left and right round parentheses including zero or more variable
names (for definition) or values (for usage), separated by commas (if more than one variable).

Functions that are not syntax functions (including mathematical functions specified in clause 5.7) are described by their
names, which start with an upper case letter, contain a mixture of lower and upper case letters without any underscore
character, and end with left and right parentheses including zero or more variable names (for definition) or values (for
usage) separated by commas (if more than one variable).

Subscripts or square parentheses are used for the indexing of arrays. In reference to a visual depiction of a matrix, the
first subscript is used as a row (vertical) index and the second subscript is used as a column (horizontal) index. The

Rec. ITU-T H.264 (01/2012) 17

indexing order is reversed when using square parentheses rather than subscripts for indexing. Thus, an element of a
matrix s at horizontal position x and vertical position y may be denoted either as s[X, y] or as sy.

Binary notation is indicated by enclosing the string of bit values by single quote marks. For example, '01000001'
represents an eight-bit string having only its second and its last bits (counted from the most to the least significant bit)
equal to 1.

Hexadecimal notation, indicated by prefixing the hexadecimal number by "0x", may be used instead of binary notation
when the number of bits is an integer multiple of 4. For example, 0x41 represents an eight-bit string having only its
second and its last bits (counted from the most to the least significant bit) equal to 1.

Numerical values not enclosed in single quotes and not prefixed by "0x" are decimal values.

A value equal to O represents a FALSE condition in a test statement. The value TRUE is represented by any value
different from zero.

5.10 Text description of logical operations

In the text, a statement of logical operations as would be described in pseudo-code as

if(condition 0)
statement 0

else if (condition 1)
statement 1

else /* informative remark on remaining condition */
statement n

may be described in the following manner:
... as follows / ... the following applies:
— If condition 0, statement 0

— Otherwise, if condition 1, statement 1

Otherwise (informative remark on remaining condition), statement n

Each "If ... Otherwise, if ... Otherwise, ..." statement in the text is introduced with "... as follows" or "... the following
applies" immediately followed by "If ... ". The last condition of the "If ... Otherwise, if ... Otherwise, ..." is always an
"Otherwise, ...". Interleaved "If ... Otherwise, if ... Otherwise, ..." statements can be identified by matching "... as

follows" or "... the following applies" with the ending "Otherwise, ...".

In the text, a statement of logical operations as would be described in pseudo-code as

if(condition 0a && condition Ob)
statement 0

else if (condition la || condition 1b)
statement 1

else
statement n

may be described in the following manner:

... as follows / ... the following applies:

— If all of the following conditions are true, statement 0
— condition Oa
— condition Ob

— Otherwise, if any of the following conditions are true, statement 1
— condition la

— condition 1b

— Otherwise, statement n

18 Rec. ITU-T H.264 (01/2012)

In the text, a statement of logical operations as would be described in pseudo-code as:

if(condition 0)
statement 0

if (condition 1)
statement 1

may be described in the following manner:
When condition 0, statement 0

When condition 1, statement 1

5.11 Processes

Processes are used to describe the decoding of syntax elements. A process has a separate specification and invoking. All
syntax elements and upper case variables that pertain to the current syntax structure and depending syntax structures are
available in the process specification and invoking. A process specification may also have a lower case variable
explicitly specified as the input. Each process specification has explicitly specified an output. The output is a variable
that can either be an upper case variable or a lower case variable.

When invoking a process, the assignment of variables is specified as follows:

— If the variables at the invoking and the process specification do not have the same name, the variables are
explicitly assigned to lower case input or output variables of the process specification.

— Otherwise (the variables at the invoking and the process specification have the same name), assignment is
implied.

In the specification of a process, a specific macroblock may be referred to by the variable name having a value equal to
the address of the specific macroblock.

6 Source, coded, decoded and output data formats, scanning processes, and neighbouring
relationships
6.1 Bitstream formats

This clause specifies the relationship between the NAL unit stream and byte stream, either of which are referred to as the
bitstream.

The bitstream can be in one of two formats: the NAL unit stream format or the byte stream format. The NAL unit stream
format is conceptually the more "basic" type. It consists of a sequence of syntax structures called NAL units. This
sequence is ordered in decoding order. There are constraints imposed on the decoding order (and contents) of the NAL
units in the NAL unit stream.

The byte stream format can be constructed from the NAL unit stream format by ordering the NAL units in decoding
order and prefixing each NAL unit with a start code prefix and zero or more zero-valued bytes to form a stream of bytes.
The NAL unit stream format can be extracted from the byte stream format by searching for the location of the unique
start code prefix pattern within this stream of bytes. Methods of framing the NAL units in a manner other than use of the
byte stream format are outside the scope of this Recommendation | International Standard. The byte stream format is
specified in Annex B.

6.2 Source, decoded, and output picture formats
This clause specifies the relationship between source and decoded frames and fields that is given via the bitstream.

The video source that is represented by the bitstream is a sequence of either or both frames or fields (called collectively
pictures) in decoding order.

The source and decoded pictures (frames or fields) are each comprised of one or more sample arrays:
— Luma (Y) only (monochrome), with or without an auxiliary array.
— Luma and two Chroma (YCbCr or YCgCo), with or without an auxiliary array.
— Green, Blue and Red (GBR, also known as RGB), with or without an auxiliary array.

— Arrays representing other unspecified monochrome or tri-stimulus colour samplings (for example, YZX,
also known as XYZ), with or without an auxiliary array.

Rec. ITU-T H.264 (01/2012) 19

For convenience of notation and terminology in this Specification, the variables and terms associated with these arrays
are referred to as luma (or L or Y) and chroma, where the two chroma arrays are referred to as Cb and Cr; regardless of
the actual colour representation method in use. The actual colour representation method in use can be indicated in syntax
that is specified in Annex E. The (monochrome) auxiliary arrays, which may or may not be present as auxiliary pictures
in a coded video sequence, are optional for decoding and can be used for such purposes as alpha blending.

The variables SubWidthC, and SubHeightC are specified in Table 6-1, depending on the chroma format sampling
structure, which is specified through chroma format idc and separate colour plane flag. An entry marked as "-" in
Table 6-1 denotes an undefined value for SubWidthC or SubHeightC. Other values of chroma format idc, SubWidthC,
and SubHeightC may be specified in the future by ITU-T | ISO/IEC.

Table 6-1 — SubWidthC, and SubHeightC values derived from
chroma_format idc and separate_colour_plane_flag

chroma_format idc |separate colour_plane flag Chroma Format |[SubWidthC |SubHeightC
0 0 monochrome - -
1 0 4:2:0 2 2
2 0 4:2:2 2 1
3 0 4:4:4 1 1
3 1 4:4:4 - -

In monochrome sampling there is only one sample array, which is nominally considered the luma array.
In 4:2:0 sampling, each of the two chroma arrays has half the height and half the width of the luma array.
In 4:2:2 sampling, each of the two chroma arrays has the same height and half the width of the luma array.

In 4:4:4 sampling, depending on the value of separate colour plane flag, the following applies:

— If separate_colour plane flag is equal to 0, each of the two chroma arrays has the same height and width as the
luma array.

— Otherwise (separate colour plane flag is equal to 1), the three colour planes are separately processed as
monochrome sampled pictures.

The width and height of the luma sample arrays are each an integer multiple of 16. In coded video sequences using 4:2:0
chroma sampling, the width and height of chroma sample arrays are each an integer multiple of 8. In coded video
sequences using 4:2:2 sampling, the width of the chroma sample arrays is an integer multiple of 8 and the height is an
integer multiple of 16. The height of a luma array that is coded as two separate fields or in macroblock-adaptive
frame-field coding (see below) is an integer multiple of 32. In coded video sequences using 4:2:0 chroma sampling, the
height of each chroma array that is coded as two separate fields or in macroblock-adaptive frame-field coding (see
below) is an integer multiple of 16. The width or height of pictures output from the decoding process need not be an
integer multiple of 16 and can be specified using a cropping rectangle.

The syntax for the luma and (when present) chroma arrays are ordered such when data for all three colour components is
present, the data for the luma array is first, followed by any data for the Cb array, followed by any data for the Cr array,
unless otherwise specified.

The width of fields coded referring to a specific sequence parameter set is the same as that of frames coded referring to
the same sequence parameter set (see below). The height of fields coded referring to a specific sequence parameter set is
half that of frames coded referring to the same sequence parameter set (see below).

The number of bits necessary for the representation of each of the samples in the luma and chroma arrays in a video
sequence is in the range of 8 to 14, and the number of bits used in the luma array may differ from the number of bits used
in the chroma arrays.

When the value of chroma format idc is equal to 1, the nominal vertical and horizontal relative locations of luma and
chroma samples in frames are shown in Figure 6-1. Alternative chroma sample relative locations may be indicated in
video usability information (see Annex E).

20 Rec. ITU-T H.264 (01/2012)

X X X X X X -
O O O

X X X X X X

X X X X X X

O (@) O Frame
X X X X X X

X X X X X X

O O O

X X X X X X

X Location of luma sample

O Location of chroma sample H.264(09)_F6-1

Figure 6-1 — Nominal vertical and horizontal locations of 4:2:0 luma and chroma samples in a frame

A frame consists of two fields as described below. A coded picture may represent a coded frame or an individual coded
field. A coded video sequence conforming to this Recommendation | International Standard may contain arbitrary
combinations of coded frames and coded fields. The decoding process is also specified in a manner that allows smaller
regions of a coded frame to be coded either as a frame or field region, by use of macroblock-adaptive frame-field coding.

Source and decoded fields are one of two types: top field or bottom field. When two fields are output at the same time, or
are combined to be used as a reference frame (see below), the two fields (which shall be of opposite parity) are
interleaved. The first (i.e., top), third, fifth, etc., rows of a decoded frame are the top field rows. The second, fourth,
sixth, etc., rows of a decoded frame are the bottom field rows. A top field consists of only the top field rows of a decoded
frame. When the top field or bottom field of a decoded frame is used as a reference field (see below) only the even rows
(for a top field) or the odd rows (for a bottom field) of the decoded frame are used.

When the value of chroma_format_idc is equal to 1, the nominal vertical and horizontal relative locations of luma and
chroma samples in top and bottom fields are shown in Figure 6-2. The nominal vertical sampling relative locations of the
chroma samples in a top field are specified as shifted up by one-quarter luma sample height relative to the field-sampling
grid. The vertical sampling locations of the chroma samples in a bottom field are specified as shifted down by
one-quarter luma sample height relative to the field-sampling grid. Alternative chroma sample relative locations may be
indicated in the video usability information (see Annex E).

NOTE - The shifting of the chroma samples is in order for these samples to align vertically to the usual location relative to the
full-frame sampling grid as shown in Figure 6-1.

Rec. ITU-T H.264 (01/2012) 21

O X
O X
O X

To Bottom
field O O o field
X X X X X X
X X X X X X
O O O
X X X X X X
X Location of luma sample
O Location of chroma sample H.264(09)_F6-2

Figure 6-2 — Nominal vertical and horizontal sampling locations of 4:2:0 samples in top and bottom fields

When the value of chroma format idc is equal to 2, the chroma samples are co-sited with the corresponding luma
samples and the nominal locations in a frame and in fields are as shown in Figures 6-3 and 6-4, respectively.

22

Frame

e RORR R ROE
X X X X X X
B 83 8 8 8 &
X X X X X X
B ¥R
X X X X X X

‘e, H.264(09)_F6-3

X Location of luma sample
O Location of chroma sample

Figure 6-3 — Nominal vertical and horizontal locations of 4:2:2 luma and chroma samples in a frame

Rec. ITU-T H.264 (01/2012)

B X & X & X -
& X & X & X

B X B X ®B X Top Bottom

field 8 X ® X ® X field

B X & X ® X
& X & X & X

X Location of luma sample
O Location of chroma sample H.264(09)_F6-4

Figure 6-4 — Nominal vertical and horizontal sampling locations of 4:2:2 samples top and bottom fields

When the value of chroma_format idc is equal to 3, all array samples are co-sited for all cases of frames and fields and
the nominal locations in a frame and in fields are as shown in Figures 6-5 and 6-6, respectively.

Frame

B B 8 8 8 ®
B 8B 8 8 8 ®
B 8 8 8 8 ®
B 838 838 8 8 &
B 8 8 8 8 ®
B 8 8 8 8 &

‘e, H.264(09)_F6-5

X Location of luma sample
O Location of chroma sample

Figure 6-5 — Nominal vertical and horizontal locations of 4:4:4 luma and chroma samples in a frame

Rec. ITU-T H.264 (01/2012) 23

B & 8 8 &8 &
B 8 8 8 B &

&I ®T0p Bottom

field 8 R R B ® Qﬁeld

B & 8 8 &8 &
B 83 @ 838 8 &

X Location of luma sample
O Location of chroma sample H.264(09)_F6-6

Figure 6-6 — Nominal vertical and horizontal sampling locations of 4:4:4 samples top and bottom fields

The samples are processed in units of macroblocks. The luma array for each macroblock is 16 samples in both width and
height. The variables MbWidthC and MbHeightC, which specify the width and height, respectively, of the chroma arrays
for each macroblock, are derived as follows:

— If chroma format idc is equal to 0 (monochrome) or separate colour plane flag is equal to 1, MbWidthC and
MbHeightC are both equal to 0.

— Otherwise, MbWidthC and MbHeightC are derived as

MbWidthC = 16 / SubWidthC (6-1)
MbHeightC = 16 / SubHeightC (6-2)
6.3 Spatial subdivision of pictures and slices

This clause specifies how a picture is partitioned into slices and macroblocks. Pictures are divided into slices. A slice is a
sequence of macroblocks, or, when macroblock-adaptive frame/field decoding is in use, a sequence of macroblock pairs.

Each macroblock is comprised of one 16x16 luma array and, when the chroma sampling format is not equal to 4:0:0 and
separate_colour plane flag is equal to 0, two corresponding chroma sample arrays. When separate _colour plane flag is
equal to 1, each macroblock is comprised of one 16x16 luma or chroma sample array. When macroblock-adaptive
frame/field decoding is not in use, each macroblock represents a spatial rectangular region of the picture. For example, a
picture may be divided into two slices as shown in Figure 6-7.

When a picture is coded using three separate colour planes (separate _colour plane flag is equal to 1), a slice contains
only macroblocks of one colour component being identified by the corresponding value of colour plane id, and each
colour component array of a picture consists of slices having the same colour_plane_id value. Coded slices with different
values of colour plane id within an access unit can be interleaved with each other under the constraint that for each
value of colour plane id, the coded slice NAL units with that value colour plane id shall be in the order of increasing
macroblock address for the first macroblock of each coded slice NAL unit.
NOTE — When separate_colour_plane flag is equal to 0, each macroblock of a picture is contained in exactly one slice. When
separate_colour plane flag is equal tol, each macroblock of a colour component is contained in exactly one slice
(i.e., information for each macroblock of a picture is present in exactly three slices and these three slices have different values of
colour plane id).

24 Rec. ITU-T H.264 (01/2012)

H.264(09)_F6-7

Figure 6-7 — A picture with 11 by 9 macroblocks that is partitioned into two slices

When macroblock-adaptive frame/field decoding is in use, the picture is partitioned into slices containing an integer

number of macroblock pairs as shown in Figure 6-8. Each macroblock pair consists of two macroblocks.

\

A macroblock pair

H.264(09)_F6-8

Figure 6-8 — Partitioning of the decoded frame into macroblock pairs

6.4 Inverse scanning processes and derivation processes for neighbours

This clause specifies inverse scanning processes; i.e., the mapping of indices to locations, and derivation processes for

neighbours.

6.4.1 Inverse macroblock scanning process

Input to this process is a macroblock address mbAddr.

Output of this process is the location (x,y) of the upper-left luma sample for the macroblock with address mbAddr

relative to the upper-left sample of the picture.

The inverse macroblock scanning process is specified as follows:
— If MbaffFrameFlag is equal to 0,

x = InverseRasterScan(mbAddr, 16, 16, PicWidthInSamples;, 0)
y = InverseRasterScan(mbAddr, 16, 16, PicWidthInSamples;, 1)

— Otherwise (MbaftfFrameFlag is equal to 1), the following ordered steps are specified:

1. The luma location (xO, yO) is derived by

xO = InverseRasterScan(mbAddr / 2, 16, 32, PicWidthInSamples;, 0)

yO = InverseRasterScan(mbAddr / 2, 16, 32, PicWidthInSamples;, 1)

Rec. ITU-T H.264 (01/2012)

(6-3)

(6-4)

(6-5)

(6-6)

25

2. Depending on the current macroblock the following applies:

- If the current macroblock is a frame macroblock

x =x0 6-7)

y=yO + (mbAddr%2) * 16 (6-8)
- Otherwise (the current macroblock is a field macroblock),

x=x0 (6-9)

y=yO + (mbAddr % 2) (6-10)

6.4.2 Inverse macroblock partition and sub-macroblock partition scanning process

Macroblocks or sub-macroblocks may be partitioned, and the partitions are scanned for inter prediction as shown in
Figure 6-9. The outer rectangles refer to the samples in a macroblock or sub-macroblock, respectively. The rectangles
refer to the partitions. The number in each rectangle specifies the index of the inverse macroblock partition scan or
inverse sub-macroblock partition scan.

The functions MbPartWidth(), MbPartHeight(), SubMbPartWidth(), and SubMbPartHeight() describing the width and
height of macroblock partitions and sub-macroblock partitions are specified in Tables 7-13, 7-14, 7-17, and 7-18.
MbPartWidth() and MbPartHeight() are set to appropriate values for each macroblock, depending on the macroblock
type. SubMbPartWidth() and SubMbPartHeight() are set to appropriate values for each sub-macroblock of a
macroblock with mb_type equal to P_8x8, P_8x8ref0, or B_8x8, depending on the sub-macroblock type.

Macroblock 0
partitions

1 macroblock partition of
16*16 luma samples and
associated chroma samples

2 macroblock partitions of
16*8 luma samples and
associated chroma samples

2 macroblock partitions of
8*16 luma samples and
associated chroma samples

4 sub-macroblocks of
8*8 luma samples and
associated chroma samples

1 sub-macroblock partition
of 8*8 luma samples and
associated chroma samples

2 sub-macroblock partitions
of 8*4 luma samples and
associated chroma samples

2 sub-macroblock partitions
of 4*8 luma samples and
associated chroma samples

4 sub-macroblock partitions
of 4*4 luma samples and
associated chroma samples

0 0 1
Sub-macroblock 0 0 1
partitions 1 2 3
H.264(09)_F6-9

Figure 6-9 — Macroblock partitions, sub-macroblock partitions, macroblock partition scans,
and sub-macroblock partition scans

6.4.2.1 Inverse macroblock partition scanning process
Input to this process is the index of a macroblock partition mbPartldx.

Output of this process is the location (x,y) of the upper-left luma sample for the macroblock partition mbPartldx
relative to the upper-left sample of the macroblock.

The inverse macroblock partition scanning process is specified by
x = InverseRasterScan(mbPartldx, MbPartWidth(mb_type), MbPartHeight(mb_type), 16, 0) (6-11)
y = InverseRasterScan(mbPartldx, MbPartWidth(mb_type), MbPartHeight(mb_type), 16, 1) (6-12)

26 Rec. ITU-T H.264 (01/2012)

6.4.2.2 Inverse sub-macroblock partition scanning process

Inputs to this process are the index of a macroblock partition mbPartldx and the index of a sub-macroblock partition
subMbPartldx.

Output of this process is the location (Xx,y) of the upper-left luma sample for the sub-macroblock partition
subMbPartldx relative to the upper-left sample of the sub-macroblock.

The inverse sub-macroblock partition scanning process is specified as follows:

— Ifmb_type is equal to P_8x8, P_8x8ref0, or B_8x8,

x = InverseRasterScan(subMbPartldx, SubMbPartWidth(sub_mb_type[mbPartldx]),
SubMbPartHeight(sub_mb_type[mbPartldx]), 8, 0) (6-13)

y = InverseRasterScan(subMbPartldx, SubMbPartWidth(sub_mb_type[mbPartldx]),
SubMbPartHeight(sub_mb_type[mbPartldx]), 8, 1) (6-14)

— Otherwise (mb_type is not equal to P_8x8, P_8x8ref0, or B_8x8),

x = InverseRasterScan(subMbPartldx, 4, 4, 8, 0) (6-15)
y = InverseRasterScan(subMbPartldx, 4, 4, 8, 1) (6-16)

6.4.3 Inverse 4x4 luma block scanning process
Input to this process is the index of a 4x4 luma block luma4x4BIlkIdx.

Output of this process is the location (x,y) of the upper-left luma sample for the 4x4 luma block with index
luma4x4BIlkIdx relative to the upper-left luma sample of the macroblock.

Figure 6-10 shows the scan for the 4x4 luma blocks.

0] 1 4 15

213|167

819 ([12]13

101114 |15

Figure 6-10 — Scan for 4x4 luma blocks

The inverse 4x4 luma block scanning process is specified by

x = InverseRasterScan(luma4x4BIlkIdx / 4, 8, 8, 16,0) +
InverseRasterScan(luma4x4Blkldx % 4, 4,4, 8,0) (6-17)

y = InverseRasterScan(luma4x4Blkldx / 4, 8, 8, 16,1) +
InverseRasterScan(luma4x4Blkldx % 4,4, 4,8, 1) (6-18)

6.4.4 Inverse 4x4 Cb or Cr block scanning process for ChromaArrayType equal to 3
This process is only invoked when ChromaArrayType is equal to 3.

The inverse 4x4 chroma block scanning process is identical to inverse 4x4 luma block scanning process as specified in
clause 6.4.3 when substituting the term "luma" with the term "Cb" or the term "Cr", and substituting the term
"lumad4x4BIkIdx" with the term "cb4x4BlkIdx" or the term "cr4x4BlkIdx" in all places in clause 6.4.3.

6.4.5 Inverse 8x8 luma block scanning process
Input to this process is the index of an 8x8 luma block luma8x8BlkIdx.

Output of this process is the location (x,y) of the upper-left luma sample for the 8x8 luma block with index
luma8x8BIlkIdx relative to the upper-left luma sample of the macroblock.

Figure 6-11 shows the scan for the 8x8 luma blocks.

Rec. ITU-T H.264 (01/2012) 27

Figure 6-11 — Scan for 8x8 luma blocks

The inverse 8x8 luma block scanning process is specified by:

x = InverseRasterScan(luma8x8BlklIdx, 8, 8, 16, 0) (6-19)
y = InverseRasterScan(luma8x8BlklIdx, 8, 8, 16, 1) (6-20)

6.4.6 Inverse 8x8 Cb or Cr block scanning process for ChromaArrayType equal to 3
This process is only invoked when ChromaArrayType is equal to 3.

The inverse 8x8 chroma block scanning process is identical to inverse 8x8 luma block scanning process as specified in
clause 6.4.5 when substituting the term "luma" with the term "Cb" or the term "Cr", and substituting the term
"luma8x8BlkIdx" with the term "cb8x8Blkldx" or the term "cr8x8BlkIdx" in all places in clause 6.4.5.

6.4.7 Inverse 4x4 chroma block scanning process
Input to this process is the index of a 4x4 chroma block chroma4x4BlkIdx.

Output of this process is the location (x,y) of the upper-left chroma sample for a 4x4 chroma block with index
chroma4x4BlkIdx relative to the upper-left chroma sample of the macroblock.

The inverse 4x4 chroma block scanning process is specified by

x = InverseRasterScan(chroma4x4BlklIdx, 4, 4, 8, 0) (6-21)
y = InverseRasterScan(chroma4x4Blkldx, 4, 4, 8, 1) (6-22)

6.4.8 Derivation process of the availability for macroblock addresses
Input to this process is a macroblock address mbAddr.

Output of this process is the availability of the macroblock mbAddr.
NOTE — The meaning of availability is determined when this process is invoked.

The macroblock is marked as available, unless any of the following conditions are true, in which case the macroblock is
marked as not available:

— mbAddr<0,
— mbAddr > CurrMbAddr,
— the macroblock with address mbAddr belongs to a different slice than the macroblock with address CurrMbAddr.

6.4.9 Derivation process for neighbouring macroblock addresses and their availability
This process can only be invoked when MbaffFrameFlag is equal to 0.

The outputs of this process are:

— mbAddrA: the address and availability status of the macroblock to the left of the current macroblock,
— mbAddrB: the address and availability status of the macroblock above the current macroblock,

— mbAddrC: the address and availability status of the macroblock above-right of the current macroblock,

— mbAddrD: the address and availability status of the macroblock above-left of the current macroblock.

Figure 6-12 shows the relative spatial locations of the macroblocks with mbAddrA, mbAddrB, mbAddrC, and mbAddrD
relative to the current macroblock with CurrMbAddr.

28 Rec. ITU-T H.264 (01/2012)

mbAddrD | mbAddrB mbAddrC

mbAddrA | CurrMbAddr

Figure 6-12 — Neighbouring macroblocks for a given macroblock

Input to the process in clause 6.4.8 is mbAddrA = CurrMbAddr — 1 and the output is whether the macroblock mbAddrA
is available. In addition, mbAddrA is marked as not available when CurrMbAddr % PicWidthInMbs is equal to 0.

Input to the process in clause 6.4.8 is mbAddrB = CurrMbAddr — PicWidthInMbs and the output is whether the
macroblock mbAddrB is available.

Input to the process in clause 6.4.8 is mbAddrC = CurrMbAddr — PicWidthInMbs + 1 and the output is whether the
macroblock mbAddrC is available. In addition, mbAddrC is marked as not available when
(CurrMbAddr + 1) % PicWidthInMbs is equal to 0.

Input to the process in clause 6.4.8 is mbAddrD = CurrMbAddr — PicWidthInMbs — 1 and the output is whether the
macroblock mbAddrD is available. In addition, mbAddrD is marked as not available when
CurrMbAddr % PicWidthInMbs is equal to 0.

6.4.10 Derivation process for neighbouring macroblock addresses and their availability in MBAFF frames
This process can only be invoked when MbaffFrameFlag is equal to 1.

The outputs of this process are:

— mbAddrA: the address and availability status of the top macroblock of the macroblock pair to the left of the current
macroblock pair,

— mbAddrB: the address and availability status of the top macroblock of the macroblock pair above the current
macroblock pair,

— mbAddrC: the address and availability status of the top macroblock of the macroblock pair above-right of the
current macroblock pair,

— mbAddrD: the address and availability status of the top macroblock of the macroblock pair above-left of the current
macroblock pair.

Figure 6-13 shows the relative spatial locations of the macroblocks with mbAddrA, mbAddrB, mbAddrC, and mbAddrD
relative to the current macroblock with CurrMbAddr.

mbAddrA, mbAddrB, mbAddrC, and mbAddrD have identical values regardless whether the current macroblock is the
top or the bottom macroblock of a macroblock pair.

Rec. ITU-T H.264 (01/2012) 29

mbAddrD mbAddrB mbAddrC

CurrMbAddr

Figure 6-13 — Neighbouring macroblocks for a given macroblock in MBAFF frames

Input to the process in clause 6.4.8 is mbAddrA =2 * (CurrMbAddr /2 — 1) and the output is whether the macroblock
mbAddrA is available. In addition, mbAddrA is marked as not available when (CurrMbAddr / 2) % PicWidthInMbs is
equal to 0.

Input to the process in clause 6.4.8 is mbAddrB =2 * (CurrMbAddr / 2 — PicWidthInMbs) and the output is whether the
macroblock mbAddrB is available.

Input to the process in clause 6.4.8 is mbAddrC =2 * (CurrMbAddr / 2 — PicWidthInMbs + 1) and the output is
whether the macroblock mbAddrC is available. In addition, mbAddrC is marked as not available when
(CurrMbAddr / 2 + 1) % PicWidthInMbs is equal to 0.

Input to the process in clause 6.4.8 is mbAddrD =2 * (CurrMbAddr / 2 — PicWidthInMbs — 1) and the output is
whether the macroblock mbAddrD is available. In addition, mbAddrD is marked as not available when
(CurrMbAddr / 2) % PicWidthInMbs is equal to 0.

6.4.11 Derivation processes for neighbouring macroblocks, blocks, and partitions

Clause 6.4.11.1 specifies the derivation process for neighbouring macroblocks.

Clause 6.4.11.2 specifies the derivation process for neighbouring 8x8 luma blocks.

Clause 6.4.11.3 specifies the derivation process for neighbouring 8x8 chroma blocks for ChromaArrayType equal to 3.
Clause 6.4.11.4 specifies the derivation process for neighbouring 4x4 luma blocks.

Clause 6.4.11.5 specifies the derivation process for neighbouring 4x4 chroma blocks.

Clause 6.4.11.6 specifies the derivation process for neighbouring 4x4 chroma blocks for ChromaArrayType equal to 3.
Clause 6.4.11.7 specifies the derivation process for neighbouring partitions.

Table 6-2 specifies the values for the difference of luma location (xD, yD) for the input and the replacement for N in
mbAddrN, mbPartldxN, subMbPartldxN, luma8x8BIkIdxN, cb8x8BIkIdxN, cr8x8BIkIdxN, luma4x4BIkKIdxN,
cb4x4BIklIdxN, cr4x4BlkIdxN, and chroma4x4BlkIdxN for the output. These input and output assignments are used in
clauses 6.4.11.1 to 6.4.11.7. The variable predPartWidth is specified when Table 6-2 is referred to.

Table 6-2 — Specification of input and output assignments for clauses 6.4.11.1 to 6.4.11.7

N xD yD
A -1 0

B 0 -1
C | predPartWidth -1
D -1 -1

Figure 6-14 illustrates the relative location of the neighbouring macroblocks, blocks, or partitions A, B, C, and D to the
current macroblock, partition, or block, when the current macroblock, partition, or block is in frame coding mode.

30 Rec. ITU-T H.264 (01/2012)

D B C

A Current

Macroblock

or Partition
or Block

Figure 6-14 — Determination of the neighbouring macroblock, blocks, and partitions (informative)

6.4.11.1 Derivation process for neighbouring macroblocks

Outputs of this process are:

mbAddrA: the address of the macroblock to the left of the current macroblock and its availability status,

mbAddrB: the address of the macroblock above the current macroblock and its availability status.

mbAddrN (with N being A or B) is derived as specified by the following ordered steps:

1. The difference of luma location (XD, yD) is set according to Table 6-2.

2. The derivation process for neighbouring locations as specified in clause 6.4.12 is invoked for luma locations
with (xN, yN) equal to (xD, yD), and the output is assigned to mbAddrN.

6.4.11.2 Derivation process for neighbouring 8x8 luma block

Input to this process is an 8x8 luma block index luma8x8BlkIdx.

The luma8x8BIkIdx specifies the 8x8 luma blocks of a macroblock in a raster scan.

Outputs of this process are:

mbAddrA: either equal to CurrMbAddr or the address of the macroblock to the left of the current macroblock and
its availability status,

luma8x8BIkIdxA: the index of the 8x8 luma block to the left of the 8x8 block with index luma8x8Blkldx and its
availability status,
mbAddrB: either equal to CurrMbAddr or the address of the macroblock above the current macroblock and its
availability status,

luma8x8BlkIdxB: the index of the 8x8 luma block above the 8x8 block with index luma8x8BlkIdx and its
availability status.

mbAddrN and luma8x8BIlkIdxN (with N being A or B) are derived as specified by the following ordered steps:

1. The difference of luma location (XD, yD) is set according to Table 6-2.

2. The luma location (XN, yN) is specified by

xN = (luma8x8BIkIdx % 2) * 8 + xD (6-23)
yN = (luma8x8BIkIdx /2) * 8 + yD (6-24)

3. The derivation process for neighbouring locations as specified in clause 6.4.12 is invoked for luma locations
with (XN, yN) as the input and the output is assigned to mbAddrN and (xW, yW).
4. The variable luma8x8BIkIdxN is derived as follows:
— If mbAddrN is not available, luma8x8BIlkIdxN is marked as not available.

— Otherwise (mbAddrN is available), the derivation process for 8x8 luma block indices as specified in
clause 6.4.13.3 is invoked with the luma location (xW, yW) as the input and the output is assigned
to luma8x8BIkIdxN.

Rec. ITU-T H.264 (01/2012) 31

6.4.11.3 Derivation process for neighbouring 8x8 chroma blocks for ChromaArrayType equal to 3
This process is only invoked when ChromaArrayType is equal to 3.

The derivation process for neighbouring 8x8 chroma block is identical to the derivation process for neighbouring 8x8
luma block as specified in clause 6.4.11.2 when substituting the term "luma" with the term "Cb" or the term "Cr", and
substituting the term "luma8x8BlkIdx" with the term "cb8x8BlkIdx" or the term "cr8x8BlkIdx" in all places in
clause 6.4.11.2.

6.4.11.4 Derivation process for neighbouring 4x4 luma blocks
Input to this process is a 4x4 luma block index luma4x4BIkIdx.

Outputs of this process are:

— mbAddrA: either equal to CurrMbAddr or the address of the macroblock to the left of the current macroblock and
its availability status,

— luma4x4BIkldxA: the index of the 4x4 luma block to the left of the 4x4 block with index luma4x4Blkldx and its
availability status,

— mbAddrB: either equal to CurrMbAddr or the address of the macroblock above the current macroblock and its
availability status,

— luma4x4BlkIdxB: the index of the 4x4 luma block above the 4x4 block with index luma4x4BlkIdx and its
availability status.

mbAddrN and luma4x4BlkIdxN (with N being A or B) are derived as specified by the following ordered steps:
1. The difference of luma location (xD, yD) is set according to Table 6-2.

2. The inverse 4x4 luma block scanning process as specified in clause 6.4.3 is invoked with luma4x4BlkIdx as the
input and (x, y) as the output.

3. The luma location (XN, yN) is specified by:
xN=x+xD (6-25)
yN=y+yD (6-26)

4. The derivation process for neighbouring locations as specified in clause 6.4.12 is invoked for luma locations
with (XN, yN) as the input and the output is assigned to mbAddrN and (xW, yW).

5. The variable luma4x4B1kIdxN is derived as follows:
— If mbAddrN is not available, luma4x4BIkIdxN is marked as not available.

— Otherwise (mbAddrN is available), the derivation process for 4x4 luma block indices as specified in
clause 6.4.13.1 is invoked with the luma location (xW, yW) as the input and the output is assigned
to luma4x4BIkIdxN.

6.4.11.5 Derivation process for neighbouring 4x4 chroma blocks
This clause is only invoked when ChromaArrayType is equal to 1 or 2.
Input to this process is a 4x4 chroma block index chroma4x4BlkIdx.

Outputs of this process are:

mbAddrA (either equal to CurrMbAddr or the address of the macroblock to the left of the current macroblock) and
its availability status,

— chroma4x4BIkIdxA (the index of the 4x4 chroma block to the left of the 4x4 chroma block with index
chroma4x4Blkldx) and its availability status,

— mbAddrB (either equal to CurrMbAddr or the address of the macroblock above the current macroblock) and its
availability status,

— chroma4x4BIlkIdxB (the index of the 4x4 chroma block above the 4x4 chroma block with index chroma4x4BIkIdx)
and its availability status.

mbAddrN and chroma4x4BIlkIdxN (with N being A or B) are derived as specified by the following ordered steps:

1. The difference of chroma location (xD, yD) is set according to Table 6-2.

32 Rec. ITU-T H.264 (01/2012)

2. The inverse 4x4 chroma block scanning process as specified in clause 6.4.7 is invoked with chroma4x4BlkIdx
as the input and (X, y) as the output.

3. The chroma location (xN, yN) is specified by
xN=x+xD (6-27)
yN=y+yD (6-28)
4. The derivation process for neighbouring locations as specified in clause 6.4.12 is invoked for chroma locations
with (XN, yN) as the input and the output is assigned to mbAddrN and (xW, yW).
5. The variable chroma4x4BIlkIdxN is derived as follows:

— If mbAddrN is not available, chroma4x4BIkIdxN is marked as not available.

— Otherwise (mbAddrN is available), the derivation process for 4x4 chroma block indices as specified in
clause 6.4.13.2 is invoked with the chroma location (xW, yW) as the input and the output is assigned to
chroma4x4BIkIdxN.

6.4.11.6 Derivation process for neighbouring 4x4 chroma blocks for ChromaArrayType equal to 3
This process is only invoked when ChromaArrayType is equal to 3.

The derivation process for neighbouring 4x4 chroma block in 4:4:4 chroma format is identical to the derivation process
for neighbouring 4x4 luma block as specified in clause 6.4.11.4 when substituting the term "luma" with the term "Cb" or
the term "Cr", and substituting the term "luma4x4BlkIdx" with the term "cb4x4BlkIdx" or the term "cr4x4BlkIdx" in all
places in clause 6.4.11.4.

6.4.11.7 Derivation process for neighbouring partitions
Inputs to this process are:

— amacroblock partition index mbPartldx

— acurrent sub-macroblock type currSubMbType

— asub-macroblock partition index subMbPartIdx
Outputs of this process are:

— mbAddrA\mbPartldxA\subMbPartldxA: specifying the macroblock or sub-macroblock partition to the left of the
current macroblock and its availability status, or the sub-macroblock partition
CurrMbAddr\mbPartldx\subMbPartldx and its availability status,

— mbAddrB\mbPartldxB\subMbPartldxB: specifying the macroblock or sub-macroblock partition above the current
macroblock and its availability status, or the sub-macroblock partition CurrMbAddr\mbPartldx\subMbPartldx and
its availability status,

— mbAddrC\mbPartldxC\subMbPartldxC: specifying the macroblock or sub-macroblock partition to the right-above of
the current macroblock and its availability = status, or the sub-macroblock partition
CurrMbAddr\mbPartldx\subMbPartldx and its availability status,

— mbAddrD\mbPartIdxD\subMbPartldxD: specifying the macroblock or sub-macroblock partition to the left-above of
the current macroblock and its availability = status, or the sub-macroblock partition
CurrMbAddr\mbPartldx\subMbPartldx and its availability status.

mbAddrN, mbPartldxN, and subMbPartldxN (with N being A, B, C, or D) are derived as specified by the following
ordered steps:

1. The inverse macroblock partition scanning process as described in clause 6.4.2.1 is invoked with mbPartldx as
the input and (x, y) as the output.

2. The location of the upper-left luma sample inside a macroblock partition (xS, yS) is derived as follows:

— Ifmb_type is equal to P_8x8, P_8x8ref0 or B_8x8&, the inverse sub-macroblock partition scanning process
as described in clause 6.4.2.2 is invoked with subMbPartldx as the input and (xS, yS) as the output.

— Otherwise, (xS, yS)aresetto (0,0).
3. The variable predPartWidth in Table 6-2 is specified as follows:
— Ifmb type is equal to P_Skip, B_Skip, or B Direct 16x16, predPartWidth = 16.

Rec. ITU-T H.264 (01/2012) 33

— Otherwise, if mb_type is equal to B_8x8, the following applies:

— If currSubMbType is equal to B_Direct 8x8, predPartWidth = 16.

NOTE 1 — When currSubMbType is equal to B_Direct 8x8 and direct spatial mv_pred flag is equal to 1,
the predicted motion vector is the predicted motion vector for the complete macroblock.

— Otherwise, predPartWidth = SubMbPartWidth(sub_mb_type[mbPartldx]).

— Otherwise, if mb_type is equal to P 8x8 or P_8x8refl,
predPartWidth = SubMbPartWidth(sub_mb_type[mbPartldx]).

— Otherwise, predPartWidth = MbPartWidth(mb_type).
4. The difference of luma location (xD, yD) is set according to Table 6-2.

5. The neighbouring luma location (XN, yN) is specified by
xN=x+xS+xD (6-29)
yN=y+yS+yD (6-30)
6. The derivation process for neighbouring locations as specified in clause 6.4.12 is invoked for luma locations
with (XN, yN) as the input and the output is assigned to mbAddrN and (xW, yW).
7. Depending on mbAddrN, the following applies:

— If mbAddrN is not available, the macroblock or sub-macroblock partition
mbAddrN\mbPartldxN\subMbPartIdxN is marked as not available.

— Otherwise (mbAddrN is available), the following ordered steps are specified:

a. Let mbTypeN be the syntax element mb_type of the macroblock with macroblock address
mbAddrN and, when mbTypeN is equal to P_8x8, P_8x8ref0, or B_8x8, let subMbTypeN be the
syntax element list sub_mb_type of the macroblock with macroblock address mbAddrN.

b. The derivation process for macroblock and sub-macroblock partition indices as specified in
clause 6.4.13.4 is invoked with the luma location (xW, yW), the macroblock type mbTypeN,
and, when mbTypeN is equal to P_8x8, P_8x8ref0, or B_8x8, the list of sub-macroblock types
subMbTypeN as the inputs and the outputs are the macroblock partition index mbPartldxN and
the sub-macroblock partition index subMbPartIdxN.

c. When the partition given by mbPartldxN and subMbPartIdxN is not yet decoded, the macroblock
partition mbPartldxN and the sub-macroblock partition subMbPartldxN are marked as not
available.

NOTE 2 — The latter condition is, for example, the case when mbPartldx =2, subMbPartldx =3, xD =4,
yD =—1, i.e., when neighbour C of the last 4x4 luma block of the third sub-macroblock is requested.

6.4.12 Derivation process for neighbouring locations

Input to this process is a luma or chroma location (XN, yN) expressed relative to the upper left corner of the current
macroblock.

Outputs of this process are:

— mbAddrN: either equal to CurrMbAddr or to the address of neighbouring macroblock that contains (xN, yN) and its
availability status,

— (xW, yW): the location (xN, yN) expressed relative to the upper-left corner of the macroblock mbAddrN (rather
than relative to the upper-left corner of the current macroblock).

Let maxW and maxH be variables specifying maximum values of the location components xN, xW, and yN, yW,
respectively. maxW and maxH are derived as follows:

If this process is invoked for neighbouring luma locations,
maxW =maxH = 16 (6-31)

— Otherwise (this process is invoked for neighbouring chroma locations),

maxW = MbWidthC (6-32)

34 Rec. ITU-T H.264 (01/2012)

maxH = MbHeightC (6-33)

Depending on the variable MbaffFrameFlag, the neighbouring locations are derived as follows:

— If MbaffFrameFlag is equal to 0, the specification for neighbouring locations in fields and non-MBAFF frames as
described in clause 6.4.12.1 is applied.

— Otherwise (MbaffFrameFlag is equal to 1), the specification for neighbouring locations in MBAFF frames as
described in clause 6.4.12.2 is applied.

6.4.12.1 Specification for neighbouring locations in fields and non-MBAFF frames
The specifications in this clause are applied when MbaffFrameFlag is equal to 0.

The derivation process for neighbouring macroblock addresses and their availability in clause 6.4.9 is invoked with
mbAddrA, mbAddrB, mbAddrC, and mbAddrD as well as their availability status as the output.

Table 6-3 specifies mbAddrN depending on (xN, yN).

Table 6-3 — Specification of mbAddrN

xN yN mbAddrN
<0 <0 mbAddrD
<0 0. maxH -1 mbAddrA
0..maxW — 1 <0 mbAddrB
0..maxW — 1 0.maxH — 1 CurrMbAddr
> maxW — 1 <0 mbAddrC
> maxW — 1 0.maxH — 1 not available
>maxH — | not available

The neighbouring location (xW, yW) relative to the upper-left corner of the macroblock mbAddrN is derived as

xW = (xN + maxW) % maxW (6-34)
yW = (yN + maxH) % maxH (6-35)

6.4.12.2 Specification for neighbouring locations in MBAFF frames
The specifications in this clause are applied when MbaffFrameFlag is equal to 1.

The derivation process for neighbouring macroblock addresses and their availability in clause 6.4.10 is invoked with
mbAddrA, mbAddrB, mbAddrC, and mbAddrD as well as their availability status as the output.

The variable currMbFrameFlag is derived as follows:

— If the macroblock with address CurrMbAddr is a frame macroblock, currMbFrameFlag is set equal to 1.

— Otherwise (the macroblock with address CurrMbAddr is a field macroblock), currMbFrameFlag is set equal to 0.
The variable mbIsTopMbFlag is derived as follows:

— If the macroblock with address CurrMbAddr is a top macroblock (i.e., CurrMbAddr % 2 is equal to 0),
mblsTopMbFlag is set equal to 1.

— Otherwise (the macroblock with address CurrMbAddr is a bottom macroblock, i.e., CurrMbAddr % 2 is equal to 1),
mblsTopMbFlag is set equal to 0.

Table 6-4 specifies the macroblock addresses mbAddrN and yM in two ordered steps:

1. Specification of a macroblock address mbAddrX depending on (XN, yN) and the variables currMbFrameFlag
and mblsTopMbFlag:

2. Depending on the availability of mbAddrX, the following applies:
— If mbAddrX is not available, mbAddrN is marked as not available.

Rec. ITU-T H.264 (01/2012) 35

Otherwise (mbAddrX is available), mbAddrN is marked as available and Table 6-4 specifies mbAddrN
and yM depending on (xN,yN), currMbFrameFlag, mblsTopMbFlag, and the variable
mbAddrXFrameFlag, which is derived as follows:

If the macroblock mbAddrX is a frame macroblock, mbAddrXFrameFlag is set equal to 1.

Otherwise (the macroblock mbAddrX is a field macroblock), mbAddrXFrameFlag is set equal to 0.

Unspecified values (na) of the above flags in Table 6-4 indicate that the value of the corresponding flag is not relevant
for the current table rows.

Table 6-4 — Specification of mbAddrN and yM

on
ESD on % é
[E2g g e
Els £ S
i E Z
S| o o] = g 3
2E O 2 :
z z |5l <2 |2 3 < =
>< > 5| € = g & = >
1 |mbAddrD mbAddrD+1 |yN
1 mbAddrA yN
L0 |mbAddra 15 mMbAddrA + 1 |(yN + maxH)>> |
<0 <0 1 mbAddrD + 1 |2*yN
o |1 [mbAddD 5 mbAddrD yN
0 |mbAddrD mbAddrD+1 |yN
1 mbAddrA yN
1 |mbAddrA 0 yN%2==0 mbAddrA yN >> |
yN%2!=0 mbAddrA +1 |yN>>1
1 1 mbAddrA + 1 |[yN
0 |mbAddrA yN %2 == mbAddrA (yN +maxH) >> 1
0 [yN%21=0 mbAddrA + 1 |(yN + maxH) >> |
<0 0..maxH — 1 yN < (maxH/2) |mbAddrA yN <<1
1 |mbAddrA ! yN >= (maxH /2)lmbAddrA +1 |(yN <<1)—maxH
0 mbAddrA yN
0 yN < (maxH /2) [mbAddrA (yN<<I)+1
0 |mbAddrA |l [yN>=(maxH/2)[mbAddrA +1 [(yN<<I)+1—maxH
0 mbAddrA +1 |yN
1 |mbAddrB mbAddrB+1 |yN
1 o [currMbAddr CurrMbAddr — 1|yN
“1l< mbAddrB+1 |2 * yN
0..maxW — 1|<0 . 1 imbAddrB bAJAE yN
0 |mbAddrB mbAddrB+1 |yN
0..maxW — 1|0..maxH — 1 CurrMbAddr CurrMbAddr |yN
1 |mbAddrC mbAddrC +1 |yN
I [0 [not available not available na
> —1l< 1 mbAddrC+1 |2 *yN
e N I i [mbAddrC yN
0 |mbAddrC mbAddrC+1 [yN
>maxW — 1|0.maxH — 1 not available not available na
>maxH — 1 not available not available na

The neighbouring luma location (xW, yW) relative to the upper-left corner of the macroblock mbAddrN is derived as

xW = (xN + maxW) % maxW (6-36)

yW = (yM + maxH) % maxH (6-37)

36 Rec. ITU-T H.264 (01/2012)

6.4.13 Derivation processes for block and partition indices

Clause 6.4.13.1 specifies the derivation process for 4x4 luma block indices.
Clause 6.4.13.2 specifies the derivation process for 4x4 chroma block indices.
Clause 6.4.13.3 specifies the derivation process for 8x8 luma block indices.

Clause 6.4.13.4 specifies the derivation process for macroblock and sub-macroblock partition indices.

6.4.13.1 Derivation process for 4x4 luma block indices

Input to this process is a luma location (xP, yP) relative to the upper-left luma sample of a macroblock.
Output of this process is a 4x4 luma block index luma4x4BlkIdx.

The 4x4 luma block index luma4x4BlkIdx is derived by

lumadx4BIkIdx =8 * (YP /8)+ 4* (xP/8)+2* ((yP%8)/4)+((xP%8)/4) (6-38)

6.4.13.2 Derivation process for 4x4 chroma block indices

This clause is only invoked when ChromaArrayType is equal to 1 or 2.

Input to this process is a chroma location (xP, yP) relative to the upper-left chroma sample of a macroblock.
Output of this process is a 4x4 chroma block index chroma4x4BIkIdx.

The 4x4 chroma block index chroma4x4BlkIdx is derived by

chromadx4BIkIdx =2 * (yP /4)+ (xP/4) (6-39)

6.4.13.3 Derivation process for 8x8 luma block indices

Input to this process is a luma location (xP, yP) relative to the upper-left luma sample of a macroblock.
Outputs of this process is an 8x8 luma block index luma8x8BlkIdx.

The 8x8 luma block index luma8x8BIkldx is derived by

luma8x8BIkldx =2 * (YyP /8)+ (xP/8) (6-40)

6.4.13.4 Derivation process for macroblock and sub-macroblock partition indices
Inputs to this process are:

— aluma location (xP, yP) relative to the upper-left luma sample of a macroblock,

— amacroblock type mbType,

— when mbType is equal to P_8x8, P_8x8ref0, or B_8x8, a list of sub-macroblock types subMbType with 4 elements.
Outputs of this process are:

— amacroblock partition index mbPartldx,

— asub-macroblock partition index subMbPartldx.

The macroblock partition index mbPartldx is derived as follows:

— If mbType specifies an [macroblock type, mbPartldx is set equal to 0.

— Otherwise (mbType does not specify an I macroblock type), mbPartldx is derived by

mbPartldx = (16 / MbPartWidth(mbType)) * (yP / MbPartHeight(mbType)) +
(xP / MbPartWidth(mbType)) (6-41)

The sub-macroblock partition index subMbPartldx is derived as follows:
— If mbType is not equal to P_8x8, P_8x8ref0, B_8x8, B_Skip, or B_Direct 16x16, subMbPartldx is set equal to 0.
— Otherwise, if mbType is equal to B_Skip or B Direct 16x16, subMbPartldx is derived by

subMbPartldx =2 * ((yP % 8) /4)+ ((xP % 8)/4) (6-42)

Rec. ITU-T H.264 (01/2012) 37

— Otherwise (mbType is equal to P_8x8, P_8x8ref0, or B_8x8), subMbPartldx is derived by

subMbPartldx = (8 / SubMbPartWidth(subMbType[mbPartldx])) *
((yP % 8)/ SubMbPartHeight(subMbType[mbPartldx])) +
)

((xP % 8)/ SubMbPartWidth(subMbType[mbPartldx]) (6-43)

7 Syntax and semantics
7.1 Method of specifying syntax in tabular form

The syntax tables specify a superset of the syntax of all allowed bitstreams. Additional constraints on the syntax may be
specified, either directly or indirectly, in other clauses.
NOTE - An actual decoder should implement means for identifying entry points into the bitstream and means to identify and

handle non-conforming bitstreams. The methods for identifying and handling errors and other such situations are not specified
here.

The following table lists examples of pseudo code used to describe the syntax. When syntax_element appears, it
specifies that a syntax element is parsed from the bitstream and the bitstream pointer is advanced to the next position
beyond the syntax element in the bitstream parsing process.

C | Descriptor

/* A statement can be a syntax element with an associated syntax category and
descriptor or can be an expression used to specify conditions for the existence,
type, and quantity of syntax elements, as in the following two examples */

syntax_element 3 | ue(v)

conditioning statement

/* A group of statements enclosed in curly brackets is a compound statement and
is treated functionally as a single statement. */

{

statement

statement

/* A "while" structure specifies a test of whether a condition is true, and if true,
specifies evaluation of a statement (or compound statement) repeatedly until the
condition is no longer true */

while(condition)

statement

/* A "do ... while" structure specifies evaluation of a statement once, followed by
a test of whether a condition is true, and if true, specifies repeated evaluation of
the statement until the condition is no longer true */

do

statement

while(condition)

/* An "if ... else" structure specifies a test of whether a condition is true, and if
the condition is true, specifies evaluation of a primary statement, otherwise,
specifies evaluation of an alternative statement. The "else" part of the structure
and the associated alternative statement is omitted if no alternative statement
evaluation is needed */

if(condition)

primary statement

else

alternative statement

38 Rec. ITU-T H.264 (01/2012)

/* A "for" structure specifies evaluation of an initial statement, followed by a test
of a condition, and if the condition is true, specifies repeated evaluation of a
primary statement followed by a subsequent statement until the condition is no
longer true. */

for(initial statement; condition; subsequent statement)

primary statement

7.2 Specification of syntax functions, categories, and descriptors

The functions presented here are used in the syntactical description. These functions assume the existence of a bitstream
pointer with an indication of the position of the next bit to be read by the decoding process from the bitstream.

byte aligned() is specified as follows:

— If the current position in the bitstream is on a byte boundary, i.c., the next bit in the bitstream is the first bit in a
byte, the return value of byte aligned() is equal to TRUE.

— Otherwise, the return value of byte aligned() is equal to FALSE.

more_data_in_byte stream(), which is used only in the byte stream NAL unit syntax structure specified in Annex B, is
specified as follows:

— If more data follow in the byte stream, the return value of more data in byte stream() is equal to TRUE.
— Otherwise, the return value of more data in byte stream() is equal to FALSE.

more_rbsp_data() is specified as follows:
— Ifthere is no more data in the RBSP, the return value of more rbsp data() is equal to FALSE.

— Otherwise, the RBSP data is searched for the last (least significant, right-most) bit equal to 1 that is present in
the RBSP. Given the position of this bit, which is the first bit (rbsp_stop _one bit) of the rbsp_trailing_bits()
syntax structure, the following applies:

— If there is more data in an RBSP before the rbsp_trailing bits() syntax structure, the return value of
more_rbsp_data() is equal to TRUE.

— Otherwise, the return value of more rbsp data() is equal to FALSE.

The method for enabling determination of whether there is more data in the RBSP is specified by the application (or
in Annex B for applications that use the byte stream format).

more_rbsp _trailing data() is specified as follows:
— Ifthere is more data in an RBSP, the return value of more rbsp_trailing_data() is equal to TRUE.
— Otherwise, the return value of more rbsp_trailing_data() is equal to FALSE.

next bits(n) provides the next bits in the bitstream for comparison purposes, without advancing the bitstream pointer.
Provides a look at the next n bits in the bitstream with n being its argument. When used within the byte stream as
specified in Annex B, next bits(n) returns a value of 0 if fewer than n bits remain within the byte stream.

read bits(n) reads the next n bits from the bitstream and advances the bitstream pointer by n bit positions. When n is
equal to 0, read_bits(n) is specified to return a value equal to 0 and to not advance the bitstream pointer.

Categories (labelled in the table as C) specify the partitioning of slice data into at most three slice data partitions. Slice
data partition A contains all syntax elements of category 2. Slice data partition B contains all syntax elements of
category 3. Slice data partition C contains all syntax elements of category 4. The meaning of other category values is not
specified. For some syntax elements, two category values, separated by a vertical bar, are used. In these cases, the
category value to be applied is further specified in the text. For syntax structures used within other syntax structures, the
categories of all syntax elements found within the included syntax structure are listed, separated by a vertical bar. A
syntax element or syntax structure with category marked as "All" is present within all syntax structures that include that
syntax element or syntax structure. For syntax structures used within other syntax structures, a numeric category value
provided in a syntax table at the location of the inclusion of a syntax structure containing a syntax element with category
marked as "All" is considered to apply to the syntax elements with category "All".

Rec. ITU-T H.264 (01/2012) 39

The following descriptors specify the parsing process of each syntax element. For some syntax elements, two descriptors,
separated by a vertical bar, are used. In these cases, the left descriptors apply when entropy coding mode flag is equal
to 0 and the right descriptor applies when entropy coding mode flag is equal to 1.

40

ae(v): context-adaptive arithmetic entropy-coded syntax element. The parsing process for this descriptor is
specified in clause 9.3.

b(8): byte having any pattern of bit string (8 bits). The parsing process for this descriptor is specified by the
return value of the function read_bits(8).

ce(v): context-adaptive variable-length entropy-coded syntax element with the left bit first. The parsing process
for this descriptor is specified in clause 9.2.

f(n): fixed-pattern bit string using n bits written (from left to right) with the left bit first. The parsing process for
this descriptor is specified by the return value of the function read_bits(n).

nen

i(n): signed integer using n bits. When n is "v" in the syntax table, the number of bits varies in a manner
dependent on the value of other syntax elements. The parsing process for this descriptor is specified by the
return value of the function read bits(n) interpreted as a two's complement integer representation with most
significant bit written first.

me(v): mapped Exp-Golomb-coded syntax element with the left bit first. The parsing process for this descriptor
is specified in clause 9.1.

se(v): signed integer Exp-Golomb-coded syntax element with the left bit first. The parsing process for this
descriptor is specified in clause 9.1.

te(v): truncated Exp-Golomb-coded syntax element with left bit first. The parsing process for this descriptor is
specified in clause 9.1.

u(n): unsigned integer using n bits. When n is "v" in the syntax table, the number of bits varies in a manner
dependent on the value of other syntax elements. The parsing process for this descriptor is specified by the
return value of the function read bits(n) interpreted as a binary representation of an unsigned integer with most
significant bit written first.

ue(v): unsigned integer Exp-Golomb-coded syntax element with the left bit first. The parsing process for this
descriptor is specified in clause 9.1.

Rec. ITU-T H.264 (01/2012)

7.3

7.31

7.3.2
7.3.2.1

Syntax in tabular form

NAL unit syntax
nal_unit(NumBytesInNALunit) { C | Descriptor
forbidden_zero_bit All | (1)
nal_ref idc All | u(2)
nal_unit_type All | u(5)
NumBytesInRBSP = 0
nalUnitHeaderBytes = 1
if(nal_unit_type == 14 || nal unit type == 20) {
svc_extension_flag All | u(l)
if(sve_extension_flag)
nal_unit _header svc_extension() /* specified in Annex G */ All
else
nal_unit_header mvc_extension() /* specified in Annex H */ All
nalUnitHeaderBytes += 3
}
for(i = nalUnitHeaderBytes; i < NumBytesInNALunit; i++) {
if(1+ 2 < NumBytesInNALunit && next_bits(24) == 0x000003) {
rbsp_byte[NumBytesInRBSP++ | All | b(8)
rbsp_byte[NumBytesInRBSP++ | All | b(8)
i+=2
emulation_prevention_three_byte /* equal to 0x03 */ All | f(8)
} else
rbsp_byte[NumBytesInRBSP++ | All | b(8)
i
}
Raw byte sequence payloads and RBSP trailing bits syntax
Sequence parameter set RBSP syntax
seq_parameter_set rbsp() { C | Descriptor
seq parameter set data() 0
rbsp_trailing_bits() 0

Rec. ITU-T H.264 (01/2012)

41

7.3.2.1.1 Sequence parameter set data syntax

seq_parameter set data() { C | Descriptor
profile_idc 0 | u®)
constraint_set0) flag 0 | ul)
constraint_setl flag 0 | u(l)
constraint_set2 flag 0 | ul)
constraint_set3 flag 0 | u(l)
constraint_set4 flag 0 | ul)
constraint_setS flag 0 | u(l)
reserved_zero 2bits /* equal to 0 */ 0 | u®?)
level idc 0 | u(®
seq_parameter_set_id 0 | ue(v)
if(profile idc == 100 || profile idc == 110 ||
profile_idc == 122 || profile_idc == 244 || profile idc == 44 ||
profile idc == 83 || profile idc == 86 || profile idc == 118 ||
profile idc == 128) {
chroma_format idc 0 | ue(v)
if(chroma format idc == 3)
separate_colour_plane_flag 0 | u(l)
bit_depth luma_minus8 0 | ue(v)
bit_depth_chroma_minus8 0 | ue(v)
gpprime_y_zero_transform_bypass_flag 0 |u(l)
seq_scaling_matrix_present_flag 0 | u(l)
if(seq_scaling_matrix_present flag)
for(1=0;1<((chroma format idc != 3)?8:12);i++) {
seq_scaling_list_present_flag[i] 0 | ul)
if(seq_scaling_list present flag[i])
if(1<6)
scaling_list(ScalingList4x4[1], 16, 0
UseDefaultScalingMatrix4x4Flag[i])
else
scaling_list(ScalingList8x8[i— 6], 64, 0
UseDefaultScalingMatrix8x8Flag[i—6])
}
}
log2 max frame num_minus4 0 | ue(v)
pic_order_cnt_type 0 | ue(v)
if(pic_order_cnt _type == 0)
log2_max_pic_order_cnt_Isb_minus4 0 | ue(v)
else if(pic_order cnt type == 1) {
delta_pic_order_always_zero_flag 0 | ul)
offset_for non_ref pic 0 | se(v)
offset_for_top_to_bottom_field 0 | se(v)
num_ref frames_in_pic_order_cnt_cycle 0 | ue(v)
for(1=0;1<num ref frames in pic order cnt cycle; it++)
offset_for_ref frame[i] 0 | se(v)
}
max_num_ref frames 0 | ue(v)
gaps_in_frame num_value_allowed_flag 0 | ul)

42 Rec. ITU-T H.264 (01/2012)

pic_width_in_mbs_minusl 0 | ue(v)
pic_height_in_map units minusl 0 | ue(v)
frame_mbs_only_flag 0 | uwl)
if([frame mbs_only flag)
mb_adaptive frame_field_flag 0 | uwl)
direct_8x8 inference flag 0 | ul)
frame_cropping_flag 0 | uwl)
if(frame_cropping_flag) {
frame_crop_left offset 0 | ue(v)
frame_crop_right_offset 0 | ue(v)
frame_crop_top_offset 0 | ue(v)
frame_crop_bottom_offset 0 | ue(v)
i
vui_parameters_present_flag 0 | ul)
if(vui_parameters_present flag)
vui_parameters() 0
}
7.3.2.1.1.1 Scaling list syntax
scaling_list(scalingList, sizeOfScalingList, useDefaultScalingMatrixFlag) { C | Descriptor

lastScale = 8
nextScale = §
for(j = 0; j < sizeOfScalingList; j++) {
if(nextScale !=0) {
delta_scale 01 | se(v)
nextScale = (lastScale + delta_scale + 256) % 256
useDefaultScalingMatrixFlag = (j == 0 && nextScale == 0)
}

scalingList[j] = (nextScale == 0) ? lastScale : nextScale

lastScale = scalingList[j]

Rec. ITU-T H.264 (01/2012) 43

7.3.2.1.2

Sequence parameter set extension RBSP syntax

seq parameter set extension_rbsp() { C Descriptor
seq_parameter_set_id 10 | ue(v)
aux_format idc 10 | ue(v)
if(aux_format idc != 0) {
bit_depth_aux minus8 10 | ue(v)
alpha_incr_flag 10 | u(l)
alpha_opaque_value 10 | u(v)
alpha_transparent_value 10 | u(v)
j
additional_extension_flag 10 | u(l)
rbsp_trailing_bits() 10
}
7.3.2.1.3 Subset sequence parameter set RBSP syntax
subset_seq parameter set rbsp() { C | Descriptor
seq parameter set data() 0
if(profile idc == 83 || profile idc == 86) {
seq_parameter_set svc_extension() /* specified in Annex G */ 0
svc_vui_parameters_present_flag 0 [u)
if(sve_vui_parameters present flag == 1)
svc_vui_parameters_extension() /* specified in Annex G */ 0
} else if(profile idc == 118 || profile idc == 128) {
bit_equal _to_one /* equal to 1 */ 0 | f(D)
seq parameter set mvc extension() /* specified in Annex H */ 0
mvc_vui_parameters_present_flag 0 | u(l)
if(mve vui_parameters present flag == 1)
mvc_vui_parameters_extension() /* specified in Annex H */ 0
}
additional_extension2_flag 0 | u(l)
if(additional extension2 flag == 1)
while(more rbsp data())
additional_extension2_data_flag 0 | u(l)
rbsp_trailing_bits() 0

44

Rec. ITU-T H.264 (01/2012)

7.3.2.2

Picture parameter set RBSP syntax

pic_parameter_set rbsp() { C | Descriptor
pic_parameter_set_id 1 | ue(v)
seq_parameter_set_id 1 | ue(v)
entropy_coding mode_flag 1 | u(l)
bottom_field_pic_order_in_frame present_flag 1 | u(l)
num_slice_groups_minusl 1 | ue(v)
if(num_slice_groups minusl >0) {
slice_group_map_type 1 | ue(v)
if(slice_group map type == 0)
for(iGroup = 0; iGroup <= num_slice_groups_minusl; iGroup++)
run_length_minus1] iGroup | 1 | ue(v)
else if(slice_group_map _type == 2)
for(iGroup = 0; iGroup < num_slice_groups_minus1; iGroup++) {
top_left] iGroup | 1 | ue(v)
bottom_right[iGroup | 1 | ue(v)
}
else if(slice_group map type == 3 ||
slice_group map type == 4 ||
slice_group map type == 5) {
slice_group_change_direction_flag 1| u(l)
slice_group_change rate _minus1 1 | ue(v)
} else if(slice_group map type == 6) {
pic_size_in_map_units_minusl 1 | ue(v)
for(1=0;1<=pic_size in _map units minusl; i++)
slice_group_id[i] 1| u®v)
}
b
num_ref idx_10_default_active_minusl 1 | ue(v)
num_ref idx 11_default_active_minusl 1 | ue(v)
weighted_pred_flag 1 | u(l)
weighted_bipred_idc 1 | u®?)
pic_init qp_minus26 /* relative to 26 */ 1 | se(v)
pic_init_qs_minus26 /* relative to 26 */ 1 | se(v)
chroma_qp_index_offset 1 | se(v)
deblocking_filter_control_present flag 1 | ul)
constrained_intra_pred_flag 1 | u(l)
redundant_pic_cnt_present_flag 1 | ul)
if(more_rbsp data()) {
transform_8x8 mode_flag 1 | ul)
pic_scaling_matrix_present_flag 1 | u(l)
if(pic_scaling_matrix_present flag)
for(i=0;1<6+
((chroma format idc != 3)?2:6) * transform 8x8 mode flag;
i++) {
pic_scaling_list present flag[i] 1| u(l)

if(pic_scaling_list present flag[i])

if(i<6)

Rec. ITU-T H.264 (01/2012)

45

scaling_list(ScalingList4x4[1], 16, 1
UseDefaultScalingMatrix4x4Flag[i])
else
scaling_list(ScalingList8x8[i— 6], 64, 1
UseDefaultScalingMatrix8x8Flag[i—6])
}
second_chroma_qp_index_offset 1 | se(v)
}
rtbsp_trailing bits() 1
}

7.3.2.3 Supplemental enhancement information RBSP syntax

sei_rbsp() { C | Descriptor

do

sei_message() 5

while(more rbsp_data())

rbsp_trailing_bits() 5

7.3.2.3.1 Supplemental enhancement information message syntax

sei_message() { C | Descriptor

payloadType =0

while(next_bits(8) == OxFF) {

ff byte /* equal to OxFF */ 5 | (8)
payloadType += 255

}

last_payload_type byte 5 u(8)

payloadType += last_payload type byte

payloadSize =0

while(next_bits(8) == OXFF) {

ff byte /* equal to OxFF */ 5 f(8)
payloadSize += 255

}

last_payload_size byte 5 u(8)

payloadSize += last_payload_size byte

sei_payload(payloadType, payloadSize) 5

7.3.2.4 Access unit delimiter RBSP syntax

access_unit delimiter rbsp() { C | Descriptor

primary_pic_type u(3)

AN

rtbsp_trailing bits()

46 Rec. ITU-T H.264 (01/2012)

7.3.2.5

End of sequence RBSP syntax

end_of seq rbsp() {

C | Descriptor

}

7.3.2.6

End of stream RBSP syntax

end_of stream rbsp() {

C | Descriptor

}

7.3.2.7

Filler data RBSP syntax

filler data rbsp() {

C | Descriptor

while(next_bits(8) == 0xFF)

ff_byte /* equal to OxFF */

9 [f(8)

rbsp_trailing_bits()

7.3.2.8

Slice layer without partitioning RBSP syntax

slice_layer without partitioning rbsp() {

C Descriptor

slice_header() 2
slice_data() /* all categories of slice data() syntax */ 21314
rbsp_slice_trailing_bits() 2

7.3.2.9
7.3.2.9.1

Slice data partition RBSP syntax

Slice data partition A RBSP syntax

slice_data_partition a layer rbsp() {

C | Descriptor

slice_header() 2
slice_id All | ue(v)
slice_data() /* only category 2 parts of slice_data() syntax */ 2
rbsp_slice_trailing_bits() 2

Rec. ITU-T H.264 (01/2012)

47

7.3.2.9.2 Slice data partition B RBSP syntax

slice_data_partition_b_layer rbsp() { C | Descriptor

slice_id All | ue(v)
if(separate_colour plane flag == 1)

colour_plane_id All | u(2)
if(redundant_pic_cnt present flag)

redundant_pic_cnt All | ue(v)
slice_data() /* only category 3 parts of slice_data() syntax */ 3
rbsp_slice_trailing_bits() 3

7.3.2.9.3 Slice data partition C RBSP syntax

slice_data_partition ¢ layer rbsp() { C | Descriptor

slice_id All | ue(v)
if(separate colour plane flag == 1)

colour_plane_id All | u(2)
if(redundant pic_cnt present flag)

redundant_pic_cnt All | ue(v)
slice_data() /* only category 4 parts of slice data() syntax */ 4
rbsp_slice_trailing_bits() 4

7.3.2.10 RBSP slice trailing bits syntax

tbsp_slice_trailing_bits() { C | Descriptor

rbsp_trailing_bits() All

if(entropy_coding_mode flag)

while(more_rbsp_trailing_data())

cabac_zero_word /* equal to 0x0000 */ All | f(16)

7.3.2.11 RBSP trailing bits syntax

rbsp_trailing bits() { C | Descriptor
rbsp_stop _one_bit /* equalto 1 */ All | f(1)
while(!byte aligned())
rbsp_alignment_zero_bit /* equal to 0 */ All | f(1)
}

48 Rec. ITU-T H.264 (01/2012)

7.3.2.12 Prefix NAL unit RBSP syntax

7.3.3

prefix_nal unit_rbsp() { C | Descriptor
if(svc_extension_flag)
prefix_nal unit_svc() /* specified in Annex G */ 2
H
7.3.2.13 Slice layer extension RBSP syntax
slice_layer extension_rbsp() { C Descriptor
if(svc_extension flag) {
slice_header in_scalable extension() /* specified in Annex G */ 2
if(!slice_skip flag)
slice_data_in_scalable extension() /* specified in Annex G */ 21314
} else {
slice_header() 2
slice_data() 2134
H
rbsp_slice_trailing_bits() 2
H
Slice header syntax
slice_header() { C | Descriptor
first mb_in_slice 2 | ue(v)
slice_type 2 ue(v)
pic_parameter_set_id 2 | ue(v)
if(separate_colour plane flag == 1)
colour_plane_id 2 | u®?)
frame_num 2 | uv)
if(!'frame _mbs_only flag) {
field_pic_flag 2 u(l)
if(field pic flag)
bottom_field flag 2 u(l)
§
if(IdrPicFlag)
idr_pic_id 2 | ue(v)
if(pic_order cnt _type == 0) {
pic_order_cnt_Isb 2 | uv)
if(bottom_field pic order in frame present flag && !field pic_flag)
delta_pic_order_cnt_bottom 2 | se(v)
}
if(pic_order cnt type ==1 && !delta_pic_order always zero flag) {
delta_pic_order_cnt[0] 2 | se(v)
if(bottom_field pic order in frame present flag && !field pic flag)
delta_pic_order_cnt[1] 2 | se(v)
§

Rec. ITU-T H.264 (01/2012)

49

50

if(redundant_pic_cnt present flag)

redundant_pic_cnt ue(v)
if(slice type == B)
direct_spatial_mv_pred_flag u(1)
if(slice type == P || slice type == SP || slice type == B) {
num_ref _idx_active_override flag u(1)
if(num_ref idx active override flag) {
num_ref idx 10 _active_minusl ue(v)
if(slice type == B)
num_ref idx _I1_active minusl ue(v)
}
§
if(nal_unit type == 20)
ref pic_list mve modification() /* specified in Annex H */
else
ref pic_list modification()
if((weighted pred flag && (slice type == P || slice_type == SP)) ||
(weighted_bipred_idc == 1 && slice type == B))
pred_weight table()
if(nal _ref idc !=0)
dec ref pic_marking()
if(entropy coding mode flag && slice type != I && slice type != SI)
cabac_init_idc ue(v)
slice_qp_delta se(v)
if(slice type == SP || slice type == SI) {
if(slice_type == SP)
sp_for_switch_flag u(l)
slice_qs_delta se(v)
}
if(deblocking_filter control present flag) {
disable_deblocking_filter idc ue(v)
if(disable deblocking_filter idc != 1) {
slice_alpha_c0_offset_div2 se(v)
slice_beta_offset_div2 se(v)
}
H
if(num_slice groups minusl >0 &&
slice_group map type >=3 && slice group map type <=5)
slice_group_change_cycle u(v)

Rec. ITU-T H.264 (01/2012)

7.3.3.1

Reference picture list modification syntax

ref pic_list modification() {

C | Descriptor

if(slice type % 5 = 2 && slice type %5 = 4) {

ref _pic_list modification_flag 10

2 [u()

if(ref pic_list_modification_flag 10)

do {

modification_of pic_nums_idc

2 ue(v)

if(modification_of pic nums idc == 0 ||
modification of pic nums idc == 1)

abs_diff pic num_minusl

2 | ue(v)

else if(modification_of pic_nums_ide == 2)

long_term_pic_num

2 | ue(v)

} while(modification_of pic nums_idc != 3)

}

if(slice type %5 == 1) {

ref _pic_list modification_flag 11

2 | u(D)

if(ref pic_list_modification_flag 11)

do {

modification_of pic_nums_idc

2 ue(v)

if(modification_of pic nums_idc == 0 ||
modification of pic nums idc == 1)

abs_diff pic_ num_minusl

2 | ue(v)

else if(modification_of pic nums idc == 2)

long_term_pic_num

2 | ue(v)

} while(modification_of pic nums idc != 3)

Rec. ITU-T H.264 (01/2012)

51

7.3.3.2

52

Prediction weight table syntax

pred weight table() { Descriptor
luma_log2 weight denom ue(v)
if(ChromaArrayType != 0)
chroma_log2 weight _denom ue(v)
for(1=0;1<=num_ref idx 10 active minusl; i++) {
luma_weight 10 flag u(l)
if(luma_weight 10 flag) {
luma_weight 10[i] se(v)
luma_offset 10]1] se(v)
H
if (ChromaArrayType != 0) {
chroma_weight 10 flag u(l)
if(chroma_weight 10 flag)
for(j=0;j<2;j++) {
chroma_weight 10[i][j] se(v)
chroma_offset 10[i][]] se(v)
i
H
i
if(slice type %5 == 1)
for(1=0;1<=num_ref idx Il active minusl;i++) {
luma_weight 11 _flag u(l)
if(luma_weight 11 _flag) {
luma_weight 11 1] se(v)
luma_offset 11]1] se(v)
H
if(ChromaArrayType != 0) {
chroma_weight 11 _flag u(l)
if(chroma_weight 11 _flag)
for(j=0;j<2;j++) {
chroma_weight I11[1i][j] se(v)
chroma_offset 11[i][]] se(v)

Rec. ITU-T H.264 (01/2012)

7.3.3.3

Decoded reference picture marking syntax

dec_ref pic_marking() { C | Descriptor
if(IdrPicFlag) {
no_output_of prior_pics_flag 215 | u(l)
long_term_reference flag 215 | u(l)
}else {
adaptive_ref pic_marking mode_flag 2|5 | u(l)
if(adaptive ref pic_marking mode flag)
do {
memory_management_control_operation 2|5 | ue(v)
if(memory_management control_operation == 1 ||
memory management control operation == 3)
difference_of pic_nums_minusl 2|5 | ue(v)
if(memory management control operation == 2)
long_term_pic_num 2|5 | ue(v)
if(memory management_control_operation == 3 ||
memory management _control operation == 6)
long_term_frame_idx 215 | ue(v)
if(memory _management_control_operation == 4)
max_long_term_frame idx_plusl 2|5 | ue(v)
} while(memory management control operation != 0)
!
}

Rec. ITU-T H.264 (01/2012)

53

7.3.4

54

Slice data syntax

slice_data() {

Descriptor

if(entropy_coding_mode flag)

while(!byte aligned())

cabac_alignment_one_bit

f1)

CurrMbAddr = first mb_in_slice * (1 + MbaffFrameFlag)

moreDataFlag = 1

prevMbSkipped = 0

do {

if(slice type !'= 1 && slice type != SI)

if(lentropy_coding_mode flag) {

mb_skip_run

ue(v)

prevMbSkipped = (mb_skip run>0)

for(1i=0; i<mb_skip run; i++)

CurrMbAddr = NextMbAddress(CurrMbAddr)

if(mb_skip run>0)

moreDataFlag = more_rbsp data()

} else {

mb_skip_flag

ae(v)

moreDataFlag = !Imb_skip flag

}

if(moreDataFlag) {

if(MbaffFrameFlag && (CurrMbAddr %2 == 0 ||
(CurrMbAddr % 2 == 1 && prevMbSkipped)))

mb_field decoding_flag

u(l) | ae(v)

macroblock layer()

21314

}

if(!entropy _coding mode flag)

moreDataFlag = more rbsp data()

else {

if(slice type !'= 1 && slice type != SI)

prevMbSkipped = mb_skip flag

if(MbaffFrameFlag && CurrMbAddr %2 == 0)

moreDataFlag = 1

else {

end_of slice flag

ae(v)

moreDataFlag = lend_of slice flag

}

CurrMbAddr = NextMbAddress(CurrMbAddr)

} while(moreDataFlag)

Rec. ITU-T H.264 (01/2012)

7.3.5

Macroblock layer syntax

macroblock layer() { C | Descriptor
mb_type 2 ue(v) | ae(v)
if(mb_type == 1 PCM)) {
while(!byte aligned())
pem_alignment_zero_bit 3 f(1)
for(i=10;1<256;i++)
pem_sample lumafi|] 3 u(v)
for(i=0;1<2* MbWidthC * MbHeightC; i++)
pcem_sample chromali | 3 u(v)
} else {
noSubMbPartSizeLessThan8x8Flag = 1
if(mb_type !'= I NxN &&
MbPartPredMode(mb_type, 0) != Intra 16x16 &&
NumMbPart(mb type) == 4) {
sub_mb_pred(mb_type) 2
for(mbPartldx = 0; mbPartldx < 4; mbPartldx++)
if(sub_mb_type[mbPartldx | != B_Direct 8x8) {
if NumSubMbPart(sub_mb_type[mbPartldx]) > 1)
noSubMbPartSizeLessThan8x8Flag = 0
} else if(!direct 8x8 inference flag)
noSubMbPartSizeLessThan8x8Flag = 0
} else {
if(transform_8x8 mode flag && mb type == 1 NxN)
transform_size 8x8 flag u(l) | ae(v)
mb_pred(mb_type)
}
if(MbPartPredMode(mb_type, 0) != Intra 16x16) {
coded_block pattern 2 me(Vv) | ae(v)
if(CodedBlockPatternLuma > 0 &&
transform 8x8 mode flag && mb type !'= I NxN &&
noSubMbPartSizelessThan8x8Flag &&
(mb type != B Direct 16x16 || direct 8x8 inference flag))
transform_size 8x8 flag 2 u(l) | ae(v)
}
if(CodedBlockPatternLuma > 0 || CodedBlockPatternChroma >0 | |
MbPartPredMode(mb type, 0) == Intra 16x16) {
mb_qp_delta 2 se(v) | ae(v)
residual(0, 15) 3|4

Rec. ITU-T H.264 (01/2012)

55

7.3.5.1

56

Macroblock prediction syntax

mb_pred(mb_type) {

Descriptor

if(MbPartPredMode(mb_type, 0) == Intra 4x4 ||
MbPartPredMode(mb_type, 0) == Intra_8x8 ||
MbPartPredMode(mb_type, 0) == Intra 16x16) {

if(MbPartPredMode(mb_type, 0) == Intra 4x4)

for(luma4x4Blkldx=0; luma4x4BlkIdx<16; luma4x4BlkIdx++) {

prev_intra4x4 pred_mode_flag| luma4x4BIkldx |

u(l) | ae(v)

if(!prev_intra4x4 pred mode flag| luma4x4BIkldx |)

rem_intradx4 pred_mode[luma4x4BIkIdx]

u(3) | ae(v)

}

if(MbPartPredMode(mb_type, 0) == Intra 8x8)

for(luma8x8BlkIdx=0; luma8x8Blkldx<4; luma8x8BIlkIdx++) {

prev_intra8x8 pred _mode flag[luma8x8BlkIdx |

u(l) | ae(v)

if(!prev_intra8x8 pred mode flag[luma8x8Blkldx])

rem_intra8x8 pred_mode| luma8x8BlkIdx]

u(3) | ae(v)

}

if(ChromaArrayType == 1 || ChromaArrayType == 2)

intra_chroma_pred_mode

ue(v) | ae(v)

} else if(MbPartPredMode(mb_type, 0) != Direct) {

for(mbPartldx = 0; mbPartldx < NumMbPart(mb_type); mbPartldx++)

if((num_ref idx 10 active minusl >0 ||
mb_field decoding flag != field pic flag) &&
MbPartPredMode(mb_type, mbPartldx) != Pred L1)

ref_idx_10[mbPartldx]

te(v) | ae(v)

for(mbPartldx = 0; mbPartldx < NumMbPart(mb_type); mbPartldx++)

if((num_ref idx 11 _active minusl > 0 ||
mb_field decoding flag != field pic flag) &&
MbPartPredMode(mb_type, mbPartldx) != Pred LO)

ref_idx_11[mbPartldx |

te(v) | ae(v)

for(mbPartldx = 0; mbPartldx < NumMbPart(mb_type); mbPartldx++)

if(MbPartPredMode (mb_type, mbPartldx) != Pred L1)

for(compldx = 0; compldx < 2; compldx++)

mvd_10[mbPartldx][0][compldx]

se(v) | ae(v)

for(mbPartldx = 0; mbPartldx < NumMbPart(mb_type); mbPartldx++)

if(MbPartPredMode(mb_type, mbPartldx) != Pred LO)

for(compldx = 0; compldx < 2; compldx++)

mvd_11[mbPartldx][0][compldx |

se(v) | ae(v)

Rec. ITU-T H.264 (01/2012)

7.3.5.2 Sub-macroblock prediction syntax

sub_ mb_pred(mb_type) { C | Descriptor
for(mbPartldx = 0; mbPartldx < 4; mbPartldx++)
sub_mb_type[mbPartldx] 2 | ue(v)|ae(v)

for(mbPartldx = 0; mbPartldx < 4; mbPartldx++)
if((num_ref idx 10 active minusl > 0 ||
mb_field decoding flag != field pic flag) &&
mb_type != P 8x8ref0 &&
sub mb_type[mbPartldx] != B Direct 8x8 &&
SubMbPredMode(sub_mb_type[mbPartldx]) != Pred L1)
ref _idx_10[mbPartldx | 2 | te(v) | ae(v)
for(mbPartldx = 0; mbPartldx < 4; mbPartldx++)
if((num_ref idx 11 _active minusl > 0 ||
mb_field decoding flag != field pic flag) &&
sub_ mb_type[mbPartldx | != B_Direct 8x8 &&
SubMbPredMode(sub_mb_type[mbPartldx]) != Pred LO)
ref_idx_11[mbPartldx | 2 | te(v) | ae(v)
for(mbPartldx = 0; mbPartldx < 4; mbPartldx++)
if(sub_mb_type[mbPartldx] != B Direct 8x8 &&
SubMbPredMode(sub_mb_type[mbPartldx]) != Pred L1)
for(subMbPartldx = 0;
subMbPartldx < NumSubMbPart(sub_mb_type[mbPartldx]);
subMbPartldx++)
for(compldx = 0; compldx < 2; compIdx++)
mvd_10[mbPartldx |[subMbPartldx][compldx | 2 | se(v)|ae(v)
for(mbPartldx = 0; mbPartldx < 4; mbPartldx++)
if(sub_mb_type[mbPartldx] != B Direct 8x8 &&
SubMbPredMode(sub_ mb_type[mbPartldx]) != Pred LO)
for(subMbPartldx = 0;
subMbPartldx < NumSubMbPart(sub_mb_type[mbPartldx]);
subMbPartIdx++)
for(compldx = 0; compldx < 2; compldx++)
mvd_11[mbPartldx][subMbPartldx][compldx | 2 | se(v)|ae(v)

Rec. ITU-T H.264 (01/2012) 57

7.35.3

58

Residual data syntax

residual(startldx, endIdx) {

Descriptor

if(lentropy coding mode flag)

residual block = residual block cavlc

else

residual_block = residual block cabac

residual luma(i16x16DClevel, i16x16AClevel, leveldx4, level8x8,
startldx, endldx)

314

Intral6x16DCLevel = i116x16DClevel

Intral6x16ACLevel = i16x16AClevel

LumalLeveldx4 = leveldx4

LumaLevel8x8 = level8x8

if(ChromaArrayType == 1 || ChromaArrayType == 2) {

NumC8x8 =4/ (SubWidthC * SubHeightC)

for(iCbCr = 0; iCbCr < 2; iCbCr++)

if((CodedBlockPatternChroma & 3) && startldx == 0)
/* chroma DC residual present */

residual_block(ChromaDCLevel[iCbCr], 0, 4 * NumC8x8 — 1,
4 * NumC8x8)

314

else

for(i=0;1<4 * NumC8x8; i++)

ChromaDCLevel[iCbCr][i]=0

for(iCbCr = 0; iCbCr < 2; iCbCr++)

for(i8x8 = 0; i8x8 < NumC8x8; i8x8++)

for(i4x4 = 0; i4x4 < 4; idx4++)

if(CodedBlockPatternChroma & 2)
/* chroma AC residual present */

residual block(ChromaACLevel[iCbCr][i8x8*4+i4x4],
Max(0, startldx — 1), endldx — 1, 15)

314

else

for(i=0;1<15;i++)

ChromaACLevel[iCbCr][i8x8*4+i4x4 |[i]=0

} else if(ChromaArrayType == 3) {

residual luma(i16x16DClevel, i16x16AClevel, level4x4, level8x8,
startldx, endIdx)

314

CbIntral6x16DCLevel =116x16DClevel

CbIntral6x16ACLevel =116x16AClevel

CbLeveldx4 = leveldx4

CbLevel8x8 = level8x8

residual luma(i16x16DClevel, i16x16AClevel, leveldx4, level8x8,
startldx, endldx)

314

CrIntral6x16DCLevel = 116x16DClevel

Crintral6x16ACLevel = 116x16AClevel

CrLeveldx4 = level4x4

CrLevel8x8 = level8x8

Rec. ITU-T H.264 (01/2012)

7.3.5.3.1 Residual luma syntax

residual luma(i16x16DClevel, i16x16AClevel, level4x4, level8x8, C | Descriptor
startldx, endldx) {
if(startldx == 0 && MbPartPredMode(mb_type, 0) == Intra 16x16)

residual_block(i16x16DClevel, 0, 15, 16) 3
for(18x8 = 0; 18x8 < 4; 18x8++)
if(!transform_size 8x8 flag || !entropy coding mode flag)

for(14x4 = 0; 14x4 < 4; 14x4++) {
if(CodedBlockPatternLuma & (1 <<i8x8))
if(MbPartPredMode(mb_type, 0) == Intra_16x16)

residual block(i16x16AClevel[i8x8*4+ i4x4], 3
Max(0, startldx — 1), endldx — 1, 15)

else

residual_block(leveldx4[i8x8 * 4 + i4x4], 3|4
startldx, endIdx, 16)
else if(MbPartPredMode(mb_type, 0) == Intra 16x16)

for(i=0;1<15;i++)
il6x16AClevel[i8x8 *4 +i4x4 J[i1]=0

else
for(1=0;1<16; i++)
leveldx4[i8x8 *4 +i4x4][1]=0
if(!entropy_coding mode flag && transform_size 8x8 flag)
for(1=0;1<16; i++)
level8x8[i8x8][4 * i +14x4 | = leveldx4[i8x8 * 4 + i4x4][1]

b
else if(CodedBlockPatternL.uma & (1 <<i8x8))

residual block(level8x8[i8x8], 4 * startldx, 4 * endldx + 3, 64) 3|4
else
for(1=0;1<64;it++)
level8x8[18x8 J[1]=0

Rec. ITU-T H.264 (01/2012) 59

7.3.5.3.2

Residual block CAVLC syntax

residual_block cavlc(coeffLevel, startldx, endldx, maxNumCoeff') {

Descriptor

for(1= 0; i < maxNumCoeff; i++)

coeffLevel[1]=0

coeff_token

314

ce(v)

if(TotalCoeff(coeff token)>0) {

if(TotalCoeff(coeff token)> 10 && TrailingOnes(coeff token) <3)

suffixLength = 1

else

suffixLength = 0

for(1=0; 1< TotalCoeff(coeff token); i++)

if(i < TrailingOnes(coeff token)) {

trailing_ones_sign_flag

314

u(l)

levelVal[i]=1—2 * trailing_ones_sign flag

} else {

level prefix

314

ce(v)

levelCode = (Min(15, level prefix) << suffixLength)

if(suffixLength >0 || level prefix >=14) {

level _suffix

314

u(v)

levelCode += level_suffix

}

if(level prefix >= 15 && suffixLength == 0)

levelCode += 15

if(level prefix >= 16)

levelCode += (1 << (level prefix —3)) — 4096

if(i == TrailingOnes(coeff token) &&
TrailingOnes(coeff token)<3)

levelCode +=2

if(levelCode %2 == 0)

levelVal[i] = (levelCode +2)>>1

else

levelVal[i]=(—levelCode —1)>>1

if(suffixLength == 0)

suffixLength = 1

if(Abs(levelVal[1]) > (3 <<(suffixLength—1)) &&
suffixLength <6)

suffixLength++

}

if(TotalCoeff(coeff token) <endldx — startldx + 1) {

total_zeros

314

ce(v)

zerosLeft = total _zeros

} else

zerosLeft =0

for(i=0; 1< TotalCoeff(coeff token)—1;it+) {

if(zerosLeft>0) {

run_before

314

ce(v)

runVal[i] = run_before

} else

runVal[1]=0

60

Rec. ITU-T H.264 (01/2012)

zerosLeft = zerosLeft — runVal[i]

§
runVal[TotalCoeff(coeff token) — 1] = zerosLeft
coeffNum = —1

for(1= TotalCoeff(coeff token)—1;i>=0;i——) {
coeffNum +=runVal[i] + 1
coeffLevel[startldx + coeffNum] = levelVal[i]

7.3.5.3.3 Residual block CABAC syntax

residual block cabac(coeffLevel, startldx, endldx, maxNumCoeff') { C | Descriptor
if(maxNumCoeff != 64 || ChromaArrayType == 3)
coded_block_flag 314 | ae(v)

for(1= 0; i < maxNumCoeff; i++)
coeffLevel[1]=0

if(coded block flag) {
numCoeff = endldx + 1

i = startldx
while(1 <numCoeff—1) {
significant_coeff flag| i | 314 | ae(v)

if(significant coeff flag[i]) {
last_significant_coeff flag|i] 314 | ae(v)

if(last_significant coeff flag[i])
numCoeff=1+ 1

}

it++
}
coeff_abs_level minusl|[numCoeff—1] 314 | ae(v)
coeff_sign_flag] numCoeff — 1] 314 | ae(v)

coeffLevel[numCoeff—1]=
(coeff abs_level minusl[numCoeff—1]+1)*
(1 =2 * coeff sign flag] numCoeff—11])

for(1 =numCoeff — 2; i >= startldx; i— —)

if(significant coeff flag[i]) {

coeff_abs level minus1|[i|] 314 | ae(v)

coeff_sign_flag[i|] 314 | ae(v)

coeffLevel[i] = (coeff abs level minusl[i]+1)*
(1 =2 * coeff sign flag[i])

Rec. ITU-T H.264 (01/2012) 61

7.4 Semantics

Semantics associated with the syntax structures and with the syntax elements within these structures are specified in this
clause. When the semantics of a syntax element are specified using a table or a set of tables, any values that are not
specified in the table(s) shall not be present in the bitstream unless otherwise specified in this Recommendation |
International Standard.

7.4.1 NAL unit semantics

NOTE 1 — The VCL is specified to efficiently represent the content of the video data. The NAL is specified to format that data and
provide header information in a manner appropriate for conveyance on a variety of communication channels or storage media. All
data are contained in NAL units, each of which contains an integer number of bytes. A NAL unit specifies a generic format for use
in both packet-oriented and bitstream systems. The format of NAL units for both packet-oriented transport and byte stream is
identical except that each NAL unit can be preceded by a start code prefix and extra padding bytes in the byte stream format.

NumBytesInNALunit specifies the size of the NAL unit in bytes. This value is required for decoding of the NAL unit.
Some form of demarcation of NAL unit boundaries is necessary to enable inference of NumBytesInNALunit. One such
demarcation method is specified in Annex B for the byte stream format. Other methods of demarcation may be specified
outside of this Recommendation | International Standard.

forbidden_zero_bit shall be equal to 0.

nal_ref idc not equal to 0 specifies that the content of the NAL unit contains a sequence parameter set, a sequence
parameter set extension, a subset sequence parameter set, a picture parameter set, a slice of a reference picture, a slice
data partition of a reference picture, or a prefix NAL unit preceding a slice of a reference picture.

For coded video sequences conforming to one or more of the profiles specified in Annex A that are decoded using the
decoding process specified in clauses 2-9, nal ref idc equal to O for a NAL unit containing a slice or slice data partition
indicates that the slice or slice data partition is part of a non-reference picture.

nal ref idc shall not be equal to 0 for sequence parameter set or sequence parameter set extension or subset sequence
parameter set or picture parameter set NAL units. When nal ref idc is equal to O for one NAL unit with nal_unit_type in
the range of 1 to 4, inclusive, of a particular picture, it shall be equal to 0 for all NAL units with nal_unit_type in the
range of 1 to 4, inclusive, of the picture.

nal ref idc shall not be equal to 0 for NAL units with nal unit type equal to 5.
nal_ref idc shall be equal to 0 for all NAL units having nal unit type equal to 6, 9, 10, 11, or 12.
nal_unit_type specifies the type of RBSP data structure contained in the NAL unit as specified in Table 7-1.

The column marked "C" in Table 7-1 lists the categories of the syntax elements that may be present in the NAL unit. In
addition, syntax elements with syntax category "All" may be present, as determined by the syntax and semantics of the
RBSP data structure. The presence or absence of any syntax elements of a particular listed category is determined from
the syntax and semantics of the associated RBSP data structure. nal unit type shall not be equal to 3 or 4 unless at least
one syntax element is present in the RBSP data structure having a syntax element category value equal to the value of
nal_unit_type and not categorized as "All".

For coded video sequences conforming to one or more of the profiles specified in Annex A that are decoded using the
decoding process specified in clauses 2-9, VCL and non-VCL NAL units are specified in Table 7-1 in the column
labelled "Annex A NAL unit type class". For coded video sequences conforming to one or more of the profiles specified
in Annex G that are decoded using the decoding process specified in Annex G and for coded video sequences
conforming to one or more of the profiles specified in Annex H that are decoded using the decoding process specified in
Annex H, VCL and non-VCL NAL units are specified in Table 7-1 in the column labelled "Annex G and Annex H NAL
unit type class". The entry "suffix dependent" for nal unit_type equal to 14 is specified as follows:

— If the NAL unit directly following in decoding order a NAL unit with nal unit_type equal to 14 is a NAL unit with
nal_unit_type equal to 1 or 5, the NAL unit with nal unit type equal to 14 is a VCL NAL unit.

— Otherwise (the NAL unit directly following in decoding order a NAL unit with nal unit_type equal to 14 is a NAL
unit with nal_unit_type not equal to 1 or 5), the NAL unit with nal unit type equal to 14 is a non-VCL NAL unit.
Decoders shall ignore (remove from the bitstream and discard) the NAL unit with nal unit_type equal to 14 and the
NAL unit directly following (in decoding order) the NAL unit with nal_unit_type equal to 14.

62 Rec. ITU-T H.264 (01/2012)

Table 7-1 — NAL unit type codes, syntax element categories, and NAL unit type classes

nal_unit_type Content of NAL unit and RBSP syntax structure C Annex A | Annex G
NAL unit and
type class | Annex H
NAL unit
type class
0 Unspecified non-VCL | non-VCL
1 Coded slice of a non-IDR picture 2,3,4 VCL VCL
slice_layer without_partitioning_rbsp()
2 Coded slice data partition A 2 VCL not
slice_data_partition_a layer rbsp() applicable
3 Coded slice data partition B 3 VCL not
slice_data_partition b _layer rbsp() applicable
4 Coded slice data partition C 4 VCL not
slice_data_partition_c layer rbsp() applicable
5 Coded slice of an IDR picture 2,3 VCL VCL
slice_layer without partitioning_rbsp()
6 Supplemental enhancement information (SEI) 5 non-VCL | non-VCL
sei_rbsp()
7 Sequence parameter set 0 non-VCL | non-VCL
seq_parameter_set_rbsp()
8 Picture parameter set 1 non-VCL | non-VCL
pic_parameter_set rbsp()
9 Access unit delimiter 6 non-VCL | non-VCL
access_unit_delimiter rbsp()
10 End of sequence 7 non-VCL | non-VCL
end of seq rbsp()
11 End of stream 8 non-VCL | non-VCL
end of stream rbsp()
12 Filler data 9 non-VCL | non-VCL
filler_data_rbsp()
13 Sequence parameter set extension 10 non-VCL | non-VCL
seq_parameter set extension_rbsp()
14 Prefix NAL unit 2 non-VCL suffix
prefix_nal unit rbsp() dependent
15 Subset sequence parameter set 0 non-VCL | non-VCL
subset_seq_parameter set rbsp()
16..18 Reserved non-VCL | non-VCL
19 Coded slice of an auxiliary coded picture without partitioning | 2,3,4 | non-VCL | non-VCL
slice_layer without_partitioning_rbsp()
20 Coded slice extension 2,3,4 | non-VCL VCL
slice_layer extension_rbsp()
21..23 Reserved non-VCL | non-VCL
24.31 Unspecified non-VCL | non-VCL

When NAL units with nal unit type equal to 13 or 19 are present in a coded video sequence, decoders shall either
perform the (optional) decoding process specified for these NAL units or shall ignore (remove from the bitstream and
discard) the contents of these NAL units.

Rec. ITU-T H.264 (01/2012) 63

Decoders that conform to one or more of the profiles specified in Annex A rather than the profiles specified in
Annexes G or H shall ignore (remove from the bitstream and discard) the contents of all NAL units with nal_unit_type
equal to 14, 15, or 20.

NAL units that use nal unit type equal to 0 or in the range of 24..31, inclusive, shall not affect the decoding process
specified in this Recommendation | International Standard.
NOTE 2 — NAL unit types 0 and 24..31 may be used as determined by the application. No decoding process for these values of
nal_unit_type is specified in this Recommendation | International Standard. Since different applications might use NAL unit types
0 and 24..31 for different purposes, particular care must be exercised in the design of encoders that generate NAL units with
nal_unit_type equal to 0 or in the range of 24 to 31, inclusive, and in the design of decoders that interpret the content of NAL units
with nal_unit_type equal to 0 or in the range of 24 to 31, inclusive.

Decoders shall ignore (remove from the bitstream and discard) the contents of all NAL units that use reserved values of

nal unit type.
NOTE 3 — This requirement allows future definition of compatible extensions to this Recommendation | International Standard.
NOTE 4 — In previous editions of this Recommendation | International Standard, the NAL unit types 13..15 and 19..20 (or a subset
of these NAL unit types) were reserved and no decoding process for NAL units having these values of nal unit type was
specified. In later editions of this Recommendation | International Standard, currently reserved values of nal unit type might
become non-reserved and a decoding process for these values of nal unit type might be specified. Encoders should take into
consideration that the values of nal unit type that were reserved in previous editions of this Recommendation | International
Standard might be ignored by decoders.

In the text, coded slice NAL unit collectively refers to a coded slice of a non-IDR picture NAL unit or to a coded slice of
an IDR picture NAL unit. The variable IdrPicFlag is specified as

IdrPicFlag = ((nal_unit type == 5) ? 1 : 0) (7-1)

When the value of nal unit_type is equal to 5 for a NAL unit containing a slice of a particular picture, the picture shall
not contain NAL units with nal unit_type in the range of 1 to 4, inclusive. For coded video sequences conforming to one
or more of the profiles specified in Annex A that are decoded using the decoding process specified in clauses 2-9, such a
picture is referred to as an IDR picture.

NOTE 5 - Slice data partitioning cannot be used for IDR pictures.

svc_extension_flag indicates whether a nal unit header svc extension() or nal unit header mvc extension() will
follow next in the syntax structure.

The value of svc_extension_flag shall be equal to 1 for coded video sequences conforming to one or more profiles
specified in Annex G. Decoders conforming to one or more profiles specified in Annex G shall ignore (remove from the
bitstream and discard) NAL units for which nal unit_type is equal to 14 or 20 and for which svc_extension_flag is equal
to 0.

The value of svc_extension_flag shall be equal to O for coded video sequences conforming to one or more profiles
specified in Annex H. Decoders conforming to one or more profiles specified in Annex H shall ignore (remove from the
bitstream and discard) NAL units for which nal unit_type is equal to 14 or 20 and for which svc_extension_flag is equal
to 1.

rbsp_byte][i] is the i-th byte of an RBSP. An RBSP is specified as an ordered sequence of bytes as follows.

The RBSP contains an SODB as follows:
— If the SODB is empty (i.e., zero bits in length), the RBSP is also empty.
— Otherwise, the RBSP contains the SODB as follows:

1) The first byte of the RBSP contains the (most significant, left-most) eight bits of the SODB; the next byte of
the RBSP contains the next eight bits of the SODB, etc., until fewer than eight bits of the SODB remain.

2) rbsp trailing bits() are present after the SODB as follows:

i) The first (most significant, left-most) bits of the final RBSP byte contains the remaining bits of the SODB
(if any).

ii) The next bit consists of a single rbsp_stop_one_bit equal to 1.

iiil) When the rbsp stop one bit is not the last bit of a byte-aligned byte, one or more
rbsp_alignment zero_bit is present to result in byte alignment.

3) One or more cabac_zero word 16-bit syntax elements equal to 0x0000 may be present in some RBSPs after
the rbsp_trailing bits() at the end of the RBSP.

Syntax structures having these RBSP properties are denoted in the syntax tables using an " _rbsp" suffix. These structures
shall be carried within NAL units as the content of the rbsp byte[i] data bytes. The association of the RBSP syntax
structures to the NAL units shall be as specified in Table 7-1.

64 Rec. ITU-T H.264 (01/2012)

NOTE 6 — When the boundaries of the RBSP are known, the decoder can extract the SODB from the RBSP by concatenating the
bits of the bytes of the RBSP and discarding the rbsp stop one bit, which is the last (least significant, right-most) bit equal to 1,
and discarding any following (less significant, farther to the right) bits that follow it, which are equal to 0. The data necessary for
the decoding process is contained in the SODB part of the RBSP.

emulation_prevention_three byte is a byte equal to 0x03. When an emulation_prevention_three byte is present in the
NAL unit, it shall be discarded by the decoding process.

The last byte of the NAL unit shall not be equal to 0x00.

Within the NAL unit, the following three-byte sequences shall not occur at any byte-aligned position:
- 0x000000
- 0x000001
- 0x000002

Within the NAL unit, any four-byte sequence that starts with 0x000003 other than the following sequences shall not
occur at any byte-aligned position:

- 0x00000300
- 0x00000301
- 0x00000302
— 0x00000303

NOTE 7 — When nal unit_type is equal to 0, particular care must be exercised in the design of encoders to avoid the presence of
the above-listed three-byte and four-byte patterns at the beginning of the NAL unit syntax structure, as the syntax element
emulation_prevention_three byte cannot be the third byte of a NAL unit.

7.4.1.1 Encapsulation of an SODB within an RBSP (informative)
This clause does not form an integral part of this Recommendation | International Standard.

The form of encapsulation of an SODB within an RBSP and the use of the emulation prevention_three byte for
encapsulation of an RBSP within a NAL unit is specified for the following purposes:

— to prevent the emulation of start codes within NAL units while allowing any arbitrary SODB to be represented
within a NAL unit,

— to enable identification of the end of the SODB within the NAL unit by searching the RBSP for the
rbsp_stop_one bit starting at the end of the RBSP,

— to enable a NAL unit to have a size larger than that of the SODB under some circumstances (using one or more
cabac_zero_word).

The encoder can produce a NAL unit from an RBSP by the following procedure:
1. The RBSP data is searched for byte-aligned bits of the following binary patterns:

'00000000 00000000 000000xx" (where xx represents any 2 bit pattern: 00, 01, 10, or 11),
and a byte equal to 0x03 is inserted to replace these bit patterns with the patterns:
'00000000 00000000 00000011 000000xx',

and finally, when the last byte of the RBSP data is equal to 0x00 (which can only occur when the RBSP ends in
a cabac_zero_word), a final byte equal to 0x03 is appended to the end of the data. The last zero byte of a
byte-aligned three-byte sequence 0x000000 in the RBSP (which is replaced by the four-byte sequence
0x00000300) is taken into account when searching the RBSP data for the next occurrence of byte-aligned bits
with the binary patterns specified above.

2. The resulting sequence of bytes is then prefixed as follows:

— Ifnal unit type is not equal to 14 or 20, the sequence of bytes is prefixed with the first byte of the NAL
unit containing the syntax elements forbidden zero bit, nal ref idc, and nal unit type, where
nal unit type indicates the type of RBSP data structure the NAL unit contains.

— Otherwise (nal_unit_type is equal to 14 or 20), the sequence of bytes is prefixed with the first four bytes of
the NAL unit, where the first byte contains the syntax elements forbidden zero bit, nal ref idc, and
nal unit type and the following three bytes contain the syntax structure nal_unit_header svc_extension().
The syntax element nal unit type in the first byte indicates the presence of the syntax structure
nal_unit_header svc_extension() in the following three bytes and the type of RBSP data structure the
NAL unit contains.

The process specified above results in the construction of the entire NAL unit.

Rec. ITU-T H.264 (01/2012) 65

This process can allow any SODB to be represented in a NAL unit while ensuring that
— no byte-aligned start code prefix is emulated within the NAL unit,

— no sequence of 8 zero-valued bits followed by a start code prefix, regardless of byte-alignment, is emulated within
the NAL unit.

7.4.1.2 Order of NAL units and association to coded pictures, access units, and video sequences
This clause specifies constraints on the order of NAL units in the bitstream.

Any order of NAL units in the bitstream obeying these constraints is referred to in the text as the decoding order of NAL
units. Within a NAL unit, the syntax in clauses 7.3, D.1, and E.1 specifies the decoding order of syntax elements.
Decoders shall be capable of receiving NAL units and their syntax elements in decoding order.

7.4.1.2.1 Order of sequence and picture parameter set RBSPs and their activation

This clause specifies the activation process of picture and sequence parameter sets for coded video sequences that
conform to one or more of the profiles specified in Annex A and are decoded using the decoding process specified in
clauses 2-9.

NOTE 1 — The sequence and picture parameter set mechanism decouples the transmission of infrequently changing information

from the transmission of coded macroblock data. Sequence and picture parameter sets may, in some applications, be conveyed
"out-of-band" using a reliable transport mechanism.

A picture parameter set RBSP includes parameters that can be referred to by the coded slice NAL units or coded slice
data partition A NAL units of one or more coded pictures. Each picture parameter set RBSP is initially considered not
active at the start of the operation of the decoding process. At most one picture parameter set RBSP is considered active
at any given moment during the operation of the decoding process, and the activation of any particular picture parameter
set RBSP results in the deactivation of the previously-active picture parameter set RBSP (if any).

When a picture parameter set RBSP (with a particular value of pic_parameter_set_id) is not active and it is referred to by
a coded slice NAL unit or coded slice data partition A NAL unit (using that value of pic_parameter set id), it is
activated. This picture parameter set RBSP is called the active picture parameter set RBSP until it is deactivated by the
activation of another picture parameter set RBSP. A picture parameter set RBSP, with that particular value of
pic_parameter set id, shall be available to the decoding process prior to its activation.

Any picture parameter set NAL unit containing the value of pic_parameter_set id for the active picture parameter set
RBSP for a coded picture shall have the same content as that of the active picture parameter set RBSP for the coded
picture unless it follows the last VCL NAL unit of the coded picture and precedes the first VCL NAL unit of another
coded picture.

When a picture parameter set NAL unit with a particular value of pic_parameter set id is received, its content replaces
the content of the previous picture parameter set NAL unit, in decoding order, with the same value of
pic_parameter set id (when a previous picture parameter set NAL unit with the same value of pic_parameter set id was
present in the bitstream).

NOTE 2 — A decoder must be capable of simultaneously storing the contents of the picture parameter sets for all values of

pic_parameter_set id. The content of the picture parameter set with a particular value of pic_parameter_set id is overwritten when
a new picture parameter set NAL unit with the same value of pic_parameter_set_id is received.

A sequence parameter set RBSP includes parameters that can be referred to by one or more picture parameter set RBSPs
or one or more SEI NAL units containing a buffering period SEI message. Each sequence parameter set RBSP is initially
considered not active at the start of the operation of the decoding process. At most one sequence parameter set RBSP is
considered active at any given moment during the operation of the decoding process, and the activation of any particular
sequence parameter set RBSP results in the deactivation of the previously-active sequence parameter set RBSP (if any).

When a sequence parameter set RBSP (with a particular value of seq parameter set id) is not already active and it is
referred to by activation of a picture parameter set RBSP (using that value of seq parameter set id) or is referred to by
an SEI NAL unit containing a buffering period SEI message (using that value of seq parameter set id), it is activated.
This sequence parameter set RBSP is called the active sequence parameter set RBSP until it is deactivated by the
activation of another sequence parameter set RBSP. A sequence parameter set RBSP, with that particular value of
seq_parameter _set id, shall be available to the decoding process prior to its activation. An activated sequence parameter
set RBSP shall remain active for the entire coded video sequence.

NOTE 3 — Because an IDR access unit begins a new coded video sequence and an activated sequence parameter set RBSP must

remain active for the entire coded video sequence, a sequence parameter set RBSP can only be activated by a buffering period SEI
message when the buffering period SEI message is part of an IDR access unit.

Any sequence parameter set NAL unit containing the value of seq parameter_set id for the active sequence parameter
set RBSP for a coded video sequence shall have the same content as that of the active sequence parameter set RBSP for
the coded video sequence unless it follows the last access unit of the coded video sequence and precedes the first VCL

66 Rec. ITU-T H.264 (01/2012)

NAL unit and the first SEI NAL unit containing a buffering period SEI message (when present) of another coded video
sequence.
NOTE 4 — If picture parameter set RBSP or sequence parameter set RBSP are conveyed within the bitstream, these constraints
impose an order constraint on the NAL units that contain the picture parameter set RBSP or sequence parameter set RBSP,
respectively. Otherwise (picture parameter set RBSP or sequence parameter set RBSP are conveyed by other means not specified
in this Recommendation | International Standard), they must be available to the decoding process in a timely fashion such that
these constraints are obeyed.

When a sequence parameter set NAL unit with a particular value of seq parameter set id is received, its content
replaces the content of the previous sequence parameter set NAL unit, in decoding order, with the same value of
seq_parameter_set_id (when a previous sequence parameter set NAL unit with the same value of seq _parameter set id
was present in the bitstream).

NOTE 5 — A decoder must be capable of simultaneously storing the contents of the sequence parameter sets for all values of

seq parameter_set id. The content of the sequence parameter set with a particular value of seq parameter set id is overwritten
when a new sequence parameter set NAL unit with the same value of seq_parameter_set id is received.

When present, a sequence parameter set extension RBSP includes parameters having a similar function to those of a
sequence parameter set RBSP. For purposes of establishing constraints on the syntax elements of the sequence parameter
set extension RBSP and for purposes of determining activation of a sequence parameter set extension RBSP, the
sequence parameter set extension RBSP shall be considered part of the preceding sequence parameter set RBSP with the
same value of seq_parameter_set id. When a sequence parameter set RBSP is present that is not followed by a sequence
parameter set extension RBSP with the same value of seq parameter set id prior to the activation of the sequence
parameter set RBSP, the sequence parameter set extension RBSP and its syntax elements shall be considered not present
for the active sequence parameter set RBSP.

All constraints that are expressed on the relationship between the values of the syntax elements (and the values of
variables derived from those syntax elements) in sequence parameter sets and picture parameter sets and other syntax
elements are expressions of constraints that apply only to the active sequence parameter set and the active picture
parameter set. If any sequence parameter set RBSP is present that is not activated in the bitstream, its syntax elements
shall have values that would conform to the specified constraints if it were activated by reference in an
otherwise-conforming bitstream. If any picture parameter set RBSP is present that is not ever activated in the bitstream,
its syntax elements shall have values that would conform to the specified constraints if it were activated by reference in
an otherwise-conforming bitstream.

During operation of the decoding process (see clause 8), the values of parameters of the active picture parameter set and
the active sequence parameter set shall be considered in effect. For interpretation of SEI messages, the values of the
parameters of the picture parameter set and sequence parameter set that are active for the operation of the decoding
process for the VCL NAL units of the primary coded picture in the same access unit shall be considered in effect unless
otherwise specified in the SEI message semantics.

7.4.1.2.2 Order of access units and association to coded video sequences
A bitstream conforming to this Recommendation | International Standard consists of one or more coded video sequences.

A coded video sequence consists of one or more access units. For coded video sequences that conform to one or more of
the profiles specified in Annex A and are decoded using the decoding process specified in clauses 2-9, the order of NAL
units and coded pictures and their association to access units is described in clause 7.4.1.2.3.

The first access unit of each coded video sequence is an IDR access unit. All subsequent access units in the coded video
sequence are non-IDR access units.

It is a requirement of bitstream conformance that, when two consecutive access units in decoding order within a coded
video sequence both contain non-reference pictures, the value of picture order count for each coded field or field of a
coded frame in the first such access unit shall be less than or equal to the value of picture order count for each coded
field or field of a coded frame in the second such access unit.

It is a requirement of bitstream conformance that, when present, an access unit following an access unit that contains an
end of sequence NAL unit shall be an IDR access unit.

It is a requirement of bitstream conformance that, when an SEI NAL unit contains data that pertain to more than one
access unit (for example, when the SEI NAL unit has a coded video sequence as its scope), it shall be contained in the
first access unit to which it applies.

It is a requirement of bitstream conformance that, when an end of stream NAL unit is present in an access unit, this
access unit shall be the last access unit in the bitstream and the end of stream NAL unit shall be the last NAL unit in that
access unit.

Rec. ITU-T H.264 (01/2012) 67

7.4.1.2.3 Order of NAL units and coded pictures and association to access units

This clause specifies the order of NAL units and coded pictures and association to access unit for coded video sequences
that conform to one or more of the profiles specified in Annex A and are decoded using the decoding process specified in
clauses 2-9.

NOTE 1 — Some bitstreams that conform to profiles specified in Annexes G or H may violate the NAL unit order specified in this
subclause. Conditions under which such a violation of the NAL unit order occurs are specified in clauses G.7.4.1.2.3
and H.7.4.1.2.3.

An access unit consists of one primary coded picture, zero or more corresponding redundant coded pictures, and zero or
more non-VCL NAL units. The association of VCL NAL units to primary or redundant coded pictures is described in
clause 7.4.1.2.5.

The first access unit in the bitstream starts with the first NAL unit of the bitstream.

The first of any of the following NAL units after the last VCL NAL unit of a primary coded picture specifies the start of
a new access unit:

— access unit delimiter NAL unit (when present),

— sequence parameter set NAL unit (when present),

— picture parameter set NAL unit (when present),

— SEI NAL unit (when present),

— NAL units with nal_unit_type in the range of 14 to 18, inclusive (when present),

— first VCL NAL unit of a primary coded picture (always present).

The constraints for the detection of the first VCL NAL unit of a primary coded picture are specified in clause 7.4.1.2.4.

The following constraints shall be obeyed by the order of the coded pictures and non-VCL NAL units within an access
unit:

— When an access unit delimiter NAL unit is present, it shall be the first NAL unit. There shall be at most one access
unit delimiter NAL unit in any access unit.

— When any SEI NAL units are present, they shall precede the primary coded picture.

— When an SEI NAL unit containing a buffering period SEI message is present, the buffering period SEI message
shall be the first SEI message payload of the first SEI NAL unit in the access unit.

— The primary coded picture shall precede the corresponding redundant coded pictures.

— When redundant coded pictures are present, they shall be ordered in ascending order of the value of
redundant pic_cnt.

— When a sequence parameter set extension NAL unit is present, it shall be the next NAL unit after a sequence
parameter set NAL unit having the same value of seq_parameter_set id as in the sequence parameter set extension
NAL unit.

— When one or more coded slice of an auxiliary coded picture without partitioning NAL units is present, they shall
follow the primary coded picture and all redundant coded pictures (if any).

— When an end of sequence NAL unit is present, it shall follow the primary coded picture and all redundant coded
pictures (if any) and all coded slice of an auxiliary coded picture without partitioning NAL units (if any).

— When an end of stream NAL unit is present, it shall be the last NAL unit.

— NAL units having nal_unit_type equal to 0, 12, or in the range of 20 to 31, inclusive, shall not precede the first VCL
NAL unit of the primary coded picture.
NOTE 2 — Sequence parameter set NAL units or picture parameter set NAL units may be present in an access unit, but cannot

follow the last VCL NAL unit of the primary coded picture within the access unit, as this condition would specify the start of a
new access unit.

NOTE 3 — When a NAL unit having nal_unit_type equal to 7 or 8 is present in an access unit, it may or may not be referred to in
the coded pictures of the access unit in which it is present, and may be referred to in coded pictures of subsequent access units.

The structure of access units not containing any NAL units with nal_unit _type equal to 0, 7, 8, or in the range of 12
to 18, inclusive, or in the range of 20 to 31, inclusive, is shown in Figure 7-1.

68 Rec. ITU-T H.264 (01/2012)

start

|
v

Access unit delimiter

&
<

>
»
A 4

SEI

<&
<
A

N

Primary coded picture

I
»

Redundant coded picture

&
<

A 4

Auxiliary coded picture

<
<

A 4

End of sequence

&
<

End of stream

le
v H.264(09)_F7-1
end

Figure 7-1 — Structure of an access unit not containing any NAL units with nal_unit_type equal to 0, 7, 8,
or in the range of 12 to 18, inclusive, or in the range of 20 to 31, inclusive

7.4.1.2.4 Detection of the first VCL NAL unit of a primary coded picture

This clause specifies constraints on VCL NAL unit syntax that are sufficient to enable the detection of the first VCL
NAL unit of each primary coded picture for coded video sequences that conform to one or more of the profiles specified
in Annex A and are decoded using the decoding process specified in clauses 2-9.

Any coded slice NAL unit or coded slice data partition A NAL unit of the primary coded picture of the current access
unit shall be different from any coded slice NAL unit or coded slice data partition A NAL unit of the primary coded
picture of the previous access unit in one or more of the following ways:

— frame num differs in value. The value of frame num used to test this condition is the value of frame num that
appears in the syntax of the slice header, regardless of whether that value is inferred to have been equal to 0 for
subsequent use in the decoding process due to the presence of memory management_control operation equal to 5.

NOTE 1 — A consequence of the above statement is that a primary coded picture having frame num equal to 1 cannot
contain a memory_management_control operation equal to 5 unless some other condition listed below is fulfilled for
the next primary coded picture that follows after it (if any).

— pic_parameter_set id differs in value.

— field pic flag differs in value.

— Dbottom field flag is present in both and differs in value.

— nal_ref idc differs in value with one of the nal_ref idc values being equal to 0.

— pic _order cnt type is equal toO for both and either pic order cnt Isb differs in value, or
delta pic_order cnt bottom differs in value.

— pic_order cnt type is equal tol for both and either delta pic order cnt[0] differs in value, or
delta_pic_order cnt[1] differs in value.

Rec. ITU-T H.264 (01/2012) 69

IdrPicFlag differs in value.

IdrPicFlag is equal to 1 for both and idr pic_id differs in value.

NOTE 2 — Some of the VCL NAL units in redundant coded pictures or some non-VCL NAL units (e.g., an access unit delimiter
NAL unit) may also be used for the detection of the boundary between access units, and may therefore aid in the detection of the
start of a new primary coded picture.

7.4.1.2.5 Order of VCL NAL units and association to coded pictures

This clause specifies the order of VCL NAL units and association to coded pictures for coded video sequences that
conform to one or more of the profiles specified in Annex A and are decoded using the decoding process specified in
clauses 2-9.

Each VCL NAL unit is part of a coded picture.

The order of the VCL NAL units within a coded IDR picture is constrained as follows:

If arbitrary slice order is allowed as specified in Annex A, coded slice of an IDR picture NAL units may have any
order relative to each other.

Otherwise (arbitrary slice order is not allowed), the following applies:

If separate_colour plane flag is equal to 0, coded slice of an IDR picture NAL units of a slice group shall not
be interleaved with coded slice of an IDR picture NAL units of another slice group and the order of coded
slice of an IDR picture NAL units within a slice group shall be in the order of increasing macroblock address
for the first macroblock of each coded slice of an IDR picture NAL unit of the particular slice group.

Otherwise (separate colour plane flag is equal to 1), coded slice of an IDR picture NAL units of a slice group
for a particular value of colour plane id shall not be interleaved with coded slice of an IDR picture NAL units
of another slice group with the same value of colour plane id and the order of coded slices of IDR picture
NAL units within a slice group for a particular value of colour plane id shall be in the order of increasing
macroblock address for the first macroblock of each coded slice of an IDR picture NAL unit of the particular
slice group having the particular value of colour plane id.

NOTE 1 — When separate_colour_plane flag is equal to 1, the relative ordering of coded slices having different values
of colour_plane id is not constrained.

The order of the VCL NAL units within a coded non-IDR picture is constrained as follows:

70

If arbitrary slice order is allowed as specified in Annex A, coded slice of a non-IDR picture NAL units or coded
slice data partition A NAL units may have any order relative to each other. A coded slice data partition A NAL unit
with a particular value of slice id shall precede any present coded slice data partition B NAL unit with the same
value of slice id. A coded slice data partition A NAL unit with a particular value of slice id shall precede any
present coded slice data partition C NAL unit with the same value of slice_id. When a coded slice data partition B
NAL unit with a particular value of slice id is present, it shall precede any present coded slice data partition C NAL
unit with the same value of slice_id.

Otherwise (arbitrary slice order is not allowed), the following applies:

If separate colour plane flag is equal to 0, coded slice of a non-IDR picture NAL units or coded slice data
partition NAL units of a slice group shall not be interleaved with coded slice of a non-IDR picture NAL units
or coded slice data partition NAL units of another slice group and the order of coded slice of a non-IDR
picture NAL units or coded slice data partition A NAL units within a slice group shall be in the order of
increasing macroblock address for the first macroblock of each coded slice of a non-IDR picture NAL unit or
coded slice data partition A NAL unit of the particular slice group. A coded slice data partition A NAL unit
with a particular value of slice id shall immediately precede any present coded slice data partition B NAL unit
with the same value of slice id. A coded slice data partition A NAL unit with a particular value of slice id
shall immediately precede any present coded slice data partition C NAL unit with the same value of slice id,
when a coded slice data partition B NAL unit with the same value of slice id is not present. When a coded
slice data partition B NAL unit with a particular value of slice _id is present, it shall immediately precede any
present coded slice data partition C NAL unit with the same value of slice_id.

Otherwise (separate_colour_plane flag is equal to 1), coded slice of a non-IDR picture NAL units or coded
slice data partition NAL units of a slice group for a particular value of colour_plane_id shall not be interleaved
with coded slice of a non-IDR picture NAL units or coded slice data partition NAL units of another slice
group with the same value of colour plane id and the order of coded slice of a non-IDR picture NAL units or
coded slice data partition A NAL units within a slice group for particular value of colour plane id shall be in
the order of increasing macroblock address for the first macroblock of each coded slice of a non-IDR picture
NAL unit or coded slice data partition A NAL unit of the particular slice group having the particular value of
colour plane id. A coded slice data partition A NAL unit associated with a particular value of slice id and

Rec. ITU-T H.264 (01/2012)

colour plane id shall immediately precede any present coded slice data partition B NAL unit with the same
value of slice_id and colour plane id. A coded slice data partition A NAL unit associated with a particular
value of slice id and colour plane id shall immediately precede any present coded slice data partition C NAL
unit with the same value of slice id and colour plane id, when a coded slice data partition B NAL unit with
the same value of slice_id and colour plane id is not present. When a coded slice data partition B NAL unit
with a particular value of slice id and colour_plane_id is present, it shall immediately precede any present
coded slice data partition C NAL unit with the same value of slice_id and colour plane _id.

NOTE 2 — When separate_colour_plane flag is equal to 1, the relative ordering of coded slices having different values
of colour plane id is not constrained.

NAL units having nal_unit_type equal to 12 may be present in the access unit but shall not precede the first VCL NAL
unit of the primary coded picture within the access unit.

NAL units having nal unit type equal to O or in the range of 24 to 31, inclusive, which are unspecified, may be present
in the access unit but shall not precede the first VCL NAL unit of the primary coded picture within the access unit.

NAL units having nal unit type in the range of 20 to 23, inclusive, shall not precede the first VCL NAL unit of the
primary coded picture within the access unit.

7.4.2 Raw byte sequence payloads and RBSP trailing bits semantics
7.4.2.1 Sequence parameter set RBSP semantics

7.4.2.1.1 Sequence parameter set data semantics
profile_idc and level_idc indicate the profile and level to which the coded video sequence conforms.

constraint_set0_flag equal to 1 indicates that the coded video sequence obeys all constraints specified in clause A.2.1.
constraint_set0_flag equal to 0 indicates that the coded video sequence may or may not obey all constraints specified in
clause A.2.1.

constraint_setl flag equal to 1 indicates that the coded video sequence obeys all constraints specified in clause A.2.2.
constraint_setl flag equal to 0 indicates that the coded video sequence may or may not obey all constraints specified in
clause A.2.2.

constraint_set2_flag equal to 1 indicates that the coded video sequence obeys all constraints specified in clause A.2.3.
constraint_set2 flag equal to O indicates that the coded video sequence may or may not obey all constraints specified in
clause A.2.3.

NOTE 1 — When one or more than one of constraint_set0 flag, constraint setl flag, or constraint_set2_flag are equal to 1, the

coded video sequence must obey the constraints of all of the indicated subclauses of clause A.2. When profile idc is equal to 44,
100, 110, 122, or 244, the values of constraint_set0_flag, constraint_setl flag, and constraint_set2_flag must all be equal to 0.

constraint_set3_flag is specified as follows:

— Ifprofile idc is equal to 66, 77, or 88 and level idc is equal to 11, constraint_set3 flag equal to 1 indicates that the
coded video sequence obeys all constraints specified in Annex A for level 1b and constraint_set3 flag equal to 0
indicates that the coded video sequence obeys all constraints specified in Annex A for level 1.1.

— Otherwise, if profile idc is equal to 100 or 110, constraint set3 flag equal to 1 indicates that the coded video
sequence obeys all constraints specified in Annex A for the High 10 Intra profile, and constraint _set3 flag equal to
0 indicates that the coded video sequence may or may not obey these corresponding constraints.

— Otherwise, if profile idc is equal to 122, constraint_set3 flag equal to 1 indicates that the coded video sequence
obeys all constraints specified in Annex A for the High 4:2:2 Intra profile, and constraint set3 flag equal to O
indicates that the coded video sequence may or may not obey these corresponding constraints.

— Otherwise, if profile_idc is equal to 44, constraint_set3 flag shall be equal to 1. When profile idc is equal to 44, the
value of 0 for constraint_set3 flag is forbidden.

— Otherwise, if profile idc is equal to 244, constraint_set3 flag equal to 1 indicates that the coded video sequence
obeys all constraints specified in Annex A for the High 4:4:4 Intra profile, and constraint set3 flag equal to 0
indicates that the coded video sequence may or may not obey these corresponding constraints.

— Otherwise (profile idc is equal to 66,77, or 8 and level idc is not equal to 11), the value of 1 for
constraint_set3 flag is reserved for future use by ITU-T | ISO/IEC. constraint set3 flag shall be equal to 0 for
coded video sequences with profile idc equal to 66, 77, or 88 and level idc not equal to 11 in bitstreams
conforming to this Recommendation | International Standard. Decoders shall ignore the value of
constraint_set3 flag when profile idc is equal to 66, 77, or 88 and level idc is not equal to 11.

constraint_set4_flag is specified as follows:

Rec. ITU-T H.264 (01/2012) 71

— If profile idc is equal to 77, 88, or 100, constraint set4 flag equal to 1 indicates that the value of
frame mbs only flag is equal to 1. constraint set4 flag equal to 0 indicates that the value of frame mbs only flag
may or may not be equal to 1.

— Otherwise, if profile idc is equal to 118 or 128, constraint_set4 flag equal to 1 indicates that the coded video
sequence obeys all constraints specified in clause H.10.1.1. constraint_set4 flag equal to 0 indicates that the coded
video sequence may or may not obey the constraints specified in clause H.10.1.1.

— Otherwise (profile idc is not equal to 77, 88, 100, 118, or 128), the value of 1 for constraint_set4 flag is reserved
for future use by ITU-T | ISO/IEC. constraint set4 flag shall be equal to 0 for coded video sequences with
profile idc not equal to 77, 88, 100, 118, or 128 in bitstreams conforming to this Recommendation |
International Standard. Decoders shall ignore the value of constraint_set4 flag when profile idc is not equal to 77,
88, 100, 118, or 128.

constraint_set5 flag is specified as follows:

- Ifprofile idc is equal to 77, 88, or 100, constraint_set5_flag equal to 1 indicates that B slice types are not present in
the coded video sequence. constraint set5S flag equal to 0 indicates that B slice types may or may not be present in
the coded video sequence.

— Otherwise, if profile idc is equal to 118, constraint_set5 flag equal to 1 indicates that the coded video sequence
obeys all constraints specified in clause H.10.1.2 and constraint_set5_flag equal to 0 indicates that the coded video
sequence may or may not obey all constraints specified in clause H.10.1.2.

- Otherwise (profile_idc is not equal to 77, 88, 100, or 118), the value of 1 for constraint_set5 flag is reserved for
future use by ITU-T | ISO/IEC. constraint_set5 flag shall be equal to 0 when profile idc is not equal to 118 in
bitstreams conforming to this Recommendation | International Standard. Decoders shall ignore the value of
constraint_set5_flag when profile idc is not equal to 118.

NOTE 2 — For a coded video sequence conforming to both Multiview High and Stereo High profiles, the profile idc should be
equal to 118 and constraint_set5 flag should be equal to 1.

reserved_zero_2bits shall be equal to 0. Other values of reserved zero 2bits may be specified in the future by ITU-T |
ISO/IEC. Decoders shall ignore the value of reserved zero 2bits.

seq_parameter_set_id identifies the sequence parameter set that is referred to by the picture parameter set. The value of
seq_parameter_set_id shall be in the range of 0 to 31, inclusive.
NOTE 3 — When feasible, encoders should use distinct values of seq parameter set id when the values of other sequence
parameter set syntax elements differ rather than changing the values of the syntax elements associated with a specific value of
seq_parameter_set_id.

chroma_format idc specifies the chroma sampling relative to the luma sampling as specified in clause 6.2. The value of
chroma format_idc shall be in the range of 0 to 3, inclusive. When chroma format_idc is not present, it shall be inferred
to be equal to 1 (4:2:0 chroma format).

separate_colour_plane_flag equal to 1 specifies that the three colour components of the 4:4:4 chroma format are coded
separately. separate_colour plane flag equal to 0 specifies that the colour components are not coded separately. When
separate_colour plane flag is not present, it shall be inferred to be equal to 0. When separate_colour_plane_flag is equal
to 1, the primary coded picture consists of three separate components, each of which consists of coded samples of one
colour plane (Y, Cb or Cr) that each use the monochrome coding syntax. In this case, each colour plane is associated
with a specific colour_plane id value.

NOTE 4 — There is no dependency in decoding processes between the colour planes having different colour_plane id values. For
example, the decoding process of a monochrome picture with one value of colour plane id does not use any data from
monochrome pictures having different values of colour plane_id for inter prediction.

Depending on the value of separate colour plane flag, the value of the variable ChromaArrayType is assigned as
follows:

— Ifseparate colour plane flag is equal to 0, ChromaArrayType is set equal to chroma format idc.

— Otherwise (separate_colour_plane_flag is equal to 1), ChromaArrayType is set equal to 0.

bit_depth_luma_minus8 specifies the bit depth of the samples of the luma array and the value of the luma quantisation
parameter range offset QpBdOffsety, as specified by

BitDepthy = 8 + bit_depth luma minus8 (7-2)
QpBdOffsety = 6 * bit_depth_luma_minus8 (7-3)

When bit_depth_luma_minus8 is not present, it shall be inferred to be equal to 0. bit_depth_luma_minus8 shall be in the
range of 0 to 6, inclusive.

72 Rec. ITU-T H.264 (01/2012)

bit_depth_chroma_minus8 specifies the bit depth of the samples of the chroma arrays and the value of the chroma
quantisation parameter range offset QpBdOffsetc, as specified by

BitDepthc = 8 + bit_depth_chroma_minus8 (7-4)
QpBdOffsetc = 6 * bit_depth chroma minus8 (7-5)

When bit depth chroma minus8 is not present, it shall be inferred to be equal to 0. bit depth chroma minus8 shall be
in the range of 0 to 6, inclusive.
NOTE 5 — The value of bit_depth _chroma_minus8 is not used in the decoding process when ChromaArrayType is equal to 0. In
particular, when separate_colour_plane_flag is equal to 1, each colour plane is decoded as a distinct monochrome picture using the

luma component decoding process (except for the selection of scaling matrices) and the luma bit depth is used for all three colour
components.

The variable RawMbBits is derived as

RawMbBits = 256 * BitDepthy + 2 * MbWidthC * MbHeightC * BitDepthc (7-6)

gpprime_y_zero_transform_bypass_flag equal to 1 specifies that, when QP'y is equal to 0, a transform bypass
operation for the transform coefficient decoding process and picture construction process prior to deblocking filter
process as specified in clause 8.5 shall be applied. qpprime_y zero_transform_bypass_flag equal to 0 specifies that the
transform coefficient decoding process and picture construction process prior to deblocking filter process shall not use
the transform bypass operation. When gpprime_y zero_transform_bypass flag is not present, it shall be inferred to be
equal to 0.

seq_scaling matrix_present flag equal to 1 specifies that the flags seq scaling_list present flag[i] for i=0..7 or
i=0..11 are present. seq scaling matrix_present flag equal to O specifies that these flags are not present and the
sequence-level scaling list specified by Flat 4x4 16 shall be inferred for i=0..5 and the sequence-level scaling list
specified by Flat 8x8 16 shall be inferred for i = 6..11. When seq_scaling_matrix_present flag is not present, it shall be
inferred to be equal to 0.

The scaling lists Flat 4x4 16 and Flat 8x8 16 are specified as follows:
Flat 4x4 16[k]=16, withk=0..15, -7
Flat 8x8 16[k]=16, withk=0..63. (7-8)
seq_scaling_list present flag[i] equal to 1 specifies that the syntax structure for scaling list i is present in the sequence
parameter set. seq_scaling list present flag[i] equal to O specifies that the syntax structure for scaling list i is not

present in the sequence parameter set and the scaling list fall-back rule set A specified in Table 7-2 shall be used to infer
the sequence-level scaling list for index i.

Rec. ITU-T H.264 (01/2012) 73

Table 7-2 — Assignment of mnemonic names to scaling list indices and specification of fall-back rule

Value of Mnemonic name | Block MB Component Scaling list Scaling list Default
scaling list size prediction fall-back rule fall-back rule scaling list
index type set A set B
0 Sl 4x4 Intra Y 4x4 Intra Y default sequence-level | Default 4x4 Intra
scaling list scaling list
1 S1_4x4 Intra_Cb 4x4 Intra Cb scaling list scaling list Default 4x4 Intra
fori=0 fori=0
2 S1 4x4 Intra_Cr 4x4 Intra Cr scaling list scaling list Default 4x4 Intra
fori=1 fori=1
3 Sl 4x4 Inter Y 4x4 Inter Y default sequence-level | Default 4x4 Inter
scaling list scaling list
4 S1 4x4 Inter Cb 4x4 Inter Cb scaling list scaling list Default 4x4 Inter
fori=3 fori=3
5 S1 4x4 Inter Cr 4x4 Inter Cr scaling list scaling list Default 4x4 Inter
fori=4 fori=4
6 S1 8x8 Intra Y 8x8 Intra Y default sequence-level | Default 8x8 Intra
scaling list scaling list
7 S1 8x8 Inter Y 8x8 Inter Y default sequence-level | Default 8x8 Inter
scaling list scaling list
8 S1 8x8 Intra_Cb 8x8 Intra Cb scaling list scaling list Default 8x8 Intra
fori=6 fori=6
9 S1 8x8 Inter Cb 8x8 Inter Cb scaling list scaling list Default 8x8 Inter
fori=7 fori=7
10 S1 8x8 Intra Cr 8x8 Intra Cr scaling list scaling list Default 8x8 Intra
fori=8 fori=8
11 S1 8x8 Inter Cr 8x8 Inter Cr scaling list scaling list Default 8x8 Inter
fori=9 fori=9

Table 7-3 specifies the default scaling lists Default 4x4 Intra and Default 4x4 Inter. Table 7-4 specifies the default
scaling lists Default 8x8 Intra and Default 8x8 Inter.

Table 7-3 — Specification of default scaling lists Default 4x4 Intra and Default_4x4 Inter

idx 0|1 (2|3 |4 |5|6|7 |89 |10|11|12|13 |14 |15

Default 4x4 Intrafidx] | 6 | 13 | 13|20 |20 20|28 |28 |28 |28 (3232|3237 |37 |42

Default 4x4 Inter[idx] | 10 | 14 | 14 | 20 | 20 | 20 | 24 | 24 | 24 | 24 | 27 | 27 | 27 | 30 | 30 | 34

74 Rec. ITU-T H.264 (01/2012)

Table 7-4 — Specification of default scaling lists Default 8x8 Intra and Default_8x8 Inter

idx o123 |4 (5|6 |7 |8|9 1011|1213 |14 |15

Default 8x8 Intra[idx] |6 |10 |10 | 13 |11 |13 |16 |16 |16 | 16|18 | 18| 18| 18| 18| 23

Default 8x8 Inter[idx] |9 | 13 |13 [1513 | 15|17 |17 |17 171919119 | 19| 19|21

Table 7-4 (continued) — Specification of default scaling lists Default 8x8 Intra and Default 8x8 Inter

idx 16 |17 |18 |19 | 20 | 21 |22 |23 (24| 25|26 |27 |28 (29|30 |31

Default 8x8 Intra[idx] |23 | 23 |23 |23 |23 (252525 |25|25 |25 |25 |27 (27|27]|27

Default 8x8 Inter[idx] | 21 | 21 |21 |21 (21|22 (22|22 |22 (2222|2224 |24 (24|24

Table 7-4 (continued) — Specification of default scaling lists Default 8x8 Intra and Default 8x8 Inter

idx 32 (3334353637 |38(39(40 |41 |42 |43 |44 |45 |46 | 47

Default 8x8 Intralidx] |27 |27 |27 |27 (29(29(29(29|29|29|29|31|31]31]31]3l

Default 8x8 Inter[idx] |24 |24 | 24 |24 | 25|25 |25 (25|25 |25 |25|27 |27 |27 |27 |27

Table 7-4 (concluded) — Specification of default scaling lists Default_8x8 Intra and Default_8x8 Inter

idx 48 | 49 |50 | 51 |52 |S3 |54 |55|56 |57 |58|59|60)|61|62]63

Default 8x8 Intra[idx] | 31 |33 |33 |33 |33 (33 [36|36|36|36|38|38|38|40|40]42

Default_8x8 Inter[idx] |27 |28 | 28 | 28 |28 |28 | 30 (30 [30 |30 |32 |32|32|33 |33 |35

log2_max_frame num_minus4 specifies the value of the variable MaxFrameNum that is used in frame num related
derivations as follows:

MaxFrameNum = 2(log2_max_frame_num_minus4 + 4) (7_9)

The value of log2 max_frame num_minus4 shall be in the range of 0 to 12, inclusive.

pic_order_cnt_type specifies the method to decode picture order count (as specified in clause 8.2.1). The value of
pic_order cnt type shall be in the range of 0 to 2, inclusive.

pic_order cnt type shall not be equal to 2 in a coded video sequence that contains any of the following:

— an access unit containing a non-reference frame followed immediately by an access unit containing a non-reference
picture,

— two access units each containing a field with the two fields together forming a complementary non-reference field
pair followed immediately by an access unit containing a non-reference picture,

— an access unit containing a non-reference field followed immediately by an access unit containing another non-
reference picture that does not form a complementary non-reference field pair with the first of the two access units.

log2_max_pic_order_cnt_Isb_minus4 specifies the value of the variable MaxPicOrderCntLsb that is used in the
decoding process for picture order count as specified in clause 8.2.1 as follows:

MaxPicOrderCntLsb = 2(log2_max_pic_order_cnt_lsb_minus4 +4) (7_ 1 0)

The value of log2 max_pic_order _cnt Isb_minus4 shall be in the range of 0 to 12, inclusive.

delta_pic_order_always_zero_flag equal to 1 specifies that delta pic_order cnt[0] and delta_pic_order cnt[1] are
not present in the slice headers of the sequence and shall be inferred to be equal to 0. delta pic order always zero flag
equal to O specifies that delta pic order cnt[0] is present in the slice headers of the sequence and
delta_pic_order cnt[1 | may be present in the slice headers of the sequence.

Rec. ITU-T H.264 (01/2012) 75

offset_for non_ref pic is used to calculate the picture order count of a non-reference picture as specified in
clause 8.2.1. The value of offset_for non_ref pic shall be in the range of —2*' + 1 to 2°' — 1, inclusive.

offset_for top to bottom_field is used to calculate the picture order count of a bottom field as specified in clause 8.2.1.
The value of offset_for top to bottom field shall be in the range of —2°' + 1 to 2°' — 1, inclusive.

num_ref frames in_pic_order cnt _cycle is used in the decoding process for picture order count as specified in
clause 8.2.1. The value of num_ref frames_in pic_order cnt_cycle shall be in the range of 0 to 255, inclusive.

offset_for ref frame[i] is an element of a list of num_ref frames in pic_order cnt cycle values used in the decoding
process for picture order count as specified in clause 8.2.1. The value of offset for ref frame[i] shall be in the range of
2"+ 1t02” — 1, inclusive.

When pic_order cnt_type is equal to 1, the variable ExpectedDeltaPerPicOrderCntCycle is derived by

ExpectedDeltaPerPicOrderCntCycle = 0
for(i=0; i<num_ref frames in pic_order cnt cycle; i++)
ExpectedDeltaPerPicOrderCntCycle += offset_for ref frame[i] (7-11)

max_num_ref frames specifies the maximum number of short-term and long-term reference frames, complementary
reference field pairs, and non-paired reference fields that may be used by the decoding process for inter prediction of any
picture in the coded video sequence. max_num_ref frames also determines the size of the sliding window operation as
specified in clause 8.2.5.3. The value of max num_ref frames shall be in the range of 0 to MaxDpbFrames (as specified
in clause A.3.1 or A.3.2), inclusive.

gaps_in_frame num_value allowed_flag specifies the allowed values of frame num as specified in clause 7.4.3 and
the decoding process in case of an inferred gap between values of frame num as specified in clause 8.2.5.2.

pic_width_in_mbs_minusl1 plus 1 specifies the width of each decoded picture in units of macroblocks.

The variable for the picture width in units of macroblocks is derived as
PicWidthInMbs = pic_width_in_mbs minusl + 1 (7-12)
The variable for picture width for the luma component is derived as

PicWidthInSamples; = PicWidthInMbs * 16 (7-13)

The variable for picture width for the chroma components is derived as

PicWidthInSamplesc = PicWidthInMbs * MbWidthC (7-14)

pic_height_in_map_units_minus] plus 1 specifies the height in slice group map units of a decoded frame or field.

The variables PicHeightInMapUnits and PicSizeInMapUnits are derived as
PicHeightInMapUnits = pic_height_in_map units_minusl + 1 (7-15)
PicSizeInMapUnits = PicWidthInMbs * PicHeightInMapUnits (7-16)

frame_mbs_only_flag equal to 0 specifies that coded pictures of the coded video sequence may either be coded fields or
coded frames. frame mbs_only flag equal to 1 specifies that every coded picture of the coded video sequence is a coded
frame containing only frame macroblocks.

The allowed range of values for pic width in mbs minusl, pic height in map units minusl, and
frame mbs only flag is specified by constraints in Annex A.

Depending on frame_mbs_only flag, semantics are assigned to pic_height_in_map_units minusl as follows:

— If frame mbs_only flag is equal to 0, pic_height in map units minusl plus 1 is the height of a field in units of
macroblocks.

— Otherwise (frame_mbs_only flag is equal to 1), pic_height_in_map_units minusl plus 1 is the height of a frame in
units of macroblocks.

The variable FrameHeightInMbs is derived as

FrameHeightInMbs = (2 — frame mbs_only flag) * PicHeightInMapUnits (7-17)

76 Rec. ITU-T H.264 (01/2012)

mb_adaptive_frame_field_flag equal to 0 specifies no switching between frame and field macroblocks within a picture.
mb_adaptive frame field flag equal to 1 specifies the possible use of switching between frame and field macroblocks
within frames. When mb_adaptive frame field flag is not present, it shall be inferred to be equal to 0.

direct_8x8 inference_flag specifies the method used in the derivation process for luma motion vectors for B_Skip,
B Direct 16x16 and B_Direct 8x8 as specified in clause 8.4.1.2. When frame mbs only flag is equal toO,
direct 8x8 inference flag shall be equal to 1.

frame_cropping_flag equal to 1 specifies that the frame cropping offset parameters follow next in the sequence
parameter set. frame_cropping_flag equal to 0 specifies that the frame cropping offset parameters are not present.

frame crop_left offset, frame crop_right offset, frame crop top offset, frame crop bottom_offset specify the
samples of the pictures in the coded video sequence that are output from the decoding process, in terms of a rectangular
region specified in frame coordinates for output.

The variables CropUnitX and CropUnitY are derived as follows:
— If ChromaArrayType is equal to 0, CropUnitX and CropUnitY are derived as:

CropUnitX = 1 (7-18)
CropUnitY =2 — frame mbs_only flag (7-19)

— Otherwise (ChromaArrayType is equal to 1, 2, or 3), CropUnitX and CropUnitY are derived as:

CropUnitX = SubWidthC (7-20)
CropUnitY = SubHeightC * (2 — frame_mbs_only_flag) (7-21)

The frame cropping rectangle contains luma samples with horizontal frame coordinates from
CropUnitX * frame crop left offset to PicWidthInSamples; — (CropUnitX * frame crop right offset + 1) and vertical
frame coordinates from CropUnitY * frame crop top offset to (16 * FrameHeightInMbs) —
(CropUnitY * frame crop bottom offset + 1), inclusive. The value of frame crop left offset shall be in the range of 0
to (PicWidthInSamples; / CropUnitX) — (frame crop_right offset+ 1), inclusive; and the value of
frame crop top offset shall be in the range of O to (16 * FrameHeightInMbs /CropUnitY)—
(frame crop bottom offset + 1), inclusive.

When frame cropping flag is equal to 0, the values of frame crop left offset, frame crop right offset,
frame crop_top_offset, and frame crop bottom_offset shall be inferred to be equal to 0.

When ChromaArrayType is not equal to 0, the corresponding specified samples of the two chroma arrays are the samples
having frame coordinates (x / SubWidthC, y / SubHeightC), where (X, y) are the frame coordinates of the specified
luma samples.

For decoded fields, the specified samples of the decoded field are the samples that fall within the rectangle specified in
frame coordinates.

vui_parameters_present_flag equal to 1 specifies that the vui_parameters() syntax structure as specified in Annex E is
present. vui_parameters_present_flag equal to 0 specifies that the vui_parameters() syntax structure as specified in
Annex E is not present.

7.4.2.1.1.1 Scaling list semantics

delta_scale is used to derive the j-th element of the scaling list for j in the range of 0 to sizeOfScalingList — 1, inclusive.
The value of delta_scale shall be in the range of —128 to +127, inclusive.

When useDefaultScalingMatrixFlag is derived to be equal to 1, the scaling list shall be inferred to be equal to the default
scaling list as specified in Table 7-2.

7.4.2.1.2 Sequence parameter set extension RBSP semantics

seq_parameter_set_id identifies the sequence parameter set associated with the sequence parameter set extension. The
value of seq_parameter_set_id shall be in the range of 0 to 31, inclusive.

aux_format_idc equal to O indicates that there are no auxiliary coded pictures in the coded video sequence.
aux_format idc equal to 1 indicates that exactly one auxiliary coded picture is present in each access unit of the coded
video sequence, and that for alpha blending purposes the decoded samples of the associated primary coded picture in
each access unit should be multiplied by the interpretation sample values of the auxiliary coded picture in the access unit
in the display process after output from the decoding process. aux_format idc equal to 2 indicates that exactly one
auxiliary coded picture exists in each access unit of the coded video sequence, and that for alpha blending purposes the
decoded samples of the associated primary coded picture in each access unit should not be multiplied by the
interpretation sample values of the auxiliary coded picture in the access unit in the display process after output from the

Rec. ITU-T H.264 (01/2012) 77

decoding process. aux_format_idc equal to 3 indicates that exactly one auxiliary coded picture exists in each access unit
of the coded video sequence, and that the usage of the auxiliary coded pictures is unspecified. The value of
aux_format idc shall be in the range of 0 to 3, inclusive. Values greater than 3 for aux format idc are reserved to
indicate the presence of exactly one auxiliary coded picture in each access unit of the coded video sequence for purposes
to be specified in the future by ITU-T | ISO/IEC. When aux_format_idc is not present, it shall be inferred to be equal
to 0.

NOTE 1 — Decoders are not required to decode auxiliary coded pictures.

bit_depth_aux_minus8 specifies the bit depth of the samples of the sample array of the auxiliary coded picture.
bit depth _aux_minus8 shall be in the range of 0 to 4, inclusive.

alpha_incr_flag equal to 0 indicates that the interpretation sample value for each decoded auxiliary coded picture
sample value is equal to the decoded auxiliary coded picture sample value for purposes of alpha blending.
alpha incr flag equal to 1 indicates that, for purposes of alpha blending, after decoding the auxiliary coded picture
samples, any auxiliary coded picture sample value that 1is greater than Min(alpha opaque value,
alpha_transparent_value) should be increased by one to obtain the interpretation sample value for the auxiliary coded
picture sample, and any auxiliary coded picture sample value that is less than or equal to Min(alpha opaque value,
alpha_transparent value) should be used without alteration as the interpretation sample value for the decoded auxiliary
coded picture sample value.

alpha_opaque_value specifies the interpretation sample value of an auxiliary coded picture sample for which the
associated luma and chroma samples of the same access unit are considered opaque for purposes of alpha blending. The
number of bits used for the representation of the alpha_opaque value syntax element is bit depth aux_minus8 + 9 bits.

alpha_transparent_value specifies the interpretation sample value of an auxiliary coded picture sample for which the
associated luma and chroma samples of the same access unit are considered transparent for purposes of alpha blending.
The number of bits used for the representation of the alpha transparent value syntax element is
bit_depth_aux minus8 + 9 bits.

When alpha_incr flag is equal to 1, alpha transparent value shall not be equal to alpha opaque value and
Log2(Abs(alpha opaque value — alpha_transparent value)) shall have an integer value. A value of
alpha_transparent value that is equal to alpha_opaque value indicates that the auxiliary coded picture is not intended for
alpha blending purposes.
NOTE 2 — For alpha blending purposes, alpha_opaque value may be greater than alpha_transparent value, or it may be less than
alpha_transparent_value. Interpretation sample values should be clipped to the range of alpha opaque value to
alpha_transparent_value, inclusive.

The decoding of the sequence parameter set extension and the decoding of auxiliary coded pictures is not required for
conformance with this Recommendation | International Standard.

The syntax of each coded slice of an auxiliary coded picture shall obey the same constraints as a coded slice of a
redundant picture, with the following differences of constraints:

a) Inregard to whether the primary coded picture is an IDR picture, the following applies:

— If the primary coded picture is an IDR picture, the auxiliary coded slice syntax shall correspond to that of a
slice having nal unit_type equal to 5 (a slice of an IDR picture).

— Otherwise (the primary coded picture is not an IDR picture), the auxiliary coded slice syntax shall
correspond to that of a slice having nal unit_type equal to 1 (a slice of a non-IDR picture).

b) The slices of an auxiliary coded picture (when present) shall contain all macroblocks corresponding to those of
the primary coded picture.

¢) redundant pic_cnt shall be equal to 0 in all auxiliary coded slices.

The (optional) decoding process for the decoding of auxiliary coded pictures is the same as if the auxiliary coded pictures
were primary coded pictures in a separate coded video stream that differs from the primary coded pictures in the current
coded video stream in the following ways:

— The IDR or non-IDR status of each auxiliary coded picture shall be inferred to be the same as the IDR or non-IDR
status of the primary picture in the same access unit, rather than being inferred from the value of nal unit_type.

— The value of chroma format idc and the value of ChromaArrayType shall be inferred to be equal to 0 for the
decoding of the auxiliary coded pictures.

— The value of bit_depth luma_ minus8 shall be inferred to be equal to bit_depth _aux minus8 for the decoding of the
auxiliary coded pictures.

NOTE 3 — Alpha blending composition is normally performed with a background picture B, a foreground picture F, and a decoded
auxiliary coded picture A, all of the same size. Assume for purposes of example illustration that the chroma resolution of B and F

78 Rec. ITU-T H.264 (01/2012)

have been upsampled to the same resolution as the luma. Denote corresponding samples of B, F and A by b, f and a, respectively.
Denote luma and chroma samples by subscripts Y, Cb and Cr.

Define the variables alphaRange, alphaFwt and alphaBwt as follows:
alphaRange = Abs(alpha_opaque value — alpha_transparent_value)
alphaFwt = Abs(a — alpha_transparent_value)
alphaBwt = Abs(a — alpha_opaque value)
Then, in alpha blending composition, samples d of the displayed picture D may be calculated as
dy = (alphaFwt * fy + alphaBwt * by + alphaRange / 2) / alphaRange
dcp = (alphaFwt * f, + alphaBwt * by, + alphaRange / 2) / alphaRange
dc, = (alphaFwt * f., + alphaBwt * b, + alphaRange / 2) / alphaRange

The samples of pictures D, F and B could also represent red, green, and blue component values (see clause E.2.1). Here we have
assumed Y, Cb and Cr component values. Each component, e.g., Y, is assumed for purposes of example illustration above to have
the same bit depth in each of the pictures D, F and B. However, different components, e.g., Y and Cb, need not have the same bit
depth in this example.

When aux_format idc is equal to 1, F would be the decoded picture obtained from the decoded luma and chroma, and A would be
the decoded picture obtained from the decoded auxiliary coded picture. In this case, the indicated example alpha blending
composition involves multiplying the samples of F by factors obtained from the samples of A.

A picture format that is useful for editing or direct viewing, and that is commonly used, is called pre-multiplied-black video. If the
foreground picture was F, then the pre-multiplied-black video S is given by

sy = (alphaFwt * fy)/ alphaRange

scy = (alphaFwt * f;,) / alphaRange

scr = (alphaFwt * f¢,) / alphaRange
Pre-multiplied-black video has the characteristic that the picture S will appear correct if displayed against a black background. For
a non-black background B, the composition of the displayed picture D may be calculated as

dy =sy + (alphaBwt * by + alphaRange / 2) / alphaRange

dcp = scp + (alphaBwt * by, + alphaRange / 2) / alphaRange

de; = scr + ((alphaBwt * be, + alphaRange / 2) / alphaRange
When aux_format idc is equal to 2, S would be the decoded picture obtained from the decoded luma and chroma, and A would

again be the decoded picture obtained from the decoded auxiliary coded picture. In this case, alpha blending composition does not
involve multiplication of the samples of S by factors obtained from the samples of A.

additional_extension_flag equal to 0 indicates that no additional data follows within the sequence parameter set
extension syntax structure prior to the RBSP trailing bits. The value of additional extension_flag shall be equal to 0. The
value of 1 for additional extension flag is reserved for future use by ITU-T | ISO/IEC. Decoders shall ignore all data
that follows the value of 1 for additional extension_flag in a sequence parameter set extension NAL unit.

7.4.2.1.3 Subset sequence parameter set RBSP semantics

svc_vui_parameters_present_flag equal to 0 specifies that the syntax structure svc_vui_parameters_extension() is not
present. sve_vui_parameters_present_flag equal to 1 specifies that the syntax structure svc_vui_parameters_extension()
is present.

bit_equal_to_one shall be equal to 1.

mvc_vui_parameters_present_flag equal to 0 specifies that the syntax structure mvc_vui_parameters_extension() is
not present. mvc vui parameters present flag equal to 1 specifies that the syntax structure
mvc_vui_parameters_extension() is present.

additional_extension2_flag equal to 0 specifies that no additional extension2 data flag syntax elements are present in
the subset sequence parameter set RBSP syntax structure. additional extension2 flag shall be equal to 0 in bitstreams
conforming to this Recommendation | International Standard. The value of 1 for additional extension2 flag is reserved
for future use by ITU-T | ISO/IEC. Decoders shall ignore all data that follow the value 1 for additional extension2 flag
in a subset sequence parameter set NAL unit.

additional_extension2_data_flag may have any value. It shall not affect the conformance to profiles specified in
Annex A, G, or H.

7.4.2.2 Picture parameter set RBSP semantics

pic_parameter_set_id identifies the picture parameter set that is referred to in the slice header. The value of
pic_parameter set id shall be in the range of 0 to 255, inclusive.

seq_parameter_set_id refers to the active sequence parameter set. The value of seq parameter set id shall be in the
range of 0 to 31, inclusive.

Rec. ITU-T H.264 (01/2012) 79

entropy_coding_mode_flag selects the entropy decoding method to be applied for the syntax elements for which two
descriptors appear in the syntax tables as follows:

— Ifentropy coding mode flag is equal to 0, the method specified by the left descriptor in the syntax table is applied
(Exp-Golomb coded, see clause 9.1 or CAVLC, see clause 9.2).

— Otherwise (entropy_coding_mode_flag is equal to 1), the method specified by the right descriptor in the syntax table
is applied (CABAC, see clause 9.3).

bottom_field pic_order_in_frame present flag equal to 1 specifies that the syntax elements
delta pic_order cnt bottom (when pic order cnt type is equal to 0) or delta pic order cnt[1] (when
pic_order cnt_type is equal to 1), which are related to picture order counts for the bottom field of a coded frame, are
present in the slice headers for coded frames as specified in clause 7.3.3. bottom_field pic order in frame present flag
equal to O specifies that the syntax elements delta_pic_order cnt bottom and delta_pic_order cnt[1] are not present in
the slice headers.

num_slice_groups_minusl1 plus 1 specifies the number of slice groups for a picture. When num_slice _groups_minus] is
equal to 0, all slices of the picture belong to the same slice group. The allowed range of num_slice groups minus] is
specified in Annex A.

slice_group_map_type specifies how the mapping of slice group map units to slice groups is coded. The value of
slice_group_map_type shall be in the range of 0 to 6, inclusive.

slice_group map_type equal to O specifies interleaved slice groups.
slice_group_map_type equal to 1 specifies a dispersed slice group mapping.
slice_group_map_type equal to 2 specifies one or more "foreground" slice groups and a "leftover" slice group.

slice_group _map_type values equal to 3, 4, and 5 specify changing slice groups. When num_slice _groups minusl is not
equal to 1, slice_group map_type shall not be equal to 3, 4, or 5.

slice_group_map_type equal to 6 specifies an explicit assignment of a slice group to each slice group map unit.

Slice group map units are specified as follows:

— If frame mbs_only flag is equal to 0 and mb_adaptive frame field flag is equal to 1 and the coded picture is a
frame, the slice group map units are macroblock pair units.

— Otherwise, if frame_mbs_only flag is equal to 1 or the coded picture is a field, the slice group map units are units
of macroblocks.

— Otherwise (frame_mbs_only flag is equal to 0 and mb_adaptive frame field flag is equal to 0 and the coded
picture is a frame), the slice group map units are units of two macroblocks that are vertically contiguous as in a
frame macroblock pair of an MBAFF frame.

run_length_minus1[i] is used to specify the number of consecutive slice group map units to be assigned to the i-th
slice group in raster scan order of slice group map units. The value of run_length minusl1[i] shall be in the range of 0 to
PicSizeInMapUnits — 1, inclusive.

top_left[i | and bottom_right|[i | specify the top-left and bottom-right corners of a rectangle, respectively. top left[i]
and bottom_right[i] are slice group map unit positions in a raster scan of the picture for the slice group map units. For
each rectangle i, all of the following constraints shall be obeyed by the values of the syntax elements top left[i] and
bottom_right[i]:

— top_left[i] shall be less than or equal to bottom right{i] and bottom right[i] shall be less than
PicSizeInMapUnits.

— (top_left[i] % PicWidthInMbs) shall be less than or equal to the value of (bottom_right[i | % PicWidthInMbs).

slice_group_change_direction_flag is used with slice group map type to specify the refined map type when
slice_group map typeis 3, 4, or 5.

slice_group_change rate_minusl is used to specify the variable SliceGroupChangeRate. SliceGroupChangeRate
specifies the multiple in number of slice group map units by which the size of a slice group can change from one picture
to the next. The value of slice_group change rate minusl shall be in the range of 0 to PicSizeInMapUnits — 1, inclusive.
The SliceGroupChangeRate variable is specified as follows:

SliceGroupChangeRate = slice_group change rate minusl + 1 (7-22)

pic_size_in_map_units minusl is used to specify the number of slice group map units in the picture.
pic_size in_map units_minus] shall be equal to PicSizeInMapUnits — 1.

80 Rec. ITU-T H.264 (01/2012)

slice_group _id[i] identifies a slice group of the i-th slice group map unit in raster scan order. The length of the
slice_group id[i] syntax element is Ceil(Log2(num_slice_groups_minusl + 1)) bits. The value of slice_group id[i]
shall be in the range of 0 to num_slice groups minusl, inclusive.

num_ref idx_l0_default_active_minus1 specifies how num ref idx 10 active minusl is inferred for P, SP, and B
slices with num_ref idx_active override flag equal to 0. The value of num ref idx 10 default active minusl shall be
in the range of 0 to 31, inclusive.

num_ref idx_I1_default_active_minus1l specifies how num ref idx 11 _active minusl is inferred for B slices with
num_ref idx_active override flag equal to 0. The value of num ref idx 11 default active minusl shall be in the range
of 0 to 31, inclusive.

weighted_pred_flag equal to O specifies that the default weighted prediction shall be applied to P and SP slices.
weighted pred flag equal to 1 specifies that explicit weighted prediction shall be applied to P and SP slices.

weighted_bipred_idc equal to 0 specifies that the default weighted prediction shall be applied to B slices.
weighted bipred idc equal to1 specifies that explicit weighted prediction shall be applied to B slices.
weighted bipred idc equal to 2 specifies that implicit weighted prediction shall be applied to B slices. The value of
weighted bipred idc shall be in the range of 0 to 2, inclusive.

pic_init_qp_minus26 specifies the initial value minus 26 of SliceQPy for each slice. The initial value is modified at the
slice layer when a non-zero value of slice qp delta is decoded, and is modified further when a non-zero value of
mb_qp delta is decoded at the macroblock layer. The value of pic_init qp minus26 shall be in the range of
—(26 + QpBdOffsety) to +25, inclusive.

pic_init_qs_minus26 specifies the initial value minus 26 of SliceQSy for all macroblocks in SP or SI slices. The initial
value is modified at the slice layer when a non-zero value of slice gs delta is decoded. The value of
pic_init gs_minus26 shall be in the range of —26 to +25, inclusive.

chroma_qp_index_offset specifies the offset that shall be added to QPy and QSy for addressing the table of QP values
for the Cb chroma component. The value of chroma_qp_index_offset shall be in the range of —12 to +12, inclusive.

deblocking_filter_control_present flag equal to 1 specifies that a set of syntax elements controlling the characteristics
of the deblocking filter is present in the slice header. deblocking_filter control present flag equal to O specifies that the
set of syntax elements controlling the characteristics of the deblocking filter is not present in the slice headers and their
inferred values are in effect.

constrained_intra_pred_flag equal to O specifies that intra prediction allows usage of residual data and decoded
samples of neighbouring macroblocks coded using Inter macroblock prediction modes for the prediction of macroblocks
coded using Intra macroblock prediction modes. constrained intra pred flag equal to 1 specifies constrained intra
prediction, in which case prediction of macroblocks coded using Intra macroblock prediction modes only uses residual
data and decoded samples from I or SI macroblock types.

redundant_pic_cnt_present flag equal to 0 specifies that the redundant pic_cnt syntax element is not present in slice
headers, coded slice data partition B NAL units, and coded slice data partition C NAL units that refer (either directly or
by association with a corresponding coded slice data partition A NAL unit) to the picture parameter set.
redundant pic_cnt present flag equal to 1 specifies that the redundant pic_cnt syntax element is present in all slice
headers, coded slice data partition B NAL units, and coded slice data partition C NAL units that refer (either directly or
by association with a corresponding coded slice data partition A NAL unit) to the picture parameter set.

transform_8x8 mode flag equal to 1 specifies that the 8x8 transform decoding process may be in use (see clause 8.5).
transform 8x8 mode flag equal to 0 specifies that the 8x8 transform decoding process is not in use. When
transform_8x8 mode flag is not present, it shall be inferred to be 0.

pic_scaling_matrix_present_flag equal to 1 specifies that parameters are present to modify the scaling lists specified in
the sequence parameter set. pic_scaling_matrix_present_flag equal to 0 specifies that the scaling lists used for the picture
shall be inferred to be equal to those specified by the sequence parameter set. When pic_scaling matrix_present flag is
not present, it shall be inferred to be equal to 0.

pic_scaling_list present flag[i] equal to 1 specifies that the scaling list syntax structure is present to specify the
scaling list for index i. pic_scaling list present flag[i] equal to 0 specifies that the syntax structure for scaling list i is
not present in the picture parameter set and that depending on the value of seq scaling matrix_present flag, the
following applies:

— If seq_scaling matrix_present flag is equal to 0, the scaling list fall-back rule set A as specified in Table 7-2 shall
be used to derive the picture-level scaling list for index 1.

— Otherwise (seq_scaling matrix_present flag is equal to 1), the scaling list fall-back rule set B as specified
in Table 7-2 shall be used to derive the picture-level scaling list for index 1i.

Rec. ITU-T H.264 (01/2012) 81

second_chroma_qp_index_offset specifies the offset that shall be added to QPy and QSy for addressing the table of
QPc values for the Cr chroma component. The value of second chroma qp index_offset shall be in the range of —12 to
+12, inclusive.

When second chroma qp_index offset is not present, it shall be inferred to be equal to chroma_qp_index_offset.

NOTE — When ChromaArrayType is equal to 0, the values of bit depth chroma minus8, chroma gp index offset and
second chroma qp_index_offset are not used in the decoding process. In particular, when separate_colour plane flag is equal
to 1, each colour plane is decoded as a distinct monochrome picture using the luma component decoding process (except for the
selection of scaling matrices), including the application of the luma quantisation parameter derivation process without application
of an offset for the decoding of the pictures having colour plane_id not equal to 0.

7.4.2.3 Supplemental enhancement information RBSP semantics

Supplemental Enhancement Information (SEI) contains information that is not necessary to decode the samples of coded
pictures from VCL NAL units.

7.4.2.3.1 Supplemental enhancement information message semantics

An SEI RBSP contains one or more SEI messages. Each SEI message consists of the variables specifying the type
payloadType and size payloadSize of the SEI payload. SEI payloads are specified in Annex D. The derived SEI payload
size payloadSize is specified in bytes and shall be equal to the number of RBSP bytes in the SEI payload.

NOTE — The NAL unit byte sequence containing the SEI message might include one or more emulation prevention bytes
(represented by emulation prevention three byte syntax elements). Since the payload size of an SEI message is specified in
RBSP bytes, the quantity of emulation prevention bytes is not included in the size payloadSize of an SEI payload.

ff_byte is a byte equal to OxFF identifying a need for a longer representation of the syntax structure that it is used within.
last_payload_type_byte is the last byte of the payload type of an SEI message.
last_payload_size_byte is the last byte of the payload size of an SEI message.

7.4.2.4 Access unit delimiter RBSP semantics

The access unit delimiter may be used to indicate the type of slices present in a primary coded picture and to simplify the
detection of the boundary between access units. There is no normative decoding process associated with the access unit
delimiter.

primary_pic_type indicates that the slice type values for all slices of the primary coded picture are members of the set
listed in Table 7-5 for the given value of primary pic_type.

NOTE - The value of primary_pic_type applies to the slice type values in all slice headers of the primary coded picture, including
the slice_type syntax elements in all NAL units with nal unit_type equal to 1, 2, or 5.

Table 7-5 — Meaning of primary_pic_type

primary_pic_type | slice_type values that may be present in the primary coded picture
0 2,7

1 0,2,5,7

2 0,1,2,5,6,7

3 4,9

4 3,4,8,9

5 2,4,7,9

6 0,2,3,4,5,7,8,9

7 0,1,2,3,4,5,6,7,8,9

7.4.2.5 End of sequence RBSP semantics

The end of sequence RBSP specifies that the next subsequent access unit in the bitstream in decoding order (if any) shall
be an IDR access unit. The syntax content of the SODB and RBSP for the end of sequence RBSP are empty. No
normative decoding process is specified for an end of sequence RBSP.

82 Rec. ITU-T H.264 (01/2012)

7.4.2.6 End of stream RBSP semantics

The end of stream RBSP indicates that no additional NAL units shall be present in the bitstream that are subsequent to
the end of stream RBSP in decoding order. The syntax content of the SODB and RBSP for the end of stream RBSP are
empty. No normative decoding process is specified for an end of stream RBSP.

NOTE — When an end of stream NAL unit is present, the bitstream is considered to end (for purposes of the scope of this
Recommendation | International Standard). In some system environments, another bitstream may follow after the bitstream that
has ended, either immediately or at some time thereafter, possibly within the same communication channel. Under such
circumstances, the scope of this Recommendation | International Standard applies only to the processing of each of these
individual bitstreams. No requirements are specified herein regarding the transition between such bitstreams (e.g., in regard to
timing, buffering operation, etc.).

7.4.2.7 Filler data RBSP semantics
The filler data RBSP contains zero or more bytes. No normative decoding process is specified for a filler data RBSP.

ff_byte is a byte. It is a requirement of bitstream conformance that the value of ff byte shall be equal to OxFF.

7.4.2.8 Slice layer without partitioning RBSP semantics

The slice layer without partitioning RBSP consists of a slice header and slice data.
7.4.2.9 Slice data partition RBSP semantics

7.4.2.9.1 Slice data partition A RBSP semantics

When slice data partitioning is in use, the coded data for a single slice is divided into three separate partitions. Slice data
partition A contains all syntax elements of category 2.

Category 2 syntax elements include all syntax elements in the slice header and slice data syntax structures other than the
syntax elements in the residual() syntax structure.

slice_id identifies the slice associated with the slice data partition. The value of slice id is constrained as follows:
— Ifseparate _colour plane flag is equal to 0, the following applies:

— If arbitrary slice order is not allowed as specified in Annex A, the first slice of a coded picture, in decoding
order, shall have slice_id equal to 0 and the value of slice id shall be incremented by one for each subsequent
slice of the coded picture in decoding order.

— Otherwise (arbitrary slice order is allowed), each slice shall have a unique slice_id value within the set of slices
of the coded picture.

— Otherwise (separate_colour plane flag is equal to 1), the following applies:

— If arbitrary slice order is not allowed as specified in Annex A, the first slice of a coded picture having each
value of colour plane id, in decoding order, shall have slice id equal to 0 and the value of slice id shall be
incremented by one for each subsequent slice of the coded picture having the same value of colour plane id,
in decoding order.

— Otherwise (arbitrary slice order is allowed) each slice shall have a unique slice _id value within each set of
slices of the coded picture that have the same value of colour plane id.

The range of slice_id is specified as follows:
— If MbaffFrameFlag is equal to 0, slice_id shall be in the range of 0 to PicSizeInMbs — 1, inclusive.
— Otherwise (MbaffFrameFlag is equal to 1), slice_id shall be in the range of 0 to PicSizeInMbs / 2 — 1, inclusive.

7.4.2.9.2 Slice data partition B RBSP semantics

When slice data partitioning is in use, the coded data for a single slice is divided into one to three separate partitions.
Slice data partition B contains all syntax elements of category 3.

Category 3 syntax elements include all syntax elements in the residual() syntax structure and in syntax structures used
within that syntax structure for collective macroblock types I and SI as specified in Table 7-10.

slice_id has the same semantics as specified in clause 7.4.2.9.1.

colour_plane_id specifies the colour plane associated with the current slice RBSP when separate colour plane flag is
equal to 1. The value of colour plane id shall be in the range of 0 to 2, inclusive. colour plane id equal to 0, 1, and 2
correspond to the Y, Cb, and Cr planes, respectively.

NOTE - There is no dependency between the decoding processes of pictures having different values of colour plane _id.

Rec. ITU-T H.264 (01/2012) &3

redundant_pic_cnt shall be equal to 0 for coded slices and coded slice data partitions belonging to the primary coded
picture. The redundant pic cnt shall be greater than O for coded slices and coded slice data partitions in redundant coded
pictures. When redundant pic cnt is not present, its value shall be inferred to be equal to 0. The value of
redundant_pic_cnt shall be in the range of 0 to 127, inclusive.

The presence of a slice data partition B RBSP is specified as follows:

— If the syntax elements of a slice data partition A RBSP indicate the presence of any syntax elements of category 3 in
the slice data for a slice, a slice data partition B RBSP shall be present having the same value of slice id and
redundant pic_cnt as in the slice data partition A RBSP.

— Otherwise (the syntax elements of a slice data partition A RBSP do not indicate the presence of any syntax elements
of category 3 in the slice data for a slice), no slice data partition B RBSP shall be present having the same value of
slice_id and redundant_pic_cnt as in the slice data partition A RBSP.

7.4.2.9.3 Slice data partition C RBSP semantics

When slice data partitioning is in use, the coded data for a single slice is divided into three separate partitions. Slice data
partition C contains all syntax elements of category 4.

Category 4 syntax elements include all syntax elements in the residual() syntax structure and in syntax structures used
within that syntax structure for collective macroblock types P and B as specified in Table 7-10.

slice_id has the same semantics as specified in clause 7.4.2.9.1.
colour_plane_id has the same semantics as specified in clause 7.4.2.9.2.
redundant_pic_cnt has the same semantics as specified in clause 7.4.2.9.2.
The presence of a slice data partition C RBSP is specified as follows:

— If the syntax elements of a slice data partition A RBSP indicate the presence of any syntax elements of category 4 in
the slice data for a slice, a slice data partition C RBSP shall be present having the same value of slice id and
redundant pic_cnt as in the slice data partition A RBSP.

— Otherwise (the syntax elements of a slice data partition A RBSP do not indicate the presence of any syntax elements
of category 4 in the slice data for a slice), no slice data partition C RBSP shall be present having the same value of
slice_id and redundant_pic_cnt as in the slice data partition A RBSP.

7.4.2.10 RBSP slice trailing bits semantics
cabac_zero_word is a byte-aligned sequence of two bytes equal to 0x0000.

Let NumBytesInVcINALunits be the sum of the values of NumBytesInNALunit for all VCL NAL units of a coded
picture.

Let BinCountsInNALunits be the number of times that the parsing process function DecodeBin(), specified in
clause 9.3.3.2, is invoked to decode the contents of all VCL NAL units of a coded picture. When
entropy_coding mode flag is equal to 1, it is a requirement of bitstream conformance that BinCountsInNALunits shall
not exceed (32 + 3) * NumBytesInVcINALunits + (RawMbBits * PicSizeInMbs) + 32.

NOTE — The constraint on the maximum number of bins resulting from decoding the contents of the slice layer NAL units can be
met by inserting a number of cabac zero word syntax elements to increase the value of NumBytesInVcINALunits. Each
cabac_zero_word is represented in a NAL unit by the three-byte sequence 0x000003 (as a result of the constraints on NAL unit
contents that result in requiring inclusion of an emulation_prevention_three byte for each cabac_zero word).

7.4.2.11 RBSP trailing bits semantics
rbsp_stop_one_bit shall be equal to 1.

rbsp_alignment_zero_bit shall be equal to 0.

7.4.2.12 Prefix NAL unit RBSP semantics

The content of the prefix NAL unit RBSP is dependent on the value of svc_extension_flag.

7.4.2.13 Slice layer extension RBSP semantics
The content of the slice layer extension RBSP is dependent on the value of svc_extension_flag.

Coded slice extension NAL units with svc_extension_flag equal to 1 are also referred to as coded slice in scalable
extension NAL units and coded slice extension NAL units with svc_extension flag equal to 0 are also referred to as
coded slice MVC extension NAL units.

84 Rec. ITU-T H.264 (01/2012)

7.4.3 Slice header semantics

When present, the value of the slice header syntax elements pic parameter set id, frame num, field pic flag,
bottom_field flag, idr_pic _id, pic_order cnt_Isb, delta_pic_order cnt bottom, delta_pic_order cnt[0],
delta_pic_order cnt[1], sp_for switch flag, and slice group change cycle shall be the same in all slice headers of a
coded picture.

first mb_in_slice specifies the address of the first macroblock in the slice. When arbitrary slice order is not allowed as
specified in Annex A, the value of first mb_in_slice is constrained as follows:

— If separate colour plane flag is equal to 0, the value of first mb in_slice shall not be less than the value of
first mb_in_slice for any other slice of the current picture that precedes the current slice in decoding order.

— Otherwise (separate_colour plane flag is equal to 1), the value of first mb_in_slice shall not be less than the value
of first mb_in_slice for any other slice of the current picture that precedes the current slice in decoding order and
has the same value of colour plane id.

The first macroblock address of the slice is derived as follows:

— If MbaffFrameFlag is equal to 0, first mb_in_slice is the macroblock address of the first macroblock in the slice,
and first mb_in_slice shall be in the range of 0 to PicSizeInMbs — 1, inclusive.

— Otherwise (MbaffFrameFlag is equal to 1), first mb _in_slice * 2 is the macroblock address of the first macroblock
in the slice, which is the top macroblock of the first macroblock pair in the slice, and first mb_in_slice shall be in
the range of 0 to PicSizeInMbs / 2 — 1, inclusive.

slice_type specifies the coding type of the slice according to Table 7-6.

Table 7-6 — Name association to slice_type

slice_type Name of slice_type
0 P (P slice)
1 B (B slice)
2 I (I slice)
3 SP (SP slice)
4 SI (SI slice)
5 P (P slice)
6 B (B slice)
7 I (I slice)
8 SP (SP slice)
9 SI (SI slice)

When slice_type has a value in the range 5..9, it is a requirement of bitstream conformance that all other slices of the
current coded picture shall have a value of slice_type equal to the current value of slice_type or equal to the current value
of slice type minus 5.

NOTE 1 — Values of slice_type in the range 5..9 can be used by an encoder to indicate that all slices of a picture have the same
value of (slice_type % 5). Values of slice_type in the range 5..9 are otherwise equivalent to corresponding values in the range 0..4.

When nal_unit_type is equal to 5 (IDR picture), slice_type shall be equal to 2, 4, 7, or 9.
When max_num_ref frames is equal to 0, slice_type shall be equal to 2, 4, 7, or 9.

pic_parameter_set_id specifies the picture parameter set in use. The value of pic_parameter set id shall be in the range
of 0 to 255, inclusive.

colour_plane_id specifies the colour plane associated with the current slice RBSP when separate colour plane flag is
equal to 1. The value of colour plane id shall be in the range of 0 to 2, inclusive. colour plane id equal to 0, 1, and 2
correspond to the Y, Cb, and Cr planes, respectively.

NOTE 2 — There is no dependency between the decoding processes of pictures having different values of colour plane id.

frame_num is used as an identifier for pictures and shall be represented by log2 max frame num minus4 + 4 bits in
the bitstream. frame num is constrained as follows:

The variable PrevRefFrameNum is derived as follows:

Rec. ITU-T H.264 (01/2012) 85

— Ifthe current picture is an IDR picture, PrevRefFrameNum is set equal to 0.
— Otherwise (the current picture is not an IDR picture), PrevRefFrameNum is set as follows:

— If the decoding process for gaps in frame num specified in clause 8.2.5.2 was invoked by the decoding
process for an access unit that contained a non-reference picture that followed the previous access unit in
decoding order that contained a reference picture, PrevRefFrameNum is set equal to the value of frame num
for the last of the "non-existing" reference frames inferred by the decoding process for gaps in frame num
specified in clause 8.2.5.2.

— Otherwise, PrevRefFrameNum is set equal to the value of frame num for the previous access unit in decoding
order that contained a reference picture.

The value of frame num is constrained as follows:
— If the current picture is an IDR picture, frame num shall be equal to 0.

— Otherwise (the current picture is not an IDR picture), referring to the primary coded picture in the previous access
unit in decoding order that contains a reference picture as the preceding reference picture, the value of frame num
for the current picture shall not be equal to PrevRefFrameNum unless all of the following three conditions are true:

a) The current picture and the preceding reference picture belong to consecutive access units in decoding order.
b) The current picture and the preceding reference picture are reference fields having opposite parity.

¢) One or more of the following conditions is true:
— The preceding reference picture is an IDR picture,

— The preceding reference picture includes a memory management control operation syntax element equal
to 5,

NOTE 3 — When the preceding reference picture includes a memory management control operation syntax
element equal to 5, PrevRefFrameNum is equal to 0.

— There is a primary coded picture that precedes the preceding reference picture and the primary coded
picture that precedes the preceding reference picture does not have frame num equal to
PrevRefFrameNum,

— There is a primary coded picture that precedes the preceding reference picture and the primary coded
picture that precedes the preceding reference picture is not a reference picture.

When the value of frame num is not equal to PrevRefFrameNum, it is a requirement of bitstream conformance that the
following constraints shall be obeyed:

a) There shall not be any previous field or frame in decoding order that is currently marked as "used for short-term
reference" that has a value of frame num equal to any value taken on by the variable
UnusedShortTermFrameNum in the following:

UnusedShortTermFrameNum = (PrevRefFrameNum + 1) % MaxFrameNum
while(UnusedShortTermFrameNum != frame num) (7-23)
UnusedShortTermFrameNum = (UnusedShortTermFrameNum + 1) % MaxFrameNum

b) The value of frame num is constrained as follows:

— If gaps in frame num value allowed flag is equal to 0, the value of frame num for the current picture
shall be equal to (PrevRefFrameNum + 1) % MaxFrameNum.

— Otherwise (gaps_in_frame num_value allowed flag is equal to 1), the following applies:

— If frame num is greater than PrevRefFrameNum, there shall not be any non-reference pictures in the
bitstream that follow the previous reference picture and precede the current picture in decoding order
in which either of the following conditions is true:

— The value of frame num for the non-reference picture is less than PrevRefFrameNum,

— The value of frame num for the non-reference picture is greater than the value of frame num for
the current picture.

— Otherwise (frame_num is less than PrevRefFrameNum), there shall not be any non-reference pictures
in the bitstream that follow the previous reference picture and precede the current picture in decoding
order in which both of the following conditions are true:

— The value of frame num for the non-reference picture is less than PrevRefFrameNum,

86 Rec. ITU-T H.264 (01/2012)

— The value of frame num for the non-reference picture is greater than the value of frame num for
the current picture.

A picture including a memory management control operation equal to 5 shall have frame num constraints as described
above and, after the decoding of the current picture and the processing of the memory management control operations,
the picture shall be inferred to have had frame num equal to 0 for all subsequent use in the decoding process, except as
specified in clause 7.4.1.2.4.

NOTE 4 — When the primary coded picture is not an IDR picture and does not contain memory management_control operation
syntax element equal to 5, the value of frame num of a corresponding redundant coded picture is the same as the value of
frame num in the primary coded picture. Alternatively, the redundant coded picture includes a
memory management control operation syntax element equal to 5 and the corresponding primary coded picture is an IDR
picture.

field_pic_flag equal to 1 specifies that the slice is a slice of a coded field. field pic flag equal to O specifies that the slice
is a slice of a coded frame. When field pic flag is not present it shall be inferred to be equal to 0.

The variable MbaffFrameFlag is derived as

MbaffFrameFlag = (mb_adaptive frame field flag && !field pic flag) (7-24)

The variable for the picture height in units of macroblocks is derived as

PicHeightInMbs = FrameHeightInMbs / (1 + field pic flag) (7-25)

The variable for picture height for the luma component is derived as

PicHeightInSamples; = PicHeightInMbs * 16 (7-26)

The variable for picture height for the chroma component is derived as

PicHeightInSamplesc = PicHeightinMbs * MbHeightC (7-27)

The variable PicSizeInMbs for the current picture is derived as

PicSizeInMbs = PicWidthInMbs * PicHeightInMbs (7-28)

The variable MaxPicNum is derived as follows:

— Iffield pic_flag is equal to 0, MaxPicNum is set equal to MaxFrameNum.

— Otherwise (field_pic_flag is equal to 1), MaxPicNum is set equal to 2*MaxFrameNum.
The variable CurrPicNum is derived as follows:

— Iffield pic_ flag is equal to 0, CurrPicNum is set equal to frame num.

— Otherwise (field pic_flag is equal to 1), CurrPicNum is set equal to 2 * frame num + 1.

bottom_field flag equal to 1 specifies that the slice is part of a coded bottom field. bottom field flag equal to O
specifies that the picture is a coded top field. When this syntax element is not present for the current slice, it shall be
inferred to be equal to 0.

idr_pic_id identifies an IDR picture. The values of idr_pic_id in all the slices of an IDR picture shall remain unchanged.
When two consecutive access units in decoding order are both IDR access units, the value of idr_pic_id in the slices of
the first such IDR access unit shall differ from the idr_pic_id in the second such IDR access unit. The value of idr_pic id
shall be in the range of 0 to 65535, inclusive.

NOTE 5 — It is not prohibited for multiple IDR pictures in a bitstream to have the same value of idr_pic_id unless such pictures
occur in two consecutive access units in decoding order.

pic_order_cnt_Isb specifies the picture order count modulo MaxPicOrderCntLsb for the top field of a coded frame or
for a coded field. The length of the pic_order cnt Isb syntax element is log2 max pic_order cnt Isb_minus4 + 4 bits.
The value of the pic_order cnt lIsb shall be in the range of 0 to MaxPicOrderCntLsb — 1, inclusive.

delta_pic_order_cnt_bottom specifies the picture order count difference between the bottom field and the top field of a
coded frame as follows:

— If the current picture includes a memory management control operation equal to 5, the value of
delta_pic_order cnt_bottom shall be in the range of (1 — MaxPicOrderCntLsb) to 2*' — 1, inclusive.

Rec. ITU-T H.264 (01/2012) 87

— Otherwise (the current picture does not include a memory management control operation equal to 5), the value of
delta_pic_order cnt_bottom shall be in the range of —2°' + 1 to 2*' — 1, inclusive.

When this syntax element is not present in the bitstream for the current slice, it shall be inferred to be equal to 0.

delta_pic_order_cnt| 0 | specifies the picture order count difference from the expected picture order count for the top
field of a coded frame or for a coded field as specified in clause 8.2.1. The value of delta_pic_order cnt[0] shall be in
the range of —2°' + 1 to 2*' — 1, inclusive. When this syntax element is not present in the bitstream for the current slice, it
shall be inferred to be equal to 0.

delta_pic_order_cnt| 1| specifies the picture order count difference from the expected picture order count for the
bottom field of a coded frame specified in clause 8.2.1. The value of delta pic_order cnt[1] shall be in the range of
23"+ 1 to 2*' = 1, inclusive. When this syntax element is not present in the bitstream for the current slice, it shall be
inferred to be equal to 0.

redundant_pic_cnt shall be equal to 0 for slices and slice data partitions belonging to the primary coded picture. The
value of redundant pic_cnt shall be greater than 0 for coded slices or coded slice data partitions of a redundant coded
picture. When redundant_pic_cnt is not present in the bitstream, its value shall be inferred to be equal to 0. The value of
redundant pic_cnt shall be in the range of 0 to 127, inclusive.

NOTE 6 — Any area of the decoded primary picture and the corresponding area that would result from application of the decoding
process specified in clause 8 for any redundant picture in the same access unit should be visually similar in appearance.

The value of pic_parameter set id in a coded slice or coded slice data partition of a redundant coded picture shall be
such that the value of bottom_field pic_order in frame present flag in the picture parameter set in use in a redundant
coded picture is equal to the value of bottom_field pic order in frame present flag in the picture parameter set in use
in the corresponding primary coded picture.

When present in the primary coded picture and any redundant coded picture, the following syntax elements shall have
the same value: field pic_flag, bottom field flag, and idr pic_id.

When the value of nal ref idc in one VCL NAL unit of an access unit is equal to 0, the value of nal ref idc in all other
VCL NAL units of the same access unit shall be equal to 0.
NOTE 7 — The above constraint also has the following implications. If the value of nal ref idc for the VCL NAL units of the
primary coded picture is equal to 0, the value of nal_ref idc for the VCL NAL units of any corresponding redundant coded picture
are equal to 0; otherwise (the value of nal_ref idc for the VCL NAL units of the primary coded picture is greater than 0), the value
of nal_ref idc for the VCL NAL units of any corresponding redundant coded picture are also greater than 0.

The marking status of reference pictures and the value of frame num after the decoded reference picture marking process
as specified in clause 8.2.5 is invoked for the primary coded picture or any redundant coded picture of the same access
unit shall be identical regardless whether the primary coded picture or any redundant coded picture (instead of the
primary coded picture) of the access unit would be decoded.

NOTE 8 — The above constraint also has the following implications.

When the primary coded picture is an IDR picture and a redundant coded picture corresponding to the primary coded picture is an
IDR picture, the contents of the dec_ref pic_marking() syntax structure must be identical in all slice headers of the primary coded
picture and the redundant coded picture corresponding to the primary coded picture.

When the primary coded picture is an IDR picture and a redundant coded picture corresponding to the primary coded picture is not

an IDR picture, all slice headers of the redundant picture must contain a dec_ref pic_marking syntax() structure including a

memory _management_control operation syntax element equal to 5, and the following applies:

— If the value of long_term_reference flag in the primary coded picture is equal to 0, the dec_ref pic_marking syntax structure
of the redundant coded picture must not include a memory management control_operation syntax element equal to 6.

— Otherwise (the value of long_term_reference flag in the primary coded picture is equal to 1), the dec_ref pic_marking syntax
structure of the redundant coded picture must include memory management_control_operation syntax elements equal to 5, 4,
and 6 in decoding order, and the value of max long term frame idx plusl must be equal to 1, and the value of
long_term frame idx must be equal to 0.

The values of TopFieldOrderCnt and BottomFieldOrderCnt (if applicable) that result after completion of the decoding
process for any redundant coded picture or the primary coded picture of the same access unit shall be identical regardless
whether the primary coded picture or any redundant coded picture (instead of the primary coded picture) of the access
unit would be decoded.

There is no required decoding process for a coded slice or coded slice data partition of a redundant coded picture. When
the redundant pic_cnt in the slice header of a coded slice is greater than 0, the decoder may discard the coded slice.
However, a coded slice or coded slice data partition of any redundant coded picture shall obey the same constraints as a
coded slice or coded slice data partition of a primary picture.

NOTE 9 — When some of the samples in the decoded primary picture cannot be correctly decoded due to errors or losses in

transmission of the sequence and one or more coded slices of a redundant coded picture can be correctly decoded, the decoder
should replace the samples of the decoded primary picture with the corresponding samples of the decoded slice or decoded slices

88 Rec. ITU-T H.264 (01/2012)

of the redundant coded picture. When slices of more than one redundant coded picture cover the relevant region of the primary
coded picture, the slice or slices of the redundant coded picture having the lowest value of redundant_pic_cnt should be used.

Slices and slice data partitions having the same value of redundant_pic_cnt belong to the same coded picture. If the value
of redundant pic_cnt is equal to 0, they belong to the primary coded picture; otherwise (the value of redundant pic_cnt
is greater than 0), they belong to the same redundant coded picture. Decoded slices within the same redundant coded
picture need not cover the entire picture area and shall not overlap.

direct_spatial mv_pred_flag specifies the method used in the decoding process to derive motion vectors and reference
indices for inter prediction as follows:

— If direct spatial mv_pred flag is equal to 1, the derivation process for luma motion vectors for B_Skip,
B Direct 16x16, and B_Direct 8x8 in clause 8.4.1.2 shall use spatial direct mode prediction as specified in
clause 8.4.1.2.2.

— Otherwise (direct spatial mv_pred flag is equal to 0), the derivation process for luma motion vectors for B_Skip,
B Direct 16x16, and B _Direct 8x8 in clause 8.4.1.2 shall use temporal direct mode prediction as specified in
clause 8.4.1.2.3.

num_ref _idx_active_override flag equal to 1 specifies that the syntax element num ref idx 10 active minusl is
present for P, SP, and B slices and that the syntax element num ref idx 11 _active minusl is present for B slices.
num_ref idx_active override flag equal to 0 specifies that the syntax elements num ref idx 10 active minusl and
num_ref idx 11 active minusl are not present.

When the current slice is a P, SP, or B slice and field pic flag is equal to0O and the value of
num_ref idx 10 default active minusl in the picture parameter set exceeds 15, num_ref idx_active override flag shall
be equal to 1.

When the current slice is a B slice and field pic flag is equal to0O and the value of
num_ref idx 11_default active minus] in the picture parameter set exceeds 15, num_ref idx_active override flag shall
be equal to 1.

num_ref idx 10 _active_minus1 specifies the maximum reference index for reference picture list O that shall be used to
decode the slice.

When the current slice is a P, SP, or B slice and num ref idx 10 active minusl is not present,
num_ref idx 10 active minusl shall be inferred to be equal to num_ref idx 10 default active minusl.

The range of num_ref idx 10 active minusl is specified as follows:

— If field pic flag is equal to 0, num ref idx 10 active minusl shall be in the range of 0 to 15, inclusive. When
MbaffFrameFlag is equal to 1, num ref idx 10 active minusl is the maximum index value for the decoding of
frame macroblocks and 2 * num_ref idx 10 active minusl + 1 is the maximum index value for the decoding of
field macroblocks.

— Otherwise (field pic flag is equal to 1), num_ref idx 10 active _minus] shall be in the range of 0 to 31, inclusive.

num_ref idx_I1_active_minus]1 specifies the maximum reference index for reference picture list 1 that shall be used to
decode the slice.

When the current slice is a B slice and num_ref idx 11 active minusl is not present, num_ref idx 1l active minusl
shall be inferred to be equal to num_ref idx 11 default active minusl.

The range of num ref idx 11 active minusl is constrained as specified in the semantics for
num_ref idx 10_active minusl with 10 and list O replaced by 11 and list 1, respectively.

cabac_init_idc specifies the index for determining the initialisation table used in the initialisation process for context
variables. The value of cabac init idc shall be in the range of 0 to 2, inclusive.

slice_qp_delta specifies the initial value of QPy to be used for all the macroblocks in the slice until modified by the
value of mb_qgp_delta in the macroblock layer. The initial QPy quantisation parameter for the slice is computed as

SliceQPy =26 + pic_init_gp_minus26 + slice_qp_delta (7-29)
The value of slice_qp_delta shall be limited such that SliceQPy is in the range of —QpBdOffsety to +51, inclusive.

sp_for_switch_flag specifies the decoding process to be used to decode P macroblocks in an SP slice as follows:

— If sp_for switch flag is equal to 0, the P macroblocks in the SP slice shall be decoded using the SP decoding
process for non-switching pictures as specified in clause 8.6.1.

Rec. ITU-T H.264 (01/2012) &9

— Otherwise (sp_for_switch flag is equal to 1), the P macroblocks in the SP slice shall be decoded using the SP and SI
decoding process for switching pictures as specified in clause 8.6.2.

slice_qs_delta specifies the value of QSy for all the macroblocks in SP and SI slices. The QSy quantisation parameter
for the slice is computed as

QSy =26 + pic_init_qs_minus26 + slice_qgs_delta (7-30)

The value of slice_gs_delta shall be limited such that QSy is in the range of 0 to 51, inclusive. This value of QSy is used
for the decoding of all macroblocks in SI slices with mb_type equal to SI and all macroblocks in SP slices that are coded
in an Inter macroblock prediction mode.

disable_deblocking_filter idc specifies whether the operation of the deblocking filter shall be disabled across some
block edges of the slice and specifies for which edges the filtering is disabled. When disable deblocking_filter idc is not
present in the slice header, the value of disable _deblocking_filter idc shall be inferred to be equal to 0.

The value of disable deblocking filter idc shall be in the range of 0 to 2, inclusive.

slice_alpha_c0_offset_div2 specifies the offset used in accessing the a and tcy deblocking filter tables for filtering
operations controlled by the macroblocks within the slice. From this value, the offset that shall be applied when
addressing these tables shall be computed as

FilterOffsetA = slice_alpha c0_offset div2 <<'1 (7-31)
The value of slice_alpha c0_offset div2 shall be in the range of —6 to +6, inclusive. When slice_alpha c0_offset div2 is
not present in the slice header, the value of slice_alpha c0_offset div2 shall be inferred to be equal to 0.

slice_beta_offset_div2 specifies the offset used in accessing the P deblocking filter table for filtering operations
controlled by the macroblocks within the slice. From this value, the offset that is applied when addressing the B table of
the deblocking filter shall be computed as

FilterOffsetB = slice_beta offset div2 <<1 (7-32)
The value of slice beta offset div2 shall be in the range of —6 to +6, inclusive. When slice beta offset div2 is not
present in the slice header the value of slice beta offset div2 shall be inferred to be equal to 0.

slice_group_change cycle is used to derive the number of slice group map units in slice group 0 when
slice_group map_type is equal to 3, 4, or 5, as specified by

MapUnitsInSliceGroup0 = Min(slice_group_change cycle * SliceGroupChangeRate,
PicSizeInMapUnits) (7-33)

The value of slice_group change cycle is represented in the bitstream by the following number of bits

Ceil(Log2(PicSizeInMapUnits + SliceGroupChangeRate + 1)) (7-34)

The value of slice_group change cycle shall be in the range of 0 to Ceil(PicSizeInMapUnits+SliceGroupChangeRate),
inclusive.

7.4.3.1 Reference picture list modification semantics

The syntax elements modification of pic nums_idc, abs diff pic num minusl, and long term pic_num specify the
change from the initial reference picture lists to the reference picture lists to be used for decoding the slice.

ref pic_list modification_flag 10 equal to 1 specifies that the syntax element modification_of pic_nums_idc is present
for specifying reference picture list 0. ref pic_list modification flag 10 equal to 0 specifies that this syntax element is
not present.

When ref pic_list modification_flag 10 is equal to 1, the number of times that modification_of pic_nums_idc is not
equal to 3 following ref pic_list modification_flag 10 shall not exceed num_ref idx 10 active _minusl + 1.

When RefPicListO[num ref idx 10 active minusl] in the initial reference picture list produced as specified in
clause 8.2.4.2 is equal to "no reference picture", ref pic list modification flag 10 shall be equal to1 and
modification_of pic nums_idc shall not be equal to3 until RefPicListO[num_ref idx 10 active minusl] in the
modified list produced as specified in clause 8.2.4.3 is not equal to "no reference picture".

90 Rec. ITU-T H.264 (01/2012)

ref_pic_list_modification_flag 11 equal to 1 specifies that the syntax element modification of pic nums_idc is present
for specifying reference picture list 1. ref pic list modification flag 11 equal to O specifies that this syntax element is
not present.

When ref pic list modification flag 11 is equal to 1, the number of times that modification of pic nums idc is not
equal to 3 following ref pic list modification flag 11 shall not exceed num ref idx 11 active minusl + 1.

When decoding a slice with slice type equal to 1 or 6 and RefPicList][num ref idx 11 active minusl] in the initial
reference picture list produced as specified in clause8.2.42 is equal to "no reference picture",
ref pic_list modification flag 11 shall be equal to 1 and modification of pic nums_idc shall not be equal to 3 until
RefPicList][num_ref idx 11 active minusl] in the modified list produced as specified in clause 8.2.4.3 is not equal to
"no reference picture".

modification_of pic_nums_idc together with abs_diff pic num minusl or long_term pic_num specifies which of the
reference pictures are re-mapped. The values of modification_of pic_nums_idc are specified in Table 7-7. The value of
the first modification of pic nums idc that follows immediately after ref pic list modification flag 10 or
ref pic_list modification flag 11 shall not be equal to 3.

Table 7-7 — modification_of pic_nums_idc operations for modification of reference picture lists

modification_of pic_nums_idc modification specified

0 abs_diff pic num_minusl is present and corresponds to a difference to
subtract from a picture number prediction value

1 abs_diff pic num_minusl is present and corresponds to a difference to
add to a picture number prediction value

2 long_term_pic_num is present and specifies the long-term picture number
for a reference picture

3 End loop for modification of the initial reference picture list

abs_diff pic_ num_minusl plus 1 specifies the absolute difference between the picture number of the picture being
moved to the current index in the list and the picture number prediction value. abs_diff pic num_minus] shall be in the
range of 0 to MaxPicNum — 1. The allowed values of abs_diff pic num minusl are further restricted as specified in
clause 8.2.4.3.1.

long_term_pic_num specifies the long-term picture number of the picture being moved to the current index in the list.
When decoding a coded frame, long term pic num shall be equal to a LongTermPicNum assigned to one of the
reference frames or complementary reference field pairs marked as "used for long-term reference". When decoding a
coded field, long_term_pic_num shall be equal to a LongTermPicNum assigned to one of the reference fields marked as
"used for long-term reference".

7.4.3.2 Prediction weight table semantics

luma_log2_weight_denom is the base 2 logarithm of the denominator for all luma weighting factors. The value of
luma log2 weight denom shall be in the range of 0 to 7, inclusive.

chroma_log2 weight_denom is the base 2 logarithm of the denominator for all chroma weighting factors. The value of
chroma log2 weight denom shall be in the range of 0 to 7, inclusive.

luma_weight_10_flag equal to 1 specifies that weighting factors for the luma component of list O prediction are present.
luma_weight 10 flag equal to O specifies that these weighting factors are not present.

luma_weight 10[i] is the weighting factor applied to the luma prediction value for list O prediction using
RefPicListO[i]. When luma_weight 10_flag is equal to 1, the value of luma_weight 10[i] shall be in the range of —128
to 127, inclusive. When luma weight 10 flag is equal to 0, luma weight 10[i] shall be inferred to be equal
to 2lumalog2 weight denom £ B o fPicListO] i].

luma_offset_10] 1] is the additive offset applied to the luma prediction value for list O prediction using RefPicList0[i .
The value of luma_offset 10[i] shall be in the range of —128 to 127, inclusive. When luma_weight 10 flag is equal to 0,
luma_offset 10[i] shall be inferred as equal to 0 for RefPicListO[i].

chroma_weight 10 _flag equal to 1 specifies that weighting factors for the chroma prediction values of list 0 prediction
are present. chroma_weight 10 flag equal to 0 specifies that these weighting factors are not present.

chroma_weight 10[i][]] is the weighting factor applied to the chroma prediction values for list O prediction using
RefPicList0[i] with j equal to 0 for Cb and j equal to 1 for Cr. When chroma_weight 10 flag is equal to 1, the value of

Rec. ITU-T H.264 (01/2012) 91

chroma_weight 10[i][j] shall be in the range of —128 to 127, inclusive. When chroma_weight 10_flag is equal to 0,
chroma_weight 10[i][j] shall be inferred to be equal to 2¢hma-tog2weight denom £ R o fPicListO[i].

chroma_offset 10[i][;] is the additive offset applied to the chroma prediction values for list 0 prediction using
RefPicListO[i] with j equal to 0 for Cb and j equal to 1 for Cr. The value of chroma offset 10[i][j] shall be in the
range of —128 to 127, inclusive. When chroma weight 10 flag is equal to 0, chroma offset 10[i][j] shall be inferred to
be equal to 0 for RefPicList0[i].

luma_weight 11 _flag, luma_weight 11, luma_offset_l1, chroma_weight 11 _flag, chroma_weight 11,
chroma_offset 11 have the same semantics as luma weight 10 flag, luma weight 10, Iuma offset 10,
chroma weight 10 flag, chroma weight 10, chroma offset 10, respectively, with 10, list 0, and ListO replaced by 11,
list 1, and List1, respectively.

7.4.3.3 Decoded reference picture marking semantics

The syntax elements no_output of prior pics flag, long term reference flag, adaptive ref pic_marking mode flag,
memory_management_control_operation, difference of pic nums minusl, long term frame idx, long_term pic_num,
and max_long term_frame idx_plusl specify marking of the reference pictures.

"non

The marking of a reference picture can be "unused for reference", "used for short-term reference", or "used for long-term
reference", but only one among these three. When a reference picture is referred to as being marked as "used for
reference", this collectively refers to the picture being marked as "used for short-term reference" or "used for long-term
reference" (but not both). A reference picture that is marked as "used for short-term reference" is referred to as a
short-term reference picture. A reference picture that is marked as "used for long-term reference" is referred to as a
long-term reference picture.

The content of the decoded reference picture marking syntax structure shall be the same in all slice headers of the
primary coded picture. When one or more redundant coded pictures are present, the content of the decoded reference
picture marking syntax structure shall be the same in all slice headers of a redundant coded picture with a particular
value of redundant _pic_cnt.
NOTE 1 — It is not required that the content of the decoded reference picture marking syntax structure in a redundant coded picture
with a particular value of redundant_pic_cnt is identical to the content of the decoded reference picture marking syntax structure in
the corresponding primary coded picture or a redundant coded picture with a different value of redundant pic_cnt. However, as
specified in clause 7.4.3, the content of the decoded reference picture marking syntax structure in a redundant coded picture is
constrained in the way that the marking status of reference pictures and the value of frame num after the decoded reference
picture marking process in clause 8.2.5 must be identical regardless whether the primary coded picture or any redundant coded
picture of the access unit would be decoded.

The syntax category of the decoded reference picture marking syntax structure shall be inferred as follows:

— If the decoded reference picture marking syntax structure is in a slice header, the syntax category of the decoded
reference picture marking syntax structure is inferred to be equal to 2.

— Otherwise (the decoded reference picture marking syntax structure is in a decoded reference picture marking
repetition SEI message as specified in Annex D), the syntax category of the decoded reference picture marking
syntax structure is inferred to be equal to 5.

no_output_of prior_pics_flag specifies how the previously-decoded pictures in the decoded picture buffer are treated
after decoding of an IDR picture. See Annex C. When the IDR picture is the first IDR picture in the bitstream, the value
of no_output_of prior pics flag has no effect on the decoding process. When the IDR picture is not the first IDR picture
in the bitstream and the value of PicWidthInMbs, FrameHeightInMbs, or max_dec_frame buffering derived from the
active sequence parameter set is different from the value of PicWidthinMbs, FrameHeightinMbs, or
max_dec frame buffering derived from the sequence parameter set active for the preceding picture,
no_output_of prior pics flag equal to 1 may (but should not) be inferred by the decoder, regardless of the actual value
of no_output of prior pics flag.

long_term_reference_flag equal to O specifies that the MaxLongTermFrameldx variable is set equal to "no long-term
frame indices" and that the IDR picture is marked as "used for short-term reference". long_term_reference flag equal
to 1 specifies that the MaxLongTermFrameldx variable is set equal to 0 and that the current IDR picture is marked "used
for long-term reference" and is assigned LongTermFrameldx equal to 0. When max num_ref frames is equal to 0,
long term_reference flag shall be equal to 0.

adaptive ref pic_marking mode flag selects the reference picture marking mode of the currently decoded picture as
specified in Table 7-8. adaptive ref pic_marking mode flag shall be equal to 1 when the number of frames,
complementary field pairs, and non-paired fields that are currently marked as "used for long-term reference" is equal to
Max(max_num_ref frames, 1).

92 Rec. ITU-T H.264 (01/2012)

Table 7-8 — Interpretation of adaptive_ref pic_marking mode_flag

adaptive_ref pic_marking mode flag | Reference picture marking mode specified

0 Sliding window reference picture marking mode: A marking mode
providing a first-in first-out mechanism for short-term reference
pictures.

1 Adaptive reference picture marking mode: A reference picture

marking mode providing syntax elements to specify marking of
reference pictures as "unused for reference" and to assign long-term
frame indices.

memory_management_control_operation specifies a control operation to be applied to affect the reference picture
marking. The memory management control operation syntax element is followed by data necessary for the operation
specified by the value of memory management control operation. The values and control operations associated with
memory management control operation are specified in Table 7-9. The memory management control operation
syntax elements are processed by the decoding process in the order in which they appear in the slice header, and the
semantics constraints expressed for each memory management control operation apply at the specific position in that
order at which that individual memory _management_control operation is processed.

For interpretation of memory management_control_operation, the term reference picture is interpreted as follows:

— If the current picture is a frame, the term reference picture refers either to a reference frame or a complementary
reference field pair.

— Otherwise (the current picture is a field), the term reference picture refers either to a reference field or a field of a
reference frame.

memory management_control operation shall not be equal to 1 in a slice header unless the specified reference picture is
marked as "used for short-term reference" when the memory management control operation is processed by the
decoding process.

memory_management_control operation shall not be equal to 2 in a slice header unless the specified long-term picture
number refers to a reference picture that is marked as "used for long-term reference" when the
memory_management_control operation is processed by the decoding process.

memory_management_control operation shall not be equal to 3 in a slice header unless the specified reference picture is
marked as "used for short-term reference"” when the memory management control operation is processed by the
decoding process.

memory_management_control operation shall not be equal to 3 or 6 if the value of the variable MaxLongTermFrameldx
is equal to "no long-term frame indices" when the memory management control operation is processed by the decoding
process.

Not more than one memory_management_control operation equal to 4 shall be present in a slice header.
Not more than one memory management control operation equal to 5 shall be present in a slice header.
Not more than one memory management_control_operation equal to 6 shall be present in a slice header.

memory_management_control operation shall not be equal to 5 in a slice header wunless no
memory_management_control operation in the range of 1 to 3 is present in the same decoded reference picture marking
syntax structure.

A memory_management_control operation equal to 5 shall not follow a memory management control operation equal
to 6 in the same slice header.

When a memory management control operation equal to 6 is present, any memory management control operation
equal to 2, 3, or 4 that follows the memory management control operation equal to 6 within the same slice header shall
not specify the current picture to be marked as "unused for reference".

NOTE 2 — These constraints prohibit any combination of multiple memory management control operation syntax elements that
would specify the current picture to be marked as "unused for reference". However, some other combinations of
memory_ management control operation syntax elements are permitted that may affect the marking status of other reference
pictures more than once in the same slice header. In particular, it is permitted for a memory management control operation equal
to 3 that specifies a long-term frame index to be assigned to a particular short-term reference picture to be followed in the same
slice header by a memory management control_operation equal to 2, 3, 4 or 6 that specifies the same reference picture to
subsequently be marked as "unused for reference".

Rec. ITU-T H.264 (01/2012) 93

Table 7-9 — Memory management control operation (memory_management_control_operation) values

memory_management_control_operation | Memory Management Control Operation

0 End memory management_control operation
syntax element loop

1 Mark a short-term reference picture as
"unused for reference"

2 Mark a long-term reference picture as
"unused for reference"

3 Mark a short-term reference picture as
"used for long-term reference" and assign a
long-term frame index to it

4 Specify the maximum long-term frame index
and mark all long-term reference pictures
having long-term frame indices greater than
the maximum value as "unused for reference"

5 Mark all reference pictures as
"unused for reference" and set the
MaxLongTermFrameldx variable to
"no long-term frame indices"

6 Mark the current picture as
"used for long-term reference" and assign a
long-term frame index to it

When decoding a field and a memory management control operation command equal to 3 is present that assigns a
long-term frame index to a field that is part of a short-term reference frame or part of a complementary reference field
pair, another memory management_control operation command (equal to 3 or 6) to assign the same long-term frame
index to the other field of the same frame or complementary reference field pair shall be present in the same decoded
reference picture marking syntax structure.
NOTE3 - The above requirement must be fulfilled even when the field referred to by the
memory_management_control operation equal to 3 is subsequently marked as "unused for reference" (for example when a

memory management control operation equal to 2 is present in the same slice header that causes the field to be marked as
"unused for reference").

NOTE 4 — The above requirement has the following implications:

— When a memory_management_control operation equal to 3 is present that assigns a long-term frame index to a field that is
part of a reference frame or complementary reference field pair with both fields marked as "used for short-term reference"
(when processing the memory management control _operation equal to 3), another memory management_control operation
equal to 3 must also be present in the same decoded reference picture marking syntax structure that assigns the same
long-term frame index to the other field of the reference frame or complementary reference field pair.

— When the current picture is the second field (in decoding order) of a complementary reference field pair and a
memory_management_control operation equal to 3 is present in the decoded reference picture marking syntax structure of the
current picture that assigns a long-term frame index to the first field (in decoding order) of the complementary reference field
pair, a memory_ management_control operation equal to 6 must be present in the same decoded reference picture marking
syntax structure that assigns the same long-term frame index to the second field of the complementary reference field pair.

When the first field (in decoding order) of a complementary reference field pair included a long_term_reference flag
equal to 1 or a memory management control operation command equal to 6, the decoded reference picture marking
syntax structure for the second field of the complementary reference field pair shall contain a
memory management control operation command equal to 6 that assigns the same long-term frame index to the second
field.

NOTE 5 — The above requirement must be fulfilled even when the first field of the complementary reference field pair is
subsequently marked as "unused for reference" (for example, when a memory management control operation equal to 2 is
present in the slice header of the second field that causes the first field to be marked as "unused for reference").

When the second field (in decoding order) of a complementary reference field pair includes a
memory management control operation command equal to 6 that assigns a long-term frame index to this field and the
first field of the complementary reference field pair is marked as "used for short-term reference" when the
memory_management_control operation command equal to 6 is processed by the decoding process, the decoded
reference picture marking syntax structure of that second field shall contain either a
memory_management_control operation command equal to 1 that marks the first field of the complementary field pair
as "unused for reference" or a memory management control operation command equal to 3 that marks the first field of

94 Rec. ITU-T H.264 (01/2012)

the complementary field pair as "used for long-term reference" and assigns the same long-term frame index to the first
field.
NOTE 6 — The above constraints specify that when both fields of a frame or a complementary field pair are marked as "used for
reference" after processing all memory management control operation commands of the decoded reference picture marking
syntax structure, either both fields must be marked as "used for short-term reference" or both fields must be marked as "used for
long-term reference". When both fields are marked as "used for long-term reference", the same long-term frame index must be
assigned to both fields.

difference_of pic_nums_minusl is used (with memory management control operation equal to 3 or 1) to assign a
long-term frame index to a short-term reference picture or to mark a short-term reference picture as "unused for
reference". When the associated memory management control operation is processed by the decoding process, the
resulting picture number derived from difference of pic_nums_minus] shall be a picture number assigned to one of the
reference pictures marked as "used for reference" and not previously assigned to a long-term frame index.

The resulting picture number is constrained as follows:

— If field pic_flag is equal to 0, the resulting picture number shall be one of the set of picture numbers assigned to
reference frames or complementary reference field pairs.
NOTE 7 — When field pic flag is equal to 0, the resulting picture number must be a picture number assigned to a
complementary reference field pair in which both fields are marked as "used for reference" or a frame in which both
fields are marked as "used for reference". In particular, when field pic_flag is equal to 0, the marking of a non-paired
field or a frame in which a single field is marked as "used for reference" cannot be affected by a
memory management control operation equal to 1.

— Otherwise (field pic flag is equal to 1), the resulting picture number shall be one of the set of picture numbers
assigned to reference fields.

long_term_pic_num is used (with memory management control operation equal to 2) to mark a long-term reference
picture as "unused for reference". When the associated memory management control operation is processed by the
decoding process, long term_pic_num shall be equal to a long-term picture number assigned to one of the reference
pictures that is currently marked as "used for long-term reference".

The resulting long-term picture number is constrained as follows:

— If field pic_flag is equal to 0, the resulting long-term picture number shall be one of the set of long-term picture
numbers assigned to reference frames or complementary reference field pairs.
NOTE 8 — When field pic flag is equal to 0, the resulting long-term picture number must be a long-term picture
number assigned to a complementary reference field pair in which both fields are marked as "used for reference" or a
frame in which both fields are marked as "used for reference". In particular, when field pic flag is equal to 0, the
marking of a non-paired field or a frame in which a single field is marked as "used for reference" cannot be affected by
a memory management control operation equal to 2.

— Otherwise (field pic flag is equal to 1), the resulting long-term picture number shall be one of the set of long-term
picture numbers assigned to reference fields.

long_term_frame_idx is used (with memory management control operation equal to 3 or 6) to assign a long-term
frame index to a picture. When the associated memory management control operation is processed by the decoding
process, the value of long_term frame idx shall be in the range of 0 to MaxLongTermFrameldx, inclusive.

max_long_term_frame_idx_plusl minus 1 specifies the maximum value of long-term frame index allowed for
long-term reference pictures (until receipt of another value of max long term frame idx plusl). The value of
max_long_term frame idx plusl shall be in the range of 0 to max num_ref frames, inclusive.

7.4.4 Slice data semantics
cabac_alignment_one_bit is a bit equal to 1.

mb_skip_run specifies the number of consecutive skipped macroblocks for which, when decoding a P or SP slice,
mb_type shall be inferred to be P_Skip and the macroblock type is collectively referred to as a P macroblock type, or for
which, when decoding a B slice, mb_type shall be inferred to be B_Skip and the macroblock type is collectively referred
to as a B macroblock type. The value of mb_skip run shall be in the range of 0 to PicSizeInMbs — CurrMbAddr,
inclusive.

mb_skip flag equal to 1 specifies that for the current macroblock, when decoding a P or SP slice, mb_type shall be
inferred to be P_Skip and the macroblock type is collectively referred to as P macroblock type, or for which, when
decoding a B slice, mb_type shall be inferred to be B_Skip and the macroblock type is collectively referred to as B
macroblock type. mb_skip flag equal to O specifies that the current macroblock is not skipped.

mb_field decoding flag equal to O specifies that the current macroblock pair is a frame macroblock pair.
mb_field decoding flag equal to 1 specifies that the macroblock pair is a field macroblock pair. Both macroblocks of a

Rec. ITU-T H.264 (01/2012) 95

frame macroblock pair are referred to in the text as frame macroblocks, whereas both macroblocks of a field macroblock
pair are referred to in the text as field macroblocks.

When MbaffFrameFlag is equal to 0 (mb_field decoding flag is not present), mb_field decoding_flag is inferred to be
equal to field pic_flag.

When MbaffFrameFlag is equal to 1 and mb_field decoding flag is not present for both the top and the bottom
macroblock of a macroblock pair, the value of mb_field decoding_flag shall be inferred as follows:

— If there is a neighbouring macroblock pair immediately to the left of the current macroblock pair in the same slice,
the value of mb field decoding flag is inferred to be equal to the value of mb field decoding flag for the
neighbouring macroblock pair immediately to the left of the current macroblock pair,

— Otherwise, if there is no neighbouring macroblock pair immediately to the left of the current macroblock pair in the
same slice and there is a neighbouring macroblock pair immediately above the current macroblock pair in the same
slice, the value of mb_field decoding_flag is inferred to be equal to the value of mb_field decoding flag for the
neighbouring macroblock pair immediately above the current macroblock pair,

— Otherwise (there is no neighbouring macroblock pair either immediately to the left or immediately above the current
macroblock pair in the same slice), the value of mb_field decoding_flag is inferred to be equal to 0.
NOTE — When MbaffFrameFlag is equal to 1 and mb_field decoding_flag is not present for the top macroblock of a macroblock
pair (because the top macroblock is skipped), a decoder must wait until mb_field decoding_flag for the bottom macroblock is read
(when the bottom macroblock is not skipped) or the value of mb_field decoding flag is inferred as specified above (when the
bottom macroblock is also skipped) before it starts the decoding process for the top macroblock.

end_of slice flag equal to 0 specifies that another macroblock is following in the slice. end of slice flag equal to 1
specifies the end of the slice and that no further macroblock follows.

The function NextMbAddress() used in the slice data syntax table is specified in clause 8.2.2.

7.4.5 Macroblock layer semantics
mb_type specifies the macroblock type. The semantics of mb_type depend on the slice type.

Tables and semantics are specified for the various macroblock types for I, SI, P, SP, and B slices. Each table presents the
value of mb_type, the name of mb_type, the number of macroblock partitions used (given by the NumMbPart(mb_type)
function), the prediction mode of the macroblock (when it is not partitioned) or the first partition (given by the
MbPartPredMode(mb_type, 0) function) and the prediction mode of the second partition (given by the
MbPartPredMode(mb_type, 1) function). When a value is not applicable it is designated by "na". In the text, the value
of mb_type may be referred to as the macroblock type, the value of MbPartPredMode() may be referred to in the text by
"macroblock (partition) prediction mode", and a value X of MbPartPredMode() may be referred to in the text by "X
macroblock (partition) prediction mode" or as "X prediction macroblocks".

Table 7-10 shows the allowed collective macroblock types for each slice_type.

NOTE 1 — There are some macroblock types with Pred LO macroblock (partition) prediction mode(s) that are classified as B
macroblock types.

Table 7-10 — Allowed collective macroblock types for slice_type

slice_type allowed collective macroblock types

I (slice) I (see Table 7-11) (macroblock types)

P (slice) P (see Table 7-13) and I (see Table 7-11) (macroblock types)
B (slice) B (see Table 7-14) and I (see Table 7-11) (macroblock types)
SI (slice) SI (see Table 7-12) and I (see Table 7-11) (macroblock types)
SP (slice) P (see Table 7-13) and I (see Table 7-11) (macroblock types)

transform_size 8x8 flag equal to 1 specifies that for the current macroblock the transform coefficient decoding process
and picture construction process prior to deblocking filter process for residual 8x8 blocks shall be invoked for luma
samples, and when ChromaArrayType == 3 also for Cb and Cr samples. transform_size 8x8 flag equal to 0 specifies
that for the current macroblock the transform coefficient decoding process and picture construction process prior to
deblocking filter process for residual 4x4 blocks shall be invoked for luma samples, and when ChromaArrayType ==
also for Cb and Cr samples. When transform_size 8x8 flag is not present in the bitstream, it shall be inferred to be equal
to 0.

96 Rec. ITU-T H.264 (01/2012)

NOTE 2 — When the current macroblock prediction mode MbPartPredMode(mb type, 0) is equal to Intra 16x16,
transform_size 8x8 flag is not present in the bitstream and then inferred to be equal to 0.

When sub_mb_type[mbPartldx] (see clause 7.4.5.2) is present in the bitstream for all 8x8 blocks indexed by
mbPartldx = 0..3, the variable noSubMbPartSizeLessThan8x8Flag indicates whether for each of the four 8x8 blocks the
corresponding SubMbPartWidth(sub_mb_type[mbPartldx]) and SubMbPartHeight(sub_mb_type[mbPartldx]) are
both equal to 8.

NOTE 3 — When noSubMbPartSizeLessThan8x8Flag is equal to 0 and the current macroblock type is not equal to I NxN,
transform_size 8x8 flag is not present in the bitstream and then inferred to be equal to 0.

Macroblock types that may be collectively referred to as I macroblock types are specified in Table 7-11.

The macroblock types for I slices are all I macroblock types.

Rec. ITU-T H.264 (01/2012) 97

Table 7-11 — Macroblock types for I slices

=
=
] C : £
w 1 =
& % B~ = @) 3
@ = ® =< S £ 5
= £ g R £ £ £
5 £ 3 £ & z £
= © | = o v 5
£ o g == o D) S
= = =2 - g =) =
] 3 S
Q
0 I NxN 0 Intra_4x4 na Equation 7-35 | Equation 7-35
0 I NxN 1 Intra_8x8 na Equation 7-35 | Equation 7-35
1 [16x16 0 0 O na Intra_16x16 0 0 0
2 I 16x16 1 0 0 na Intra_16x16 1 0 0
3 I 16x16_2 0 0 na Intra_16x16 2 0 0
4 [16x16 3 0 0 na Intra_16x16 3 0 0
5 I 16x16_0_1 0 na Intra_16x16 0 1 0
6 [16x16_1_1 0 na Intra_16x16 1 1 0
7 [16x16 2 1 0 na Intra_16x16 2 1 0
8 I 16x16. 310 na Intra_16x16 3 1 0
9 [16x16 0 2 0 na Intra_16x16 0 2 0
10 [16x16 1.2 0 na Intra_16x16 1 2 0
11 I 16x16 2 2 0 na Intra_16x16 2 2 0
12 I 16x16 3 2 0 na Intra_16x16 3 2 0
13 I 16x16_0_0_1 na Intra_16x16 0 0 15
14 I 16x16_1 01 na Intra_16x16 1 0 15
15 I 16x16 2 0 1 na Intra_16x16 2 0 15
16 I 16x16_3 01 na Intra_16x16 3 0 15
17 I 16x16 0 1 1 na Intra_16x16 0 1 15
18 [16x16 1 11 na Intra_16x16 1 1 15
19 I 16x16 2 1 1 na Intra_16x16 2 1 15
20 I 16x16 3 1 1 na Intra_16x16 3 1 15
21 I 16x16_0 2 1 na Intra_16x16 0 2 15
22 I 16x16_1 2 1 na Intra_16x16 1 2 15
23 I 16x16 2 2 1 na Intra_16x16 2 2 15
24 I 16x16 3 2 1 na Intra_16x16 3 2 15
25 I PCM na na na na na

98 Rec. ITU-T H.264 (01/2012)

The following semantics are assigned to the macroblock types in Table 7-11:

— I NxN: A mnemonic name for mb_type equal to 0 with MbPartPredMode(mb_type, 0) equal to Intra_4x4 or

Intra_8x8.

- 1.16x16 0 0 0, 1 16x16 100, 116x162 00, 116x16 3 00, 1 16x16 010, 1 16x16 1 10,
[16x16 2 1 0, 116x16 3 10, 116x16 020, 116x16 120, 1 16x162 2 0, 1 16x16 3 2 0,
I 16x16 0 0 1, I_16x16_1_0_1, I 16x16 2 0 1, 1 16x16 3 0 1, 1 16x16 0 1 1, I_16x16 111,
I 16x16 2 1 1, T 16x16 3 1 1, I 16x16 0 2 1, 1 16x16 1 2 1, 1 16x16 2 2 1, 1 16x16 3 2 1: the

macroblock is coded as an Intra_16x16 prediction macroblock.

To each Intra_16x16 prediction macroblock, an Intral6x16PredMode is assigned, which specifies the Intra 16x16
prediction mode, and values of CodedBlockPatternLuma and CodedBlockPatternChroma are assigned as specified in
Table 7-11.

Intra_4x4 specifies the macroblock prediction mode and specifies that the Intra 4x4 prediction process is invoked as
specified in clause 8.3.1. Intra_4x4 is an Intra macroblock prediction mode.

Intra_8x8 specifies the macroblock prediction mode and specifies that the Intra 8x8 prediction process is invoked as
specified in clause 8.3.2. Intra_8x8 is an Intra macroblock prediction mode.

Intra_16x16 specifies the macroblock prediction mode and specifies that the Intra_16x16 prediction process is invoked
as specified in clause 8.3.3. Intra_16x16 is an Intra macroblock prediction mode.

For a macroblock coded with mb_type equal to I PCM, the Intra macroblock prediction mode shall be inferred.

A macroblock type that may be referred to as the SI macroblock type is specified in Table 7-12.

The macroblock types for SI slices are specified in Tables 7-12 and 7-11. The mb_type value 0 is specified in Table 7-12
and the mb_type values 1 to 26 are specified in Table 7-11, indexed by subtracting 1 from the value of mb_type.

Table 7-12 — Macroblock type with value 0 for SI slices

mb_type
Name of mb_type
MbPartPredMode
(mb_type, 0)
Intral6x16PredMode

CodedBlockPatternChroma
CodedBlockPatternLuma

0 SI Intra_4x4 na Equation 7-35 | Equation 7-35

The following semantics are assigned to the macroblock type in Table 7-12:
— The SI macroblock is coded as Intra_4x4 prediction macroblock.
Macroblock types that may be collectively referred to as P macroblock types are specified in Table 7-13.

The macroblock types for P and SP slices are specified in Tables 7-13 and 7-11. mb_type values 0 to 4 are specified in
Table 7-13 and mb_type values 5 to 30 are specified in Table 7-11, indexed by subtracting 5 from the value of mb_type.

Rec. ITU-T H.264 (01/2012) 99

Table 7-13 — Macroblock type values 0 to 4 for P and SP slices

© @ %
= £~ s 2o | =~ | £~
v) 3o =< =" =g 2y
=% = -V -" = oW =] g <9 -
z = == g = g = zZ Tz
| - =7 oS Fol s il £
)) = € | € s 2 =2
= @ s 8 =< =5 A E & E
= Z ~ & E a g =22 = =
= =~ L~ E E
z = =
0 P LO 16x16 1 Pred LO na 16 16
1 P_LO_LO_16x8 2 Pred_LO Pred_LO 16 8
2 P LO_LO 8x16 2 Pred LO Pred_LO 8 16
3 P 8x8 4 na na 8 8
4 P 8x8refl 4 na na 8 8
inferred P_Skip 1 Pred LO na 16 16

The following semantics are assigned to the macroblock types in Table 7-13:

— P_LO_16x16: the samples of the macroblock are predicted with one luma macroblock partition of size 16x16 luma
samples and associated chroma samples.

— P_LO_LO MxN, with MxN being replaced by 16x8 or 8x16: the samples of the macroblock are predicted using two
luma partitions of size MxN equal to 16x8, or two luma partitions of size MxN equal to 8x16, and associated
chroma samples, respectively.

— P_8x8: for each sub-macroblock an additional syntax element (sub_mb_type[mbPartldx] with mbPartldx being the
macroblock partition index for the corresponding sub-macroblock) is present in the bitstream that specifies the type
of the corresponding sub-macroblock (see clause 7.4.5.2).

P_8x8ref0: has the same semantics as P_8x8 but no syntax element for the reference index (ref idx_10[mbPartldx]
with mbPartldx = 0..3) is present in the bitstream and ref idx 10[mbPartldx] shall be inferred to be equal to 0 for
all sub-macroblocks of the macroblock (with indices mbPartldx = 0..3).

— P_Skip: no further data is present for the macroblock in the bitstream.

The following semantics are assigned to the macroblock prediction modes (for macroblocks that are not partitioned) and
macroblock partition prediction modes (for macroblocks that are partitioned) specified by MbPartPredMode() in

Table 7-13:

— Pred LO: specifies that the Inter prediction process is invoked using list O prediction. Pred LO is an Inter
macroblock prediction mode (for macroblocks that are not partitioned) and an Inter macroblock partition prediction

mode (for macroblocks that are partitioned).

When mb_type is equal to any of the values specified in Table 7-13, the macroblock is coded in an Inter macroblock
prediction mode.

Macroblock types that may be collectively referred to as B macroblock types are specified in Table 7-14.

The macroblock types for B slices are specified in Tables 7-14 and 7-11. The mb_type values 0 to 22 are specified in
Table 7-14 and the mb_type values 23 to 48 are specified in Table 7-11, indexed by subtracting 23 from the value of

mb_type.

100 Rec. ITU-T H.264 (01/2012)

Table 7-14 — Macroblock type values 0 to 22 for B slices

g = =
I~ - _ S ~ S~ s = -
@ = = o = e,\ = - = L0y
2 = A~ = 9 = 9 2 S
z E 2z e 22 zz| 2
| = =7 o] ol il 7
) S =2 € € s 2 =2
g v SE << << EE| &E
g Z— & E & 8 | &2
= - =~ E E
z = =
0 B Direct _16x16 na Direct na 8 8
1 B_LO_16x16 1 Pred_LO na 16 16
2 B LI _16x16 1 Pred L1 na 16 16
3 B Bi 16x16 1 BiPred na 16 16
4 B_LO_LO_16x8 2 Pred_LO Pred_LO 16 8
5 B_L0 L0 8x16 2 Pred L0 Pred L0 8 16
6 B LI L1 16x8 2 Pred L1 Pred L1 16 8
7 B L1 L1 _8x16 2 Pred L1 Pred L1 8 16
8 B_LO L1 16x8 2 Pred L0 Pred L1 16 8
9 B LO L1 8x16 2 Pred LO Pred L1 8 16
10 B L1_LO_16x8 2 Pred L1 Pred_LO 16 8
11 B L1 L0 8x16 2 Pred L1 Pred L0 8 16
12 B_LO Bi_16x8 2 Pred L0 BiPred 16 8
13 B_LO_Bi_8x16 2 Pred_LO BiPred 8 16
14 B_LI Bi_16x8 2 Pred L1 BiPred 16 8
15 B L1 Bi 8x16 2 Pred L1 BiPred 8 16
16 B _Bi_L0_16x8 2 BiPred Pred_LO 16 8
17 B_Bi L0 _8x16 2 BiPred Pred L0 8 16
18 B Bi L1 _16x8 2 BiPred Pred L1 16 8
19 B Bi_L1_8x16 2 BiPred Pred L1 8 16
20 B_Bi Bi_16x8 2 BiPred BiPred 16 8
21 B_Bi Bi 8x16 2 BiPred BiPred 8 16
22 B 8x8 4 na na 8 8
inferred B_Skip na Direct na 8 8

The following semantics are assigned to the macroblock types in Table 7-14:

B Direct _16x16: no motion vector differences or reference indices are present for the macroblock in the bitstream.
The functions MbPartWidth(B_Direct 16x16), and MbPartHeight(B Direct 16x16) are used in the derivation
process for motion vectors and reference frame indices in clause 8.4.1 for direct mode prediction.

B_X 16x16 with X being replaced by L0, L1, or Bi: the samples of the macroblock are predicted with one luma
macroblock partition of size 16x16 luma samples and associated chroma samples. For a macroblock with type
B X 16x16 with X being replaced by either LO or L1, one motion vector difference and one reference index is

Rec. ITU-T H.264 (01/2012) 101

present in the bitstream for the macroblock. For a macroblock with type B X 16x16 with X being replaced by Bi,
two motion vector differences and two reference indices are present in the bitstream for the macroblock.

— B X0 X1 MxN, with X0, X1 referring to the first and second macroblock partition and being replaced by L0, L1,
or Bi, and MxN being replaced by 16x8 or 8x16: the samples of the macroblock are predicted using two luma
partitions of size MxN equal to 16x8, or two luma partitions of size MxN equal to 8x16, and associated chroma
samples, respectively. For a macroblock partition X0 or X1 with X0 or X1 being replaced by either LO or L1, one
motion vector difference and one reference index is present in the bitstream. For a macroblock partition X0 or X1
with X0 or X1 being replaced by Bi, two motion vector differences and two reference indices are present in the
bitstream for the macroblock partition.

— B_8x8: for each sub-macroblock an additional syntax element (sub_mb_type[mbPartldx | with mbPartldx being the
macroblock partition index for the corresponding sub-macroblock) is present in the bitstream that specifies the type
of the corresponding sub-macroblock (see clause 7.4.5.2).

— B_Skip: no further data is present for the macroblock in the bitstream. The functions MbPartWidth(B_Skip), and
MbPartHeight(B_Skip) are used in the derivation process for motion vectors and reference frame indices in
clause 8.4.1 for direct mode prediction.

The following semantics are assigned to the macroblock prediction modes (for macroblocks that are not partitioned) and
macroblock partition prediction modes (for macroblocks that are partitioned) specified by MbPartPredMode() in
Table 7-14:

— Direct: no motion vector differences or reference indices are present for the macroblock (in case of B_Skip or
B Direct 16x16) in the bitstream. Direct is an Inter macroblock prediction mode (for macroblocks that are not
partitioned) and an Inter macroblock partition prediction mode (for macroblocks that are partitioned, see
Table 7-18).

— Pred LO: the semantics specified for Table 7-13 apply.

— Pred L1: specifies that the Inter prediction process is invoked using list 1 prediction. Pred L1 is an Inter
macroblock prediction mode (for macroblocks that are not partitioned) and an Inter macroblock partition prediction
mode (for macroblocks that are partitioned).

— BiPred: specifies that the Inter prediction process is invoked using list 0 and list 1 prediction. BiPred is an Inter
macroblock prediction mode (for macroblocks that are not partitioned) and an Inter macroblock partition prediction
mode (for macroblocks that are partitioned).

When mb_type is equal to any of the values specified in Table 7-14, the macroblock is coded in an Inter macroblock
prediction mode.

pem_alignment_zero_bit is a bit equal to 0.

pem_sample lumal i] is a sample value. The pcm_sample luma[i] values represent luma sample values in the raster
scan within the macroblock. The number of bits used to represent each of these samples is BitDepthy.

pcem_sample chromali] is a sample value. The first MbWidthC * MbHeightC pcm_sample chroma[i] values
represent Cb sample values in the raster scan within the macroblock and the remaining MbWidthC * MbHeightC
pcm_sample chroma] i] values represent Cr sample values in the raster scan within the macroblock. The number of bits
used to represent each of these samples is BitDepthc.

coded_block pattern specifies which of the four 8x8 luma blocks and associated chroma blocks of a macroblock may
contain non-zero transform coefficient levels. When coded block pattern is present in the bitstream, the variables
CodedBlockPatternLuma and CodedBlockPatternChroma are derived as

CodedBlockPatternLuma = coded_block pattern % 16
CodedBlockPatternChroma = coded_block_pattern / 16 (7-35)

When the macroblock type is not equal to P_Skip, B_Skip, or I PCM, the following applies:

— If the macroblock prediction mode is equal Intra 16x16, the following applies:
— If ChromaArrayType is not equal to 3, the value of CodedBlockPatternLuma specifies the following.

— If CodedBlockPatternLuma is equal to 0, all AC transform coefficient levels of the luma component of the
macroblock are equal to O for all 16 of the 4x4 blocks in the 16x16 luma block.

— Otherwise (CodedBlockPatternLuma is not equal to 0), CodedBlockPatternLuma is equal to 15, at least
one of the AC transform coefficient levels of the luma component of the macroblock shall be non-zero,
and the AC transform coefficient levels are scanned for all 16 of the 4x4 blocks in the 16x16 block.

102 Rec. ITU-T H.264 (01/2012)

— Otherwise (ChromaArrayType is equal to 3), the value of CodedBlockPatternLuma specifies the following.

— If CodedBlockPatternLLuma is equal to 0, all AC transform coefficient levels of the luma, Cb, and Cr
components of the macroblock are equal to O for all 16 of the 4x4 blocks in the luma, Cb, and Cr
components of the macroblock.

— Otherwise (CodedBlockPatternLuma is not equal to 0), CodedBlockPatternLuma is equal to 15, at least
one of the AC transform coefficient levels of the luma, Cb, or Cr components of the macroblock shall be
non-zero, and the AC transform coefficient levels are scanned for all 16 of the 4x4 blocks in the luma Cb,
and Cr components of the macroblock.

— Otherwise (the macroblock prediction mode is not equal to Intra 16x16), coded block pattern is present in the
bitstream, and the following applies:

— If ChromaArrayType is not equal to 3, each of the four LSBs of CodedBlockPatternLuma specifies, for one of
the four 8x8 luma blocks of the macroblock, the following.

— If the corresponding bit of CodedBlockPatternLuma is equal to 0, all transform coefficient levels of the
luma transform blocks in the 8x8 luma block are equal to zero.

— Otherwise (the corresponding bit of CodedBlockPatternL.uma is equal to 1), one or more transform
coefficient levels of one or more of the luma transform blocks in the 8x8 luma block shall be non-zero
valued and the transform coefficient levels of the corresponding transform blocks are scanned.

— Otherwise (ChromaArrayType is equal to 3), each of the four LSBs of CodedBlockPatternLuma specifies, for
one of the four 8x8 luma blocks of the macroblock, the following.

— If the corresponding bit of CodedBlockPatternLuma is equal to 0, all transform coefficient levels of the
luma, Cb, and Cr transform blocks in the 8x8 luma block are equal to zero.

— Otherwise (the corresponding bit of CodedBlockPatternL.uma is equal to 1), one or more transform
coefficient levels of one or more of the luma, Cb, or Cr transform blocks in the 8x8 luma block shall be
non-zero valued and the transform coefficient levels of the corresponding transform blocks are scanned.

When the macroblock type is not equal to P_Skip, B _Skip, or I PCM, CodedBlockPatternChroma is interpreted as
follows:

— If ChromaArrayType is not equal to 0 or 3, CodedBlockPatternChroma is specified in Table 7-15.

— Otherwise (ChromaArrayType is equal to 0 or 3), the bitstream shall not contain data that result in a derived value
of CodedBlockPatternChroma that is not equal to 0.

Table 7-15 — Specification of CodedBlockPatternChroma values

CodedBlockPatternChroma | Description

0 All chroma transform coefficient levels are equal to 0.

1 One or more chroma DC transform coefficient levels shall be non-zero valued.
All chroma AC transform coefficient levels are equal to 0.

2 Zero or more chroma DC transform coefficient levels are non-zero valued.
One or more chroma AC transform coefficient levels shall be non-zero valued.

mb_qp_delta can change the value of QPy in the macroblock layer. The decoded value of mb_qgp_delta shall be in the
range of —(26 + QpBdOffsety / 2) to +(25 + QpBdOffsety / 2), inclusive. mb_qp_delta shall be inferred to be equal to 0
when it is not present for any macroblock (including P_Skip and B_Skip macroblock types).

The value of QPy is derived as

QPy = ((QPyprev + mb_qp_delta + 52 + 2 * QpBdOffsety) % (52 + QpBdOffsety)) — QpBdOftsety (7-36)

where QPy prgy is the luma quantisation parameter, QPy, of the previous macroblock in decoding order in the current
slice. For the first macroblock in the slice QPy prgy is initially set equal to SliceQPy derived in Equation 7-29 at the start
of each slice.

The value of QP’y is derived as

QP'y = QPy + QpBdOffsety (7-37)

Rec. ITU-T H.264 (01/2012) 103

The variable TransformBypassModeFlag is derived as follows:

— If gpprime_y zero transform bypass flag is equal to 1 and QP'y is equal to 0, TransformBypassModeFlag is set
equal to 1.

— Otherwise (qpprime_y zero transform bypass flag is equal to 0 or QP'y is not equal to 0),
TransformBypassModeFlag is set equal to 0.

7.4.5.1 Macroblock prediction semantics
All samples of the macroblock are predicted. The prediction modes are derived using the following syntax elements.

prev_intra4x4 pred mode flag] luma4x4Blkldx | and rem_intrad4x4 pred mode| luma4x4Blkldx | specify the
Intra_4x4 prediction of the 4x4 luma block with index luma4x4Blkldx = 0..15. When ChromaArrayType is equal to 3,
prev_intra4x4 pred mode flag[luma4x4Blkldx] and rem intra4x4 pred mode[luma4x4Blkldx] also specify the
Intra_4x4 prediction of the 4x4 Cb block with luma4x4Blkldx equal to cb4x4Blkldx for cb4x4Blkldx = 0..15 and the
Intra_4x4 prediction of the 4x4 Cr block with luma4x4BlkIdx equal to cr4x4Blkldx for cr4x4Blkldx = 0..15.

prev_intra8x8_pred_mode_flag[luma8x8Blkldx] and rem_intra8x8 pred_mode[luma8x8Blkldx | specify the
Intra_8x8 prediction of the 8x8 luma block with index luma8x8BlkIdx = 0..3. When ChromaArrayType is equal to 3,
prev_intra8x8 pred mode flag[luma8x8Blkldx] and rem intra8x8 pred mode[luma8x8Blkldx] also specify the
Intra_8x8 prediction of the 8x8 Cb block with luma8x8Blkldx equal to cb8x8BlkIdx for cb8x8Blkldx = 0..3 and the
Intra_8x8 prediction of the 8x8 Cr block with index luma8x8BlkIdx equal to cr8x8BlkIdx for cr8x8BlkIdx = 0..3.

intra_chroma_pred_mode specifies, when ChromaArrayType is equal to 1 or 2, the type of spatial prediction used for
chroma in macroblocks using Intra 4x4, Intra 8x8, or Intra 16x16 prediction, as shown in Table 7-16. The value of
intra_chroma_pred mode shall be in the range of 0 to 3, inclusive.

Table 7-16 — Relationship between intra_chroma_pred_mode and spatial prediction modes

intra_chroma_pred_mode Intra Chroma Prediction Mode
0 DC
1 Horizontal
2 Vertical
3 Plane

ref _idx_l0[mbPartldx | when present, specifies the index in reference picture list 0 of the reference picture to be used
for prediction.

The range of ref idx_10[mbPartldx], the index in list O of the reference picture, and, if applicable, the parity of the field
within the reference picture used for prediction are specified as follows:

— If MbaffFrameFlag is equal to 0 or mb_field decoding_flag is equal to 0, the value of ref idx_10[mbPartldx] shall
be in the range of 0 to num_ref idx 10 active minusl, inclusive.

— Otherwise (MbaffFrameFlag is equal tol and mb field decoding flag is equal to1l), the value of
ref idx 10[mbPartldx] shall be in the range of 0 to 2 * num_ref idx 10 active minusl + 1, inclusive.

When only one reference picture is used for inter prediction, the values of ref idx 10[mbPartldx] shall be inferred to be
equal to 0.

ref_idx_ 11| mbPartldx] has the same semantics as ref idx 10, with 10 and list O replaced by 11 and list 1, respectively.

mvd_10[mbPartldx][0][compldx | specifies the difference between a list 0 motion vector component to be used and
its prediction. The index mbPartldx specifies to which macroblock partition mvd 10 is assigned. The partitioning of the
macroblock is specified by mb_type. The horizontal motion vector component difference is decoded first in decoding
order and is assigned compldx = 0. The vertical motion vector component is decoded second in decoding order and is
assigned compldx = 1. The range of the components of mvd_10[mbPartldx][0][compldx] is specified by constraints
on the motion vector variable values derived from it as specified in Annex A.

mvd_11[mbPartldx |[0][compldx | has the same semantics as mvd 10, with 10 and list O replaced by 11 and list 1,
respectively.

104 Rec. ITU-T H.264 (01/2012)

7.4.5.2 Sub-macroblock prediction semantics
sub_mb_type[mbPartldx] specifies the sub-macroblock types.

Tables and semantics are specified for the various sub-macroblock types for P, and B macroblock types. Each table
presents the value of sub_mb_type[mbPartldx], the name of sub_mb_type[mbPartldx], the number of sub-macroblock
partitions used (given by the NumSubMbPart(sub_mb_type[mbPartldx]) function), and the prediction mode of the
sub-macroblock (given by the SubMbPredMode(sub mb_type[mbPartldx]) function). In the text, the value of
sub_mb_type[mbPartldx] may be referred to by "sub-macroblock type". In the text, the value of SubMbPredMode()
may be referred to by "sub-macroblock prediction mode" or "macroblock partition prediction mode".

The interpretation of sub_mb_type[mbPartldx] for P macroblock types is specified in Table 7-17, where the row for
"inferred" specifies values inferred when sub_mb_type[mbPartldx] is not present.

Table 7-17 — Sub-macroblock types in P macroblocks

P -)) = =
£ g g | LE 25| S8
N

5 5 EE | EE £5 B

A A o A = & Y 5 A
= =2 == = 3 =1
= o E S E TE £ E t E

) EQ 27 ol £)
=3 S & Z 2 = = -2 =&

z] UE’ z S & s SR
2 2 P = 2 2 2 Z 2
El El 4 El wn El wn El n El

= 2 = = 2 2
= = = = = =

w»] w» w»]]

inferred na na na na na
0 P_L0_8x8 1 Pred_LO 8 8

1 P L0 8x4 2 Pred LO 8 4

2 P L0 4x8 2 Pred LO 4 8

3 P_ L0 _4x4 4 Pred_LO 4 4

The following semantics are assigned to the sub-macroblock types in Table 7-17:

— P_LO _MxN, with MxN being replaced by 8x8, 8x4, 4x8, or 4x4: the samples of the sub-macroblock are predicted
using one luma partition of size MxN equal to 8x8, two luma partitions of size MxN equal to 8x4, or two luma
partitions of size MxN equal to 4x8, or four luma partitions of size MxN equal to 4x4, and associated chroma
samples, respectively.

The following semantics are assigned to the sub-macroblock prediction modes (or macroblock partition prediction
modes) specified by SubMbPredMode() in Table 7-17:

— Pred_LO: see semantics for Table 7-13.

Rec. ITU-T H.264 (01/2012) 105

The interpretation of sub_mb _type[mbPartldx | for B macroblock types is specified in Table 7-18, where the row for
"inferred" specifies values inferred when sub_mb_type[mbPartldx] is not present, and the inferred value "mb_type"
specifies that the name of sub_mb_type[mbPartldx] is the same as the name of mb_type for this case.

Table 7-18 — Sub-macroblock types in B macroblocks

w w = = = =

= = = = = =

= = = = =% =%

5 5 £k 2% £% | &%

- - & A = & = A S A

= =2 == = =z = = 2

= o & S E TE r e -

) EQ =% &7 iy S

=9 < 2 5 =9 - =& = &

s 75 | i5| 25 | 25| g5

= = E-) S = 22 <2

El El z El %) EI) El @ El

))))))

= = = = = =

v v w2 v v v
inferred mb_type 4 Direct 4 4

0 B_Direct _8x8 4 Direct 4 4

1 B L0 8x8 1 Pred LO 8 8

2 B L1 8x8 1 Pred L1 8 8

3 B Bi 8x8 1 BiPred 8 8

4 B L0 8x4 2 Pred LO 8 4

5 B L0 4x8 2 Pred LO 4 8

6 B L1 8x4 2 Pred L1 8 4

7 B L1 4x8 2 Pred L1 4 8

8 B Bi 8x4 2 BiPred 8 4

9 B Bi 4x8 2 BiPred 4 8

10 B L0 4x4 4 Pred LO 4 4

11 B L1 4x4 4 Pred L1 4 4

12 B Bi 4x4 4 BiPred 4 4

The following semantics are assigned to the sub-macroblock types in Table 7-18:

— B Skip and B_Direct 16x16: no motion vector differences or reference indices are present for the sub-macroblock
in the bitstream. The functions SubMbPartWidth() and SubMbPartHeight() are used in the derivation process for
motion vectors and reference frame indices in clause 8.4.1 for direct mode prediction.

— B Direct 8x8: no motion vector differences or reference indices are present for the sub-macroblock in the
bitstream. The functions SubMbPartWidth(B_Direct 8x8) and SubMbPartHeight(B_Direct 8x8) are used in the
derivation process for motion vectors and reference frame indices in clause 8.4.1 for direct mode prediction.

— B X MxN, with X being replaced by L0, L1, or Bi, and MxN being replaced by 8x8, 8x4, 4x8 or 4x4: the samples
of the sub-macroblock are predicted using one luma partition of size MxN equal to 8x8, or the samples of the sub-
macroblock are predicted using two luma partitions of size MxN equal to 8x4, or the samples of the sub-macroblock
are predicted using two luma partitions of size MxN equal to 4x8, or the samples of the sub-macroblock are
predicted using four luma partitions of size MxN equal to 4x4, and associated chroma samples, respectively. All
sub-macroblock partitions share the same reference index. For an MxN sub-macroblock partition in a sub-
macroblock with sub_mb_type[mbPartldx | being B_ X MxN with X being replaced by either LO or L1, one
motion vector difference is present in the bitstream. For an MxN sub-macroblock partition in a sub-macroblock
with sub_mb_type[mbPartldx] being B_Bi MxN, two motion vector difference are present in the bitstream.

106 Rec. ITU-T H.264 (01/2012)

The following semantics are assigned to the sub-macroblock prediction modes (or macroblock partition prediction
modes) specified by SubMbPredMode() in Table 7-18:

— Direct: see semantics for Table 7-14.

— Pred_LO: see semantics for Table 7-13.

— Pred_L1: see semantics for Table 7-14.

— BiPred: see semantics for Table 7-14.

ref idx_l10[mbPartldx | has the same semantics as ref _idx_10 in clause 7.4.5.1.
ref_idx_I1[mbPartldx | has the same semantics as ref idx 11 in clause 7.4.5.1.

mvd_10[mbPartldx |[subMbPartldx][compldx | has the same semantics as mvd_10 in clause 7.4.5.1, except that it is
applied to the sub-macroblock partition index with subMbPartldx. The indices mbPartldx and subMbPartldx specify to
which macroblock partition and sub-macroblock partition mvd_10 is assigned.

mvd_11[mbPartldx |[subMbPartldx][compldx | has the same semantics as mvd_11 in clause 7.4.5.1, except that it is
applied to the sub-macroblock partition index with subMbPartldx. The indices mbPartldx and subMbPartldx specify to
which macroblock partition and sub-macroblock partition mvd_11 is assigned.

7.4.5.3 Residual data semantics
The syntax structure residual_block(), which is used for parsing the transform coefficient levels, is assigned as follows:

— If entropy_coding_mode flag is equal to 0, residual block is set equal to residual block cavle, which is used for
parsing the syntax elements for transform coefficient levels.

— Otherwise (entropy_coding mode flag is equal to 1), residual_block is set equal to residual block cabac, which is
used for parsing the syntax elements for transform coefficient levels.

The syntax structure residual luma(i16x16DClevel, i16x16AClevel, leveldx4, level8x8, startldx, endldx) is used with
the first four variables in brackets being its output and being assigned as follows.

Intral6x16DCLevel is set equal to i116x16DClevel, Intral6x16ACLevel is set equal to i16x16AClevel, Lumalevel4x4 is
set equal to level4x4, and Lumalevel8x8 is set equal to level8xS8.

When ChromaArrayType is equal to 1 or 2, the following applies:

— For each chroma component, indexed by iCbCr = 0..1, the DC transform coefficient levels of the 4 * NumC8x8 4x4
chroma blocks are parsed into the iCbCr-th list ChromaDCLevel[iCbCr].

— For each of the 4x4 chroma blocks, indexed by i4x4 = 0..3 and i8x8 = 0..NumC8x8 — 1, of each chroma component,
indexed by iCbCr = 0..1, the 15 AC transform coefficient levels are parsed into the (i8x8*4 + i4x4)-th list of the
iCbCr-th chroma component ChromaACLevel[iCbCr][i8x8*4 + i4x4].

When ChromaArrayType is equal to 3, the following applies:

— The syntax structure residual luma(i16x16DClevel, i16x16AClevel, level4x4, level8x8, startldx, endldx) is used
for the Cb component with the first four variables in brackets being its output and being assigned as follows.
CbIntral6x16DCLevel is set equal to i16x16DClevel, CbIntral6x16ACLevel is set equal to i16x16AClevel,
CbLevel4x4 is set equal to level4x4, and CbLevel8x8 is set equal to level8x8.

— The syntax structure residual luma(i16x16DClevel, i16x16AClevel, level4x4, level8x8, startldx, endldx) is used
for the Cr component with the first four variables in brackets being its output and being assigned as follows.
Crintral6x16DCLevel is set equal to i16x16DClevel, Crintral6x16ACLevel is set equal to i16x16AClevel,
CrLevel4x4 is set equal to level4x4, and CrLevel8x8 is set equal to level8x8.

7.4.5.3.1 Residual luma data semantics
Output of this syntax structure are the variables i16x16DClevel, i16x16AClevel, level4x4, and level8x8.

Depending on mb_type, the syntax structure residual_block(coeffLevel, startldx, endldx, maxNumCoeff) is used with
the arguments coeffLevel, which is a list containing the maxNumCoeff transform coefficient levels that are parsed in
residual block(), startldx, endldx, and maxNumCoeff as follows.

Depending on MbPartPredMode(mb_type, 0), the following applies:

— If MbPartPredMode(mb_type, 0) is equal to Intra 16x16, the transform coefficient levels are parsed into the list
i16x16DClevel and into the 16 lists i16x16AClevel[i]. i16x16DClevel contains the 16 transform coefficient levels

Rec. ITU-T H.264 (01/2012) 107

of the DC transform coefficient levels for each 4x4 luma block. For each of the 16 4x4 luma blocks indexed by
i=0..15, the 15 AC transform coefficients levels of the i-th block are parsed into the i-th list i16x16AClevel[i].

— Otherwise (MbPartPredMode(mb_type, 0) is not equal to Intra_16x16), the following applies:

— If transform_size 8x8 flag is equal to 0, for each of the 16 4x4 luma blocks indexed by i=0..15, the 16
transform coefficient levels of the i-th block are parsed into the i-th list leveldx4[i].

— Otherwise (transform_size 8x8 flag is equal to 1), for each of the 4 8x8 luma blocks indexed by i8x8 =0..3,
the following applies:

— Ifentropy_coding_mode flag is equal to 0, first for each of the 4 4x4 luma blocks indexed by i4x4 = 0..3,
the 16 transform coefficient levels of the i4x4-th block are parsed into the (i8x8 * 4 + i4x4)-th list
leveldx4[i8x8 * 4 + i4x4]. Then, the 64 transform coefficient levels of the i8x8-th 8x8 luma block which
are indexed by 4 * i +i4x4, where 1 =0..15 and i4x4 = 0..3, are derived as level8x8[i8x8][4 * i + i4x4]|
=leveldx4[i8x8 * 4 +i4x4 [1].

NOTE — The 4x4 luma blocks with luma4x4BlkIdx = i8x8 * 4 + i4x4 containing every fourth transform coefficient
level of the corresponding 18x8-th 8x8 luma block with offset i4x4 are assumed to represent spatial locations given
by the inverse 4x4 luma block scanning process in clause 6.4.3.

— Otherwise (entropy_coding mode flag is equal to 1), the 64 transform coefficient levels of the i8x8-th
block are parsed into the i8x8-th list level8x8[i8x8].

7.4.5.3.2 Residual block CAVLC semantics

The function TotalCoeff(coeff token) that is used in clause 7.3.5.3.2 returns the number of non-zero transform
coefficient levels derived from coeff token.

The function TrailingOnes(coeff token) that is used in clause 7.3.5.3.2 returns the trailing ones derived from
coeff token.

coeff_token specifies the total number of non-zero transform coefficient levels and the number of trailing one transform
coefficient levels in a transform coefficient level scan. A trailing one transform coefficient level is one of up to three
consecutive non-zero transform coefficient levels having an absolute value equal to 1 at the end of a scan of non-zero
transform coefficient levels. The range of coeff token is specified in clause 9.2.1.

trailing_ones_sign_flag specifies the sign of a trailing one transform coefficient level as follows:
— Iftrailing_ones_sign_flag is equal to 0, the corresponding transform coefficient level is decoded as +1.
— Otherwise (trailing_ones_sign_flag equal to 1), the corresponding transform coefficient level is decoded as —1.

level_prefix and level_suffix specify the value of a non-zero transform coefficient level. The range of level prefix and
level suffix is specified in clause 9.2.2.

total_zeros specifies the total number of zero-valued transform coefficient levels that are located before the position of
the last non-zero transform coefficient level in a scan of transform coefficient levels. The range of total zeros is specified
in clause 9.2.3.

run_before specifies the number of consecutive transform coefficient levels in the scan with zero value before a
non-zero valued transform coefficient level. The range of run_before is specified in clause 9.2.3.

coeffLevel contains maxNumCoeff transform coefficient levels for the current list of transform coefficient levels.

7.4.5.3.3 Residual block CABAC semantics
coded_block flag specifies whether the transform block contains non-zero transform coefficient levels as follows:
— Ifcoded block flag is equal to 0, the transform block contains no non-zero transform coefficient levels.

— Otherwise (coded_block flag is equal to 1), the transform block contains at least one non-zero transform coefficient
level.

When coded_block flag is not present, it shall be inferred to be equal to 1.
significant_coeff flag[i | specifies whether the transform coefficient level at scanning position i is non-zero as follows:
— Ifsignificant_coeff flag[i] is equal to 0, the transform coefficient level at scanning position i is set equal to 0;

— Otherwise (significant coeff flag[1] is equal to 1), the transform coefficient level at scanning position i has a
non-zero value.

108 Rec. ITU-T H.264 (01/2012)

last_significant_coeff flag|i] specifies for the scanning position i whether there are non-zero transform coefficient
levels for subsequent scanning positions i + 1 to maxNumCoeff — 1 as follows:

— If last_significant_coeff flag[i] is equal to 1, all following transform coefficient levels (in scanning order) of the
block have value equal to 0.

— Otherwise (last_significant coeff flag[i] is equal to 0), there are further non-zero transform coefficient levels
along the scanning path.

coeff abs level minusl[i]| is the absolute value of a transform coefficient level minus 1. The value of
coeff abs level minusl is constrained by the limits in clause 8.5.

coeff_sign_flag] i] specifies the sign of a transform coefficient level as follows:
— Ifcoeff sign flag is equal to 0, the corresponding transform coefficient level has a positive value.
— Otherwise (coeff sign flag is equal to 1), the corresponding transform coefficient level has a negative value.

coeffLevel contains maxNumCoeff transform coefficient levels for the current list of transform coefficient levels.

8 Decoding process

Outputs of this process are decoded samples of the current picture (sometimes referred to by the variable CurrPic).
Depending on the value of chroma_format idc, the number of sample arrays of the current picture is as follows:

— Ifchroma format idc is equal to 0, the current picture consists of 1 sample array S;.

— Otherwise (chroma_format_idc is not equal to 0), the current picture consists of 3 sample arrays S;, Scp, Scr-
This clause describes the decoding process, given syntax elements and upper-case variables from clause 7.

The decoding process is specified such that all decoders shall produce numerically identical results. Any decoding
process that produces identical results to the process described here conforms to the decoding process requirements of
this Recommendation | International Standard.

Each picture referred to in this clause is a complete primary coded picture or part of a primary coded picture. Each slice
referred to in this clause is a slice of a primary coded picture. Each slice data partition referred to in this clause is a slice
data partition of a primary coded picture.

Depending on the value of separate_colour plane flag, the decoding process is structured as follows:

— If separate_colour plane flag is equal to 0, the decoding process is invoked a single time with the current picture
being the output.

— Otherwise (separate_colour_plane flag is equal to 1), the decoding process is invoked three times. Inputs to the
decoding process are all NAL units of the primary coded picture with identical value of colour plane id. The
decoding process of NAL units with a particular value of colour plane id is specified as if only a coded video
sequence with monochrome colour format with that particular value of colour plane id would be present in the
bitstream. The output of each of the three decoding processes is assigned to the 3 sample arrays of the current
picture with the NAL units with colour plane id equal to 0 being assigned to S;, the NAL units with
colour_plane id equal to 1 being assigned to Scy,, and the NAL units with colour plane id equal to 2 being assigned
to SCr~

NOTE - The variable ChromaArrayType is derived as 0 when separate colour plane flag is equal to 1 and

chroma_format idc is equal to 3. In the decoding process, the value of this variable is evaluated resulting in operations
identical to that of monochrome pictures with chroma_format_idc being equal to 0.

An overview of the decoding process is given as follows:
1. The decoding of NAL units is specified in clause 8.1.
2. The processes in clause 8.2 specify decoding processes using syntax elements in the slice layer and above:

— Variables and functions relating to picture order count are derived in clause 8.2.1. (only needed to be
invoked for one slice of a picture)

— Variables and functions relating to the macroblock to slice group map are derived in clause 8.2.2. (only
needed to be invoked for one slice of a picture)

— The method of combining the various slice data partitions when slice data partitioning is used is described
in clause 8.2.3.

Rec. ITU-T H.264 (01/2012) 109

— When the frame num of the current picture is not equal to PrevRefFrameNum and is not equal to
(PrevRefFrameNum + 1) % MaxFrameNum, the decoding process for gaps in frame num is performed
according to clause 8.2.5.2 prior to the decoding of any slices of the current picture.

— At the beginning of the decoding process for each P, SP, or B slice, the decoding process for reference
picture lists construction specified in clause 8.2.4 is invoked for derivation of reference picture list 0
(RefPicList0), and when decoding a B slice, reference picture list 1 (RefPicListl).

— When the current picture is a reference picture and after all slices of the current picture have been
decoded, the decoded reference picture marking process in clause 8.2.5 specifies how the current picture
is used in the decoding process of inter prediction in later decoded pictures.

3. The processes in clauses 8.3, 8.4, 8.5, 8.6, and 8.7 specify decoding processes using syntax elements in the
macroblock layer and above.

— The intra prediction process for I and SI macroblocks, except for I PCM macroblocks as specified in
clause 8.3, has intra prediction samples as its output. For I PCM macroblocks clause 8.3 directly
specifies a picture construction process. The output are constructed samples prior to the deblocking filter
process.

— The inter prediction process for P and B macroblocks is specified in clause 8.4 with inter prediction
samples being the output.

— The transform coefficient decoding process and picture construction process prior to deblocking filter
process are specified in clause 8.5. That process derives samples for I and B macroblocks and for P
macroblocks in P slices. The output are constructed samples prior to the deblocking filter process.

— The decoding process for P macroblocks in SP slices or SI macroblocks is specified in clause 8.6. That
process derives samples for P macroblocks in SP slices and for SI macroblocks. The output are
constructed samples prior to the deblocking filter process.

— The constructed samples prior to the deblocking filter process that are next to the edges of blocks and
macroblocks are processed by a deblocking filter as specified in clause 8.7 with the output being the
decoded samples.

8.1 NAL unit decoding process
Inputs to this process are NAL units.
Outputs of this process are the RBSP syntax structures encapsulated within the NAL units.

The decoding process for each NAL unit extracts the RBSP syntax structure from the NAL unit and then operates the
decoding processes specified for the RBSP syntax structure in the NAL unit as follows.

Clause 8.2 describes the decoding process for NAL units with nal unit type equal to 1 through 5.

Clause 8.3 describes the decoding process for a macroblock or part of a macroblock coded in NAL units with
nal_unit_type equal to 1, 2, and 5.

Clause 8.4 describes the decoding process for a macroblock or part of a macroblock coded in NAL units with
nal unit_type equal to 1 and 2.

Clause 8.5 describes the decoding process for a macroblock or part of a macroblock coded in NAL units with
nal unit type equal to 1 and 3 to 5.

Clause 8.6 describes the decoding process for a macroblock or part of a macroblock coded in NAL units with
nal unit type equal to 1 and 3 to 5.

Clause 8.7 describes the decoding process for a macroblock or part of a macroblock coded in NAL units with
nal_unit type equal to 1 to 5.

NAL units with nal_unit_type equal to 7 and 8 contain sequence parameter sets and picture parameter sets, respectively.
Picture parameter sets are used in the decoding processes of other NAL units as determined by reference to a picture
parameter set within the slice headers of each picture. Sequence parameter sets are used in the decoding processes of
other NAL units as determined by reference to a sequence parameter set within the picture parameter sets of each
sequence.

No normative decoding process is specified for NAL units with nal unit type equal to 6, 9, 10, 11, and 12.

110 Rec. ITU-T H.264 (01/2012)

8.2 Slice decoding process

8.2.1 Decoding process for picture order count
Outputs of this process are TopFieldOrderCnt (if applicable) and BottomFieldOrderCnt (if applicable).

Picture order counts are used to determine initial picture orderings for reference pictures in the decoding of B slices (see
clauses 8.2.4.2.3 and 8.2.4.2.4), to determine co-located pictures (see clause 8.4.1.2.1) for deriving motion parameters in
temporal or spatial direct mode, to represent picture order differences between frames or fields for motion vector
derivation in temporal direct mode (see clause 8.4.1.2.3), for implicit mode weighted prediction in B slices (see
clause 8.4.2.3.2), and for decoder conformance checking (see clause C.4).

Picture order count information is derived for every frame, field (whether decoded from a coded field or as a part of a
decoded frame), or complementary field pair as follows:

— Each coded frame is associated with two picture order counts, called TopFieldOrderCnt and BottomFieldOrderCnt
for its top field and bottom field, respectively.

— Each coded field is associated with a picture order count, called TopFieldOrderCnt for a coded top field and
BottomFieldOrderCnt for a bottom field.

— Each complementary field pair is associated with two picture order counts, which are the TopFieldOrderCnt for its
coded top field and the BottomFieldOrderCnt for its coded bottom field, respectively.

TopFieldOrderCnt and BottomFieldOrderCnt indicate the picture order of the corresponding top field or bottom field
relative to the first output field of the previous IDR picture or the previous reference picture including a
memory_management_control operation equal to 5 in decoding order.

TopFieldOrderCnt and BottomFieldOrderCnt are derived by invoking one of the decoding processes for picture order
count type 0, 1, and 2 in clauses 8.2.1.1, 8.2.1.2, and 8.2.1.3, respectively. When the current picture includes a
memory _management_control operation equal to 5, after the decoding of the current picture, tempPicOrderCnt is set
equal to PicOrderCnt(CurrPic), TopFieldOrderCnt of the current picture (if any) is set equal to
TopFieldOrderCnt — tempPicOrderCnt, and BottomFieldOrderCnt of the current picture (if any) is set equal to
BottomFieldOrderCnt — tempPicOrderCnt.
NOTE 1 — When the decoding process for a picture currPic that includes a memory management control operation equal to 5
refers to the values of TopFieldOrderCnt (if applicable) or BottomFieldOrderCnt (if applicable) for the picture currPic (including
references to the function PicOrderCnt() with the picture currPic as the argument and references to the function
DiffPicOrderCnt() with one of the arguments being currPic), the values of TopFieldOrderCnt (if applicable) and
BottomFieldOrderCnt (if applicable) that are derived as specified in clauses 8.2.1.1, 8.2.1.2, and 8.2.1.3 for the picture currPic are
used. When the decoding process for a picture refers to the values TopFieldOrderCnt (if applicable) or BottomFieldOrderCnt (if
applicable) of the previous picture prevMmcoS5Pic in decoding order that includes a memory management control operation
equal to 5 (including references via the functions PicOrderCnt() or DiffPicOrderCnt()), the values of TopFieldOrderCnt (if
applicable) and BottomFieldOrderCnt (if applicable) that are used for the picture prevMmco5Pic are the values after the
modification specified in the paragraph above (resulting in TopFieldOrderCnt and/or BottomFieldOrderCnt equal to 0).

The bitstream shall not contain data that result in Min(TopFieldOrderCnt, BottomFieldOrderCnt) not equal to O for a
coded IDR frame, TopFieldOrderCnt not equal to 0 for a coded IDR top field, or BottomFieldOrderCnt not equal to 0 for
a coded IDR bottom field. Thus, at least one of TopFieldOrderCnt and BottomFieldOrderCnt shall be equal to 0 for the
fields of a coded IDR frame.

When the current picture is not an IDR picture, the following applies:

1) Consider the list variable listD containing as elements the TopFieldOrderCnt and BottomFieldOrderCnt values
associated with the list of pictures including all of the following:

a. The first picture in the list is the previous picture of any of the following types:
— an IDR picture,
— apicture containing a memory _management_control operation equal to 5.
b. The following additional pictures:

— If pic_order cnt type is equal to 0, all other pictures that follow in decoding order after the first
picture in the list and are not "non-existing" frames inferred by the decoding process for gaps in
frame num specified in clause 8.2.5.2 and either precede the current picture in decoding order or are
the current picture. When pic_order cnt type is equal to 0 and the current picture is not a
"non-existing" frame inferred by the decoding process for gaps in frame num specified in
clause 8.2.5.2, the current picture is included in listD prior to the invoking of the decoded reference
picture marking process.

— Otherwise (pic_order_cnt_type is not equal to 0), all other pictures that follow in decoding order after
the first picture in the list and either precede the current picture in decoding order or are the current

Rec. ITU-T H.264 (01/2012) 111

picture. When pic_order cnt type is not equal to 0, the current picture is included in listD prior to
the invoking of the decoded reference picture marking process.

2) Consider the list variable listO which contains the elements of listD sorted in ascending order. listO shall not
contain any of the following:

— apair of TopFieldOrderCnt and BottomFieldOrderCnt for a frame or complementary field pair that are not
at consecutive positions in listO,

— a TopFieldOrderCnt that has a value equal to another TopFieldOrderCnt,
— a BottomFieldOrderCnt that has a value equal to another BottomFieldOrderCnt,

— a BottomFieldOrderCnt that has a value equal to a TopFieldOrderCnt unless the BottomFieldOrderCnt
and TopFieldOrderCnt belong to the same coded frame or complementary field pair.

The bitstream shall not contain data that result in values of TopFieldOrderCnt, BottomFieldOrderCnt, PicOrderCntMsb,
or FrameNumOffset used in the decoding process as specified in clauses 8.2.1.1 to 8.2.1.3 that exceed the range of values
from —23! to 23" — 1, inclusive.

The function PicOrderCnt(picX) is specified as follows:

if(picX is a frame or a complementary field pair)
PicOrderCnt(picX) = Min(TopFieldOrderCnt, BottomFieldOrderCnt) of the frame or complementary field

pair picX
else if(picX is a top field)
PicOrderCnt(picX) = TopFieldOrderCnt of field picX (8-1)

else if(picX is a bottom field)
PicOrderCnt(picX) = BottomFieldOrderCnt of field picX

Then DiffPicOrderCnt(picA, picB) is specified as follows:

DiffPicOrderCnt(picA, picB) = PicOrderCnt(picA) — PicOrderCnt(picB) (8-2)

The bitstream shall not contain data that result in values of DiffPicOrderCnt(picA, picB) used in the decoding process
that exceed the range of —2"° to 2"° — 1, inclusive.

NOTE 2 — Let X be the current picture and Y and Z be two other pictures in the same sequence, Y and Z are considered to be in
the same output order direction from X when both DiffPicOrderCnt(X, Y) and DiffPicOrderCnt(X, Z) are positive or both are
negative.

NOTE 3 — Many encoders assign TopFieldOrderCnt and BottomFieldOrderCnt proportional to the sampling time of the
corresponding field (which is either a coded field or a field of a coded frame) relative to the sampling time of the first output field
of the previous IDR picture or the previous reference picture (in decoding order) that includes a
memory management control operation equal to 5.

When the current picture includes a memory management_control operation equal to 5, PicOrderCnt(CurrPic) shall be
greater than PicOrderCnt(any other picture in listD).

8.2.1.1 Decoding process for picture order count type 0

This process is invoked when pic_order cnt_type is equal to 0.

Input to this process is PicOrderCntMsb of the previous reference picture in decoding order as specified in this clause.
Outputs of this process are either or both TopFieldOrderCnt or BottomFieldOrderCnt.

The variables prevPicOrderCntMsb and prevPicOrderCntLsb are derived as follows:

— If the current picture is an IDR picture, prevPicOrderCntMsb is set equal to 0 and prevPicOrderCntLsb is set equal
to 0.

— Otherwise (the current picture is not an IDR picture), the following applies:

— If the previous reference picture in decoding order included a memory management control operation equal
to 5, the following applies:

— If the previous reference picture in decoding order is not a bottom field, prevPicOrderCntMsb is set equal
to 0 and prevPicOrderCntLsb is set equal to the value of TopFieldOrderCnt for the previous reference
picture in decoding order.

— Otherwise (the previous reference picture in decoding order is a bottom field), prevPicOrderCntMsb is set
equal to 0 and prevPicOrderCntLsb is set equal to 0.

112 Rec. ITU-T H.264 (01/2012)

— Otherwise (the previous reference picture in decoding order did not include a
memory management control operation equal to 5), prevPicOrderCntMsb is set equal to PicOrderCntMsb of
the previous reference picture in decoding order and prevPicOrderCntLsb is set equal to the value of
pic_order_cnt Isb of the previous reference picture in decoding order.

PicOrderCntMsb of the current picture is derived as specified by the following pseudo-code:

if((pic_order cnt Isb < prevPicOrderCntLsb) &&

((prevPicOrderCntLsb — pic_order cnt Isb) >= (MaxPicOrderCntLsb /2)))

PicOrderCntMsb = prevPicOrderCntMsb + MaxPicOrderCntLsb (8-3)
else if((pic_order cnt Isb > prevPicOrderCntLsb) &&

((pic_order cnt Isb — prevPicOrderCntLsb) > (MaxPicOrderCntLsb/2)))

PicOrderCntMsb = prevPicOrderCntMsb — MaxPicOrderCntLsb
else

PicOrderCntMsb = prevPicOrderCntMsb

When the current picture is not a bottom field, TopFieldOrderCnt is derived as

TopFieldOrderCnt = PicOrderCntMsb + pic_order cnt lsb (8-4)

When the current picture is not a top field, BottomFieldOrderCnt is derived as specified by the following pseudo-code:

if(field pic flag)
BottomFieldOrderCnt = TopFieldOrderCnt + delta pic_order cnt bottom
else (8-5)
BottomFieldOrderCnt = PicOrderCntMsb + pic_order cnt Isb
8.2.1.2 Decoding process for picture order count type 1
This process is invoked when pic_order cnt type is equal to 1.
Input to this process is FrameNumOffset of the previous picture in decoding order as specified in this subclause.

Outputs of this process are either or both TopFieldOrderCnt or BottomFieldOrderCnt.

The values of TopFieldOrderCnt and BottomFieldOrderCnt are derived as specified in this clause. Let prevFrameNum
be equal to the frame num of the previous picture in decoding order.

When the current picture is not an IDR picture, the variable prevFrameNumOffset is derived as follows:

— If the previous picture in decoding order included a memory management control operation equal to 5,
prevFrameNumOffset is set equal to 0.

— Otherwise (the previous picture in decoding order did not include a memory management control operation equal
to 5), prevFrameNumOffset is set equal to the value of FrameNumOffset of the previous picture in decoding order.

NOTE — When gaps in_frame num value allowed flag is equal to 1, the previous picture in decoding order may be a
"non-existing" frame inferred by the decoding process for gaps in frame num specified in clause 8.2.5.2.

The variable FrameNumOffset is derived as specified by the following pseudo-code:

if(IdrPicFlag == 1)
FrameNumOffset = 0

else if(prevFrameNum > frame num) (8-6)
FrameNumOffset = prevFrameNumOffset + MaxFrameNum
else

FrameNumOffset = prevFrameNumOffset

The variable absFrameNum is derived as specified by the following pseudo-code:

if(num_ref frames in pic_order cnt cycle != 0)
absFrameNum = FrameNumOffset + frame num

else (8-7)
absFrameNum = 0

if(nal ref idc == 0 && absFrameNum > 0)
absFrameNum = absFrameNum — 1

Rec. ITU-T H.264 (01/2012) 113

When absFrameNum > 0, picOrderCntCycleCnt and frameNumInPicOrderCntCycle are derived as

picOrderCntCycleCnt = (absFrameNum — 1) / num_ref frames_in_pic_order cnt cycle
frameNumlInPicOrderCntCycle = (absFrameNum — 1) % num_ref frames_in_pic_order cnt cycle (8-8)

The variable expectedPicOrderCnt is derived as specified by the following pseudo-code:

if(absFrameNum > 0){
expectedPicOrderCnt = picOrderCntCycleCnt * ExpectedDeltaPerPicOrderCntCycle
for(1= 0; i <= frameNumInPicOrderCntCycle; i++)
expectedPicOrderCnt = expectedPicOrderCnt + offset for ref frame[i]

} else
expectedPicOrderCnt = 0
if(nal_ref idc == 0) (8-9)

expectedPicOrderCnt = expectedPicOrderCnt + offset for non_ref pic

The variables TopFieldOrderCnt or BottomFieldOrderCnt are derived as specified by the following pseudo-code:

if(!field pic flag) {
TopFieldOrderCnt = expectedPicOrderCnt + delta_pic_order cnt[O]
BottomFieldOrderCnt = TopFieldOrderCnt +
offset for top to bottom field + delta_pic_order cnt[1] (8-10)
} else if(!bottom_field flag)
TopFieldOrderCnt = expectedPicOrderCnt + delta_pic_order cnt[0]
else

BottomFieldOrderCnt = expectedPicOrderCnt + offset for top to bottom field + delta_pic_order cnt[0]
8.2.1.3 Decoding process for picture order count type 2
This process is invoked when pic_order cnt_type is equal to 2.
Outputs of this process are either or both TopFieldOrderCnt or BottomFieldOrderCnt.
Let prevFrameNum be equal to the frame num of the previous picture in decoding order.
When the current picture is not an IDR picture, the variable prevFrameNumOffset is derived as follows:

— If the previous picture in decoding order included a memory management control operation equal to 5,
prevFrameNumOffset is set equal to 0.

— Otherwise (the previous picture in decoding order did not include a memory management_control _operation equal
to 5), prevFrameNumOffset is set equal to the value of FrameNumOffset of the previous picture in decoding order.

NOTE 1 — When gaps_in_frame num_value allowed flag is equal to 1, the previous picture in decoding order may be a
"non-existing" frame inferred by the decoding process for gaps in frame num specified in clause 8.2.5.2.

The variable FrameNumOffset is derived as specified by the following pseudo-code:

if(IdrPicFlag == 1)
FrameNumOffset = 0

else if(prevFrameNum > frame num) (8-11)
FrameNumOffset = prevFrameNumOffset + MaxFrameNum
else

FrameNumOffset = prevFrameNumOffset

The variable tempPicOrderCnt is derived as specified by the following pseudo-code:

if(IdrPicFlag == 1)
tempPicOrderCnt = 0

else if(nal ref idc == 0) (8-12)
tempPicOrderCnt = 2 * (FrameNumOffset + frame num) — 1
else

tempPicOrderCnt = 2 * (FrameNumOffset + frame num)

114 Rec. ITU-T H.264 (01/2012)

The variables TopFieldOrderCnt or BottomFieldOrderCnt are derived as specified by the following pseudo-code:

if(field pic flag) {

TopFieldOrderCnt = tempPicOrderCnt

BottomFieldOrderCnt = tempPicOrderCnt (8-13)
} else if(bottom_field flag)

BottomFieldOrderCnt = tempPicOrderCnt
else

TopFieldOrderCnt = tempPicOrderCnt

NOTE 2 — Picture order count type 2 cannot be used in a coded video sequence that contains consecutive non-reference pictures
that would result in more than one of these pictures having the same value of TopFieldOrderCnt or more than one of these pictures
having the same value of BottomFieldOrderCnt.

NOTE 3 — Picture order count type 2 results in an output order that is the same as the decoding order.

8.2.2 Decoding process for macroblock to slice group map
Inputs to this process are the active picture parameter set and the slice header of the slice to be decoded.
Output of this process is a macroblock to slice group map MbToSliceGroupMap.

This process is invoked at the start of every slice.
NOTE - The output of this process is equal for all slices of a picture.

When num_slice_groups_minus] is equal to 1 and slice_group _map_type is equal to 3, 4, or 5, slice groups 0 and 1 have
a size and shape determined by slice _group change direction flag as shown in Table 8-1 and specified in clauses 8.2.2.4
to 8.2.2.6.

Table 8-1 — Refined slice group map type

slice_group_map_type slice_group_change_direction_flag | refined slice group map type
3 0 Box-out clockwise
3 | Box-out counter-clockwise
4 0 Raster scan
4 1 Reverse raster scan
5 0 Wipe right
5 1 Wipe left

In such a case, MapUnitsInSliceGroup0 slice group map units in the specified growth order are allocated for slice group
0 and the remaining PicSizeInMapUnits — MapUnitsInSliceGroup0 slice group map units of the picture are allocated for
slice group 1.

When num_slice groups minusl is equal to1l and slice group map type is equal to4 or 5, the wvariable
sizeOfUpperLeftGroup is defined as follows:

sizeOfUpperLeftGroup = (slice_group change direction_flag ?
(PicSizeInMapUnits — MapUnitsInSliceGroup0) : MapUnitsInSliceGroup0) (8-14)

The mapUnitToSliceGroupMap array is derived as follows:

— If num_slice groups minusl is equal to 0, the map unit to slice group map is generated for all i ranging from 0 to
PicSizeInMapUnits — 1, inclusive, as specified by

mapUnitToSliceGroupMap[i]=0 (8-15)

— Otherwise (num_slice groups minusl is not equal to 0), mapUnitToSliceGroupMap is derived as follows:

— If slice_group map type is equal to 0, the derivation of mapUnitToSliceGroupMap as specified in
clause 8.2.2.1 applies.

— Otherwise, if slice_group _map_type is equal to 1, the derivation of mapUnitToSliceGroupMap as specified in
clause 8.2.2.2 applies.

— Otherwise, if slice_group_map_type is equal to 2, the derivation of mapUnitToSliceGroupMap as specified in
clause 8.2.2.3 applies.

Rec. ITU-T H.264 (01/2012) 115

— Otherwise, if slice_group _map_type is equal to 3, the derivation of mapUnitToSliceGroupMap as specified in
clause 8.2.2.4 applies.

— Otherwise, if slice_group _map_type is equal to 4, the derivation of mapUnitToSliceGroupMap as specified in
clause 8.2.2.5 applies.

— Otherwise, if slice_group_map_type is equal to 5, the derivation of mapUnitToSliceGroupMap as specified in
clause 8.2.2.6 applies.

— Otherwise (slice_group map_type is equal to 6), the derivation of mapUnitToSliceGroupMap as specified in
clause 8.2.2.7 applies.

After derivation of the mapUnitToSliceGroupMap, the process specified in clause 8.2.2.8 is invoked to convert the map
unit to slice group map mapUnitToSliceGroupMap to the macroblock to slice group map MbToSliceGroupMap. After
derivation of the macroblock to slice group map as specified in clause 8.2.2.8, the function NextMbAddress(n) is
defined as the value of the variable nextMbAddress derived as specified by the following pseudo-code:

i=n+1
while(i < PicSizeInMbs && MbToSliceGroupMap[i] != MbToSliceGroupMap[n])
it++;
nextMbAddress = i (8-16)

8.2.2.1 Specification for interleaved slice group map type
The specifications in this clause apply when slice_group map_type is equal to 0.

The map unit to slice group map is generated as specified by the following pseudo-code:

i=0
do
for(iGroup = 0; iGroup <= num_slice_groups minusl && i < PicSizeInMapUnits;
i+=run_length minusl[iGroup++]+1)
for(j=0;j <=run_length minusl1[iGroup] && i+ j < PicSizeInMapUnits; j++)
mapUnitToSliceGroupMap[i +j | = iGroup (8-17)
while(i < PicSizeInMapUnits)

8.2.2.2 Specification for dispersed slice group map type
The specifications in this clause apply when slice_group map_type is equal to 1.

The map unit to slice group map is generated as specified by the following pseudo-code:

for(i =0; i < PicSizeInMapUnits; i++)
mapUnitToSliceGroupMap[i] = ((i % PicWidthInMbs) +
(((1/PicWidthInMbs) * (num_slice_groups minusl +1))/2))
% (num_slice groups minusl + 1) (8-18)

8.2.2.3 Specification for foreground with left-over slice group map type
The specifications in this clause apply when slice_group map_type is equal to 2.

The map unit to slice group map is generated as specified by the following pseudo-code:

for(1= 0; i <PicSizeInMapUnits; i++)
mapUnitToSliceGroupMap[i | = num_slice _groups minusl
for(iGroup = num_slice _groups minusl — 1; iGroup >= 0; iGroup— —) {
yTopLeft = top_left[iGroup] / PicWidthInMbs
xTopLeft = top_left[iGroup] % PicWidthInMbs
yBottomRight = bottom_right[iGroup]/ PicWidthInMbs
xBottomRight = bottom_right[iGroup] % PicWidthInMbs
for(y = yTopLeft; y <= yBottomRight; y++)
for(x = xTopLeft; x <= xBottomRight; x++)
mapUnitToSliceGroupMap[y * PicWidthInMbs + x] = iGroup (8-19)
H

NOTE — The rectangles may overlap. Slice group 0 contains the macroblocks that are within the rectangle specified by
top_left[0] and bottom_right[0]. A slice group having slice group ID greater than 0 and less than num_slice _groups minus1
contains the macroblocks that are within the specified rectangle for that slice group that are not within the rectangle specified for

116 Rec. ITU-T H.264 (01/2012)

any slice group having a smaller slice group ID. The slice group with slice group ID equal to num_slice_groups minusl contains
the macroblocks that are not in the other slice groups.

8.2.2.4 Specification for box-out slice group map types
The specifications in this clause apply when slice_group map_type is equal to 3.

The map unit to slice group map is generated as specified by

for(i=0; 1 < PicSizeInMapUnits; i++)
mapUnitToSliceGroupMap[i]=1
x = (PicWidthInMbs — slice_group change direction_flag) /2
y = (PicHeightInMapUnits — slice_group change direction flag)/2
(leftBound, topBound) = (X, y)
(rightBound, bottomBound) = (X, y)
(xDir, yDir) = (slice_group_change direction flag — 1, slice_group change direction flag)
for(k = 0; k < MapUnitsInSliceGroup0; k += mapUnitVacant) {
mapUnitVacant = (mapUnitToSliceGroupMap[y * PicWidthInMbs +x] == 1)

if(mapUnitVacant)
mapUnitToSliceGroupMap[y * PicWidthInMbs + x] =0 (8-20)
if(xDir == -1 && x == leftBound) {

leftBound = Max(leftBound — 1, 0)

x = leftBound

(xDir, yDir) = (0, 2 * slice_group _change direction flag—1)
}else if(xDir == 1 && x == rightBound) {

rightBound = Min(rightBound + 1, PicWidthInMbs — 1)

x = rightBound

(xDir, yDir) = (0, 1 —2 * slice_group_change direction_flag)

} else if(yDir == —1 && y == topBound) {
topBound = Max(topBound — 1, 0)
y = topBound

(xDir, yDir)= (1 — 2 * slice_group_change direction_flag, 0)
}else if(yDir == 1 && y == bottomBound) {
bottomBound = Min(bottomBound + 1, PicHeightInMapUnits — 1)
y = bottomBound
(xDir, yDir) = (2 * slice_group change direction flag—1,0)
} else
(x,y)=(x+xDir,y+ yDir)
H

8.2.2.5 Specification for raster scan slice group map types
The specifications in this clause apply when slice_group map_type is equal to 4.

The map unit to slice group map is generated as specified by

for(1=0; i < PicSizeInMapUnits; i++)
if(1 < sizeOfUpperLeftGroup)
mapUnitToSliceGroupMap| i] = slice_group change direction flag
else (8-21)
mapUnitToSliceGroupMap[i] = 1 —slice_group change direction flag

8.2.2.6 Specification for wipe slice group map types
The specifications in this clause apply when slice_group map_type is equal to 5.

The map unit to slice group map is generated as specified by

k=0;
for(j = 0; j < PicWidthInMbs; j++)
for(1= 0; i <PicHeightInMapUnits; i++)
if(k++ < sizeOfUpperLeftGroup)
mapUnitToSliceGroupMap[i * PicWidthInMbs + j] = slice_group change direction flag
else (8-22)
mapUnitToSliceGroupMap][i * PicWidthInMbs +j] = 1 —slice_group change direction flag

Rec. ITU-T H.264 (01/2012) 117

8.2.2.7 Specification for explicit slice group map type
The specifications in this clause apply when slice_group map_type is equal to 6.

The map unit to slice group map is generated as specified by
mapUnitToSliceGroupMap| i] = slice_group _id[i] (8-23)
for all i ranging from 0 to PicSizeInMapUnits — 1, inclusive.

8.2.2.8 Specification for conversion of map unit to slice group map to macroblock to slice group map

For each value of i ranging from 0 to PicSizeInMbs — 1, inclusive, the macroblock to slice group map is specified as
follows:

— If frame mbs_only flag is equal to 1 or field pic flag is equal to 1, the macroblock to slice group map is specified
by

MbToSliceGroupMap| i] = mapUnitToSliceGroupMap]| i] (8-24)

— Otherwise, if MbaffFrameFlag is equal to 1, the macroblock to slice group map is specified by

MbToSliceGroupMap| i] = mapUnitToSliceGroupMap[i/2] (8-25)

— Otherwise (frame_mbs_only flag is equal to 0 and mb_adaptive frame field flag is equal to 0 and field pic_flag is
equal to 0), the macroblock to slice group map is specified by

MbToSliceGroupMap| i | = mapUnitToSliceGroupMap[(i/ (2 * PicWidthInMbs)) * PicWidthInMbs
+ (1 % PicWidthInMbs)] (8-26)

8.2.3 Decoding process for slice data partitions

Inputs to this process are:
— aslice data partition A layer RBSP,

— when syntax elements of category 3 are present in the slice data, a slice data partition B layer RBSP having the same
slice_id as in the slice data partition A layer RBSP,

— when syntax elements of category 4 are present in the slice data, a slice data partition C layer RBSP having the same
slice_id as in the slice data partition A layer RBSP.

NOTE 1 — The slice data partition B layer RBSP and slice data partition C layer RBSP need not be present.
Output of this process is a coded slice.

When slice data partitioning is not used, coded slices are represented by a slice layer without partitioning RBSP that
contains a slice header followed by a slice data syntax structure that contains all the syntax elements of categories 2, 3,
and 4 (see category column in clause 7.3) of the macroblock data for the macroblocks of the slice.

When slice data partitioning is used, the macroblock data of a slice is partitioned into one to three partitions contained in
separate NAL units. Partition A contains a slice data partition A header, and all syntax elements of category 2. Partition
B, when present, contains a slice data partition B header and all syntax elements of category 3. Partition C, when present,
contains a slice data partition C header and all syntax elements of category 4.

When slice data partitioning is used, the syntax elements of each category are parsed from a separate NAL unit, which
need not be present when no symbols of the respective category exist. The decoding process shall process the slice data
partitions of a coded slice in a manner equivalent to processing a corresponding slice layer without partitioning RBSP by
extracting each syntax element from the slice data partition in which the syntax element appears depending on the slice
data partition assignment in the syntax tables in clause 7.3.
NOTE 2 — Syntax elements of category 3 are relevant to the decoding of residual data of I and SI macroblock types. Syntax
elements of category 4 are relevant to the decoding of residual data of P and B macroblock types. Category 2 encompasses all
other syntax elements related to the decoding of macroblocks, and their information is often denoted as header information. The
slice data partition A header contains all the syntax elements of the slice header, and additionally a slice id that are used to
associate the slice data partitions B and C with the slice data partition A. The slice data partition B and C headers contain the
slice_id syntax element that establishes their association with the slice data partition A of the slice.

118 Rec. ITU-T H.264 (01/2012)

8.2.4 Decoding process for reference picture lists construction
This process is invoked at the beginning of the decoding process for each P, SP, or B slice.

Decoded reference pictures are marked as "used for short-term reference" or "used for long-term reference" as specified
by the bitstream and specified in clause 8.2.5. Short-term reference pictures are identified by the value of frame num.
Long-term reference pictures are assigned a long-term frame index as specified by the bitstream and specified in
clause 8.2.5.

Clause 8.2.4.1 is invoked to specify

— the assignment of variables FrameNum, FrameNumWTrap, and PicNum to each of the short-term reference pictures,
and

— the assignment of variable LongTermPicNum to each of the long-term reference pictures.

Reference pictures are addressed through reference indices as specified in clause 8.4.2.1. A reference index is an index
into a reference picture list. When decoding a P or SP slice, there is a single reference picture list RefPicList0. When
decoding a B slice, there is a second independent reference picture list RefPicListl in addition to RefPicList0.

At the beginning of the decoding process for each slice, reference picture list RefPicList0, and for B slices RefPicListl,
are derived as specified by the following ordered steps:

1. An initial reference picture list RefPicList0 and for B slices RefPicListl are derived as specified in
clause 8.2.4.2.

2. When ref pic list modification flag 10 is equal tol or, when decoding a B slice,
ref pic_list modification flag 11 is equal to 1, the initial reference picture list RefPicList0 and, for B slices,
RefPicList] are modified as specified in clause 8.2.4.3.

NOTE — The modification process for reference picture lists specified in clause 8.2.4.3 allows the contents of
RefPicList0 and for B slices RefPicList1 to be modified in a flexible fashion. In particular, it is possible for a picture
that is currently marked "used for reference" to be inserted into RefPicList0 and for B slices RefPicList] even when
the picture is not in the initial reference picture list derived as specified in clause 8.2.4.2.

The number of entries in the modified reference picture list RefPicList0 is num_ref idx 10 active minusl + 1, and for B
slices the number of entries in the modified reference picture list RefPicList] is num ref idx 11 active minusl + 1. A
reference picture may appear at more than one index in the modified reference picture lists RefPicList0 or RefPicList1.

8.2.4.1 Decoding process for picture numbers

This process is invoked when the decoding process for reference picture lists construction specified in clause 8.2.4, the
decoded reference picture marking process specified in clause 8.2.5, or the decoding process for gaps in frame num
specified in clause 8.2.5.2 is invoked.

The variables FrameNum, FrameNumWrap, PicNum, LongTermFrameldx, and LongTermPicNum are used for the
initialisation process for reference picture lists in clause 8.2.4.2, the modification process for reference picture lists in
clause 8.2.4.3, the decoded reference picture marking process in clause 8.2.5, and the decoding process for gaps in
frame num in clause 8.2.5.2.

To each short-term reference picture the variables FrameNum and FrameNumWrap are assigned as follows. First,
FrameNum is set equal to the syntax element frame num that has been decoded in the slice header(s) of the
corresponding short-term reference picture. Then the variable FrameNumWrap is derived as

if(FrameNum > frame num)

FrameNumWrap = FrameNum — MaxFrameNum (8-27)
else

FrameNumWrap = FrameNum

where the value of frame num used in Equation 8-27 is the frame num in the slice header(s) for the current picture.

Each long-term reference picture has an associated value of LongTermFrameldx (that was assigned to it as specified in
clause 8.2.5).

To each short-term reference picture a variable PicNum is assigned, and to each long-term reference picture a variable
LongTermPicNum is assigned. The values of these variables depend on the value of field pic _flag and
bottom _field flag for the current picture and they are set as follows:

Rec. ITU-T H.264 (01/2012) 119

— Iffield pic_ flag is equal to 0, the following ordered steps are specified:

1. For each short-term reference frame or complementary reference field pair:

PicNum = FrameNumWrap (8-28)

2. For each long-term reference frame or long-term complementary reference field pair:

LongTermPicNum = LongTermFrameldx (8-29)

NOTE — When decoding a frame the value of MbaffFrameFlag has no influence on the derivations in
clauses 8.2.4.2, 8.2.4.3, and 8.2.5.

— Otherwise (field pic_flag is equal to 1), the following ordered steps are specified:
1. For each short-term reference field the following applies:

— If the reference field has the same parity as the current field

PicNum = 2 * FrameNumWrap + 1 (8-30)

— Otherwise (the reference field has the opposite parity of the current field),

PicNum = 2 * FrameNumWrap (8-31)

2. For each long-term reference field the following applies:

— If the reference field has the same parity as the current field

LongTermPicNum = 2 * LongTermFrameldx + 1 (8-32)

— Otherwise (the reference field has the opposite parity of the current field),

LongTermPicNum = 2 * LongTermFrameldx (8-33)

8.2.4.2 Initialisation process for reference picture lists
This initialisation process is invoked when decoding a P, SP, or B slice header.
RefPicList0 and RefPicListl have initial entries as specified in clauses 8.2.4.2.1 through 8.2.4.2.5.

When the number of entries in the initial RefPicListO0 or RefPicList]l produced as specified in clauses 8.2.4.2.1 through
8.2.4.2.5 is greater than num ref idx 10 active minusl + 1 or num ref idx 11 active minusl + 1, respectively, the
extra entries past position num_ref idx 10 active minusl or num ref idx 11 active minusl are discarded from the
initial reference picture list.

When the number of entries in the initial RefPicListO0 or RefPicList]l produced as specified in clauses 8.2.4.2.1 through
8.2.42.5 is less than num ref idx 10 active minusl +1 or num ref idx 11 active minusl + 1, respectively, the
remaining entries in the initial reference picture list are set equal to "no reference picture".

8.2.4.2.1 Initialisation process for the reference picture list for P and SP slices in frames
This initialisation process is invoked when decoding a P or SP slice in a coded frame.

When this process is invoked, there shall be at least one reference frame or complementary reference field pair that is
currently marked as "used for reference” (i.e., as "used for short-term reference" or "used for long-term reference") and is
not marked as "non-existing".

The reference picture list RefPicList0 is ordered so that short-term reference frames and short-term complementary
reference field pairs have lower indices than long-term reference frames and long-term complementary reference field
pairs.

The short-term reference frames and complementary reference field pairs are ordered starting with the frame or
complementary field pair with the highest PicNum value and proceeding through in descending order to the frame or
complementary field pair with the lowest PicNum value.

The long-term reference frames and complementary reference field pairs are ordered starting with the frame or
complementary field pair with the lowest LongTermPicNum value and proceeding through in ascending order to the
frame or complementary field pair with the highest LongTermPicNum value.

120 Rec. ITU-T H.264 (01/2012)

NOTE — A non-paired reference field is not used for inter prediction for decoding a frame, regardless of the value of
MbaffFrameFlag.

For example, when three reference frames are marked as "used for short-term reference" with PicNum equal to 300, 302,
and 303 and two reference frames are marked as "used for long-term reference" with LongTermPicNum equal to 0 and 3,
the initial index order is:

— RefPicList0[0] is set equal to the short-term reference picture with PicNum = 303,
— RefPicList0[1] is set equal to the short-term reference picture with PicNum = 302,
— RefPicList0[2] is set equal to the short-term reference picture with PicNum = 300,
— RefPicList0[3] is set equal to the long-term reference picture with LongTermPicNum = 0,

— RefPicList0[4] is set equal to the long-term reference picture with LongTermPicNum = 3.

8.2.4.2.2 Initialisation process for the reference picture list for P and SP slices in fields
This initialisation process is invoked when decoding a P or SP slice in a coded field.

When this process is invoked, there shall be at least one reference field (which can be a field of a reference frame) that is
currently marked as "used for reference" (i.e., as "used for short-term reference" or "used for long-term reference") and is
not marked as "non-existing".

Each field included in the reference picture list RefPicList0 has a separate index in the reference picture list RefPicList0.

NOTE — When decoding a field, there are effectively at least twice as many pictures available for referencing as there would be
when decoding a frame at the same position in decoding order.

Two ordered lists of reference frames, refFrameListOShortTerm and refFrameListOLongTerm, are derived as follows.
For purposes of the formation of this list of frames, decoded reference frames, complementary reference field pairs,
non-paired reference fields and reference frames in which a single field is marked "used for short-term reference" or
"used for long-term reference" are all considered reference frames.

1. All frames having one or more fields marked "used for short-term reference" are included in the list of short-term
reference frames refFrameListOShortTerm. When the current field is the second field (in decoding order) of a
complementary reference field pair and the first field is marked as "used for short-term reference", the first field
is included in the list of short-term reference frames refFrameListOShortTerm. refFrameListOShortTerm is
ordered starting with the reference frame with the highest FrameNumWrap value and proceeding through in
descending order to the reference frame with the lowest FrameNumWrap value.

2. All frames having one or more fields marked "used for long-term reference" are included in the list of long-term
reference frames refFrameListOLongTerm. When the current field is the second field (in decoding order) of a
complementary reference field pair and the first field is marked as "used for long-term reference, the first field is
included in the list of long-term reference frames refFrameListOLongTerm. refFrameListOLongTerm is ordered
starting with the reference frame with the lowest LongTermFrameldx value and proceeding through in ascending
order to the reference frame with the highest LongTermFrameldx value.

The process specified in clause 8.2.4.2.5 is invoked with refFrameListOShortTerm and refFrameListOLongTerm given as
input and the output is assigned to RefPicList0.

8.2.4.2.3 Initialisation process for reference picture lists for B slices in frames
This initialisation process is invoked when decoding a B slice in a coded frame.

For purposes of the formation of the reference picture lists RefPicList0 and RefPicList] the term reference entry refers in
the following to decoded reference frames or complementary reference field pairs.

When this process is invoked, there shall be at least one reference entry that is currently marked as "used for reference"
(i.e., as "used for short-term reference" or "used for long-term reference") and is not marked as "non-existing".

For B slices, the order of short-term reference entries in the reference picture lists RefPicList0 and RefPicListl depends
on output order, as given by PicOrderCnt(). When pic_order cnt_type is equal to 0, reference pictures that are marked
as "non-existing" as specified in clause 8.2.5.2 are not included in either RefPicListO or RefPicList1.
NOTE 1 — When gaps_in_frame num_value allowed_flag is equal to 1, encoders should use reference picture list modification to
ensure proper operation of the decoding process (particularly when pic_order_cnt type is equal to 0, in which case PicOrderCnt()
is not inferred for "non-existing" frames).

Rec. ITU-T H.264 (01/2012) 121

The reference picture list RefPicList0 is ordered such that short-term reference entries have lower indices than long-term
reference entries. It is ordered as follows:

1. Let entryShortTerm be a variable ranging over all reference entries that are currently marked as "used for
short-term reference". When some values of entryShortTerm are present having PicOrderCnt(entryShortTerm)
less than PicOrderCnt(CurrPic), these values of entryShortTerm are placed at the beginning of refPicList0 in
descending order of PicOrderCnt(entryShortTerm). All of the remaining values of entryShortTerm (when
present) are then appended to refPicList0 in ascending order of PicOrderCnt(entryShortTerm).

2. The long-term reference entries are ordered starting with the long-term reference entry that has the lowest
LongTermPicNum value and proceeding through in ascending order to the long-term reference entry that has
the highest LongTermPicNum value.

The reference picture list RefPicList] is ordered so that short-term reference entries have lower indices than long-term
reference entries. It is ordered as follows:

1. Let entryShortTerm be a variable ranging over all reference entries that are currently marked as "used for
short-term reference". When some values of entryShortTerm are present having PicOrderCnt(entryShortTerm)
greater than PicOrderCnt(CurrPic), these values of entryShortTerm are placed at the beginning of refPicList1
in ascending order of PicOrderCnt(entryShortTerm). All of the remaining values of entryShortTerm (when
present) are then appended to refPicList] in descending order of PicOrderCnt(entryShortTerm).

2. Long-term reference entries are ordered starting with the long-term reference frame or complementary reference
field pair that has the lowest LongTermPicNum value and proceeding through in ascending order to the
long-term reference entry that has the highest LongTermPicNum value.

3. When the reference picture list RefPicList] has more than one entry and RefPicList] is identical to the reference
picture list RefPicList0, the first two entries RefPicList1[0] and RefPicList1[1] are switched.

NOTE 2 — A non-paired reference field is not used for inter prediction of frames (independent of the value of MbaffFrameFlag).

8.2.4.2.4 Initialisation process for reference picture lists for B slices in fields
This initialisation process is invoked when decoding a B slice in a coded field.

When this process is invoked, there shall be at least one reference field (which can be a field of a reference frame) that is
currently marked as "used for reference” (i.e., as "used for short-term reference" or "used for long-term reference") and is
not marked as "non-existing".

When decoding a field, each field of a stored reference frame is identified as a separate reference picture with a unique
index. The order of short-term reference pictures in the reference picture lists RefPicList0 and RefPicListl depend on
output order, as given by PicOrderCnt(). When pic_order cnt type is equal to 0, reference pictures that are marked as
"non-existing" as specified in clause 8.2.5.2 are not included in either RefPicList0 or RefPicList1.
NOTE 1 — When gaps_in_frame num_value allowed_flag is equal to 1, encoders should use reference picture list modification to
ensure proper operation of the decoding process (particularly when pic_order_cnt type is equal to 0, in which case PicOrderCnt()
is not inferred for "non-existing" frames).

NOTE 2 — When decoding a field, there are effectively at least twice as many pictures available for referencing as there would be
when decoding a frame at the same position in decoding order.

Three ordered lists of reference frames, refFrameListOShortTerm, refFrameList] ShortTerm and refFrameListLongTerm,
are derived as follows. For purposes of the formation of these lists of frames the term reference entry refers in the
following to decoded reference frames, complementary reference field pairs, or non-paired reference fields. When
pic_order cnt_type is equal to 0, the term reference entry does not refer to frames that are marked as "non-existing" as
specified in clause 8.2.5.2.

1. Let entryShortTerm be a variable ranging over all reference entries that are currently marked as "used for
short-term reference". When some values of entryShortTerm are present having PicOrderCnt(entryShortTerm)
less than or equal to PicOrderCnt(CurrPic), these values of entryShortTerm are placed at the beginning of
refFrameListOShortTerm in descending order of PicOrderCnt(entryShortTerm). All of the remaining values of
entryShortTerm (when present) are then appended to refFrameListOShortTerm in ascending order of
PicOrderCnt(entryShortTerm).

NOTE 3 — When the current field follows in decoding order a coded field fldPrev with which together it forms a

complementary reference field pair, fldPrev is included into the list refFrameListOShortTerm using
PicOrderCnt(fldPrev) and the ordering method described in the previous sentence is applied.

2. Let entryShortTerm be a variable ranging over all reference entries that are currently marked as "used for
short-term reference". When some values of entryShortTerm are present having PicOrderCnt(entryShortTerm)
greater than PicOrderCnt(CurrPic), these values of entryShortTerm are placed at the beginning of
refFrameList] ShortTerm in ascending order of PicOrderCnt(entryShortTerm). All of the remaining values of

122 Rec. ITU-T H.264 (01/2012)

entryShortTerm (when present) are then appended to refFrameListlShortTerm in descending order of
PicOrderCnt(entryShortTerm).
NOTE 4 — When the current field follows in decoding order a coded field fldPrev with which together it forms a

complementary reference field pair, fldPrev is included into the list refFrameListlShortTerm using
PicOrderCnt(fldPrev) and the ordering method described in the previous sentence is applied.

3. refFrameListLongTerm is ordered starting with the reference entry having the lowest LongTermFrameldx value
and proceeding through in ascending order to the reference entry having highest LongTermFrameldx value.
NOTE 5 — When the current picture is the second field of a complementary field pair and the first field of the
complementary field pair is marked as "used for long-term reference", the first field is included into the list
refFrameListLongTerm. A reference entry in which only one field is marked as "used for long-term reference" is
included into the list refFrameListLongTerm.

The process specified in clause 8.2.4.2.5 is invoked with refFrameListOShortTerm and refFrameListLongTerm given as
input and the output is assigned to RefPicList0.

The process specified in clause 8.2.4.2.5 is invoked with refFrameList] ShortTerm and refFrameListLongTerm given as
input and the output is assigned to RefPicListl.

When the reference picture list RefPicList]l has more than one entry and RefPicListl is identical to the reference picture
list RefPicList0, the first two entries RefPicList1[0] and RefPicList1[1] are switched.

8.2.4.2.5 Initialisation process for reference picture lists in fields

Inputs of this process are the reference frame lists refFrameListXShortTerm (with X may be 0 or 1) and
refFrameListLongTerm.

The reference picture list RefPicListX is a list ordered such that short-term reference fields have lower indices than
long-term reference fields. Given the reference frame lists refFrameListXShortTerm and refFrameListLongTerm, it is
derived as specified by the following ordered steps:

1. Short-term reference fields are ordered by selecting reference fields from the ordered list of frames
refFrameListXShortTerm by alternating between fields of differing parity, starting with a field that has the same
parity as the current field (when present). When one field of a reference frame was not decoded or is not marked
as "used for short-term reference", the missing field is ignored and instead the next available stored reference
field of the chosen parity from the ordered list of frames refFrameListXShortTerm is inserted into RefPicListX.
When there are no more short-term reference fields of the alternate parity in the ordered list of frames
refFrameListXShortTerm, the next not yet indexed fields of the available parity are inserted into RefPicListX in
the order in which they occur in the ordered list of frames refFrameListXShortTerm.

2. Long-term reference fields are ordered by selecting reference fields from the ordered list of frames
refFrameListLongTerm by alternating between fields of differing parity, starting with a field that has the same
parity as the current field (when present). When one field of a reference frame was not decoded or is not marked
as "used for long-term reference", the missing field is ignored and instead the next available stored reference
field of the chosen parity from the ordered list of frames refFrameListLongTerm is inserted into RefPicListX.
When there are no more long-term reference fields of the alternate parity in the ordered list of frames
refFrameListLongTerm, the next not yet indexed fields of the available parity are inserted into RefPicListX in
the order in which they occur in the ordered list of frames refFrameListLongTerm.

8.2.4.3 Modification process for reference picture lists
When ref pic_list_modification flag 10 is equal to 1, the following applies:
1. Let refldxL0 be an index into the reference picture list RefPicList0. It is initially set equal to 0.

2. The corresponding syntax elements modification_of pic_nums_idc are processed in the order they occur in the
bitstream. For each of these syntax elements, the following applies:

— If modification_of pic nums_idc is equal to 0 or equal to 1, the process specified in subclause 8.2.4.3.1 is
invoked with refldxL0 as input, and the output is assigned to refldxLO0.

— Otherwise, if modification_of pic nums idc is equal to 2, the process specified in clause 8.2.4.3.2 is
invoked with refldxL0 as input, and the output is assigned to refIdxLO0.

— Otherwise (modification of pic nums_idc is equal to 3), the modification process for reference picture
list RefPicListO0 is finished.

When the current slice is a B slice and ref pic list modification flag 11 is equal to 1, the following applies:

1. LetrefldxL1 be an index into the reference picture list RefPicListl. It is initially set equal to 0.

Rec. ITU-T H.264 (01/2012) 123

2. The corresponding syntax elements modification_of pic nums idc are processed in the order they occur in the
bitstream. For each of these syntax elements, the following applies:

— If modification_of pic nums_idc is equal to O or equal to 1, the process specified in clause 8.2.4.3.1 is
invoked with refldxL1 as input, and the output is assigned to refldxL1.

— Otherwise, if modification_of pic nums_idc is equal to 2, the process specified in clause 8.2.4.3.2 is
invoked with refldxL1 as input, and the output is assigned to refldxL1.

— Otherwise (modification_of pic nums_idc is equal to 3), the modification process for reference picture
list RefPicListl is finished.

8.2.4.3.1 Modification process of reference picture lists for short-term reference pictures
Input to this process is an index refldxLX (with X being 0 or 1).

Output of this process is an incremented index refldxLX.

The variable picNumLXNoWrap is derived as follows:

— If modification of pic nums_idc is equal to 0,

if(picNumLXPred — (‘abs_diff pic num minusl +1)<0)

picNumLXNoWrap = picNumLXPred — (abs_diff pic num minusl + 1) + MaxPicNum (8-34)
else

picNumLXNoWrap = picNumLXPred — (abs_diff pic num minusl + 1)

— Otherwise (modification_of pic nums idc is equal to 1),

if(picNumLXPred + (‘abs_diff pic num minusl + 1) >= MaxPicNum)

picNumLXNoWrap = picNumLXPred + (abs_diff pic num minusl + 1) — MaxPicNum (8-35)
else

picNumLXNoWrap = picNumLXPred + (abs_diff pic num minusl + 1)

picNumLXPred is the prediction value for the variable picNumLXNoWrap. When the process specified in this clause is
invoked the first time for a slice (that is, for the first occurrence of modification of pic nums_idc equal to 0 or 1 in the
ref pic_list modification() syntax), picNumLOPred and picNumL1Pred are initially set equal to CurrPicNum. After
each assignment of picNumLXNoWrap, the value of picNumLXNoWrap is assigned to picNumLXPred.

The variable picNumLX is derived as specified by the following pseudo-code:

if(picNumLXNoWrap > CurrPicNum)

picNumLX = picNumLXNoWrap — MaxPicNum (8-36)
else

picNumLX = picNumLXNoWrap

picNumLX shall be equal to the PicNum of a reference picture that is marked as "used for short-term reference" and shall
not be equal to the PicNum of a short-term reference picture that is marked as "non-existing".

The following procedure is conducted to place the picture with short-term picture number picNumLX into the index
position refldxLX, shift the position of any other remaining pictures to later in the list, and increment the value of
refldxLX.

for(cldx =num_ref idx IX active minusl + 1; cIdx > refldxLX; cldx— —)
RefPicListX[cldx] = RefPicListX[cldx — 1]
RefPicListX[refldxLX++ | = short-term reference picture with PicNum equal to picNumLX
nldx = refldxLX
for(cldx = refldxLX; cldx <=num _ref idx IX active minusl + 1; cldx++) (8-37)
if(PicNumF(RefPicListX][cldx]) != picNumLX)
RefPicListX[nldx++] = RefPicListX[cldx]

where the function PicNumF(RefPicListX][cldx]) is derived as follows:

— If the picture RefPicListX][cldx] is marked as "used for short-term reference", PicNumF(RefPicListX[cldx]) is
the PicNum of the picture RefPicListX[cldx].

— Otherwise (the picture RefPicListX[cldx] is not marked as '"used for short-term reference"),
PicNumF(RefPicListX[cldx]) is equal to MaxPicNum.

NOTE 1 — A value of MaxPicNum can never be equal to picNumLX.

124 Rec. ITU-T H.264 (01/2012)

NOTE 2 — Within this pseudo-code procedure, the length of the list RefPicListX is temporarily made one element longer than the
length needed for the final list. After the execution of this procedure, only elements 0 through num_ref idx 1X active minusl of
the list need to be retained.

8.2.4.3.2 Modification process of reference picture lists for long-term reference pictures
Input to this process is an index refldxLX (with X being 0 or 1).
Output of this process is an incremented index refldxLX.

The following procedure is conducted to place the picture with long-term picture number long_term pic_num into the
index position refldxLX, shift the position of any other remaining pictures to later in the list, and increment the value of
refldxLX.

for(cldx =num_ref idx IX active minusl + 1; cldx > refldxLX; cldx— —)
RefPicListX[cldx] = RefPicListX][cldx — 1]
RefPicListX[refldxLX++] = long-term reference picture with LongTermPicNum equal to long_term_pic_num
nldx = refldxLX
for(cldx = refldxLX; cldx <=num_ref idx IX active minusl + 1; cldx++) (8-38)
if(LongTermPicNumF(RefPicListX[cIdx]) !=long_term pic num)
RefPicListX[nldx++] = RefPicListX[cldx]

where the function LongTermPicNumF(RefPicListX[cldx]) is derived as follows:

— If the picture RefPicListX[cldx] is marked as "used for long-term reference",
LongTermPicNumF(RefPicListX][cldx]) is the LongTermPicNum of the picture RefPicListX][cldx].

— Otherwise (the picture RefPicListX[cldx] is not marked as "used for long-term reference"),
LongTermPicNumF(RefPicListX][cldx]) is equal to 2 * (MaxLongTermFrameldx + 1).
NOTE 1 — A value of 2 * (MaxLongTermFrameldx + 1) can never be equal to long_term_pic_num.

NOTE 2 — Within this pseudo-code procedure, the length of the list RefPicListX is temporarily made one element longer than the
length needed for the final list. After the execution of this procedure, only elements 0 through num_ref idx 1X active minusl of
the list need to be retained.

8.2.5 Decoded reference picture marking process

This process is invoked for decoded pictures when nal_ref idc is not equal to 0.

NOTE 1 — The decoding process for gaps in frame num that is specified in clause 8.2.5.2 may also be invoked when nal_ref idc is
equal to 0, as specified in clause 8.

A decoded picture with nal_ref idc not equal to 0, referred to as a reference picture, is marked as "used for short-term
reference" or "used for long-term reference". For a decoded reference frame, both of its fields are marked the same as the
frame. For a complementary reference field pair, the pair is marked the same as both of its fields. A picture that is
marked as "used for short-term reference" is identified by its FrameNum and, when it is a field, by its parity. A picture
that is marked as "used for long-term reference" is identified by its LongTermFrameldx and, when it is a field, by its

parity.

Frames or complementary field pairs marked as "used for short-term reference" or as "used for long-term reference" can
be used as a reference for inter prediction when decoding a frame until the frame, the complementary field pair, or one of
its constituent fields is marked as "unused for reference". A field marked as "used for short-term reference" or as "used
for long-term reference" can be used as a reference for inter prediction when decoding a field until marked as "unused for
reference".
NOTE 2 — The marking status of a frame or complementary field pair can always be deduced from the marking status of its two
fields. If both fields of a frame or complementary field pair are marked as "used for reference", the frame or complementary field

pair is also marked as "used for reference"; otherwise (one field or both fields of a frame or complementary field pair are marked
as "unused for reference"), the frame or complementary field pair is marked as "unused for reference".

A picture can be marked as "unused for reference" by the sliding window reference picture marking process, a first-in,
first-out mechanism specified in clause 8.2.5.3 or by the adaptive memory control reference picture marking process, a
customised adaptive marking operation specified in clause 8.2.5.4.

A short-term reference picture is identified for use in the decoding process by its variables FrameNum and
FrameNumWrap and its picture number PicNum, and a long-term reference picture is identified for use in the decoding
process by its long-term picture number LongTermPicNum. When the current picture is not an IDR picture,
clause 8.2.4.1 is invoked to specify the assignment of the variables FrameNum, FrameNumWrap, PicNum and
LongTermPicNum.

Rec. ITU-T H.264 (01/2012) 125

8.2.5.1 Sequence of operations for decoded reference picture marking process
Decoded reference picture marking proceeds in the following ordered steps:
1. All slices of the current picture are decoded.
2. Depending on whether the current picture is an IDR picture, the following applies:
— If the current picture is an IDR picture, the following ordered steps are specified:
a. All reference pictures are marked as "unused for reference"

b. Depending on long_term_reference flag, the following applies:

1

— If long_term reference flag is equal to 0, the IDR picture is marked as "used for short-term
reference" and MaxLongTermFrameldx is set equal to "no long-term frame indices".

— Otherwise (long term reference flag is equal to 1), the IDR picture is marked as "used for
long-term reference", the LongTermFrameldx for the IDR picture is set equal to 0, and
MaxLongTermFrameldx is set equal to 0.

— Otherwise (the current picture is not an IDR picture), the following applies:
— If adaptive ref pic_marking mode flag is equal to 0, the process specified in clause 8.2.5.3 is invoked.

— Otherwise (adaptive_ref pic_marking mode flag is equal to 1), the process specified in clause 8.2.5.4
is invoked.

3. When the current picture is not an IDR picture and it was not marked as "used for long-term reference" by
memory_management_control operation equal to 6, it is marked as "used for short-term reference".

It is a requirement of bitstream conformance that, after marking the current decoded reference picture, the total number
of frames with at least one field marked as "used for reference", plus the number of complementary field pairs with at
least one field marked as "used for reference", plus the number of non-paired fields marked as "used for reference" shall
not be greater than Max(max_num_ref frames, 1).

8.2.5.2 Decoding process for gaps in frame num

This process is invoked when frame num is not equal to PrevRefFrameNum and is not equal to
(PrevRefFrameNum + 1) % MaxFrameNum.

NOTE 1 — Although this process is specified as a subclause within clause 8.2.5 (which defines a process that is invoked only when
nal ref idc is not equal to 0), this process may also be invoked when nal ref idc is equal to 0 (as specified in clause 8). The
reasons for the location of this subclause within the structure of this Recommendation | International Standard are historical.

NOTE 2 — This process can only be invoked for a conforming bitstream when gaps_in_frame num_value allowed flag is equal
to 1. When gaps_in_frame_num_value allowed_flag is equal to 0 and frame num is not equal to PrevRefFrameNum and is not
equal to (PrevRefFrameNum + 1) % MaxFrameNum, the decoding process should infer an unintentional loss of pictures.

When this process is invoked, a set of values of frame num pertaining to "non-existing" pictures is derived as all values
taken on by UnusedShortTermFrameNum in Equation 7-23 except the value of frame num for the current picture.

For each of the values of frame num pertaining to "non-existing" pictures, in the order in which the values of
UnusedShortTermFrameNum are generated by Equation 7-23, the following ordered steps are specified:

1. The decoding process for picture numbers as specified in clause 8.2.4.1 is invoked.
2. The sliding window decoded reference picture marking process as specified in clause 8.2.5.3 is invoked.

3. The decoding process generates a frame and the generated frame is marked as "non-existing" and "used for
short-term reference”. The sample values of the generated frame may be set to any value.

The following constraints shall be obeyed:

a) The bitstream shall not contain data that result in the derivation of a co-located picture colPic that is marked as
"non-existing" in any invocation of the derivation process for the co-located 4x4 sub-macroblock partitions
specified in clause 8.4.1.2.1.

b) The bitstream shall not contain data that result in the derivation of a reference picture that is marked as
"non-existing" in any invocation of the reference picture selection process specified in clause 8.4.2.1.

¢) The bitstream shall not contain data that result in a variable picNumLX that is equal to the PicNum of a picture
marked as "non-existing" in any invocation of the modification process for reference picture lists for short-term
reference pictures specified in clause 8.2.4.3.1.

126 Rec. ITU-T H.264 (01/2012)

d) The bitstream shall not contain data that result in a variable picNumLX that is equal to the PicNum of a picture
marked as "non-existing" in any invocation of the assignment process of a LongTermFrameldx to a short-term
reference picture specified in clause 8.2.5.4.3.

NOTE 3 — The above constraints specify that frames that are marked as "non-existing" by the process specified in this clause must
not be referenced in the inter prediction process (clause 8.4, including the derivation process for co-located 4x4 sub-macroblock
partitions in clause 8.4.1.2.1), the modification commands for reference picture lists for short-term reference pictures
(clause 8.2.4.3.1), or the assignment process of a LongTermFrameldx to a short-term reference picture (clause 8.2.5.4.3).

When pic_order cnt type is not equal to 0, TopFieldOrderCnt and BottomFieldOrderCnt are derived for each of the
"non-existing" frames by invoking the decoding process for picture order count in clause 8.2.1. When invoking the
process in clause 8.2.1 for a particular "non-existing" frame, the current picture is considered to be a picture considered
having frame num inferred to be equal to UnusedShortTermFrameNum, nal ref idc inferred to be not equal to 0,
nal_unit_type inferred to be not equal to 5, IdrPicFlag inferred to be equal to 0, field pic flag inferred to be equal to 0,
adaptive ref pic marking mode flag inferred to be equal to 0, delta pic_order cnt[O] (if needed) inferred to be equal
to 0, and delta_pic_order cnt[1] (if needed) inferred to be equal to 0.
NOTE 4 — The decoding process should infer an unintentional picture loss when any of these values of frame num pertaining to
"non-existing" pictures is referred to in the inter prediction process (clause 8.4, including the derivation process for the co-located
4x4 sub-macroblock partitions in subclause 8.4.1.2.1), is referred to in the modification commands for reference picture lists for
short-term reference pictures (subclause 8.2.4.3.1), or is referred to in the assignment process of a LongTermFrameldx to a short-
term reference picture (subclause 8.2.5.4.3). The decoding process should not infer an unintentional picture loss when a memory
management control operation not equal to 3 is applied to a frame marked as "non-existing".

8.2.5.3 Sliding window decoded reference picture marking process
This process is invoked when adaptive ref pic _marking mode flag is equal to 0.
Depending on the properties of the current picture as specified below, the following applies:

— If the current picture is a coded field that is the second field in decoding order of a complementary reference field
pair, and the first field has been marked as "used for short-term reference", the current picture and the
complementary reference field pair are also marked as "used for short-term reference".

— Otherwise, the following applies:

1. Let numShortTerm be the total number of reference frames, complementary reference field pairs and
non-paired reference fields for which at least one field is marked as "used for short-term reference". Let
numLongTerm be the total number of reference frames, complementary reference field pairs and non-paired
reference fields for which at least one field is marked as "used for long-term reference".

2. When numShortTerm + numLongTerm is equal to Max(max num ref frames, 1), the condition that
numShortTerm is greater than 0 shall be fulfilled, and the short-term reference frame, complementary
reference field pair or non-paired reference field that has the smallest value of FrameNumWrap is marked as
"unused for reference". When it is a frame or a complementary field pair, both of its fields are also marked as
"unused for reference".

8.2.5.4 Adaptive memory control decoded reference picture marking process
This process is invoked when adaptive ref pic_marking mode flag is equal to 1.

The memory management_control operation commands with values of 1 to 6 are processed in the order they occur in
the bitstream after the current picture has been decoded. For each of these memory management control operation
commands, one of the processes specified in clauses 8.2.5.4.1 to 8.2.5.4.6 is invoked depending on the value of
memory_management_control operation. The memory management control operation command with value of 0
specifies the end of memory management control operation commands.

Memory management control operations are applied to pictures as follows:

— If field pic flag is equal to 0, memory management control operation commands are applied to the frames or
complementary reference field pairs specified.

— Otherwise (field pic flag is equal to 1), memory management control operation commands are applied to the
individual reference fields specified.

8.2.5.4.1 Marking process of a short-term reference picture as '"unused for reference"
This process is invoked when memory _management_control operation is equal to 1.

Let picNumX be specified by

picNumX = CurrPicNum — (difference of pic nums minusl + 1). (8-39)

Rec. ITU-T H.264 (01/2012) 127

Depending on field pic flag the value of picNumX is used to mark a short-term reference picture as "unused for
reference" as follows:

— If field pic flag is equal to 0, the short-term reference frame or short-term complementary reference field pair
specified by picNumX and both of its fields are marked as "unused for reference".

— Otherwise (field pic flag is equal to 1), the short-term reference field specified by picNumX is marked as "unused
for reference". When that reference field is part of a reference frame or a complementary reference field pair, the
frame or complementary field pair is also marked as "unused for reference", but the marking of the other field in the
same reference frame or complementary reference field pair is not changed.

8.2.5.4.2 Marking process of a long-term reference picture as "unused for reference"
This process is invoked when memory management control operation is equal to 2.

Depending on field pic flag the value of LongTermPicNum is used to mark a long-term reference picture as "unused for
reference" as follows:

— If field pic_flag is equal to 0, the long-term reference frame or long-term complementary reference field pair
having LongTermPicNum equal to long_term_ pic_num and both of its fields are marked as "unused for reference".

— Otherwise (field pic flag is equal to 1), the long-term reference field specified by LongTermPicNum equal to
long_term_pic_num is marked as "unused for reference". When that reference field is part of a reference frame or a
complementary reference field pair, the frame or complementary field pair is also marked as "unused for reference",
but the marking of the other field in the same reference frame or complementary reference field pair is not changed.

8.2.5.4.3 Assignment process of a LongTermFrameldx to a short-term reference picture
This process is invoked when memory management_control operation is equal to 3.

Given the syntax element difference of pic nums minusl, the variable picNumX is obtained as specified in
clause 8.2.5.4.1. picNumX shall refer to a frame or complementary reference field pair or non-paired reference field
marked as "used for short-term reference" and not marked as "non-existing".

When LongTermFrameldx equal to long term frame idx is already assigned to a long-term reference frame or a
long-term complementary reference field pair, that frame or complementary field pair and both of its fields are marked as
"unused for reference". When LongTermFrameldx is already assigned to a reference field, and that reference field is not
part of a complementary field pair that includes the picture specified by picNumX, that field is marked as "unused for
reference".

Depending on field pic flag the value of LongTermFrameldx is used to mark a picture from "used for short-term

reference" to "used for long-term reference" as follows:

— Iffield pic_flag is equal to 0, the marking of the short-term reference frame or short-term complementary reference
field pair specified by picNumX and both of its fields are changed from "used for short-term reference" to "used for
long-term reference" and assigned LongTermFrameldx equal to long_term frame idx.

— Otherwise (field pic_flag is equal to 1), the marking of the short-term reference field specified by picNumX is
changed from "used for short-term reference" to "used for long-term reference" and assigned LongTermFrameldx
equal to long_term_frame idx. When the field is part of a reference frame or a complementary reference field pair,
and the other field of the same reference frame or complementary reference field pair is also marked as "used for
long-term reference", the reference frame or complementary reference field pair is also marked as "used for
long-term reference" and assigned LongTermFrameldx equal to long_term_frame idx.

8.2.5.4.4 Decoding process for MaxLongTermFrameldx
This process is invoked when memory management control operation is equal to 4.

All pictures for which LongTermFrameldx is greater than max long_term frame idx plusl — 1 and that are marked as
"used for long-term reference" are marked as "unused for reference".

The variable MaxLongTermFrameldx is derived as follows:

— If max long term frame idx_plusl is equal to 0, MaxLongTermFrameldx is set equal to "no long-term frame
indices".

— Otherwise (max_long term frame idx plusl is greater than 0), MaxLongTermFrameldx is set equal to
max_long term_frame idx plusl — 1.

NOTE — The memory management control operation command equal to 4 can be used to mark long-term reference pictures as
"unused for reference". The frequency of transmitting max long term frame idx plusl is not specified by this

128 Rec. ITU-T H.264 (01/2012)

Recommendation | International Standard. However, the encoder should send a memory management control operation
command equal to 4 upon receiving an error message, such as an intra refresh request message.

8.2.5.4.5 Marking process of all reference pictures as '"unused for reference" and setting
MaxLongTermFrameldx to '"'no long-term frame indices"

This process is invoked when memory _management_control operation is equal to 5.

All reference pictures are marked as "unused for reference" and the variable MaxLongTermFrameldx is set equal to "no
long-term frame indices".

8.2.5.4.6 Process for assigning a long-term frame index to the current picture
This process is invoked when memory _management_control operation is equal to 6.

When a variable LongTermFrameldx equal to long term frame idx is already assigned to a long-term reference frame
or a long-term complementary reference field pair, that frame or complementary field pair and both of its fields are
marked as "unused for reference". When LongTermFrameldx is already assigned to a reference field, and that reference
field is not part of a complementary field pair that includes the current picture, that field is marked as "unused for
reference".

The current picture is marked as "used for long-term reference" and assigned LongTermFrameldx equal to
long term frame idx.

When field pic flag is equal to 0, both its fields are also marked as "used for long-term reference" and assigned
LongTermFrameldx equal to long_term frame_idx.

When field pic flag is equal to 1 and the current picture is the second field (in decoding order) of a complementary
reference field pair, and the first field of the complementary reference field pair is also currently marked as "used for
long-term reference", the complementary reference field pair is also marked as "used for long-term reference" and
assigned LongTermFrameldx equal to long_term frame idx.

After marking the current decoded reference picture, the total number of frames with at least one field marked as "used
for reference”, plus the number of complementary field pairs with at least one field marked as "used for reference", plus
the number of non-paired fields marked as "used for reference" shall not be greater than Max(max num_ref frames, 1).

NOTE - Under some circumstances, the above statement may impose a constraint on the order in which a
memory_management_control operation syntax element equal to 6 can appear in the decoded reference picture marking syntax
relative to a memory management_control_operation syntax element equal to 1, 2, 3, or 4.

8.3 Intra prediction process
This process is invoked for I and SI macroblock types.

Inputs to this process are constructed samples prior to the deblocking filter process and, for Intra NxN prediction modes
(where NxN is equal to 4x4 or 8x8), the values of IntraNxNPredMode from neighbouring macroblocks.

Outputs of this process are specified as follows:

— If the macroblock prediction mode is Intra_4x4 or Intra_8x8, the outputs are constructed luma samples prior to the
deblocking filter process and (when ChromaArrayType is not equal to 0) chroma prediction samples of the
macroblock predc, where C is equal to Cb and Cr.

— Otherwise, if mb_type is not equal to I PCM, the outputs are luma prediction samples of the macroblock pred; and
(when ChromaArrayType is not equal to 0) chroma prediction samples of the macroblock predc, where C is equal to
Cb and Cr.

— Otherwise (mb_type is equal to I PCM), the outputs are constructed luma and (when ChromaArrayType is not
equal to 0) chroma samples prior to the deblocking filter process.

The variable MvCnt is set equal to 0.
Depending on the value of mb_type the following applies:

— Ifmb_type is equal to I PCM, the sample construction process for | PCM macroblocks as specified in clause 8.3.5
is invoked.

— Otherwise (mb_type is not equal to I PCM), the following applies:
1. The decoding processes for Intra prediction modes are described for the luma component as follows:

— If the macroblock prediction mode is equal to Intra_4x4, the Intra_4x4 prediction process for luma
samples as specified in clause 8.3.1 is invoked.

Rec. ITU-T H.264 (01/2012) 129

— Otherwise, if the macroblock prediction mode is equal to Intra_8x8, the Intra_8x8 prediction process as
specified in clause 8.3.2 is invoked.

— Otherwise (the macroblock prediction mode is equal to Intra_16x16), the Intra_16x16 prediction process
as specified in clause 8.3.3 is invoked with S'; as the input and the outputs are luma prediction samples
of the macroblock pred;.

2. When ChromaArrayType is not equal to 0, the Intra prediction process for chroma samples as specified in
clause 8.3.4 is invoked with S'cy,, and S'c; as the inputs and the outputs are chroma prediction samples of the
macroblock predc, and predc;.

Samples used in the Intra prediction process are the sample values prior to alteration by any deblocking filter operation.

8.3.1 Intra_4x4 prediction process for luma samples
This process is invoked when the macroblock prediction mode is equal to Intra_4x4.

Inputs to this process are the values of Intra4x4PredMode (if available) or Intra8x8PredMode (if available) from
neighbouring macroblocks or macroblock pairs.

The luma component of a macroblock consists of 16 blocks of 4x4 luma samples. These blocks are inverse scanned
using the 4x4 luma block inverse scanning process as specified in clause 6.4.3.

For all 4x4 luma blocks of the luma component of a macroblock with luma4x4Blkldx = 0..15, the derivation process for
the Intra4x4PredMode as specified in clause 8.3.1.1 is invoked with luma4x4Blkldx as well as Intra4x4PredMode and
Intra8x8PredMode that are previously (in decoding order) derived for adjacent macroblocks as the input and the variable
Intrad4x4PredMode[luma4x4BlkIdx] as the output.

For each luma block of 4x4 samples indexed using luma4x4Blkldx = 0..15, the following ordered steps are specified:

1. The Intra 4x4 sample prediction process in clause 8.3.1.2 is invoked with luma4x4Blkldx and the array S'_
containing constructed luma samples prior to the deblocking filter process from adjacent luma blocks as the inputs
and the outputs are the Intra 4x4 luma prediction samples pred4x4,[x, y] with x, y =0..3.

2. The position of the upper-left sample of a 4x4 luma block with index luma4x4Blkldx inside the current
macroblock is derived by invoking the inverse 4x4 luma block scanning process in clause 6.4.3 with
luma4x4BlklIdx as the input and the output being assigned to (xO, yO).

3. The values of the prediction samples pred; [xO + x, yO +y | with x, y = 0..3 are derived by
pred [xO +x,yO +y] =pred4x4[x,y] (8-40)

4. The transform coefficient decoding process and picture construction process prior to deblocking filter process in
clause 8.5 is invoked with pred; and luma4x4Blkldx as the input and the constructed samples for the current 4x4
luma block S’ as the output.

8.3.1.1 Derivation process for Intradx4PredMode

Inputs to this process are the index of the 4x4 luma block luma4x4Blkldx and variable arrays Intra4x4PredMode (if
available) and Intra8x8PredMode (if available) that are previously (in decoding order) derived for adjacent macroblocks.

Output of this process is the variable Intra4x4PredMode[luma4x4BlkIdx].
Table 8-2 specifies the values for Intra4x4PredMode[luma4x4BlklIdx] and the associated names.

Table 8-2 — Specification of Intra4x4PredMode| luma4x4BIlkIdx] and associated names

Intra4x4PredMode| luma4x4BlkIdx | Name of Intradx4PredMode[luma4x4BIklIdx]
0 Intra_4x4 Vertical (prediction mode)
1 Intra_4x4 Horizontal (prediction mode)
2 Intra_4x4 DC (prediction mode)
3 Intra_4x4 Diagonal Down_Left (prediction mode)
4 Intra_4x4_ Diagonal Down_Right (prediction mode)
5 Intra_4x4 Vertical Right (prediction mode)

130 Rec. ITU-T H.264 (01/2012)

6 Intra_4x4 Horizontal Down (prediction mode)

7 Intra_4x4_Vertical Left (prediction mode)

8 Intra_4x4 Horizontal Up (prediction mode)

Intrad4x4PredMode[luma4x4BlkIdx] labelled 0, 1, 3, 4, 5, 6, 7, and 8 represent directions of predictions as illustrated in
Figure 8-1.

8
> |
6
3 4
v
7 0 5 H264(09) F8-1

Figure 8-1 — Intra_4x4 prediction mode directions (informative)

Intrad4x4PredMode[luma4x4Blkldx] is derived as specified by the following ordered steps:

1. The process specified in clause 6.4.11.4 is invoked with luma4x4BlkIdx given as input and the output is assigned
to mbAddrA, luma4x4BlkIdxA, mbAddrB, and luma4x4BlkIdxB.

2. The variable dcPredModePredictedFlag is derived as follows:
— Ifany of the following conditions are true, dcPredModePredictedFlag is set equal to 1
— the macroblock with address mbAddrA is not available
— the macroblock with address mbAddrB is not available

— the macroblock with address mbAddrA is available and coded in an Inter macroblock prediction
mode and constrained intra_pred flag is equal to 1

— the macroblock with address mbAddrB is available and coded in an Inter macroblock prediction
mode and constrained_intra_pred flag is equal to 1

— Otherwise, dcPredModePredictedFlag is set equal to 0.
3. For N being either replaced by A or B, the variables intraMxMPredModeN are derived as follows:

— If dcPredModePredictedFlag is equal to 1 or the macroblock with address mbAddrN is not coded in
Intra 4x4 or Intra 8x8 macroblock prediction mode, intraMxMPredModeN is set equal to2
(Intra_4x4 DC prediction mode).

— Otherwise (dcPredModePredictedFlag is equal to 0 and the macroblock with address mbAddrN is coded
in Intra_4x4 or Intra_8x8 macroblock prediction mode), the following applies:

— If the macroblock with address mbAddrN is coded in Intra 4x4 macroblock prediction mode,
intraMxMPredModeN is set equal to Intradx4PredMode[lumad4x4BlkIdxN], where
Intradx4PredMode is the variable array assigned to the macroblock mbAddrN.

— Otherwise (the macroblock with address mbAddrN is coded in Intra 8x8 macroblock prediction
mode), intraMxMPredModeN is set equal to Intra8x8PredMode[luma4x4BIkIdxN >> 2], where
Intra8x8PredMode is the variable array assigned to the macroblock mbAddrN.

4. Intra4x4PredMode[luma4x4BIkldx] is derived by applying the following procedure:

predIntra4x4PredMode = Min(intraMxMPredModeA, intraMxMPredModeB)
if(prev_intra4x4 pred mode flag[luma4x4BlkIdx])
Intra4x4PredMode[luma4x4BlkIdx] = predIntradx4PredMode

Rec. ITU-T H.264 (01/2012) 131

else (8-41)
if(rem_intra4x4 pred mode[luma4x4Blkldx | < predIntradx4PredMode)
Intrad4x4PredMode[luma4x4Blkldx | =rem_intra4x4 pred mode[luma4x4BIkIdx]
else
Intrad4x4PredMode[luma4x4Blkldx | =rem_intra4x4 pred mode[luma4x4Blkldx]+ 1
8.3.1.2 Intra_4x4 sample prediction

This process is invoked for each 4x4 luma block of a macroblock with macroblock prediction mode equal to Intra_4x4
followed by the transform decoding process and picture construction process prior to deblocking for each 4x4 luma
block.

Inputs to this process are:
— the index of a 4x4 luma block luma4x4BlkIdx,

— an (PicWidthInSamples;)x(PicHeightInSamples;) array cS; containing constructed luma samples prior to the
deblocking filter process of neighbouring macroblocks.

Output of this process are the prediction samples pred4x4;[x, y], with x, y = 0..3, for the 4x4 luma block with index
luma4x4BIkIdx.

The position of the upper-left sample of a 4x4 luma block with index luma4x4BlklIdx inside the current macroblock is
derived by invoking the inverse 4x4 luma block scanning process in clause 6.4.3 with luma4x4BlkIdx as the input and
the output being assigned to (xO, yO).

The 13 neighbouring samples p[x,y | that are constructed luma samples prior to the deblocking filter process, with
x=-1,y=-1..3and x=0..7, y =—1, are derived as specified by the following ordered steps:

1. The luma location (XN, yN) is specified by
xN =x0 +x (8-42)
yN=yO+y (8-43)
2. The derivation process for neighbouring locations in clause 6.4.12 is invoked for luma locations with (xN, yN)
as input and mbAddrN and (xW, yW) as output.
3. Eachsample p[x,y] withx=—1,y=—-1..3and x =0..7, y = —1 is derived as follows:

— If any of the following conditions are true, the sample p[x, y | is marked as "not available for Intra_4x4
prediction"

— mbAddrN is not available,

— the macroblock mbAddrN is coded in an Inter macroblock prediction mode and
constrained_intra_pred_flag is equal to 1,

— the macroblock mbAddrN has mb_type equal to SI and constrained intra_pred flag is equal to 1 and
the current macroblock does not have mb_type equal to SI,

— x s greater than 3 and luma4x4BIkIdx is equal to 3 or 11.

— Otherwise, the sample p[x,y] is marked as "available for Intra 4x4 prediction" and the value of the
sample p[x, y] is derived as specified by the following ordered steps:

a. The location of the upper-left luma sample of the macroblock mbAddrN is derived by invoking the
inverse macroblock scanning process in clause 6.4.1 with mbAddrN as the input and the output is
assigned to (XM, yM).

b. Depending on the variable MbaffFrameFlag and the macroblock mbAddrN, the sample value p[x, y]
is derived as follows:

— If MbaffFrameFlag is equal to 1 and the macroblock mbAddrN is a field macroblock,

pLX, y]=cS[xM +xW,yM +2 * yW] (8-44)
— Otherwise (MbaffFrameFlag is equal to O or the macroblock mbAddrN is a frame macroblock),

p[X,y] = CSL[xM + XW> YM + yW] (8_45)

132 Rec. ITU-T H.264 (01/2012)

When samples p[x, —1], with x = 4..7, are marked as "not available for Intra_4x4 prediction," and the sample p[3, —1]
is marked as "available for Intra 4x4 prediction," the sample value of p[3, —1] is substituted for sample values
p[x,—1], with x =4..7, and samples p[x, —1], with x = 4..7, are marked as "available for Intra_4x4 prediction".

NOTE - Each block is assumed to be constructed into a picture array prior to decoding of the next block.

Depending on Intra4x4PredMode[luma4x4Blkldx], one of the Intra_4x4 prediction modes specified in clauses 8.3.1.2.1
to 8.3.1.2.9 is invoked.

8.3.1.2.1 Specification of Intra_4x4 Vertical prediction mode
This Intra_4x4 prediction mode is invoked when Intra4x4PredMode[luma4x4BlkIdx] is equal to 0.

This mode shall be used only when the samples p[x,—1] with x = 0..3 are marked as "available for Intra 4x4
prediction".

The values of the prediction samples pred4x4;[x, y], with x, y = 0..3, are derived by
pred4x4 [x,y] =p[x,—1], withx,y=0..3 (8-46)

8.3.1.2.2 Specification of Intra_4x4 Horizontal prediction mode
This Intra_4x4 prediction mode is invoked when Intra4x4PredMode[luma4x4BlkIdx] is equal to 1.

This mode shall be used only when the samples p[—1,y], with y = 0..3, are marked as "available for Intra 4x4
prediction".

The values of the prediction samples pred4x4, [x, y], with x, y = 0..3, are derived by
preddx4 [x,y]=p[-1,y], withx,y =0..3 (8-47)

8.3.1.2.3 Specification of Intra_4x4 DC prediction mode
This Intra_4x4 prediction mode is invoked when Intra4dx4PredMode[luma4x4BIkIdx] is equal to 2.
The values of the prediction samples pred4x4;[x, y], with x, y = 0..3, are derived as follows:

— If all samples p[x,—1], with x = 0.3, and p[—1,y], with y = 0..3, are marked as "available for Intra 4x4
prediction", the values of the prediction samples pred4x4, [x, y], with x, y = 0..3, are derived by

preddx4 [x,y]=(p[0,—1]+p[1,-1]+p[2,-1]+p[3,-1]+
p[-1,0]1+p[-1,1]+p[—-1,2]+p[-1,3]+4)>3 (8-48)

— Otherwise, if any samples p[x, —1], with x = (..3, are marked as "not available for Intra_4x4 prediction" and all
samples p[—1, y], with y = 0..3, are marked as "available for Intra_4x4 prediction", the values of the prediction
samples pred4x4[x, y], with x, y = 0..3, are derived by

pred4x4 [x,y]=(p[—L,0]+p[—-1,1]+p[—-1,2]+p[—-1,3]+2)>>2 (8-49)

— Otherwise, if any samples p[—1, y], with y = 0..3, are marked as "not available for Intra_4x4 prediction" and all
samples p[x, —1], with x =0 .. 3, are marked as "available for Intra_4x4 prediction", the values of the prediction
samples pred4x4[X,y], with x, y =0 .. 3, are derived by

preddx4 [X,y]=(p[0,-1]+p[1,-1]+p[2,-1]+p[3,-1]+2)>>2 (8-50)

— Otherwise (some samples p[x, —1], with x = 0..3, and some samples p[—1, y], with y = 0..3, are marked as "not
available for Intra_4x4 prediction"), the values of the prediction samples pred4x4[x,y], with x, y = 0..3, are
derived by

pred4x4 [x,y] = (1 <<(BitDepthy — 1)) (8-51)
NOTE - A 4x4 luma block can always be predicted using this mode.
8.3.1.2.4 Specification of Intra_4x4 Diagonal Down_Left prediction mode

This Intra_4x4 prediction mode is invoked when Intra4x4PredMode[luma4x4BlkIdx] is equal to 3.

This mode shall be used only when the samples p[x,—1] with x = 0..7 are marked as "available for Intra 4x4
prediction".

The values of the prediction samples pred4x4, [x, y], with x, y = 0..3, are derived as follows:

Rec. ITU-T H.264 (01/2012) 133

— Ifxisequal to 3 and y is equal to 3,

preddx4. [x,y]1=(p[6,-1]+3*p[7,-1]+2)>>2 (8-52)
— Otherwise (x is not equal to 3 or y is not equal to 3),

preddx4 [X,y]=(p[x+ty,—1]+2*p[x+y+1,-1]+p[x+y+2,-1]+2)>>2 (8-53)
8.3.1.2.5 Specification of Intra_4x4 Diagonal Down_Right prediction mode

This Intra_4x4 prediction mode is invoked when Intra4x4PredMode[luma4x4BIkIdx] is equal to 4.

This mode shall be used only when the samples p[x, —1] with x = 0..3 and p[-1,y] with y = —1..3 are marked as
"available for Intra_4x4 prediction".

The values of the prediction samples pred4x4,[x, y], with x, y = 0..3, are derived as follows:
— Ifxis greater than y,

preddx4d [X,y]=(p[x—y—2,-1]+2*p[x—y— 1,1]+p[x—y,-1]+2)>2 (8-54)
— Otherwise if x is less than y,

preddx4 [x,y]=(p[-l,y—x—2]+2*p[-l,y—x—1]+p[-1,y—x]+2)>>2 (8-55)
— Otherwise (x is equal to y),

preddx4 [X,y]=(p[0,-1]+2*p[—1,-1]+p[—-1,0]+2)>>2 (8-56)
8.3.1.2.6 Specification of Intra_4x4 Vertical Right prediction mode

This Intra_4x4 prediction mode is invoked when Intra4x4PredMode[luma4x4BIkIdx] is equal to 5.

This mode shall be used only when the samples p[x, —1] with x = 0..3 and p[-1,y] with y = —1..3 are marked as
"available for Intra_4x4 prediction".

Let the variable zZVR be set equal to 2 * x —y.
The values of the prediction samples pred4x4, [x, y], with x, y = 0..3, are derived as follows:

— IfzVRisequalto0, 2,4, or6,
predd4x4i [X,y [=(p[x—(y>>1)-1L-1]+p[x—(y>1),-1]+1)>>1 (8-57)
— Otherwise, if zZVR is equal to 1, 3, or 5,

preddx4 [X,y J=(p[x—(y>>1)=2,-1]+2*p[x—(y>>1) - L =1]+p[x—(y>>1),-1]+2)>>2

(8-58)
— Otherwise, if zVR is equal to —1,
preddx4 [x,y]1=(p[—1,0]+2*p[—1,-1]+p[0,-1]+2)>>2 (8-59)
— Otherwise (zVR is equal to =2 or —3),
preddx4 [x,y]=(p[-lL,y—-1]+2*p[—-1,y—-2]+p[-1,y—3]+2)>>2 (8-60)

8.3.1.2.7 Specification of Intra_4x4 Horizontal Down prediction mode
This Intra_4x4 prediction mode is invoked when Intra4x4PredMode[luma4x4BlkIdx] is equal to 6.

This mode shall be used only when the samples p[x, —1] with x = 0..3 and p[-1,y] with y = —1..3 are marked as
"available for Intra_4x4 prediction".

Let the variable zHD be set equal to 2 * y — x.
The values of the prediction samples pred4x4;[x, y], with x, y =0..3, are derived as follows:

— IfzHD is equal to 0, 2, 4, or 6,

134 Rec. ITU-T H.264 (01/2012)

predaxd [x,y 1= (p[-1,y = (x>> 1)~ 1]+p[-,y — (x>>1)]+1)>>1 (8-61)
— Otherwise, if zZHD is equal to 1, 3, or 5,

preddxd [x,y 1= (p[-1,y = (x>>1)=2]+2%p[~L,y = (x>> 1) = 1 J+p[1,y — (x>>1)]+2)>>2

(8-62)
— Otherwise, if zZHD is equal to —1,
preddx4 [X,y]=(p[—1,0]+2*p[-1,-1]+p[0,-1]+2)>>2 (8-63)
— Otherwise (zHD is equal to —2 or —3),
preddx4 [x,y]=(p[x—1,-1]+2*p[x—2,-1]+p[x—3,-1]+2)>>2 (8-64)

8.3.1.2.8 Specification of Intra_4x4 Vertical_Left prediction mode
This Intra_4x4 prediction mode is invoked when Intra4x4PredMode[luma4x4BIkIdx] is equal to 7.

This mode shall be used only when the samples p[x,—1] with x = 0..7 are marked as "available for Intra 4x4
prediction".

The values of the prediction samples pred4x4;[x, y], with x, y = 0..3, are derived as follows:
— IfyisequaltoOor2,

preddxd [X,y]=(p[x+(y>>1),~1]+p[x+(y>1)+1,-1]+1)>>1 (8-65)
— Otherwise (y is equal to 1 or 3),

preddxdi[X,y 1= (p[x+(y>>1),~11+2%p[x+(y>> 1)+ 1, =1 J+p[x+(y>>1)+2,-1]+2)>>2
(8-66)
8.3.1.2.9 Specification of Intra_4x4 Horizontal Up prediction mode
This Intra_4x4 prediction mode is invoked when Intra4x4PredMode[luma4x4BlkIdx] is equal to 8.

This mode shall be used only when the samples p[—1,y] with y = 0..3 are marked as "available for Intra 4x4
prediction".

Let the variable zZHU be set equal to x + 2 * y.
The values of the prediction samples pred4x4,[x, y], with x, y = 0..3, are derived as follows:

— IfzHU isequal to 0, 2, or 4
preddxd [x, y 1= (p[~1,y+(x>> 1)]+p[Ly +(x>>1)+1]+1)>>1 (8-67)
— Otherwise, if zZHU is equal to 1 or 3

preddxd [x,y 1= (p[~1,y+(x>> 1)1+ 2% p[~Ly+(x>> 1)+ 1]+p[Ly +(x>>1)+2]+2)>>2

(8-68)
— Otherwise, if zZHU is equal to 5,
preddx4 [X,y]=(p[—1,2]+3*p[-1,3]+2)>>2 (8-69)
— Otherwise (zHU is greater than 5),
pred4x4 [x,y]=p[—1,3] (8-70)

8.3.2 Intra_8x8 prediction process for luma samples
This process is invoked when the macroblock prediction mode is equal to Intra_8x8.

Inputs to this process are the values of Intradx4PredMode (if available) or Intra8x8PredMode (if available) from the
neighbouring macroblocks or macroblock pairs.

Rec. ITU-T H.264 (01/2012) 135

Outputs of this process are 8x8 luma sample arrays as part of the 16x16 luma array of prediction samples of the
macroblock pred; .

The luma component of a macroblock consists of 4 blocks of 8x8 luma samples. These blocks are inverse scanned using
the inverse 8x8 luma block scanning process as specified in clause 6.4.5.

For all 8x8 luma blocks of the luma component of a macroblock with luma8x8BlklIdx = 0..3, the derivation process for
Intra8x8PredMode as specified in clause 8.3.2.1 is invoked with luma8x8BIlkldx as well as Intra4x4PredMode and
Intra8x8PredMode that are previously (in decoding order) derived for adjacent macroblocks as the input and the variable
Intra8x8PredMode[luma8x8BlkIdx] as the output.

For each luma block of 8x8 samples indexed using luma8x8Blkldx = 0..3, the following ordered steps are specified:

1. The Intra 8x8 sample prediction process in clause 8.3.2.2 is invoked with luma8x8Blkldx and the array S'p
containing constructed samples prior to the deblocking filter process from adjacent luma blocks as the input and
the output are the Intra_8x8 luma prediction samples pred8x8.[x, y] with x, y =0..7.

2. The position of the upper-left sample of an 8x8 luma block with index luma8x8Blkldx inside the current
macroblock is derived by invoking the inverse 8x8 luma block scanning process in clause 6.4.5 with
luma8x8BlkIdx as the input and the output being assigned to (xO, yO).

3. The values of the prediction samples pred, [xO + x, yO +y | with x, y = 0..7 are derived by
pred [xO +x,yO +y | =pred8x8. [X,y] (8-71)

4. The transform coefficient decoding process and picture construction process prior to deblocking filter process in
clause 8.5 is invoked with pred; and luma8x8BlkIdx as the input and the constructed samples for the current 8x8
luma block S’ as the output.

8.3.2.1 Derivation process for Intra8x8PredMode

Inputs to this process are the index of the 8x8 luma block luma8x8BlkIdx and variable arrays Intra4x4PredMode (if
available) and Intra8x8PredMode (if available) that are previously (in decoding order) derived for adjacent macroblocks.

Output of this process is the variable Intra8x8PredMode[luma8x8BlkIdx].

Table 8-3 specifies the values for Intra8x8PredMode[luma8x8BIlklIdx] and the associated mnemonic names.

Table 8-3 — Specification of Intra8x8PredMode[luma8x8BIlkIdx | and associated names

Intra8x8PredMode[luma8x8BIlkIdx] Name of Intra8x8PredMode[luma8x8BIlkIdx]
0 Intra_8x8 Vertical (prediction mode)
1 Intra_8x8 Horizontal (prediction mode)
2 Intra_8x8 DC (prediction mode)
3 Intra_8x8 Diagonal Down_Left (prediction mode)
4 Intra_8x8 Diagonal Down_Right (prediction mode)
5 Intra_8x8 Vertical Right (prediction mode)
6 Intra_8x8 Horizontal Down (prediction mode)
7 Intra_8x8 Vertical Left (prediction mode)
8 Intra_8x8 Horizontal Up (prediction mode)

Intra8x8PredMode[luma8x8BlklIdx] is derived as specified by the following ordered steps:

1. The process specified in clause 6.4.11.2 is invoked with luma8x8BlkIdx given as input and the output is assigned
to mbAddrA, luma8x8BlkIdxA, mbAddrB, and luma8x8BlkIdxB.

2. The variable dcPredModePredictedFlag is derived as follows:

— Ifany of the following conditions are true, dcPredModePredictedFlag is set equal to 1:

136 Rec. ITU-T H.264 (01/2012)

the macroblock with address mbAddrA is not available,
the macroblock with address mbAddrB is not available,

the macroblock with address mbAddrA is available and coded in an Inter macroblock prediction mode
and constrained _intra pred flag is equal to 1,

the macroblock with address mbAddrB is available and coded in an Inter macroblock prediction mode
and constrained_intra_pred flag is equal to 1.

Otherwise, dcPredModePredictedFlag is set equal to 0.

3. For N being either replaced by A or B, the variables intraMxMPredModeN are derived as follows:

4. Finally,

If dcPredModePredictedFlag is equal to 1 or the macroblock with address mbAddrN is not coded in
Intra_4x4 or Intra_8x8 macroblock prediction mode, intraMxMPredModeN is set equal to 2 (Intra_8x8 DC
prediction mode).

Otherwise (dcPredModePredictedFlag is equal to 0 and (the macroblock with address mbAddrN is coded in
Intra_4x4 macroblock prediction mode or the macroblock with address mbAddrN is coded in Intra 8x8
macroblock prediction mode)), the following applies:

If the macroblock with address mbAddrN is coded in Intra 8x8 macroblock prediction mode,
intraMxMPredModeN is set equal to Intra8x8PredMode[luma8x8BIkIdxN], where Intra8x8PredMode
is the variable array assigned to the macroblock mbAddrN.

Otherwise (the macroblock with address mbAddrN is coded in Intra_4x4 macroblock prediction mode),
intraMxMPredModeN is derived by the following procedure, where Intra4x4PredMode is the variable
array assigned to the macroblock mbAddrN.

intraMxMPredModeN = Intra4x4PredMode[luma8x8BIKIdXN * 4 +n] (8-72)

where the variable n is derived as follows:

— If N is equal to A, depending on the variable MbaffFrameFlag, the variable luma8x8BlkIdx, the
current macroblock, and the macroblock mbAddrN, the following applies:

— If MbaffFrameFlag is equal to 1, the current macroblock is a frame coded macroblock, the
macroblock mbAddrN is a field coded macroblock, and luma8x8Blkldx is equal to 2, n is set
equal to 3.

— Otherwise (MbaffFrameFlag is equal to 0 or the current macroblock is a field coded
macroblock or the macroblock mbAddrN is a frame coded macroblock or luma8x8BIkIdx is
not equal to 2), n is set equal to 1.

— Otherwise (N is equal to B), n is set equal to 2.
given intraMxMPredModeA and intraMxMPredModeB, the variable

Intra8x8PredMode[luma8x8BlklIdx] is derived by applying the following procedure.

8.3.2.2

predIntra8x8PredMode = Min(intraMxMPredModeA, intraMxMPredModeB)
if(prev_intra8x8 pred mode flag[luma8x8BlkIdx])

Intra8x8PredMode[luma8x8BlkIdx] = predIntra8x8PredMode
else

if(rem_intra8x8 pred mode[luma8x8Blkldx | < predIntra8x8PredMode)

(8-73)

Intra8x8PredMode[luma8x8Blkldx | =rem_intra8x8 pred mode[luma8x8BIlkIdx]

else

Intra8x8PredMode[luma8x8Blkldx | =rem_intra8x8 pred mode[luma8x8Blkldx]+ 1

Intra_8x8 sample prediction

This process is invoked for each 8x8 luma block of a macroblock with macroblock prediction mode equal to Intra_8x8
followed by the transform decoding process and picture construction process prior to deblocking for each 8x8 luma
block.

Inputs to this process are:

the index of an 8x8 luma block luma8x8BlkIdx,

an (PicWidthInSamples;)x(PicHeightInSamples;) array ¢S, containing constructed luma samples prior to the
deblocking filter process of neighbouring macroblocks.

Rec. ITU-T H.264 (01/2012) 137

Output of this process are the prediction samples pred8x8;[x, y], with x, y =0..7, for the 8x8 luma block with index
luma8x8BlkIdx.

The position of the upper-left sample of an 8x8 luma block with index luma8x8BlkIdx inside the current macroblock is
derived by invoking the inverse 8x8 luma block scanning process in clause 6.4.5 with luma8x8BIkIdx as the input and
the output being assigned to (xO, yO).

The 25 neighbouring samples p[x, y] that are constructed luma samples prior to the deblocking filter process, with
x=-1,y=-1..7and x =0..15, y = —1, are derived as specified by the following ordered steps:

1. The luma location (xN, yN) is specified by
xN =x0 + x (8-74)
yN=yO+y (8-75)
2. The derivation process for neighbouring locations in clause 6.4.12 is invoked for luma locations with (xN, yN)
as input and mbAddrN and (xW, yW) as output.
3. Eachsample p[x,y] withx=-1,y=—1..7and x =0..15, y = —1 is derived as follows:

— If any of the following conditions are true, the sample p[x, y] is marked as "not available for Intra 8x8
prediction":

— mbAddrN is not available,

— the macroblock mbAddrN is coded in an Inter macroblock prediction mode and
constrained _intra_pred flag is equal to 1.

— Otherwise, the sample p[x,y] is marked as "available for Intra_8x8 prediction" and the sample value
pl x, y] is derived as specified by the following ordered steps:

a. The location of the upper-left luma sample of the macroblock mbAddrN is derived by invoking the
inverse macroblock scanning process in clause 6.4.1 with mbAddrN as the input and the output is
assigned to (xM, yM).

b. Depending on the variable MbaffFrameFlag and the macroblock mbAddrN, the sample value p[x, y]
is derived as follows:

— If MbaffFrameFlag is equal to 1 and the macroblock mbAddrN is a field macroblock,
pl X,y]=cSi[XM +xW, yM + 2 * yW] (8-76)
— Otherwise (MbaffFrameFlag is equal to O or the macroblock mbAddrN is a frame macroblock),
pl X, y]=cS [xM +xW, yM +yW] (8-77)

When samples p[x, —1], with x = 8..15, are marked as "not available for Intra_8x8 prediction," and the sample p[7, —1]
is marked as "available for Intra 8x8 prediction," the sample value of p[7,—1] is substituted for sample values
pl x, —1], with x = 8..15, and samples p[x, —1], with x = 8..15, are marked as "available for Intra_8x8 prediction".

NOTE — Each block is assumed to be constructed into a picture array prior to decoding of the next block.

The reference sample filtering process for Intra_8x8 sample prediction in clause 8.3.2.2.1 is invoked with the samples
plx,y] with x=—1, y=-1..7 and x=0..15, y=—1 (if available) as input and p'[x,y] with x=-1, y=-1..7 and
x =0..15, y =—1 as output.

Depending on Intra8x8PredMode[luma8x8BlkIdx], one of the Intra_8x8 prediction modes specified in clauses 8.3.2.2.2
to 8.3.2.2.10 is invoked.

8.3.2.2.1 Reference sample filtering process for Intra_8x8 sample prediction

Inputs to this process are the reference samples p[x,y | with x=—1, y=-1..7 and x =0..15, y =—1 (if available) for
Intra_8x8 sample prediction.

Outputs of this process are the filtered reference samples p'[x,y] with x=-1, y=-1..7 and x=0..15, y=—1 for
Intra_8x8 sample prediction.

When all samples p[x, —1] with x = 0..15 are marked as "available for Intra_8x8 prediction", the following applies:

1. The value of p/[0, —1] is derived as follows:

138 Rec. ITU-T H.264 (01/2012)

— Ifp[—1, -1]is marked as "available for Intra_8x8 prediction", p'[0, —1] is derived by
pl0,-1]=(p[—-1,-1]+2*p[0,-1]+p[1,-1]+2)>>2 (8-78)
— Otherwise (p[—1, —1] is marked as "not available for Intra_8x8 prediction"), p’[0, —1] is derived by
pl0,-11=(3*p[0,-1]+p[1,-1]+2)>>2 (8-79)
2. The values of p'[X, —1], with x = 1..14, are derived by
plx,—1]=(p[x—1,-1]+2*p[x,—1]+p[x+t],-1]+2)>>2 (8-80)
3. The value of p[15, —1] is derived by
p[15-1]1=(p[14,-1]+3*p[15,-1]+2)>>2 (8-81)

When the sample p[—1,—1] is marked as "available for Intra_8x8 prediction", the value of p'[—1, —1] is derived as
follows:

— If the sample p[0, —1] is marked as "not available for Intra_8x8 prediction" or the sample p[—1, 0 | is marked as
"not available for Intra_8x8 prediction", the following applies:

— Ifthe sample p[0, —1] is marked as "available for Intra_8x8 prediction”, p’[—1, —1] is derived by
pl-L-1]=(3*p[-1,-1]+p[0,-1]+2)>>2 (8-82)

— Otherwise, if the sample p[0, —1] is marked as "not available for Intra 8x8 prediction" and the sample
p[—1, 0] is marked as "available for Intra 8x8 prediction", p'[—1, —1] is derived by

pl-L-1]1=(3*p[-1,-1]+p[-1,0]+2)>>2 (8-83)

— Otherwise (the sample p[0, —1] is marked as "not available for Intra 8x8 prediction" and the sample p[—1, 0]
is marked as "not available for Intra_8x8 prediction"), p’[—1, —1] is set equal to p[—1, —1].

NOTE — When both samples p[0,—1] and p[—1, 0] are marked as "not available for Intra_8x8 prediction", the
derived sample p'[—1, —1] is not used in the intra prediction process.

— Otherwise (the sample p[0, —1] is marked as "available for Intra 8x8 prediction" and the sample p[—1,0] is
marked as "available for Intra_8x8 prediction"), p'[—1, —1] is derived by

pT-1L-1]=(p[0,-1]+2*p[-1,-1]+p[-1,0]+2)>>2 (8-84)
When all samples p[—1, y] with y = 0..7 are marked as "available for Intra 8x8 prediction", the following applies:

1. The value of p'[—1, 0] is derived as follows:
— Ifp[—1,—-1]is marked as "available for Intra_8x8 prediction", p'[—1, 0] is derived by

p[-1,0]1=(p[-1,-1]1+2*p[-1,0]+p[—-1,1]+2)>>2 (8-85)
— Otherwise (p[—1, —1] is marked as "not available for Intra 8x8 prediction"), p'[—1, 0] is derived by
p[-1,0]1=(3*p[-1,0]+p[—1,1]+2)>>2 (8-86)
2. The values of p'[-1,y], with y = 1..6, are derived by
pl-Lyl=(pl-Ly-1]1+2%p[-Ly]+p[-1,y+t1]+2)>>2 (8-87)
3. The value of p'[—1, 7] is derived by
p[-1,71=(p[-1,6]1+3*p[—1,7]+2)>>2 (8-88)
8.3.2.2.2 Specification of Intra_8x8 Vertical prediction mode

This Intra_8x8 prediction mode is invoked when Intra8x8PredMode[luma8x8BlkIdx] is equal to 0.

This mode shall be used only when the samples p[x,—1] with x=0..7 are marked as "available for Intra 8x8
prediction".

Rec. ITU-T H.264 (01/2012) 139

The values of the prediction samples pred8x8;[x, y], with x, y =0..7, are derived by
pred8x8, [x,y]=p'[x,—1], with x, y=0..7 (8-89)

8.3.2.2.3 Specification of Intra_8x8 Horizontal prediction mode
This Intra_8x8 prediction mode is invoked when Intra8x8PredMode[luma8x8BIkIdx] is equal to 1.

This mode shall be used only when the samples p[—1,y], with y=0..7, are marked as "available for Intra 8x8
prediction".

The values of the prediction samples pred8x8,[x, y], with x, y = 0..7, are derived by
pred8x8, [x,y]=p'[-1,y], withx,y=0..7 (8-90)

8.3.2.2.4 Specification of Intra_8x8 DC prediction mode
This Intra_8x8 prediction mode is invoked when Intra8x8PredMode[luma8x8Blkldx] is equal to 2.
The values of the prediction samples pred8x8;[x, y], with x, y =0..7, are derived as follows:

— If all samples p[x,—1], with x=0..7, and p[—1,y], with y=0..7, are marked as "available for Intra 8x8
prediction," the values of the prediction samples pred8x8; [x, y], with x, y = 0..7, are derived by

pred8x8, [x,y]= (27‘413'[x',—1]Jr ip’[—l,y']-i—S) >>4 (8-91)

x'=0 y'=0

— Otherwise, if any samples p[x, —1], with x =0..7, are marked as "not available for Intra 8x8 prediction" and all
samples p[—1,y], with y=0..7, are marked as "available for Intra 8x8 prediction", the values of the prediction
samples pred8x8;[x, y], with x, y = 0..7, are derived by

pred8x8,[x,y]= (27: p[-1']+4)>>3 (8-92)

y'=0

— Otherwise, if any samples p[—1, y], with y=0..7, are marked as "not available for Intra 8x8 prediction" and all
samples p[x, —1], with x =0..7, are marked as "available for Intra 8x8 prediction", the values of the prediction
samples pred8x8,[x, y], with x, y = 0..7, are derived by

pred8x8, [X,y]= (27: p'[x',—1]+4)>>3 (8-93)

x'=0

— Otherwise (some samples p[x, —1], with x =0..7, and some samples p[—1, y], with y=0..7, are marked as "not
available for Intra 8x8 prediction"), the values of the prediction samples pred8x8;[x,y], with x,y=0..7, are
derived by

pred8x8. [X,y] = (1 <<(BitDepthy — 1)) (8-94)
NOTE — An 8x8 luma block can always be predicted using this mode.

8.3.2.2.5 Specification of Intra_8x8 Diagonal Down_Left prediction mode
This Intra_8x8 prediction mode is invoked when Intra8x8PredMode[luma8x8BlkIdx] is equal to 3.

This mode shall be used only when the samples p[x,—1] with x=0..15 are marked as "available for Intra 8x8
prediction".

The values of the prediction samples pred8x8;[x, y], with x, y =0..7, are derived as follows:

— Ifxisequal to7 andy is equal to 7,
pred8x8; [X,y]=(p[14, -1]+3 *p[l5 -1]+2)>>2 (8-95)
— Otherwise (x is not equal to 7 or y is not equal to 7),

predsx8.[x, y 1= (pTx+y,~1 1+2*px+y+1,-1]+p[x+y+2,-1]+2)>>2 (8-96)

140 Rec. ITU-T H.264 (01/2012)

8.3.2.2.6 Specification of Intra_8x8 Diagonal Down_Right prediction mode
This Intra_8x8 prediction mode is invoked when Intra8x8PredMode[luma8x8BIkIdx] is equal to 4.

This mode shall be used only when the samples p[x,—1] with x=0..7 and p[-1,y] with y=—1..7 are marked as
"available for Intra_8x8 prediction".

The values of the prediction samples pred8x8.[x, y], with x, y = 0..7, are derived as follows:

— Ifxis greater than y,

pred8x8 [X,y | =(p[x—y—2,-1]+2*p[x—y—1,-1]+p[x—y,—1]+2)>2 (8-97)
— Otherwise if x is less than y,

pred8x8 [X,y = (p[-1,y—x—2]+2*p[-1l,y—x—1]+p[-1,y—x]+2)>>2 (8-98)
— Otherwise (x is equal to y),

pred8x8. [X,y]=(p[0,-1]+2*p[-1,-1]+p[-1,0]+2)>>2 (8-99)
8.3.2.2.7 Specification of Intra_8x8 Vertical Right prediction mode

This Intra_8x8 prediction mode is invoked when Intra8x8PredMode[luma8x8BIkIdx] is equal to 5.

This mode shall be used only when the samples p[x,—1] with x=0..7 and p[—1,y] with y=—1..7 are marked as
"available for Intra_8x8 prediction".

Let the variable zZVR be set equal to 2 * x —y.
The values of the prediction samples pred8x8, [x, y], with x, y = 0..7, are derived as follows:

— IfzVRisequalto0,2,4,6,8, 10, 12, or 14
preddx8 [X,y]| =(p[x—(y>1)-L-1]+p[x—(y>>1),-1]+1)>>1 (8-100)
— Otherwise, if zZVR isequalto 1, 3,5, 7,9, 11, or 13

pred8x8i[X,y |=(p[x—(y>>1)=2,-1]+2*p[x—(y>1)-1L-1]+
plx—(y>>1),-1]+2)>>2 (8-101)

— Otherwise, if zZVR is equal to —1,

pred8x8. [X,y]=(p[-1,0]+2*p[—-1,-1]+pT0,—-1]+2)>>2 (8-102)
— Otherwise (zVR is equal to =2, =3, =4, =5, =6, or —7),

pred8x8 [X,y |=(p[-1,y—2¥x—1]+2*p[-1,y—2*x—-2]+p[-1l,y—2*x—-3]+2)>>2 (8-103)
8.3.2.2.8 Specification of Intra_8x8 Horizontal Down prediction mode

This Intra_8x8 prediction mode is invoked when Intra8x8PredMode[luma8x8BlkIdx] is equal to 6.

This mode shall be used only when the samples p[x,—1] with x=0..7 and p[-1,y] with y=-1..7 are marked as
"available for Intra_8x8 prediction".

Let the variable zHD be set equal to 2 * y — x.
The values of the prediction samples pred8x8, [x, y], with x, y = 0..7, are derived as follows:

— IfzHDisequalto 0, 2,4,6,8,10, 12, or 14
pred8x8 [X,y]=(p[-1L,y—(x>1)-1]+p[-Ly—-(x>1)]+1)>>1 (8-104)
— Otherwise, if zZHD is equal to 1,3, 5,7,9, 11, or 13

pred8x8 [X,y] =(p[-Ly—(x>1)-2]+2*p[-Ly—(x>1)—-1]+
pl-Ly—(x>>1)]+2)>>2 (8-105)

— Otherwise, if zZHD is equal to —1,

Rec. ITU-T H.264 (01/2012) 141

pred8x8i[x,y] =(pT-10]+2*p[~1,~1]+p[0,-1]+2)>>2 (8-106)
— Otherwise (zHD is equal to —2, =3, —4, =5, =6, —7),
pred8x8 [X,y | =(p[x—2*%y—1,-1]+2*p[x—2%y—2,-1 |+p[x—2*%y—3,-1]+2)>>2 (8-107)

8.3.2.2.9 Specification of Intra_8x8 Vertical Left prediction mode
This Intra_8x8 prediction mode is invoked when Intra8x8PredMode[luma8x8BIkIdx] is equal to 7.

This mode shall be used only when the samples p[x,—1] with x =0..15 are marked as "available for Intra 8x8
prediction".

The values of the prediction samples pred8x8.[x, y], with x, y = 0..7, are derived as follows:
— Ifyisequalto0,2,40r6

pred8x8.[x, y 1= (pTx+(y>>1),~1T+p[x+(y>>1)+1,-1]+1)>>1 (8-108)
— Otherwise (yisequalto 1, 3, 5,7),

pred8x8 [x, y |=(p[x+(y>>1),~1]+2*p[x+(y>1)+1,-1]+
plx+(y>>1)+2,-1]1+2)>>2 (8-109)
8.3.2.2.10 Specification of Intra_8x8 Horizontal Up prediction mode
This Intra_8x8 prediction mode is invoked when Intra8x8PredMode[luma8x8BlkIdx] is equal to 8.

This mode shall be used only when the samples p[—1,y] with y=0..7 are marked as "available for Intra 8x8
prediction".

Let the variable zZHU be set equal to x + 2 * y.
The values of the prediction samples pred8x8.[x, y], with x, y =0..7, are derived as follows:
— IfzHU isequal to 0, 2,4, 6, 8, 10, or 12

pred8x8. [X,y | =(p[-Ly+(x>>1)J+p[-Ly+(x>>1)+1]+1)>>1 (8-110)
— Otherwise, if zHU is equal to 1, 3,5, 7,9, or 11

pred8x8.[x,y | =(p[~-Ly+(x>>1)J+2*p[~-Ly+(x>1)+1]+

PL-Ly+(x>>1)+2]+2)>>2 (8-111)

— Otherwise, if zZHU is equal to 13,

pred8x8.[x,y 1= (p[-1,6]+3 *p[—-1,7]+2)>>2 (8-112)
— Otherwise (zHU is greater than 13),

pred8x8; [x,y |=p[—1,7] (8-113)

8.3.3 Intra_16x16 prediction process for luma samples

This process is invoked when the macroblock prediction mode is equal to Intra 16x16. It specifies how the Intra
prediction luma samples for the current macroblock are derived.

Input to this process is a (PicWidthInSamples;)x(PicHeightInSamples;) array ¢S, containing constructed luma samples
prior to the deblocking filter process of neighbouring macroblocks.

Outputs of this process are Intra prediction luma samples for the current macroblock pred;[x, y].

The 33 neighbouring samples p[x,y | that are constructed luma samples prior to the deblocking filter process, with
x=-1,y=-1..15 and with x =0..15, y = —1, are derived as specified by the following ordered steps:

1. The derivation process for neighbouring locations in clause 6.4.12 is invoked for luma locations with (X, y)
assigned to (XN, yN) as input and mbAddrN and (xW, yW) as output.

2. Eachsample p[x,y | withx =—1,y=—1..15 and with x = 0..15, y = —1 is derived as follows:

142 Rec. ITU-T H.264 (01/2012)

— If any of the following conditions are true, the sample p[x, y] is marked as "not available for Intra 16x16
prediction":

— mbAddrN is not available,

— the macroblock mbAddrN is coded in an Inter macroblock prediction mode and
constrained_intra pred flag is equal to 1,

— the macroblock mbAddrN has mb_type equal to SI and constrained intra_pred flag is equal to 1.

— Otherwise, the sample p[x,y] is marked as "available for Intra 16x16 prediction" and the value of the
sample p[x, y] is derived as specified by the following ordered steps:

a. The location of the upper-left luma sample of the macroblock mbAddrN is derived by invoking the
inverse macroblock scanning process in clause 6.4.1 with mbAddrN as the input and the output is
assigned to (xM, yM).

b. Depending on the variable MbaffFrameFlag and the macroblock mbAddrN, the sample value p[x, y]
is derived as follows:

— If MbaffFrameFlag is equal to 1 and the macroblock mbAddrN is a field macroblock,
pl[X, y]=cSi[XM +xW, yM + 2 * yW] (8-114)
— Otherwise (MbaffFrameFlag is equal to 0 or the macroblock mbAddrN is a frame macroblock),
pl X, y]=cS [xM +xW, yM +yW] (8-115)

Let pred; [x, y] with x, y = 0..15 denote the prediction samples for the 16x16 luma block samples.

Intra_16x16 prediction modes are specified in Table 8-4.

Table 8-4 — Specification of Intral6x16PredMode and associated names

Intral6x16PredMode Name of Intral6x16PredMode
0 Intra_16x16_Vertical (prediction mode)
1 Intra_16x16_Horizontal (prediction mode)
2 Intra_16x16_DC (prediction mode)
3 Intra_16x16_Plane (prediction mode)

Depending on Intral6x16PredMode, one of the Intra 16x16 prediction modes specified in clauses 8.3.3.1 to 8.3.3.4 is
invoked.

8.3.3.1 Specification of Intra_16x16_Vertical prediction mode

This Intra_16x16 prediction mode shall be used only when the samples p[x, —1] with x = 0..15 are marked as "available
for Intra_16x16 prediction".

The values of the prediction samples pred, [x, y], with x, y = 0..15, are derived by
predi[X,y]=p[x,—1], with x, y=0..15 (8-116)

8.3.3.2 Specification of Intra_16x16_Horizontal prediction mode

This Intra_16x16 prediction mode shall be used only when the samples p[—1, y] with y = 0..15 are marked as "available
for Intra_16x16 prediction".

The values of the prediction samples pred; [x, y], with x, y =0..15, are derived by
predi [X,y [=p[—1,y], withx,y=0..15 (8-117)

8.3.3.3 Specification of Intra_16x16_DC prediction mode

This Intra_16x16 prediction mode operates, depending on whether the neighbouring samples are marked as "available
for Intra_16x16 prediction", as follows:

Rec. ITU-T H.264 (01/2012) 143

If all neighbouring samples p[x, —1], with x = 0..15, and p[—1,y], with y = 0..15, are marked as "available for
Intra_16x16 prediction”, the prediction for all luma samples in the macroblock is given by:

15 15
predi[X,y]= (3 plx',—1]+ > pl-1,y]+16) >> 5, with x, y = 0..15 (8-118)

x'=0 ¥'=0

Otherwise, if any of the neighbouring samples p[x,—1], with x = 0..15, are marked as "not available for
Intra_16x16 prediction" and all of the neighbouring samples p[—1, y], with y = 0..15, are marked as "available for
Intra_16x16 prediction", the prediction for all luma samples in the macroblock is given by:

15)
predi [X,y] = (Zp[—l,y’]+8) >> 4, with x, y=0..15 (8-119)

y'=0

Otherwise, if any of the neighbouring samples p[—1,y], with y = 0..15, are marked as "not available for
Intra_16x16 prediction" and all of the neighbouring samples p[x, —1], with x = 0..15, are marked as "available for
Intra_16x16 prediction", the prediction for all luma samples in the macroblock is given by:

15)
predi [X,y | = (Z p[x',—1]+8) >> 4, withx, y =0..15 (8-120)

x'=0

Otherwise (some of the neighbouring samples p[x, —1], with x = 0..15, and some of the neighbouring samples
pl—1,y], with y = 0..15, are marked as "not available for Intra 16x16 prediction"), the prediction for all luma
samples in the macroblock is given by:

predi[x, v]= (1 <<(BitDepthy — 1)), with x, y = 0..15 (8-121)

8.3.3.4 Specification of Intra_16x16_Plane prediction mode

This Intra_16x16 prediction mode shall be used only when the samples p[x, —1 | with x = —1..15 and p[—1, y] with
y =0..15 are marked as "available for Intra_16x16 prediction".

The values of the prediction samples pred, [x, y], with x, y = 0..15, are derived by

pred; [x,y]=Cliply((a+b*(x—=7)+c*(y—7)+16)>>5), withx,y=0..15, (8-122)
where

a=16*(p[—-1,15]+p[15,—-1]) (8-123)

b=(5*H+32)>>6 (8-124)

c=(5*V+32)>>6 (8-125)

and H and V are specified as

8.34

H=Z7:(X‘+1)*(p[8+xt—l]-p[6-X‘,-1]) (8-126)
V=3 (v *(pl-1,8+y']-pl-1,6-y']) (-127)

Intra prediction process for chroma samples

This process is invoked for I and SI macroblock types. It specifies how the Intra prediction chroma samples for the
current macroblock are derived.

Inputs to this process are two (PicWidthInSamplesc)x(PicHeightInSamplesc) arrays cSc, and ¢S, containing constructed
chroma samples prior to the deblocking filter process of neighbouring macroblocks.

Outputs of this process are Intra prediction chroma samples for the current macroblock predcy| X, y] and prede [X, y].

Depending on the value of ChromaArrayType, the following applies:

144

Rec. ITU-T H.264 (01/2012)

— If ChromaArrayType is equal to 3, the Intra prediction chroma samples for the current macroblock predc,[X, y] and
predc,[X, y] are derived using the Intra prediction process for chroma samples with ChromaArrayType equal to 3
as specified in clause 8.3.4.5.

— Otherwise (ChromaArrayType is equal to 1 or 2), the following text specifies the Intra prediction chroma samples
for the current macroblock predcy[X, y] and prede [%,y |.

Both chroma blocks (Cb and Cr) of the macroblock use the same prediction mode. The prediction mode is applied to
each of the chroma blocks separately. The process specified in this clause is invoked for each chroma block. In the
remainder of this clause, chroma block refers to one of the two chroma blocks and the subscript C is used as a
replacement of the subscript Cb or Cr.

The neighbouring samples p[x, y] that are constructed chroma samples prior to the deblocking filter process, with
x =-1,y=-1..MbHeightC — 1 and with x = 0.MbWidthC — 1, y = —1, are derived as specified by the following ordered

steps:

1.

The derivation process for neighbouring locations in clause 6.4.12 is invoked for chroma locations with (x,y)
assigned to (XN, yN) as input and mbAddrN and (xW, yW) as output.

Each sample p[x, y] is derived as follows:

If any of the following conditions are true, the sample p[x, y] is marked as "not available for Intra chroma
prediction":

mbAddrN is not available,

the macroblock mbAddrN is coded in an Inter macroblock prediction mode and
constrained_intra_pred flag is equal to 1,

the macroblock mbAddrN has mb_type equal to SI and constrained intra pred flag is equal to 1 and
the current macroblock does not have mb_type equal to SI.

Otherwise, the sample p[x, y] is marked as "available for Intra chroma prediction" and the value of the
sample p[x, y] is derived as specified by the following ordered steps:

a.

The location of the upper-left luma sample of the macroblock mbAddrN is derived by invoking the
inverse macroblock scanning process in clause 6.4.1 with mbAddrN as the input and the output is
assigned to (xL, yL).

The location (xM, yM) of the upper-left chroma sample of the macroblock mbAddr is derived by:

xM = (xL>>4)* MbWidthC (8-128)
yM = ((yL >> 4)* MbHeightC) + (yL % 2) (8-129)

Depending on the variable MbaffFrameFlag and the macroblock mbAddrN, the sample value p[X,y]
is derived as follows:

— If MbaffFrameFlag is equal to 1 and the macroblock mbAddrN is a field macroblock,
Pl X, y]=cSc[xM +xW, yM + 2 * yW] (8-130)
— Otherwise (MbaffFrameFlag is equal to 0 or the macroblock mbAddrN is a frame macroblock),

p[X,y]=cSc[xM +xW, yM + yW] (8-131)

Let predc[x, y] with x =0..MbWidthC — 1, y = 0..MbHeightC — 1 denote the prediction samples for the chroma block
samples.

Intra chroma prediction modes are specified in Table 8-5.

Rec. ITU-T H.264 (01/2012) 145

Table 8-5 — Specification of Intra chroma prediction modes and associated names

intra_chroma_pred_mode Name of intra_chroma_pred_mode
0 Intra_Chroma_ DC (prediction mode)
1 Intra_Chroma_Horizontal (prediction mode)
2 Intra_Chroma_Vertical (prediction mode)
3 Intra_Chroma_Plane (prediction mode)

Depending on intra_chroma pred_mode, one of the Intra chroma prediction modes specified in clauses 8.3.4.1 to 8.3.4.4
is invoked.

8.3.4.1

Specification of Intra_Chroma_DC prediction mode

This Intra chroma prediction mode is invoked when intra_chroma pred mode is equal to 0.

For each chroma block of 4x4 samples indexed by chroma4x4BlkIdx = 0..(1 << (ChromaArrayType+ 1)) — 1, the
following applies:

146

The position of the upper-left sample of a 4x4 chroma block with index chroma4x4Blkldx inside the current
macroblock is derived by invoking the inverse 4x4 chroma block scanning process in clause 6.4.7 with
chroma4x4Blkldx as the input and the output being assigned to (xO, yO).

Depending on the values of xO and yO, the following applies:

If (xO, yO) is equal to(0, 0) or xO and yO are greater than 0, the values of the prediction samples
predc[x + x0O, y + yO] with x, y = 0..3 are derived as follows:

If all samples p[x +xO, —1], with x =0..3, and p[—1, y +yO], with y = 0..3, are marked as "available for
Intra chroma prediction", the values of the prediction samples predc[x + xO, y + yO], with x, y =0..3,
are derived as:

3 3
pred.[x+x0,y+y0O]= (> plx+x0,—1]+ Y p[-1,y+yOl+ 4J >>3, withx, y=0..3. (8-132)
x'=0

y'=0

Otherwise, if any samples p[x +xO, —1], with x =0..3, are marked as "not available for Intra chroma
prediction" and all samples p[—1,y +yO], with y=0..3, are marked as "available for Intra chroma
prediction", the values of the prediction samples predc[x + xO, y + yO], with x, y = 0..3, are derived as:

3

pred.[x+x0,y+yO]= (Zp[—l, y+yO] +2J >>2, withx,y=0.3. (8-133)
y'=0

Otherwise, if any samples p[—1, y +yO], with y=0..3, are marked as "not available for Intra chroma

prediction" and all samples p[x +xO, —1], with x=0..3, are marked as "available for Intra chroma

prediction", the values of the prediction samples predc[x + xO, y + yO], with x, y = 0..3, are derived as:

3
pred.[x+x0,y+yO] :(Z plx'+x0,-1]+ Zj >>2, withx,y=0.3. (8-134)

x'=0

Otherwise (some samples p[x +xO, —1], with x =0..3, and some samples p[—1, y +yO], with y=0..3,
are marked as "not available for Intra chroma prediction"), the values of the prediction samples
predc[x + x0O, y + yO], with x, y = 0..3, are derived as:

predc[x +x0, v +y0] = (1 <<(BitDepthc — 1)), with x, y = 0..3. (8-135)

Otherwise, if xO is greater than0 and yO is equal to0, the values of the prediction samples
predc[x +x0, y + yO] with x, y = 0..3 are derived as follows:

If all samples p[x +x0O, —1], with x =0..3, are marked as "available for Intra chroma prediction", the
values of the prediction samples predc[x + xO, y + yO], with x, y = 0..3, are derived as:

Rec. ITU-T H.264 (01/2012)

3
pred [x +x0,y+yO] :(Z [x'+x0,— 1+2J>>2 with x,y=0..3. (8-136)

— Otherwise, if all samples p[—1,y+yO], with y=0..3, arc marked as "available for Intra chroma
prediction", the values of the prediction samples predc[x + xO, y + yO], with x, y = 0..3, are derived as:

pred [x+x0,y+yO] [Zp[ly+yO]+2J >>2, withx,y=0.3. (8-137)

y'=0

— Otherwise (some samples p[x +xO, —1], with x =0..3, and some samples p[—1, y +yO], with y=0..3,
are marked as "not available for Intra chroma prediction"), the values of the prediction samples
predc[x + xO, y + yO], with x, y = 0..3, are derived as:

predc[x +x0,y +yO] = (1 << (BitDepthc — 1)), with x, y =0..3. (8-138)
— Otherwise (xO is equal to0 and yO is greater than(0), the values of the prediction samples
predc[x + X0, y + yO] with x, y = 0..3 are derived as follows:

— If all samples p[—1,y +yO], with y=0..3, are marked as "available for Intra chroma prediction", the
values of the prediction samples predc[x +xO, y + yO], with x, y = 0..3, are derived as:

y'=0

pred [x+x0,y+yO] (Zp[1y+yO]+2]>>2 with x, y =0..3. (8-139)

— Otherwise, if all samples p[x +x0O,—1], with x =0..3, are marked as "available for Intra chroma
prediction", the values of the prediction samples predc[x + xO, y + yO], with x, y = 0..3, are derived as:

pred [x +x0,y+yO] (prﬂo 1]+2]>>2 with x, y=0..3. (8-140)

x'=0

— Otherwise (some samples p[x +xO, —1], with x =0..3, and some samples p[—1, y +yO], with y=0..3,
are marked as "not available for Intra chroma prediction"), the values of the prediction samples
predc[x + x0, y + yO], with x, y = 0..3, are derived as:

predc[x +x0, y +yO] = (1 << (BitDepthc — 1)), with x, y = 0..3. (8-141)

8.3.4.2 Specification of Intra_Chroma_Horizontal prediction mode
This Intra chroma prediction mode is invoked when intra_chroma pred mode is equal to 1.

This mode shall be used only when the samples p[—1, y] with y = 0..MbHeightC — 1 are marked as "available for Intra
chroma prediction".

The values of the prediction samples predc[x, y] are derived as:

predc[X,y]=p[—1, y], with x = 0. MbWidthC — 1 and y = 0..MbHeightC — 1 (8-142)

8.3.4.3 Specification of Intra_Chroma_Vertical prediction mode
This Intra chroma prediction mode is invoked when intra_chroma pred mode is equal to 2.

This mode shall be used only when the samples p[x, —1] with x = 0..MbWidthC — 1 are marked as "available for Intra
chroma prediction".

The values of the prediction samples predc[x, y] are derived as:
predc[x, y] =p[x, —1], with x = 0.MbWidthC — 1 and y = 0..MbHeightC — 1 (8-143)
8.3.4.4 Specification of Intra_Chroma_Plane prediction mode

This Intra chroma prediction mode is invoked when intra_chroma pred mode is equal to 3.

This mode shall be used only when the samples p[x,—1], with x = 0.MbWidthC—1 and p[—1,y], with
y =—1..MbHeightC — 1 are marked as "available for Intra chroma prediction".

Rec. ITU-T H.264 (01/2012) 147

Let the variable XCF be set equal to ((ChromaArrayType == 3) ? 4 : 0) and let the variable yCF be set equal to
((ChromaArrayType !=1) ? 4 : 0).

The values of the prediction samples predc[X, y] are derived by:

predc[x,y]=Cliplc((a+b*(x—3—-xCF)+c*(y—-3—-yCF)+16)>>5),

with x = 0..MbWidthC — 1 and y = 0..MbHeightC — 1 (8-144)
where
a=16 * (p[—1, MbHeightC — 1] + p[MbWidthC—1,-117) (8-145)
b=((34—29 * (ChromaArrayType ==3))*H+32)>>6 (8-146)
c=((34—-29 * (ChromaArrayType != 1))*V+32)>>6 (8-147)
and H and V are specified as:
3+ xCF
H= Y (x+1)*(p[4+xCF+x',~1]-p[2 +xCF - x', - 1)) (8-148)
x'=0
3+yCF
V=Y (y+D*(p[-1,4+yCF+y']-p[-1,2+yCF-y']) (8-149)
y'=0

8.3.4.5 Intra prediction for chroma samples with ChromaArrayType equal to 3

This process is invoked when ChromaArrayType is equal to 3. This process is invoked for I and SI macroblock types. It
specifies how the Intra prediction chroma samples for the current macroblock are derived when ChromaArrayType is
equal to 3.

Inputs to this process are constructed samples prior to the deblocking filter process from neighbouring Cb and Cr blocks
and for Intra NxN (where NxN is equal to 4x4 or 8x8) prediction mode, the associated values of IntraNxNPredMode
from neighbouring macroblocks.

Outputs of this process are the Intra prediction samples of the Cb and Cr components of the macroblock or in case of the
Intra NxN prediction process, the outputs are NxN Cb sample arrays as part of the 16x16 Cb array of prediction samples
of the macroblock, and NxN Cb sample arrays as part of the 16x16 Cb array of prediction samples of the macroblock.

Each Cb, Cr, and luma block with the same block index of the macroblock use the same prediction mode. The prediction
mode is applied to each of the Cb and Cr blocks separately. The process specified in this clause is invoked for each Cb
and Cr block.

Depending on the macroblock prediction mode, the following applies:
— If the macroblock prediction mode is equal to Intra_4x4, the following applies:

— The same process described in clause 8.3.1 is also applied to Cb or Cr samples, substituting luma with Cb or
Cr, substituting luma4x4BlkIdx with cb4x4BIkldx or cr4x4BlkIdx, substituting pred4x4; with pred4x4c, or
pred4x4c,, and substituting BitDepthy with BitDepthc.

— The output variable Intra4x4PredMode[luma4x4Blkldx] from the process described in clause 8.3.1.1 is also
used for the 4x4 Cb or 4x4 Cr blocks with index luma4x4BlkIdx equal to index cb4x4Blkldx or cr4x4BlkIdx.

— The process to derive prediction Cb or Cr samples is identical to the process described in clause 8.3.1.2 and its
subsequent subclauses when substituting luma with Cb or Cr, substituting pred4x4; with pred4x4c, or
pred4x4c,, and substituting BitDepthy with BitDepthc.

— Otherwise, if the macroblock prediction mode is equal to Intra_8x8, the following applies:

— The same process described in clause 8.3.2 is also applied to Cb or Cr samples, substituting luma with Cb or
Cr, substituting luma8x8Blkldx with cb8x8Blkldx or cr8x8Blkldx, substituting pred8x8; with pred8x8c, or
pred8x8;, and substituting BitDepthy with BitDepth.

— The output variable Intra8x8PredMode[luma8x8Blkldx] from the process described in clause 8.3.2.1 is used
for the 8x8 Cb or 8x8 Cr blocks with index luma8x8BlkIdx equal to index cb8x8BlklIdx or cr8x8BlkIdx.

148 Rec. ITU-T H.264 (01/2012)

— The process to derive prediction Cb or Cr samples is identical to the process described in clause 8.3.2.2 and its
subsequent subclauses when substituting luma with Cb or Cr, substituting pred8x8; with pred8x8, or
pred8x8c,, and substituting BitDepthy with BitDepthc.

— Otherwise (the macroblock prediction mode is equal to Intra_16x16), the same process described in clause 8.3.3 and
in the subsequent subclauses 8.3.3.1 to 8.3.3.4 is also applied to Cb or Cr samples, substituting luma with Cb or Cr,
substituting pred, with predc, or predc,, and substituting BitDepthy with BitDepthc.

8.3.5 Sample construction process for | PCM macroblocks

This process is invoked when mb_type is equal to I PCM.

The variable dy is derived as follows:

— If MbaffFrameFlag is equal to 1 and the current macroblock is a field macroblock, dy is set equal to 2.

— Otherwise (MbaffFrameFlag is equal to O or the current macroblock is a frame macroblock), dy is set equal to 1.

The position of the upper-left luma sample of the current macroblock is derived by invoking the inverse macroblock
scanning process in clause 6.4.1 with CurrMbAddr as input and the output being assigned to (xP, yP).

The constructed luma samples prior to the deblocking process are generated as specified by:

for(1=0;1<256;it++)
S [xP+(1%16),yP+dy*(i/16))]=pcm sample luma[i] (8-150)

When ChromaArrayType is not equal to 0, the constructed chroma samples prior to the deblocking process are generated
as specified by:

for(1=0; 1 <MbWidthC * MbHeightC; i++) {
S'co[(XP / SubWidthC) + (i % MbWidthC),
((yP + SubHeightC — 1) / SubHeightC) + dy * (i/MbWidthC)] =
pem_sample chroma[i] (8-151)
S'c:[(xP / SubWidthC) + (i % MbWidthC),
((yP + SubHeightC — 1)/ SubHeightC) +dy * (1/MbWidthC)] =
pcm_sample chroma[i + MbWidthC * MbHeightC]

8.4 Inter prediction process
This process is invoked when decoding P and B macroblock types.

Outputs of this process are Inter prediction samples for the current macroblock that are a 16x16 array pred; of luma
samples and when ChromaArrayType is not equal to 0 two (MbWidthC)x(MbHeightC) arrays predc, and predc, of
chroma samples, one for each of the chroma components Cb and Cr.

The partitioning of a macroblock is specified by mb_type. Each macroblock partition is referred to by mbPartldx. When
the macroblock partitioning consists of partitions that are equal to sub-macroblocks, each sub-macroblock can be further
partitioned into sub-macroblock partitions as specified by sub_mb_type[mbPartldx]. Each sub-macroblock partition is
referred to by subMbPartldx. When the macroblock partitioning does not consist of sub-macroblocks, subMbPartldx is
set equal to 0.

The following steps are specified for each macroblock partition or for each sub-macroblock partition.

The functions MbPartWidth(), MbPartHeight(), SubMbPartWidth(), and SubMbPartHeight() describing the width and
height of macroblock partitions and sub-macroblock partitions are specified in Tables 7-13, 7-14, 7-17, and 7-18.

The range of the macroblock partition index mbPartldx is derived as follows:
— Ifmb type is equal to B_Skip or B Direct 16x16, mbPartldx proceeds over values 0..3.

— Otherwise (mb type is not equal to B Skip or B Direct 16x16), mbPartldx proceeds over values
0.NumMbPart(mb_type) — 1.

For each value of mbPartldx, the variables partWidth and partHeight for each macroblock partition or sub-macroblock
partition in the macroblock are derived as follows:

— If mb type is not equal to P_8x8, P_8x8ref0, B_Skip, B Direct 16x16, or B 8x8, subMbPartldx is set equal to 0,
and partWidth and partHeight are derived as:

Rec. ITU-T H.264 (01/2012) 149

partWidth = MbPartWidth(mb_type) (8-152)

partHeight = MbPartHeight(mb_type) (8-153)
Otherwise, if mb type is equal to P 8x8 or P 8x8ref0, or mb type is equal to B 8x8 and
sub_ mb_type[mbPartldx] is not equal to B Direct 8x8, subMbPartldx proceeds over values
0..NumSubMbPart(sub_mb_type[mbPartldx |) — 1, and partWidth and partHeight are derived as:

partWidth = SubMbPartWidth(sub_mb_type[mbPartldx]) (8-154)
partHeight = SubMbPartHeight(sub_mb_type[mbPartldx]). (8-155)
Otherwise (mb _type is equal to B _Skip or B Direct 16x16, or mb type is equal to B 8x8 and

sub_mb_type[mbPartldx] is equal to B_Direct 8x8), subMbPartldx proceeds over values 0..3, and partWidth and
partHeight are derived as:

partWidth = 4 (8-156)

partHeight = 4 (8-157)

When ChromaArrayType is not equal to 0, the variables partWidthC and partHeightC are derived as:

partWidthC = partWidth / SubWidthC (8-158)
partHeightC = partHeight / SubHeightC (8-159)

Let the variable MvCnt be initially set equal to 0 before any invocation of clause 8.4.1 for the macroblock.

The

Inter prediction process for a macroblock partition mbPartldx and a sub-macroblock partition subMbPartldx consists

of the following ordered steps:

1.

150

The derivation process for motion vector components and reference indices as specified in clause 8.4.1 is invoked.
Inputs to this process are:

— amacroblock partition mbPartldx,

— asub-macroblock partition subMbPartIdx.
Outputs of this process are:

— luma motion vectors mvLO0 and mvL1 and when ChromaArrayType is not equal to 0, the chroma motion
vectors mvCLO and mvCL1

— reference indices refldxL0 and refldxL1

prediction list utilization flags predFlagl.0 and predFlagL.1

— the sub-macroblock partition motion vector count subMvCnt.
The variable MvCnt is incremented by subMvChnt.

When (weighted pred flag is equal to 1 and (slice_type % 5) is equal to 0 or 3) or (weighted bipred idc is greater
than 0 and (slice_type % 5) is equal to 1), the derivation process for prediction weights as specified in clause 8.4.3 is
invoked.

Inputs to this process are:
— reference indices refldxL0 and refldxL1

— prediction list utilization flags predFlagl.0 and predFlagL1

Outputs of this process are variables for weighted prediction logWDc, Woc, Wic, Ooc, 01c With C being replaced by L
and, when ChromaArrayType is not equal to 0, Cb and Cr.

The decoding process for Inter prediction samples as specified in clause 8.4.2 is invoked.
Inputs to this process are:

a macroblock partition mbPartldx,

— asub-macroblock partition subMbPartldx,

Rec. ITU-T H.264 (01/2012)

— variables specifying partition width and height for luma and chroma (if available), partWidth, partHeight,
partWidthC (if available), and partHeightC (if available),

— luma motion vectors mvLO and mvL1 and when ChromaArrayType is not equal to 0, the chroma motion
vectors mvCLO0O and mvCL1,

— reference indices refldxL0 and refldxL1,
— prediction list utilization flags predFlagl.0 and predFlagl1,

— variables for weighted prediction logWD¢, Woc, Wic, 0oc, 01c With C being replaced by L and, when
ChromaArrayType is not equal to 0, Cb and Cr.

Outputs of this process are inter prediction samples (pred); which are a (partWidth)x(partHeight) array predPart, of
prediction luma samples and when ChromaArrayType is not equal to 0 two (partWidthC)x(partHeightC) arrays
predPartc,, and predPartc, of prediction chroma samples, one for each of the chroma components Cb and Cr.

For use in derivation processes of variables invoked later in the decoding process, the following assignments are made:

MvLO[mbPartldx][subMbPartldx] = mvL0 (8-160)
MvLI1[mbPartldx][subMbPartldx] = mvL1 (8-161)
RefldxLO[mbPartldx | = refldxL0 (8-162)
RefldxL1[mbPartldx | = refldxL1 (8-163)
PredFlagL.0[mbPartldx | = predFlaglL0 (8-164)
PredFlagl 1[mbPartldx] = predFlagL1 (8-165)

The location of the upper-left sample of the macroblock partition relative to the upper-left sample of the macroblock is
derived by invoking the inverse macroblock partition scanning process as described in clause 6.4.2.1 with mbPartldx as
the input and (xP, yP) as the output.

The location of the upper-left sample of the sub-macroblock partition relative to the upper-left sample of the macroblock
partition is derived by invoking the inverse sub-macroblock partition scanning process as described in clause 6.4.2.2 with
subMbPartldx as the input and (xS, yS) as the output.

The macroblock prediction is formed by placing the macroblock or sub-macroblock partition prediction samples in their
correct relative positions in the macroblock, as follows.

The variable pred; [xP + xS + x, yP + yS +y] with x = 0..partWidth — 1, y = 0..partHeight — 1 is derived by:
pred;[xP + xS +x, yP +yS +y] =predPart [x, y] (8-166)

When ChromaArrayType is not equal to 0, the variable predc with x = 0..partWidthC — 1, y = 0..partHeightC — 1, and C
in predc and predPartc being replaced by Cb or Cr is derived by:

predc[xP / SubWidthC + xS / SubWidthC + x, yP / SubHeightC + yS / SubHeightC + y] = predPart[x, y]
(8-167)
8.4.1 Derivation process for motion vector components and reference indices
Inputs to this process are:
— amacroblock partition mbPartldx,
— asub-macroblock partition subMbPartldx.
Outputs of this process are:

— luma motion vectors mvLO and mvL1 and when ChromaArrayType is not equal to 0, the chroma motion vectors
mvCLO and mvCL1,

— reference indices refldxLLO and refldxL1,
— prediction list utilization flags predFlagl.0 and predFlagL1,

— amotion vector count variable subMvCnt.

Rec. ITU-T H.264 (01/2012) 151

For the derivation of the variables mvL0 and mvL1 as well as refldxL0 and refldxL1, the following applies:

— Ifmb_type is equal to P_Skip, the derivation process for luma motion vectors for skipped macroblocks in P and SP
slices in clause 8.4.1.1 is invoked with the output being the luma motion vectors mvL0 and reference indices
refldxL0, and predFlagL0 is set equal to 1. mvL1 and refldxL1 are marked as not available and predFlagL1 is set
equal to 0. The motion vector count variable subMvCnt is set equal to 1.

— Otherwise, if mb type is equal to B Skip or B Direct 16x16 or sub mb type[mbPartldx | is equal to
B Direct 8x8, the derivation process for luma motion vectors for B_Skip, B Direct 16x16, and B Direct 8x8 in B
slices in clause 8.4.1.2 is invoked with mbPartldx and subMbPartldx as the input and the output being the luma
motion vectors mvL0, mvL1, the reference indices refldxL0, refldxL1, the motion vector count variable subMvCnt,
and the prediction utilization flags predFlagL0 and predFlagL1.

— Otherwise, for X being replaced by either 0 or 1 in the variables predFlagLX, mvLX, refldxLX, and in Pred LX
and in the syntax elements ref idx 1X and mvd_1X, the following applies:

1. The variables refldxLX and predFlagLX are derived as follows:

— If MbPartPredMode(mb_type, mbPartldx) or SubMbPredMode(sub_mb_type[mbPartldx]) is equal
to Pred LX or to BiPred,

refldxLX = ref idx 1X[mbPartldx | (8-168)
predFlagLX =1 (8-169)

— Otherwise, the variables refldxL.X and predFlagl. X are specified by

refldxLX =—1 (8-170)
predFlagLX =0 (8-171)

2. The motion vector count variable subMvCnt is set equal to predFlaglL.0 + predFlagL1.

3. The variable currSubMbType is derived as follows:
— If the macroblock type is equal to B_8x8, currSubMbType is set equal to sub_mb_type[mbPartldx].
— Otherwise (the macroblock type is not equal to B_8x8), currSubMbType is set equal to "na".

4. When predFlagLX is equal to 1, the derivation process for luma motion vector prediction in clause 8.4.1.3 is
invoked with mbPartldx subMbPartldx, refldxLX, and currSubMbType as the inputs and the output being
mvpLX. The luma motion vectors are derived by

mvLX[0]=mvpLX][0]+ mvd_IX[mbPartldx][subMbPartldx][0] (8-172)
mvLX[1] =mvpLX][1]+ mvd_IX[mbPartldx][subMbPartldx][1] (8-173)

When ChromaArrayType is not equal to 0 and predFlagLX (with X being either 0 or 1) is equal to 1, the derivation
process for chroma motion vectors in clause 8.4.1.4 is invoked with mvLX and refldxLX as input and the output being
mvCLX.

8.4.1.1 Derivation process for luma motion vectors for skipped macroblocks in P and SP slices
This process is invoked when mb_type is equal to P_Skip.
Outputs of this process are the motion vector mvLO0 and the reference index refldxLO.

The reference index refldxL0 for a skipped macroblock is derived as:

refldxL0 = 0. (8-174)

For the derivation of the motion vector mvL0 of a P_Skip macroblock type, the following ordered steps are specified:

1. The process specified in clause 8.4.1.3.2 is invoked with mbPartldx set equal to 0, subMbPartldx set equal to 0,
currSubMbType set equal to "na", and listSuffixFlag set equal to 0 as input and the output is assigned to
mbAddrA, mbAddrB, mvLOA, mvLOB, refldxLOA, and refldxLOB.

2. The variable mvLO0 is specified as follows:

— If any of the following conditions are true, both components of the motion vector mvL0 are set equal to 0:

152 Rec. ITU-T H.264 (01/2012)

— mbAddrA is not available,
— mbAddrB is not available,
— refldxLOA is equal to 0 and both components of mvLOA are equal to 0,
— refldxLOB is equal to 0 and both components of mvLOB are equal to 0.

— Otherwise, the derivation process for luma motion vector prediction as specified in clause 8.4.1.3 is
invoked with mbPartldx = 0, subMbPartldx = 0, refldxL.0, and currSubMbType = "na" as inputs and the
output is assigned to mvLO0.

NOTE — The output is directly assigned to mvL0, since the predictor is equal to the actual motion vector.

8.4.1.2 Derivation process for luma motion vectors for B_Skip, B_Direct_16x16, and B_Direct_8x8

This process is invoked when mb_type is equal to B_Skip or B_Direct 16x16, or sub_mb_type[mbPartldx] is equal to
B _Direct 8x8.

Inputs to this process are mbPartldx and subMbPartldx.
Outputs of this process are the reference indices refldxL.0, refldxL1, the motion vectors mvL0O and mvL1, the motion

vector count variable subMvCnt, and the prediction list utilization flags, predFlagl.0 and predFlagL1.

The derivation process depends on the value of direct spatial mv_pred flag, which is present in the bitstream in the
slice header syntax as specified in clause 7.3.3, and is specified as follows:

— If direct_spatial mv_pred flag is equal to 1, the mode in which the outputs of this process are derived is referred to
as spatial direct prediction mode.

— Otherwise (direct spatial mv_pred flag is equal to 0), mode in which the outputs of this process are derived is
referred to as temporal direct prediction mode.

Both spatial and temporal direct prediction mode use the co-located motion vectors and reference indices as specified in
clause 8.4.1.2.1.

The motion vectors and reference indices are derived as follows:

— If spatial direct prediction mode is used, the direct motion vector and reference index prediction mode specified in
clause 8.4.1.2.2 is used, with subMvCnt being an output.

— Otherwise (temporal direct prediction mode is used), the direct motion vector and reference index prediction mode
specified in clause 8.4.1.2.3 is used and the variable subMvCnt is derived as follows:

— If subMbPartldx is equal to 0, subMvCnt is set equal to 2.

— Otherwise (subMbPartldx is not equal to 0), subMvCnt is set equal to 0.
8.4.1.2.1 Derivation process for the co-located 4x4 sub-macroblock partitions
Inputs to this process are mbPartldx and subMbPartldx.

Outputs of this process are the picture colPic, the co-located macroblock mbAddrCol, the motion vector mvCol, the
reference index refldxCol, and the variable vertMvScale (which can be One To One, Frm To Fld or FIld To Frm).

When RefPicListl[0] is a frame or a complementary field pair, let firstRefPicL1Top and firstRefPicL 1Bottom be the
top and bottom fields of RefPicList1[0], respectively, and let the following variables be specified as

topAbsDiffPOC = Abs(DiffPicOrderCnt(firstRefPicL1Top, CurrPic)) (8-175)

bottomAbsDiffPOC = Abs(DiffPicOrderCnt(firstRefPicL1Bottom, CurrPic)) (8-176)

Rec. ITU-T H.264 (01/2012) 153

The variable colPic specifies the picture that contains the co-located macroblock as specified in Table 8-6.

Table 8-6 — Specification of the variable colPic

field pic flag | RefPicListl[0] | mb field decoding flag | additional condition colPic
is ...
a field of a the frame containing
1 decoded frame RefPicList1[0]
a decoded field RefPicList1[0]
a decoded frame RefPicList1[0]
topAbsDiffPOC < .
. bottomAbsDiffPOC firstRefPicL.1Top
0 a topAbsDiffPOC >= .
field pair .
| (CurrMbAddr & 1) == firstRefPicL1Top
(CurrMbAddr & 1) !=0 firstRefPicL1Bottom

NOTE — The picture order count values of a complementary field pair marked as "used for long-term reference" have an impact on
the decoding process when the current picture is a coded frame, the current macroblock is a frame macroblock, and the

complementary field pair marked as "used for long-term reference" is the first picture in reference list 1.

Let PicCodingStruct(X) be a function with the argument X being either CurrPic or colPic. It is specified in Table 8-7.

Table 8-7 — Specification of PicCodingStruct(X)

X is coded with field pic flag equal to ... | mb_adaptive frame field flag | PicCodingStruct(X)
1 FLD
0 0 FRM
0 1 AFRM

The variable luma4x4BlkIdx is derived as follows:
— Ifdirect 8x8 inference flag is equal to 0, luma4x4BIkldx is set equal to (4 * mbPartldx + subMbPartldx).
— Otherwise (direct 8x8 inference flag is equal to 1), luma4x4BIkIdx is set equal to (5 * mbPartldx).

The inverse 4x4 luma block scanning process as specified in clause 6.4.3 is invoked with luma4x4Blkldx as the input
and (x,y) assigned to (xCol, yCol) as the output.

Table 8-8 specifies the co-located macroblock address mbAddrCol, yM, and the variable vertMvScale in two steps:

1. Specification of a macroblock address
PicCodingStruct(colPic).

NOTE - It is not possible for CurrPic and colPic picture coding types to be either (FRM, AFRM) or (AFRM, FRM)
because these picture coding types must be separated by an IDR picture.

mbAddrX depending on PicCodingStruct(CurrPic), and

2. Specification of mbAddrCol, yM, and vertMvScale depending on mb_field decoding flag and the variable
fieldDecodingFlagX, which is derived as follows:

— If the macroblock mbAddrX in the picture colPic is a field macroblock, fieldDecodingFlagX is set equal
to 1.

— Otherwise (the macroblock mbAddrX in the picture colPic is a frame macroblock), fieldDecodingFlagX is
set equal to 0.

Unspecified values in Table 8-8 indicate that the value of the corresponding variable is not relevant for the current table
row.

mbAddrCol is set equal to CurrMbAddr or to one of the following values.

mbAddrColl =2 * PicWidthInMbs * (CurrMbAddr / PicWidthInMbs) +

(CurrMbAddr % PicWidthInMbs) + PicWidthInMbs * (yCol / 8) (8-177)

154 Rec. ITU-T H.264 (01/2012)

mbAddrCol2 = 2 * CurrMbAddr + (yCol / 8)

(8-178)

mbAddrCol3 =2 * CurrMbAddr + bottom_field flag (8-179)
mbAddrCol4 = PicWidthInMbs * (CurrMbAddr / (2 * PicWidthInMbs)) +
(CurrMbAddr % PicWidthInMbs) (8-180)
mbAddrCol5 = CurrMbAddr / 2 (8-181)
mbAddrCol6 =2 * (CurrMbAddr / 2) + ((topAbsDiffPOC < bottomAbsDiffPOC)? 0: 1) (8-182)
mbAddrCol7 =2 * (CurrMbAddr /2)+ (yCol / 8) (8-183)
Table 8-8 — Specification of mbAddrCol, yM, and vertMvScale
2 | -
= 2 o0
| & :
|z)
131 3] = | -
E | £ e . o
n n = | o= =) —
= =] S| @
= 2 <
S | g 25| 2 . 2
A = E HE E =) >
FLD CurrMbAddr |yCol One To One
FRM mbAddrColl [(2* yCol) % 16 Frm To Fld
FLD
0 |mbAddrCol2 |(2 *yCol) % 16 Frm To FId
AFRM | 2*CurrMbAddr
1 |mbAddrCol3 |yCol One To One
* 1 1 0,
FLD mbAddrCol4 E&r) (* (Cuérl\l/I})?ddr / PicWidthInMbs) % 2) FId_To_Frm
FRM CurrMbAddr |yCol One To One
0 mbAddrCol5 |8 * (CurrMbAddr %2) +4 * (yCol/ 8) Fld To Frm
FLD
1 mbAddrCol5 |yCol One To One
0 |CurrMbAddr |yCol One To One
AFRM CurrMbAddr 0
1 |mbAddrCol6 |8 * (CurrMbAddr % 2)+4 * (yCol/8) |Fld To Frm
AFRM
0 |mbAddrCol7 |(2 *yCol) % 16 Frm_To Fld
CurrMbAddr 1
1 |CurrMbAddr |yCol One _To One

Let mbTypeCol be the syntax element mb_type of the macroblock with address mbAddrCol inside the picture colPic
and, when mbTypeCol is equal to P_8x8, P_8x8ref0, or B 8x8, let subMbTypeCol be the syntax element list
sub_mb_type of the macroblock with address mbAddrCol inside the picture colPic.

Let mbPartldxCol be the macroblock partition index of the co-located partition and subMbPartldxCol the
sub-macroblock partition index of the co-located sub-macroblock partition. The derivation process for macroblock and
sub-macroblock partition indices as specified in clause 6.4.13.4 is invoked with the luma location (xCol, yM), the
macroblock type mbTypeCol, and, when mbTypeCol is equal to P_8x8, P_8x8ref0, or B_8x8, the list of sub-macroblock

Rec. ITU-T H.264 (01/2012)

155

types subMbTypeCol as the inputs and the outputs are the macroblock partition index mbPartldxCol and the
sub-macroblock partition index subMbPartIdxCol.

The motion vector mvCol and the reference index refldxCol are derived as follows:
— If the macroblock mbAddrCol is coded in an Intra macroblock prediction mode, both components of mvCol are set
equal to 0 and refldxCol is set equal to —1.

— Otherwise (the macroblock mbAddrCol is not coded in an Intra macroblock prediction mode), the prediction
utilization flags predFlaglL0Col and predFlaglL1Col are set equal to PredFlagLO[mbPartldxCol] and
PredFlagl 1[mbPartldxCol], respectively, which are the prediction utilization flags that have been assigned to the
macroblock partition mbAddrCol\mbPartldxCol inside the picture colPic, and the following applies:

— If predFlagL0Col is equal to 1, the motion vector mvCol and the reference index refldxCol are set equal to
MvLO[mbPartldxCol][subMbPartldxCol] and RefldxL.O[mbPartldxCol], respectively, which are the motion
vector mvLO and the reference index refldxL0 that have been assigned to the (sub-)macroblock partition
mbAddrCol\mbPartIdxCol\subMbPartldxCol inside the picture colPic.

— Otherwise (predFlagl.0Col is equal to 0 and predFlagl.1Col is equal to 1), the motion vector mvCol and the
reference index refldxCol are set equal to MvLI1[mbPartldxCol][subMbPartldxCol] and
RefldxL1[mbPartldxCol], respectively, which are the motion vector mvL1 and the reference index refldxL1
that have been assigned to the (sub-)macroblock partition mbAddrCol\mbPartldxCol\subMbPartldxCol inside
the picture colPic.

8.4.1.2.2 Derivation process for spatial direct luma motion vector and reference index prediction mode

This process is invoked when direct spatial mv_pred_flag is equal to 1 and any of the following conditions are true:
— mb_typeis equal to B_Skip,

— mb_type is equal to B_Direct 16x16,

— sub_mb_type[mbPartldx] is equal to B_Direct 8x8.

Inputs to this process are mbPartldx, subMbPartldx.

Outputs of this process are the reference indices refldxL.0, refldxL1, the motion vectors mvL0O and mvL1, the motion
vector count variable subMvCnt, and the prediction list utilization flags, predFlagl.0 and predFlagL1.

The reference indices refldxLO and refldxLL1 and the variable directZeroPredictionFlag are derived by applying the
following ordered steps.

1. Let the variable currSubMbType be set equal to sub_mb_type[mbPartldx].

2. The process specified in clause 8.4.1.3.2 is invoked with mbPartldx = 0, subMbPartldx = 0, currSubMbType, and
listSuffixFlag = 0 as inputs and the output is assigned to the motion vectors mvLON and the reference indices
refldxLON with N being replaced by A, B, or C.

3. The process specified in clause 8.4.1.3.2 is invoked with mbPartldx = 0, subMbPartldx = 0, currSubMbType, and
listSuffixFlag = 1 as inputs and the output is assigned to the motion vectors mvL1N and the reference indices
refldxL1N with N being replaced by A, B, or C.

NOTE 1 — The motion vectors mvLON, mvL1N and the reference indices refldxLON, refldxL1N are identical for all 4x4
sub-macroblock partitions of a macroblock.

4. The reference indices refldxL0, refldxL1, and directZeroPredictionFlag are derived by:

refldxLLO = MinPositive(refldxLOA, MinPositive(refldxLOB, refldxLOC)) (8-184)

refldxLL1 = MinPositive(refldxL1A, MinPositive(refldxL1B, refldxL1C)) (8-185)

directZeroPredictionFlag = 0 (8-186)
where

Min(x, if x>=0and y>=0
MinPositive(x, y) = n(%y) if x>=0and y (8-187)
Max(x,y) otherwise

5. When both reference indices refldxL0 and refldxL1 are less than 0,

refldxLO =0 (8-188)
refldxL1 =0 (8-189)
directZeroPredictionFlag = 1 (8-190)

156 Rec. ITU-T H.264 (01/2012)

The process specified in clause 8.4.1.2.1 is invoked with mbPartldx, subMbPartldx given as input and the output is
assigned to refldxCol and mvCol.

The variable colZeroFlag is derived as follows:

— Ifall of the following conditions are true, colZeroFlag is set equal to 1:
— RefPicListl[0] is currently marked as "used for short-term reference",
— refldxCol is equal to O,

— both motion vector components mvCol[0] and mvCol[1] lie in the range of —1 to 1 in units specified as
follows:

— If the co-located macroblock is a frame macroblock, the units of mvCol[0] and mvCol[1] are units of
quarter luma frame samples.

— Otherwise (the co-located macroblock is a field macroblock), the units of mvCol[0] and mvCol[1] are
units of quarter luma field samples.

NOTE 2 — For purposes of determining the condition above, the value mvCol[1] is not scaled to use the units of a motion vector
for the current macroblock in cases when the current macroblock is a frame macroblock and the co-located macroblock is a field
macroblock or when the current macroblock is a field macroblock and the co-located macroblock is a frame macroblock. This
aspect differs from the use of mvCol[1] in the temporal direct mode as specified in clause 8.4.1.2.3, which applies scaling to the
motion vector of the co-located macroblock to use the same units as the units of a motion vector for the current macroblock, using
Equation 8-193 or Equation 8-194 in these cases.

— Otherwise, colZeroFlag is set equal to 0.

The motion vectors mvLX (with X being 0 or 1) are derived as follows:

— Ifany of the following conditions are true, both components of the motion vector mvLX are set equal to 0:
— directZeroPredictionFlag is equal to 1,
— refldxLX is less than O,
— refldxLX is equal to 0 and colZeroFlag is equal to 1.

— Otherwise, the process specified in clause 8.4.1.3 is invoked with mbPartldx = 0, subMbPartldx = 0, refldxLX, and
currSubMbType as inputs and the output is assigned to mvLX.

NOTE 3 — The motion vector mvLX returned from clause 8.4.1.3 is identical for all 4x4 sub-macroblock partitions of a
macroblock for which the process is invoked.

The prediction utilization flags predFlagL0 and predFlagL1 are derived as specified using Table 8-9.

Table 8-9 — Assignment of prediction utilization flags

refldxL0 refldxL1 predFlagl.0 predFlagl1
>=0 >=0 1 1
>=0 <0 1 0
<0 >=0 0 1

The variable subMvCnt is derived as follows:
— If subMbPartldx is not equal to 0, subMvCnt is set equal to 0.
— Otherwise (subMbPartldx is equal to 0), subMvCant is set equal to predFlagl.0 + predFLagl 1.

8.4.1.2.3 Derivation process for temporal direct luma motion vector and reference index prediction mode
This process is invoked when direct_spatial mv_pred_flag is equal to 0 and any of the following conditions are true:
— mb_typeis equal to B_Skip,

— mb_typeis equal to B Direct 16x16,

— sub_mb_type[mbPartldx] is equal to B_Direct 8x8.

Inputs to this process are mbPartldx and subMbPartldx.

Rec. ITU-T H.264 (01/2012) 157

Outputs of this process are the motion vectors mvL0O and mvL1, the reference indices refldxL.O and refldxL1, and the
prediction list utilization flags, predFlagL0 and predFlagL1.

The process specified in clause 8.4.1.2.1 is invoked with mbPartldx, subMbPartldx given as input and the output is
assigned to colPic, mbAddrCol, mvCol, refldxCol, and vertMvScale.

The reference indices refldxL0 and refIldxL1 are derived as

refldxL0 = ((refldxCol <0) ? 0 : MapColToListO(refldxCol)) (8-191)
refldxL1 =0 (8-192)

NOTE 1 — If the current macroblock is a field macroblock, refldxL0 and refldxL1 index a list of fields; otherwise (the current
macroblock is a frame macroblock), refldxL0 and refldxL1 index a list of frames or complementary reference field pairs.

Let refPicCol be a frame, a field, or a complementary field pair that was referred by the reference index refldxCol when
decoding the co-located macroblock mbAddrCol inside the picture colPic. The function MapColToList0(refldxCol) is
specified as follows:

— IfvertMvScale is equal to One To One, the following applies:
— Iffield pic flag is equal to 0 and the current macroblock is a field macroblock, the following applies:

— Let refldxLOFrm be the lowest valued reference index in the current reference picture list RefPicList0 that
references the frame or complementary field pair that contains the field refPicCol. RefPicList0 shall
contain a frame or complementary field pair that contains the field refPicCol. The return value of
MapColToList0() is specified as follows:

— If the field referred to by refldxCol has the same parity as the current macroblock,
MapColToListO(refldxCol) returns the reference index (refldxLOFrm << 1).

— Otherwise (the field referred by refldxCol has the opposite parity of the current macroblock),
MapColToListO(refldxCol) returns the reference index ((refldxLOFrm <<1)+1).

— Otherwise (field pic flag is equal to 1 or the current macroblock is a frame macroblock), MapColToListO(
refldxCol) returns the lowest valued reference index refldxL0 in the current reference picture list RefPicList0
that references refPicCol. RefPicList0 shall contain refPicCol.

— Otherwise, if vertMvScale is equal to Frm_To_Fld, the following applies:

— If field pic flag is equal to 0, let refldxLOFrm be the lowest valued reference index in the current reference
picture list RefPicList0 that references refPicCol. MapColToListO(refldxCol) returns the reference index
(refldxLOFrm << 1). RefPicList0 shall contain refPicCol.

— Otherwise (field pic_flag is equal to 1), MapColToListO(refldxCol) returns the lowest valued reference index
refldxLO in the current reference picture list RefPicListO that references the field of refPicCol with the same
parity as the current picture CurrPic. RefPicList0 shall contain the field of refPicCol with the same parity as the
current picture CurrPic.

— Otherwise (vertMvScale is equal to Fld To Frm), MapColToList0O(refldxCol) returns the lowest valued reference
index refldxL0 in the current reference picture list RefPicListO that references the frame or complementary field

pair that contains refPicCol. RefPicListO shall contain a frame or complementary field pair that contains the field
refPicCol.

NOTE 2 — A decoded reference picture that was marked as "used for short-term reference" when it was referenced in
the decoding process of the picture containing the co-located macroblock may have been modified to be marked as
"used for long-term reference" before being used for reference for inter prediction using the direct prediction mode for
the current macroblock.

Depending on the value of vertMvScale the vertical component of mvCol is modified as follows:

— IfvertMvScale is equal to Frm_To_ Fld

mvCol[1 J=mvCol[1]/2 (8-193)
— Otherwise, if vertMvScale is equal to FId To Frm

mvCol[1]=mvCol[1]*2 (8-194)

— Otherwise (vertMvScale is equal to One_To One), mvCol[1] remains unchanged.

The variables currPicOrField, pic0, and picl, are derived as follows:

158 Rec. ITU-T H.264 (01/2012)

— Iffield pic flag is equal to 0 and the current macroblock is a field macroblock, the following applies:
1. currPicOrField is the field of the current picture CurrPic that has the same parity as the current macroblock.
2. picl is the field of RefPicList1[0] that has the same parity as the current macroblock.

3. The variable pic0 is derived as follows:

— IfrefldxLO % 2 is equal to 0, picO is the field of RefPicListO[refldxL0 / 2] that has the same parity as
the current macroblock.

— Otherwise (refldxLL0 % 2 is not equal to 0), pic0 is the field of RefPicList0[refldxL0 /2] that has the
opposite parity of the current macroblock.

— Otherwise (field pic_flag is equal to 1 or the current macroblock is a frame macroblock), currPicOrField is the
current picture CurrPic, picl is the decoded reference picture RefPicListl[O], and picO is the decoded reference
picture RefPicList0[refldxLO].

The two motion vectors mvL0 and mvL1 for each 4x4 sub-macroblock partition of the current macroblock are derived as
follows:

NOTE 3 — It is often the case that many of the 4x4 sub-macroblock partitions share the same motion vectors and
reference pictures. In these cases, temporal direct mode motion compensation can calculate the inter prediction sample
values in larger units than 4x4 luma sample blocks. For example, when direct 8x8 inference flag is equal to 1, at least
each 8x8 luma sample quadrant of the macroblock shares the same motion vectors and reference pictures.

— If the reference index refldxLO refers to a long-term reference picture, or DiffPicOrderCnt(picl, pic0) is equal to 0,
the motion vectors mvL0, mvL1 for the direct mode partition are derived by:

mvL0 = mvCol (8-195)
mvLl =0 (8-196)

— Otherwise, the motion vectors mvL0, mvL1 are derived as scaled versions of the motion vector mvCol of the
co-located sub-macroblock partition as specified below (see Figure 8-2).

tx=(16384+Abs(td/2))/td (8-197)
DistScaleFactor = Clip3(-1024, 1023, (tb * tx +32)>>6) (8-198)
mvL0 = (DistScaleFactor * mvCol + 128) >> 8 (8-199)
mvL1 =mvL0 — mvCol (8-200)

where tb and td are derived as:
tb = Clip3(-128, 127, DiffPicOrderCnt(currPicOrField, pic0)) (8-201)
td = Clip3(-128, 127, DiffPicOrderCnt(picl, pic0)) (8-202)

NOTE 4 — mvL0 and mvL1 cannot exceed the ranges specified in Annex A.
The prediction utilization flags predFlaglL.0 and predFlagl1 are both set equal to 1.

Figure 8-2 illustrates the temporal direct-mode motion vector inference when the current picture is temporally between
the reference picture from reference picture list 0 and the reference picture from reference picture list 1.

Rec. ITU-T H.264 (01/2012) 159

List O reference Current B List 1 reference

Co-located partition
mvL0

Direct-mode B partition ¥]*Ll‘]
< td .
- tb R
Time
H.264(09)_F8-2

Figure 8-2 — Example for temporal direct-mode motion vector inference (informative)

8.4.1.3 Derivation process for luma motion vector prediction

Inputs to this process are:

the macroblock partition index mbPartldx,
the sub-macroblock partition index subMbPartldx,
the reference index of the current partition refldxLX (with X being 0 or 1),

the variable currSubMbType.

Output of this process is the prediction mvpLX of the motion vector mvLX (with X being 0 or 1).

The

derivation process for the neighbouring blocks for motion data in clause 8.4.1.3.2 is invoked with mbPartldx,

subMbPartldx, currSubMbType, and listSuffixFlag = X (with X being 0 or 1 for refldxLX being refldxLO or refldxL1,
respectively) as the input and with mbAddrN\mbPartldxN\subMbPartldxN, reference indices refldxLXN and the motion
vectors mvLXN with N being replaced by A, B, or C as the output.

The motion vector predictor mvpLX is derived as follows:

If MbPartWidth(mb_type) is equal to 16, MbPartHeight(mb_type) is equal to 8, mbPartldx is equal to 0, and
refldxLXB is equal to refldxLX, the motion vector predictor mvpLX is derived by:

mvpLX =mvLXB (8-203)

Otherwise, if MbPartWidth(mb_type) is equal to 16, MbPartHeight(mb_type) is equal to 8, mbPartldx is equal
to 1, and refldxLXA is equal to refldxL X, the motion vector predictor mvpLX is derived by:

mvpLX = mvLXA (8-204)

Otherwise, if MbPartWidth(mb_type) is equal to 8, MbPartHeight(mb_type) is equal to 16, mbPartldx is equal
to 0, and refldxLXA is equal to refldxL X, the motion vector predictor mvpLX is derived by:

mvpLX = mvLXA (8-205)

Otherwise, if MbPartWidth(mb_type) is equal to 8, MbPartHeight(mb_type) is equal to 16, mbPartldx is equal
to 1, and refldxLXC is equal to refldxLX, the motion vector predictor mvpLX is derived by:

mvpLX = mvLXC (8-2006)

Otherwise, the derivation process for median luma motion vector prediction in clause 8.4.1.3.1 is invoked with
mbAddrN\mbPartIdxN\subMbPartldxN, mvLXN, refldxLXN with N being replaced by A, B, or C, and refldxLLX as
the inputs and the output is assigned to the motion vector predictor mvpLX.

Figure 8-3 illustrates the non-median prediction as specified in Equations 8-203 to 8-206.

160

Rec. ITU-T H.264 (01/2012)

8*16 16*8

H.264(09) F8-3

Figure 8-3 — Directional segmentation prediction (informative)

8.4.1.3.1 Derivation process for median luma motion vector prediction

Inputs to this process are:

— the neighbouring partitions mbAddrN\mbPartldxN\subMbPartIdxN (with N being replaced by A, B, or C),
— the motion vectors mvLXN (with N being replaced by A, B, or C) of the neighbouring partitions,

— the reference indices refldxL XN (with N being replaced by A, B, or C) of the neighbouring partitions,

— the reference index refldxLLX of the current partition.

Output of this process is the motion vector prediction mvpLX.

The variable mvpLX is derived as specified by the following ordered steps:

1. When both partitions mbAddrB\mbPartIdxB\subMbPartldxB and mbAddrC\mbPartldxC\subMbPartldxC are not
available and mbAddrA\mbPartldxA\subMbPartIdxA is available,

mvLXB = mvLXA (8-207)
mvLXC = mvLXA (8-208)
refldxLXB = refldxLXA (8-209)
refldxLXC = refldxLXA (8-210)

2. Depending on reference indices refldxLXA, refldxLXB, or refldxLXC, the following applies:

— If one and only one of the reference indices refldxLXA, refldxLXB, or refldxLXC is equal to the reference
index refldxLX of the current partition, the following applies. Let refldxLXN be the reference index that is
equal to refldxLX, the motion vector mvLXN is assigned to the motion vector prediction mvpLX:

mvpLX = mvLXN (8-211)

— Otherwise, each component of the motion vector prediction mvpLX is given by the median of the
corresponding vector components of the motion vector mvLXA, mvLXB, and mvLXC:

mvpLX[0] = Median(mvLXA[0], mvLXB[0], mvLXC[0]) (8-212)
mvpLX[1]=Median(mvLXA[1], mvLXB[1], mvLXC[1]) (8-213)

8.4.1.3.2 Derivation process for motion data of neighbouring partitions
Inputs to this process are:

— the macroblock partition index mbPartldx,

— the sub-macroblock partition index subMbPartldx,

— the current sub-macroblock type currSubMbType,

— the list suffix flag listSuffixFlag.

Outputs of this process are (with N being replaced by A, B, or C)

— mbAddrN\mbPartIldxN\subMbPartIldxN specifying neighbouring partitions,

Rec. ITU-T H.264 (01/2012) 161

the motion vectors mvLXN of the neighbouring partitions,

the reference indices refldxLXN of the neighbouring partitions.

Variable names that include the string "LX" are interpreted with the X being equal to listSuffixFlag.

The partitions mbAddrN\mbPartIldxN\subMbPartldxN with N being either A, B, or C are derived in the following
ordered steps:

1. Let mbAddrD\mbPartldxD\subMbPartldxD be variables specifying an additional neighbouring partition.

2. The process in clause 6.4.11.7 is invoked with mbPartldx, currSubMbType, and subMbPartldx as input and the

output is assigned to mbAddrN\mbPartldxN\subMbPartldxN with N being replaced by A, B, C, or D.

3. When the partition mbAddrC\mbPartIldxC\subMbPartIdxC is not available, the following applies:

mbAddrC = mbAddrD (8-214)
mbPartldxC = mbPartldxD (8-215)
subMbPartldxC = subMbPartldxD (8-216)

The motion vectors mvLXN and reference indices refldxLXN (with N being A, B, or C) are derived as follows:

If the macroblock partition or sub-macroblock partition mbAddrN\mbPartldxN\subMbPartIdxN is not available or
mbAddrN is coded in an Intra macroblock prediction mode or predFlagLX = of
mbAddrN\mbPartIdxN\subMbPartIdxN is equal to 0, both components of mvLXN are set equal to 0 and refldxLXN
is set equal to —1.

Otherwise, the following ordered steps are specified:

1. The motion vector mvLXN and reference index refldxLXN are set equal to
MvLX[mbPartldxN][subMbPartldxN] and RefldxL X[mbPartIdxN], respectively, which are the motion
vector mvLX and reference index refldxLX that have been assigned to the (sub-)macroblock partition
mbAddrN\mbPartIdxN\subMbPartIdxN.

2. The variables mvLXN][1] and refldxLXN are further processed as follows:

— If the current macroblock is a field macroblock and the macroblock mbAddrN is a frame macroblock

mvLXN[1]=mvLXN[1]/2 (8-217)

refldxLXN = refldxLXN * 2 (8-218)

— Otherwise, if the current macroblock is a frame macroblock and the macroblock mbAddrN is a field
macroblock

mvLXN[1]=mvLXN[1]*2 (8-219)

refldxLXN = refldxLXN / 2 (8-220)

— Otherwise, the vertical motion vector component mvLXN[1] and the reference index refldxLXN
remain unchanged.

8.4.1.4 Derivation process for chroma motion vectors

This process is only invoked when ChromaArrayType is not equal to 0.

Inputs to this process are a luma motion vector mvLX and a reference index refldxLX.

Output of this process is a chroma motion vector mvCLX.

A chroma motion vector is derived from the corresponding luma motion vector.

The precision of the chroma motion vector components is 1 + (4 * SubWidthC) horizontally and 1 + (4 * SubHeightC)
vertically.

NOTE - For example, when using the 4:2:0 chroma format, since the units of luma motion vectors are one-quarter luma sample
units and chroma has half horizontal and vertical resolution compared to luma, the units of chroma motion vectors are one-eighth
chroma sample units, i.e., a value of 1 for the chroma motion vector refers to a one-eighth chroma sample displacement. For
example, when the luma vector applies to 8x16 luma samples, the corresponding chroma vector in 4:2:0 chroma format applies

162 Rec. ITU-T H.264 (01/2012)

to 4x8 chroma samples and when the luma vector applies to 4x4 luma samples, the corresponding chroma vector in 4:2:0 chroma
format applies to 2x2 chroma samples.

For the derivation of the motion vector mvCLX, the following applies:

— If ChromaArrayType is not equal to 1 or the current macroblock is a frame macroblock, the horizontal and vertical
components of the chroma motion vector mvCLX are derived as:

mvCLX[0]=mvLX[0] (8-221)
mvCLX[1]=mvLX[1] (8-222)

— Otherwise (ChromaArrayType is equal to 1 and the current macroblock is a field macroblock), only the horizontal
component of the chroma motion vector mvCLX][0] is derived using Equation 8-221. The vertical component of
the chroma motion vector mvCLX][1] is dependent on the parity of the current field or the current macroblock and
the reference picture, which is referred by the reference index refldxLX. mvCLX] 1] is derived from mvLX[1]
according to Table 8-10.

Table 8-10 — Derivation of the vertical component of the chroma vector in field coding mode

Parity conditions
mvCLX][1]
Reference picture (refldxLX) Current field (picture/macroblock)
Top field Bottom field mvLX[1]+2
Bottom field Top field mvLX[1]-2
Otherwise mvLX[1]

8.4.2 Decoding process for Inter prediction samples
Inputs to this process are:

— amacroblock partition mbPartldx,

— asub-macroblock partition subMbPartldx,

— variables specifying partition width and height for luma and chroma (if available), partWidth, partHeight,
partWidthC (if available) and partHeightC (if available),

— luma motion vectors mvL0 and mvL1 and when ChromaArrayType is not equal to 0 chroma motion vectors mvCLO
and mvCL1,

— reference indices refldxLLO and refldxL1,
— prediction list utilization flags, predFlagl.0 and predFlagL1,

— variables for weighted prediction logWDc, Wwoc, Wic, Ooc, O;c With C being replaced by L and, when
ChromaArrayType is not equal to 0, Cb and Cr.

Outputs of this process are the Inter prediction samples predPart, which are a (partWidth)x(partHeight) array predPart; of
prediction luma samples, and when ChromaArrayType is not equal to 0 two (partWidthC)x(partHeightC) arrays
predPartcy, predPartc, of prediction chroma samples, one for each of the chroma components Cb and Cr.

Let predPartL0. and predPartL1; be (partWidth)x(partHeight) arrays of predicted luma sample values and when
ChromaArrayType is not equal toO predPartLOc,, predPartllc,, predPartLOc, and predPartLls be
(partWidthC)x(partHeightC) arrays of predicted chroma sample values.

For LX being replaced by either LO or L1 in the variables predFlagLX, RefPicListX, refldxLX, refPicLX, predPartL.X,
the following is specified.

When predFlaglLX is equal to 1, the following applies:

— The reference picture consisting of an ordered two-dimensional array refPicLX; of luma samples and when
ChromaArrayType is not equal to O two ordered two-dimensional arrays refPicLXc, and refPicLX¢, of chroma
samples is derived by invoking the process specified in clause 8.4.2.1 with refldxL.X and RefPicListX given as
input.

Rec. ITU-T H.264 (01/2012) 163

— The array predPartLX; and when ChromaArrayType is not equal to 0 the arrays predPartLXc, and predPartLXc, are
derived by invoking the process specified in clause 8.4.2.2 with the current partition specified by
mbPartldx\subMbPartldx, the motion vectors mvLX, mvCLX (if available), and the reference arrays with
refPicLX, refPicL X, (if available), and refPicL X, (if available) given as input.

For C being replaced by L, Cb (if available), or Cr (if available), the array predPartc of the prediction samples of
component C is derived by invoking the process specified in clause 8.4.2.3 with the current partition specified by
mbPartldx and subMbPartldx, the prediction utilization flags predFlagl.0 and predFlagl1, the arrays predPartLOc and
predPartL 1, and the variables for weighted prediction logWD¢, woc, Wic, Ooc, O1c given as input.

8.4.2.1 Reference picture selection process
Input to this process is a reference index refldxLX.

Output of this process is a reference picture consisting of a two-dimensional array of luma samples refPicLX; and, when
ChromaArrayType is not equal to 0, two two-dimensional arrays of chroma samples refPicL Xy, and refPicLX,.

Depending on field pic flag, the reference picture list RefPicListX (which has been derived as specified in clause 8.2.4)
consists of the following.

— Iffield pic flag is equal to 1, each entry of RefPicListX is a reference field or a field of a reference frame.

— Otherwise (field pic flag is equal to 0), each entry of RefPicListX is a reference frame or a complementary
reference field pair.

For the derivation of the reference picture, the following applies:

— Iffield pic flag is equal to 1, the reference field or field of a reference frame RefPicListX[refldxLX] is the output.
The output reference field or field of a reference frame consists of a (PicWidthInSamples;)x(PicHeightInSamples;)
array of luma samples refPicLX; and, when ChromaArrayType is not equal to0, two
(PicWidthInSamplesc)x(PicHeightInSamplesc) arrays of chroma samples refPicL Xy, and refPicLXc,.

— Otherwise (field_pic_flag is equal to 0), the following applies:

— If the current macroblock is a frame macroblock, the reference frame or complementary reference field pair
RefPicListX[refldxLX] is the output. The output reference frame or complementary reference field pair
consists of a (PicWidthInSamples;)x(PicHeightInSamples;) array of luma samples refPicLX; and, when
ChromaArrayType is not equal to 0, two (PicWidthInSamplesc)x(PicHeightInSamplesc) arrays of chroma
samples refPicL Xy, and refPicLX;.

— Otherwise (the current macroblock is a field macroblock), the following ordered steps are specified:
1. Let refFrame be the reference frame or complementary reference field pair RefPicListX][refldxLX /2].
2. The field of refFrame is selected as follows:

— If refldxLX % 2 is equal to 0, the field of refFrame that has the same parity as the current
macroblock is the output.

— Otherwise (refldxLX % 2 is equal to 1), the field of refFrame that has the opposite parity as the
current macroblock is the output.

3. The output reference field or field of a reference frame consists of a
(PicWidthInSamples;)x(PicHeightInSamples; / 2) array of luma samples refPicLX; and, when
ChromaArrayType is not equal to 0, two (PicWidthInSamplesc)x(PicHeightInSamplesc /2) arrays of
chroma samples refPicLXc, and refPicLXc,.

Depending on separate colour plane flag, the following applies:

— Ifseparate colour plane flag is equal to 0, the reference picture sample arrays refPicL X, refPicLXc, (if available),
and refPicLXc; (if available) correspond to decoded sample arrays S;, Scy, (if available), S¢; (if available) derived in
clause 8.7 for a previously-decoded reference field or reference frame or complementary reference field pair or field
of a reference frame.

— Otherwise (separate_colour plane flag is equal to 1), the following applies:

— If colour plane id is equal to 0, the reference picture sample array refPicLX; corresponds to the decoded
sample array Sp derived in clause 8.7 for a previously-decoded reference field or reference frame or
complementary reference field pair or field of a reference frame.

164 Rec. ITU-T H.264 (01/2012)

— Otherwise, if colour plane id is equal to 1, the reference picture sample array refPicLX; corresponds to the
decoded sample array Sc, derived in clause 8.7 for a previously-decoded reference field or reference frame or
complementary reference field pair or field of a reference frame.

— Otherwise (colour_plane id is equal to 2), the reference picture sample array refPicLX; corresponds to the
decoded sample array Sc, derived in clause 8.7 for a previously-decoded reference field or reference frame or
complementary reference field pair or field of a reference frame.

8.4.2.2 Fractional sample interpolation process

Inputs to this process are:

— the current partition given by its partition index mbPartldx and its sub-macroblock partition index subMbPartldx,
— the width and height partWidth, partHeight of this partition in luma-sample units,

— aluma motion vector mvLX given in quarter-luma-sample units,

— when ChromaArrayType is not equal to0, a chroma motion vector mvCLX with a precision of
one-(4*SubWidthC)-th chroma-sample units horizontally and one-(4*SubHeightC)-th chroma-sample units
vertically,

— the selected reference picture sample arrays refPicLX;, and when ChromaArrayType is not equal to 0, refPicLXcy,
and refPicLX,.

Outputs of this process are:
— a(partWidth)x(partHeight) array predPartL.X; of prediction luma sample values,

— when ChromaArrayType is not equal to 0, two (partWidthC)x(partHeightC) arrays predPartL Xy, and predPartL. X,
of prediction chroma sample values.

Let (xAL, yAL) be the location given in full-sample units of the upper-left luma sample of the current partition given by
mbPartldx\subMbPartldx relative to the upper-left luma sample location of the given two-dimensional array of luma
samples.

Let (xInt,,yInt,) be a luma location given in full-sample units and (xFracy, yFrac;) be an offset given in
quarter-sample units. These variables are used only inside this clause for specifying general fractional-sample locations
inside the reference sample arrays refPicLX, refPicL X, (if available), and refPicLX(, (if available).

For each luma sample location (0 <=x < partWidth, 0 <=y, < partHeight) inside the prediction luma sample array
predPartLX;, the corresponding prediction luma sample value predPartLX;[x;,y.] is derived as specified by the
following ordered steps:

1. The variables xInt;, yInt; , xFrac;, and yFrac; are derived by:

xIntp =xAp + (mvLX[0]>>2)+x (8-223)
yinty =yAL+(mvLX[1]>>2)+yL (8-224)
xFracp, =mvLX[0] &3 (8-225)
yFrac, =mvLX[1] &3 (8-226)

2. The prediction luma sample value predPartLX;[x;,y.] is derived by invoking the process specified in
clause 8.4.2.2.1 with (xInt;, yInt;), (xFracy, yFrac,) and refPicLX| given as input.

When ChromaArrayType is not equal to 0, the following applies.

Let (xIntc, yIntc) be a chroma location given in full-sample units and (xFracc, yFracc) be an offset given in
one-(4*SubWidthC)-th chroma-sample units horizontally and one-(4*SubHeightC)-th chroma-sample units vertically.
These variables are used only inside this clause for specifying general fractional-sample locations inside the reference
sample arrays refPicL. Xy, and refPicLX,.

For each chroma sample location (0 <= x¢ < partWidthC, 0 <=y < partHeightC) inside the prediction chroma sample
arrays predPartL. X, and predPartLXc,, the corresponding prediction chroma sample values predPartLXc,[Xc, yc] and
predPartLXc,[Xc, yc] are derived as specified by the following ordered steps:

1. Depending on ChromaArrayType, the variables xIntc, yIntc, xFracc, and yFracc are derived as follows:

— If ChromaArrayType is equal to 1,

Rec. ITU-T H.264 (01/2012) 165

xIntc = (XA / SubWidthC) + (mvCLX[0] >>3) + x¢ (8-227)

yIntc = (yAr / SubHeightC) + (mvCLX[1]>>3) +yc (8-228)
xFracc =mvCLX[0] & 7 (8-229)
yFracc=mvCLX[1] & 7 (8-230)

— Otherwise, if ChromaArrayType is equal to 2,

xIntc = (xAr / SubWidthC) + (mvCLX[0]>>3) + x¢ (8-231)
yIntc = (yAL / SubHeightC) + (mvCLX[1]>>2) +yc (8-232)
xFracc =mvCLX[0] & 7 (8-233)
yFracc=(mvCLX[1] & 3)<<1 (8-234)

— Otherwise (ChromaArrayType is equal to 3),

xIntc =xAp +(mvLX[0]>>2)+x¢ (8-235)
yintc=yApL + (mvLX[1]>>2)+yc (8-236)
xFracc=(mvCX[0]&3) (8-237)
yFracc=(mvCX[1]&3) (8-238)

2. Depending on ChromaArrayType, the following applies:
— If ChromaArrayType is not equal to 3, the following applies:

— The prediction sample value predPartLXcy[Xc, yc] is derived by invoking the process specified in
clause 8.4.2.2.2 with (xIntc, yIntc), (xFracc, yFracc) and refPicLX¢, given as input.

— The prediction sample value predPartLXc,[Xc yc] is derived by invoking the process specified in
clause 8.4.2.2.2 with (xIntc, yIntc), (xFracc, yFracc) and refPicLX¢, given as input.

— Otherwise (ChromaArrayType is equal to 3), the following applies:

— The prediction sample value predPartLXcy[Xc, yc] is derived by invoking the process specified in
clause 8.4.2.2.1 with (xIntc, yIntc), (xFracc, yFracc) and refPicLX¢, given as input.

— The prediction sample value predPartLXc,[Xc, yc] is derived by invoking the process specified in
clause 8.4.2.2.1 with (xIntc, yIntc), (xFracc, yFracc) and refPicL X, given as input.

8.4.2.2.1 Luma sample interpolation process

Inputs to this process are:

— aluma location in full-sample units (xInt;, yInt;),

— aluma location offset in fractional-sample units (xFrac;, yFrac,),
— the luma sample array of the selected reference picture refPicLX.

Output of this process is a predicted luma sample value predPartLX; [x;, y |.

166 Rec. ITU-T H.264 (01/2012)

cC

F [|

]

]

= & E

]

]

GabcH‘
d flg
hii|j k| m]
niplqlr
M S N

E B E

]

]

]

Figure 8-4 — Integer samples (shaded blocks with upper-case letters) and fractional sample positions (un-shaded
blocks with lower-case letters) for quarter sample luma interpolation

The variable refPicHeightEffective;, which is the height of the effective reference picture luma array, is derived as

follows:

— If MbaffFrameFlag is equal to 0 or mb_field decoding flag is equal to 0, refPicHeightEffective, is set equal to
PicHeightInSamples; .

— Otherwise (MbaffFrameFlag is equal to 1 and mb_field decoding_ flag is equal to 1), refPicHeightEffective, is set
equal to PicHeightInSamples; / 2.

In Figure 8-4, the positions labelled with upper-case letters within shaded blocks represent luma samples at full-sample
locations inside the given two-dimensional array refPicLX; of luma samples. These samples may be used for generating
the predicted luma sample value predPartLX;[x;, yr]. The locations (xZ, yZ;) for each of the corresponding luma
samples Z, where Z may be A, B,C,D,E,F,G,H, L J, K, L, M, N, P, Q, R, S, T, or U, inside the given array refPicLXg
of luma samples are derived as:

xZy, = Clip3(0, PicWidthInSamples; — 1, xInt, + xDZ;) (8-239)
yZy = Clip3(0, refPicHeightEffective; — 1, yInt; + yDZ;) (8-240)
Table 8-11 specifies (xDZ;, yDZ;) for different replacements of Z.
Table 8-11 — Differential full-sample luma locations
Z A |B |C |D |E |F |G |H |I J K |L N Q T |U
xDZ; | 0 1 1 -2 1-11]0 1 2 |3 |2]-1 1 3 1
yDZ, | 2|2 |-1|-1]0 [0 |O JO |O |O 1 1 1 1 3 13

Given the luma samples 'A' to 'U' at full-sample locations (XA, yAr) to (xUr, yUr), the luma samples 'a' to's' at
fractional sample positions are derived by the following rules. The luma prediction values at half sample positions are
derived by applying a 6-tap filter with tap values (1, =5, 20, 20, =5, 1). The luma prediction values at quarter sample

Rec. ITU-T H.264 (01/2012)

167

positions are derived by averaging samples at full and half sample positions. The process for each fractional position is
described below.

— The samples at half sample positions labelled b are derived by first calculating intermediate values denoted as b, by
applying the 6-tap filter to the nearest integer position samples in the horizontal direction. The samples at half
sample positions labelled h are derived by first calculating intermediate values denoted as h; by applying the 6-tap
filter to the nearest integer position samples in the vertical direction:

bi=(E-5*F+20*G+20*H-5*I+7J) (8-241)
hi=(A—-5*C+20*G+20*M—-5*R+T) (8-242)

The final prediction values b and h are derived using

b=Cliply((b, +16)>>5) (8-243)
h=Cliply((h +16)>>5) (8-244)

— The samples at half sample position labelled as j are derived by first calculating intermediate value denoted as j; by
applying the 6-tap filter to the intermediate values of the closest half sample positions in either the horizontal or
vertical direction because these yield an equal result:

ji=cc—5*dd+20*h; +20 *m; — 5 * ee + ff, or (8-245)
ji=aa—5*bb+20*b; +20*s; —5*gg+hh (8-246)

where intermediate values denoted as aa, bb, gg, s; and hh are derived by applying the 6-tap filter horizontally in the
same manner as the derivation of b, and intermediate values denoted as cc, dd, ee, m; and ff are derived by applying
the 6-tap filter vertically in the same manner as the derivation of h;. The final prediction value j are derived using

j=Cliply((j; +512)>>10) (8-247)

— The final prediction values s and m are derived from s; and m; in the same manner as the derivation of b and h, as
given by

s =Cliply((s; +16)>>5) (8-248)

m=Cliply((m; +16)>>5) (8-249)

— The samples at quarter sample positions labelled as a, ¢, d, n, f, i, k, and q are derived by averaging with upward
rounding of the two nearest samples at integer and half sample positions using

a=(G+b+1)>>1 (8-250)
c=(H+b+1)>>1 (8-251)
d=(G+h+1)>>1 (8-252)
n=(M+h+1)>>1 (8-253)
f=(b+j+1)>>1 (8-254)
i=(h+j+1)>>1 (8-255)
k=(j+m+1)>>1 (8-256)
q=(j+s+1)>>1 (8-257)

— The samples at quarter sample positions labelled as e, g, p, and r are derived by averaging with upward rounding of
the two nearest samples at half sample positions in the diagonal direction using

e=(b+h+1)>>1 (8-258)
g=(b+m+1)>>1 (8-259)
p=(h+s+1)>>1 (8-260)
r=(m+s+1)>>1. (8-261)

The luma location offset in fractional-sample units (xFrac, yFracy) specifies which of the generated luma samples at
full-sample and fractional-sample locations is assigned to the predicted luma sample value predPartLX;[x;, yp]. This
assignment is done according to Table 8-12. The value of predPartLX [x;, y.] is the output.

168 Rec. ITU-T H.264 (01/2012)

Table 8-12 — Assignment of the luma prediction sample predPartLX, [xi, yi |

xFracy 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3

yFracp 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

predPartLX [x;,y.] | G d h n a e i p b f j q c g k r

8.4.2.2.2 Chroma sample interpolation process

This process is only invoked when ChromaArrayType is equal to 1 or 2.

Inputs to this process are:

— achroma location in full-sample units (xIntc, ylntc),

— achroma location offset in fractional-sample units (xFracc, yFracc),

— chroma component samples from the selected reference picture refPicL.Xc.
Output of this process is a predicted chroma sample value predPartLX([xc, yc].

In Figure 8-5, the positions labelled with A, B, C, and D represent chroma samples at full-sample locations inside the
given two-dimensional array refPicLXc of chroma samples.

H.264(09)_F8-5

Figure 8-5 — Fractional sample position dependent variables in chroma interpolation and surrounding integer
position samples A, B, C, and D

The variable refPicHeightEffectivec, which is the height of the effective reference picture chroma array, is derived as
follows:

— If MbaffFrameFlag is equal to 0 or mb_field decoding flag is equal to 0, refPicHeightEffectivec is set equal to
PicHeightInSamplesc.

— Otherwise (MbaffFrameFlag is equal to 1 and mb_field decoding_flag is equal to 1), refPicHeightEffectivec is set
equal to PicHeightInSamplesc / 2.

The sample coordinates specified in Equations 8-262 through 8-269 are used for generating the predicted chroma sample
value predPartLX¢[xc, yc |-

xAc = Clip3(0, PicWidthInSamplesc — 1, xIntc) (8-262)
xBc = Clip3(0, PicWidthInSamplesc — 1, xIntc + 1)) (8-263)
xCc = Clip3(0, PicWidthInSamplesc — 1, xIntc) (8-264)
xD¢ = Clip3(0, PicWidthInSamplesc — 1, xIntc + 1) (8-265)
yAc = Clip3(0, refPicHeightEffectivec — 1, yIntc) (8-266)
yBc = Clip3(0, refPicHeightEffectivec — 1, yIntc) (8-267)
yCc = Clip3(0, refPicHeightEffectivec — 1, yIntc + 1) (8-268)
yDc = Clip3(0, refPicHeightEffectivec — 1, ylntc + 1) (8-269)

Rec. ITU-T H.264 (01/2012) 169

Given the chroma samples A, B, C, and D at full-sample locations specified in Equations 8-262 through 8-269, the
predicted chroma sample value predPartL X[Xc, yc | is derived as:

predPartLX [x¢, yc] = ((8 — xFracc) * (8 — yFracc) * A + xFrace * (8 — yFracc) * B +
(8 —xFracc) * yFracc * C + xFracc * yFracc * D +32)>>6 (8-270)

8.4.2.3 Weighted sample prediction process

Inputs to this process are:

mbPartldx: the current partition given by the partition index,
— subMbPartldx: the sub-macroblock partition index,
— predFlagl0 and predFlagL1: prediction list utilization flags,

— predPartLX;: a (partWidth)x(partHeight) array of prediction luma samples (with LX being replaced by LO or L1
depending on predFlagl0 and predFlagl1),

— when ChromaArrayType is not equal to 0, predPartLXc, and predPartLXc,: (partWidthC)x(partHeightC) arrays of
prediction chroma samples, one for each of the chroma components Cb and Cr (with LX being replaced by LO or L1
depending on predFlagl0 and predFlagl1),

— variables for weighted prediction logWDc, Woc, Wic, 0oc, 01c With C being replaced by L and, when
ChromaArrayType is not equal to 0, Cb and Cr.

Outputs of this process are:
— predPart: a (partWidth)x(partHeight) array of prediction luma samples,

— when ChromaArrayType is not equal to 0, predPartc,, and predPartc: (partWidthC)x(partHeightC) arrays of
prediction chroma samples, one for each of the chroma components Cb and Cr.

For macroblocks or partitions with predFlagl.0 equal to 1 in P and SP slices, the following applies:

— If weighted pred flag is equal to 0, the default weighted sample prediction process as described in clause 8.4.2.3.1
is invoked with the same inputs and outputs as the process described in this clause.

— Otherwise (weighted pred flag is equal to 1), the explicit weighted sample prediction process as described in
clause 8.4.2.3.2 is invoked with the same inputs and outputs as the process described in this clause.

For macroblocks or partitions with predFlagl.0 or predFlagl.1 equal to 1 in B slices, the following applies:

— Ifweighted bipred idc is equal to 0, the default weighted sample prediction process as described in clause 8.4.2.3.1
is invoked with the same inputs and outputs as the process described in this clause.

— Otherwise, if weighted bipred idc is equal to 1, the explicit weighted sample prediction process as described in
clause 8.4.2.3.2 is invoked with the same inputs and outputs as the process described in this clause.

— Otherwise (weighted bipred idc is equal to 2), the following applies:

— If predFlagLO is equal to 1 and predFlagl1 is equal to 1, the implicit weighted sample prediction process as
described in clause 8.4.2.3.2 is invoked with the same inputs and outputs as the process described in this
clause.

— Otherwise (predFlaglL0 or predFlagl1 are equal to 1 but not both), the default weighted sample prediction
process as described in clause 8.4.2.3.1 is invoked with the same inputs and outputs as the process described in
this clause.

8.4.2.3.1 Default weighted sample prediction process

Input to this process are the same as specified in clause 8.4.2.3.

Output of this process are the same as specified in clause 8.4.2.3.

Depending on the available component for which the prediction block is derived, the following applies:

— If the luma sample prediction values predPart; [x, y] are derived, the following applies with C set equal to L, x set
equal to 0..partWidth — 1, and y set equal to 0..partHeight — 1.

— Otherwise, if the chroma Cb component sample prediction values predPartey| X, y | are derived, the following
applies with C set equal to Cb, x set equal to 0..partWidthC — 1, and y set equal to 0..partHeightC — 1.

170 Rec. ITU-T H.264 (01/2012)

— Otherwise (the chroma Cr component sample prediction values predPartc,[x, y] are derived), the following applies
with C set equal to Cr, x set equal to 0..partWidthC — 1, and y set equal to 0..partHeightC — 1.

The prediction sample values are derived as follows:

— IfpredFlagl0 is equal to 1 and predFlagL1 is equal to 0,

predPart([x, y] = predPartLO[x, y] (8-271)

— Otherwise, if predFlagL0 is equal to 0 and predFlagL1 is equal to 1,

predPartc[x, y]= predPartL1[X, y] (8-272)

— Otherwise (predFlaglL0 and predFlagl.1 are equal to 1),

predPart[x, y] = (predPartLOc[x, y] + predPartL1c[x,y]+ 1) >> 1. (8-273)

8.4.2.3.2 Weighted sample prediction process

Inputs to this process are the same as specified in clause 8.4.2.3.

Outputs of this process are the same as specified in clause 8.4.2.3.

Depending on the available component for which the prediction block is derived, the following applies:

— If the luma sample prediction values predPart; [x, y] are derived, the following applies with C set equal to L, x set
equal to 0..partWidth — 1, y set equal to 0..partHeight — 1, and Clip1() being substituted with Clip1y().

— Otherwise, if the chroma Cb component sample prediction values predPartc,[X,y] are derived, the following
applies with C set equal to Cb, x set equal to 0..partWidthC — 1, y set equal to 0..partHeightC — 1, and Clip1() being
substituted with Cliplc().

— Otherwise (the chroma Cr component sample prediction values predPartc,[x, y] are derived), the following applies
with C set equal to Cr, x set equal to 0..partWidthC — 1, y set equal to 0..partHeightC — 1, and Clipl() being
substituted with Clip1¢().

The prediction sample values are derived as follows:

— If the predFlagl0 is equal to 1 and predFlagL1 is equal to 0, the final predicted sample values predPartc[x, y | are
derived by

if(logWDc>=1)
predPartc[x, y] = Clipl(((predPartLOc[X,y] * woc + 2'°VPc ™) >> logWD¢) + 0gc)

else (8-274)
predPartc[x, y] = Clip1(predPartLO¢[X, y] * Woc + 0oc)

— Otherwise, if the predFlagl0O is equal to 0 and predFlagll is equal to 1, the final predicted sample values
predPartc[x, y | are derived by

if(logWDc>=1)
predPartc[x, y 1= Clip1(((predPartL1c[X,y] * wic +2°¥VPc™ 1) >> JogWD¢) + 01¢)

else (8-275)
predPartc[x, y] = Clipl(predPartL1c[x,y] * wic + 0c)

— Otherwise (both predFlagl.0 and predFlagl1 are equal to 1), the final predicted sample values predPartc[x, y] are
derived by

predPartc[x, y] = Clipl(((predPartLOc[X, y] * woc + predPartL1c[x, y] * wyc + 2'°¢VPc) >>
(logWDc¢ + 1))+ ((0oc to1c+1)>>1)) (8-276)
8.4.3 Derivation process for prediction weights
Inputs to this process are:
— the reference indices refldxL0 and refldxL1,

— the prediction utilization flags predFlagl.0 and predFlagL1.

Rec. ITU-T H.264 (01/2012) 171

Outputs of this process are variables for weighted prediction logWD¢, Woc, Wic, 0gc, 01c With C being replaced by L and,
when ChromaArrayType is not equal to 0, Cb and Cr.

The variables implicitModeFlag and explicitModeFlag are derived as follows:

— If weighted bipred idc is equal to 2, (slice type % 5) is equal to 1, predFlagl0O is equal to 1, and predFlagL1 is
equal to 1, implicitModeFlag is set equal to 1 and explicitModeFlag is set equal to 0.

— Otherwise, if weighted bipred idc is equal to 1, (slice type % 5) is equal to 1, and predFlagl0 + predFlagl1 is
equal to 1 or 2, implicitModeFlag is set equal to 0 and explicitModeFlag is set equal to 1.

— Otherwise, if weighted pred flag is equal to 1, (slice _type % 5) is equal to 0 or 3, and predFlagL0 is equal to 1,
implicitModeFlag is set equal to 0 and explicitModeFlag is set equal to 1.

— Otherwise, implicitModeFlag is set equal to 0 and explicitModeFlag is set equal to 0.

For C being replaced by L and, when ChromaArrayType is not equal to 0, Cb and Cr, the variables logWD¢, woc, Wic,
0oc, 0;c are derived as follows:

— IfimplicitModeFlag is equal to 1, implicit mode weighted prediction is used as follows:

logWD¢ =5 (8-277)
0oc =0 (8-278)
01c=0 (8-279)

and wyc and wc are derived as specified in the following ordered steps:

1. The variables currPicOrField, pic0, and picl are derived as follows:
— Iffield pic_flag is equal to 0 and the current macroblock is a field macroblock, the following applies:

a. currPicOrField is the field of the current picture CurrPic that has the same parity as the current
macroblock.

b. The variable picO is derived as follows:

— IfrefldxL0 % 2 is equal to 0, picO is the field of RefPicListO[refldxL0 /2] that has the same
parity as the current macroblock.

— Otherwise (refldxL0 % 2 is not equal to 0), picO is the field of RefPicList0[refldxL0 /2] that
has the opposite parity of the current macroblock.

c. The variable picl is derived as follows:

— IfrefldxL1 % 2 is equal to 0, picl is the field of RefPicList1[refldxL1 /2] that has the same
parity as the current macroblock.

— Otherwise (refldxL1 % 2 is not equal to 0), picl is the field of RefPicList1[refldxL1 /2] that
has the opposite parity of the current macroblock.

— Otherwise (field pic_flag is equal to 1 or the current macroblock is a frame macroblock), currPicOrField
is the current picture CurrPic, picl is RefPicList1[refldxL1], and picO is RefPicListO[refIldxLO0].

2. The variables wyc and w;c are derived as follows:

— If DiffPicOrderCnt(picl, picO) is equal to 0 or one or both of picl and picO is marked as "used for
long-term reference" or (DistScaleFactor >>2) <—64 or (DistScaleFactor >> 2) > 128, wyc and wc
are derived as:

Woc = 32 (8-280)
Wic =32 (8-281)
— Otherwise, the variables tb, td, tx, and DistScaleFactor are derived from the values of currPicOrField,

pic0, and picl using Equations 8-201, 8-202, 8-197, and 8-198, respectively, and the weights wyc and
wc are derived as

woc = 64 — (DistScaleFactor >> 2) (8-282)

wic = DistScaleFactor >> 2 (8-283)

172 Rec. ITU-T H.264 (01/2012)

Otherwise, if explicitModeFlag is equal to 1, explicit mode weighted prediction is used as specified by the following
ordered steps:

1. The variables refldXLOWP and refldxL1 WP are derived as follows:

— If MbaffFrameFlag is equal to 1 and the current macroblock is a field macroblock

refldxLOWP = refldxL0 >> 1 (8-284)
refldxL1WP = refldxL1 >> 1 (8-285)

— Otherwise (MbaffFrameFlag is equal to 0 or the current macroblock is a frame macroblock),

refldxLOWP = refldxL0 (8-286)
refldxL1WP = refldxL1 (8-287)

2. The variables logWDc, woc, Wic, 0oc, and o;¢ are derived as follows:

— IfCisequal to L for luma samples

logWD¢ = luma_log2 weight denom (8-288)
woc = luma_weight 10[refldxLOWP] (8-289)
wic = luma_weight 11[refldxL1WP] (8-290)
0oc = luma_offset 10[refldxLOWP] * (1 << (BitDepthy —8)) (8-291)
0ic = luma_offset 11 refldxL1WP] * (1 << (BitDepthy —8)) (8-292)

— Otherwise (C is equal to Cb or Cr for chroma samples, with iCbCr = 0 for Cb, iCbCr = 1 for Cr),

logWDc = chroma log2 weight denom (8-293)
woc = chroma_weight 10[refldxLOWP][iCbCr] (8-294)
wic = chroma_weight 11[refldxL1WP][iCbCr] (8-295)
0gc = chroma_offset 10[refldXxLOWP][iCbCr | * (1 << (BitDepthc —8)) (8-296)
0ic = chroma_offset 11[refldxL1WP][iCbCr] * (1 << (BitDepthc —8)) (8-297)

Otherwise (implicitModeFlag is equal to 0 and explicitModeFlag is equal to 0), the variables logWDc, wWqc, Wic, Ooc,
0;c are not used in the reconstruction process for the current macroblock.

When explicitModeFlag is equal to 1 and predFlagl0 and predFlagl1 are equal to 1, the following constraint shall be
obeyed for C equal to L and, when ChromaArrayType is not equal to 0, Cb and Cr:

8.5

—128 <= woc + Wic <= ((logWD¢ == 7)?127: 128) (8-298)

NOTE - For implicitModeFlag equal to 1, weights woc and w;c are each guaranteed to be in the range of —64..128 and the
constraint expressed in Equation 8-298, although not explicitly imposed, will always be met. For explicitModeFlag equal to 1 with
logWD¢ equal to 7, when one of the two weights wyc or w)c is inferred to be equal to 128 (as a consequence of
luma_weight 10 flag, luma weight 11 _flag, chroma weight 10 flag, or chroma weight 11 _flag equal to 0), the other weight (wc
or wyoc) must have a negative value in order for the constraint expressed in Equation 8-298 to hold (and therefore the other flag
luma_weight 10 flag, luma weight 11 _flag, chroma_weight 10 flag, or chroma weight 11 _flag must be equal to 1).

Transform coefficient decoding process and picture construction process prior to deblocking
filter process

Inputs to this process are Intral 6x16DCLevel (if available), Intral6x16ACLevel (if available), CbIntral 6x16DCLevel (if
available), CbIntral6x16ACLevel (if available), Crintral6x16DCLevel (if available), Crintral6x16ACLevel (if
available), LumaLevel4x4 (if available), LumaLevel8x8 (if available), ChromaDCLevel (if available), ChromaACLevel
(if available), CbLeveldx4 (if available), CrLeveldx4 (if available), CbLevel8x8 (if available), CrLevel8x8 (if available),

Rec. ITU-T H.264 (01/2012) 173

and available Inter or Intra prediction sample arrays for the current macroblock for the applicable components pred;,
predcy, or predc;.
NOTE 1 — When decoding a macroblock in Intra 4x4 (or Intra_8x8) macroblock prediction mode, the luma component of the
macroblock prediction array may not be complete, since for each 4x4 (or 8x8) luma block, the Intra_4x4 (or Intra_8x8) prediction
process for luma samples as specified in clause 8.3.1 (or 8.3.2) and the process specified in this clause are iterated. When
ChromaArrayType is equal to 3, the Cb and Cr component of the macroblock prediction array may not be complete for the same
reason.

Outputs of this process are the constructed sample arrays prior to the deblocking filter process for the applicable
components S't, S'cy, or S'c;.
NOTE 2 — When decoding a macroblock in Intra 4x4 (or Intra_8x8) macroblock prediction mode, the luma component of the
macroblock constructed sample arrays prior to the deblocking filter process may not be complete, since for each 4x4 (or 8x8) luma
block, the Intra 4x4 (or Intra_8x8) prediction process for luma samples as specified in clause 8.3.1 (or 8.3.2) and the process
specified in this clause are iterated. When ChromaArrayType is equal to 3, the Cb and Cr component of the macroblock
constructed sample arrays prior to the deblocking filter process may not be complete for the same reason.

This clause specifies transform coefficient decoding and picture construction prior to the deblocking filter process.

When the current macroblock is coded as P_Skip or B_Skip, all values of LumaLevel4x4, LumalLevel8x8, CbLevel4x4,
CbLevel8x8, CrLeveldx4, CrLevel8x8, ChromaDCLevel, ChromaACLevel are set equal to 0 for the current macroblock.

8.5.1 Specification of transform decoding process for 4x4 luma residual blocks
This specification applies when transform_size 8x8 flag is equal to 0.

When the current macroblock prediction mode is not equal to Intra_16x16, the variable Lumalevel4x4 contains the
levels for the luma transform coefficients. For a 4x4 luma block indexed by luma4x4Blkldx =0..15, the following
ordered steps are specified:

1. The inverse scanning process for 4x4 transform coefficients and scaling lists as specified in clause 8.5.6 is
invoked with LumaLevel4x4[luma4x4BlkIdx] as the input and the two-dimensional array c as the output.

2. The scaling and transformation process for residual 4x4 blocks as specified in clause 8.5.12 is invoked with c as
the input and r as the output.

3. When TransformBypassModeFlag is equal to 1, the macroblock prediction mode is equal to Intra 4x4, and
Intra4x4PredMode[luma4x4BlkIdx] is equal to O or 1, the intra residual transform-bypass decoding process as
specified in clause 8.5.15 is invoked with nW set equal to4, nH set equal to4, horPredFlag set equal to
Intra4x4PredMode[luma4x4Blkldx], and the 4x4 array r as the inputs, and the output is a modified version of
the 4x4 array r.

4. The position of the upper-left sample of a 4x4 luma block with index luma4x4BlklIdx inside the macroblock is
derived by invoking the inverse 4x4 luma block scanning process in clause 6.4.3 with luma4x4Blkldx as the input
and the output being assigned to (xO, yO).

5. The 4x4 array u with elements u;; for i, j = 0..3 is derived as:
u;j = Cliply(pred [XO +j,yO +i] +13) (8-299)
When TransformBypassModeFlag is equal to 1, the bitstream shall not contain data that result in a value of uj; as
computed by Equation 8-299 that is not equal to pred,[XO +j, yO +1i] + 1.

6. The picture construction process prior to deblocking filter process in clause 8.5.14 is invoked with u and
luma4x4BIkldx as the inputs.

8.5.2 Specification of transform decoding process for luma samples of Intra_16x16 macroblock prediction
mode

When the current macroblock prediction mode is equal to Intra 16x16, the variables Intral6x16DCLevel and
Intral6x16ACLevel contain the levels for the luma transform coefficients. The transform coefficient decoding proceeds
in the following ordered steps:

1. The 4x4 luma DC transform coefficients of all 4x4 luma blocks of the macroblock are decoded.

a. The inverse scanning process for 4x4 transform coefficients and scaling lists as specified in clause 8.5.6 is
invoked with Intral6x16DCLevel as the input and the two-dimensional array c as the output.

b. The scaling and transformation process for luma DC transform coefficients for Intra_16x16 macroblock type
as specified in subclause 8.5.10 is invoked with BitDepthy, QP'y, and c as the input and dcY as the output.

174 Rec. ITU-T H.264 (01/2012)

2. The 16x16 array rMb is derived by processing the 4x4 luma blocks indexed by luma4x4BlkIdx = 0..15, and for
each 4x4 luma block, the following ordered steps are specified:

a. The variable lumaList, which is a list of 16 entries, is derived. The first entry of lumaList is the
corresponding value from the array dcY. Figure 8-6 shows the assignment of the indices of the array dcY to
the luma4x4BlkIdx. The two numbers in the small squares refer to indices i and j in dcY;, and the numbers
in large squares refer to luma4x4BIkIdx.

00 01 02 03

0 1 4 5
10 11 12 13

2 3 6 7
20 ﬂ ﬂ 23

8 9 12 13
30 ﬂ| ﬂ 33

10 11 14 15

H.264(09)_F8-6

Figure 8-6 — Assignment of the indices of dcY to luma4x4BlkIdx

The elements in lumaList with index k = 1..15 are specified as:

lumaList[k] = Intral6x 16 ACLevel[luma4x4BIkIdx][k — 1] (8-300)

b. The inverse scanning process for 4x4 transform coefficients and scaling lists as specified in clause 8.5.6 is
invoked with lumaList as the input and the two-dimensional array c as the output.

c. The scaling and transformation process for residual 4x4 blocks as specified in clause 8.5.12 is invoked with
c as the input and r as the output.

d. The position of the upper-left sample of a 4x4 luma block with index luma4x4BIklIdx inside the macroblock
is derived by invoking the inverse 4x4 luma block scanning process in clause 6.4.3 with luma4x4BlkIdx as
the input and the output being assigned to (xO, yO).

e. The elements rMDb][x, y | of the 16x16 array rtMb with x =x0..xO + 3 and y = yO..yO + 3 are derived by
Mb[xO +j,yO +i]=r; (8-301)

3. When TransformBypassModeFlag is equal to 1 and Intral6x16PredMode is equal to 0 or 1, the intra residual
transform-bypass decoding process as specified in clause 8.5.15 is invoked with nW set equal to 16, nH set equal
to 16, horPredFlag set equal to Intral6x16PredMode, and the 16x16 array rMb as the inputs, and the output is a
modified version of the 16x16 array rMb.

4. The 16x16 array u with elements u;; for i, j = 0..15 is derived as
u; = Cliply(predi[j, i]+ tMb[j,1]) (8-302)

When TransformBypassModeFlag is equal to 1, the bitstream shall not contain data that result in a value of u;j as
computed by Equation 8-302 that is not equal to pred,[j, 1]+ rMb[j, 1].

5. The picture construction process prior to deblocking filter process in clause 8.5.14 is invoked with u as the input.
8.5.3 Specification of transform decoding process for 8x8 luma residual blocks
This specification applies when transform_size 8x8 flag is equal to 1.

The variable Lumalevel8x8[luma8x8Blkldx] with luma8x8Blkldx = 0..3 contains the levels for the luma transform
coefficients for the luma 8x8 block with index luma8x8BlkIdx.

For an 8x8 luma block indexed by luma8x8BlkIdx = 0..3, the following ordered steps are specified:

Rec. ITU-T H.264 (01/2012) 175

1. The inverse scanning process for 8x8 transform coefficients and scaling lists as specified in clause 8.5.7 is
invoked with LumaLevel8x8[luma8x8Blkldx] as the input and the two-dimensional array c as the output.

2. The scaling and transformation process for residual 8x8 blocks as specified in clause 8.5.13 is invoked with c as
the input and r as the output.

3. When TransformBypassModeFlag is equal to 1, the macroblock prediction mode is equal to Intra 8x8, and
Intra8x8PredMode[luma8x8BlkIdx] is equal to 0 or 1, the intra residual transform-bypass decoding process as
specified in clause 8.5.15 is invoked with nW set equal to 8, nH set equal to 8, horPredFlag set equal to
Intra8x8PredMode[luma8x8Blkldx], and the 8x8 array r as the inputs, and the output is a modified version of
the 8x8 array r.

4. The position of the upper-left sample of an 8x8 luma block with index luma8x8BlkIdx inside the macroblock is
derived by invoking the inverse 8x8 luma block scanning process in clause 6.4.5 with luma8x8BlkIdx as the input
and the output being assigned to (xO, yO).

5. The 8x8 array u with elements u;; for i, j = 0..7 is derived as:
u;j = Cliply(pred, [XO +j,yO +i] +1y) (8-303)
When TransformBypassModeFlag is equal to 1, the bitstream shall not contain data that result in a value of u;j as
computed by Equation 8-303 that is not equal to pred; [xO +j, yO +i] + 1.

6. The picture construction process prior to deblocking filter process in clause 8.5.14 is invoked with u and
luma8x8BIkIdx as the inputs.

8.5.4 Specification of transform decoding process for chroma samples
This process is invoked for each chroma component Cb and Cr separately when ChromaArrayType is not equal to 0.
Depending on ChromaArrayType, the following applies:

— If ChromaArrayType is equal to 3, the transform decoding process for chroma samples with ChromaArrayType
equal to 3 as specified in clause 8.5.5 is invoked.

— Otherwise (ChromaArrayType is not equal to 3), the following text specifies the transform decoding process for
chroma samples.

For each chroma component, the variables ChromaDCLevel[iCbCr] and ChromaACLevel[iCbCr], with iCbCr set
equal to 0 for Cb and iCbCr set equal to 1 for Cr, contain the levels for both components of the chroma transform
coefficients.

Let the variable numChroma4x4Blks be set equal to (MbWidthC / 4) * (MbHeightC / 4).
For each chroma component, the transform decoding proceeds separately in the following ordered steps:

1. The numChroma4x4Blks chroma DC transform coefficients of the 4x4 chroma blocks of the component indexed
by iCbCr of the macroblock are decoded as specified in the following ordered steps:

a. Depending on the variable ChromaArrayType, the following applies:

— If ChromaArrayType is equal to 1, the 2x2 array c is derived using the inverse raster scanning
process applied to ChromaDCLevel as follows:

ChromaDCLevel[iCbCr][0] ChromaDCLevel[iCbCr][1]} (8-304)

Cc=
ChromaDCLevel[iCbCr][2] ChromaDCLevel[iCbCr][3]

— Otherwise (ChromaArrayType is equal to 2), the 2x4 array c is derived using the inverse raster
scanning process applied to ChromaDCLevel as follows:

ChromaDCLevel[iCbCr][0] ChromaDCLevel[iCbCr][2]

o ChromaDCLevel[iCbCr][1] ChromaDCLevel[iCbCr][5] (8-305)
ChromaDCLevel[iCbCr][3] ChromaDCLevel[iCbCr][6]
ChromaDCLevel[iCbCr][4] ChromaDCLevel[iCbCr][7]

b. The scaling and transformation process for chroma DC transform coefficients as specified in clause 8.5.11
is invoked with c as the input and dcC as the output.

176 Rec. ITU-T H.264 (01/2012)

2. The (MbWidthC)x(MbHeightC) array rMb is derived by processing the 4x4 chroma blocks indexed by
chroma4x4Blkldx = 0..numChroma4x4Blks — 1 of the component indexed by iCbCr, and for each 4x4 chroma
block, the following ordered steps are specified:

a.

The variable chromaList, which is a list of 16 entries, is derived. The first entry of chromaList is the
corresponding value from the array dcC. Figure 8-7 shows the assignment of the indices of the array dcC to
the chroma4x4Blkldx. The two numbers in the small squares refer to indices i and j in dcC;, and the
numbers in large squares refer to chroma4x4BlkIdx.

ol]
0 1
M|
2 3
00 01 M ﬂ
0 1 4 5
10 11 ﬂ ﬂ
2 3 6 7
H.264(09)_F8-7
a b

Figure 8-7 — Assignment of the indices of dcC to chroma4x4BlkIdx:
(a) ChromaArrayType equal to 1, (b) ChromaArrayType equal to 2

The elements in chromaList with index k = 1..15 are specified as:

chromaList[k] = ChromaACLevel[chroma4x4Blkldx [k— 1] (8-300)
The inverse scanning process for 4x4 transform coefficients and scaling lists as specified in clause 8.5.6 is
invoked with chromaList as the input and the two-dimensional array c as the output.

The scaling and transformation process for residual 4x4 blocks as specified in clause 8.5.12 is invoked with
¢ as the input and r as the output.

The position of the upper-left sample of a 4x4 chroma block with index chroma4x4Blkldx inside the
current macroblock is derived by invoking the inverse 4x4 chroma block scanning process as specified in
clause 6.4.7 with chroma4x4BlklIdx as the input and the output being assigned to (xO, yO).

The elements r™Mb[x,y] of the (MbWidthC)x(MbHeightC) array rMb with x =x0..xO+3 and
y =y0..yO + 3 are derived by:

rMb[xO +j,yO +i]=r; (8-307)

3. When TransformBypassModeFlag is equal to 1, the macroblock prediction mode is equal to Intra_4x4, Intra_8x8,
or Intra_16x16, and intra_chroma pred mode is equal to 1 or 2, the intra residual transform-bypass decoding
process as specified in clause 8.5.15 is invoked with nW set equal to MbWidthC, nH set equal to MbHeightC,
horPredFlag set equal to (2 — intra_chroma pred mode), and the (MbWidthC)x(MbHeightC) array rMb as the
inputs, and the output is a modified version of the (MbWidthC)x(MbHeightC) array rMb.

4. The (MbWidthC)x(MbHeightC) array u with elements u;; for i = 0..MbHeightC — 1 and j = 0. MbWidthC — 1 is
derived as:
u; = Cliple(predc[j, 1] +1Mb[j,1]) (8-308)

When TransformBypassModeFlag is equal to 1, the bitstream shall not contain data that result in a value of uj; as
computed by Equation 8-308 that is not equal to predc[j, 1]+ rMb[j,i].

5. The picture construction process prior to deblocking filter process in clause 8.5.14 is invoked with u as the input.

Rec. ITU-T H.264 (01/2012) 177

8.5.5 Specification of transform decoding process for chroma samples with ChromaArrayType equal to 3
This process is invoked for each chroma component Cb and Cr separately when ChromaArrayType is equal to 3.
Depending on the macroblock prediction mode and transform_size 8x8 flag, the following applies:

— If the macroblock prediction mode is equal to Intra_16x16, the transform decoding process for Cb or Cr residual
blocks shall be identical to the process described in clause 8.5.2 when substituting luma with Cb or Cr, substituting
Intral6x16DCLevel with Cblntral6x16DCLevel or Crintral6x16DCLevel, substituting Intral6x16ACLevel with
CbIntral6x16ACLevel or Crintral6x16ACLevel, and substituting pred; with prede, or prede, substituting
luma4x4Blkldx with cb4x4Blkldx or cr4x4Blkldx, substituting lumaList with CbList or CrList, substituting
BitDepthy with BitDepthc, substituting QP’y with QP’¢, and substituting Cliply with Cliplc. During the scaling of
4x4 block transform coefficient levels that is specified in clause 8.5.12.1, which is invoked as part of the process
specified in clause 8.5.2, the input 4x4 array c is treated as relating to a luma residual block coded using an
Intra_16x16 macroblock prediction mode.

— Otherwise, if transform_size 8x8 flag is equal to 1, the transform decoding process for 8x8 Cb or 8x8 Cr residual
blocks shall be identical to the process described in clause 8.5.3 when substituting luma with Cb or Cr, substituting
LumaLevel8x8 with CbLevel8x8 or CrLevel8x8, substituting pred, with predc, or predc, substituting
luma8x8BlklIdx with cb8x8BIkldx or cr8x8Blkldx, and substituting Cliply with Cliplc.

— Otherwise (the macroblock prediction mode is not equal to Intra 16x16 and transform_size 8x8 flag is equal to 0),
the transform decoding process for 4x4 Cb or 4x4 Cr residual blocks shall be identical to the process described in
clause 8.5.1 when substituting luma with Cb or Cr, substituting LumaLevel4x4 with CbLevel4x4 or CrLeveldx4,
substituting pred; with predc, or predc,, substituting luma4x4Blkldx with cb4x4Blkldx or cr4x4Blkldx, and
substituting Cliply with Cliplc. During the scaling of 4x4 block transform coefficient levels that is specified in
clause 8.5.12.1, which is invoked as part of the process specified in clause 8.5.1, the input 4x4 array c is treated as
relating to a luma residual block not coded using an Intra_16x16 macroblock prediction mode.

8.5.6 Inverse scanning process for 4x4 transform coefficients and scaling lists
Input to this process is a list of 16 values.

Output of this process is a variable ¢ containing a two-dimensional array of 4x4 values. In the case of transform
coefficients, these 4x4 values represent levels assigned to locations in the transform block. In the case of applying the
inverse scanning process to a scaling list, the output variable ¢ contains a two-dimensional array representing a 4x4
scaling matrix.

When this clause is invoked with a list of transform coefficient levels as the input, the sequence of transform coefficient
levels is mapped to the transform coefficient level positions. Table 8-13 specifies the two mappings: inverse zig-zag scan
and inverse field scan. The inverse zig-zag scan is used for transform coefficients in frame macroblocks and the inverse
field scan is used for transform coefficients in field macroblocks.

When this clause is invoked with a scaling list as the input, the sequence of scaling list entries is mapped to the positions
in the corresponding scaling matrix. For this mapping, the inverse zig-zag scan is used.

Figure 8-8 illustrates the scans.

0 71 5 76 0 2 8 12

2 4 /7 12 1 5 9 13

/8 11/13 3 6 10 14

9 —» 10 14— 15 4 7 11 15
a b

H.264(09)_F8-8

Figure 8-8 — 4x4 block scans. (a) Zig-zag scan. (b) Field scan (informative)

Table 8-13 provides the mapping from the index idx of input list of 16 elements to indices i and j of the two-dimensional
array c.

178 Rec. ITU-T H.264 (01/2012)

Table 8-13 — Specification of mapping of idx to c;; for zig-zag and field scan

idx 0 1 2 3 4 5 6 7 8 9 (10 |11 |12 |13 |14 | 15
Zig-zag | Coo | Cor | €10 | €20 | €11 | Co2 | Co3 | C12 | €21 | C30 | C31 | Coo | €13 | €23 | €32 | C33
field | coo | Ci0 | Co1 | €20 | €30 | €11 | Ca1 | €31 | Co2 | Ci2 | €22 | €32 | Co3 | Ci3 | €23 | C33

8.5.7

Input to this process is a list of 64 values.

Output of this process is a variable ¢ containing a two-dimensional array of 8x8 values. In the case of transform
coefficients, these 8x8 values represent levels assigned to locations in the transform block. In the case of applying the
inverse scanning process to a scaling list, the output variable ¢ contains a two-dimensional array representing an 8x8

scaling matrix.

When this clause is invoked with a list of transform coefficient levels as the input, the sequence of transform coefficient
levels is mapped to the transform coefficient level positions. Table 8-14 specifies the two mappings: inverse 8x8 zig-zag
scan and inverse 8x8 field scan. The inverse 8x8 zig-zag scan is used for transform coefficient levels in frame

Inverse scanning process for 8x8 transform coefficients and scaling lists

macroblocks and the inverse 8x8 field scan is used for transform coefficient levels in field macroblocks.

When this clause is invoked with a scaling list as the input, the sequence of scaling list entries is mapped to the positions

in the corresponding scaling matrix. For this mapping, the inverse zig-zag scan is used.

Figure 8-9 illustrates the scans.

S e o
AV AP
v / / ./ /6/29/¢
s / / / a
u“/ e / / A
/19/2/ / / S
¢/22/ / / / Ay
AV A R
AR O SR

22 30 38 52

0

*/ ////‘
1 4 14 21 29 37 45 53
v v

2

b

6/13 24 32 40 47 54
VY [y [y
10 17 25 33 41 48 55 61
VIV ALYV e
11 18 26 34 42 49 56 62
7R 7R TR 7R TR T AR T

I

59

60

57 63
H.264(09)_F8-9

Figure 8-9 — 8x8 block scans. (a) 8x8 zig-zag scan. (b) 8x8 field scan (informative)

Table 8-14 provides the mapping from the index idx of the input list of 64 elements to indices i and j of the

two-dimensional array c.

Rec. ITU-T H.264 (01/2012)

179

Table 8-14 — Specification of mapping of idx to c;; for 8x8 zig-zag and 8x8 field scan

idx 0|1]2 |3 |4|5]|]6 |7 |89 |10]11]12|13[14]15

721g-72g Coo | Co1 | €10 [C20 | Ci11 | Co2 | Co3 | C12 | Co1 | C30 | Ca0 | C31 | C22 | Ci3 | Co4 | Cos

field Coo | €10 | €20 | Co1 | €11 | €30 | Ca0 | €21 | Co2 | €31 | €50 | Ce0 | C70 | €41 | C12 | Co3

Table 8-14 (continued) — Specification of mapping of idx to cij for 8x8 zig-zag and 8x8 field scan

idx 16 | 17 |18 [19 | 20 | 21 |22 | 23 |24 |25 |26 |27 |28 293031

Zig-zag | Ci4 | Cp3 | C3p | C41 | Cs0 | Ceo | Cs1 | Cap | €33 | Coa | Ci5 | Cos | Co7 | Ci6 | Cas | C34

field €2 | Cs51 [Ce1 | €71 [C32 | C13 | Coa | €23 | C42 | C52 | C2 | C72 | €33 | C1a | Cos5 | Co4

Table 8-14 (continued) — Specification of mapping of idx to cij for 8x8 zig-zag and 8x8 field scan

idx 32 {33134 |35/36 37383940 |41 |42 |43 |44 45|46 | 47

212-7Ag | C43 | Csp | Co1 | C70 | €71 | Ce2 | Cs3 | Caq | C35 | Co6 | C17 | C27 | C36 | Cas5 | Cs54 | Co3

field C43 | Cs3 | Cg3 | C73 | €34 | Ci5 | Co6 | €25 | Cas | Cs4 | Coa | C74 | C35 | Ci6 | Co6 | Cas

-

able 8-14 (concluded) — Specification of mapping of idx to cij for 8x8 zig-zag and 8x8 field scan

idx 48 | 49 | 50 | 51 | 52 | S3 | 54 |55 |56 | 57 | 58 |59 |60 | 61 | 62 | 63

Zig-zag | C7y | C73 | Ce4 | Css | Cas | C37 | Ca7 | Cs6 | Co5 | C7a | €75 | Ce6 | Cs57 | C67 | C76 | C77

field Css | Ces | C75 | C36 | Co7 | C17 | Ca6 | Cs6 | Co6 | C76 | €27 | C37 | Ca7 | €57 | Co7 | C7

8.5.8 Derivation process for chroma quantisation parameters
Outputs of this process are:
— QP¢: the chroma quantisation parameter for each chroma component Cb and Cr,

— QSc: the additional chroma quantisation parameter for each chroma component Cb and Cr required for decoding SP
and ST slices (if applicable).

NOTE 1 — QP quantisation parameter values QPy and QSy are always in the range of —QpBdOffsety to 51, inclusive. QP
quantisation parameter values QP¢ and QS are always in the range of —QpBdOffsetc to 39, inclusive.

The value of QP for a chroma component is determined from the current value of QPy and the value of
chroma qp_index offset (for Cb) or second chroma qp index offset (for Cr).

NOTE 2 — The scaling equations are specified such that the equivalent transform coefficient level scaling factor doubles for every
increment of 6 in QPy. Thus, there is an increase in the factor used for scaling of approximately 12 % for each increase of 1 in the
value of QPy.

The value of QP for each chroma component is determined as specified in Table 8-15 based on the index denoted as
qu.

The variable qPogr; for each chroma component is derived as follows:

— If the chroma component is the Cb component, qPog is specified as:

qPorrset = chroma_qp_index_offset (8-309)

— Otherwise (the chroma component is the Cr component), qPogr 1S specified as:

qPorrset = second_chroma qp_index offset (8-310)

The value of qP; for each chroma component is derived as:

qP; = Clip3(—QpBdOffsetc, 51, QPy + qPosseer) (8-311)

180 Rec. ITU-T H.264 (01/2012)

The value of QP’¢ for the chroma components is derived as:
QP'c = QPc + QpBdOffsetc (8-312)

Table 8-15 — Specification of QP as a function of qP,

qP; <30 |30 |31 32|33 |34|35|36|37 3839|4041 |42 |43 |44 45|46 |47 48|49 |50]51

QPc | =qP; |29 13031 32132333434 |35|35[36[36|37 373738]38[38[39[39]39]39

When the current slice is an SP or SI slice, QS is derived using the above process, substituting QPy with QSy and QP¢
with QSC

8.5.9 Derivation process for scaling functions

Outputs of this process are:
— LevelScale4x4: the scaling factor for 4x4 block transform luma or chroma coefficient levels,

— LevelScale8x8: the scaling factor for 8x8 block transform luma or chroma coefficient levels.

The variable mblsInterFlag is derived as follows:
— If the current macroblock is coded using Inter macroblock prediction modes, mblsInterFlag is set equal to 1.

— Otherwise (the current macroblock is coded using Intra macroblock prediction modes), mblsInterFlag is set equal
to 0.

The variable iYCbCr derived as follows:
— If separate_colour plane flag is equal to 1, iYCbCr is set equal to colour_plane _id.

— Otherwise (separate_colour plane flag is equal to 0), the following applies:

— If the scaling function LevelScale4x4 or LevelScale8x8 is derived for a luma residual block, iYCbCr is set
equal to 0.

— Otherwise, if the scaling function LevelScale4x4 or LevelScale8x8 is derived for a chroma residual block and
the chroma component is equal to Cb, iYCbCr is set equal to 1.

— Otherwise (the scaling function LevelScale4x4 or LevelScale8x8 is derived for a chroma residual block and the
chroma component is equal to Cr), iYCbCr is set equal to 2.

The inverse scanning process for 4x4 transform coefficients and scaling lists as specified in clause 8.5.6 is invoked with
ScalingList4x4[iYCbCr + ((mblsInterFlag == 1)? 3 :0)] as the input and the output is assigned to the 4x4 matrix
weightScale4x4.

LevelScale4x4(m, i, j) is specified by:

LevelScale4x4(m, i, j) = weightScale4x4(i, j) * normAdjust4x4(m, i,) (8-313)
where
V.o Tfor(i%?2,j%2)equalto(0,0),
normAdjust4x4(m,i,j)={v,, for (i%2,j%2)equalto(1,1), (8-314)
\% otherwise;

m2

where the first and second subscripts of v are row and column indices, respectively, of the matrix specified as:

[10 16 13]
11 18 14
13 20 16
YIlis 23 18| (8-315)
16 25 20
|18 29 23]

Rec. ITU-T H.264 (01/2012) 181

The inverse scanning process for 8x8 transform coefficients and scaling lists as specified in clause 8.5.7 is invoked with
ScalingList8x8[2 * iYCbCr + mblsInterFlag] as the input and the output is assigned to the 8x8 matrix weightScale8x8.

LevelScale8x8(m, i, j) is specified by:

LevelScale8x8(m, i, j) = weightScale8x8(i, j) * normAdjust8x8(m, i,) (8-316)
where
Vo for(i%4,j% 4)equalto (0,0),
v for(i%2,j%2)equalto(1,1),
% for (1% 4, j % 4) equal to (2,2),
normAdjust8x8(m,i,)= | T4 % dequalto@2), (8-317)
V. for(i%4,j% 2)equalto(0,1)or(i% 2,]j% 4) equal to (1,0),
Ve Tor(i%4,j%4)equalto (0,2)or (1% 4, j % 4) equal to (2,0),
v,.s otherwise;

where the first and second subscripts of v are row and column indices, respectively, of the matrix specified as:

(20 18 32 19 25 24]
22 19 35 21 28 26
|26 23 42 24 33 31
VT8 25 45 26 35 33 (8-318)
32 28 51 30 40 38

36 32 58 34 46 43

8.5.10 Scaling and transformation process for DC transform coefficients for Intra_16x16 macroblock type

Inputs to this process are:
— the variables bitDepth and qP,

— transform coefficient level values for DC transform coefficients of Intra_16x16 macroblocks as a 4x4 array ¢ with
elements c;;, where i and j form a two-dimensional frequency index.

Outputs of this process are 16 scaled DC values for 4x4 blocks of Intra_16x16 macroblocks as a 4x4 array dcY with
elements dcY.

Depending on the value of TransformBypassModeFlag, the following applies:
— If TransformBypassModeFlag is equal to 1, the output dcY is derived as:

dCYij = Gjj with 1,_] =0.3 (8-319)

— Otherwise (TransformBypassModeFlag is equal to 0), the following text of this process specifies the output.

The inverse transform for the 4x4 luma DC transform coefficients is specified by:

I 1 1] |cey €y Cp Co3| (1 1 1 1

I -1 -1 o Co Cn 2 O >k1 I -1 —1' (8-320)

1
1
f:
I =1 =1 1| |cy €y Cyp €yl (1 -1 =1 1
1

-1 1 —=1] |c3 €3 €3 cCy| |1 =1 1 -1

The bitstream shall not contain data that result in any element f;; of f with i, j = 0..3 that exceeds the range of integer
values from —207 " PiPePth) o o7+ biDepd) _ 1 Hipelysive.
After the inverse transform, the scaling is performed as follows:

— If gP is greater than or equal to 36, the scaled result is derived as:

deY;; = (fj; * LevelScale4x4(qP % 6,0,0)) <<(qP/6—-6), with i,j=0..3 (8-321)

182 Rec. ITU-T H.264 (01/2012)

— Otherwise (qP is less than 36), the scaled result is derived as:
deY;; = (fj; * LevelScale4x4(qP % 6,0,0)+ (1 <<(5—-qP/6)))>>(6—qP/6), with i,j=0..3 (8-322)

The bitstream shall not contain data that result in any element dcYj; of dcY with i, j = 0..3 that exceeds the range of
integer values from —2(7 *PPP®) o 7 biDePh) _ 1 Hinclysive.

NOTE 1 — When entropy_coding_mode flag is equal to 0 and qP is less than 10 and profile idc is equal to 66, 77, or 88, the range
of values that can be represented for the elements c;; of ¢ is not sufficient to represent the full range of values of the elements dcYj;
of dcY that could be necessary to form a close approximation of the content of any possible source picture by use of the
Intra_16x16 macroblock type.

NOTE 2 — Since the range limit imposed on the elements dcYj; of dcY is imposed after the right shift in Equation 8-322, a larger
range of values must be supported in the decoder prior to the right shift.

8.5.11 Scaling and transformation process for chroma DC transform coefficients
This process is only invoked when ChromaArrayType is equal to 1 or 2.

Inputs to this process are transform coefficient level values for chroma DC transform coefficients of one chroma
component of the macroblock as an (MbWidthC / 4)x(MbHeightC / 4) array ¢ with elements c;;, where i and j form a
two-dimensional frequency index.

Outputs of this process are the scaled DC values as an (MbWidthC / 4)x(MbHeightC / 4) array dcC with elements dcC;;.
The variables bitDepth and qP are set equal to BitDepthc and QP’c, respectively.

Depending on the value of TransformBypassModeFlag, the following applies:
— If TransformBypassModeFlag is equal to 1, the output dcC is derived as:

deCj; = ¢; with i=0..(MbWidthC /4)— 1 and j = 0..(MbHeightC /4) — 1. (8-323)

— Otherwise (TransformBypassModeFlag is equal to 0), the following ordered steps are specified:

1. The transformation process for chroma DC transform coefficients as specified in clause 8.5.11.1 is invoked
with bitDepth and c as the inputs and the output is assigned to the (MbWidthC / 4)x(MbHeightC / 4) array f
of chroma DC values with elements fj;.

2. The scaling process for chroma DC transform coefficients as specified in clause 8.5.11.2 is invoked with
bitDepth, qP, and f as the inputs and the output is assigned to the (MbWidthC / 4)x(MbHeightC / 4) array dcC
of scaled chroma DC values with elements dcCj.

8.5.11.1 Transformation process for chroma DC transform coefficients

Inputs of this process are transform coefficient level values for chroma DC transform coefficients of one chroma
component of the macroblock as an (MbWidthC / 4)x(MbHeightC / 4) array c¢ with elements c;;, where i and j form a
two-dimensional frequency index.

Outputs of this process are the DC values as an (MbWidthC / 4)x(MbHeightC / 4) array f with elements fj.

Depending on the variable ChromaArrayType, the inverse transform is specified as follows:

— If ChromaArrayType is equal to 1, the inverse transform for the 2x2 chroma DC transform coefficients is specified

as:
et Tl Co Cof b1 (8-324)
1 -1 Cio Cp I -1
— Otherwise, (ChromaArrayType is equal to 2), the inverse transform for the 2x4 chroma DC transform coefficients is

specified as:

I 1 1] |cg ¢y

1

o 1 1 -1 -1 L G0 G|, 1 1 (8-325)
I =1 =1 1] |¢cyy cCy
1

-1 1 =1] |¢c3 ¢y

8.5.11.2 Scaling process for chroma DC transform coefficients

Inputs of this process are:

Rec. ITU-T H.264 (01/2012) 183

— the variables bitDepth and qP,
— DC values as an (MbWidthC / 4)x(MbHeightC / 4) array f with elements f;
Outputs of this process are scaled DC values as an (MbWidthC / 4)x(MbHeightC / 4) array dcC with elements dcCj.

The bitstream shall not contain data that result in any element f;; of f with i, j = 0..3 that exceeds the range of integer
values from —207 PP o o7+ biDeR™) _ 1 Hnelysive.

Scaling is performed depending on the variable ChromaArrayType as follows:

— If ChromaArrayType is equal to 1, the scaled result is derived as:

deC;; = ((f;; * LevelScale4x4(qP %6,0,0)) << (qP/ 6))>>5, with 1,j=0,1 (8-326)

— Otherwise (ChromaArrayType is equal to 2), the following ordered steps are specified:

1. The variable qPpc is derived as:
qPpc=qP +3 (8-327)

2. Depending on the value of qPpc, the following applies:

— If qPpc is greater than or equal to 36, the scaled result is derived as:

deCy; = (f; * LevelScaledx4(qPpc %6,0,0)) << (qPpc / 6—6), withi=0.3,j=0,1 (8-328)

— Otherwise (qPpc is less than 36), the scaled result is derived as:

deC; = (£, * LevelScale4x4(qPpe % 6,0,0)+2° 7) >> (6 —qPp /6), with i=0..3,j=0,1
(8-329)
The bitstream shall not contain data that result in any element dcC;; of dcC with i, j = 0..3 that exceeds the range of

integer values from —27 *PPP®) o 7 bIDePh) _ 1 Hinclysive.

NOTE 1 — When entropy_coding_mode_flag is equal to 0 and qP is less than 4 and profile idc is equal to 66, 77, or 88, the range
of values that can be represented for the elements c;; of ¢ in clause 8.5.11.1 may not be sufficient to represent the full range of
values of the elements dcCj; of dcC that could be necessary to form a close approximation of the content of any possible source
picture.

NOTE 2 — Since the range limit imposed on the elements dcCj; of dcC is imposed after the right shift in Equation 8-326 or 8-329, a
larger range of values must be supported in the decoder prior to the right shift.

8.5.12 Scaling and transformation process for residual 4x4 blocks

Input to this process is a 4x4 array ¢ with elements c;; which is either an array relating to a residual block of the luma
component or an array relating to a residual block of a chroma component.

Outputs of this process are residual sample values as 4x4 array r with elements rj;.

The variable bitDepth is derived as follows:

— If'the input array c relates to a luma residual block, bitDepth is set equal to BitDepthy.

— Otherwise (the input array c relates to a chroma residual block), bitDepth is set equal to BitDepthc.
The variable sMbFlag is derived as follows:

— If mb_type is equal to SI or the macroblock prediction mode is equal to Inter in an SP slice, sMbFlag is set equal
tol,

— Otherwise (mb_type not equal to SI and the macroblock prediction mode is not equal to Inter in an SP slice),
sMbFlag is set equal to 0.

The variable qP is derived as follows:

— Ifthe input array c relates to a luma residual block and sMbFlag is equal to 0,
qP =QP’y (8-330)
— Otherwise, if the input array c relates to a luma residual block and sMbFlag is equal to 1,

qP = QSy (8-331)

184 Rec. ITU-T H.264 (01/2012)

— Otherwise, if the input array c relates to a chroma residual block and sMbFlag is equal to 0,

qP=QP'c (8-332)
— Otherwise (the input array c relates to a chroma residual block and sMbFlag is equal to 1),

qP =QSc (8-333)

Depending on the value of TransformBypassModeFlag, the following applies:

— If TransformBypassModeFlag is equal to 1, the output r is derived as:
Ij; = Cjj with 1,_] =0..3 (8-334)

— Otherwise (TransformBypassModeFlag is equal to 0), the following ordered steps are specified:

1. The scaling process for residual 4x4 blocks as specified in clause 8.5.12.1 is invoked with bitDepth, qP, and ¢
as the inputs and the output is assigned to the 4x4 array d of scaled transform coefficients with elements dj;.

2. The transformation process for residual 4x4 blocks as specified in clause 8.5.12.2 is invoked with bitDepth
and d as the inputs and the output is assigned to the 4x4 array r of residual sample values with elements 1.

8.5.12.1 Scaling process for residual 4x4 blocks
Inputs of this process are:
— the variables bitDepth and gP,

— a4x4 array ¢ with elements c;; which is either an array relating to a residual block of luma component or an array
relating to a residual block of a chroma component.

Output of this process is a 4x4 array of scaled transform coefficients d with elements dj;.

The bitstream shall not contain data that result in any element c¢; of ¢ with i, j = 0..3 that exceeds the range of integer
values from —207 " PiPePth) o o7+ bitDepd) 7 Hinelysive.

Scaling of 4x4 block transform coefficient levels c;; proceeds as follows:
— Ifall of the following conditions are true:

— liisequaltoO,

— jisequalto O,

— ¢ relates to a luma residual block coded using Intra 16x16 macroblock prediction mode or c relates to a
chroma residual block.

the variable dy is derived by
doo = Coo (8-335)

— Otherwise, the following applies:

— If qP is greater than or equal to 24, the scaled result is derived as

dj = (c; * LevelScale4x4(qP % 6, 1, j)) << (qP / 6 — 4), with i, j = 0..3 except as noted above (8-336)
— Otherwise (gP is less than 24), the scaled result is derived as

d; =(c; *LevelScaletx4(qP %6,i, j)+2°%"%) >> (4—qP/6), withi, j=0..3 exceptas notedabove (8-337)

The bitstream shall not contain data that result in any element d;; of d with i, j = 0..3 that exceeds the range of integer
values from —207 PP o o7+ 0D _ 1 Hinclysive.

8.5.12.2 Transformation process for residual 4x4 blocks

Inputs of this process are:
— the variable bitDepth,

— a4x4 array of scaled transform coefficients d with elements d;;.

Rec. ITU-T H.264 (01/2012) 185

Outputs of this process are residual sample values as 4x4 array r with elements r;.

The bitstream shall not contain data that result in any element d;; of d with i, j = 0..3 that exceeds the range of integer
values from —207 " PP 4 27+ bitDepth) _ 1 inclusive.

The transform process shall convert the block of scaled transform coefficients to a block of output samples in a manner
mathematically equivalent to the following.

First, each (horizontal) row of scaled transform coefficients is transformed using a one-dimensional inverse transform as
follows.

A set of intermediate values is computed as follows:

eo=dip+dp, with i=0.3 (8-338)
en=dip—dp, with i=0.3 (8-339)
en=(dy>>1)—ds with i=0.3 (8-340)
es=dy+(dy>>1), with i=0.3 (8-341)

The bitstream shall not contain data that result in any element e; of e with i, j = 0..3 that exceeds the range of integer
values from —207 " PiPePth) o o7+ bitDepd) _ 7 Hipelysive.

Then, the transformed result is computed from these intermediate values as follows:

fo=ejptes with 1=0.3 (8-342)
fii=ej +ep, with i=0.3 (8-343)
fo=e;—ep, with 1=0.3 (8-344)
fis=ejp— e, with i=0.3 (8-345)

The bitstream shall not contain data that result in any element fj; of f with i, j = 0..3 that exceeds the range of integer
values from —207 " PiPePh) o o7+ bitDep®) _ 7 Hipelysive.

Then, each (vertical) column of the resulting matrix is transformed using the same one-dimensional inverse transform as
follows.

A set of intermediate values is computed as follows:

go = foy + £, with j=0.3 (8-346)
g =1fo;— £, with j=0.3 (8-347)
gi=(f;>1)—fy, with j=0.3 (8-348)
gy =1f;+(f5>>1), with j=0.3 (8-349)

The bitstream shall not contain data that result in any element g;; of g with i, j = 0..3 that exceeds the range of integer
values from —207 " PPt 4o o7+ bitDerth) _ 1 inclusive.

Then, the transformed result is computed from these intermediate values as follows:

hoj = goj + g3, with j=0.3 (8-350)
hjj=g+ g with j=0.3 (8-351)
hyj=gij— g with j=0.3 (8-352)
hsj=goj — g3, with j=0.3 (8-353)

The bitstream shall not contain data that result in any element h;; of h with i, j = 0..3 that exceeds the range of integer
values from —207 PDeP) 4 27+ bitDepth) _ 33 inclusive.

After performing both the one-dimensional horizontal and the one-dimensional vertical inverse transforms to produce an
array of transformed samples, the final constructed residual sample values is derived as:

186 Rec. ITU-T H.264 (01/2012)

r,=(h; +2°)>>6 with i,j=0.3 (8-354)

8.5.13 Scaling and transformation process for residual 8x8 blocks

Input to this process is an 8x8 array ¢ with elements c;; which is either an array relating to an 8x8 residual block of the
luma component or, when ChromaArrayType is equal to 3, an array relating to an 8x8 residual block of a chroma
component.

NOTE 1 — When separate_colour_plane flag is equal to 1, all residual blocks are considered to be associated with the luma
component for purposes of the decoding process of each coded picture (prior to the final assignment of the decoded picture to a
particular luma or chroma picture array according to the value of colour_plane_id).

Outputs of this process are residual sample values as 8x8 array r with elements rj;.

The variables bitDepth and qP are derived as follows:
— Ifthe input array c relates to a luma residual block, bitDepth is set equal to BitDepthy and gP is set equal to QP'y.

— Otherwise (the input array c relates to a chroma residual block), bitDepth is set equal to BitDepthc and gP is set
equal to QP'c.
NOTE 2 — When separate_colour_plane flag is equal to 1, all residual blocks are considered to be associated with the luma
component for purposes of the decoding process of each colour component of a picture.

Depending on the value of TransformBypassModeFlag, the following applies:
— If TransformBypassModeFlag is equal to 1, the output r is derived as

TIj; = Cj with 1,_] =0..7 (8-355)

— Otherwise (TransformBypassModeFlag is equal to 0), the following ordered steps are specified:

1. The scaling process for residual 8x8 blocks as specified in clause 8.5.13.1 is invoked with bitDepth, qP, and
¢ as the inputs and the output is assigned to the 8x8 array d of scaled transform coefficients with
elements d;;.

2. The transformation process for residual 8x8 blocks as specified in clause 8.5.13.2 is invoked with bitDepth
and d as the inputs and the output is assigned to the 8x8 array r of residual sample values with elements rj;.

8.5.13.1 Scaling process for residual 8x8 blocks
Inputs of this process are:
— the variables bitDepth and qP,

— an 8x8 array c with elements c;; which is either an array relating to a residual block of luma component or an array
relating to a residual block of a chroma component.

Output of this process is an 8x8 array of scaled transform coefficients d with elements d;;.

The bitstream shall not contain data that result in any element c;; of ¢ with i, j = 0..7 that exceeds the range of integer
values from —207 PP o o7+ biDeR™) _ 1 Hinelysive.

The scaling process for 8x8 block transform coefficient levels c;; proceeds as follows:

— IfgP is greater than or equal to 36, the scaled result is derived as:

d;j = (¢ * LevelScale8x8(qP % 6,1,j)) << (qP /6 — 6), with i,j =0..7 (8-356)
— Otherwise (qP is less than 36), the scaled result is derived as:

d;j = (c;j * LevelScale8x8(qP % 6, i, j)) +2° %) >> (6 — qP /6), with i, j = 0..7 (8-357)

The bitstream shall not contain data that result in any element d;; of d with i, j =0..7 that exceeds the range of integer
values from —207 PP o o7+ 0D _ 1 nelysive.

8.5.13.2 Transformation process for residual 8x8 blocks

Inputs of this process are:

— the variable bitDepth,

— an 8x8 array of scaled transform coefficients d with elements d;;.

Outputs of this process are residual sample values as 8x8 array r with elements r;;.

Rec. ITU-T H.264 (01/2012) 187

The bitstream shall not contain data that result in any element d;; of d with i, j = 0..7 that exceeds the range of integer
: n data y i J g g
values from —207 " PPt 4o o7+ bitDerth) _ 1 inclusive.

The transform process shall convert the block of scaled transform coefficients to a block of output samples in a manner
mathematically equivalent to the following.

First, each (horizontal) row of scaled transform coefficients is transformed using a one-dimensional inverse transform as
follows:

188

A set of intermediate values e;; is derived by:

eio=dj + diy, with 1=0..7

e =— diy + dis — diy — (diy >> 1), with i=0..7
ep = djp — dy, with 1=0..7

en =di +diy — dis — (dis >> 1), with 1=0..7
ew=(dp>>1)—dg, with i=0.7

eis=—di +diy + dis + (dis>> 1), with i=0..7
eis=dp + (dg>>1), with i=0..7

Ci7 = dig + di5 + dil + (dil >> 1), with 1=0..7

A second set of intermediate results f;; is computed from the intermediate values e;; as:

fio =€ + e, with 1=0..7
fi =en + (e >>2), with 1=0..7
f,=ep + ey, with 1=0..7
fis =e3 + (e;5>>2), with i=0..7
fiy=ep— ey, with 1=0..7
fis = (e >>2) —e;, with 1=0..7
fic = eip — €5, With 1=0..7

fi7 = ey — (ey >>2), with i=0..7

Then, the transformed result g;; is computed from these intermediate values fj; as:

gio = fio + fir, with i=0..7
gy = fip +fis, with i=0..7
go="fu+ 15 with i=0.7
g3 =fig + fiy, with i=0..7
g =fig— fi, with i=0..7
gis = fis — fis, with 1=0..7
gic =, — fis, with i=0..7

gir=fio— £, with i=0.7

Rec. ITU-T H.264 (01/2012)

(8-358)
(8-359)
(8-360)
(8-361)
(8-362)
(8-363)
(8-364)

(8-365)

(8-366)
(8-367)
(8-368)
(8-369)
(8-370)
(8-371)
(8-372)

(8-373)

(8-374)
(8-375)
(8-376)
(8-377)
(8-378)
(8-379)
(8-380)

(8-381)

Then, each (vertical) column of the resulting matrix is transformed using the same one-dimensional inverse transform as
follows:

— Aset of intermediate values h;j is computed from the horizontally transformed value g;; as:

h; = goj + g4, with j=0.7 (8-382)
hyj=— g5 + g5 — g5 — (g7, >> 1), with j=0..7 (8-383)
hy; = goj — g4, With j=0..7 (8-384)
hyj = @i+ g7 — 25 — (g5 >> 1), with j=0..7 (8-385)
hyy = (g5 >> 1) —gg, with j=0..7 (8-386)
hsj=—gij+ g7 + &5 + (g5 >> 1), with j=0..7 (8-387)
he = g+ (gg>> 1), with j=0..7 (8-388)
hy = g3+ g5 + & + (2;>> 1), with j=0..7 (8-389)

— A second set of intermediate results kj; is computed from the intermediate values h;; as:

koj = ho; + hg;, with j=0..7 (8-390)
ky; = hy; + (hy; >> 2), with j=0..7 (8-391)
ky; = hy; + hy, with j=0..7 (8-392)
ky; = hy; + (hg; >> 2), with j=0..7 (8-393)
ky; = hy — hy;, with j=0..7 (8-394)
ks; = (hy; >>2) — hg;, with j=0..7 (8-395)
ke; = ho; — hg;, with j=0..7 (8-396)
ky; = hy; — (hy; >>2), with j=0..7 (8-397)

— Then, the transformed result m;; is computed from these intermediate values k;; as:

mg; = koj + ks, with j=0..7 (8-398)
my; = ko + ks, with j=0..7 (8-399)
my = kg + kg, with j=0..7 (8-400)
my; = kg + kyj, with j=0..7 (8-401)
my; = kg — kyj, with j=0..7 (8-402)
ms; = kg — kg, with j=0..7 (8-403)
mg; = ky; — ksj, with j=0..7 (8-404)
my; = koj — kgj, with j=0..7 (8-405)

The bitstream shall not contain data that result in any element ej, fj;, g;

\ hjj, or k;j for i and j in the range of 0..7, inclusive,
that exceeds the range of integer values from

7+ bitDepth 7+b'fi W
— (7 +bitDepth) 4 H(7Fbithepth) 71 inclusive.

The bitstream shall not contain data that result in any element m;; for i and j in the range of 0..7, inclusive, that exceeds
the range of integer values from —27 " PPt o (7 bitDerth) _ 33 iclysive.

Rec. ITU-T H.264 (01/2012) 189

After performing both the one-dimensional horizontal and the one-dimensional vertical inverse transforms to produce an
array of transformed samples, the final constructed residual sample values are derived as

I = (myj; + 25) >> 6 with 1,_] =0..7 (8-406)

8.5.14 Picture construction process prior to deblocking filter process

Inputs to this process are:

a sample array u with elements u;; which is a 16x16 luma block or an (MbWidthC)x(MbHeightC) chroma block or a
4x4 luma block or a 4x4 chroma block or an 8x8 luma block or, when ChromaArrayType is equal to 3, an 8x8
chroma block,

when u is not a 16x16 luma block or an (MbWidthC)x(MbHeightC) chroma block, a block index luma4x4BlklIdx or
chroma4x4BlkIdx or luma8x8Blkldx or cb4x4BlkIdx or cr4x4Blkldx or cb8x8Blkldx or cr8x8BIkIdx.

The position of the upper-left luma sample of the current macroblock is derived by invoking the inverse macroblock
scanning process in clause 6.4.1 with CurrMbAddr as input and the output being assigned to (xP, yP).

When u is a luma block, for each sample u;; of the luma block, the following ordered steps are specified:

1.

Depending on the size of the block u, the following applies:

If u is a 16x16 luma block, the position (xO, yO) of the upper-left sample of the 16x16 luma block inside
the macroblock is set equal to (0, 0) and the variable nE is set equal to 16.

Otherwise, if u is an 4x4 luma block, the position of the upper-left sample of the 4x4 luma block with index
luma4x4BIlkldx inside the macroblock is derived by invoking the inverse 4x4 luma block scanning process
in clause 6.4.3 with luma4x4Blkldx as the input and the output being assigned to (xO, yO), and the
variable nE is set equal to 4.

Otherwise (u is an 8x8 luma block), the position of the upper-left sample of the 8x8 luma block with index
luma8x8BIlkIdx inside the macroblock is derived by invoking the inverse 8x8 luma block scanning process
in clause 6.4.5 with luma8x8Blkldx as the input and the output being assigned to (xO, yO), and the
variable nE is set equal to 8.

2. Depending on the variable MbaffFrameFlag and the current macroblock, the following applies:

If MbaffFrameFlag is equal to 1 and the current macroblock is a field macroblock,
S'UXxP+xO+j,yP+2* (yO+i)]=u; withi,j=0.nE—1 (8-407)
Otherwise (MbaffFrameFlag is equal to 0 or the current macroblock is a frame macroblock),

S'U[XP+x0+j,yP+yO+i]=u; withi,j=0.nE—1 (8-408)

When u is a chroma block, for each sample u;; of the chroma block, the following ordered steps are specified:

1.

2.

190

The subscript C in the variable S'c is replaced with Cb for the Cb chroma component and with Cr for the Cr
chroma component.

Depending on the size of the block u, the following applies:

If u is an (MbWidthC)x(MbHeightC) Cb or Cr block, the variable nW is set equal to MbWidthC, the
variable nH is set equal to MbHeightC, and the position (xO,yO) of the upper-left sample of the
(nW)x(nH) Cb or Cr block inside the macroblock is set equal to (0, 0).

Otherwise, if u is a 4x4 Cb or Cr block, the variables nW and nH are set equal to 4 and, depending on the
variable ChromaArrayType, the position of the upper-left sample of a 4x4 Cb or Cr block with index
chroma4x4BlklIdx inside the macroblock is derived as follows:

— If ChromaArrayType is equal to 1 or 2, the position of the upper-left sample of the 4x4 chroma block
with index chroma4x4Blkldx inside the macroblock is derived by invoking the inverse 4x4 chroma
block scanning process in clause 6.4.7 with chroma4x4Blkldx as the input and the output being
assigned to (xO, yO).

— Otherwise (ChromaArrayType is equal to 3), the position of the upper-left sample of the 4x4 Cb block
with index cb4x4BlkIdx or the 4x4 Cr block with index cr4x4Blkldx inside the macroblock is derived
by invoking the inverse 4x4 Cb or Cr block scanning process in clause 6.4.4 with cb4x4Blkldx or
cr4x4Blkldx as the input and the output being assigned to (xO, yO).

Rec. ITU-T H.264 (01/2012)

— Otherwise (u is an 8x8 Cb or Cr block when ChromaArrayType is equal to 3), the variables nW and nH are
set equal to 8 and the position of the upper-left sample of the 8x8 Cb block with index cb8x8BlklIdx or the
Cr block with index cr8x8BlkIdx inside the macroblock is derived by invoking the inverse 8x8 Cb or Cr
block scanning process in clause 6.4.6 with cb8x8Blkldx or cr8x8Blkldx as the input and the output being
assigned to (xO, yO).

3. Depending on the variable MbaffFrameFlag and the current macroblock, the following applies:

— If MbaftFrameFlag is equal to 1 and the current macroblock is a field macroblock,

S'c[(xP / subWidthC) +xO +j, ((yP + SubHeightC — 1) / SubHeightC) +2 * (yO +1)] = uj
withi=0.nH-1 and j=0.nW —1 (8-409)

— Otherwise (MbaffFrameFlag is equal to 0 or the current macroblock is a frame macroblock),

S'c[(xP/ subWidthC) + xO +j, (yP / SubHeightC) + yO +i] =u;
withi=0.nH—-1 and j=0.0W — 1 (8-410)
8.5.15 Intra residual transform-bypass decoding process

This process is invoked when TransformBypassModeFlag is equal to 1, the macroblock prediction mode is equal to
Intra_4x4, Intra 8x8, or Intra_16x16, and the applicable intra prediction mode is equal to the vertical or horizontal mode.
The process for the Cb and Cr components is applied in the same way as for the luma (L or Y) component.

Inputs to this process are:
— two variables nW and nH,
— avariable horPredFlag,

— an (nW)x(nH) array r with elements r; which is either an array relating to a residual transform-bypass block of the
luma component or an array relating to a residual transform-bypass block of the Cb and Cr component.

Output of this process is a modified version of the (nW)x(nH) array r with elements 1; containing the result of the intra
residual transform-bypass decoding process.

Let f be a temporary (nW)x(nH) array with elements fj;, which are derived by:
fj=r; withi=0.nH-1 and j=0.nW —1 (8-411)

Depending on horPredFlag, the following applies:
— IfhorPredFlag is equal to 0, the modified array r is derived by:

I, = kakj withi=0.nH~1 and j=0.nW —1 (8-412)
=0

— Otherwise (horPredFlag is equal to 1), the modified array r is derived by:

i

r,=> f, withi=0.nH—1 and j=0.nW - I (8-413)
k=0
8.6 Decoding process for P macroblocks in SP slices or SI macroblocks

This process is invoked when decoding P macroblock types in an SP slice type or the ST macroblock type in SI slices.

Inputs to this process are the prediction residual transform coefficient levels and the predicted samples for the current
macroblock.

Outputs of this process are the decoded samples of the current macroblock prior to the deblocking filter process.

This clause specifies the transform coefficient decoding process and picture construction process for P macroblock types
in SP slices and the SI macroblock type in SI slices.

NOTE — SP slices make use of Inter predictive coding to exploit temporal redundancy in the sequence, in a similar manner to P
slice coding. Unlike P slice coding, however, SP slice coding allows identical reconstruction of a slice even when different
reference pictures are being used. SI slices make use of spatial prediction, in a similar manner to I slices. SI slice coding allows

Rec. ITU-T H.264 (01/2012) 191

identical reconstruction to a corresponding SP slice. The properties of SP and SI slices aid in providing functionalities for
bitstream switching, splicing, random access, fast-forward, fast reverse, and error resilience/recovery.

An SP slice consists of macroblocks coded either as I macroblock types or P macroblock types.
An Sl slice consists of macroblocks coded either as I macroblock types or SI macroblock type.

The transform coefficient decoding process and picture construction process prior to deblocking filter process for I
macroblock types in SI slices is invoked as specified in clause 8.5. The SI macroblock type is decoded as described
below.

When the current macroblock is coded as P_Skip, all values of LumaLevel4x4, ChromaDCLevel, ChromaACLevel are
set equal to 0 for the current macroblock.

8.6.1 SP decoding process for non-switching pictures
This process is invoked, when decoding P macroblock types in SP slices in which sp_for_switch_flag is equal to 0.

Inputs to this process are Inter prediction samples for the current macroblock from clause 8.4 and the prediction residual
transform coefficient levels.

Outputs of this process are the decoded samples of the current macroblock prior to the deblocking filter process.

This clause applies to all macroblocks in SP slices in which sp for switch flag is equal to 0, except those with
macroblock prediction mode equal to Intra_4x4 or Intra_16x16. It does not apply to SI slices.

8.6.1.1 Luma transform coefficient decoding process

Inputs to this process are Inter prediction luma samples for the current macroblock pred, from clause 8.4 and the
prediction residual transform coefficient levels, Lumalevel4x4, and the index of the 4x4 luma block luma4x4BlkIdx.

The position of the upper-left sample of the 4x4 luma block with index luma4x4BlkIdx inside the current macroblock is
derived by invoking the inverse 4x4 luma block scanning process in clause 6.4.3 with luma4x4BIkIdx as the input and
the output being assigned to (x, y).

Let the variable p be a 4x4 array of prediction samples with element p;; being derived as:
pij=pred [x+j,y+i] withi,j=0.3 (8-414)

The variable p is transformed producing transform coefficients ¢ according to:

1 11 Ll I Poo Po P Pos| |1 2 1 1

o = I -1 -2 «| Pro P P Pis |, 1T -1 -2 (8-415)
I -1 -1 Ll [Py P P P3| |1 -1 -1 2
I =22 =1 [py Pu Pn Pu [l -2 1 -1

The inverse scanning process for 4x4 transform coefficients and scaling lists as specified in clause 8.5.6 is invoked with
LumaLevel4x4[luma4x4BlkIdx] as the input and the two-dimensional array c¢" with elements c;' as the output.

The prediction residual transform coefficients ¢' are scaled using quantisation parameter QPy, and added to the transform
coefficients of the prediction block ¢f with i, j = 0..3 as follows:

¢i' = ¢’ + (((¢ * LevelScaledx4(QPy % 6,1,) * A;) <<(QPy/6))>>10) (8-416)
where LevelScale4x4(m, i, j) is specified in Equation 8-313, and where A;; is specified as:

16 for (i,j)e {(0,0),(0,2),(2,0),(2,2)},
Ajj=125 for (i,j)e {(1,1),(1,3),(3,1),(3,3)}, (8-417)
20 otherwise;

The function LevelScale2(m, i, j), used in the formulas below, is specified as

Wmo for (I,J)G {(0,0), (092): (290): (252)}:
LevelScale2(m,i,j)=<w,,; for (i,))e {(1,1),(1,3),(3,1),(3.,3)}, (8-418)
W, otherwise;

192 Rec. ITU-T H.264 (01/2012)

where the first and second subscripts of w are row and column indices, respectively, of the matrix specified as

13107 5243 8066
11916 4660 7490
10082 4194 6554 a1
W=l 9362 3647 5825 (8-419)
8192 3355 5243
7282 2893 4559

The resulting sum, c’, is quantised with a quantisation parameter QSy and with i, j = 0..3 as follows:

¢ = Sign(¢’) * ((Abs(c;’) * LevelScale2(QSy % 6,1,)+ (1 << (14 +QSy/6)))>>(15+QSy/6))
(8-420)

The scaling and transformation process for residual 4x4 blocks as specified in clause 8.5.12 is invoked with c as the input
and r as the output.

The 4x4 array u with elements uj; is derived by:
u; = Cliply(1) withi,j=0..3 (8-421)

The picture construction process prior to deblocking filter process in clause 8.5.14 is invoked with luma4x4BlkIdx and u
as the inputs.

8.6.1.2 Chroma transform coefficient decoding process

Inputs to this process are Inter prediction chroma samples for the current macroblock from clause 8.4 and the prediction
residual transform coefficient levels, ChromaDCLevel and ChromaACLevel.

This process is invoked twice: once for the Cb component and once for the Cr component. The component is referred to
by replacing C with Cb for the Cb component and C with Cr for the Cr component. Let iCbCr select the current chroma
component.

For each 4x4 block of the current chroma component indexed using chroma4x4Blkldx with chroma4x4Blkldx equal
to 0..3, the following ordered steps are specified:

1. The position of the upper-left sample of a 4x4 chroma block with index chroma4x4BlkIdx inside the macroblock
is derived by invoking the inverse 4x4 chroma block scanning process in clause 6.4.7 with chroma4x4BlkIdx as
the input and the output being assigned to (xO, yO).

2. Letp be a 4x4 array of prediction samples with elements p; being derived as
pi=predc[x+j,y+i] withi, j=0.3 (8-422)

3. The 4x4 array p is transformed producing transform coefficients c¢”(chroma4x4BlkIdx) using Equation 8-415.

4. The variable chromaList, which is a list of 16 entries, is derived. chromaList[0] is set equal to 0. chromaList[k]
with index k = 1..15 are specified as follows:

chromalList[k] = ChromaACLevel[iCbCr][chroma4x4Blkldx [[k—1] (8-423)

5. The inverse scanning process for 4x4 transform coefficients and scaling lists as specified in clause 8.5.6 is
invoked with chromaList as the input and the 4x4 array c¢' as the output.

6. The prediction residual transform coefficients ¢" are scaled using quantisation parameter QPc, and added to the
transform coefficients of the prediction block c” with i, j = 0..3 except for the combination i =0, j = 0 as follows:

¢;i® = ¢;f(chroma4x4Blkldx) + (((¢ * LevelScale4x4(QPc % 6,1,) * A;;) <<(QPc/6))>>10) (8-424)

7. The resulting sum, ¢’, is quantised with a quantisation parameter QSc and with i, j = 0..3 except for the
combination i = 0, j = 0 as follows. The derivation of cyy(chroma4x4Blkldx) is described below in this clause.

¢;(chroma4x4Blkldx) = (Sign(¢) * (Abs(¢;i°) * LevelScale2(QS¢ % 6,1,j) +
(1<<(14+QSc/6))))>>(15+QSc/6) (8-425)

8. The scaling and transformation process for residual 4x4 blocks as specified in clause 8.5.12 is invoked with
c(chroma4x4Blkldx) as the input and r as the output.

Rec. ITU-T H.264 (01/2012) 193

9. The 4x4 array u with elements u;; is derived by:
uj = Cllplc(T) with I,J =0..3 (8—426)
10. The picture construction process prior to deblocking filter process in clause 8.5.14 is invoked with
chroma4x4BIlkIdx and u as the inputs.

The derivation of the DC transform coefficient level coy(chroma4x4Blkldx) is specified as follows. The DC transform
coefficients of the 4 prediction chroma 4x4 blocks of the current component of the macroblock are assembled into a 2x2
matrix with elements cyo"(chroma4x4BlkIdx) and a 2x2 transform is applied to the DC transform coefficients as follows:

dc? =F 1 }{Cgo (0) cgo (1)} {1 1 } (8-427)
I=1] [cfy(2) cfp 3] 1 —1

The chroma DC prediction residual transform coefficient levels, ChromaDCLevel[iCbCr][k] with k=0..3 are scaled
using quantisation parameter QPc, and added to the prediction DC transform coefficients as follows:

de;® = dc;® + (((ChromaDCLevel[iCbCr][j * 2 +1i] * LevelScale4x4(QPc % 6, 0, 0) * Agy) <<(QPc/6))
>>9) withi,j=0, 1 (8-428)

The 2x2 array dc’, is quantised using the quantisation parameter QS as follows:

de;” = (Sign(dei’) * (Abs(de;®) * LevelScale2(QS¢ % 6,0, 0) + (1 <<(15+QSc/6))))>>(16+QSc/6)
withi,j=0, 1 (8-429)

The 2x2 array f with elements fj; and i, j = 0..1 is derived as:
po|l Tlefdeo deg | (11 (8-430)
1 -1 dejy dej, 1 -1
Scaling of the elements fj; of f is performed as follows:

Cooj *2+1)=((f;* LevelScaledx4(QSc % 6,0,0)) << (QSc¢/6))>>5 withi, j=0, 1 (8-431)

8.6.2 SP and Sl slice decoding process for switching pictures

This process is invoked, when decoding P macroblock types in SP slices in which sp for switch flag is equal to 1 and
when decoding the SI macroblock type in SI slices.

Inputs to this process are the prediction residual transform coefficient levels and the prediction sample arrays pred;,
predcy, and predc, for the current macroblock.

8.6.2.1 Luma transform coefficient decoding process

Inputs to this process are prediction luma samples pred; and the luma prediction residual transform coefficient levels,
LumaLevel4x4.

The 4x4 array p with elements p; with i, j = 0..3 is derived as in clause 8.6.1.1, is transformed according to Equation 8-
415 to produce transform coefficients c”. These transform coefficients are then quantised with the quantisation parameter
QSy, as follows:

¢ = Sign(¢) * ((Abs(¢;”) * LevelScale2(QSy % 6,1,j)+ (1 << (14+QSy/6)))>>(15+QSy/6))
withi,j=0..3 (8-432)

The inverse scanning process for 4x4 transform coefficients and scaling lists as specified in clause 8.5.6 is invoked with
LumalLevel4x4[luma4x4BlkIdx] as the input and the two-dimensional array ¢" with elements ¢;' as the output.

The 4x4 array ¢ with elements c;; with i, j = 0..3 is derived by:
Cjj = Cijr + Cijs with I,J =0.3 (8-433)

The scaling and transformation process for residual 4x4 blocks as specified in clause 8.5.12 is invoked with c as the input
and r as the output.

The 4x4 array u with elements v is derived by:

194 Rec. ITU-T H.264 (01/2012)

uij = Chply(rij) with 1,_] =0.3 (8_434)

The picture construction process prior to deblocking filter process in clause 8.5.14 is invoked with luma4x4Blkldx and u
as the inputs.

8.6.2.2 Chroma transform coefficient decoding process

Inputs to this process are predicted chroma samples for the current macroblock from clause 8.4 and the prediction
residual transform coefficient levels, ChromaDCLevel and ChromaACLevel.

This process is invoked twice: once for the Cb component and once for the Cr component. The component is referred to
by replacing C with Cb for the Cb component and C with Cr for the Cr component. Let iCbCr select the current chroma
component.

For each 4x4 block of the current chroma component indexed using chroma4x4Blkldx with chroma4x4Blkldx equal
to 0..3, the following ordered steps are specified:

1. The 4x4 array p with elements p;j with i, j = 0..3 is derived as in clause 8.6.1.2, is transformed according to
Equation 8-415 to produce transform coefficients ¢”(chroma4x4BlkIdx). These transform coefficients are then
quantised with the quantisation parameter QSc¢, with i, j = 0..3 except for the combination i =0, j = 0 as follows.
The processing of cgo”(chromad4x4BlkIdx) is described below in this clause.

¢;® = (Sign(¢;"(chroma4x4BlkIdx)) * (Abs(¢;’(chroma4x4BIkIdx)) *
LevelScale2(QSc % 6,1,j)+ (1 <<(14+QSc/6))))>>(15+QSc/6) (8-435)

2. The variable chromaList, which is a list of 16 entries, is derived. chromaList[0] is set equal to 0. chromaList[k]
with index k = 1..15 are specified as follows:

chromaList[k] = ChromaACLevel[iCbCr][chroma4x4Blkldx][k—1] (8-436)

3. The inverse scanning process for 4x4 transform coefficients and scaling lists as specified in clause 8.5.6 is
invoked with chromaList as the input and the two-dimensional array c'(chroma4x4BlkIdx) with elements
¢;j'(chroma4x4BIkIdx) as the output.

4. The 4x4 array c(chroma4x4Blkldx) with elements c;j(chroma4x4Blkldx) with i, j = 0..3 except for the
combination i =0, j = 0 is derived as follows. The derivation of cyo(chroma4x4Blkldx) is described below.

¢;j(chroma4x4BIkIdx) = ¢;'(chroma4x4BIkIdx) + c;* (8-437)

5. The scaling and transformation process for residual 4x4 blocks as specified in clause 8.5.12 is invoked with
c(chroma4x4BlkIdx) as the input and r as the output.

6. The 4x4 array u with elements u;; is derived by:
u;; = Cliple(1y) with1,j=0..3 (8-438)
7. The picture construction process prior to deblocking filter process in clause 8.5.14 is invoked with
chroma4x4BIlkIdx and u as the inputs.

The derivation of the DC transform coefficient level coo(chroma4x4BlkIdx) is specified as follows. The DC transform
coefficients of the 4 prediction 4x4 chroma blocks of the current component of the macroblock, cg,"(chromadx4BIkIdx),
are assembled into a 2x2 matrix, and a 2x2 transform is applied to the DC transform coefficients of these blocks
according to Equation 8-427 resulting in DC transform coefficients dc;".

These DC transform coefficients are then quantised with the quantisation parameter QSc, as given by:

dey® = (Sign(dei”) * (Abs(dc;?) * LevelScale2(QS¢ % 6,0,0) + (1 <<(15+QSc/6))))>>
(16+QSc/6) withi,j =0, 1 (8-439)

The parsed chroma DC prediction residual transform coefficients, ChromaDCLevel[iCbCr][k] with k = 0..3 are added
to these quantised DC transform coefficients of the prediction block, as given by:

dc' = dc;i* + ChromaDCLevel[iCbCr J[j *2+1] withi, j=0, 1 (8-440)

The 2x2 array f with elements fj; and i, j = 0..1 is derived using Equation 8-430.

The 2x2 array f with elements fjj and 1, j = 0..1 is copied as follows:

Rec. ITU-T H.264 (01/2012) 195

Coo(j*2+1)=1f; withi,j=0,1 (8-441)

8.7 Deblocking filter process

A conditional filtering process is specified in this clause that is an integral part of the decoding process which shall be
applied by decoders conforming to the Baseline, Constrained Baseline, Main, Extended, High, Progressive High,
Constrained High, High 10, High4:2:2, and High 4:4:4 Predictive profiles. For decoders conforming to the
High 10 Intra, High 4:2:2 Intra, High 4:4:4 Intra, and CAVLC 4:4:4 Intra profiles, the filtering process specified in this
clause, or one similar to it, should be applied but is not required.

The conditional filtering process is applied to all NxN (where N=4 or N=8 for luma, N=4 for chroma when

ChromaArrayType is equal to 1 or 2, and N =4 or N = § for chroma when ChromaArrayType is equal to 3) block edges

of a picture, except edges at the boundary of the picture and any edges for which the deblocking filter process is disabled

by disable deblocking filter idc, as specified below. This filtering process is performed on a macroblock basis after the

completion of the picture construction process prior to deblocking filter process (as specified in clauses 8.5 and 8.6) for

the entire decoded picture, with all macroblocks in a picture processed in order of increasing macroblock addresses.
NOTE 1 — Prior to the operation of the deblocking filter process for each macroblock, the deblocked samples of the macroblock or
macroblock pair above (if any) and the macroblock or macroblock pair to the left (if any) of the current macroblock are always
available because the deblocking filter process is performed after the completion of the picture construction process prior to
deblocking filter process for the entire decoded picture. However, for purposes of determining which edges are to be filtered when
disable_deblocking_filter idc is equal to 2, macroblocks in different slices are considered not available during specified steps of
the operation of the deblocking filter process.

The deblocking filter process is invoked for the luma and chroma components separately. For each macroblock and each
component, vertical edges are filtered first, starting with the edge on the left-hand side of the macroblock proceeding
through the edges towards the right-hand side of the macroblock in their geometrical order, and then horizontal edges are
filtered, starting with the edge on the top of the macroblock proceeding through the edges towards the bottom of the
macroblock in their geometrical order. Figure 8-10 shows edges of a macroblock which can be interpreted as luma or
chroma edges.

When interpreting the edges in Figure 8-10 as luma edges, depending on the transform size 8x8 flag, the following
applies:

— Iftransform_size 8x8 flag is equal to 0, both types, the solid bold and dashed bold luma edges are filtered.

— Otherwise (transform_size 8x8 flag is equal to 1), only the solid bold luma edges are filtered.

When interpreting the edges in Figure 8-10 as chroma edges, depending on ChromaArrayType, the following applies:
— If ChromaArrayType is equal to 1 (4:2:0 format), only the solid bold chroma edges are filtered.

— Otherwise, if ChromaArrayType is equal to 2 (4:2:2 format), the solid bold vertical chroma edges are filtered and
both types, the solid bold and dashed bold horizontal chroma edges are filtered.

— Otherwise, if ChromaArrayType is equal to 3 (4:4:4 format), the following applies:
— Iftransform_size 8x8 flag is equal to 0, both types, the solid bold and dashed bold chroma edges are filtered.

— Otherwise (transform_size 8x8 flag is equal to 1), only the solid bold chroma edges are filtered.

— Otherwise (ChromaArrayType is equal to 0), no chroma edges are filtered.

196 Rec. ITU-T H.264 (01/2012)

«
72}
0]
on
“« 3
s
=
1)
N
<“— ‘=
S
jant
-«
T T T T H.264(09)_F8-10

Vertical edges

Figure 8-10 — Boundaries in a macroblock to be filtered

For the current macroblock address CurrMbAddr proceeding over values 0..PicSizeInMbs — 1, the following ordered
steps are specified:

1. The derivation process for neighbouring macroblocks specified in clause 6.4.11.1 is invoked and the output is
assigned to mbAddrA and mbAddrB.

2. The variables fieldMbInFrameFlag, filterInternalEdgesFlag, filterLeftMbEdgeFlag and filterTopMbEdgeFlag are
derived as specified by the following ordered steps:

a. The variable fieldMbInFrameFlag is derived as follows:

— If MbaffFrameFlag is equal to 1 and mb_field decoding flag is equal to 1, fieldMbInFrameFlag is
set equal to 1.

— Otherwise (MbaffFrameFlag is equal to 0 or mb field decoding flag is equal to O0),
fieldMbInFrameFlag is set equal to 0.

b. The variable filterInternalEdgesFlag is derived as follows:

— Ifdisable deblocking filter idc for the slice that contains the macroblock CurrMbAddr is equal to 1,
the variable filterInternalEdgesFlag is set equal to 0.

— Otherwise (disable_deblocking_filter idc for the slice that contains the macroblock CurrMbAddr is
not equal to 1), the variable filterInternalEdgesFlag is set equal to 1.

c. The variable filterLeftMbEdgeFlag is derived as follows:
— Ifany of the following conditions are true, the variable filterLeftMbEdgeFlag is set equal to 0:
— MbaffFrameFlag is equal to 0 and CurrMbAddr % PicWidthInMbs is equal to 0,
— MbaffFrameFlag is equal to 1 and (CurrMbAddr >> 1) % PicWidthInMbs is equal to 0,

— disable_deblocking filter idc for the slice that contains the macroblock CurrMbAddr is equal
to1,

— disable_deblocking_filter idc for the slice that contains the macroblock CurrMbAddr is equal
to 2 and the macroblock mbAddrA is not available.

— Otherwise, the variable filterLeftMbEdgeFlag is set equal to 1.
d. The variable filterTopMbEdgeFlag is derived as follows:
— Ifany of the following conditions are true, the variable filterTopMbEdgeFlag is set equal to 0:
— MbaffFrameFlag is equal to 0 and CurrMbAddr is less than PicWidthInMbs,

— MbaffFrameFlag is equal to 1, (CurrMbAddr >> 1) is less than PicWidthInMbs, and the
macroblock CurrMbAddr is a field macroblock,

— MbaffFrameFlag is equal to 1, (CurrMbAddr>>1) is less than PicWidthInMbs, the
macroblock CurrMbAddr is a frame macroblock, and CurrMbAddr % 2 is equal to 0,

Rec. ITU-T H.264 (01/2012) 197

3.

198

— disable_deblocking_filter idc for the slice that contains the macroblock CurrMbAddr is equal
to 1,

— disable_deblocking_filter idc for the slice that contains the macroblock CurrMbAddr is equal
to 2 and the macroblock mbAddrB is not available.

— Otherwise, the variable filterTopMbEdgeFlag is set equal to 1.

Given the variables fieldMbInFrameFlag, filterInternalEdgesFlag, filterLeftMbEdgeFlag and
filterTopMbEdgeFlag the deblocking filtering is controlled as follows:

a. When filterLeftMbEdgeFlag is equal to 1, the left vertical luma edge is filtered by invoking the process
specified in clause 8.7.1 with chromaEdgeFlag = 0, verticalEdgeFlag = 1,
fieldModeInFrameFilteringFlag = fieldMbInFrameFlag, and (xEy, yEx) = (0, k) with k = 0..15 as the inputs
and S'L as the output.

b. When filterInternalEdgesFlag is equal to 1, the filtering of the internal vertical luma edges is specified by
the following ordered steps:

i. When transform_size 8x8 flag is equal to 0, the process specified in clause 8.7.1 is invoked with
chromaEdgeFlag = 0, verticalEdgeFlag =1, fieldModelnFrameFilteringFlag = fieldMbInFrameFlag,
and (xEy, yEx) = (4, k) with k = 0..15 as the inputs and S’ as the output.

ii. The process specified in clause 8.7.1 is invoked with chromaEdgeFlag =0, verticalEdgeFlag =1,
fieldModeInFrameFilteringFlag = fieldMbInFrameFlag, and (xEy, yEi) = (8, k) with k=0..15 as the
inputs and S’ as the output.

iii. When transform size 8x8 flag is equal to 0, the process specified in clause 8.7.1 is invoked with
chromaEdgeFlag = 0, verticalEdgeFlag =1, fieldModelnFrameFilteringFlag = fieldMbInFrameFlag,
and (xEy, yE) = (12, k) with k = 0..15 as the inputs and S', as the output.

c. When filterTopMbEdgeFlag is equal to 1, the filtering of the top horizontal luma edge is specified as
follows:

— If MbaffFrameFlag is equal to 1, (CurrMbAddr % 2) is equal to 0, CurrMbAddr is greater than or
equal to 2 * PicWidthInMbs, the macroblock CurrMbAddr is a frame macroblock, and the macroblock
(CurrMbAddr — 2 * PicWidthInMbs + 1) is a field macroblock, the following ordered steps are
specified:

i. The process specified in clause8.7.1 is invoked with chromaEdgeFlag=0,
verticalEdgeFlag = 0, fieldModeInFrameFilteringFlag = 1, and (xEy, yEy) = (k, 0) with k =0..15
as the inputs and S'| as the output.

ii. The process specified in clause8.7.1 is invoked with chromaEdgeFlag=0,
verticalEdgeFlag = 0, fieldModeInFrameFilteringFlag = 1, and (xEy, yEx) = (k, 1) with k =0..15
as the inputs and S'| as the output.

— Otherwise, the process specified in clause 8.7.1 is invoked with chromaEdgeFlag=0,
verticalEdgeFlag = 0, fieldModelnFrameFilteringFlag = fieldMbInFrameFlag, and (xE,, yEy) = (k, 0)
with k = 0..15 as the inputs and S'; as the output.

d. When filterInternalEdgesFlag is equal to 1, the filtering of the internal horizontal luma edges is specified
by the following ordered steps:

i. When transform_size 8x8 flag is equal to 0, the process specified in clause 8.7.1 is invoked with
chromaEdgeFlag = 0, verticalEdgeFlag =0, fieldModelnFrameFilteringFlag = fieldMbInFrameFlag,
and (xEy, yEy) = (k, 4) with k = 0..15 as the inputs and S'; as the output.

ii. The process specified in clause 8.7.1 is invoked with chromaEdgeFlag =0, verticalEdgeFlag =0,
fieldModeIlnFrameFilteringFlag = fieldMbInFrameFlag, and (xEy, yEy) = (k, 8) with k=0..15 as the
inputs and S'; as the output.

iii. When transform_size 8x8 flag is equal to 0, the process specified in clause 8.7.1 is invoked with
chromaEdgeFlag = 0, verticalEdgeFlag =0, fieldModelnFrameFilteringFlag = fieldMbInFrameFlag,
and (xEy, yEx) = (k, 12) with k =0..15 as the inputs and S'; as the output.

e. When ChromaArrayType is not equal to 0, for the filtering of both chroma components, with iCbCr = 0 for
Cb and iCbCr = 1 for Cr, the following ordered steps are specified:

i. When filterLeftMbEdgeFlag is equal to 1, the left vertical chroma edge is filtered by invoking the
process specified in clause 8.7.1 with chromaEdgeFlag=1, iCbCr, verticalEdgeFlag=1,

Rec. ITU-T H.264 (01/2012)

ii.

iii.

1v.

fieldModeInFrameFilteringFlag = fieldMbInFrameFlag, and (xEx, YEx) = (0, k) with
k =0..MbHeightC — 1 as the inputs and S'c with C being replaced by Cb for iCbCr =0 and C being
replaced by Cr for iCbCr = 1 as the output.

When filterInternalEdgesFlag is equal to 1, the filtering of the internal vertical chroma edge is
specified by the following ordered steps:

(1) When ChromaArrayType is not equal to 3 or transform_size 8x8 flag is equal to 0, the process
specified in clause 8.7.1 is invoked with chromaEdgeFlag=1, iCbCr, verticalEdgeFlag=1,
fieldModeInFrameFilteringFlag = fieldMbInFrameFlag, and (xEx, YEx) = (4, k) with
k =0..MbHeightC — 1 as the inputs and S'c with C being replaced by Cb for iCbCr=0 and C
being replaced by Cr for iCbCr = 1 as the output.

(2) When ChromaArrayType is equal to 3, the process specified in clause 8.7.1 is invoked with
chromaEdgeFlag = 1, iCbCer, verticalEdgeFlag = 1, fieldModeInFrameFilteringFlag =
fieldMbInFrameFlag, and (xEy, yEi) = (8, k) with k=0..MbHeightC — 1 as the inputs and S'c
with C being replaced by Cb for iCbCr=0 and C being replaced by Cr for iCbCr=1 as the
output.

(3) When ChromaArrayType is equal to 3 and transform size 8x8 flag is equal to 0, the process
specified in clause 8.7.1 is invoked with chromaEdgeFlag =1, iCbCr, verticalEdgeFlag =1,
fieldModeInFrameFilteringFlag = fieldMbInFrameFlag, and (xEx, YE) = (12, k) with
k =0..MbHeightC — 1 as the inputs and S'c with C being replaced by Cb for iCbCr=0 and C
being replaced by Cr for iCbCr = 1 as the output.

When filterTopMbEdgeFlag is equal to 1, the filtering of the top horizontal chroma edge is specified
as follows:

— If MbaffFrameFlag is equal to 1, (CurrMbAddr % 2) is equal to 0, CurrMbAddr is greater than
or equal to 2 * PicWidthInMbs, the macroblock CurrMbAddr is a frame macroblock, and the
macroblock (CurrMbAddr — 2 * PicWidthInMbs + 1) is a field macroblock, the following
ordered steps are specified:

(1) The process specified in clause 8.7.1 is invoked with chromaEdgeFlag=1, iCbCer,
verticalEdgeFlag = 0, fieldModelnFrameFilteringFlag =1, and (xEy, yEi) =(k, 0) with
k =0..MbWidthC — 1 as the inputs and S'c with C being replaced by Cb for iCbCr = 0 and
C being replaced by Cr for iCbCr = 1 as the output.

(2) The process specified in clause 8.7.1 is invoked with chromaEdgeFlag=1, iCbCer,
verticalEdgeFlag = 0, fieldModelnFrameFilteringFlag =1, and (xEy, yEy)=(k, 1) with
k =0..MbWidthC — 1 as the inputs and S'c with C being replaced by Cb for iCbCr = 0 and
C being replaced by Cr for iCbCr = 1 as the output.

— Otherwise, the process specified in clause 8.7.1 is invoked with chromaEdgeFlag = 1, iCbCer,
verticalEdgeFlag = 0, fieldModeInFrameFilteringFlag = fieldMbInFrameFlag, and
(xEy, YEi) = (k, 0) with k = 0..MbWidthC — 1 as the inputs and S'c with C being replaced by Cb
for iCbCr = 0 and C being replaced by Cr for iCbCr = 1 as the output.

When filterInternalEdgesFlag is equal to 1, the filtering of the internal horizontal chroma edge is
specified by the following ordered steps:

(1) When ChromaArrayType is not equal to 3 or transform_size 8x8 flag is equal to 0, the process
specified in clause 8.7.1 is invoked with chromaEdgeFlag=1, iCbCr, verticalEdgeFlag =0,
fieldModeInFrameFilteringFlag = fieldMbInFrameFlag, and (xEy, yEx)=(k, 4) with
k=0..MbWidthC — 1 as the inputs and S'c with C being replaced by Cb for iCbCr=0 and C
being replaced by Cr for iCbCr = 1 as the output.

(2) When ChromaArrayType is not equal to 1, the process specified in clause 8.7.1 is invoked with
chromaEdgeFlag = 1, iCbCer, verticalEdgeFlag = 0, fieldModeInFrameFilteringFlag =
fieldMbInFrameFlag, and (xEy, yEi) = (k, 8) with k=0..MbWidthC — 1 as the inputs and S'c
with C being replaced by Cb for iCbCr=0 and C being replaced by Cr for iCbCr=1 as the
output.

(3) When ChromaArrayType is equal to 2, the process specified in clause 8.7.1 is invoked with
chromaEdgeFlag = 1, iCbCer, verticalEdgeFlag = 0, fieldModeInFrameFilteringFlag =
fieldMbInFrameFlag, and (xEy, yEi) = (k, 12) with k =0..MbWidthC — 1 as the inputs and S'c
with C being replaced by Cb for iCbCr =0 and C being replaced by Cr for iCbCr=1 as the
output.

Rec. ITU-T H.264 (01/2012) 199

(4) When ChromaArrayType is equal to 3 and transform size 8x8 flag is equal to 0, the process
specified in clause 8.7.1 is invoked with chromaEdgeFlag =1, iCbCr, verticalEdgeFlag =0,
fieldModeInFrameFilteringFlag = fieldMbInFrameFlag, and (xE,, yEo)=(k, 12) with
k=0..MbWidthC — 1 as the inputs and S'c with C being replaced by Cb for iCbCr=0 and C
being replaced by Cr for iCbCr = 1 as the output.

NOTE 2 — When field mode filtering (fieldModeInFrameFilteringFlag is equal to 1) is applied across the top

horizontal edges of a frame macroblock, this vertical filtering across the top or bottom macroblock boundary may
involve some samples that extend across an internal block edge that is also filtered internally in frame mode.

NOTE 3 — For example, in 4:2:0 chroma format when transform_size 8x8 flag is equal to 0, the following
applies. 3 horizontal luma edges, 1 horizontal chroma edge for Cb, and 1 horizontal chroma edge for Cr are
filtered that are internal to a macroblock. When field mode filtering (fieldModelnFrameFilteringFlag is equal to 1)
is applied to the top edges of a frame macroblock, 2 horizontal luma, 2 horizontal chroma edges for Cb, and 2
horizontal chroma edges for Cr between the frame macroblock and the above macroblock pair are filtered using
field mode filtering, for a total of up to 5 horizontal luma edges, 3 horizontal chroma edges for Cb, and 3
horizontal chroma edges for Cr filtered that are considered to be controlled by the frame macroblock. In all other
cases, at most 4 horizontal luma, 2 horizontal chroma edges for Cb, and 2 horizontal chroma edges for Cr are
filtered that are considered to be controlled by a particular macroblock.

Depending on separate colour plane flag the following applies:

— If separate_colour plane flag is equal to 0, the arrays S, S'cy, S'c; are assigned to the arrays S;, Scy, Sc;r (Which
represent the decoded picture), respectively.

— Otherwise (separate_colour_plane flag is equal to 1), the following applies:

— Ifcolour plane id is equal to 0, the arrays S' is assigned to the array S; (which represent the luma component
of the decoded picture).

— Otherwise, if colour plane id is equal to 1, the arrays S’ is assigned to the array S, (which represents the Cb
component of the decoded picture).

— Otherwise (colour plane id is equal to 2), the arrays S'; is assigned to the array S, (which represents the Cr
component of the decoded picture).

8.7.1 Filtering process for block edges

Inputs to this process are chromaEdgeFlag, the chroma component index iCbCr (when chromaEdgeFlag is equal to 1),
verticalEdgeFlag, fieldModelnFrameFilteringFlag, and a set of nE sample locations (xEy, yEx), with k=0..nE — 1,
expressed relative to the upper left corner of the macroblock CurrMbAddr. The set of sample locations (xEy, YEx)
represent the sample locations immediately to the right of a vertical edge (when verticalEdgeFlag is equal to 1) or
immediately below a horizontal edge (when verticalEdgeFlag is equal to 0).

The variable nE is derived as follows:
— If chromaEdgeFlag is equal to 0, nE is set equal to 16.

— Otherwise (chromaEdgeFlag is equal tol), nE is set equal to (verticalEdgeFlag == 1)?
MbHeightC : MbWidthC.

Let s’ be a variable specifying a luma or chroma sample array. s’ is derived as follows:
— If chromaEdgeFlag is equal to 0, s’ represents the luma sample array S of the current picture.

— Otherwise, if chromaEdgeFlag is equal to 1 and iCbCr is equal to 0, s’ represents the chroma sample array S'c, of
the chroma component Cb of the current picture.

— Otherwise (chromaEdgeFlag is equal to 1 and iCbCr is equal to 1), s’ represents the chroma sample array S'c; of the
chroma component Cr of the current picture.

The variable dy is set equal to (1 + fieldModeInFrameFilteringFlag).

The position of the upper-left luma sample of the macroblock CurrMbAddr is derived by invoking the inverse
macroblock scanning process in clause 6.4.1 with mbAddr = CurrMbAddr as input and the output being assigned to

(xL yI).
The variables xP and yP are derived as follows:
— If chromaEdgeFlag is equal to 0, xP is set equal to xI and yP is set equal to yI.

— Otherwise (chromaEdgeFlag is equal to 1), xP is set equal to xI / SubWidthC and yP is set equal to
(yI + SubHeightC — 1) / SubHeightC.

200 Rec. ITU-T H.264 (01/2012)

P3 P2 P1 Po Qo Qi Q2 q3

Figure 8-11 — Convention for describing samples across a 4x4 block horizontal or vertical boundary

For each sample location (xEy, yEi), k =0..(nE — 1), the following ordered steps are specified:

1. The filtering process is applied to a set of eight samples across a 4x4 block horizontal or vertical edge denoted as
p; and g; with i = 0..3 as shown in Figure 8-11 with the edge lying between p, and qo. p; and g; with i = 0..3 are
specified as follows:

— IfverticalEdgeFlag is equal to 1,
qi = s'[xP +xEy +1, yP +dy * yE(] (8-442)
pi=s[xP+xEy—i—1,yP+dy * yEy] (8-443)
— Otherwise (verticalEdgeFlag is equal to 0),
qi=S[xP+xE, yP+dy * (yEx+i)—(yEx % 2)] (8-444)
pi=s[xP+xE,yP+dy * (yEx—i—1)—(yEx%2)] (8-445)

2. The process specified in clause 8.7.2 is invoked with the sample values p; and q; (i = 0..3), chromaEdgeFlag, and
verticalEdgeFlag as the inputs, and the output is assigned to the filtered result sample values p'; and q'; with
i=0.2.

3. The input sample values p; and q; with i = 0..2 are replaced by the corresponding filtered result sample values p’;
and q'; with i = 0..2 inside the sample array s’ as follows:

— IfverticalEdgeFlag is equal to 1,
s'[xP +xE, +1, yP +dy * yE, | =((8-440)
s[xP+xE,—i—1,yP+dy * yEx | =p'; (8-447)
— Otherwise (verticalEdgeFlag is equal to 0),
STxP+xE, yP+dy * (yE,+1)—(yEx % 2)]=q] (8-448)
STxP+xE, yP+dy * (yEx—1—1)—(yEx % 2)]=p" (8-449)

8.7.2 Filtering process for a set of samples across a horizontal or vertical block edge

Inputs to this process are the input sample values p; and q; with i in the range of 0..3 of a single set of samples across an
edge that is to be filtered, chromaEdgeFlag, and verticalEdgeFlag.

Outputs of this process are the filtered result sample values p'; and q'; with i in the range of 0..2.
The content dependent boundary filtering strength variable bS is derived as follows:

— If chromaEdgeFlag is equal to 0, the derivation process for the content dependent boundary filtering strength
specified in clause 8.7.2.1 is invoked with py, qo, and verticalEdgeFlag as input, and the output is assigned to bS.

— Otherwise (chromaEdgeFlag is equal to 1), the bS used for filtering a set of samples of a horizontal or vertical
chroma edge is set equal to the value of bS for filtering the set of samples of a horizontal or vertical luma edge,
respectively, that contains the luma sample at location (SubWidthC * x, SubHeightC * y) inside the luma array of
the same field, where (x, y) is the location of the chroma sample q, inside the chroma array for that field.

Let filterOffsetA and filterOffsetB be the values of FilterOffsetA and FilterOffsetB as specified in clause 7.4.3 for the
slice that contains the macroblock containing sample qp.

Let qP, and qP, be variables specifying quantisation parameter values for the macroblocks containing the samples p, and
qo, respectively. The variables qP, (with z being replaced by p or q) are derived as follows:

Rec. ITU-T H.264 (01/2012) 201

— If chromaEdgeFlag is equal to 0, the following applies:
— If the macroblock containing the sample z, is an I PCM macroblock, qP, is set to 0.

— Otherwise (the macroblock containing the sample z, is not an I PCM macroblock), qP, is set to the value of
QPy of the macroblock containing the sample z.

— Otherwise (chromaEdgeFlag is equal to 1), the following applies:

— If the macroblock containing the sample 7, is an I PCM macroblock, qP, is set equal to the value of QP that
corresponds to a value of 0 for QPy as specified in clause 8.5.8.

— Otherwise (the macroblock containing the sample 7z, is not an I PCM macroblock), qP, is set equal to the value
of QP¢ that corresponds to the value QPy of the macroblock containing the sample z, as specified in
clause 8.5.8.

The process specified in clause 8.7.2.2 is invoked with py, qo, p1, q1, chromaEdgeFlag, bS, filterOffsetA, filterOffsetB,
qP,, and gP, as inputs, and the outputs are assigned to filterSamplesFlag, indexA, o, and B.

The variable chromaStyleFilteringFlag is set by

chromaStyleFilteringFlag = chromaEdgeFlag && (ChromaArrayType != 3) (8-450)

Depending on the variable filterSamplesFlag, the following applies:
— If filterSamplesFlag is equal to 1, the following applies:

— IfbS is less than 4, the process specified in clause 8.7.2.3 is invoked with p; and q; (i = 0..2), chromaEdgeFlag,
chromaStyleFilteringFlag, bS, B, and indexA given as input, and the output is assigned to p’; and q’; (1= 0..2).

— Otherwise (bS is equal to 4), the process specified in clause 8.7.2.4 is invoked with p; and q; (i = 0..3),
chromaEdgeFlag, chromaStyleFilteringFlag, o, and [given as input, and the output is assigned to p’; and q;
(1=0.2).

— Otherwise (filterSamplesFlag is equal to 0), the filtered result samples p’; and q'; (i = 0..2) are replaced by the
corresponding input samples p; and q;:

fori=0.2, Pi=ni (8-451)
fori=0.2, qi=q; (8-452)

8.7.2.1 Derivation process for the luma content dependent boundary filtering strength

Inputs to this process are the input sample values py and qo of a single set of samples across an edge that is to be filtered
and verticalEdgeFlag.

Output of this process is the variable bS.
Let the variable mixedModeEdgeFlag be derived as follows:

— If MbaftFrameFlag is equal to 1 and the samples p, and qo are in different macroblock pairs, one of which is a field
macroblock pair and the other is a frame macroblock pair, mixedModeEdgeFlag is set equal to 1.

— Otherwise, mixedModeEdgeFlag is set equal to 0.
The variable bS is derived as follows:

— If the block edge is also a macroblock edge and any of the following conditions are true, a value of bS equal to 4 is
the output:

— the samples py and qp are both in frame macroblocks and either or both of the samples py or qo is in a
macroblock coded using an Intra macroblock prediction mode,

— the samples py and q, are both in frame macroblocks and either or both of the samples p, or qo is in a
macroblock that is in a slice with slice type equal to SP or SI,

— MbaffFrameFlag is equal to 1 or field pic flag is equal to 1, and verticalEdgeFlag is equal to 1, and either or
both of the samples p, or q is in a macroblock coded using an Intra macroblock prediction mode,

— MbaffFrameFlag is equal to 1 or field pic_flag is equal to 1, and verticalEdgeFlag is equal to 1, and either or
both of the samples py or qq is in a macroblock that is in a slice with slice_type equal to SP or SI.

202 Rec. ITU-T H.264 (01/2012)

Otherwise, if any of the following conditions are true, a value of bS equal to 3 is the output:

mixedModeEdgeFlag is equal to 0 and either or both of the samples py or qq is in a macroblock coded using an
Intra macroblock prediction mode,

mixedModeEdgeFlag is equal to 0 and either or both of the samples py or gy is in a macroblock that is in a slice
with slice_type equal to SP or SI,

mixedModeEdgeFlag is equal to 1, verticalEdgeFlag is equal to 0, and either or both of the samples py or qq is
in a macroblock coded using an Intra macroblock prediction mode,

mixedModeEdgeFlag is equal to 1, verticalEdgeFlag is equal to 0, and either or both of the samples p, or qo is
in a macroblock that is in a slice with slice _type equal to SP or SL.

Otherwise, if any of the following conditions are true, a value of bS equal to 2 is the output:

transform_size 8x8 flag is equal to 1 for the macroblock containing the sample p, and the 8x8 luma transform
block associated with the 8x8 luma block containing the sample p, contains non-zero transform coefficient
levels,

transform_size 8x8 flag is equal to 0 for the macroblock containing the sample p, and the 4x4 luma transform
block associated with the 4x4 luma block containing the sample p, contains non-zero transform coefficient
levels,

transform_size 8x8 flag is equal to 1 for the macroblock containing the sample g, and the 8x8 luma transform
block associated with the 8x8 luma block containing the sample q, contains non-zero transform coefficient
levels,

transform_size 8x8 flag is equal to O for the macroblock containing the sample qo and the 4x4 luma transform
block associated with the 4x4 luma block containing the sample g, contains non-zero transform coefficient
levels.

Otherwise, if any of the following conditions are true, a value of bS equal to 1 is the output:

mixedModeEdgeFlag is equal to 1,

mixedModeEdgeFlag is equal to 0 and for the prediction of the macroblock/sub-macroblock partition
containing the sample p, different reference pictures or a different number of motion vectors are used than for
the prediction of the macroblock/sub-macroblock partition containing the sample qq,
NOTE 1 — The determination of whether the reference pictures used for the two macroblock/sub-macroblock
partitions are the same or different is based only on which pictures are referenced, without regard to whether a
prediction is formed using an index into reference picture list 0 or an index into reference picture list 1, and also
without regard to whether the index position within a reference picture list is different.

NOTE 2 — The number of motion vectors that are used for the prediction of a macroblock partition with macroblock
partition index mbPartldx, or a sub-macroblock partition contained in this macroblock partition, is equal to
PredFlagLO[mbPartldx | + PredFlagL1[mbPartIdx].

mixedModeEdgeFlag is equal to 0 and one motion vector is used to predict the macroblock/sub-macroblock
partition containing the sample p, and one motion vector is used to predict the macroblock/sub-macroblock
partition containing the sample gy and the absolute difference between the horizontal or vertical components of
the motion vectors used is greater than or equal to 4 in units of quarter luma frame samples,

mixedModeEdgeFlag is equal to 0 and two motion vectors and two different reference pictures are used to
predict the macroblock/sub-macroblock partition containing the sample p, and two motion vectors for the same
two reference pictures are used to predict the macroblock/sub-macroblock partition containing the sample qq
and, for either or both of the two used reference pictures, the absolute difference between the horizontal or
vertical components of the two motion vectors used in the prediction of the two macroblock/sub-macroblock
partitions for the particular reference picture is greater than or equal to 4 in units of quarter luma frame
samples,

mixedModeEdgeFlag is equal to 0 and two motion vectors for the same reference picture are used to predict
the macroblock/sub-macroblock partition containing the sample p, and two motion vectors for the same
reference picture are used to predict the macroblock/sub-macroblock partition containing the sample q, and
both of the following conditions are true:

— The absolute difference between the horizontal or vertical components of list 0 motion vectors used in the
prediction of the two macroblock/sub-macroblock partitions is greater than or equal to 4 in quarter luma
frame samples or the absolute difference between the horizontal or vertical components of the list 1
motion vectors used in the prediction of the two macroblock/sub-macroblock partitions is greater than or
equal to 4 in units of quarter luma frame samples,

Rec. ITU-T H.264 (01/2012) 203

— The absolute difference between the horizontal or vertical components of list 0 motion vector used in the
prediction of the macroblock/sub-macroblock partition containing the sample p, and the list 1 motion
vector used in the prediction of the macroblock/sub-macroblock partition containing the sample qo is
greater than or equal to 4 in units of quarter luma frame samples or the absolute difference between the
horizontal or vertical components of the list 1 motion vector used in the prediction of the
macroblock/sub-macroblock partition containing the sample p, and list 0 motion vector used in the
prediction of the macroblock/sub-macroblock partition containing the sample q, is greater than or equal
to 4 in units of quarter luma frame samples.

NOTE 3 — A vertical difference of 4 in units of quarter luma frame samples is a difference of 2 in units of quarter
luma field samples.

— Otherwise, a value of bS equal to 0 is the output.

8.7.2.2 Derivation process for the thresholds for each block edge

Inputs to this process are:

— the input sample values py, qo, p1 and q; of a single set of samples across an edge that is to be filtered,
— the variables chromaEdgeFlag and bS, for the set of input samples, as specified in clause 8.7.2,

— the variables filterOffsetA, filterOffsetB, qP,, and qP,.

Outputs of this process are the variable filterSamplesFlag, which indicates whether the input samples are filtered, the
value of indexA, and the values of the threshold variables o and [3.

Let gP,, be a variable specifying an average quantisation parameter. It is derived as:
Py = (qPp, +qPg+1)>>1 (8-453)

NOTE — In SP and SI slices, qP,, is derived in the same way as in other slice types. QSy from Equation 7-30 is not used in the
deblocking filter.

Let indexA be a variable that is used to access the o table (Table 8-16) as well as the tc table (Table 8-17), which is used
in filtering of edges with bS less than 4 as specified in clause 8.7.2.3, and let indexB be a variable that is used to access
the P table (Table 8-16). The variables indexA and indexB are derived as:

indexA = Clip3(0, 51, qP,, + filterOffsetA) (8-454)
indexB = Clip3(0, 51, qP,, + filterOffsetB) (8-455)

The variables o and B’ depending on the values of indexA and indexB are specified in Table 8-16. Depending on
chromaEdgeFlag, the corresponding threshold variables o and B are derived as follows:

— If chromaEdgeFlag is equal to 0,
o=a'* (1 <<(BitDepthy —8)) (8-456)
B=p * (1 <<(BitDepthy —8)) (8-457)
— Otherwise (chromaEdgeFlag is equal to 1),
o=oa'* (1 <<(BitDepthc —8)) (8-458)
B=pB"*(1<<(BitDepthc—8)) (8-459)
The variable filterSamplesFlag is derived by:

filterSamplesFlag = (bS =0 && Abs(po—qo) <o && Abs(p;—po) <P && Abs(q;—qo)<B) (8-460)

204 Rec. ITU-T H.264 (01/2012)

Table 8-16 — Derivation of offset dependent threshold variables o’ and B’ from indexA and indexB

indexA (for ') or indexB (for ')

o)1 (2345|6789 |10(11|12|13|14|15|16|17|18[19|20|21 22|23 |24]|25

al]O|O}]OflO]jJO|]OjOfO]JO|O]O|O|O]O]O|O0O| 4|4 |5|6|7|8]|9]10[12]13

ppjJojojofo|lO0O|jO|O|OfO|O|O]O]|]O]|]O|O|O|2]|2|2|3|3|3|3|4|4]34

Table 8-16 (concluded) — Derivation of indexA and indexB from offset dependent threshold variables o’ and '

indexA (for ') or indexB (for ')

2627128293031 |32(33[34|35|36(37[38|39|40 (41 (42|43 |44[45|46|47|48|49|50]51

o | 1517120222528 [32|36|40|45|50 (56|63 |71 |80|90|101|113]127(144|162|182{203(226|255|255

Ble| 6|77 |8 |8|9|9 101011 |11 |12|12[13(13|14|14|15|15|16|16|17|17| 18] 18

8.7.2.3 Filtering process for edges with bS less than 4

Inputs to this process are the input sample values p; and q; (i = 0..2) of a single set of samples across an edge that is to be
filtered, chromaEdgeFlag, chromaStyleFilteringFlag, bS, B, and indexA, for the set of input samples, as specified in
clause 8.7.2.

Outputs of this process are the filtered result sample values p’; and q'; (i = 0..2) for the set of input sample values.

Depending on the values of indexA and bS, the variable t'c is specified in Table 8-17. Depending on chromaEdgeFlag,
the corresponding threshold variable tc is derived as follows:

— If chromaEdgeFlag is equal to 0,

tco =t'co * (1 << (BitDepthy —8)) (8-461)
— Otherwise (chromaEdgeFlag is equal to 1),

tco =t'co * (1 << (BitDepthc —8)) (8-462)

Table 8-17 — Value of variable t'c, as a function of indexA and bS

indexA

0123|456 |7|8[9|10/11|12]13|14|15|16|17|18[19|20|21|22|23 24|25

bS=1 ojo0j040j0{0}j0f0O)0|j]0|0OjOJO|O|O]O]O|O]O|O]O|O|O0O]1]1]|1
bS=2 oj0;j0y,0/0{0}j040,0j0j0O[0OJO0O]O|O]OJO|O0O]O|O]O|T |11]1][1
bS=3 ojojoyj0j0{0j0f00|]0j0[0OJOjO|O]Of(O ||| 1|11

Table 8-17 (concluded) — Value of variable t'c, as a function of indexA and bS

indexA

26 (27 |2829(30|31(32/33|34(35[36(37 3839|4041 |42|43|44 45|46 47|48|49 50|51

bS=1 r{rj1r(1,1j1{1r}2(22(2{3[3|3|4|4/4|5/6|6/|7[8|9 101113
bS=2 r{rj1(1 122223334 /4|5|5]6|7|8|8]10(1112|13]15/|17
bS=3 1212223334 |/4|4|5|6|6|7|8|9|10/11|13]14|16|18|20|23|25

Rec. ITU-T H.264 (01/2012) 205

The threshold variables a,, and a, are derived by:

a, = Abs(p>—po) (8-463)
ag=Abs(q2 —qo) (8-464)

The threshold variable tc is determined as follows:
— If chromaStyleFilteringFlag is equal to 0,

tc=tco T ((a,<B)?1:0)+((ag<P)?1:0) (8-465)
— Otherwise (chromaStyleFilteringFlag is equal to 1),

tc=teo+ 1 (8-466)

Let Clipl() be a function that is replaced by Cliply() when chromaEdgeFlag is equal to 0 and by Cliplc() when
chromaEdgeFlag is equal to 1.

The filtered result samples p’y and q'y are derived by:

A =Clip3(—tc, te, ((((Qo—Po) <<2)+(p1—q)+4)>>3)) (8-467)
p'o=Clipl(po+A) (8-468)
q'o=Clipl(qo—A) (8-469)

The filtered result sample p’; is derived as follows:

— If chromaStyleFilteringFlag is equal to 0 and a,, is less than f3,

p'1 =p1 + Clip3(—tco, teo, (P2t ((pot Qo+ 1)>>1)—(pr<<1)) >> 1) (8-470)
— Otherwise (chromaStyleFilteringFlag is equal to 1 or a, is greater than or equal to B),

Pi=pi (8-471)

The filtered result sample q'; is derived as follows:

— If chromaStyleFilteringFlag is equal to 0 and a, is less than J3,

q'1=qi * Clip3(—tco, teo, (@ + ((Po+qo+1)>>1)—(qi<<1)) >> 1) (8-472)
— Otherwise (chromaStyleFilteringFlag is equal to 1 or a, is greater than or equal to),

Q1 =q (8-473)
The filtered result samples p', and g, are always set equal to the input samples p, and qy:

p2=p2 (8-474)
q2=q (8-475)
8.7.2.4 Filtering process for edges for bS equal to 4

Inputs to this process are the input sample values p; and g; (i = 0..3) of a single set of samples across an edge that is to be
filtered, chromaEdgeFlag, chromaStyleFilteringFlag, and the values of the threshold variables o and B for the set of
samples, as specified in clause 8.7.2.

Outputs of this process are the filtered result sample values p’; and q'; (i = 0..2) for the set of input sample values.
Let a, and a4 be two threshold variables as specified in Equations 8-463 and 8-464, respectively, in clause 8.7.2.3.
The filtered result samples p’; (i = 0..2) are derived as follows:

— If chromaStyleFilteringFlag is equal to 0 and the following condition holds,
a, <P && Abs(po—qo)<((0>>2)+2) (8-476)
then the variables p'y, p'1, and p'; are derived by:

p'o=(p2+2%p; +2%py +2*%qy +q; +4)>>3 (8-477)

206 Rec. ITU-T H.264 (01/2012)

pi=(p2tpitpotqot2)>>2 (8-478)
p2=(2%p3 +3*pa+pr+potqot4)>>3 (8-479)

— Otherwise (chromaStyleFilteringFlag is equal to 1 or the condition in Equation 8-476 does not hold), the variables
p'o, p'1, and p'; are derived by:

Po=(2*p1+tpo+q+2)>>2 (8-480)
p’l = D1 (8-481)
pha=p> (8-482)

The filtered result samples q'; (i = 0..2) are derived as follows:

— If chromaStyleFilteringFlag is equal to 0 and the following condition holds,
ag<PB && Abs(po—qo) <((a>>2)+2) (8-483)

then the variables q'y, q';, and q', are derived by

q'o=(p1+2%pg+2%qo +2*q; + q2u +4)>>3 (8-484)
q1=(potqotq+q+2)>>2 (8-485)
q2=(2*q3 +3*q+q1 +qotpo+4)>>3 (8-486)

— Otherwise (chromaStyleFilteringFlag is equal to 1 or the condition in Equation 8-483 does not hold), the variables
q'0, q'1, and q'; are derived by:

qo=(2*q +q+p+2)>2 (8-487)

q1=q (8-488)

q2=q (8-489)
9 Parsing process

Inputs to this process are bits from the RBSP.
Outputs of this process are syntax element values.

This process is invoked when the descriptor of a syntax element in the syntax tables in clause 7.3 is equal to ue(v),
me(Vv), se(v), te(v) (see clause 9.1), ce(v) (see clause 9.2), or ae(v) (see clause 9.3).

9.1 Parsing process for Exp-Golomb codes

This process is invoked when the descriptor of a syntax element in the syntax tables in clause 7.3 is equal to ue(v),
me(v), se(v), or te(v). For syntax elements in clauses 7.3.4 and 7.3.5, this process is invoked only when
entropy_coding_mode_flag is equal to 0.

Inputs to this process are bits from the RBSP.
Outputs of this process are syntax element values.

Syntax elements coded as ue(v), me(v), or se(v) are Exp-Golomb-coded. Syntax elements coded as te(v) are truncated
Exp-Golomb-coded. The parsing process for these syntax elements begins with reading the bits starting at the current
location in the bitstream up to and including the first non-zero bit, and counting the number of leading bits that are equal
to 0. This process is specified as follows:
leadingZeroBits = —1
for(b = 0; !b; leadingZeroBits++) 9-1)
b =read bits(1)

The variable codeNum is then assigned as follows:
codeNum = 2'eadineZeroBits _ 1 4 read bits(leadingZeroBits) (9-2)

Rec. ITU-T H.264 (01/2012) 207

where the value returned from read bits(leadingZeroBits) is interpreted as a binary representation of an unsigned
integer with most significant bit written first.

Table 9-1 illustrates the structure of the Exp-Golomb code by separating the bit string into "prefix" and "suffix" bits. The
"prefix" bits are those bits that are parsed in the above pseudo-code for the computation of leadingZeroBits, and are
shown as either 0 or 1 in the bit string column of Table 9-1. The "suffix" bits are those bits that are parsed in the
computation of codeNum and are shown as x; in Table 9-1, with i being in the range 0 to leadingZeroBits — 1, inclusive.
Each x; can take on values O or 1.

Table 9-1 — Bit strings with "prefix" and "suffix" bits and assignment to codeNum ranges (informative)

Bit string form Range of codeNum
1 0
0 1 %, 1.2
0 0 1 x; Xq 3.6
0001 x, X3 Xg 7..14
0000 1 X3 X, X1 Xg 15..30
0 00001 x4 X3 Xy X1 Xo 31..62

Table 9-2 illustrates explicitly the assignment of bit strings to codeNum values.

Table 9-2 — Exp-Golomb bit strings and codeNum in explicit form and used as ue(v) (informative)

Bit string codeNum
1 0
010 1
011 2
00100 3
001001 4
00110 5
00111 6
0001000 7
00010001 8
0001010 9

Depending on the descriptor, the value of a syntax element is derived as follows:
— Ifthe syntax element is coded as ue(v), the value of the syntax element is equal to codeNum.

— Otherwise, if the syntax element is coded as se(v), the value of the syntax element is derived by invoking the
mapping process for signed Exp-Golomb codes as specified in clause 9.1.1 with codeNum as the input.

— Otherwise, if the syntax element is coded as me(v), the value of the syntax element is derived by invoking the
mapping process for coded block pattern as specified in clause 9.1.2 with codeNum as the input.

208 Rec. ITU-T H.264 (01/2012)

— Otherwise (the syntax element is coded as te(v)), the range of possible values for the syntax element is determined
first. The range of this syntax element may be between 0 and x, with x being greater than or equal to 1 and the range
is used in the derivation of the value of the syntax element value as follows:

— If x is greater than 1, codeNum and the value of the syntax element is derived in the same way as for syntax
elements coded as ue(v).

— Otherwise (x is equal to 1), the parsing process for codeNum which is equal to the value of the syntax element
is given by a process equivalent to:

b =read bits(1) (9-3)
codeNum = 'b

9.1.1 Mapping process for signed Exp-Golomb codes
Input to this process is codeNum as specified in clause 9.1.
Output of this process is a value of a syntax element coded as se(v).

The syntax element is assigned to the codeNum by ordering the syntax element by its absolute value in increasing order
and representing the positive value for a given absolute value with the lower codeNum. Table 9-3 provides the
assignment rule.

Table 9-3 — Assignment of syntax element to codeNum for signed Exp-Golomb coded syntax elements se(v)

codeNum | syntax element value

0 0

1 1

2 -1

3 2

4 -2

5 3

6 -3

k (D! Ceil(k+2)

9.1.2 Mapping process for coded block pattern
Input to this process is codeNum as specified in clause 9.1.
Output of this process is a value of the syntax element coded block pattern coded as me(v).

Table 9-4 shows the assignment of coded block pattern to codeNum depending on whether the macroblock prediction
mode is equal to Intra_4x4, Intra_8x8 or Inter.

Rec. ITU-T H.264 (01/2012) 209

Table 9-4 — Assignment of codeNum to values of coded_block_pattern for macroblock prediction modes

(a) ChromaArrayType is equal to 1 or 2

codeNum coded_block_pattern
Intra_4x4, Intra_8x8 Inter
0 47 0
1 31 16
2 15 1
3 0 2
4 23 4
5 27 8
6 29 32
7 30 3
8 7 5
9 11 10
10 13 12
11 14 15
12 39 47
13 43 7
14 45 11
15 46 13
16 16 14
17 3 6
18 5 9
19 10 31
20 12 35
21 19 37
22 21 42
23 26 44
24 28 33
25 35 34
26 37 36
27 42 40
28 44 39
29 1 43
30 2 45

210 Rec. ITU-T H.264 (01/2012)

(a) ChromaArrayType is equal to 1 or 2

codeNum coded_block pattern
Intra_4x4, Intra_8x8 Inter
31 4 46
32 8 17
33 17 18
34 18 20
35 20 24
36 24 19
37 6 21
38 9 26
39 22 28
40 25 23
41 32 27
42 33 29
43 34 30
44 36 22
45 40 25
46 38 38
47 41 41

(b) ChromaArrayType is equal to 0 or 3

codeNum coded_block pattern
Intra_4x4, Intra_8x8 Inter
0 15 0
1 0 1
2 7 2
3 11 4
4 13 8
5 14 3
6 3 5
7 5 10
8 10 12
9 12 15

Rec. ITU-T H.264 (01/2012)

211

(b) ChromaArrayType is equal to 0 or 3

codeNum coded_block pattern
Intra_4x4, Intra_8x8 Inter
10 1 7
11 2 11
12 4 13
13 8 14
14 6 6
15 9 9
9.2 CAVLC parsing process for transform coefficient levels

This process is invoked for the parsing of syntax elements with descriptor equal to ce(v) in clause 7.3.5.3.2 when
entropy_coding_mode_flag is equal to 0.

Inputs to this process are bits from slice data, a maximum number of non-zero transform coefficient levels
maxNumCoeff, the luma block index luma4x4BIkIdx or the chroma block index chroma4x4BIkIdx, cb4x4Blkldx or
cr4x4BIkldx of the current block of transform coefficient levels.

Output of this process is the list coefflLevel containing transform coefficient levels of the luma block with block index
luma4x4BIkIdx or the chroma block with block index chroma4x4BlkIdx, cb4x4BIkIdx or cr4x4BIkIdx.

The process is specified in the following ordered steps:

1. All transform coefficient level values coeffLevel[i], with indices i ranging from 0 to maxNumCoeff — 1, in the
list coeffLevel are set equal to 0.

2. The total number of non-zero transform coefficient levels TotalCoeff(coeff token) and the number of trailing
one transform coefficient levels TrailingOnes(coeff token) are derived by parsing coeff token as specified in
clause 9.2.1.

3. The following then applies:

— If the number of non-zero transform coefficient levels TotalCoeff(coeff token) is equal to 0, the list
coeffLevel (in which all transform coefficient level values are equal to 0) is returned and no further steps are
carried out.

— Otherwise, the following steps are carried out:

a. The non-zero transform coefficient levels are derived by parsing trailing_ones_sign_flag, level prefix,
and level suffix as specified in clause 9.2.2.

b. The runs of zero transform coefficient levels before each non-zero transform coefficient level are
derived by parsing total zeros and run_before as specified in clause 9.2.3.

c. The level and run information are combined into the list coeffLevel as specified in clause 9.2.4.

9.2.1 Parsing process for total number of non-zero transform coefficient levels and number of trailing ones

Inputs to this process are bits from slice data, a maximum number of non-zero transform coefficient levels
maxNumCoeff, the luma block index luma4x4BIkldx or the chroma block index chroma4x4BIlkIdx, cb4x4BIlkIdx or
crd4x4BIlkIdx of the current block of transform coefficient levels.

Outputs of this process are TotalCoeff(coeff token), TrailingOnes(coeff token), and the variable nC.

The syntax element coeff token is decoded using one of the six VLCs specified in the six right-most columns of
Table 9-5. Each VLC specifies both TotalCoeff(coeff token) and TrailingOnes(coeff token) for a given codeword
coeff token. The selection of the applicable column of Table 9-5 is determined by a variable nC. The value of nC is
derived as follows:

212 Rec. ITU-T H.264 (01/2012)

— Ifthe CAVLC parsing process is invoked for ChromaDCLevel, nC is derived as follows:

If ChromaArrayType is equal to 1, nC is set equal to —1,
Otherwise (ChromaArrayType is equal to 2), nC is set equal to —2,

— Otherwise, the following ordered steps are performed:

1.

2
3.
4

5.

When the CAVLC parsing process is invoked for Intral 6x16DCLevel, luma4x4BIkldx is set equal to 0.
When the CAVLC parsing process is invoked for CbIntral6x16DCLevel, cb4x4BIkldx is set equal to 0.
When the CAVLC parsing process is invoked for Crintral 6x16DCLevel, cr4x4BlkIdx is set equal to 0.

The variables blkA and blkB are derived as follows:

— If the CAVLC parsing process is invoked for Intraléx16DCLevel, Intral6x16ACLevel, or
Lumal evel4x4, the process specified in clause 6.4.11.4 is invoked with luma4x4Blkldx as the input,
and the output is assigned to mbAddrA, mbAddrB, luma4x4BIlkIdxA, and luma4x4BlkIdxB. The 4x4
luma block specified by mbAddrA\luma4x4BlkIdxA is assigned to blkA, and the 4x4 luma block

specified by mbAddrB\luma4x4BIkIdxB is assigned to blkB.

— Otherwise, if the CAVLC parsing process is invoked for CblIntraléx16DCLevel,
CbIntral6x16ACLevel, or CbLeveld4x4, the process specified in clause 6.4.11.6 is invoked with
cb4x4Blkldx as the input, and the output is assigned to mbAddrA, mbAddrB, cb4x4BlkldxA, and
cb4x4BlkldxB. The 4x4 Cb block specified by mbAddrA\cb4x4BIkIdxA is assigned to blkA, and the

4x4 Cb block specified by mbAddrB\cb4x4BlkIdxB is assigned to blkB.

— Otherwise, if the CAVLC parsing process is invoked for Crlntraléx16DCLevel,
Crintral6x16ACLevel, or CrLevel4x4, the process specified in clause 6.4.11.6 is invoked with
cr4x4Blkldx as the input, and the output is assigned to mbAddrA, mbAddrB, cr4x4BlkIdxA, and
cr4x4BlkldxB. The 4x4 Cr block specified by mbAddrA\cr4x4BIlkIdxA is assigned to blkA, and the

4x4 Cr block specified by mbAddrB\cr4x4BlkIdxB is assigned to blkB.

— Otherwise (the CAVLC parsing process is invoked for ChromaACLevel), the process specified in
clause 6.4.11.5 is invoked with chroma4x4BlklIdx as input, and the output is assigned to mbAddrA,
mbAddrB, chroma4x4BlkldxA, and chroma4x4BlkldxB. The 4x4 chroma block specified by
mbAddrA\iCbCr\chroma4x4BIkIdxA is assigned to blkA, and the 4x4 chroma block specified by

mbAddrB\iCbCr\chroma4x4BlkIdxB is assigned to blkB.
The variable availableFlagN with N being replaced by A and B is derived as follows:
— If any of the following conditions are true, availableFlagN is set equal to 0:
— mbAddrN is not available,

— the current macroblock is coded wusing an Intra macroblock prediction

mode,

constrained_intra_pred flag is equal to 1, mbAddrN is coded using an Inter macroblock prediction

mode, and slice data partitioning is in use (nal_unit_type is in the range of 2 to 4, inclusive).

— Otherwise, availableFlagN is set equal to 1.

6. For N being replaced by A and B, when availableFlagN is equal to 1, the variable nN is derived as follows:

— If any of the following conditions are true, nN is set equal to 0:

— The macroblock mbAddrN has mb_type equal to P_Skip or B_Skip,

— The macroblock mbAddrN has mb_type not equal to I PCM and all AC residual transform
coefficient levels of the neighbouring block blkN are equal to 0 due to the corresponding bit of

CodedBlockPatternLuma or CodedBlockPatternChroma being equal to 0.
— Otherwise, if mbAddrN is an I PCM macroblock, nN is set equal to 16.
— Otherwise, nN is set equal to the value TotalCoeff(coeff token) of the neighbouring block blkN.

NOTE 1 — The values nA and nB that are derived using TotalCoeff(coeft token) do not include the DC
transform coefficient levels in Intra 16x16 macroblocks or DC transform coefficient levels in chroma blocks,
because these transform coefficient levels are decoded separately. When the block above or to the left belongs to
an Intra_16x16 macroblock, nA or nB is the number of decoded non-zero AC transform coefficient levels for the

adjacent 4x4 block in the Intra_16x16 macroblock. When the block above or to the left is a chroma block,

nB is the number of decoded non-zero AC transform coefficient levels for the adjacent chroma block.

Rec. ITU-T H.264 (01/2012)

nA or

213

NOTE 2 — When parsing for Intral6x16DCLevel, CbIntral6x16DCLevel, or Crintral6x16DCLevel, the values
nA and nB are based on the number of non-zero transform coefficient levels in adjacent 4x4 blocks and not on
the number of non-zero DC transform coefficient levels in adjacent 16x16 blocks.

7. The variable nC is derived as follows:

If availableFlagA is equal to 1 and availableFlagB is equal to 1, the variable nC is set equal to
(nA+nB+1)>>1.

Otherwise, if availableFlagA is equal to 1 (and availableFlagB is equal to 0), the variable nC is set
equal to nA.

Otherwise, if availableFlagB is equal to 1 (and availableFlagA is equal to 0), the variable nC is set
equal to nB.

Otherwise (availableFlagA is equal to 0 and availableFlagB is equal to 0), the variable nC is set equal
to 0.

When maxNumCoeff is equal to 15, it is a requirement of bitstream conformance that the value of
TotalCoeff(coeff token) resulting from decoding coeff token shall not be equal to 16.

Table 9-5 — coeff_token mapping to TotalCoeff(coeff token) and TrailingOnes(coeff token)

E’g %;' 0<=nC<2 2<=nC<4 4<=nC<8 |8<=nC | nC==-1 nC==-2
F8 S g
=2 S
0 0 1 11 111 0000 11 | 01 1
0 1 0001 01 0010 11 0011 11 000000 | 000111 | 0001 111
1 1 01 10 1110 000001 | 1 01
0 2 0000 0111 0001 11 0010 11 000100 | 000100 | 0001 110
1 2 0001 00 0011 1 0111 1 000101 | 000110 | 0001 101
2 2 001 011 1101 0001 10 | 001 001
0 3 0000 0011 1 0000 111 0010 00 001000 | 000011 | 0000 0011 1
1 3 0000 0110 0010 10 01100 001001 | 0000011 | 0001 100
2 3 0000 101 0010 01 01110 0010 10 | 0000010 | 0001 011
3 3 0001 1 0101 1100 0010 11 | 000101 | 0000 1
0 4 0000 0001 11 0000 0111 0001 111 001100 | 000010 | 000000110
1 4 0000 0011 0 0001 10 01010 001101 | 00000011 | 0000 0010 1
2 4 0000 0101 0001 01 0101 1 001110 | 00000010 | 0001 010
3 4 0000 11 0100 1011 0011 11 | 0000000 | 0000 01
0 5 0000 0000 111 0000 0100 0001 011 010000 | - 0000 0001 11
1 5 0000 0001 10 0000 110 0100 0 010001 | - 0000 0001 10
2 5 0000 0010 1 0000 101 0100 1 010010 | - 0000 0010 0
3 5 0000 100 00110 1010 0100 11 | - 0001 001
0 6 0000 0000 0111 1 0000 0011 1 0001 001 010100 | - 0000 0000 111
1 6 0000 0000 110 0000 0110 0011 10 010101 | - 0000 0000 110
2 6 0000 0001 01 0000 0101 0011 01 010110 | - 0000 0001 01
3 6 0000 0100 0010 00 1001 0101 11 | - 0001 000
0 7 0000 0000 0101 1 0000 0001 111 0001 000 011000 | - 0000 0000 0111

214 Rec. ITU-T H.264 (01/2012)

Table 9-5 — coeff token mapping to TotalCoeff(coeff token) and TrailingOnes(coeff token)

E’;. %Q' 0<=nC<2 2<=nC <4 4<=nC<8 | 8<=nC nC==-2
7 0000 0000 0111 0 0000 0011 0 0010 10 0110 01 0000 0000 0110
7 0000 0000 101 0000 0010 1 0010 01 0110 10 0000 0000 101
7 0000 0010 0 0001 00 1000 0110 11 0000 0001 00
8 0000 0000 0100 0 0000 0001 011 0000 1111 0111 00 0000 0000 0011 1
8 0000 0000 0101 0 0000 0001 110 0001 110 011101 0000 0000 0101
8 0000 0000 0110 1 0000 0001 101 0001 101 011110 0000 0000 0100
8 0000 0001 00 0000 100 0110 1 011111 0000 0000 100
9 0000 0000 0011 11 | 0000 0000 1111 0000 1011 1000 00 -

9 0000 0000 0011 10 | 0000 0001 010 0000 1110 1000 01 -
9 0000 0000 0100 1 0000 0001 001 0001 010 1000 10 -
9 0000 0000 100 0000 0010 0 0011 00 1000 11 -
10 0000 0000 0010 11 | 0000 0000 1011 000001111 | 1001 00 -
10 0000 0000 0010 10 | 0000 0000 1110 0000 1010 1001 01 -
10 0000 0000 001101 | 0000 0000 1101 0000 1101 1001 10 -
10 0000 0000 0110 0 0000 0001 100 0001 100 1001 11 -
11 0000 0000 0001 111 | 0000 0000 1000 0000 01011 | 1010 00 -
11 0000 0000 0001 110 | 0000 0000 1010 000001110 | 101001 -
11 0000 0000 0010 01 0000 0000 1001 0000 1001 1010 10 -
11 0000 0000 001100 | 0000 0001 000 0000 1100 1010 11 -
12 0000 0000 0001 011 | 0000 0000 0111 1 | 000001000 | 1011 00 -
12 0000 0000 0001 010 | 0000 0000 01110 | 000001010 | 1011 01 -
12 0000 0000 0001 101 | 0000 0000 01101 | 000001101 | 1011 10 -
12 0000 0000 0010 00 | 0000 0000 1100 0000 1000 1011 11 -
13 0000 0000 0000 1111 | 0000 0000 0101 1 | 0000 0011 01 | 1100 00 -
13 0000 0000 0000 001 | 0000 0000 0101 0 | 0000 0011 1 | 1100 01 -
13 0000 0000 0001 001 | 0000 0000 0100 1 | 000001001 | 1100 10 -
13 0000 0000 0001 100 | 0000 0000 01100 | 000001100 | 1100 11 -
14 0000 0000 0000 1011 | 0000 0000 0011 1 | 0000 0010 01 | 1101 00 -
14 0000 0000 0000 1110 | 0000 0000 0010 11 | 0000 0011 00 | 1101 01 -
14 0000 0000 0000 1101 | 0000 0000 00110 | 00000010 11 | 1101 10 -
14 0000 0000 0001 000 | 0000 0000 0100 0 | 0000 0010 10 | 1101 11 -
15 0000 0000 0000 0111 | 0000 0000 0010 01 | 0000 0001 01 | 1110 00 -
15 0000 0000 0000 1010 | 0000 0000 0010 00 | 0000 0010 00 | 1110 01 -
15 0000 0000 0000 1001 | 0000 0000 0010 10 | 0000 0001 11 | 1110 10 -

Rec. ITU-T H.264 (01/2012)

215

Table 9-5 — coeff token mapping to TotalCoeff(coeff token) and TrailingOnes(coeff token)

25 | 53
Qe °Z
E:' 9:\ 0<=nC<2 2<=nC<4 4<=nC<8 8§<=nC | nC==-1 nC==-2
=5 £
Zs | =8
3 15 0000 0000 0000 1100 | 0000 0000 0000 1 0000 0001 10 | 111011 | - -
0 16 0000 0000 0000 0100 | 0000 0000 0001 11 | 0000 000001 | 111100 | - -
1 16 0000 0000 0000 0110 | 0000 0000 0001 10 | 0000 0001 00 | 111101 | - -
2 16 0000 0000 0000 0101 | 0000 0000 0001 01 | 0000 0000 11 | 111110 | - -
3 16 0000 0000 0000 1000 | 0000 0000 0001 00 | 0000 0000 10 | 111111 | - -

9.2.2 Parsing process for level information

Inputs to this process are bits from slice data, the number of non-zero transform coefficient levels
TotalCoeff(coeff token), and the number of trailing one transform coefficient levels TrailingOnes(coeff token).

Output of this process is a list with name levelVal containing transform coefficient levels.

Initially an index i is set equal to 0. Then, when TrailingOnes(coeff token) is not equal to 0, the following ordered steps
are applied TrailingOnes(coeff token) times to decode the trailing one transform coefficient levels:

1. A 1-bit syntax element trailing_ones_sign flag is decoded and evaluated as follows:
— Iftrailing_ones sign flag is equal to 0, levelVal[i] is set equal to 1.
— Otherwise (trailing_ones_sign flag is equal to 1), levelVal[i] is set equal to —1.
2. The index i is incremented by 1.
Then, the variable suffixLength is initialised as follows:

— If TotalCoeff(coeff token) is greater than 10 and TrailingOnes(coeff token) is less than 3, suffixLength is set
equal to 1.

— Otherwise (TotalCoeff(coeff token) is less than or equal to 10 or TrailingOnes(coeff token) is equal to 3),
suffixLength is set equal to 0.

Then, when TotalCoeff(coeff token) — TrailingOnes(coeff token) is not equal to 0, the following ordered steps are
applied TotalCoeff(coeff token) — TrailingOnes(coeff token) times to decode the remaining non-zero level values:

1. The syntax element level prefix is decoded as specified in clause 9.2.2.1.

2. The variable levelSuffixSize is set as follows:
— Iflevel prefix is equal to 14 and suffixLength is equal to 0, levelSuffixSize is set equal to 4.
— Otherwise, if level prefix is greater than or equal to 15, levelSuffixSize is set equal to level prefix — 3.
— Otherwise, levelSuffixSize is set equal to suffixLength.

3. The syntax element level suffix is decoded as follows:

— IflevelSuffixSize is greater than 0, the syntax element level suffix is decoded as unsigned integer
representation u(v) with levelSuffixSize bits.

— Otherwise (levelSuffixSize is equal to 0), the syntax element level suffix is inferred to be equal to 0.
The variable levelCode is set equal to (Min(15, level prefix) << suffixLength) + level suffix.
When level prefix is greater than or equal to 15 and suffixLength is equal to 0, levelCode is incremented by 15.

When level prefix is greater than or equal to 16, levelCode is incremented by (1<<(level prefix — 3)) — 4096.

NSy ok

When the index i is equal to TrailingOnes(coeff token) and TrailingOnes(coeff token) is less than 3,
levelCode is incremented by 2.

216 Rec. ITU-T H.264 (01/2012)

8. The variable levelVal[i] is derived as follows:

— IflevelCode is an even number, levelVal[i] is set equal to (levelCode +2) >> 1.

— Otherwise (levelCode is an odd number), levelVal[i] is set equal to (—levelCode — 1) >> 1.
9. When suffixLength is equal to 0, suffixLength is set equal to 1.

10. When the absolute value of levelVal[i | is greater than (3 << (suffixLength — 1)) and suffixLength is less
than 6, suffixLength is incremented by 1.

11. The index i is incremented by 1.

9.2.2.1 Parsing process for level_prefix
Inputs to this process are bits from slice data.
Output of this process is level prefix.

The parsing process for this syntax element consists in reading the bits starting at the current location in the bitstream up
to and including the first non-zero bit, and counting the number of leading bits that are equal to 0. This process is
specified as follows:

leadingZeroBits = —1

for(b = 0; !b; leadingZeroBits++) (9-4)
b =read bits(1)

level prefix = leadingZeroBits

Table 9-6 illustrates the codeword table for level prefix.
NOTE — The value of level prefix is constrained to not exceed 15 in bitstreams conforming to the Baseline, Constrained Baseline,
Main, and Extended profiles, as specified in clauses A.2.1, A.2.1.1, A.2.2, and A.2.3, respectively. In bitstreams conforming to
other profiles, it has been reported that the value of level prefix cannot exceed 11 + bitDepth with bitDepth being the variable
BitDepthy for transform coefficient blocks related to the luma component and being the variable BitDepthc for transform
coefficient blocks related to a chroma component.

Table 9-6 — Codeword table for level prefix (informative)

level prefix | bit string
0 1
1 01
2 001
3 0001
4 0000 1
5 0000 01
6 0000 001
7 0000 0001
8 0000 0000 1
9 0000 0000 01
10 0000 0000 001
11 0000 0000 0001
12 0000 0000 0000 1
13 0000 0000 0000 01
14 0000 0000 0000 001
15 0000 0000 0000 0001

Rec. ITU-T H.264 (01/2012) 217

9.2.3 Parsing process for run information

Inputs to this process are bits from slice data, the number of non-zero transform coefficient levels
TotalCoeff(coeff token), and the maximum number of non-zero transform coefficient levels maxNumCoeff.

Output of this process is a list of runs of zero transform coefficient levels preceding non-zero transform coefficient levels
called runVal.

Initially, an index i is set equal to 0.
The variable zerosLeft is derived as follows:

— If the number of non-zero transform coefficient levels TotalCoeff(coeff token) is equal to the maximum number
of non-zero transform coefficient levels maxNumCoeff, a variable zerosLeft is set equal to 0.

— Otherwise (the number of non-zero transform coefficient levels TotalCoeff(coeff token) is less than the maximum
number of non-zero transform coefficient levels maxNumCoeff), total zeros is decoded and zerosLeft is set equal to
its value.

The variable tzVIcIndex is set equal to TotalCoeff(coeff token).
The VLC used to decode total zeros is derived as follows:
— If maxNumCoeff is equal to 4, one of the VLCs specified in Table 9-9 (a) is used.
— Otherwise, if maxNumCoeff is equal to 8, one of the VLCs specified in Table 9-9 (b) is used.
— Otherwise (maxNumCoeff is not equal to 4 and not equal to 8), VLCs from Tables 9-7 and 9-8 are used.
The following ordered steps are then performed TotalCoeff(coeff token) — 1 times:
1. The variable runVal[i] is derived as follows:

— If zerosLeft is greater than zero, a value run before is decoded based on Table 9-10 and zerosLeft.
runVal[i] is set equal to run_before.

— Otherwise (zerosLeft is equal to 0), runVal[i] is set equal to 0.

2. The value of runVal[i] is subtracted from zerosLeft and the result is assigned to zerosLeft. It is a requirement of
bitstream conformance that the result of the subtraction shall be greater than or equal to 0.

3. The index i is incremented by 1.

Finally the value of zerosLeft is assigned to runVal[i].

218 Rec. ITU-T H.264 (01/2012)

Table 9-7 — total_zeros tables for 4x4 blocks with tzVicIndex 1 to 7

total zeros tzVicIndex
1 2 3 4 5 6 7
0 1 111 0101 0001 1 | 0101 0000 01 | 0000 01
1 011 110 111 111 0100 00001 | 00001
2 010 101 110 0101 0011 111 101
3 0011 100 101 0100 111 110 100
4 0010 011 0100 110 110 101 011
5 0001 1 0101 0011 101 101 100 11
6 0001 0 0100 100 100 100 011 010
7 0000 11 0011 011 0011 011 010 0001
8 0000 10 0010 0010 011 0010 0001 001
9 0000 011 00011 | 00011 | 0010 0000 1 | 001 0000 00
10 0000010 00010 | 00010 | 00010 | 0001 0000 00 | -
11 0000 0011 0000 11 | 000001 | 00001 | 00000 | - -
12 0000 0010 0000 10 | 00001 | 00000 | - - -
13 0000 0001 1 | 000001 | 000000 | - - - -
14 0000 0001 0 | 000000 | - - - - -
15 0000 0000 1 | - - - - - -

Table 9-8 — total_zeros tables for 4x4 blocks with tzVicIndex 8 to 15

total_zeros tzVicIndex
8 9 10 11 12 13 14115

0 0000 01 | 000001 | 0000 1 | 0000 | 0000 [000 | 00 | O
1 0001 0000 00 | 00000 [0001 [0001 | 001 | O1 | 1
2 00001 | 0001 001 001 | 01 1 1 |-
3 011 11 11 010 |1 o1 | - -
4 11 10 10 1 001 | - - -
5 10 001 01 011 | - - - -
6 010 01 0001 - - - - -
7 001 00001 | - - - - - -
8 0000 00 | - - - - - - -

Rec. ITU-T H.264 (01/2012)

219

Table 9-9 — total_zeros tables for chroma DC 2x2 and 2x4 blocks

(a) Chroma DC 2x2 block (4:2:0 chroma sampling)

tzVicIndex
total zeros
1 2 3
0 1 1 1
1 01 01 0
2 001 00 -
3 000 - -

(b) Chroma DC 2x4 block (4:2:2 chroma sampling)

tzVlcIndex
total_zeros

1 2 3 4 5 6 7
0 1 000 000 110 00 00 0
1 010 01 001 00 01 01 1
2 011 001 01 01 10 1 -
3 0010 100 10 10 11 - -
4 0011 101 110 111 - - -
5 0001 110 111 - - - -
6 00001 | 111 - - - - -
7 00000 | - - - - - -

220 Rec. ITU-T H.264 (01/2012)

Table 9-10 — Tables for run_before

run_before | zerosLeft
112 |3 |4 5 6 >6
0 1|1 | 11|11 |11 |11 | 111
1 0{01|10]|10 |10 | 000 | 110
2 -100|01]|01 |oOIl]o001 | 101
3 - |- |00]| 001|010 |01l | 100
4 - |- |- |000] 001|010 o011
5 - - - - 000 | 101 | 010
6 - - - - - 100 | 001
7 - - -] - - 0001
8 S - - 00001
9 - -] - - - 000001
10 - - -] - - 0000001
11 - - - - - - 00000001
12 - - - - - - 000000001
13 - - -] - - 0000000001
14 - - - - - 00000000001

9.2.4 Combining level and run information

Input to this process are a list of transform coefficient levels called levelVal, a list of runs called runVal, and the number
of non-zero transform coefficient levels TotalCoeff(coeff token).

Output of this process is an list coeffLevel of transform coefficient levels.

A variable coeffNum is set equal to —1 and an index i is set equal to TotalCoeff(coeff token)— 1. The following
ordered steps are then applied TotalCoeff(coeff token) times:

1. coeffNum is incremented by runVal[i]+ 1.
2. coeffLevel[coeffNum] is set equal to levelVal[i].

3. The index i is decremented by 1.

9.3 CABAC parsing process for slice data

This process is invoked when parsing syntax elements with descriptor ae(v) in clauses 7.3.4 and 7.3.5 when
entropy_coding_mode flag is equal to 1.

Inputs to this process are a request for a value of a syntax element and values of prior parsed syntax elements.
Output of this process is the value of the syntax element.

When starting the parsing of the slice data of a slice in clause 7.3.4, the initialisation process of the CABAC parsing
process is invoked as specified in clause 9.3.1.

The parsing of syntax elements proceeds as follows.
For each requested value of a syntax element a binarization is derived as described in clause 9.3.2.

The binarization for the syntax element and the sequence of parsed bins determines the decoding process flow as
described in clause 9.3.3.

Rec. ITU-T H.264 (01/2012) 221

For each bin of the binarization of the syntax element, which is indexed by the variable binldx, a context index ctxIdx is
derived as specified in clause 9.3.3.1.

For each ctxIdx the arithmetic decoding process is invoked as specified in clause 9.3.3.2.

The resulting sequence (by..byingx) Of parsed bins is compared to the set of bin strings given by the binarization process
after decoding of each bin. When the sequence matches a bin string in the given set, the corresponding value is assigned
to the syntax element.

In case the request for a value of a syntax element is processed for the syntax element mb_type and the decoded value of
mb_type is equal to I PCM, the decoding engine is initialised after the decoding of any pcm_alignment_zero bit and all
pcm_sample luma and pcm_sample chroma data as specified in clause 9.3.1.2.

The whole CABAC parsing process is illustrated in the flowchart of Figure 9-1 with the abbreviation SE for syntax
element.

222 Rec. ITU-T H.264 (01/2012)

< CABACParsing(SE) >

First SE in
slice ?

Yes

L 4

Initialization of
context variables

v

Initialization of
decoding engine

No

&
<
y

A

Get Binarization(SE)

binldx++

v
Get ctxldx(binldx)

v No

DecodeBin(ctxIdx)

(bU""”bbinIdx) in
Binarization(SE) ?

SE == mb_type

&& value(b,....by;6)==
I_PCM?

Yes

v

Initialization of
decoding engine

No

A

Done
H.264(09)_F9-1

Figure 9-1 — Illustration of CABAC parsing process for a syntax element SE (informative)

9.3.1 Initialisation process
Outputs of this process are initialised CABAC internal variables.

The processes in clauses 9.3.1.1 and 9.3.1.2 are invoked when starting the parsing of the slice data of a slice in
clause 7.3.4.

The process in clause 9.3.1.2 is also invoked after decoding any pcm_alignment zero_ bit and all pcm_sample luma and
pcm_sample chroma data for a macroblock of type I PCM.

Rec. ITU-T H.264 (01/2012) 223

9.3.1.1 Initialisation process for context variables
Outputs of this process are the initialised CABAC context variables indexed by ctxIdx.

Tables 9-12 to 9-33 contain the values of the variables n and m used in the initialisation of context variables that are
assigned to all syntax elements in clauses 7.3.4 and 7.3.5 except for the end-of-slice flag.

For each context variable, the two variables pStateldx and valMPS are initialised.

NOTE 1 — The variable pStateldx corresponds to a probability state index and the variable valMPS corresponds to the value of the
most probable symbol as further described in clause 9.3.3.2.

The two values assigned to pStateldx and vaIMPS for the initialisation are derived from SliceQPy, which is derived in
Equation 7-29. Given the two table entries (m, n), the initialisation is specified by the following pseudo-code process:

preCtxState = Clip3(1, 126, ((m * Clip3(0, 51, SliceQPy))>>4)+n)
if(preCtxState <= 63) {
pStateldx = 63 — preCtxState

valMPS = 0 (9-3)
} else {

pStateldx = preCtxState — 64

valMPS =1

}

In Table 9-11, the ctxIdx for which initialisation is needed for each of the slice types are listed. Also listed is the table
number that includes the values of m and n needed for the initialisation. For P, SP and B slice type, the initialisation
depends also on the value of the cabac_init_idc syntax element. Note that the syntax element names do not affect the
initialisation process.

224 Rec. ITU-T H.264 (01/2012)

Table 9-11 — Association of ctxIdx and syntax elements for each slice type in the initialisation process

Slice type
Syntax element Table
SI 1 P, SP B
. Table 9-13
- mb_skip_flag Table 9-14 11..13 24..26
slice_data()
mb_field decoding_flag Table 9-18 70..72 70..72 70..72 70..72
Table 9-12
mb_type Table 9-13 0..10 3..10 14..20 27..35
Table 9-14
transform_size 8x8 flag Table 9-16 na 399..401 399..401 399..401
macroblock layer()
coded_block_pattern (luma) Table 9-18 73..76 73..76 73..76 73..76
coded_block_pattern (chroma) Table 9-18 77..84 77..84 77..84 77..84
mb_qp_delta Table 9-17 60..63 60..63 60..63 60..63
prev_intra4x4 pred_mode_flag Table 9-17 68 68 68 68
rem_intra4x4_pred_mode Table 9-17 69 69 69 69
mb_pred() prev_intra8x8 pred_mode flag Table 9-17 na 68 68 68
rem_intra8x8_pred_mode Table 9-17 na 69 69 69
intra_chroma_pred_mode Table 9-17 64..67 64..67 64..67 64..67
ref idx_10 Table 9-16 54..59 54..59
ref_idx 11 Table 9-16 54..59
mb_pred() and mvd _10[][][0] Table 9-15 40..46 40..46
sub_mb_pred() mvd 11[][][0] Table 9-15 40..46
mvd 10[][][1] Table 9-15 47.53 47.53
mvd 11[][][1] Table 9-15 47.53
Table 9-13
sub_mb_pred() sub_mb_type[] 21..23 36..39
Table 9-14
Rec. ITU-T H.264 (01/2012) 225

Table 9-11 — Association of ctxIdx and syntax elements for each slice type in the initialisation process

Slice type
Syntax element Table
SI I P, SP B

Table 9-18 85..104 85..104 85..104 85..104

coded block flag Table 9-25 460..483 460..483 460..483 460..483
Table 9-33 1012..1023 | 1012..1023 | 1012..1023

Table 9-19 105..165 105..165 105..165 105..165

Table 9-22 277..337 277..337 277..337 277..337

Table 9-24 402..416 402..416 402..416

significant_coeff flag] | Table 9-24 436..450 436..450 436..450

- - Table 9-26 484..571 484..571 484..571

Table 9-30 776..863 776..863 776..863

Table 9-28 660..689 660..689 660..689

Table 9-29 718..747 718..747 718..747

residual_block cabac() Table 9-20 166..226 166..226 166..226 166..226

Table 9-23 338..398 338..398 338..398 338..398

Table 9-24 417..425 417..425 417..425

last_significant_coeff flag[| Table 9-24 451..459 451..459 451..459

- - - Table 9-27 572..659 572..659 572..659

Table 9-31 864..951 864..951 864..951

Table 9-28 690..707 690..707 690..707

Table 9-29 748..765 748..765 748..765

Table 9-21 227.275 227.275 227..275 227.275

Table 9-24 426..435 426..435 426..435

coeff abs level minusl[] Table 9-32 952..1011 952..1011 952..1011

Table 9-28 708..717 708..717 708..717

Table 9-29 766..775 766..775 766..775

NOTE 2 - ctxIdx equal to 276 is associated with the end of slice flag and the bin of mb_type, which specifies the I PCM
macroblock type. The decoding process specified in clause 9.3.3.2.4 applies to ctxldx equal to 276. This decoding process,
however, may also be implemented by using the decoding process specified in clause 9.3.3.2.1. In this case, the initial values
associated with ctxIdx equal to 276 are specified to be pStateldx =63 and valMPS =0, where pStateldx =63 represents a
non-adapting probability state.

Table 9-12 — Values of variables m and n for ctxIdx from 0 to 10

e e . ctxIdx
Initialisation

variables 0 1 2 3 4 5 6 7 8 9 10
m 20 2 3 20 2 3 -28 -23 -6 -1 7
n -15 54 74 -15 54 74 127 104 53 54 51

Table 9-13 — Values of variables m and n for ctxIdx from 11 to 23

Value of Initialisation ctxldx
cabac_ini¢ ide | varables 11 2| 13| 14 | 15| 16 | 17 18 | 19 | 20 | 21 2 | 23
0 m 23 | 23 | 21 1 0o | 37| 5 | -13] -1 1 2| -4 | 17
n 33 2 0 9 49 | 118 | 57 | 78 | 65 | 62 | 49 | 73 | 50
1 m 2 | 34 | 16 | = 4 | 29| 2 -6 | -13 | s 9 3 | 10
n 25 0 0 9 41 |18 | 65 | 71 | 19 | 52 | s0 | 70 | 54
2 m 29 | 25 | 14 | -10 | 3 | 27| 26 | -4 | 24| 5 6 | -17 | 14
n 16 0 0 51 6 | 99 | 16 | 8 | 102 | 57 | 57 | 13 | 57

226 Rec. ITU-T H.264 (01/2012)

Table 9-14 — Values of variables m and n for ctxIdx from 24 to 39

Value of Initialisatio ctxldx
cabac_init ide | mvariables |\) | 55 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 30
0 m 18 9 | 202 |16 ° ;4 ;)2 1 ;1 *11 1| -6 771 -6 | 9
n 64 43 0 67 90 104 | 127 | 104 | 67 78 65 62 86 95 61 45
! m 26 | 19| 40 | 57| 41| % ;4 ;1 -4 | -6 ;1 5 6 ;1 0 8
n 34 22 0 2 36 69 127 | 101 76 71 79 52 69 90 52 43
2 m 20 | 20 | 29 | 54 |37 | 2 _23 _22 -2 | -4 _42 5 | -6 _41 - | 4
n 40 10 0 0 42 97 127 | 117 | 74 85 102 | 57 93 88 44 55
Table 9-15 — Values of variables m and n for ctxIdx from 40 to 53
Value of Initialisation ctxldx
cabac_init_ide | variables 40 | 41 |2 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53
0 m -3 -6 —11 6 7 =5 2 0 -3 -10 5 4 -3 0
n 69 81 96 55 67 86 88 58 76 94 54 69 81 88
1 m -2 -5 =10 2 2 -3 -3 1 -3 -6 0 -3 =7 =5
n 69 82 96 59 75 87 100 56 74 85 59 81 86 95
2 m -11 -15 —21 19 20 4 6 1 -5 -13 5 6 -3 -1
n 89 | 103 | 116 | 57 | 58 | 84 96 63 85 | 106 | 63 | 75 90 | 101
Table 9-16 — Values of variables m and n for ctxIdx from 54 to 59, and 399 to 401
ctxIdx
Value of cabac_init_idc | Initialisation variables
54 | 55 | 56 | 57 58 [59 | 399 | 400 | 401
I slices m na | na | na na na | na | 31 31 25
n na | na | na na na | na | 21 31 50
0 m 7| -5|-4| -5 |-7| 1| 12|11 | 14
n 67 | 74 | 74 80 72 | 58 | 40 51 59
1 m -1 | -1 1 -2 |51 0 25 21 21
n 66 | 77 | 70 86 72 | 61 32 49 54
2 m 3 -4 | 2| -12 | =7 1 21 19 17
n 55179 | 75 97 50 | 60 | 33 50 61
Rec. ITU-T H.264 (01/2012) 227

228

Table 9-17 — Values of variables m and n for ctxIdx from 60 to 69

Initialisation ctxldx

variables 60 61 62 63 64 65 66 67 68 69
m 0 0 0 0 -9 4 0 -7 13 3
n 41 63 63 63 83 86 97 7 41 62

Table 9-18 — Values of variables m and n for ctxIdx from 70 to 104

I and SI Value of cabac_init_idc Value of cabac_init_idc
slices 1 al,ld SI
ctxldx 1 ctxtdx | SHees 0 1

m n m n m n m n m n m n m n m n
70 0 11 0 45 13 15 7 34 88 -11 | 115 | -13 | 108 | —4 92 5 78
71 1 55 -4 78 7 51 -9 88 89 -12 | 63 -3 46 0 39 | -6 55
72 0 69 -3 96 2 80 | —20 | 127 90 -2 68 -1 65 0 65 4 61
73 =17 | 127 | =27 | 126 | =39 | 127 | =36 | 127 91 -15 | 84 -1 57 | -15 | 84 | —-14 | 83
74 —13 1102 | 28 | 98 | =18 | 91 | —17 | 91 92 -13 | 104 | -9 93 | =35 | 127 | =37 | 127
75 0 82 | 25 | 101 | =17 | 96 | —14 | 95 93 -3 70 -3 74 | 2 73 =5 79
76 =7 74 | 23 | 67 | 26| 81 | 25| 84 94 -8 93 -9 92 | —12 | 104 | —11 | 104
77 —21 | 107 | =28 | 82 | =35 | 98 | —25 | 86 95 -10 | 90 | -8 87 -9 91 | -11 | 91
78 =27 | 127 | =20 | 94 | 24 | 102 | 12 | 89 96 =30 | 127 | =23 | 126 | =31 | 127 | =30 | 127
79 =31 | 127 | -16 | 83 | —23 | 97 | -17 | 91 97 -1 74 5 54 3 55 0 65
80 =24 | 127 | =22 | 110 | =27 | 119 | =31 | 127 98 -6 97 6 60 7 56 | 2 79
81 =18 | 95 | 21| 91 | 24| 99 | —-14 | 76 99 =7 91 6 59 7 55 0 72
82 =27 | 127 | =18 | 102 | =21 | 110 | —18 | 103 100 =20 | 127 6 69 8 61 —4 92
83 =21 | 114 | -13 | 93 | —-18 | 102 | =13 | 90 101 —4 56 -1 48 -3 53) 56
84 =30 | 127 | =29 | 127 | =36 | 127 | =37 | 127 102 =5 82 0 68 0 68 3 68
85 =17 | 123 | =7 92 0 80 11 80 103 =7 76 -4 69 =7 74 | -8 71
86 -12 | 115 | =5 89 =5 89 5 76 104 —22 | 125 | -8 88 -9 88 | —13 | 98
87 -16 | 122 | -7 96 -7 94 2 84

Rec. ITU-T H.264 (01/2012)

Table 9-19 — Values of variables m and n for ctxIdx from 105 to 165

I and SI Value of cabac_init_idc Value of cabac_init_idc
. I and SI
slices slices
ctxIdx 0 1 2 ctxIdx 0 1 2
m n m n m n m n m n m n m n m n
105 =7 93 -2 85 | 13 | 103 | —4 | 86 136 —13 | 101 5 53 0 58 | -5 75

106 -11 | 87 —6 78 | -13 | 91 | —12 | 88 137 -13 | 91 -2 |6l | -1 [60]| -8 80

107 -3 77 -1 75 -9 89 -5 | 82 138 -12 | 94 0 56 | 3 | 61| 21| 8
108 -5 71 -7 77 | —14 | 92 -3 | 72 139 —10 | 88 0 56 | -8 | 67 | 21 | 64
109 —4 63 2 54 -8 76 -4 | 67 140 —-16 | 84 | —13 | 63 | —25 | 84 | —13 | 31
110 —4 68 5 50 | -12 | 87 -8 | 72 141 —10 | 86 -5 | 60| 14 | 74 | 25 | 64
111 -12 | 84 -3 68 | —23 | 110 | —16 | &9 142 -7 83 -1 [62| =5 [65| 29| %
112 -7 62 1 50 | 24 [105 | -9 | 69 143 -13 | 87 4 57 5 52 9 75
113 -7 65 6 42 | -10 | 78 -1 |59 144 -19 | 94 -6 | 69 2 57 | 17 63

114 8 61 —4 81 | —20 | 112 5 66 145 1 70 4 57 0 61 | —8 74

115 5 56 1 63 | —17 | 99 4 57 146 0 72 14 139 -9 69| -5 35

116 -2 66 —4 70 | 78 | 127 | -4 | 71 147 -5 74 4 51| —-11 70| —2 27

117 1 64 0 67 | 70 | 127 | =2 | 71 148 18 59 13 1 68| 18 | 55| 13 91

118 0 61 2 57 | =50 | 127 2 58 149 -8 | 102 3 64| -4 | 71 3 65

119 -2 78 -2 76 | —46 | 127 | -1 | 74 150 —15 | 100 1 61 0 58 | -7 69

120 1 50 11 35 —4 66 -4 | 44 151 0 95 9 63 7 61 8 77

121 7 52 4 64 -5 78 -1 | 69 152 —4 75 7 50 9 41 | —10 | 66

122 10 35 1 61 —4 71 0 62 153 2 72 16 | 39| 18 | 25 3 62

123 0 44 11 35 -8 72 -7 | 51 154 -11 | 75 5 44 9 32| 3 68

124 11 38 18 25 2 59 -4 | 47 155 -3 71 4 52 5 43 | —20 | 81

125 1 45 12 24 -1 55 -6 | 42 156 15 46 11 | 48 9 47 0 30

126 0 46 13 29 -7 70 -3 | 41 157 -13 | 69 -5 | 60 0 44 1 7

127 5 44 13 36 -6 75 -6 | 53 158 0 62 -1 |59 0 51 3 23

128 31 17 | —-10 | 93 -8 89 8 76 159 0 65 0 59 2 46 | 21 | 74

129 1 51 -7 73 | 34 | 119 | -9 | 78 160 21 37 22 33| 19 | 38| 16 66

130 7 50 -2 73 -3 75 | —11 | 83 161 -15 | 72 5 44 | -4 | 66 | —23 | 124

131 28 19 13 46 32 20 9 52 162 9 57 14 | 43| 15 | 38| 17 37

132 16 33 9 49 30 22 0 67 163 16 54 -1 | 78 | 12 | 42 | 44 | —18

133 14 62 =7 | 100 | —44 | 127 | =5 | 90 164 0 62 0 60 9 34| 50 | 34

134 —13 | 108 9 53 0 54 1 67 165 12 72 9 69 0 89 | 22| 127

135 —15 | 100 2 53 -5 61 | —15 | 72

Rec. ITU-T H.264 (01/2012) 229

Table 9-20 — Values of variables m and n for ctxIdx from 166 to 226

I and SI Value of cabac_init_idc Value of cabac_init_idc
. I and SI
slices slices
ctxIdx 0 1 2 ctxIdx 0 1 2
m n m n m n m n m n m n m n m n

166 24 0 11 | 28 4 45 4 39 197 26 | —17 | 28 3 36 | 28 | 28 -3

167 15 9 2 |40 | 10 28 0 42 198 30 | 25| 28 4 38 | 28 | 24 10

168 8 25 3 1441 10 31 7 34 199 28 | =20 | 32 0 38 | 27 | 27 0

169 13| 18 0 | 49| 33 | -1l | 11| 29 200 33 | 23| 34| -1 34 | -18 | 34 | —14

170 15 9 0 | 46| 52 | 43 | 8 31 201 37 | =27 | 30 6 35 | -16 | 52 | —44

171 13| 19 2 | 44| 18 15 6 37 202 33 | —23 | 30 6 34 | -14 | 39 | 24

172 10 | 37 2 | 51| 28 0 7 42 203 40 | 28 | 32 9 32 -8 19 17

173 12 | 18 0 | 47| 35 | 22| 3 40 204 38 | —-17 | 31 19 37 -6 31 25

174 6 29 4 139 38 | 25| 8 33 205 33| —11 | 26 | 27 35 0 36 29

175 20 | 33 2 |1 62| 34 0 13| 43 206 40 | -15 | 26 | 30 30 10 24 33

176 15| 30 6 | 46 | 39 | —-18 | 13 | 36 207 41 | —6 | 37| 20 28 18 34 15

177 4 45 0 | 54| 32 |-12] 4 47 208 38 1 28 | 34 26 25 30 20

178 1 58 3 |1 54(102|-94] 3 55 209 41 17 | 17 | 70 29 41 22 73

179 0 62 2 | 58 0 0 2 58 210 30| —6 1 67 0 75 20 34

180 7 61 4 |63 | 5 | -15] 6 60 211 27 3 5 59 2 72 19 31

181 12 | 38 6 | 51| 33 -4 8 44 212 26 | 22 9 67 8 71 27 44

182 11| 45 6 | 57| 29 10 | 11 | 44 213 37| —-16 | 16 | 30 14 35 19 16

183 15| 39 7 | 53| 37 -5 | 14| 42 214 351 4 | 18 | 32 18 31 15 36

184 11| 42 6 | 52| 51 | 29| 7 48 215 38 8 | 18 | 35 17 35 15 36

185 13 | 44 6 | 551 39 -9 4 56 216 38 3 |22 29 21 30 21 28

186 16 | 45 | 11 | 45 | 52 | 34 | 4 52 217 37 3 24 | 31 17 45 25 21

187 12 | 41 14 | 36 | 69 | —58 | 13 | 37 218 38 5 23 | 38 20 42 30 20

188 10 | 49 8 | 53| 67 | 63| 9 49 219 42 0 18 | 43 18 45 31 12

189 30 34 | -1 | 82 | 44 -5 [19| 58 220 351 16 | 20 | 41 27 26 27 16

190 18 | 42 7 |55 32 7 10 | 48 221 39 22 | 11 | 63 16 54 24 42

191 10| 55 | -3 | 78| 55 | 29 | 12| 45 222 14 | 48 9 59 7 66 0 93

192 17 | 51 15 | 46 | 32 1 0 69 223 27 | 37 9 64 16 56 14 56

193 17 | 46 | 22 | 31 0 0 20 | 33 224 21| 60 | -1 | 94 11 73 15 57

194 0 8 | -1 | 84 | 27 36 8 63 225 12| 68 | =2 | &9 10 67 26 38

195 26 | -19 | 25| 7 33 | 25 | 35 | —18 226 2 97 | -9 | 108 | —10 | 116 | —24 | 127

196 22 | -17 | 30 | =7 | 34 | =30 | 33 | 25

230 Rec. ITU-T H.264 (01/2012)

Table 9-21 — Values of variables m and n for ctxIdx from 227 to 275

I and SI Value of cabac_init_idc Value of cabac_init_idc
slices ! aI,ld ST
ctxIdx 1 ctxldx slices 1

m n m n m n m n m n m n m n m n
227 =3 | 71| -6 76 | 23 | 112 | —24 | 115 252 -12 | 73 -6 | 55|16 |72 | -14 | 75
228 -6 | 42 | 2 44 | -15 | 71 | 22| 82 253 -8 76 0 581 =7 |69 | -10 | 79
229 =5 150 0 45 =7 61 -9 62 254 =7 80 0 64| -4 | 69| -9 83
230 -3 | 54 0 52 0 53 0 53 255 -9 88 =3 | 74| -5 |74 |12 | 92
231 -2 | 62| -3 64 | -5 66 0 59 256 =17 | 110 | =10 | 90 | -9 | 86 | —18 | 108
232 0 58 | -2 59 | -11 | 77 | -14 | 85 257 -11 | 97 0 70 2 66 | —4 79
233 1 63 | —4 70 | -9 80 | -13 | 89 258 20| 84 | -4 [29| -9 |34 | 22| 69
234 =2 | 72| 4 75 -9 84 | -13 | 94 259 =11 | 79 5 31 1 32| -16 | 75
235 -1 | 74| -8 82 | -10 | 87 | —11 | 92 260 -6 73 7 42 | 11 | 31 | =2 58
236 =9 | 91 | =17 | 102 | =34 | 127 | =29 | 127 261 -4 74 1 59 5 52 1 58
237 =5 | 67| -9 77 | =21 | 101 | =21 | 100 262 -13] 8 | -2 | 58| 2 | 55|13 | 78
238 =5 |27 3 24 | 3 39 | -14 | 57 263 =131 9 | 3 |72 =2 |67| -9 83
239 -3 |39 0 42 =5 53 | -12 | 67 264 -11 | 97 -3 | 81 0 73| -4 81
240 -2 | 44 0 48 =7 61 | —-11 | 71 265 =19 [117 | =11 | 97 | -8 | 89 | =13 | 99
241 0 46 0 55 | —-11 | 75 | =10 | 77 266 -8 78 0 58 3 52 | 13 | 81
242 -16 | 64 | -6 59 | =15 | 77 | 21| 85 267 =5 33 8 5 7 4 | -6 38
243 -8 | 68 | =7 71 | 17 | 91 | -16 | 88 268 -4 48 10 | 14| 10 8 | -13 | 62
244 -10 | 78 | =12 | 83 | =25 | 107 | —23 | 104 269 -2 53 14 | 18| 17 8 -6 58
245 =6 | 77 | —11 | 87 | =25 | 111 | =15 | 98 270 -3 62 13 (27] 16 | 19| =2 59
246 -10 | 86 | =30 | 119 | =28 | 122 | =37 | 127 271 -13 | 71 2 40 3 37 | -16 | 73
247 -12 | 92 1 58 | -11 | 76 | -10 | 82 272 =10 | 79 0 581 -1 |61 |-10| 76
248 -15 (55| 3 29 | -10 | 44 -8 48 273 -12 | 8 | 3 |70 | -5 | 73 | 13 | 86
249 -10 | 60 | -1 36 | -10 | 52 -8 61 274 1319 | -6 79| -1 |70 | -9 83
250 -6 | 62 1 38 | -10 | 57 -8 66 275 -14 | 97 -8 | 8 | -4 | 78 | —-10 | &7
251 -4 | 65 2 43 -9 58 =7 70

Rec. ITU-T H.264 (01/2012)

231

232

Table 9-22 — Values of variables m and n for ctxIdx from 277 to 337

I and SI Value of cabac_init_idc Value of cabac_init_idc
slices ! al,ld SI
ctxldx 1 ctxtdx | €S 0 1 2

m n m n m n m n m n(m|n m n m n
277 -6 93 | —-13 | 106 | —21 | 126 | —22 | 127 308 -16 [96 | -1 | 51 | =16 | 77 | —10 | 67
278 -6 84 | —16 | 106 | —23 | 124 | =25 | 127 309 =7 | 88 | 7 |49 | 2 | 64 1 68
279 -8 79 | -10 | 87 | =20 | 110 | =25 | 120 310 -8 | 8 | 8 | 52 2 61 0 77
280 0 66 | 21 | 114 | =26 | 126 | =27 | 127 311 =7 |8 | 9 |41 | -6 | 67 2 64
281 -1 71 | 18 | 110 | —25 | 124 | —-19 | 114 312 -9 |8 | 6 | 47| -3 | 64 0 68
282 0 62 | —14 | 98 | =17 | 105 | =23 | 117 313 -13 [8| 2 | 55 2 57 =5 | 78
283 -2 60 | =22 | 110 | =27 | 121 | =25 | 118 314 4 66 | 13 | 41 | -3 | 65 7 55
284 -2 59 | 21 | 106 | =27 | 117 | =26 | 117 315 =3 | 77|10 | 44 | -3 | 66 5 59
285 -5 75 | 18 | 103 | =17 | 102 | —24 | 113 316 =3 |76 | 6 | 50 0 62 2 65
286 -3 62 | =21 | 107 | =26 | 117 | —28 | 118 317 -6 | 76 | 5 | 53 9 51| 14 | 54
287 —4 58 | =23 | 108 | =27 | 116 | =31 | 120 318 10 [58| 13 |49 | -1 |66 | 15 | 44
288 -9 66 | =26 | 112 | =33 | 122 | =37 | 124 319 -1 |76 | 4 |63 | =2 |71 5 60
289 -1 79 | 10 | 96 | —10 | 95 | —10 | 94 320 -1 | 8| 6 |64 | =2 |75 2 70
290 0 71 | 12| 95 | —14 | 100 | —15 | 102 321 =7 1992169 -1 [70]| =2 | 76
291 3 68 =5 91 -8 95 | -10 | 99 322 14 (95| 2|51 -9 | 72| -18 | 86
292 10 44 | -9 93 | —17 | 111 | =13 | 106 323 2 951 6 |70 | 14 [60| 12 | 70
293 =7 62 | 22| 94 | 28 | 114 | =50 | 127 324 0 76 | 10 | 44 | 16 | 37 5 64
294 15 36 | -5 86 -6 89 =5 92 325 =5 | 74| 9 |31 0 47 1 -12 |1 70
295 14 40 9 67 -2 80 17 57 326 0 70 | 12 | 43| 18 [35| 11 | 55
296 16 27 | 4 80 -4 82 =5 86 327 =11 (75 3 | 53| 11 | 37 5 56
297 12 29 | -10 | 85 -9 85 | -13 | 94 328 1 68 | 14 | 34 | 12 | 41 0 69
298 1 44 | -1 70 -8 81 | -12 | 91 329 0 65| 10 | 38 | 10 | 41 2 65
299 20 36 7 60 -1 72 -2 77 330 -14 | 73| =3 | 52 2 48 -6 | 74
300 18 32 9 58 5 64 0 71 331 3 62 | 13 |40 | 12 | 41 5 54
301 5 42 5 61 1 67 -1 73 332 4 62 | 17 | 32| 13 | 41 7 54
302 1 48 12 50 9 56 4 64 333 -1 | 68| 7 | 44 0 59| -6 | 76
303 10 62 15 50 0 69 -7 81 334 13175 7 | 38 3 50 | —11 | 82
304 17 46 18 49 1 69 5 64 335 11 [55|13 |50 19 |40 | =2 | 77
305 9 64 17 54 7 69 15 57 336 5 64 | 10 | 57 3 66 | =2 | 77
306 -12 | 104 | 10 41 =7 69 1 67 337 12 [70 | 26 | 43 | 18 | 50 | 25 | 42
307 -11 | 97 7 46 -6 67 0 68

Rec. ITU-T H.264 (01/2012)

Table 9-23 — Values of variables m and n for ctxIdx from 338 to 398

I and SI Value of cabac_init_idc Value of cabac_init_idc
slices S ! ar‘ld SI B
ctxldx 1 2 ctxldx | SHeeS 1 2

m n m n m n m n m n m| n | m n m n
338 15 6 14 11 {19 -6 | 17| -13 369 32 | 26 | 31 | -4 |40 | =37 | 37 | —-17
339 6 19 11 14 [18 =6 | 16 | -9 370 37 1 =30 | 27| 6 |38 | 30| 32 1
340 7 16 9 11 | 14 0 17 | —12 371 44 | =32 | 34| 8 | 46 | 33 | 34 15
341 12 14 18 11 | 26| -12 | 27 | 21 372 34 | —18 | 30 | 10 | 42 | =30 | 29 15
342 18 13 21 9 31 | 16 | 37 | =30 373 34 | —15 |24 |22 (40| 24| 24 25
343 13 11 23 =2 | 33| 25| 41 | —40 374 40 | =15 133 [19 | 49 | 29 | 34 22
344 13 15 32 | -15 | 33| 22 | 42 | 41 375 33 =7 | 22|32 (38| -12| 31 16
345 15 16 32 | -15 | 37 | —28 | 48 | 47 376 351 -5 | 26|31 |40 | -10| 35 18
346 12 23 34 | 21 | 39| =30 | 39 | 32 377 33 0 21 | 41 | 38 | -3 31 28
347 13 23 39 | 23 | 42| 30 | 46 | 40 378 38 2 26 | 44 | 46 | -5 33 41
348 15 20 42 | =33 | 47 | 42 | 52 | 51 379 33| 13 | 23|47 (31 20 36 28
349 14 26 41 | =31 | 45 | =36 | 46 | —41 380 23| 35 |16 | 65|29 | 30 27 47
350 14 44 46 | —28 | 49 | 34 | 52 | -39 381 13 58 | 14|71 |25 44 21 62
351 17 40 38 | —12 | 41| —-17 | 43 | —19 382 29 | -3 8 |60 | 12 | 48 18 31
352 17 47 21 29 | 32 9 32| 11 383 26 0 6 | 63 | 11 | 49 19 26
353 24 17 45 | 24 |1 69 | =71 | 61 | =55 384 22| 30 | 17 | 65|26 | 45 36 24
354 21 21 53 | 45 | 63 | =63 | 56 | —46 385 31 =7 |21 |24 (22] 22 24 23
355 25 22 48 | —26 | 66 | —64 | 62 | =50 386 35 -15 (123 20|23 22 27 16
356 31 27 65 | 43 | 77 | —74 | 81 | —67 387 34| -3 | 26|23 (27| 21 24 30
357 22 29 43 | —19 | 54 | =39 | 45 | 20 388 34 3 27 | 32 |33 | 20 31 29
358 19 35 39 | -10 | 52| =35 | 35| 2 389 36 | -1 | 28|23 (26| 28 22 41
359 14 50 30 9 41 | -10 | 28 | 15 390 34 5 28 | 24 | 30 | 24 22 42
360 10 57 18 26 | 36 0 34 1 391 32| 11 | 23|40 (27| 34 16 60
361 7 63 20 27 |40 | -1 | 39 1 392 35 5 24 | 32| 18 | 42 15 52
362 -2 77 0 57 (30| 14 | 30| 17 393 341 12 | 28 |29 (25| 39 14 60
363 —4 82 | —14 | 82 | 28| 26 | 20| 38 394 39 11 | 23|42 (18] 50 3 78
364 -3 94 =5 75 | 23| 37 | 18 | 45 395 300 29 | 19|57 (12] 70 | -16 | 123
365 9 69 | 19| 97 | 12| 55 | 15| 54 396 341 26 | 22|53 (21| 54 21 53
366 =12 | 109 | =35 | 125 | 11 | 65 0 79 397 29 | 39 | 22|61 |14 | 71 22 56
367 36 | 35| 27 0 37 | =33 | 36 | 16 398 19 66 | 11 | 86 | 11 | 83 25 61
368 36 | 34| 28 0 39 | 36 | 37 | —14

Rec. ITU-T H.264 (01/2012)

233

234

Table 9-24 — Values of variables m and n for ctxIdx from 402 to 459

Value of cabac_init_idc

1

Value of cabac_init_idc

slices A
ctxIdx 1 ctxIdx slices 1

m n m n m n m n m n m n m n m n
402 =17 [120 | -4 | 79| =5 85 -3 78 431 -2 55 | 12 | 56 -9 57 | 12 | 59
403 =20 | 112 | =7 | 71 | -6 81 -8 74 432 0 61 -6 60 -6 63 -8 63
404 —18 | 114 | =5 | 69 | —-10 | 77 -9 72 433 1 64 =5 62 —4 65 -9 67
405 -11 | 85 -9 |70 | =7 81 | —10 | 72 434 0 68 -8 66 —4 67 -6 68
406 -15 | 92 -8 | 66 | -17 | 80 | —18 | 75 435 -9 92 -8 76 =7 82 | 10 | 79
407 —14 | 8 | -10 | 68 | -18 | 73 | —12 | 71 436 -14 | 106 | =5 85 -3 81 -3 78
408 =26 | 71 | -19 | 73 | -4 74 | —11 | 63 437 -13 | 97 -6 81 -3 76 -8 74
409 -15] 81 | —-12 | 69 | =10 | 83 =5 70 438 =15 90 | =10 | 77 =7 72 -9 72
410 -14 | 8 | —-16 | 70 | -9 71 | —17 | 75 439 -12 | 90 =7 81 -6 78 | 10 | 72
411 0 68 | 15| 67 | -9 67 | —14 | 72 440 -18 | 88 | —-17 | 80 | —-12 | 72 | —18 | 75
412 -14 | 70 | 20 | 62 | -1 61 | —-16 | 67 441 -10 | 73 | -18 | 73 | -14 | 68 | —-12 | 71
413 24| 56 | -19 | 70 | -8 66 -8 53 442 -9 79 -4 74 -3 70 | -11 | 63
414 -23 | 68 | -16 | 66 | —14 | 66 | —14 | 59 443 -14 | 8 | —-10 | 83 -6 76 =5 70
415 —24 | 50 | 22 | 65 0 59 -9 52 444 -10 | 73 -9 71 -5 66 | —17 | 75
416 —11 | 74 | —20 | 63 2 59 | -11 | 68 445 -10 | 70 -9 67 -5 62 | 14 | 72
417 23 | —13 9 =21 17 | -10 9 -2 446 -10 | 69 -1 61 0 57 | —16 | 67
418 26 | -13 | 26 | -9 | 32 | -13 | 30 | —-10 447 =5 66 -8 66 —4 61 -8 53
419 40 | -15 | 33 | -9 | 42 -9 | 31 -4 448 -9 64 | —14 | 66 -9 60 | 14 | 59
420 49 | —14 | 39 | =7 | 49 =5 33 -1 449 =5 58 0 59 1 54 -9 52
421 44 3 41 | 2| 53 0 33 7 450 2 59 2 59 2 58 | —11 | 68
422 45 6 45 3 64 3 31 12 451 21 | -10 | 21 | -13 | 17 | —-10 9 -2
423 44 34 49 9 68 10 37 23 452 24 | —11 | 33 | -14 | 32 | -13 | 30 | —10
424 33 54 45 | 27 | 66 27 31 38 453 28 -8 39 =7 42 -9 31 —4
425 19 82 36 | 59 | 47 57 20 64 454 28 -1 46 -2 49 =5 33 -1
426 -3 75 -6 | 66 | =5 71 -9 71 455 29 3 51 2 53 0 33 7
427 -1 23 =7 | 35 0 24 =7 37 456 29 9 60 6 64 3 31 12
428 1 34 =7 | 42| -1 36 -8 44 457 35 20 61 17 68 10 37 23
429 1 43 -8 | 45| 2 42 | 11 | 49 458 29 36 55 34 66 27 31 38
430 0 54 =5 | 48| 2 52 | 10 | 56 459 14 67 42 62 47 57 20 64

Rec. ITU-T H.264 (01/2012)

Table 9-25 — Values of variables m and n for ctxIdx from 460 to 483

I and SI Value of cabac_init_idc Value of cabac_init_idc
slices ! al,ld SI
ctxldx 1 2 ctxtdx | SHees 1
m n m n m n m n m n m n m n m n
460 =17 | 123 | -7 92 0 80 11 80 472 =17 | 123 | -7 92 0 80 11 80
461 -12 | 115 | =5 89 | -5 89 5 76 473 -12 | 115 | =5 89 | -5 89 5 76
462 -16 | 122 | -7 9 | -7 94 2 84 474 -16 | 122 | -7 9 | -7 94 2 84
463 —11 | 115 | -13 | 108 | =4 | 92 5 78 475 -11 | 115 | =13 | 108 | —4 | 92 5 78
464 -12 | 63 -3 46 0 39 | -6 55 476 -12 | 63 -3 46 0 39 | -6 55
465 -2 68 | —1 65 0 65 4 61 477 -2 68 | —1 65 0 65 4 61
466 -15 | 84 | -1 57 | -15| 84 | —-14 | 83 478 -15 | 84 | -1 57 | -15| 84 | —-14 | 83
467 -13 | 104 | -9 93 | =35 | 127 | =37 | 127 479 -13 | 104 | -9 93 | =35 | 127 | =37 | 127
468 -3 70 | -3 74 | 2 73 =5 79 480 -3 70 | -3 74 | 2 73 =5 79
469 -8 93 -9 92 | —12 | 104 | —11 | 104 481 -8 93 -9 92 | —-12 | 104 | —11 | 104
470 -10 | 90 | -8 87 | -9 91 | -11 | 91 482 -10 | 90 | -8 87 | -9 91 | -11 | 91
471 =30 | 127 | =23 | 126 | =31 | 127 | =30 | 127 483 =30 | 127 | =23 | 126 | =31 | 127 | =30 | 127
Table 9-26 — Values of variables m and n for ctxIdx from 484 to 571
I and SI Value of cabac_init_idc Value of cabac_init_idc
slices S ! al,ld SI B
ctxIdx 1 ctxldx | SO 1
m n m n m n m n m n m n m n m n
484 -7 93 -2 85 | -13 | 103 | -4 | 86 528 -7 | 93 -2 85 | 13 | 103 | —4 | 86
485 -11 | 87 | -6 78 | -13 | 91 | —12 | 88 529 -11| 87 | -6 78 | 13| 91 | —12 | 88
486 -3 77 | -1 75 -9 8 | -5 | 82 530 -3 77 | -1 75 -9 89 | -5 | 82
487 =5 71 =7 77 | -14 | 92 -3 72 531 =5 71 -7 77 | —14 | 92 -3 72
488 -4 | 63 2 54 | -8 76 | —4 | 67 532 -4 | 63 2 54 | -8 76 | -4 | 67
489 -4 | 68 5 50 | -12 | 87 | -8 | 72 533 -4 | 68 5 50 | -12 | 87 | -8 | 72
490 -12 | 84 | 3 68 | —23 | 110 | —16 | 89 534 -12 | 84 | 3 68 | =23 | 110 | —16 | 89
491 =7 62 1 50 | 24| 105 | -9 | 69 535 =7 | 62 1 50 | 24 | 105 | -9 | 69
492 =7 65 6 42 | -10| 78 | -1 | 59 536 =7 | 65 6 42 | -10 | 78 | -1 | 59
493 8 61 —4 81 | —20 | 112 5 66 537 8 61 -4 81 | —20 | 112 5 66
494 5 56 1 63 | —17 | 99 4 57 538 5 56 1 63 | -17 | 99 4 57
495 -2 66 | =4 | 70 | =78 | 127 | -4 | 71 539 -2 | 66 | 4 70 | =78 | 127 | -4 | 71
496 1 64 0 67 | =70 | 127 | =2 | 71 540 1 64 0 67 | =70 | 127 | =2 | 71
497 0 61 2 57 | =50 | 127 2 58 641 0 61 2 57 | =50 | 127 2 58
498 -2 78 | 2 | 76 | —46 | 127 | -1 | 74 542 -2 | 78 -2 76 | —46 | 127 | -1 | 74

Rec. ITU-T H.264 (01/2012)

235

236

Table 9-26 — Values of variables m and n for ctxIdx from 484 to 571

T and SI

Value of cabac_init_idc

Value of cabac_init_idc

slices ! al,ld SI
ctxIdx 1 ctxIdx slices 1

m n m n m n m n m n m n m n m n
499 1 50 11 35 -4 66 -4 | 44 543 1 50 11 35 -4 66 | —4 | 44
500 7 52 4 64 =5 78 -1 | 69 544 7 52 4 64 | =5 78 -1 | 69
501 10 35 1 61 -4 71 0 62 545 10 35 1 61 —4 71 0 62
502 0 44 11 35 -8 72 =7 | 51 546 0 44 11 35 -8 72 | -7 | 51
503 11 38 18 25 2 59 -4 | 47 547 11 38 18 25 2 59 | 4 |47
504 1 45 12 24 -1 55 -6 | 42 548 1 45 12 24 | -1 55 -6 | 42
505 0 46 13 29 -7 70 -3 | 41 549 0 46 13 29 -7 70 | -3 | 41
506 5 44 13 36 -6 75 -6 | 53 550 5 44 13 36 -6 75 -6 | 53
507 31 17 | =10 | 93 -8 89 8 76 551 31 17 | =10 | 93 -8 89 8 76
508 1 51 -7 73 | 34 | 119 | -9 | 78 552 1 51 -7 73 | 34 | 119 | -9 | 78
509 7 50 | 2 73 -3 75 | -11 | 83 553 7 50 -2 73 -3 75 | -11 | 83
510 28 19 13 46 32 20 9 52 554 28 19 13 46 32 20 9 52
511 16 33 9 49 30 22 0 67 555 16 33 9 49 30 22 0 67
512 14 62 | =7 | 100 | —44 | 127 | =5 | 90 556 14 62 =7 | 100 | —44 | 127 | =5 | 90
513 -13 | 108 9 53 0 54 1 67 557 —13 | 108 9 53 0 54 1 67
514 —-15 | 100 2 53 -5 61 | -15 | 72 558 —15 | 100 2 53 -5 61 | —15 | 72
515 -13 | 101 5 53 0 58 =5 |75 559 -13 | 101 5 53 0 58 =5 |75
516 -13 | 91 -2 61 -1 60 -8 | 80 560 -13 | 91 -2 61 -1 60 | -8 | 80
517 -12 | 9%4 0 56 -3 61 | —21 | 83 561 -12 | 94 0 56 -3 61 | —21 | 83
518 -10 | 88 0 56 -8 67 | 21 | 64 562 -10 | 88 0 56 -8 67 | 21 | 64
519 -16 | 84 | -13 | 63 | 25| 84 | -13 | 31 563 -16 | 84 | -13 | 63 | 25| 84 | —13 | 31
520 -10 | 8 | -5 60 | —14 | 74 | -25 | 64 564 -10 | 86 -5 60 | —14 | 74 | —25 | 64
521 =7 83 -1 62 =5 65 | 29 | 94 565 -7 83 -1 62 =5 65 | =29 | 94
522 -13 | 87 4 57 5 52 9 75 566 -13 | 87 4 57 5 52 9 75
523 -19 | 94 | -6 69 2 57 17 | 63 567 -19 | %4 -6 69 2 57 17 | 63
524 1 70 4 57 0 61 -8 | 74 568 1 70 4 57 0 61 -8 | 74
525 0 72 14 39 -9 69 =5 |35 569 0 72 14 39 -9 69 | =5 | 35
526 -5 74 4 51 | =11 | 70 -2 |27 570 -5 74 4 51 | —-11 | 70 | =2 | 27
527 18 59 13 68 18 55 13 |91 571 18 59 13 68 18 55 13 |91

Rec. ITU-T H.264 (01/2012)

Table 9-27 — Values of variables m and n for ctxIdx from 572 to 659

T and SI

Value of cabac_init_idc

Value of cabac_init_idc

slices I ar‘ld SI
ctxIdx 1 2 ctxtax | Stees 1
m n m n m n m n m n m n m n m n
572 | 24| 0 | 11| 28| 4 | 45 | 4 | 39| 616 |24 0 |11 |28] 4 | 45| 4| 39
573 [15| 9 | 2 40| 10|28 |0 42| 617 [15] 9 |2 4| 10]|2]0] 4
s74 | 8| 25 | 3 |44 10|31 |7 34| 618 | 8|25 |3 |44 1031|734
575 [13 18 | 0 [49 | 33 [—11 |11] 20| 619 [13| 18 | 0 [49| 33 | -11]11] 29
576 [15| 9 | 0 |46 | 52 | -43|8 |31 | 620 |15 9 |0 46|52 |-43] 8 | 31
577 |13 19 | 2 |44 18|15 |6 |37 | 61 |13 192 |aa|18]|15]6]37
s78 [10] 37 | 2|51 28] 0o | 7|42 | 62 [10]37|2|5128] 0 |7]|a
579 (12 18 | 0 [47 |35 | 22| 3|40 | 63 |12] 18 |0 |47| 35 |-22]3 | 40
580 | 6 | 29 | 4 [39 |38 [25| 8 |33 | 624 | 6| 20| 4 |39]|38|-=25]8]|33
s81 (20| 33 | 2 |6 |34 | 0o |13] 43| 625 |[20] 33 |2 |62|34| 0 |13]| 43
582 [15| 30 | 6 [46| 39 [-18| 13| 36 | 626 |15] 30 | 6 |46 | 39 | -18| 13| 36
583 | 4 | 45 | 0 |54 32 |-12| 4| 47| 627 | 4|45 |0 |54 32 |-12]4]| s
s84 | 1| 58 | 3 [sal102|-94| 3|55 | 628 | 1] 58 |3 |54|102|-94]3]| 355
s8s [0 | 62 | 2|58 0o | o | 2|58 629 |06 |2|58] 0| 0]2]ss8
s86 | 7 | 61 | 4 |63 |56 |-15|6 |60 | 630 | 7|61 |4 |63|56|-15]6]60
587 (1238 | 6 [51 |33 | -4 | 8| 44| 631 |12]38 |6 |51|33|-4]|8| 4
sss [11| 45 | 6 [57 |20 [10 |11 | 44| 632 |11] 45 |6 |57 20| 10|11 44
580 [15| 39 | 7 [53 37| -5 |14a] 42| 633 [15] 39 |7 |53|37| 5|14 2
590 | 11| 42 | 6 | 52|51 | 29| 7 |48 | 634 |11 42 | 6 |52] 51| 29| 7| 48
591 (13| 44 | 6 [55|39 | 9 | 4|56 | 635 |13] 44 |6 |55 39|94/ 56
592 [16| 45 | 11|45 52 | 34| 4 | 52| 636 |16] 45 |11 |45| 52 | 34| 4 | 52
593 (12| 41 | 14|36 69 | 58| 13| 37 | 637 |12| 41 |14 |36 | 69 | 58| 13| 37
594 (10| 49 | 8 [53| 67 | 63| 9 | 49 | 638 |[10] 49 | 8 [53| 67 | 63| 9 | 49
595 (30 34 | -1 |82 |44 | 5 |19] 58 | 639 [30] 34 | -1 |82 | 44 | =5 |19 58
596 (18| 42 | 7 |55 32| 7 |10] 48 | 640 |[18| 42 | 7 55|32 | 7 |10] 48
597 [10| 55 | 3|78 | 55 |29 |12| 45 | 641 |10] 55 | 3|78 | 55 | 29| 12| 45
598 [17 51 [15[46 32| 1 | 0|60 | 642 |17] 51 [1546|321 |0 6
599 (17| 46 |22 31| 0 | o |20] 33| 643 |17] 46 | 22|31 0 | o |20] 33
600 | 0 | 89 | -1 |84 |27 36| 8| 63| 644 | 0] 89 |-1|8|27|36]|8]| 63
601 [26|-19]25| 7 |33 |—=25|35|-18| 645 |26 | —19|25| 7 | 33 | 25|35 -18
602 [22| -17 30| -7 |34 | 30|33 |25 646 |22|-17|30|-7| 34 | 303325

Rec. ITU-T H.264 (01/2012)

237

238

Table 9-27 — Values of variables m and n for ctxIdx from 572 to 659

T and SI

Value of cabac_init_idc

Value of cabac_init_idc

slices I ar‘ld SI
ctxIdx 1 2 ctxtax | Stees 1 2

m n m n m n m n m n m n m n m n
603 [26| -17 28| 3 |36 |28 |28| 3| 647 |26 |17 28| 3 | 36 | 28|28 3
604 [30| 25|28 | 4 |38 |—28|24| 10| 648 | 30| 25|28 | 4 |38 |-28|24] 10
605 [28 | —20 32| 0 |38 |—27|27| 0 | 649 |28 | —=20|32| 0|38 |—=27]27] 0
606 [33| 23|34 |-1|34 [-18|34|-14| 650 |33|-23|34|-1| 34 |-18]|34|-14
607 [37|—27]30| 6 |35 |-16|52|-44| 651 |37] 27|30 6 | 35 |-16]|52 |44
608 [33| 23|30 6 |34 |-14|39| 24| 652 |33]-23|30| 6 | 34 |-14]|39| 24
609 (40| 28|32 9 32| -8 |19] 17| 653 [40| 2832|090 |32 |-8|19]17
610 [38 | —17 311937 | =6 | 31| 25 | 654 |38|-17|31|19| 37 | =6 |31 25
611 [33| -11 26|27 35| 0o |36] 20 | 655 [33|—-11|26|27| 35| 0 |36] 29
612 [40 | -15 |26 [30| 30 | 10 | 24| 33 | 656 |40 | -15|26|30| 30 | 10 |24 33
613 [41| —6 |37 20| 28 | 18 |34 | 15 | 657 |41 | —6 [37|20 28 | 18 | 34| 15
614 [38| 1 |28 |34 | 26 | 25 |30| 20| 658 |38| 1 |28 |34 26 | 25 |30 20
615 (41| 17 [17|70 290 | 41 |22 73| 659 |41 | 17 [17|70 20 | 41 | 22| 73

Rec. ITU-T H.264 (01/2012)

Table 9-28 — Values of variables m and n for ctxIdx from 660 to 717

Value of cabac_init_idc

1

Value of cabac_init_idc

slices A
ctxIdx 1 ctxIdx slices 1

m n m n m n m n m n m n m n m n
660 -17 {120 | -4 79| -5 | 8 | -3 | 78 689 2 59 2 59 2 58 | —11 | 68
661 20 (112 | =7 |71 | =6 | 81 | -8 | 74 690 23 | -13 9 =2 | 17 | -10 9 -2
662 -18 | 114 | =5 |69 | =10 | 77 | -9 | 72 691 26 | -13 | 26 -9 | 32| -13 | 30 | —-10
663 -11 | 85 -9 |70 -7 |81 | —-10 | 72 692 40 | —15 | 33 -9 142 -9 31 -4
664 -15 | 92 -8 | 66 | —-17 | 80 | 18 | 75 693 49 | 14 | 39 =7 149 | -5 33 -1
665 —14 | 8 | -10 | 68 | —18 | 73 | 12 | 71 694 44 3 41 -2 | 53 0 33 7
666 =26 | 71 | -19 |73 | -4 | 74 | —11 | 63 695 45 6 45 3 64 3 31 12
667 -15| 81 | -12 | 69| —-10 | 83 | =5 | 70 696 44 | 34 49 9 68 | 10 37 23
668 -14 | 8 | -16 |70 | =9 | 71 | —=17 | 75 697 33| 54 45 27 | 66 | 27 31 38
669 0 68 | -15 | 67| -9 | 67 | —14 | 72 698 19 | 82 36 59 | 47 | 57 20 64
670 —14 | 70 | =20 | 62 | -1 | 61 | =16 | 67 699 21 | =10 | 21 | =13 | 17 | —10 9 -2
671 24 | 56 | -19 70| -8 | 66 | -8 | 53 700 24 | -11 | 33 | -14 |32 | -13 | 30 | -10
672 —23 | 68 | -16 | 66 | —14 | 66 | —14 | 59 701 28 | -8 39 -7 142 -9 31 —4
673 —24 | 50 | 22 | 65 0 591 -9 | 52 702 28 | -1 46 -2 149 | -5 33 -1
674 -11 | 74 | =20 | 63 2 59 | —11 | 68 703 29 3 51 2 53 0 33 7
675 -14 | 106 | =5 |85 | -3 | 8 | -3 | 78 704 29 9 60 6 64 3 31 12
676 -13 | 97 -6 | 81| 3 |76 | -8 |74 705 351 20 61 17 | 68 | 10 37 23
677 =151 90 | =10 77| =7 | 72| -9 | 72 706 29 | 36 55 34 | 66 | 27 31 38
678 -12 | 90 -7 | 81| -6 | 78 | —10 | 72 707 14 | 67 42 62 | 47 | 57 20 64
679 —18 | 88 | -17 | 80 | —12 | 72 | —18 | 75 708 =3 1| 75 -6 66 | 5| 71 -9 71
680 10| 73 | -18 | 73 | —-14 | 68 | 12 | 71 709 -1 1] 23 =7 35 0 24 -7 37
681 -9 79 -4 | 74| -3 |70 | —-11 | 63 710 1 34 =7 42 | -1 | 36 -8 44
682 -14 | 8 | -10 [83 | =6 | 76 | =5 | 70 711 1 43 -8 45 | -2 | 42 | 11 | 49
683 -10 | 73 -9 |71 | =5 |66 | -17 |75 712 0 54 =5 48 | -2 | 52 | -10 | 56
684 -10 | 70 -9 |67 | -5 62| -14 |72 713 2| 55 | -12| 56 | -9 | 57 | —-12 | 59
685 -10 | 69 -1 | 61 0 57 | 16 | 67 714 0 61 -6 60 | -6 | 63 -8 63
686 =5 66 -8 | 66| 4 | 61| -8 |53 715 1 64 =5 62 | 4| 65 -9 67
687 -9 64 | 14 | 66 | -9 | 60 | —14 | 59 716 0 68 -8 66 -4 | 67 -6 68
688 =5 58 0 59 1 541 -9 | 52 717 -9 192 -8 76 =7 | 82 =10 | 79

Rec. ITU-T H.264 (01/2012)

239

240

Table 9-29 — Values of variables m and n for ctxIdx from 718 to 775

Value of cabac_init_idc

1

Value of cabac_init_idc

slices A
ctxIdx 1 ctxIdx slices 1

m n m n m n m n m n m n m n m n
718 -17 {120 | -4 79| -5 | 8 | -3 | 78 747 2 59 2 59 2 58 | —11 | 68
719 20 (112 | =7 |71 | =6 | 81 | -8 | 74 748 23 | -13 9 =2 | 17 | -10 9 -2
720 -18 | 114 | =5 |69 | =10 | 77 | -9 | 72 749 26 | -13 | 26 -9 | 32| -13 | 30 | —-10
721 -11 | 85 -9 |70 -7 |81 | —-10 | 72 750 40 | —15 | 33 -9 142 -9 31 —4
722 -15 | 92 -8 | 66 | —-17 | 80 | 18 | 75 751 49 | 14 | 39 =7 149 | -5 33 -1
723 —14 | 8 | -10 | 68 | —18 | 73 | 12 | 71 752 44 3 41 -2 | 53 0 33 7
724 =26 | 71 | -19 |73 | -4 | 74 | —11 | 63 753 45 6 45 3 64 3 31 12
725 -15| 81 | -12 | 69| —-10 | 83 | =5 | 70 754 44 | 34 49 9 68 | 10 37 23
726 -14 | 8 | -16 |70 | =9 | 71 | —=17 | 75 755 33| 54 45 27 | 66 | 27 31 38
727 0 68 | -15 | 67| -9 | 67 | —14 | 72 756 19 | 82 36 59 | 47 | 57 20 64
728 —14 | 70 | =20 | 62 | -1 | 61 | =16 | 67 757 21 | =10 | 21 | =13 | 17 | —10 9 -2
729 24 | 56 | -19 70| -8 | 66 | -8 | 53 758 24 | -11 | 33 | -14 |32 | -13 | 30 | -10
730 —23 | 68 | -16 | 66 | —14 | 66 | —14 | 59 759 28 | -8 39 -7 142 -9 31 —4
731 —24 | 50 | 22 | 65 0 591 -9 | 52 760 28 | -1 46 -2 149 | -5 33 -1
732 -11 | 74 | =20 | 63 2 59 | —11 | 68 761 29 3 51 2 53 0 33 7
733 -14 | 106 | =5 |85 | -3 | 8 | -3 | 78 762 29 9 60 6 64 3 31 12
734 -13 | 97 -6 | 81| 3 |76 | -8 |74 763 351 20 61 17 | 68 | 10 37 23
735 =151 90 | =10 77| =7 | 72| -9 | 72 764 29 | 36 55 34 | 66 | 27 31 38
736 -12 | 90 -7 | 81| -6 | 78 | —10 | 72 765 14 | 67 42 62 | 47 | 57 20 64
737 -18 | 88 | -17 | 80 | —12 | 72 | —18 | 75 766 =3 1| 75 -6 66 | 5| 71 -9 71
738 10| 73 | -18 | 73 | —-14 | 68 | 12 | 71 767 -1 1] 23 =7 35 0 24 -7 37
739 -9 79 -4 | 74| -3 |70 | —-11 | 63 768 1 34 -7 42 | -1 | 36 -8 44
740 -14 | 8 | -10 [83 | =6 | 76 | =5 | 70 769 1 43 -8 45 | -2 | 42 | 11 | 49
741 -10 | 73 -9 |71 | =5 |66 | -17 |75 770 0 54 =5 48 | -2 | 52 | -10 | 56
742 -10 | 70 -9 |67 | -5 62| -14 |72 771 2| 55 | -12| 56 | -9 | 57 | —-12 | 59
743 -10 | 69 -1 | 61 0 57 | 16 | 67 772 0 61 -6 60 | -6 | 63 -8 63
744 =5 66 -8 | 66| 4 | 61| -8 |53 773 1 64 =5 62 | 4| 65 -9 67
745 -9 64 | 14 | 66 | -9 | 60 | —14 | 59 774 0 68 -8 66 -4 | 67 -6 68
746 =5 58 0 59 1 541 -9 | 52 775 -9 192 -8 76 =7 | 82 =10 | 79

Rec. ITU-T H.264 (01/2012)

Table 9-30 — Values of variables m and n for ctxIdx from 776 to 863

I and SI

Value of cabac_init_idc

Value of cabac_init_idc

slices ! al,ld SI
ctxIdx 1 ctxIdx slices 1
m n m n m n m n m n m n m n m n
776 -6 93 | —13 | 106 | =21 | 126 | =22 | 127 820 -6 93 | =13 | 106 | =21 | 126 | =22 | 127
777 -6 84 | —16 | 106 | =23 | 124 | =25 | 127 821 -6 84 | —16 | 106 | =23 | 124 | -25 | 127
778 -8 79 | 10 | 87 | =20 | 110 | =25 | 120 822 -8 79 | —-10 | 87 | =20 | 110 | =25 | 120
779 0 66 | 21 | 114 | =26 | 126 | —27 | 127 823 0 66 | —21 | 114 | =26 | 126 | =27 | 127
780 -1 71 | 18 | 110 | =25 | 124 | —19 | 114 824 -1 71 | 18 | 110 | =25 | 124 | —19 | 114
781 0 62 | —14 | 98 | -17 | 105 | —23 | 117 825 0 62 | —14 | 98 | -17 | 105 | —23 | 117
782 -2 60 | —22 | 110 | =27 | 121 | =25 | 118 826 -2 60 | —22 | 110 | =27 | 121 | =25 | 118
783 -2 59 | —21 | 106 | =27 | 117 | =26 | 117 827 -2 59 | —21 | 106 | =27 | 117 | =26 | 117
784 =5 75 | —18 | 103 | =17 | 102 | —24 | 113 828 =5 75 | —18 | 103 | =17 | 102 | —24 | 113
785 -3 62 | 21 | 107 | =26 | 117 | —28 | 118 829 -3 62 | —21 | 107 | =26 | 117 | =28 | 118
786 —4 58 | =23 | 108 | =27 | 116 | =31 | 120 830 —4 58 | =23 | 108 | =27 | 116 | =31 | 120
787 -9 66 | =26 | 112 | =33 | 122 | =37 | 124 831 -9 66 | =26 | 112 | =33 | 122 | =37 | 124
788 -1 79 | -10 | 96 | —10 | 95 | —10 | 94 832 -1 79 | 10 | 96 | —10 | 95 | —10 | 94
789 0 71 | —12 | 95 | -14 | 100 | =15 | 102 833 0 71 | —12 | 95 | -14 | 100 | =15 | 102
790 3 68 =5 91 -8 95 | =10 | 99 834 3 68 =5 91 -8 95 | =10 | 99
791 10 44 -9 93 | -17 | 111 | =13 | 106 835 10 44 -9 93 | -17 | 111 | =13 | 106
792 -7 62 | 22 | 94 | 28 | 114 | =50 | 127 836 -7 62 | 22 | 94 | 28 | 114 | =50 | 127
793 15 36 =5 86 -6 89 | -5 92 837 15 36 =5 86 -6 89 | -5 92
794 14 40 9 67 -2 80 17 57 838 14 40 9 67 -2 80 17 57
795 16 27 -4 80 -4 82 | -5 86 839 16 27 -4 80 -4 82 | -5 86
796 12 29 | -10 | 85 -9 85 | —13 | 94 840 12 29 | -10 | 85 -9 85 | —13 | 94
797 1 44 -1 70 -8 81 | —12 | 91 841 1 44 -1 70 -8 81 | —-12 | 91
798 20 36 7 60 -1 72 | 2 77 842 20 36 7 60 -1 72 | 2 77
799 18 32 9 58 5 64 0 71 843 18 32 9 58 5 64 0 71
800 5 42 5 61 1 67 | -1 73 844 5 42 5 61 1 67 | -1 73
801 1 48 12 50 9 56 4 64 845 1 48 12 50 9 56 4 64
802 10 62 15 50 0 69 | -7 81 846 10 62 15 50 0 69 | -7 81
803 17 46 18 49 1 69 5 64 847 17 46 18 49 1 69 5 64
804 9 64 17 54 7 69 15 57 848 9 64 17 54 7 69 15 57
805 —12 | 104 | 10 41 -7 69 1 67 849 —12 | 104 | 10 41 =7 69 1 67
806 -11 | 97 7 46 -6 67 0 68 850 -11 | 97 7 46 -6 67 0 68

Rec. ITU-T H.264 (01/2012)

241

242

Table 9-30 — Values of variables m and n for ctxIdx from 776 to 863

I and SI Value of cabac_init_idc Value of cabac_init_idc
slices ! al,ld SI
ctxIdx 1 ctxIdx slices 1

m n m n m n m n m n m n m n m n
807 -16 | 96 -1 51 | —-16 | 77 | —10 | 67 851 -16 | 96 -1 51 | —-16 | 77 | =10 | 67
808 -7 88 7 49 -2 64 1 68 852 -7 88 7 49 -2 64 1 68
809 -8 85 8 52 2 61 0 77 853 -8 85 8 52 2 61 0 77
810 -7 85 9 41 -6 67 2 64 854 -7 85 9 41 -6 67 2 64
811 -9 85 6 47 -3 64 0 68 855 -9 85 6 47 -3 64 0 68
812 -13 | 88 2 55 2 57 | =5 78 856 -13 | 88 2 55 2 57 | =5 78
813 4 66 13 41 -3 65 7 55 857 4 66 13 41 -3 65 7 55
814 -3 77 10 44 | -3 66 5 59 858 -3 77 10 44 | -3 66 5 59
815 -3 76 6 50 0 62 2 65 859 -3 76 6 50 0 62 2 65
816 -6 76 5 53 9 51 14 54 860 -6 76 5 53 9 51 14 54
817 10 58 13 49 -1 66 15 44 861 10 58 13 49 -1 66 15 44
818 -1 76 4 63 -2 71 5 60 862 -1 76 4 63 -2 71 5 60
819 -1 83 6 64 | 2 75 2 70 863 -1 83 6 64 | 2 75 2 70

Rec. ITU-T H.264 (01/2012)

Table 9-31 — Values of variables m and n for ctxIdx from 864 to 951

T and SI

Value of cabac_init_idc

Value of cabac_init_idc

slices 1 al,ld SI
ctxIdx 1 2 ctxtay | Stees 1

m n m n m n m n m n m n m n m n
864 | 15| 6 | 14 | 11 |19] -6 |17|-13| 98 | 15| 6 | 14|11 |19 -6 |17]-13
865 | 6 | 19| 11 | 14 18| -6 |16 9| 99 | 6 | 19| 11| 14|18 -6 |16 -9
866 | 7 | 16| 9 |11 |14a| o |17|-12] 910 | 7 | 16| 9 |11]14] 0 |17]-12
867 | 12 | 14 | 18 | 11 |26 |-12]27| 21| onn | 12| 14| 18| 11 |26]-12]27]-21
868 | 18 | 13 | 21 | 9 |31 |-16]37|-30| 912 | 18 | 13 |21 | 9 |31|-16]|37|-30
869 | 13 | 11 | 23 | =2 33| -25|41|-40| 913 | 13| 11 |23 | =2 |33|-25]41|-40
870 | 13 | 15 | 32 | -15 |33 | 22|42 | 41| o4 | 13| 15 | 32 | -15]33| 22| 42| -4
871 | 15 | 16 | 32 | -15 |37 | 28 |48 | 47| 915 | 15 | 16 | 32 | -15 |37 | —28 | 48 | —47
872 | 12 | 23 | 34 | 21|39 | 30|39 | 32| 916 | 12 | 23 | 34 | —21 |39 | 30|39 |32
873 | 13| 23 | 39 | 23| 42| 30|46 | -40| 917 | 13 | 23 | 39 | -23 | 42 | 30 | 46 | 40
874 | 15 | 20 | 42 | 33|47 | 42| 52|51 | 918 | 15 | 20 | 42 | 33 | 47 | 42 | 52 | =51
875 | 14 | 26 | 41 | 31| 45| 36|46 | -41| 919 | 14 | 26 | 41 | =31 | 45 | =36 | 46 | 41
876 | 14 | 44 | 46 | 28 |49 | 34 | 52| 39| 920 | 14 | 44 | 46 | 28 | 49 | =34 | 52 | 39
877 | 17 | 40 | 38 |12 |41 | -17 |43 | -19| 921 | 17 | 40 | 38 | -12 | 41|17 | 43| -19
878 | 17 | 47 | 21 | 29 | 32| 9 |32 | 11| 922 | 17|47 |21 |20 |32] 9 |32]| 11
879 | 24 | 17 | 45 | 24 |69 | <71 | 61 | -55| 923 | 24 | 17 | 45 | —24 | 69 | =71 | 61 | 55
880 | 21 | 21 | 53 | 45|63 | 63| 56| -46| 924 | 21 | 21 | 53 | —45| 63 | 63 | 56 | —46
881 | 25 | 22 | 48 | 26 |66 | —64 | 62| 50| 925 | 25 | 22 | 48 | —26 | 66 | =64 | 62 | =50
882 | 31 | 27 | 65 | 43|77 | 74|81 | 67| 926 | 31 | 27 | 65 | —43 | 77 | =74 | 81 | —67
883 | 22 | 29 | 43 | 19|54 | 39|45 20| 927 | 22 | 29 | 43 | -19| 54 | -39 | 45 | —20
884 | 19 | 35 | 39 | -10| 52| -35|35| =2 | 928 | 19| 35 |39 |-10]5|-35]35| =2
885 | 14 | 50 | 30 | 9 |41 |-10]28| 15| 929 | 14 | 50 | 30 | 9 |41|-10]|28] 15
886 | 10 | 57 | 18 | 26 [36| 0 34| 1 | 930 | 10| 57 | 18| 26 |36 0 |34 1
887 | 7 | 63 | 20 | 27 |40 | -1 [39| 1 | 931 | 7 | 63 | 20| 27 | 40| -1 [39] 1
888 | 2 | 77| o | 57 |30 14 30| 17| 932 | 2|77 | 0 |57]3] 14 |30] 17
889 | —4 | 82 | —14| 82 | 28| 26 | 20| 38 | 933 | —4 | 82 | -14| 82 | 28| 26 |20 38
80 | -3 | 94 | =5 | 75 | 23| 37 | 18| 45 | 934 | =3 | 94 | =5 | 75 | 23| 37 | 18| 45
891 | 9 | 69 | -19| 97 [12| 55 | 15| 54 | 935 | 9 | 69 | -19| 97 | 12| 55 | 15| 54
802 | -12 109 | 35 | 125 | 11| 65 | 0 | 79 | 936 |-12]109 | 35| 125 | 11| 65 | 0 | 79
803 |36 | 35|27 | 0o |37|-33|36|-16] 937 | 36 | 35|27 | 0 |37|-33]36]|-16
894 | 36 | 34| 28 | 0 39| 36|37 |-14| 938 | 36 | 34|28 | 0 |39|-36]|37|-14

Rec. ITU-T H.264 (01/2012)

243

244

Table 9-31 — Values of variables m and n for ctxIdx from 864 to 951

T and SI

Value of cabac_init_idc

Value of cabac_init_idc

slices 1 al,ld SI
ctxIdx 1 ctxtay | Stees 0 1

m n m n m n m n m n m n m n m n
895 | 32 | 26| 31 | -4 |40 | 37|37 |-17| 939 | 32 | 26| 31 | -4 | 40| 37|37 -17
896 |37 | 30| 27 | 6 [38|-30|32| 1 | 940 |37 |-30|27| 6 |38|-30]|32]| 1
807 | 44 | 32| 34 | 8 |46| 33|34 | 15| o041 | 44 | 32| 34 | 8 |46 | 33|34 15
898 | 34 | -18| 30 | 10 | 42| -30|20| 15| 942 | 34 | -18 | 30 | 10 | 42| 30|29 15
899 | 34 | —15| 24 | 22 |40 | 24|24 | 25 | 943 | 34 | —15| 24 | 22 |40 | —24 | 24 | 25
900 | 40 | -15| 33 | 19 |49 | 29 |34 | 22 | o044 | 40 | -15| 33 | 19 |49 | =29 | 34| 22
901 | 33 | -7 | 22 | 32 |38 |-12|31| 16| 945 | 33 | =7 | 22 | 32 | 38| -12 |31 16
902 | 35 | -5 | 26 | 31 |40 |-10]35| 18 | 946 | 35 | -5 | 26 | 31 |40 | 10|35 18
903 | 33 | 0 | 21 | 41 | 38| =3 | 31| 28 | o947 | 33 | o | 21 | 41 | 38| =3 |31 28
904 | 38 | 2 | 26 | 44 |46 | -5 |33 | 41 | 948 | 38 | 2 | 26 | 44 |46 | -5 | 33| 41
905 | 33 | 13 | 23 | 47 | 31| 20 | 36| 28 | 949 | 33 | 13 | 23 | 47 | 31| 20 | 36| 28
906 | 23 | 35 | 16 | 65 | 29| 30 | 27| 47 | 950 | 23 | 35 | 16 | 65 | 29| 30 | 27| 47
907 | 13 | 58 | 14 | 71 | 25| 44 |21 | 62 | 951 | 13 | 58 | 14 | 71 | 25| 44 | 21| 62

Rec. ITU-T H.264 (01/2012)

Table 9-32 — Values of variables m and n for ctxIdx from 952 to 1011

I and SI Value of cabac_init_idc Value of cabac_init_idc
slices ! al,ld SI
ctxIdx 1 ctxIdx slices 1

m n m n m n m n m n m n m n m n
952 -3 71 -6 76 | 23 | 112 | —24 | 115 982 -3 71 -6 76 | —23 | 112 | —24 | 115
953 -6 | 42 -2 44 | -15 | 71 | 22| 82 983 -6 | 42 -2 44 | -15 | 71 | 22| 82
954 =5 50 0 45 -7 61 -9 62 984 =5 50 0 45 -7 61 -9 62
955 -3 54 0 52 0 53 0 53 985 -3 54 0 52 0 53 0 53
956 -2 62 -3 64 | -5 66 0 59 986 -2 62 -3 64 | -5 66 0 59
957 0 58 -2 59 | -11 | 77 | —-14 | 85 987 0 58 -2 59 | -11 | 77 | —-14 | 85
958 1 63 -4 70 -9 80 | —13 | 89 988 1 63 -4 70 -9 80 | —13 | 89
959 -2 72 -4 75 -9 84 | —13 | 94 989 -2 72 -4 75 -9 84 | —13 | 94
960 -1 74 -8 82 | -10 | 87 | —-11 | 92 990 -1 74 -8 82 | -10 | 87 | —-11 | 92
961 -9 91 | =17 | 102 | =34 | 127 | =29 | 127 991 -9 91 | =17 | 102 | =34 | 127 | =29 | 127
962 =5 67 -9 77 | =21 | 101 | =21 | 100 992 =5 67 -9 77 | =21 | 101 | =21 | 100
963 =5 27 3 24 | 3 39 | -14 | 57 993 =5 27 3 24 | 3 39 | -14 | 57
964 -3 39 0 42 -5 53 | -12 | 67 994 -3 39 0 42 -5 53 | -12 | 67
965 -2 44 0 48 -7 61 | -11 | 71 995 -2 44 0 48 -7 61 | -11 | 71
966 0 46 0 55 | -11 | 75 | =10 | 77 996 0 46 0 55 | -11 | 75 | =10 | 77
967 -16 | 64 -6 59 | =15 | 77 | 21| 85 997 -16 | 64 —6 59 | =15 | 77 | 21| 85
968 -8 68 =7 71 | =17 | 91 | —-16 | 88 998 -8 68 =7 71 | =17 | 91 | —-16 | 88
969 -10 | 78 | -12 | 83 | =25 | 107 | —23 | 104 999 -10 | 78 | -12 | 83 | =25 | 107 | —23 | 104
970 -6 77 | -11 | 87 | =25 | 111 | =15 | 98 1000 -6 77 | -11 | 87 | =25 | 111 | =15 | 98
971 -10 | 8 | =30 | 119 | —28 | 122 | =37 | 127 | 1001 | —10 | 86 | —30 | 119 | =28 | 122 | =37 | 127
972 -12 | 92 1 58 | -11 | 76 | -10 | 82 1002 | —12 | 92 1 58 | -11 | 76 | —10 | 82
973 -15 | 55 -3 29 | -10 | 44 | -8 48 1003 | 15| 55 -3 29 | -10 | 44 | -8 48
974 -10 | 60 -1 36 | -10 | 52 -8 61 1004 | —10 | 60 -1 36 | -10 | 52 -8 61
975 -6 62 1 38 | -10 | 57 | -8 66 1005 -6 62 1 38 | -10 | 57 | -8 66
976 —4 65 2 43 -9 58 -7 70 1006 —4 65 2 43 -9 58 -7 70
977 -12 | 73 -6 55 | =16 | 72 | —14 | 75 1007 | —12 | 73 -6 55 | =16 | 72 | —14 | 75
978 -8 76 0 58 -7 69 | 10 | 79 1008 -8 76 0 58 -7 69 | =10 | 79
979 -7 80 0 64 | —4 69 | -9 83 1009 -7 80 0 64 | —4 69 | -9 83
980 -9 88 -3 74 | =5 74 | -12 | 92 1010 -9 88 -3 74 | =5 74 | -12 | 92
981 -17 | 110 | =10 | 90 -9 8 | —18 | 108 | 1011 | —17 | 110 | =10 | 90 -9 86 | —18 | 108

Rec. ITU-T H.264 (01/2012)

245

Table 9-33 — Values of variables m and n for ctxIdx from 1012 to 1023

I and SI Value of cabac_init_idc Value of cabac_init_idc
I and SI

slices slices
ctxIdx 0 1 2 ctxIdx 0 1 2

1012 -3 70 -3 74 -2 73 -5 79 1018 | —10 | 90 -8 87 -9 91 | —11 | 91

1013 -8 93 -9 92 | -12 | 104 | =11 | 104 | 1019 | —30 | 127 | =23 | 126 | =31 | 127 | =30 | 127

1014 | —10 | 90 -8 87 -9 91 | -11 | 91 1020 -3 70 -3 74 -2 73 -5 79

1015 | —30 | 127 | =23 | 126 | =31 | 127 | =30 | 127 | 1021 -8 93 -9 92 | —12 | 104 | —11 | 104

1016 -3 70 -3 74 -2 73 -5 79 1022 | —10 | 90 -8 87 -9 91 | —11 | 91

1017 -8 93 -9 92 | —12 | 104 | —11 | 104 | 1023 | —30 | 127 | —23 | 126 | =31 | 127 | =30 | 127

9.3.1.2 Initialisation process for the arithmetic decoding engine

This process is invoked before decoding the first macroblock of a slice or after the decoding of any
pcm_alignment zero bit and all pcm_sample luma and pcm_sample chroma data for a macroblock of type I PCM.

Outputs of this process are the initialised decoding engine registers codIRange and codIOffset both in 16 bit register
precision.

The status of the arithmetic decoding engine is represented by the variables codlRange and codlOffset. In the
initialisation procedure of the arithmetic decoding process, codIRange is set equal to 510 and codlOffset is set equal to
the value returned from read bits(9) interpreted as a 9 bit binary representation of an unsigned integer with most
significant bit written first.

The bitstream shall not contain data that result in a value of codlOffset being equal to 510 or 511.

NOTE - The description of the arithmetic decoding engine in this Recommendation | International Standard utilizes 16 bit register
precision. However, a minimum register precision of 9 bits is required for storing the values of the variables codIRange and
codlOffset after invocation of the arithmetic decoding process (DecodeBin) as specified in clause 9.3.3.2. The arithmetic decoding
process for a binary decision (DecodeDecision) as specified in clause 9.3.3.2.1 and the decoding process for a binary decision
before termination (DecodeTerminate) as specified in clause 9.3.3.2.4 require a minimum register precision of 9 bits for the
variables codIRange and codIOffset. The bypass decoding process for binary decisions (DecodeBypass) as specified in
clause 9.3.3.2.3 requires a minimum register precision of 10 bits for the variable codlOffset and a minimum register precision of
9 bits for the variable codIRange.

9.3.2 Binarization process
Input to this process is a request for a syntax element.
Output of this process is the binarization of the syntax element, maxBinldxCtx, ctxIdxOffset, and bypassFlag.

Table 9-34 specifies the type of binarization process, maxBinldxCtx, and ctxIdxOffset associated with each syntax
element.

The specification of the unary (U) binarization process, the truncated unary (TU) binarization process, the concatenated
unary / k-th order Exp-Golomb (UEGKk) binarization process, and the fixed-length (FL) binarization process are given in
clauses 9.3.2.1 to 9.3.2.4, respectively. Other binarizations are specified in clauses 9.3.2.5 t0 9.3.2.7.

Except for I slices, the binarizations for the syntax element mb_type as specified in clause 9.3.2.5 consist of bin strings
given by a concatenation of prefix and suffix bit strings. The UEGk binarization as specified in clause 9.3.2.3, which is
used for the binarization of the syntax elements mvd IX (X =0, 1) and coeff abs level minusl, and the binarization of
the coded block pattern also consist of a concatenation of prefix and suffix bit strings. For these binarization processes,
the prefix and the suffix bit string are separately indexed using the binldx variable as specified further in clause 9.3.3.
The two sets of prefix bit strings and suffix bit strings are referred to as the binarization prefix part and the binarization
suffix part, respectively.

Associated with each binarization or binarization part of a syntax element is a specific value of the context index offset
(ctxIdxOffset) variable and a specific value of the maxBinldxCtx variable as given in Table 9-34. When two values for
each of these variables are specified for one syntax element in Table 9-34, the value in the upper row is related to the
prefix part while the value in the lower row is related to the suffix part of the binarization of the corresponding syntax
element.

246 Rec. ITU-T H.264 (01/2012)

The use of the DecodeBypass process and the variable bypassFlag is derived as follows:

— If no value is assigned to ctxIdxOffset for the corresponding binarization or binarization part in Table 9-34 labelled
as "na", all bins of the bit strings of the corresponding binarization or of the binarization prefix/suffix part are
decoded by invoking the DecodeBypass process as specified in clause 9.3.3.2.3. In such a case, bypassFlag is set
equal to 1, where bypassFlag is used to indicate that for parsing the value of the bin from the bitstream the
DecodeBypass process is applied.

— Otherwise, for each possible value of binldx up to the specified value of maxBinldxCtx given in Table 9-34, a
specific value of the variable ctxIdx is further specified in clause 9.3.3. bypassFlag is set equal to 0.

The possible values of the context index ctxIdx are in the range 0 to 1023, inclusive. The value assigned to ctxIdxOffset
specifies the lower value of the range of ctxIdx assigned to the corresponding binarization or binarization part of a syntax
element.

ctxldx = ctxIdxOffset = 276 is assigned to the syntax element end of slice flag and the bin of mb_type, which specifies
the I PCM macroblock type as further specified in clause 9.3.3.1. For parsing the value of the corresponding bin from
the bitstream, the arithmetic decoding process for decisions before termination (DecodeTerminate) as specified in
clause 9.3.3.2.4 is applied.
NOTE — The bins of mb_type in I slices and the bins of the suffix for mb_type in SI slices that correspond to the same value of
binldx share the same ctxIdx. The last bin of the prefix of mb_type and the first bin of the suffix of mb_type in P, SP, and B slices
may share the same ctxIdx.

Table 9-34 — Syntax elements and associated types of binarization, maxBinIldxCtx, and ctxIdxOffset

Syntax element Type of binarization maxBinldxCtx ctxIdxOffset
mb_type prefix and suffix prefix: 0 prefix: 0
(ST slices only) as specified in clause 9.3.2.5 suffix: 6 suffix: 3
mb_type (I slices only) as specified in clause 9.3.2.5 6 3
mb_skip_flag _
(P, SP slices only) FL, cMax=1 0 1
. prefix and suffix prefix: 2 prefix: 14
mb_type (P, SP slices only) as specified in clause 9.3.2.5 suffix: 5 suffix: 17
sub_mb_type[] . .
(P, SP slices only) as specified in clause 9.3.2.5 2 21
mb_skip_flag _
(B slices only) FL, cMax=1 0 24
. prefix and suffix prefix: 3 prefix: 27
mb_type (B slices only) as specified in clause 9.3.2.5 suffix: 5 suffix: 32
sub_mb_type[] (B slices only) as specified in clause 9.3.2.5 3 36
prefix: 4 prefix: 40
mvd_I0C[]00], mvd_ITLICICO] suffix: na suffix: na (uses DecodeBypass)

prefix and suffix as given by UEG3
with signedValFlag=1, uCoff=9

prefix: 4 prefix: 47

mvd_10CCI0T], mvd ITLICICT] suffix: na suffix: na (uses DecodeBypass)
ref_idx_10, ref idx_11 U 2 54
mb_qp_delta as specified in clause 9.3.2.7 2 60
intra_chroma_pred _mode TU, cMax=3 1 64
prev_lptra4x4 _pred_mode flag, FL, cMax=1 0 68

prev_intra8x8 pred mode flag
remil.ntra4x47pred7mode, FL. cMax=7 0 69
rem_intra8x8_pred_mode

mb_field decoding_ flag FL, cMax=1 0 70

Rec. ITU-T H.264 (01/2012) 247

Table 9-34 — Syntax elements and associated types of binarization, maxBinldxCtx, and ctxIdxOffset

Syntax element Type of binarization maxBinldxCtx ctxIdxOffset
prefix and suffix prefix: 3 prefix: 73
coded_block_pattern as specified in clause 9.3.2.6 suffix: 1 suffix: 77
coded_block flag _ 0 85
(blocks with ctxBlockCat < 5) FL, cMax=1
significant_coeff flag _
(frame coded blocks with ctxBlockCat < 5) FL, cMax=1 0 105
last_significant _coeff flag _
(frame coded blocks with ctxBlockCat < 5) FL, cMax=1 0 166
coeff abs level minusl prefix and suffix as given by UEGO prefix: 1 prefix: 227
(blocks with ctxBlockCat < 5) with signedValFlag=0, uCoff=14 suffix: na suffix: na, (uses DecodeBypass)
coeft sign flag FL, cMax=1 0 na, (uses DecodeBypass)
end of slice flag FL, cMax=1 0 276
significant_coeff flag _
(field coded blocks with ctxBlockCat < 5) FL, cMax=1 0 277
last_significant _coeff flag _
(field coded blocks with ctxBlockCat < 5) FL, cMax=1 0 338
transform_size 8x8 flag FL, cMax=1 0 399
significant_coeff flag _
(frame coded blocks with ctxBlockCat == 5) FL, cMax=1 0 402
last_significant coeff flag _
(frame coded blocks with ctxBlockCat == 5) FL, cMax=1 0 417
coeff abs level minusl prefix and suffix as given by UEGO prefix: 1 prefix: 426
blocks with ctxBlockCat == 5 with signedValFlag=0, uCoff=14 suffix: na suffix: na, (uses DecodeBypass
g g YPp:
significant_coeff flag _
(field coded blocks with ctxBlockCat == 5) FL, cMax=1 0 436
last_significant _coeff flag _
(field coded blocks with ctxBlockCat == 5) FL, cMax=1 0 451
coded_block flag _
(5 < ctxBlockCat < 9) FL, cMax=1 0 460
coded_block flag _
(9 < ctxBlockCat < 13) FL, cMax=1 0 472
coded_block flag _
(ctxBlockCat == 5,9, or 13) FL, cMax=1 0 1012
significant_coeff flag
(frame coded blocks FL, cMax=1 0 484
with 5 < ctxBlockCat < 9)
significant_coeff flag
(frame coded blocks with FL, cMax=1 0 528
9 < ctxBlockCat < 13)
last_significant_coeff flag
(frame coded blocks with FL, cMax=1 0 572
5 < ctxBlockCat < 9)
last_significant_coeff flag FL, cMax=1 0 616

(frame coded blocks with

248

Rec. ITU-T H.264 (01/2012)

Table 9-34 — Syntax elements and associated types of binarization, maxBinldxCtx, and ctxIdxOffset

Syntax element Type of binarization maxBinldxCtx ctxIdxOffset
9 < ctxBlockCat < 13)
coeff abs level minusl prefix and suffix as given by UEGO prefix: 1 prefix: 952
(blocks with 5 < ctxBlockCat < 9) with signedValFlag=0, uCoff=14 suffix: na suffix: na, (uses DecodeBypass)
coeff abs level minusl prefix and suffix as given by UEGO prefix: 1 prefix: 982
(blocks with 9 < ctxBlockCat < 13) with signedValFlag=0, uCoff=14 suffix: na suffix: na, (uses DecodeBypass)
significant_coeff flag _
(field coded blocks with 5 < ctxBlockCat < 9) FL, cMax=1 0 776
significant_coeff flag
(field coded blocks with FL, cMax=1 0 820
9 < ctxBlockCat < 13)
last_significant coeff flag _
(field coded blocks with 5 < ctxBlockCat < 9) FL, cMax=1 0 864
last_significant coeff flag
(field coded blocks with FL, cMax=1 0 908
9 < ctxBlockCat < 13)
significant_coeff flag _
(frame coded blocks with ctxBlockCat == 9) FL, cMax=1 0 660
significant_coeff flag
(frame coded blocks with FL, cMax=1 0 718
ctxBlockCat == 13)
last_significant _coeff flag _
(frame coded blocks with ctxBlockCat == 9) FL, cMax=1 0 690
last_significant _coeff flag
(frame coded blocks with FL, cMax=1 0 748
ctxBlockCat == 13)
coeff abs level minusl prefix and suffix as given by UEGO prefix: 1 prefix: 708
(blocks with ctxBlockCat == 9) with signedValFlag=0, uCoff=14 suffix: na suffix: na, (uses DecodeBypass)
coeff abs level minusl prefix and suffix as given by UEGO prefix: 1 prefix: 766
(blocks with ctxBlockCat == 13) with signedValFlag=0, uCoff=14 suffix: na suffix: na, (uses DecodeBypass)
significant_coeff flag _
(field coded blocks with ctxBlockCat == 9) FL, cMax=1 0 675
significant_coeff flag _
(field coded blocks with ctxBlockCat == 13) FL, cMax=1 0 733
last_significant coeff flag _
(field coded blocks with ctxBlockCat == 9) FL, cMax=1 0 699
last_significant _coeff flag _
(field coded blocks with ctxBlockCat == 13) FL, cMax=1 0 757

9.3.2.1 Unary (U) binarization process
Input to this process is a request for a U binarization for a syntax element.
Output of this process is the U binarization of the syntax element.

The bin string of a syntax element having (unsigned integer) value synElVal is a bit string of length synElVal + 1
indexed by binldx. The bins for binldx less than synEIVal are equal to 1. The bin with binldx equal to synEIVal is equal
to 0.

Table 9-35 illustrates the bin strings of the unary binarization for a syntax element.

Rec. ITU-T H.264 (01/2012) 249

Table 9-35 — Bin string of the unary binarization (informative)

Value of syntax element Bin string
0 (I_NxN) 0
1 10
2 1{1]0
3 1|{1]1]0
4 1|{1|1]|1]0
5 1{1]1f{1]1}f0
binldx 012|345

9.3.2.2 Truncated unary (TU) binarization process
Input to this process is a request for a TU binarization for a syntax element and cMax.
Output of this process is the TU binarization of the syntax element.

For syntax element (unsigned integer) values less than cMax, the U binarization process as specified in clause 9.3.2.1 is
invoked. For the syntax element value equal to cMax the bin string is a bit string of length cMax with all bins being
equal to 1.

NOTE — TU binarization is always invoked with a cMax value equal to the largest possible value of the syntax element being
decoded.

9.3.2.3 Concatenated unary/ k-th order Exp-Golomb (UEGKk) binarization process
Input to this process is a request for a UEGk binarization for a syntax element, signedValFlag and uCoff.
Output of this process is the UEGk binarization of the syntax element.

A UEGKk bin string is a concatenation of a prefix bit string and a suffix bit string. The prefix of the binarization is
specified by invoking the TU binarization process for the prefix part Min(uCoff, Abs(synElVal)) of a syntax element
value synElVal as specified in clause 9.3.2.2 with cMax = uCoff, where uCoff > 0.

The variable k for a UEGk bin string is dependent on the syntax element for which a UEGk binarization is requested.
Table 9-34 specifies the associated types of binarization for syntax elements, including the value of k for syntax elements
that use UEGk binarization.

NOTE 1 — For the syntax elements mvd_10[][][] and mvd_11[][][] a UEG3 binarization is used (k is equal to 3). For the syntax
element coeff abs_level minusl a UEGO binarization is used (k is equal to 0).

The UEGKk bin string is derived as follows:

— If one of the following is true, the bin string of a syntax element having value synElVal consists only of a prefix bit
string:

— signedValFlag is equal to 0 and the prefix bit string is not equal to the bit string of length uCoff with all bits
equal to 1,

— signedValFlag is equal to 1 and the prefix bit string is equal to the bit string that consists of a single bit with
value equal to 0.

250 Rec. ITU-T H.264 (01/2012)

— Otherwise, the bin string of the UEGk suffix part of a syntax element value synElVal is specified by a process
equivalent to the following pseudo-code with k being initialised to the value that is specified in Table 9-34 for the
requested UEGk binarization process. At the beginning of the following pseudo-code, the bin string of a syntax
element having value synElVal is set equal to the empty string. Each call of the function put(X), with X being
equal to 0 or 1, adds the binary value X at the end of the bin string.

if(Abs(synElVal) >= uCoff) {
sufS = Abs(synElVal) — uCoff
stopLoop =0
do {
if(sufS >= (1<<k)){
put(1)
sufS = sufS — (1<<k)
k++
} else {
put(0) (9-6)
while(k——)
put((sufS>>k) & 1)
stopLoop =1

}
} while(!stopLoop)

}
if(signedValFlag && synElVal ! = 0)
if(synElVal > 0)

put(0)
else

put(1)

NOTE 2 — The specification for the k-th order Exp-Golomb (EGk) code uses 1's and 0's in reverse meaning for the unary part of
the Exp-Golomb code of 0-th order as specified in clause 9.1.

9.3.2.4 Fixed-length (FL) binarization process
Input to this process is a request for a FL binarization for a syntax element and cMax.
Output of this process is the FL binarization of the syntax element.

FL binarization is constructed by using a fixedLength-bit unsigned integer bin string of the syntax element value, where
fixedLength = Ceil(Log2(cMax + 1)). The indexing of bins for the FL binarization is such that the binldx = 0 relates to
the least significant bit with increasing values of binldx towards the most significant bit.

9.3.2.5 Binarization process for macroblock type and sub-macroblock type

Input to this process is a request for a binarization for syntax elements mb_type or sub_mb_type] .
Output of this process is the binarization of the syntax element.

The binarization scheme for decoding of macroblock type in I slices is specified in Table 9-36.

For macroblock types in SI slices, the binarization consists of bin strings specified as a concatenation of a prefix and a
suffix bit string as follows.

The prefix bit string consists of a single bit, which is specified by by =((mb_type == SI) ? 0:1). For the syntax
element value for which by is equal to 0, the bin string only consists of the prefix bit string. For the syntax element value
for which by is equal to 1, the binarization is given by concatenating the prefix by and the suffix bit string as specified in
Table 9-36 for macroblock type in I slices indexed by subtracting 1 from the value of mb_type in SI slices.

Rec. ITU-T H.264 (01/2012) 251

Table 9-36 — Binarization for macroblock types in I slices

Value (name) of mb_type | Bin string

0 (I_NxN) 0

1 (I_16x16_0_0_0) 1 0 0 0 0 0
2(I_16x16_1_0_0) 1 0 0 0 0 1
3(I_16x16_2 0_0) 1 0 0 0 1 0
4(1_16x16_3_0_0) 1 0 0 0 1 1
S(I_16x16_0_1_0) 1 0 0 1 0 0 0
6(I_16x16_1_1_0) 1 0 0 1 0 0 1
7(_16x16_2 1 0) 1 0 0 1 0 1 0
8 (I_16x16_3 1 0) 1 0 0 1 0 1 1
9(I_16x16_0_2_0) 1 0 0 1 1 0 0
10 (I_16x16_1_2 0) 1 0 0 1 1 0 1
11 (I_16x16_2 2 0) 1 0 0 1 1 1 0
12 (I_16x16_3 2 0) 1 0 0 1 1 1 1
13 (I_16x16_0_0_1) 1 0 1 0 0 0

14 (I_16x16_1_0_1) 1 0 1 0 0 1

15 (_16x16_2 0_1) 1 0 1 0 1 0

16 (I_16x16_3 0_1) 1 0 1 0 1 1

17 (I_16x16_0_1_1) 1 0 1 1 0 0 0
18 (I_16x16_1_1_1) 1 0 1 1 0 0 1
19 (I_16x16_2 1_1) 1 0 1 1 0 1 0
20(1_16x16_3_1_1) 1 0 1 1 0 1 1
21 (I_16x16_0 2 1) 1 0 1 1 1 0 0
22(1_16x16_1.2 1) 1 0 1 1 1 0 1
23 (I_16x16.2 2 1) 1 0 1 1 1 1 0
24 (1_16x16.3 2 1) 1 0 1 1 1 1 1
25 (I_PCM) 1 1

binldx 0 1 2 3 4 5 6

The binarization schemes for P macroblock types in P and SP slices and for B macroblocks in B slices are specified in
Table 9-37.

The bin string for I macroblock types in P and SP slices corresponding to mb_type values 5 to 30 consists of a
concatenation of a prefix, which consists of a single bit with value equal to 1 as specified in Table 9-37 and a suffix as
specified in Table 9-36, indexed by subtracting 5 from the value of mb_type.

mb_type equal to 4 (P_8x8ref0) is not allowed.

For I macroblock types in B slices (mb_type values 23 to 48) the binarization consists of bin strings specified as a
concatenation of a prefix bit string as specified in Table 9-37 and suffix bit strings as specified in Table 9-36, indexed by
subtracting 23 from the value of mb_type.

252 Rec. ITU-T H.264 (01/2012)

Table 9-37 — Binarization for macroblock types in P, SP, and B slices

Slice type | Value (name) of mb_type | Bin string
0 (P_LO_16x16) 0 0
1 (P_LO_LO_16x8) 0 1
2 (P_LO_LO_8x16) 0 1

P, SP slice
3 (P_8x8) 0 0
4 (P_8x8ref0) na
5 to 30 (Intra, prefix only) 1
0 (B_Direct_16x16) 0
1 (B_LO_16x16) 1 0
2 (B_L1_16x16) 1 0
3 (B_Bi_16x16) 1 1 0 0 0
4 (B_LO_LO_16x8) 1 1 0 0 1
5(B_L0O_LO_8x16) 1 1 0 1 0
6(B_L1_L1_16x8) 1 1 0 1 1
7(B_L1_L1_8x16) 1 1 1 0 0
8(B_LO_L1_16x8) 1 1 1 0 1
9(B_LO_L1_8x16) 1 1 1 1 0
10 (B_L1_LO_16x8) 1 1 1 1 1
11 (B_L1_LO_8x16) 1 1 1 1 0

B slice
12 (B_LO_Bi_16x8) 1 1 0 0 0 0
13 (B_L0_Bi_8x16) 1 1 0 0 0 1
14 (B_L1_Bi_16x8) 1 1 0 0 1 0
15(B_L1_Bi_8x16) 1 1 0 0 1 1
16 (B_Bi_L0_16x8) 1 1 0 1 0 0
17 (B_Bi_L0_8x16) 1 1 0 1 0 1
18 (B_Bi_L1_16x8) 1 1 0 1 1 0
19 (B_Bi_L1_8x16) 1 1 0 1 1 1
20 (B_Bi_Bi_16x8) 1 1 1 0 0 0
21 (B_Bi_Bi_8x16) 1 1 1 0 0 1
22 (B_8x8) 1 1 1 1 1
23 to 48 (Intra, prefix only) | 1 1 1 0 1

binldx 0 1 3 4 5 6

For P, SP, and B slices the specification of the binarization for sub_mb_type][] is given in Table 9-38.

Rec. ITU-T H.264 (01/2012)

253

Table 9-38 — Binarization for sub-macroblock types in P, SP, and B slices

Slice type | Value (name) of sub_mb_type[] | Bin string
0 (P_LO_8x8) 1
1 (P_LO_8x4) 0 0
P, SP slice
2 (P_LO_4x8) 0 1 1
3 (P_LO_4x4) 0 1 0
0 (B_Direct_8x8) 0
1 (B_LO_8x8) 1 0 0
2 (B_L1_8x8) 1 0 1
3 (B_Bi_8x8) 1 1 0 0 0
4 (B_LO_8x4) 1 1 0 0 1
5 (B_L0_4x8) 1 1 0 1 0
B slice 6 (B_L1_8x4) 1 1 0 1 1
7 (B_L1_4x8) 1 1 1 0 0 0
8 (B_Bi_8x4) 1 1 1 0 0 1
9 (B_Bi_4x8) 1 1 1 0 1 0
10 (B_LO_4x4) 1 1 1 0 1 1
11 (B_L1_4x4) 1 1 1 1 0
12 (B_Bi_4x4) 1 1 1 1 1
binldx 0 1 2 3 4 5

9.3.2.6 Binarization process for coded block pattern
Input to this process is a request for a binarization for the syntax element coded block pattern.
Output of this process is the binarization of the syntax element.

The binarization of coded block pattern consists of a prefix part and (when present) a suffix part. The prefix part of the
binarization is given by the FL binarization of CodedBlockPatternLuma with cMax = 15. When ChromaArrayType is not
equal to 0 or 3, the suffix part is present and consists of the TU binarization of CodedBlockPatternChroma with
cMax =2. The relationship between the value of the syntax element coded block pattern and the values of
CodedBlockPatternLuma and CodedBlockPatternChroma is given as specified in clause 7.4.5.

9.3.2.7 Binarization process for mb_qp_delta
Input to this process is a request for a binarization for the syntax element mb_qp_delta.
Output of this process is the binarization of the syntax element.

The bin string of mb_qp_delta is derived by the U binarization of the mapped value of the syntax element mb_qp_delta,
where the assignment rule between the signed value of mb_qp delta and its mapped value is given as specified in
Table 9-3.

9.3.3 Decoding process flow

Input to this process is a binarization of the requested syntax element, maxBinldxCtx, bypassFlag and ctxIdxOffset as
specified in clause 9.3.2.

Output of this process is the value of the syntax element.

This process specifies how each bit of a bit string is parsed for each syntax element.

254 Rec. ITU-T H.264 (01/2012)

After parsing each bit, the resulting bit string is compared to all bin strings of the binarization of the syntax element and
the following applies:

— If the bit string is equal to one of the bin strings, the corresponding value of the syntax element is the output.
— Otherwise (the bit string is not equal to one of the bin strings), the next bit is parsed.
While parsing each bin, the variable binldx is incremented by 1 starting with binldx being set equal to 0 for the first bin.

When the binarization of the corresponding syntax element consists of a prefix and a suffix binarization part,, the
variable binldx is set equal to O for the first bin of each part of the bin string (prefix part or suffix part). In this case, after
parsing the prefix bit string, the parsing process of the suffix bit string related to the binarizations specified in
clauses 9.3.2.3 and 9.3.2.5 is invoked depending on the resulting prefix bit string as specified in clauses 9.3.2.3 and
9.3.2.5. Note that for the binarization of the syntax element coded block pattern, the suffix bit string is present
regardless of the prefix bit string of length 4 as specified in clause 9.3.2.6.

Depending on the variable bypassFlag, the following applies:

— If bypassFlag is equal to 1, the bypass decoding process as specified in clause 9.3.3.2.3 is applied for parsing the
value of the bins from the bitstream.

— Otherwise (bypassFlag is equal to 0), the parsing of each bin is specified by the following two ordered steps:
1. Given binldx, maxBinldxCtx and ctxIdxOffset, ctxIdx is derived as specified in clause 9.3.3.1.

2. Given ctxIdx, the value of the bin from the bitstream as specified in clause 9.3.3.2 is decoded.

9.3.3.1 Derivation process for ctxIdx
Inputs to this process are binldx, maxBinldxCtx and ctxIdxOffset.
Output of this process is ctxIdx.

Table 9-39 shows the assignment of ctxIdx increments (ctxldxInc) to binldx for all ctxIdxOffset values except those
related to the syntax elements coded block flag, significant coeff flag, last significant coeff flag, and
coeff abs level minusl.

The ctxIdx to be used with a specific binldx is specified by first determining the ctxIdxOffset associated with the given
bin string or part thereof. The ctxIdx is determined as follows:

— If the ctxIdxOffset is listed in Table 9-39, the ctxIdx for a binldx is the sum of ctxIdxOffset and ctxIdxInc, which is
found in Table 9-39. When more than one value is listed in Table 9-39 for a binldx, the assignment process for
ctxIdxInc for that binldx is further specified in the clauses given in parenthesis of the corresponding table entry.

— Otherwise (ctxIdxOffset is not listed in Table 9-39), the ctxIdx is specified to be the sum of the following terms:
ctxIdxOffset and ctxIldxBlockCatOffset(ctxBlockCat) as specified in Table 9-40 and ctxIdxInc(ctxBlockCat).
Clause 9.3.3.1.3 specifies which ctxBlockCat is wused. Clause 9.3.3.1.1.9 specifies the assignment of
ctxldxInc(ctxBlockCat) for coded block flag, and clause 9.3.3.1.3 specifies the assignment of
ctxIdxInc(ctxBlockCat) for significant coeff flag, last significant coeff flag, and coeff abs level minusl.

All bins with binldx greater than maxBinldxCtx are parsed using the value of ctxIdx being assigned to binldx equal to
maxBinldxCtx.

All entries in Table 9-39 labelled with "na" correspond to values of binldx that do not occur for the corresponding
ctxIdxOffset.

ctxldx =276 is assigned to the binldx of mb type indicating the I PCM mode. For parsing the value of the
corresponding bins from the bitstream, the arithmetic decoding process for decisions before termination as specified in
clause 9.3.3.2.4 is applied.

Rec. ITU-T H.264 (01/2012) 255

Table 9-39 — Assignment of ctxIdxInc to binldx for all ctxIdxOffset values except those related to the syntax
elements coded_block_flag, significant_coeff flag, last significant coeff flag, and coeff abs level minusl

binldx
ctxIdxOffset
0 1 2 3 4 5 >=6
0 0,12 na na na na na na
(clause 9.3.3.1.1.3)
012 5,6 6,7
3 > ctxIdx=276 3 4 clause clause 7
(clause 9.3.3.1.1.3) 9(.3.3.1.2) 9(.3.3.1.2)
11 0,12 na na na na na na
(clause 9.3.3.1.1.1)
2,3
14 0 1 (clause na na na na
9.3.3.1.2)
2,3
17 0 ctxldx=276 1 2 (clause 3 3
9.3.3.1.2)
21 0 1 2 na na na na
24 0,1,2 na na na na na na
(clause 9.3.3.1.1.1)
4,5
0,1,2 >
27 S 3 (clause 5 5 5 5
(clause 9.3.3.1.1.3) 933.1.2)
2,3
32 0 ctxIdx=276 1 2 (clause 3 3
9.3.3.1.2)
2,3
36 0 1 (clause 3 3 3 na
9.3.3.1.2)
0,1,2
40 (clause 9.3.3.1.1.7) 3 4 3 6 6 6
0,1,2
47 (clause 9.3.3.1.1.7) 3 4 3 6 6 6
0,1,2,3
4 (clause 9.3.3.1.1.6) 4 3 3 3 3 3
0,1
60 (clause 9.3.3.1.1.5) 2 3 3 3 3 3
0,1,2
64 (clause 9.3.3.1.1.8) 3 3 na na na na
68 0 na na na na na na
69 0 0 0 na na na na
70 0,1,2 na na na na na na
(clause 9.3.3.1.1.2)
0123 0,1,2,3 0,1,2,3 0,1,2,3
73 (clause ’9 ’3 ’3 1.1.4) (clause (clause (clause na na na
""" 9.33.1.1.4) | 93.3.1.1.4) | 9.3.3.1.14)
77 0.1,2,3 (‘::’1?1’1165’673 na na na na na
(clause 9.3.3.1.1.4) 933.1.1.4)
276 0 na na na na na na
0,1,2
399 (clause 9.3.3.1.1.10) na na na na na na

256 Rec. ITU-T H.264 (01/2012)

Table 9-40 shows the values of ctxldxBlockCatOffset depending on ctxBlockCat for the syntax elements
coded block flag, significant coeff flag, last significant coeff flag, and coeff abs level minusl. The specification of
ctxBlockCat is given in Table 9-42.

Table 9-40 — Assignment of ctxIdxBlockCatOffset to ctxBlockCat for syntax elements coded_block flag,
significant_coeff flag, last_significant_coeff flag, and coeff abs level minusl

ctxBlockCat (as specified in Table 9-42)
Syntax element
0 |1 2 3 4 5 6 7 8 9 10 11 12 13
coded block flag 0|4 8 12 16 0 0 4 8 4 0 4 8 8
significant_coeff flag 0 |15 |29 44 47 0 0 15 29 0 0 15 29 0
last_significant_coeff flag [0 | 15 | 29 44 47 0 0 15 29 0 0 15 29 0
coeff abs_level minusl 0 |10 | 20 30 39 0 0 10 20 0 0 10 20 0

9.3.3.1.1 Assignment process of ctxIdxInc using neighbouring syntax elements

Clause 9.3.3.1.1.1 specifies the derivation process of ctxIdxInc for the syntax element mb_skip flag.

Clause 9.3.3.1.1.2 specifies the derivation process of ctxIdxInc for the syntax element mb_field decoding flag.
Clause 9.3.3.1.1.3 specifies the derivation process of ctxIdxInc for the syntax element mb_type.

Clause 9.3.3.1.1.4 specifies the derivation process of ctxIdxInc for the syntax element coded block pattern.
Clause 9.3.3.1.1.5 specifies the derivation process of ctxIdxInc for the syntax element mb_qp_delta.

Clause 9.3.3.1.1.6 specifies the derivation process of ctxIdxInc for the syntax elements ref idx 10 and ref idx II.
Clause 9.3.3.1.1.7 specifies the derivation process of ctxIdxInc for the syntax elements mvd 10 and mvd 11.
Clause 9.3.3.1.1.8 specifies the derivation process of ctxIdxInc for the syntax element intra_chroma pred mode.
Clause 9.3.3.1.1.9 specifies the derivation process of ctxIdxInc for the syntax element coded block flag.

Clause 9.3.3.1.1.10 specifies the derivation process of ctxIdxInc for the syntax element transform_size 8x8 flag.

9.3.3.1.1.1 Derivation process of ctxIdxInc for the syntax element mb_skip flag
Output of this process is ctxIdxInc.

When MbaftFrameFlag is equal to 1 and mb_field decoding flag has not been decoded (yet) for the current macroblock
pair with top macroblock address 2 * (CurrMbAddr/2), the inference rule for the syntax element
mb_field decoding flag as specified in clause 7.4.4 is applied.

The derivation process for neighbouring macroblocks specified in clause 6.4.11.1 is invoked and the output is assigned to
mbAddrA and mbAddrB.

Let the variable condTermFlagN (with N being either A or B) be derived as follows:

— If mbAddrN is not available or mb_skip flag for the macroblock mbAddrN is equal to 1, condTermFlagN is set
equal to 0.

— Otherwise (mbAddrN is available and mb_skip flag for the macroblock mbAddrN is equal to 0), condTermFlagN is
set equal to 1.

The variable ctxIdxInc is derived by:

ctxIdxInc = condTermFlagA + condTermFlagB (9-7)

9.3.3.1.1.2 Derivation process of ctxIdxInc for the syntax element mb_field_decoding flag

Output of this process is ctxIdxInc.

Rec. ITU-T H.264 (01/2012) 257

The derivation process for neighbouring macroblock addresses and their availability in MBAFF frames as specified in
clause 6.4.10 is invoked and the output is assigned to mbAddrA and mbAddrB.

When both macroblocks mbAddrN and mbAddrN + 1 have mb_type equal to P_Skip or B_Skip, the inference rule for
the syntax element mb_field decoding_ flag as specified in clause 7.4.4 is applied for the macroblock mbAddrN.

Let the variable condTermFlagN (with N being either A or B) be derived as follows:
— Ifany of the following conditions are true, condTermFlagN is set equal to 0:

— mbAddrN is not available,

— the macroblock mbAddrN is a frame macroblock.
— Otherwise, condTermFlagN is set equal to 1.

The variable ctxIdxInc is derived by

ctxldxInc = condTermFlagA + condTermFlagB (9-8)

9.3.3.1.1.3 Derivation process of ctxIdxInc for the syntax element mb_type
Input to this process is ctxIdxOffset.
Output of this process is ctxIdxInc.

The derivation process for neighbouring macroblocks specified in clause 6.4.11.1 is invoked and the output is assigned to
mbAddrA and mbAddrB.

Let the variable condTermFlagN (with N being either A or B) be derived as follows:
— If any of the following conditions are true, condTermFlagN is set equal to 0:

— mbAddrN is not available,

— ctxIdxOffset is equal to 0 and mb_type for the macroblock mbAddrN is equal to SI,

— ctxldxOffset is equal to 3 and mb_type for the macroblock mbAddrN is equal to I NxN,

— ctxIdxOffset is equal to 27 and mb_type for the macroblock mbAddrN is equal to B_Skip or B Direct 16x16.
— Otherwise, condTermFlagN is set equal to 1.

The variable ctxIdxInc is derived as

ctxIdxInc = condTermFlagA + condTermFlagB (9-9)

9.3.3.1.1.4 Derivation process of ctxIdxInc for the syntax element coded_block pattern
Inputs to this process are ctxIdxOffset and binldx.

Output of this process is ctxIdxInc.

Depending on the value of the variable ctxIdxOffset, the following ordered steps are specified:
— If etxIdxOffset is equal to 73, the following applies:

1. The derivation process for neighbouring 8x8 luma blocks specified in clause 6.4.11.2 is invoked with
luma8x8Blkldx = binldx as input and the output is assigned to mbAddrA, mbAddrB, luma8x8BIlkIdxA, and
luma8x8BlkldxB.

2. Let the variable condTermFlagN (with N being either A or B) be derived as follows:
— If any of the following conditions are true, condTermFlagN is set equal to 0:
— mbAddrN is not available,
— mb_type for the macroblock mbAddrN is equal to I PCM,

— the macroblock mbAddrN is not the current macroblock CurrMbAddr and the macroblock mbAddrN
does not have mb_type equal to P_Skip or B_Skip, and
((CodedBlockPatternLuma >> luma8x8BIkIdxN) & 1) is not equal to0 for the value of
CodedBlockPatternLuma for the macroblock mbAddrN,

258 Rec. ITU-T H.264 (01/2012)

— the macroblock mbAddrN is the current macroblock CurrMbAddr and the prior decoded bin value by
of coded block pattern with k = luma8x8BIkIdxN is not equal to O.

— Otherwise, condTermFlagN is set equal to 1.

3. The variable ctxIdxInc is derived as

ctxldxInc = condTermFlagA + 2 * condTermFlagB (9-10)

— Otherwise (ctxIdxOffset is equal to 77), the following ordered steps are specified:

1. The derivation process for neighbouring macroblocks specified in clause 6.4.11.1 is invoked and the output is
assigned to mbAddrA and mbAddrB.

2. Let the variable condTermFlagN (with N being either A or B) be derived as follows:

— If mbAddrN is available and mb_type for the macroblock mbAddrN is equal to I PCM, condTermFlagN
is set equal to 1.

— Otherwise, if any of the following conditions are true, condTermFlagN is set equal to 0:

— mbAddrN is not available or the macroblock mbAddrN has mb_type equal to P_Skip or B_Skip,

— binldx is equal to 0 and CodedBlockPatternChroma for the macroblock mbAddrN is equal to 0,

— binldx is equal to 1 and CodedBlockPatternChroma for the macroblock mbAddrN is not equal to 2.
— Otherwise, condTermFlagN is set equal to 1.

3. The variable ctxIdxInc is derived as
ctxldxInc = condTermFlagA + 2 * condTermFlagB + ((binldx == 1)?4:0) (9-11)

NOTE — When a macroblock is coded in Intra 16x16 macroblock prediction mode, the values of CodedBlockPatternLuma and
CodedBlockPatternChroma for the macroblock are derived from mb_type as specified in Table 7-11.

9.3.3.1.1.5 Derivation process of ctxIdxInc for the syntax element mb_qp_delta
Output of this process is ctxIdxInc.

Let prevMbAddr be the macroblock address of the macroblock that precedes the current macroblock in decoding order.
When the current macroblock is the first macroblock of a slice, prevMbAddr is marked as not available.

Let the variable ctxIdxInc be derived as follows:

— If any of the following conditions are true, ctxIdxInc is set equal to O:
— prevMbAddr is not available or the macroblock prevMbAddr has mb_type equal to P_Skip or B_Skip,
— mb_type of the macroblock prevMbAddr is equal to I PCM,

— The macroblock prevMbAddr is not coded in Intra 16x16 macroblock prediction mode and both
CodedBlockPatternLuma and CodedBlockPatternChroma for the macroblock prevMbAddr are equal to 0,

— mb_qp delta for the macroblock prevMbAddr is equal to 0.

— Otherwise, ctxIdxInc is set equal to 1.

9.3.3.1.1.6 Derivation process of ctxIdxInc for the syntax elements ref idx 10 and ref idx_I1
Input to this process is mbPartldx.

Output of this process is ctxIdxInc.

The interpretation of ref idx 1X and Pred LX within this clause is specified as follows:

— If this process is invoked for the derivation of ref idx 10, ref idx IX is interpreted as ref idx 10 and Pred LX is
interpreted as Pred LO.

— Otherwise (this process is invoked for the derivation of ref idx 11), ref idx IX is interpreted as ref idx Il and
Pred LX is interpreted as Pred L1.

The derivation process for neighbouring partitions specified in clause 6.4.11.7 is invoked with mbPartldx,
currSubMbType set equal to sub_mb_type[mbPartldx], and subMbPartldx =0 as input and the output is assigned to
mbAddrA\mbPartldxA and mbAddrB\mbPartIdxB.

Rec. ITU-T H.264 (01/2012) 259

With ref idx IX[mbPartldxN] (with N being either A or B) specifying the syntax element for the macroblock
mbAddrN, let the variable refldxZeroFlagN be derived as follows:

— If MbaffFrameFlag is equal to 1, the current macroblock is a frame macroblock, and the macroblock mbAddrN is a
field macroblock,

refldxZeroFlagN = ((ref idx_IX[mbPartldxN]>1)?0:1) (9-12)
— Otherwise,
refldxZeroFlagN = ((ref idx_1X[mbPartldxN]>0)?0:1) (9-13)

Let the variable predModeEqualFlagN be specified as follows:

— Ifmb_type for the macroblock mbAddrN is equal to B_Direct 16x16 or B_Skip, predModeEqualFlagN is set equal
to 0.

— Otherwise, if the macroblock mbAddrN has mb_type equal to P_8x8 or B_8x8, the following applies:

— If SubMbPredMode(sub_ mb_type[mbPartldxN]) is not equal to Pred LX and not equal to BiPred,
predModeEqualFlagN is set equal to 0, where sub_mb type specifies the syntax element list for the
macroblock mbAddrN.

— Otherwise, predModeEqualFlagN is set equal to 1.
— Otherwise, the following applies:

— If MbPartPredMode(mb_type, mbPartldxN) is not equal to Pred LX and not equal to BiPred,
predModeEqualFlagN is set equal to 0, where mb_type specifies the syntax element for the macroblock
mbAddrN.

— Otherwise, predModeEqualFlagN is set equal to 1.
Let the variable condTermFlagN (with N being either A or B) be derived as follows:
— If any of the following conditions are true, condTermFlagN is set equal to 0:
— mbAddrN is not available,
— the macroblock mbAddrN has mb_type equal to P_Skip or B_Skip,
— the macroblock mbAddrN is coded in an Intra macroblock prediction mode,
— predModeEqualFlagN is equal to 0,
— refldxZeroFlagN is equal to 1.
— Otherwise, condTermFlagN is set equal to 1.

The variable ctxIdxInc is derived as

ctxIdxInc = condTermFlagA + 2 * condTermFlagB (9-14)

9.3.3.1.1.7 Derivation process of ctxIdxInc for the syntax elements mvd_l0 and mvd_11
Inputs to this process are mbPartldx, subMbPartldx, and ctxIdxOffset.

Output of this process is ctxIdxInc.

The interpretation of mvd 1X and Pred LX within this clause is specified as follows:

— If this process is invoked for the derivation of mvd 10, mvd_1X is interpreted as mvd 10 and Pred LX is interpreted
as Pred LO.

— Otherwise (this process is invoked for the derivation of mvd 11), mvd_1X is interpreted as mvd_11 and Pred LX is
interpreted as Pred L1.

The derivation process for neighbouring partitions specified in clause 6.4.11.7 is invoked with mbPartldx,
currSubMbType set equal to sub_mb_type[mbPartldx], and subMbPartldx as input and the output is assigned to
mbAddrA\mbPartldxA\subMbPartldxA and mbAddrB\mbPartldxB\subMbPartIdxB.

Let the variable compldx be derived as follows:

— If etxIdxOffset is equal to 40, compldx is set equal to 0.

260 Rec. ITU-T H.264 (01/2012)

Otherwise (ctxIdxOffset is equal to 47), compldx is set equal to 1.

Let the variable predModeEqualFlagN be specified as follows:

If mb_type for the macroblock mbAddrN is equal to B_Direct 16x16 or B_Skip, predModeEqualFlagN is set equal

to 0.

Otherwise, if the macroblock mbAddrN has mb_type equal to P_8x8 or B_8x8, the following applies:

If SubMbPredMode(sub mb type[mbPartldxN]) is not equal to Pred LX and not equal to BiPred,
predModeEqualFlagN is set equal to 0, where sub mb type specifies the syntax element list for the
macroblock mbAddrN.

Otherwise, predModeEqualFlagN is set equal to 1.

Otherwise, the following applies:

If MbPartPredMode(mb_type, mbPartldxN) is not equal to Pred LX and not equal to BiPred,
predModeEqualFlagN is set equal to 0, where mb_type specifies the syntax element for the macroblock
mbAddrN.

Otherwise, predModeEqualFlagN is set equal to 1.

Let the variable absMvdCompN (with N being either A or B) be derived as follows:

If any of the following conditions are true, absMvdCompN is set equal to 0:

mbAddrN is not available,
the macroblock mbAddrN has mb_type equal to P_Skip or B_Skip,
the macroblock mbAddrN is coded in an Intra macroblock prediction mode,

predModeEqualFlagN is equal to 0.

Otherwise, the following applies:

If compldx is equal to 1, MbaffFrameFlag is equal to 1, the current macroblock is a frame macroblock, and the
macroblock mbAddrN is a field macroblock,

absMvdCompN = Abs(mvd_1X[mbPartldxN][subMbPartldxN][compldx]) * 2 (9-15)

Otherwise, if compldx is equal to 1, MbaffFrameFlag is equal to 1, the current macroblock is a field
macroblock, and the macroblock mbAddrN is a frame macroblock,

absMvdCompN = Abs(mvd_1X[mbPartldxN][subMbPartldxN][compldx])/ 2 (9-16)
Otherwise,
absMvdCompN = Abs(mvd_IX[mbPartldxN][subMbPartldxN][compldx]) (9-17)

The variable ctxIdxInc is derived as follows:

If (absMvdCompA + absMvdCompB) is less than 3, ctxIdxInc is set equal to 0.

Otherwise, if (absMvdCompA + absMvdCompB) is greater than 32, ctxIdxInc is set equal to 2.

Otherwise ((absMvdCompA + absMvdCompB) is in the range of 3 to 32, inclusive), ctxIdxInc is set equal to 1.

9.3.3.1.1.8 Derivation process of ctxIdxInc for the syntax element intra_chroma_pred_mode

Output of this process is ctxIdxInc.

The derivation process for neighbouring macroblocks specified in clause 6.4.11.1 is invoked and the output is assigned to
mbAddrA and mbAddrB.

Let the variable condTermFlagN (with N being replaced by either A or B) be derived as follows:

If any of the following conditions are true, condTermFlagN is set equal to 0:

mbAddrN is not available,

The macroblock mbAddrN is coded in an Inter macroblock prediction mode,

Rec. ITU-T H.264 (01/2012) 261

mb_type for the macroblock mbAddrN is equal to I PCM,
intra_chroma pred mode for the macroblock mbAddrN is equal to 0.

Otherwise, condTermFlagN is set equal to 1.

The variable ctxIdxInc is derived by:

ctxIdxInc = condTermFlagA + condTermFlagB (9-18)

9.3.3.1.1.9 Derivation process of ctxIdxInc for the syntax element coded_block flag

Input to this process is ctxBlockCat and additional input is specified as follows:

If ctxBlockCat is equal to 0, 6, or 10, no additional input.

Otherwise, if ctxBlockCat is equal to 1 or 2, luma4x4BIkIdx.

Otherwise, if ctxBlockCat is equal to 3, the chroma component index iCbCr.

Otherwise, if ctxBlockCat is equal to 4, chroma4x4Blkldx and the chroma component index iCbCr.

Otherwise, if ctxBlockCat is equal to 5, luma8x8BIlkIdx.

Otherwise, if ctxBlockCat is equal to 7 or 8, cb4x4BlkIdx.

Otherwise, if ctxBlockCat is equal to 9, cb8x8BlkIdx.

Otherwise, if ctxBlockCat is equal to 11 or 12, cr4x4BlkIdx.
Otherwise (ctxBlockCat is equal to 13), cr8x8BIkIdx.

Output of this process is ctxIdxInc(ctxBlockCat).

Let the variable transBlockN (with N being either A or B) be derived as follows:

262

If ctxBlockCat is equal to 0, 6, or 10, the following ordered steps are specified:

1.

The derivation process for neighbouring macroblocks specified in clause 6.4.11.1 is invoked and the output is
assigned to mbAddrN (with N being either A or B).

The variable transBlockN is derived as follows:

If mbAddrN is available and the macroblock mbAddrN is coded in Intra_16x16 macroblock prediction
mode, the following applies:

— If ctxBlockCat is equal to 0, the luma DC block of macroblock mbAddrN is assigned to
transBlockN.

— Otherwise, if ctxBlockCat is equal to 6, the Cb DC block of macroblock mbAddrN is assigned to
transBlockN.

— Otherwise (ctxBlockCat is equal to 10), the Cr DC block of macroblock mbAddrN is assigned to
transBlockN.

Otherwise, transBlockN is marked as not available.

Otherwise, if ctxBlockCat is equal to 1 or 2, the following ordered steps are specified:

1.

The derivation process for neighbouring 4x4 luma blocks specified in clause 6.4.11.4 is invoked with
luma4x4BlklIdx as input and the output is assigned to mbAddrN, luma4x4BIlkIdxN (with N being either A
or B).

The variable transBlockN is derived as follows:

If mbAddrN is available, the macroblock mbAddrN does not have mb_type equal to P_Skip, B_Skip, or
I PCM, ((CodedBlockPatternLuma >> (luma4x4BIkIdxN >>2)) & 1) is not equal to O for the
macroblock mbAddrN, and transform_size 8x8 flag is equal to O for the macroblock mbAddrN, the 4x4
luma block with index luma4x4BIkIdxN of macroblock mbAddrN is assigned to transBlockN.

Otherwise, if mbAddrN is available, the macroblock mbAddrN does not have mb_type equal to P_Skip
or B_Skip, ((CodedBlockPatternLuma >> (luma4x4BlkIdxN >>2)) & 1) is not equal to 0 for the
macroblock mbAddrN, and transform_size 8x8 flag is equal to 1 for the macroblock mbAddrN, the 8x8
luma block with index (luma4x4BIkIdxN >> 2) of macroblock mbAddrN is assigned to transBlockN.

Rec. ITU-T H.264 (01/2012)

— Otherwise, transBlockN is marked as not available.

Otherwise, if ctxBlockCat is equal to 3, the following ordered steps are specified:

1.

The derivation process for neighbouring macroblocks specified in clause 6.4.11.1 is invoked and the output is
assigned to mbAddrN (with N being either A or B).

The variable transBlockN is derived as follows:

— If mbAddrN is available, the macroblock mbAddrN does not have mb_type equal to P_Skip, B_Skip, or
I PCM, and CodedBlockPatternChroma is not equal to 0 for the macroblock mbAddrN, the chroma DC
block of chroma component iCbCr of macroblock mbAddrN is assigned to transBlockN.

— Otherwise, transBlockN is marked as not available.

Otherwise, if ctxBlockCat is equal to 4, the following ordered steps are specified:

1.

The derivation process for neighbouring 4x4 chroma blocks specified in clause 6.4.11.5 is invoked with
chroma4x4Blkldx as input and the output is assigned to mbAddrN, chroma4x4BlkIdxN (with N being either
A or B).

The variable transBlockN is derived as follows:

— If mbAddrN is available, the macroblock mbAddrN does not have mb_type equal to P_Skip, B_Skip, or
I PCM, and CodedBlockPatternChroma is equal to 2 for the macroblock mbAddrN, the 4x4 chroma
block with chroma4x4BIkIdxN of the chroma component iCbCr of macroblock mbAddrN is assigned to
transBlockN.

— Otherwise, transBlockN is marked as not available.

Otherwise, if ctxBlockCat is equal to 5, the following ordered steps are specified:

1.

The derivation process for neighbouring 8x8 luma blocks specified in clause 6.4.11.2 is invoked with
luma8x8BIkIdx as input and the output is assigned to mbAddrN, luma8x8BIkIdxN (with N being either A
or B).

The variable transBlockN is derived as follows:

— If mbAddrN is available, the macroblock mbAddrN does not have mb_type equal to P_Skip, B_Skip, or
I PCM, ((CodedBlockPatternLuma >>luma8x8Blkldx) & 1) is not equal to O for the macroblock
mbAddrN, and transform_size 8x8 flag is equal to 1 for the macroblock mbAddrN, the 8x8 luma block
with index luma8x8BIlkIdxN of macroblock mbAddrN is assigned to transBlockN.

— Otherwise, transBlockN is marked as not available.

Otherwise, if ctxBlockCat is equal to7 or 8, the following ordered steps are specified:

1.

The derivation process for neighbouring 4x4 Cb blocks specified in clause 6.4.11.5 is invoked with
cb4x4Blkldx as input and the output is assigned to mbAddrN, cb4x4BlkIdxN (with N being either A or B).

The variable transBlockN is derived as follows:

— If mbAddrN is available, the macroblock mbAddrN does not have mb_type equal to P_Skip, B_Skip, or
I PCM, ((CodedBlockPatternLuma >> (cb4x4BIkIdxN>>2)) & 1) is not equal to(O for the
macroblock mbAddrN, and transform_size 8x8 flag is equal to 0 for the macroblock mbAddrN, the 4x4
Cb block with index cb4x4BIlkIdxN of macroblock mbAddrN is assigned to transBlockN.

— Otherwise, if mbAddrN is available, the macroblock mbAddrN does not have mb_type equal to P_Skip
or B Skip, ((CodedBlockPatternLuma >> (cb4x4BIkIdxN >>2)) & 1) is not equal to 0 for the
macroblock mbAddrN, and transform_size 8x8 flag is equal to 1 for the macroblock mbAddrN, the 8x8
Cb block with index (cb4x4BIkIdxN >> 2) of macroblock mbAddrN is assigned to transBlockN.

— Otherwise, transBlockN is marked as not available.

Otherwise, if ctxBlockCat is equal to 9, the following ordered steps are specified:

1.

The derivation process for neighbouring 8x8 Cb blocks specified in clause 6.4.11.3 is invoked with
cb8x8BlklIdx as input and the output is assigned to mbAddrN, cb8x8BIlkIdxN (with N being either A or B).

The variable transBlockN is derived as follows:

— If mbAddrN is available, the macroblock mbAddrN does not have mb_type equal to P_Skip, B_Skip, or
I PCM, ((CodedBlockPatternLuma >>cb8x8Blkldx) & 1) is not equal to 0 for the macroblock

Rec. ITU-T H.264 (01/2012) 263

mbAddrN, and transform size 8x8 flag is equal to 1 for the macroblock mbAddrN, the 8x8 Cb block
with index cb8x8BIlkIdxN of macroblock mbAddrN is assigned to transBlockN.

Otherwise, transBlockN is marked as not available.

— Otherwise, if ctxBlockCat is equal to 11 or 12, the following ordered steps are specified:

1.

2.

The derivation process for neighbouring 4x4 Cr blocks specified in clause 6.4.11.5 is invoked with
cr4x4Blkldx as input and the output is assigned to mbAddrN, cr4x4BlkIdxN (with N being either A or B).

The variable transBlockN is derived as follows:

If mbAddrN is available, the macroblock mbAddrN does not have mb_type equal to P_Skip, B_Skip, or
I PCM, ((CodedBlockPatternLuma >> (cr4x4BIkIdxN>>2)) & 1) is not equal to 0 for the
macroblock mbAddrN, and transform_size 8x8 flag is equal to O for the macroblock mbAddrN, the 4x4
Cr block with index cr4x4BlkIdxN of macroblock mbAddrN is assigned to transBlockN.

Otherwise, if mbAddrN is available, the macroblock mbAddrN does not have mb_type equal to P_Skip
or B Skip, ((CodedBlockPatternLuma >> (cr4x4BIkIdxN >>2)) & 1) is not equal to 0 for the
macroblock mbAddrN, and transform_size 8x8 flag is equal to 1 for the macroblock mbAddrN, the 8x8
Cr block with index (cr4x4BlkIdxN >> 2) of macroblock mbAddrN is assigned to transBlockN.

Otherwise, transBlockN is marked as not available.

— Otherwise (ctxBlockCat is equal to 13), the following ordered steps are specified:

1.

2.

The derivation process for neighbouring 8x8 Cr blocks specified in clause 6.4.11.3 is invoked with
cr8x8BIlkldx as input and the output is assigned to mbAddrN, cr8x8BlkIdxN (with N being either A or B).

The variable transBlockN is derived as follows:

If mbAddrN is available, the macroblock mbAddrN does not have mb_type equal to P_Skip, B_Skip, or
I PCM,, ((CodedBlockPatternLuma >>cr8x8Blkldx) & 1) is not equal to 0 for the macroblock
mbAddrN, and transform_size 8x8 flag is equal to 1 for the macroblock mbAddrN, the 8x8 Cr block
with index cr8x8BIlkIdxN of macroblock mbAddrN is assigned to transBlockN.

Otherwise, transBlockN is marked as not available.

Let the variable condTermFlagN (with N being either A or B) be derived as follows:

— Ifany of the following conditions are true, condTermFlagN is set equal to 0:

mbAddrN is not available and the current macroblock is coded in an Inter macroblock prediction mode,

mbAddrN is available and transBlockN is not available and mb_type for the macroblock mbAddrN is not
equal to I PCM,

The current macroblock is coded in an Intra macroblock prediction mode, constrained intra pred flag is
equal to 1, the macroblock mbAddrN is available and coded in an Inter macroblock prediction mode, and
slice data partitioning is in use (nal unit type is in the range of 2 through 4, inclusive).

— Otherwise, if any of the following conditions are true, condTermFlagN is set equal to 1:

mbAddrN is not available and the current macroblock is coded in an Intra macroblock prediction mode,

mb_type for the macroblock mbAddrN is equal to I PCM.

— Otherwise, condTermFlagN is set equal to the value of the coded block flag of the transform block transBlockN
that was decoded for the macroblock mbAddrN.

The variable ctxIdxInc(ctxBlockCat) is derived by

ctxIdxInc(ctxBlockCat) = condTermFlagA + 2 * condTermFlagB (9-19)

9.3.3.1.1.10 Derivation process of ctxIdxInc for the syntax element transform_size 8x8 flag

Output of this process is ctxIdxInc.

The derivation process for neighbouring macroblocks specified in clause 6.4.11.1 is invoked and the output is assigned to
mbAddrA and mbAddrB.

Let the variable condTermFlagN (with N being either A or B) be derived as follows:

— If any of the following conditions are true, condTermFlagN is set equal to 0:

264

Rec. ITU-T H.264 (01/2012)

— mbAddrN is not available,
— transform size 8x8 flag for the macroblock mbAddrN is equal to 0.
— Otherwise, condTermFlagN is set equal to 1.

The variable ctxIdxInc is derived by

ctxIdxInc = condTermFlagA + condTermFlagB (9-20)

9.3.3.1.2 Assignment process of ctxIdxInc using prior decoded bin values

Inputs to this process are ctxIdxOffset and binldx.

Output of this process is ctxIdxInc.

Table 9-41 contains the specification of ctxldxInc for the given values of ctxIdxOffset and binldx.

For each value of ctxIdxOffset and binldx, ctxldxInc is derived by using some of the values of prior decoded bin values
('bg, by, bs,..., by), where the value of the index k is less than the value of binldx.

Table 9-41 — Specification of ctxIdxInc for specific values of ctxIdxOffset and binldx

Value (name) of ctxIdxOffset | binldx ctxIdxInc

4 (bs 1= 0)25:6

5 (bs 1= 0)26:7

14 2 (b 1= 1)22:3
17 4 (bs 1= 0)22:3
27 2 (b 1= 0)?24:5
32 4 (bs 1= 0)22:3
36 2 (b 1= 0)22:3

9.3.3.1.3 Assignment process of ctxIdxInc for syntax elements significant coeff flag, last_significant_coeff flag,
and coeff_abs_level _minusl

Inputs to this process are ctxIdxOffset and binldx.
Output of this process is ctxIdxInc.

The assignment process of ctxldxInc for syntax elements significant coeff flag, last significant coeff flag, and
coeff abs level minusl as well as for coded block flag depends on categories of different blocks denoted by the
variable ctxBlockCat. The specification of these block categories is given in Table 9-42.

Rec. ITU-T H.264 (01/2012) 265

Table 9-42 — Specification of ctxBlockCat for the different blocks

Block description maxNumCoeff | ctxBlockCat
block of luma DC transform coefficient levels 16 0
(i.e., list Intral 6x16DCLevel as described in clause 7.4.5.3)
block of luma AC transform coefficient levels 15 1
(i.e., list Intral6x16ACLevel[i] as described in clause 7.4.5.3)
block of 16 luma transform coefficient levels 16 5
(i.e., list LumaLevel4x4[i] as described in clause 7.4.5.3)
block of chroma DC transform coefficient levels when ChromaArrayType is equal to 1 or 2 4 * NumC8x8 3
(i.e., list ChromaDCLevel as described in clause 7.4.5.3)
block of chroma AC transform coefficient levels when ChromaArrayType is equal to 1 or 2 15 4
(i.e., list ChromaACLevel as described in clause 7.4.5.3)
block of 64 luma transform coefficient levels 64 5
(i.e., list LumaLevel8x8[i] as described in clause 7.4.5.3)
block of Cb DC transform coefficient levels when ChromaArrayType is equal to 3 16 6
(i.e., list CbIntral6x16DCLevel as described in clause 7.4.5.3)
block of Cb AC transform coefficient levels when ChromaArrayType is equal to 3 15 7
(i.e., list CbIntral6x16ACLevel[i] as described in clause 7.4.5.3)
block of 16 Cb transform coefficient levels when ChromaArrayType is equal to 3 16 3
(i.e., list CbLevel4x4[i] as described in clause 7.4.5.3)
block of 64 Cb transform coefficient levels when ChromaArrayType is equal to 3 64 9
(i.e., list CbLevel8x8[i] as described in clause 7.4.5.3)
block of Cr DC transform coefficient levels when ChromaArrayType is equal to 3 16 10
(i.e., list