mirror of
				https://github.com/ossrs/srs.git
				synced 2025-03-09 15:49:59 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			5392 lines
		
	
	
	
		
			195 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			5392 lines
		
	
	
	
		
			195 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright 2007, Google Inc.
 | |
| // All rights reserved.
 | |
| //
 | |
| // Redistribution and use in source and binary forms, with or without
 | |
| // modification, are permitted provided that the following conditions are
 | |
| // met:
 | |
| //
 | |
| //     * Redistributions of source code must retain the above copyright
 | |
| // notice, this list of conditions and the following disclaimer.
 | |
| //     * Redistributions in binary form must reproduce the above
 | |
| // copyright notice, this list of conditions and the following disclaimer
 | |
| // in the documentation and/or other materials provided with the
 | |
| // distribution.
 | |
| //     * Neither the name of Google Inc. nor the names of its
 | |
| // contributors may be used to endorse or promote products derived from
 | |
| // this software without specific prior written permission.
 | |
| //
 | |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 | |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 | |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 | |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 | |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 | |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 | |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 | |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 | |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 | |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 | |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 | |
| 
 | |
| 
 | |
| // Google Mock - a framework for writing C++ mock classes.
 | |
| //
 | |
| // The MATCHER* family of macros can be used in a namespace scope to
 | |
| // define custom matchers easily.
 | |
| //
 | |
| // Basic Usage
 | |
| // ===========
 | |
| //
 | |
| // The syntax
 | |
| //
 | |
| //   MATCHER(name, description_string) { statements; }
 | |
| //
 | |
| // defines a matcher with the given name that executes the statements,
 | |
| // which must return a bool to indicate if the match succeeds.  Inside
 | |
| // the statements, you can refer to the value being matched by 'arg',
 | |
| // and refer to its type by 'arg_type'.
 | |
| //
 | |
| // The description string documents what the matcher does, and is used
 | |
| // to generate the failure message when the match fails.  Since a
 | |
| // MATCHER() is usually defined in a header file shared by multiple
 | |
| // C++ source files, we require the description to be a C-string
 | |
| // literal to avoid possible side effects.  It can be empty, in which
 | |
| // case we'll use the sequence of words in the matcher name as the
 | |
| // description.
 | |
| //
 | |
| // For example:
 | |
| //
 | |
| //   MATCHER(IsEven, "") { return (arg % 2) == 0; }
 | |
| //
 | |
| // allows you to write
 | |
| //
 | |
| //   // Expects mock_foo.Bar(n) to be called where n is even.
 | |
| //   EXPECT_CALL(mock_foo, Bar(IsEven()));
 | |
| //
 | |
| // or,
 | |
| //
 | |
| //   // Verifies that the value of some_expression is even.
 | |
| //   EXPECT_THAT(some_expression, IsEven());
 | |
| //
 | |
| // If the above assertion fails, it will print something like:
 | |
| //
 | |
| //   Value of: some_expression
 | |
| //   Expected: is even
 | |
| //     Actual: 7
 | |
| //
 | |
| // where the description "is even" is automatically calculated from the
 | |
| // matcher name IsEven.
 | |
| //
 | |
| // Argument Type
 | |
| // =============
 | |
| //
 | |
| // Note that the type of the value being matched (arg_type) is
 | |
| // determined by the context in which you use the matcher and is
 | |
| // supplied to you by the compiler, so you don't need to worry about
 | |
| // declaring it (nor can you).  This allows the matcher to be
 | |
| // polymorphic.  For example, IsEven() can be used to match any type
 | |
| // where the value of "(arg % 2) == 0" can be implicitly converted to
 | |
| // a bool.  In the "Bar(IsEven())" example above, if method Bar()
 | |
| // takes an int, 'arg_type' will be int; if it takes an unsigned long,
 | |
| // 'arg_type' will be unsigned long; and so on.
 | |
| //
 | |
| // Parameterizing Matchers
 | |
| // =======================
 | |
| //
 | |
| // Sometimes you'll want to parameterize the matcher.  For that you
 | |
| // can use another macro:
 | |
| //
 | |
| //   MATCHER_P(name, param_name, description_string) { statements; }
 | |
| //
 | |
| // For example:
 | |
| //
 | |
| //   MATCHER_P(HasAbsoluteValue, value, "") { return abs(arg) == value; }
 | |
| //
 | |
| // will allow you to write:
 | |
| //
 | |
| //   EXPECT_THAT(Blah("a"), HasAbsoluteValue(n));
 | |
| //
 | |
| // which may lead to this message (assuming n is 10):
 | |
| //
 | |
| //   Value of: Blah("a")
 | |
| //   Expected: has absolute value 10
 | |
| //     Actual: -9
 | |
| //
 | |
| // Note that both the matcher description and its parameter are
 | |
| // printed, making the message human-friendly.
 | |
| //
 | |
| // In the matcher definition body, you can write 'foo_type' to
 | |
| // reference the type of a parameter named 'foo'.  For example, in the
 | |
| // body of MATCHER_P(HasAbsoluteValue, value) above, you can write
 | |
| // 'value_type' to refer to the type of 'value'.
 | |
| //
 | |
| // We also provide MATCHER_P2, MATCHER_P3, ..., up to MATCHER_P$n to
 | |
| // support multi-parameter matchers.
 | |
| //
 | |
| // Describing Parameterized Matchers
 | |
| // =================================
 | |
| //
 | |
| // The last argument to MATCHER*() is a string-typed expression.  The
 | |
| // expression can reference all of the matcher's parameters and a
 | |
| // special bool-typed variable named 'negation'.  When 'negation' is
 | |
| // false, the expression should evaluate to the matcher's description;
 | |
| // otherwise it should evaluate to the description of the negation of
 | |
| // the matcher.  For example,
 | |
| //
 | |
| //   using testing::PrintToString;
 | |
| //
 | |
| //   MATCHER_P2(InClosedRange, low, hi,
 | |
| //       std::string(negation ? "is not" : "is") + " in range [" +
 | |
| //       PrintToString(low) + ", " + PrintToString(hi) + "]") {
 | |
| //     return low <= arg && arg <= hi;
 | |
| //   }
 | |
| //   ...
 | |
| //   EXPECT_THAT(3, InClosedRange(4, 6));
 | |
| //   EXPECT_THAT(3, Not(InClosedRange(2, 4)));
 | |
| //
 | |
| // would generate two failures that contain the text:
 | |
| //
 | |
| //   Expected: is in range [4, 6]
 | |
| //   ...
 | |
| //   Expected: is not in range [2, 4]
 | |
| //
 | |
| // If you specify "" as the description, the failure message will
 | |
| // contain the sequence of words in the matcher name followed by the
 | |
| // parameter values printed as a tuple.  For example,
 | |
| //
 | |
| //   MATCHER_P2(InClosedRange, low, hi, "") { ... }
 | |
| //   ...
 | |
| //   EXPECT_THAT(3, InClosedRange(4, 6));
 | |
| //   EXPECT_THAT(3, Not(InClosedRange(2, 4)));
 | |
| //
 | |
| // would generate two failures that contain the text:
 | |
| //
 | |
| //   Expected: in closed range (4, 6)
 | |
| //   ...
 | |
| //   Expected: not (in closed range (2, 4))
 | |
| //
 | |
| // Types of Matcher Parameters
 | |
| // ===========================
 | |
| //
 | |
| // For the purpose of typing, you can view
 | |
| //
 | |
| //   MATCHER_Pk(Foo, p1, ..., pk, description_string) { ... }
 | |
| //
 | |
| // as shorthand for
 | |
| //
 | |
| //   template <typename p1_type, ..., typename pk_type>
 | |
| //   FooMatcherPk<p1_type, ..., pk_type>
 | |
| //   Foo(p1_type p1, ..., pk_type pk) { ... }
 | |
| //
 | |
| // When you write Foo(v1, ..., vk), the compiler infers the types of
 | |
| // the parameters v1, ..., and vk for you.  If you are not happy with
 | |
| // the result of the type inference, you can specify the types by
 | |
| // explicitly instantiating the template, as in Foo<long, bool>(5,
 | |
| // false).  As said earlier, you don't get to (or need to) specify
 | |
| // 'arg_type' as that's determined by the context in which the matcher
 | |
| // is used.  You can assign the result of expression Foo(p1, ..., pk)
 | |
| // to a variable of type FooMatcherPk<p1_type, ..., pk_type>.  This
 | |
| // can be useful when composing matchers.
 | |
| //
 | |
| // While you can instantiate a matcher template with reference types,
 | |
| // passing the parameters by pointer usually makes your code more
 | |
| // readable.  If, however, you still want to pass a parameter by
 | |
| // reference, be aware that in the failure message generated by the
 | |
| // matcher you will see the value of the referenced object but not its
 | |
| // address.
 | |
| //
 | |
| // Explaining Match Results
 | |
| // ========================
 | |
| //
 | |
| // Sometimes the matcher description alone isn't enough to explain why
 | |
| // the match has failed or succeeded.  For example, when expecting a
 | |
| // long string, it can be very helpful to also print the diff between
 | |
| // the expected string and the actual one.  To achieve that, you can
 | |
| // optionally stream additional information to a special variable
 | |
| // named result_listener, whose type is a pointer to class
 | |
| // MatchResultListener:
 | |
| //
 | |
| //   MATCHER_P(EqualsLongString, str, "") {
 | |
| //     if (arg == str) return true;
 | |
| //
 | |
| //     *result_listener << "the difference: "
 | |
| ///                     << DiffStrings(str, arg);
 | |
| //     return false;
 | |
| //   }
 | |
| //
 | |
| // Overloading Matchers
 | |
| // ====================
 | |
| //
 | |
| // You can overload matchers with different numbers of parameters:
 | |
| //
 | |
| //   MATCHER_P(Blah, a, description_string1) { ... }
 | |
| //   MATCHER_P2(Blah, a, b, description_string2) { ... }
 | |
| //
 | |
| // Caveats
 | |
| // =======
 | |
| //
 | |
| // When defining a new matcher, you should also consider implementing
 | |
| // MatcherInterface or using MakePolymorphicMatcher().  These
 | |
| // approaches require more work than the MATCHER* macros, but also
 | |
| // give you more control on the types of the value being matched and
 | |
| // the matcher parameters, which may leads to better compiler error
 | |
| // messages when the matcher is used wrong.  They also allow
 | |
| // overloading matchers based on parameter types (as opposed to just
 | |
| // based on the number of parameters).
 | |
| //
 | |
| // MATCHER*() can only be used in a namespace scope as templates cannot be
 | |
| // declared inside of a local class.
 | |
| //
 | |
| // More Information
 | |
| // ================
 | |
| //
 | |
| // To learn more about using these macros, please search for 'MATCHER'
 | |
| // on
 | |
| // https://github.com/google/googletest/blob/master/docs/gmock_cook_book.md
 | |
| //
 | |
| // This file also implements some commonly used argument matchers.  More
 | |
| // matchers can be defined by the user implementing the
 | |
| // MatcherInterface<T> interface if necessary.
 | |
| //
 | |
| // See googletest/include/gtest/gtest-matchers.h for the definition of class
 | |
| // Matcher, class MatcherInterface, and others.
 | |
| 
 | |
| // GOOGLETEST_CM0002 DO NOT DELETE
 | |
| 
 | |
| #ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_
 | |
| #define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_
 | |
| 
 | |
| #include <algorithm>
 | |
| #include <cmath>
 | |
| #include <initializer_list>
 | |
| #include <iterator>
 | |
| #include <limits>
 | |
| #include <memory>
 | |
| #include <ostream>  // NOLINT
 | |
| #include <sstream>
 | |
| #include <string>
 | |
| #include <type_traits>
 | |
| #include <utility>
 | |
| #include <vector>
 | |
| 
 | |
| #include "gmock/internal/gmock-internal-utils.h"
 | |
| #include "gmock/internal/gmock-port.h"
 | |
| #include "gmock/internal/gmock-pp.h"
 | |
| #include "gtest/gtest.h"
 | |
| 
 | |
| // MSVC warning C5046 is new as of VS2017 version 15.8.
 | |
| #if defined(_MSC_VER) && _MSC_VER >= 1915
 | |
| #define GMOCK_MAYBE_5046_ 5046
 | |
| #else
 | |
| #define GMOCK_MAYBE_5046_
 | |
| #endif
 | |
| 
 | |
| GTEST_DISABLE_MSC_WARNINGS_PUSH_(
 | |
|     4251 GMOCK_MAYBE_5046_ /* class A needs to have dll-interface to be used by
 | |
|                               clients of class B */
 | |
|     /* Symbol involving type with internal linkage not defined */)
 | |
| 
 | |
| namespace testing {
 | |
| 
 | |
| // To implement a matcher Foo for type T, define:
 | |
| //   1. a class FooMatcherImpl that implements the
 | |
| //      MatcherInterface<T> interface, and
 | |
| //   2. a factory function that creates a Matcher<T> object from a
 | |
| //      FooMatcherImpl*.
 | |
| //
 | |
| // The two-level delegation design makes it possible to allow a user
 | |
| // to write "v" instead of "Eq(v)" where a Matcher is expected, which
 | |
| // is impossible if we pass matchers by pointers.  It also eases
 | |
| // ownership management as Matcher objects can now be copied like
 | |
| // plain values.
 | |
| 
 | |
| // A match result listener that stores the explanation in a string.
 | |
| class StringMatchResultListener : public MatchResultListener {
 | |
|  public:
 | |
|   StringMatchResultListener() : MatchResultListener(&ss_) {}
 | |
| 
 | |
|   // Returns the explanation accumulated so far.
 | |
|   std::string str() const { return ss_.str(); }
 | |
| 
 | |
|   // Clears the explanation accumulated so far.
 | |
|   void Clear() { ss_.str(""); }
 | |
| 
 | |
|  private:
 | |
|   ::std::stringstream ss_;
 | |
| 
 | |
|   GTEST_DISALLOW_COPY_AND_ASSIGN_(StringMatchResultListener);
 | |
| };
 | |
| 
 | |
| // Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION
 | |
| // and MUST NOT BE USED IN USER CODE!!!
 | |
| namespace internal {
 | |
| 
 | |
| // The MatcherCastImpl class template is a helper for implementing
 | |
| // MatcherCast().  We need this helper in order to partially
 | |
| // specialize the implementation of MatcherCast() (C++ allows
 | |
| // class/struct templates to be partially specialized, but not
 | |
| // function templates.).
 | |
| 
 | |
| // This general version is used when MatcherCast()'s argument is a
 | |
| // polymorphic matcher (i.e. something that can be converted to a
 | |
| // Matcher but is not one yet; for example, Eq(value)) or a value (for
 | |
| // example, "hello").
 | |
| template <typename T, typename M>
 | |
| class MatcherCastImpl {
 | |
|  public:
 | |
|   static Matcher<T> Cast(const M& polymorphic_matcher_or_value) {
 | |
|     // M can be a polymorphic matcher, in which case we want to use
 | |
|     // its conversion operator to create Matcher<T>.  Or it can be a value
 | |
|     // that should be passed to the Matcher<T>'s constructor.
 | |
|     //
 | |
|     // We can't call Matcher<T>(polymorphic_matcher_or_value) when M is a
 | |
|     // polymorphic matcher because it'll be ambiguous if T has an implicit
 | |
|     // constructor from M (this usually happens when T has an implicit
 | |
|     // constructor from any type).
 | |
|     //
 | |
|     // It won't work to unconditionally implicit_cast
 | |
|     // polymorphic_matcher_or_value to Matcher<T> because it won't trigger
 | |
|     // a user-defined conversion from M to T if one exists (assuming M is
 | |
|     // a value).
 | |
|     return CastImpl(polymorphic_matcher_or_value,
 | |
|                     std::is_convertible<M, Matcher<T>>{},
 | |
|                     std::is_convertible<M, T>{});
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   template <bool Ignore>
 | |
|   static Matcher<T> CastImpl(const M& polymorphic_matcher_or_value,
 | |
|                              std::true_type /* convertible_to_matcher */,
 | |
|                              std::integral_constant<bool, Ignore>) {
 | |
|     // M is implicitly convertible to Matcher<T>, which means that either
 | |
|     // M is a polymorphic matcher or Matcher<T> has an implicit constructor
 | |
|     // from M.  In both cases using the implicit conversion will produce a
 | |
|     // matcher.
 | |
|     //
 | |
|     // Even if T has an implicit constructor from M, it won't be called because
 | |
|     // creating Matcher<T> would require a chain of two user-defined conversions
 | |
|     // (first to create T from M and then to create Matcher<T> from T).
 | |
|     return polymorphic_matcher_or_value;
 | |
|   }
 | |
| 
 | |
|   // M can't be implicitly converted to Matcher<T>, so M isn't a polymorphic
 | |
|   // matcher. It's a value of a type implicitly convertible to T. Use direct
 | |
|   // initialization to create a matcher.
 | |
|   static Matcher<T> CastImpl(const M& value,
 | |
|                              std::false_type /* convertible_to_matcher */,
 | |
|                              std::true_type /* convertible_to_T */) {
 | |
|     return Matcher<T>(ImplicitCast_<T>(value));
 | |
|   }
 | |
| 
 | |
|   // M can't be implicitly converted to either Matcher<T> or T. Attempt to use
 | |
|   // polymorphic matcher Eq(value) in this case.
 | |
|   //
 | |
|   // Note that we first attempt to perform an implicit cast on the value and
 | |
|   // only fall back to the polymorphic Eq() matcher afterwards because the
 | |
|   // latter calls bool operator==(const Lhs& lhs, const Rhs& rhs) in the end
 | |
|   // which might be undefined even when Rhs is implicitly convertible to Lhs
 | |
|   // (e.g. std::pair<const int, int> vs. std::pair<int, int>).
 | |
|   //
 | |
|   // We don't define this method inline as we need the declaration of Eq().
 | |
|   static Matcher<T> CastImpl(const M& value,
 | |
|                              std::false_type /* convertible_to_matcher */,
 | |
|                              std::false_type /* convertible_to_T */);
 | |
| };
 | |
| 
 | |
| // This more specialized version is used when MatcherCast()'s argument
 | |
| // is already a Matcher.  This only compiles when type T can be
 | |
| // statically converted to type U.
 | |
| template <typename T, typename U>
 | |
| class MatcherCastImpl<T, Matcher<U> > {
 | |
|  public:
 | |
|   static Matcher<T> Cast(const Matcher<U>& source_matcher) {
 | |
|     return Matcher<T>(new Impl(source_matcher));
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   class Impl : public MatcherInterface<T> {
 | |
|    public:
 | |
|     explicit Impl(const Matcher<U>& source_matcher)
 | |
|         : source_matcher_(source_matcher) {}
 | |
| 
 | |
|     // We delegate the matching logic to the source matcher.
 | |
|     bool MatchAndExplain(T x, MatchResultListener* listener) const override {
 | |
|       using FromType = typename std::remove_cv<typename std::remove_pointer<
 | |
|           typename std::remove_reference<T>::type>::type>::type;
 | |
|       using ToType = typename std::remove_cv<typename std::remove_pointer<
 | |
|           typename std::remove_reference<U>::type>::type>::type;
 | |
|       // Do not allow implicitly converting base*/& to derived*/&.
 | |
|       static_assert(
 | |
|           // Do not trigger if only one of them is a pointer. That implies a
 | |
|           // regular conversion and not a down_cast.
 | |
|           (std::is_pointer<typename std::remove_reference<T>::type>::value !=
 | |
|            std::is_pointer<typename std::remove_reference<U>::type>::value) ||
 | |
|               std::is_same<FromType, ToType>::value ||
 | |
|               !std::is_base_of<FromType, ToType>::value,
 | |
|           "Can't implicitly convert from <base> to <derived>");
 | |
| 
 | |
|       // Do the cast to `U` explicitly if necessary.
 | |
|       // Otherwise, let implicit conversions do the trick.
 | |
|       using CastType =
 | |
|           typename std::conditional<std::is_convertible<T&, const U&>::value,
 | |
|                                     T&, U>::type;
 | |
| 
 | |
|       return source_matcher_.MatchAndExplain(static_cast<CastType>(x),
 | |
|                                              listener);
 | |
|     }
 | |
| 
 | |
|     void DescribeTo(::std::ostream* os) const override {
 | |
|       source_matcher_.DescribeTo(os);
 | |
|     }
 | |
| 
 | |
|     void DescribeNegationTo(::std::ostream* os) const override {
 | |
|       source_matcher_.DescribeNegationTo(os);
 | |
|     }
 | |
| 
 | |
|    private:
 | |
|     const Matcher<U> source_matcher_;
 | |
|   };
 | |
| };
 | |
| 
 | |
| // This even more specialized version is used for efficiently casting
 | |
| // a matcher to its own type.
 | |
| template <typename T>
 | |
| class MatcherCastImpl<T, Matcher<T> > {
 | |
|  public:
 | |
|   static Matcher<T> Cast(const Matcher<T>& matcher) { return matcher; }
 | |
| };
 | |
| 
 | |
| // Template specialization for parameterless Matcher.
 | |
| template <typename Derived>
 | |
| class MatcherBaseImpl {
 | |
|  public:
 | |
|   MatcherBaseImpl() = default;
 | |
| 
 | |
|   template <typename T>
 | |
|   operator ::testing::Matcher<T>() const {  // NOLINT(runtime/explicit)
 | |
|     return ::testing::Matcher<T>(new
 | |
|                                  typename Derived::template gmock_Impl<T>());
 | |
|   }
 | |
| };
 | |
| 
 | |
| // Template specialization for Matcher with parameters.
 | |
| template <template <typename...> class Derived, typename... Ts>
 | |
| class MatcherBaseImpl<Derived<Ts...>> {
 | |
|  public:
 | |
|   // Mark the constructor explicit for single argument T to avoid implicit
 | |
|   // conversions.
 | |
|   template <typename E = std::enable_if<sizeof...(Ts) == 1>,
 | |
|             typename E::type* = nullptr>
 | |
|   explicit MatcherBaseImpl(Ts... params)
 | |
|       : params_(std::forward<Ts>(params)...) {}
 | |
|   template <typename E = std::enable_if<sizeof...(Ts) != 1>,
 | |
|             typename = typename E::type>
 | |
|   MatcherBaseImpl(Ts... params)  // NOLINT
 | |
|       : params_(std::forward<Ts>(params)...) {}
 | |
| 
 | |
|   template <typename F>
 | |
|   operator ::testing::Matcher<F>() const {  // NOLINT(runtime/explicit)
 | |
|     return Apply<F>(MakeIndexSequence<sizeof...(Ts)>{});
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   template <typename F, std::size_t... tuple_ids>
 | |
|   ::testing::Matcher<F> Apply(IndexSequence<tuple_ids...>) const {
 | |
|     return ::testing::Matcher<F>(
 | |
|         new typename Derived<Ts...>::template gmock_Impl<F>(
 | |
|             std::get<tuple_ids>(params_)...));
 | |
|   }
 | |
| 
 | |
|   const std::tuple<Ts...> params_;
 | |
| };
 | |
| 
 | |
| }  // namespace internal
 | |
| 
 | |
| // In order to be safe and clear, casting between different matcher
 | |
| // types is done explicitly via MatcherCast<T>(m), which takes a
 | |
| // matcher m and returns a Matcher<T>.  It compiles only when T can be
 | |
| // statically converted to the argument type of m.
 | |
| template <typename T, typename M>
 | |
| inline Matcher<T> MatcherCast(const M& matcher) {
 | |
|   return internal::MatcherCastImpl<T, M>::Cast(matcher);
 | |
| }
 | |
| 
 | |
| // This overload handles polymorphic matchers and values only since
 | |
| // monomorphic matchers are handled by the next one.
 | |
| template <typename T, typename M>
 | |
| inline Matcher<T> SafeMatcherCast(const M& polymorphic_matcher_or_value) {
 | |
|   return MatcherCast<T>(polymorphic_matcher_or_value);
 | |
| }
 | |
| 
 | |
| // This overload handles monomorphic matchers.
 | |
| //
 | |
| // In general, if type T can be implicitly converted to type U, we can
 | |
| // safely convert a Matcher<U> to a Matcher<T> (i.e. Matcher is
 | |
| // contravariant): just keep a copy of the original Matcher<U>, convert the
 | |
| // argument from type T to U, and then pass it to the underlying Matcher<U>.
 | |
| // The only exception is when U is a reference and T is not, as the
 | |
| // underlying Matcher<U> may be interested in the argument's address, which
 | |
| // is not preserved in the conversion from T to U.
 | |
| template <typename T, typename U>
 | |
| inline Matcher<T> SafeMatcherCast(const Matcher<U>& matcher) {
 | |
|   // Enforce that T can be implicitly converted to U.
 | |
|   static_assert(std::is_convertible<const T&, const U&>::value,
 | |
|                 "T must be implicitly convertible to U");
 | |
|   // Enforce that we are not converting a non-reference type T to a reference
 | |
|   // type U.
 | |
|   GTEST_COMPILE_ASSERT_(
 | |
|       std::is_reference<T>::value || !std::is_reference<U>::value,
 | |
|       cannot_convert_non_reference_arg_to_reference);
 | |
|   // In case both T and U are arithmetic types, enforce that the
 | |
|   // conversion is not lossy.
 | |
|   typedef GTEST_REMOVE_REFERENCE_AND_CONST_(T) RawT;
 | |
|   typedef GTEST_REMOVE_REFERENCE_AND_CONST_(U) RawU;
 | |
|   constexpr bool kTIsOther = GMOCK_KIND_OF_(RawT) == internal::kOther;
 | |
|   constexpr bool kUIsOther = GMOCK_KIND_OF_(RawU) == internal::kOther;
 | |
|   GTEST_COMPILE_ASSERT_(
 | |
|       kTIsOther || kUIsOther ||
 | |
|       (internal::LosslessArithmeticConvertible<RawT, RawU>::value),
 | |
|       conversion_of_arithmetic_types_must_be_lossless);
 | |
|   return MatcherCast<T>(matcher);
 | |
| }
 | |
| 
 | |
| // A<T>() returns a matcher that matches any value of type T.
 | |
| template <typename T>
 | |
| Matcher<T> A();
 | |
| 
 | |
| // Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION
 | |
| // and MUST NOT BE USED IN USER CODE!!!
 | |
| namespace internal {
 | |
| 
 | |
| // If the explanation is not empty, prints it to the ostream.
 | |
| inline void PrintIfNotEmpty(const std::string& explanation,
 | |
|                             ::std::ostream* os) {
 | |
|   if (explanation != "" && os != nullptr) {
 | |
|     *os << ", " << explanation;
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Returns true if the given type name is easy to read by a human.
 | |
| // This is used to decide whether printing the type of a value might
 | |
| // be helpful.
 | |
| inline bool IsReadableTypeName(const std::string& type_name) {
 | |
|   // We consider a type name readable if it's short or doesn't contain
 | |
|   // a template or function type.
 | |
|   return (type_name.length() <= 20 ||
 | |
|           type_name.find_first_of("<(") == std::string::npos);
 | |
| }
 | |
| 
 | |
| // Matches the value against the given matcher, prints the value and explains
 | |
| // the match result to the listener. Returns the match result.
 | |
| // 'listener' must not be NULL.
 | |
| // Value cannot be passed by const reference, because some matchers take a
 | |
| // non-const argument.
 | |
| template <typename Value, typename T>
 | |
| bool MatchPrintAndExplain(Value& value, const Matcher<T>& matcher,
 | |
|                           MatchResultListener* listener) {
 | |
|   if (!listener->IsInterested()) {
 | |
|     // If the listener is not interested, we do not need to construct the
 | |
|     // inner explanation.
 | |
|     return matcher.Matches(value);
 | |
|   }
 | |
| 
 | |
|   StringMatchResultListener inner_listener;
 | |
|   const bool match = matcher.MatchAndExplain(value, &inner_listener);
 | |
| 
 | |
|   UniversalPrint(value, listener->stream());
 | |
| #if GTEST_HAS_RTTI
 | |
|   const std::string& type_name = GetTypeName<Value>();
 | |
|   if (IsReadableTypeName(type_name))
 | |
|     *listener->stream() << " (of type " << type_name << ")";
 | |
| #endif
 | |
|   PrintIfNotEmpty(inner_listener.str(), listener->stream());
 | |
| 
 | |
|   return match;
 | |
| }
 | |
| 
 | |
| // An internal helper class for doing compile-time loop on a tuple's
 | |
| // fields.
 | |
| template <size_t N>
 | |
| class TuplePrefix {
 | |
|  public:
 | |
|   // TuplePrefix<N>::Matches(matcher_tuple, value_tuple) returns true
 | |
|   // if and only if the first N fields of matcher_tuple matches
 | |
|   // the first N fields of value_tuple, respectively.
 | |
|   template <typename MatcherTuple, typename ValueTuple>
 | |
|   static bool Matches(const MatcherTuple& matcher_tuple,
 | |
|                       const ValueTuple& value_tuple) {
 | |
|     return TuplePrefix<N - 1>::Matches(matcher_tuple, value_tuple) &&
 | |
|            std::get<N - 1>(matcher_tuple).Matches(std::get<N - 1>(value_tuple));
 | |
|   }
 | |
| 
 | |
|   // TuplePrefix<N>::ExplainMatchFailuresTo(matchers, values, os)
 | |
|   // describes failures in matching the first N fields of matchers
 | |
|   // against the first N fields of values.  If there is no failure,
 | |
|   // nothing will be streamed to os.
 | |
|   template <typename MatcherTuple, typename ValueTuple>
 | |
|   static void ExplainMatchFailuresTo(const MatcherTuple& matchers,
 | |
|                                      const ValueTuple& values,
 | |
|                                      ::std::ostream* os) {
 | |
|     // First, describes failures in the first N - 1 fields.
 | |
|     TuplePrefix<N - 1>::ExplainMatchFailuresTo(matchers, values, os);
 | |
| 
 | |
|     // Then describes the failure (if any) in the (N - 1)-th (0-based)
 | |
|     // field.
 | |
|     typename std::tuple_element<N - 1, MatcherTuple>::type matcher =
 | |
|         std::get<N - 1>(matchers);
 | |
|     typedef typename std::tuple_element<N - 1, ValueTuple>::type Value;
 | |
|     const Value& value = std::get<N - 1>(values);
 | |
|     StringMatchResultListener listener;
 | |
|     if (!matcher.MatchAndExplain(value, &listener)) {
 | |
|       *os << "  Expected arg #" << N - 1 << ": ";
 | |
|       std::get<N - 1>(matchers).DescribeTo(os);
 | |
|       *os << "\n           Actual: ";
 | |
|       // We remove the reference in type Value to prevent the
 | |
|       // universal printer from printing the address of value, which
 | |
|       // isn't interesting to the user most of the time.  The
 | |
|       // matcher's MatchAndExplain() method handles the case when
 | |
|       // the address is interesting.
 | |
|       internal::UniversalPrint(value, os);
 | |
|       PrintIfNotEmpty(listener.str(), os);
 | |
|       *os << "\n";
 | |
|     }
 | |
|   }
 | |
| };
 | |
| 
 | |
| // The base case.
 | |
| template <>
 | |
| class TuplePrefix<0> {
 | |
|  public:
 | |
|   template <typename MatcherTuple, typename ValueTuple>
 | |
|   static bool Matches(const MatcherTuple& /* matcher_tuple */,
 | |
|                       const ValueTuple& /* value_tuple */) {
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   template <typename MatcherTuple, typename ValueTuple>
 | |
|   static void ExplainMatchFailuresTo(const MatcherTuple& /* matchers */,
 | |
|                                      const ValueTuple& /* values */,
 | |
|                                      ::std::ostream* /* os */) {}
 | |
| };
 | |
| 
 | |
| // TupleMatches(matcher_tuple, value_tuple) returns true if and only if
 | |
| // all matchers in matcher_tuple match the corresponding fields in
 | |
| // value_tuple.  It is a compiler error if matcher_tuple and
 | |
| // value_tuple have different number of fields or incompatible field
 | |
| // types.
 | |
| template <typename MatcherTuple, typename ValueTuple>
 | |
| bool TupleMatches(const MatcherTuple& matcher_tuple,
 | |
|                   const ValueTuple& value_tuple) {
 | |
|   // Makes sure that matcher_tuple and value_tuple have the same
 | |
|   // number of fields.
 | |
|   GTEST_COMPILE_ASSERT_(std::tuple_size<MatcherTuple>::value ==
 | |
|                             std::tuple_size<ValueTuple>::value,
 | |
|                         matcher_and_value_have_different_numbers_of_fields);
 | |
|   return TuplePrefix<std::tuple_size<ValueTuple>::value>::Matches(matcher_tuple,
 | |
|                                                                   value_tuple);
 | |
| }
 | |
| 
 | |
| // Describes failures in matching matchers against values.  If there
 | |
| // is no failure, nothing will be streamed to os.
 | |
| template <typename MatcherTuple, typename ValueTuple>
 | |
| void ExplainMatchFailureTupleTo(const MatcherTuple& matchers,
 | |
|                                 const ValueTuple& values,
 | |
|                                 ::std::ostream* os) {
 | |
|   TuplePrefix<std::tuple_size<MatcherTuple>::value>::ExplainMatchFailuresTo(
 | |
|       matchers, values, os);
 | |
| }
 | |
| 
 | |
| // TransformTupleValues and its helper.
 | |
| //
 | |
| // TransformTupleValuesHelper hides the internal machinery that
 | |
| // TransformTupleValues uses to implement a tuple traversal.
 | |
| template <typename Tuple, typename Func, typename OutIter>
 | |
| class TransformTupleValuesHelper {
 | |
|  private:
 | |
|   typedef ::std::tuple_size<Tuple> TupleSize;
 | |
| 
 | |
|  public:
 | |
|   // For each member of tuple 't', taken in order, evaluates '*out++ = f(t)'.
 | |
|   // Returns the final value of 'out' in case the caller needs it.
 | |
|   static OutIter Run(Func f, const Tuple& t, OutIter out) {
 | |
|     return IterateOverTuple<Tuple, TupleSize::value>()(f, t, out);
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   template <typename Tup, size_t kRemainingSize>
 | |
|   struct IterateOverTuple {
 | |
|     OutIter operator() (Func f, const Tup& t, OutIter out) const {
 | |
|       *out++ = f(::std::get<TupleSize::value - kRemainingSize>(t));
 | |
|       return IterateOverTuple<Tup, kRemainingSize - 1>()(f, t, out);
 | |
|     }
 | |
|   };
 | |
|   template <typename Tup>
 | |
|   struct IterateOverTuple<Tup, 0> {
 | |
|     OutIter operator() (Func /* f */, const Tup& /* t */, OutIter out) const {
 | |
|       return out;
 | |
|     }
 | |
|   };
 | |
| };
 | |
| 
 | |
| // Successively invokes 'f(element)' on each element of the tuple 't',
 | |
| // appending each result to the 'out' iterator. Returns the final value
 | |
| // of 'out'.
 | |
| template <typename Tuple, typename Func, typename OutIter>
 | |
| OutIter TransformTupleValues(Func f, const Tuple& t, OutIter out) {
 | |
|   return TransformTupleValuesHelper<Tuple, Func, OutIter>::Run(f, t, out);
 | |
| }
 | |
| 
 | |
| // Implements _, a matcher that matches any value of any
 | |
| // type.  This is a polymorphic matcher, so we need a template type
 | |
| // conversion operator to make it appearing as a Matcher<T> for any
 | |
| // type T.
 | |
| class AnythingMatcher {
 | |
|  public:
 | |
|   using is_gtest_matcher = void;
 | |
| 
 | |
|   template <typename T>
 | |
|   bool MatchAndExplain(const T& /* x */, std::ostream* /* listener */) const {
 | |
|     return true;
 | |
|   }
 | |
|   void DescribeTo(std::ostream* os) const { *os << "is anything"; }
 | |
|   void DescribeNegationTo(::std::ostream* os) const {
 | |
|     // This is mostly for completeness' sake, as it's not very useful
 | |
|     // to write Not(A<bool>()).  However we cannot completely rule out
 | |
|     // such a possibility, and it doesn't hurt to be prepared.
 | |
|     *os << "never matches";
 | |
|   }
 | |
| };
 | |
| 
 | |
| // Implements the polymorphic IsNull() matcher, which matches any raw or smart
 | |
| // pointer that is NULL.
 | |
| class IsNullMatcher {
 | |
|  public:
 | |
|   template <typename Pointer>
 | |
|   bool MatchAndExplain(const Pointer& p,
 | |
|                        MatchResultListener* /* listener */) const {
 | |
|     return p == nullptr;
 | |
|   }
 | |
| 
 | |
|   void DescribeTo(::std::ostream* os) const { *os << "is NULL"; }
 | |
|   void DescribeNegationTo(::std::ostream* os) const {
 | |
|     *os << "isn't NULL";
 | |
|   }
 | |
| };
 | |
| 
 | |
| // Implements the polymorphic NotNull() matcher, which matches any raw or smart
 | |
| // pointer that is not NULL.
 | |
| class NotNullMatcher {
 | |
|  public:
 | |
|   template <typename Pointer>
 | |
|   bool MatchAndExplain(const Pointer& p,
 | |
|                        MatchResultListener* /* listener */) const {
 | |
|     return p != nullptr;
 | |
|   }
 | |
| 
 | |
|   void DescribeTo(::std::ostream* os) const { *os << "isn't NULL"; }
 | |
|   void DescribeNegationTo(::std::ostream* os) const {
 | |
|     *os << "is NULL";
 | |
|   }
 | |
| };
 | |
| 
 | |
| // Ref(variable) matches any argument that is a reference to
 | |
| // 'variable'.  This matcher is polymorphic as it can match any
 | |
| // super type of the type of 'variable'.
 | |
| //
 | |
| // The RefMatcher template class implements Ref(variable).  It can
 | |
| // only be instantiated with a reference type.  This prevents a user
 | |
| // from mistakenly using Ref(x) to match a non-reference function
 | |
| // argument.  For example, the following will righteously cause a
 | |
| // compiler error:
 | |
| //
 | |
| //   int n;
 | |
| //   Matcher<int> m1 = Ref(n);   // This won't compile.
 | |
| //   Matcher<int&> m2 = Ref(n);  // This will compile.
 | |
| template <typename T>
 | |
| class RefMatcher;
 | |
| 
 | |
| template <typename T>
 | |
| class RefMatcher<T&> {
 | |
|   // Google Mock is a generic framework and thus needs to support
 | |
|   // mocking any function types, including those that take non-const
 | |
|   // reference arguments.  Therefore the template parameter T (and
 | |
|   // Super below) can be instantiated to either a const type or a
 | |
|   // non-const type.
 | |
|  public:
 | |
|   // RefMatcher() takes a T& instead of const T&, as we want the
 | |
|   // compiler to catch using Ref(const_value) as a matcher for a
 | |
|   // non-const reference.
 | |
|   explicit RefMatcher(T& x) : object_(x) {}  // NOLINT
 | |
| 
 | |
|   template <typename Super>
 | |
|   operator Matcher<Super&>() const {
 | |
|     // By passing object_ (type T&) to Impl(), which expects a Super&,
 | |
|     // we make sure that Super is a super type of T.  In particular,
 | |
|     // this catches using Ref(const_value) as a matcher for a
 | |
|     // non-const reference, as you cannot implicitly convert a const
 | |
|     // reference to a non-const reference.
 | |
|     return MakeMatcher(new Impl<Super>(object_));
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   template <typename Super>
 | |
|   class Impl : public MatcherInterface<Super&> {
 | |
|    public:
 | |
|     explicit Impl(Super& x) : object_(x) {}  // NOLINT
 | |
| 
 | |
|     // MatchAndExplain() takes a Super& (as opposed to const Super&)
 | |
|     // in order to match the interface MatcherInterface<Super&>.
 | |
|     bool MatchAndExplain(Super& x,
 | |
|                          MatchResultListener* listener) const override {
 | |
|       *listener << "which is located @" << static_cast<const void*>(&x);
 | |
|       return &x == &object_;
 | |
|     }
 | |
| 
 | |
|     void DescribeTo(::std::ostream* os) const override {
 | |
|       *os << "references the variable ";
 | |
|       UniversalPrinter<Super&>::Print(object_, os);
 | |
|     }
 | |
| 
 | |
|     void DescribeNegationTo(::std::ostream* os) const override {
 | |
|       *os << "does not reference the variable ";
 | |
|       UniversalPrinter<Super&>::Print(object_, os);
 | |
|     }
 | |
| 
 | |
|    private:
 | |
|     const Super& object_;
 | |
|   };
 | |
| 
 | |
|   T& object_;
 | |
| };
 | |
| 
 | |
| // Polymorphic helper functions for narrow and wide string matchers.
 | |
| inline bool CaseInsensitiveCStringEquals(const char* lhs, const char* rhs) {
 | |
|   return String::CaseInsensitiveCStringEquals(lhs, rhs);
 | |
| }
 | |
| 
 | |
| inline bool CaseInsensitiveCStringEquals(const wchar_t* lhs,
 | |
|                                          const wchar_t* rhs) {
 | |
|   return String::CaseInsensitiveWideCStringEquals(lhs, rhs);
 | |
| }
 | |
| 
 | |
| // String comparison for narrow or wide strings that can have embedded NUL
 | |
| // characters.
 | |
| template <typename StringType>
 | |
| bool CaseInsensitiveStringEquals(const StringType& s1,
 | |
|                                  const StringType& s2) {
 | |
|   // Are the heads equal?
 | |
|   if (!CaseInsensitiveCStringEquals(s1.c_str(), s2.c_str())) {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Skip the equal heads.
 | |
|   const typename StringType::value_type nul = 0;
 | |
|   const size_t i1 = s1.find(nul), i2 = s2.find(nul);
 | |
| 
 | |
|   // Are we at the end of either s1 or s2?
 | |
|   if (i1 == StringType::npos || i2 == StringType::npos) {
 | |
|     return i1 == i2;
 | |
|   }
 | |
| 
 | |
|   // Are the tails equal?
 | |
|   return CaseInsensitiveStringEquals(s1.substr(i1 + 1), s2.substr(i2 + 1));
 | |
| }
 | |
| 
 | |
| // String matchers.
 | |
| 
 | |
| // Implements equality-based string matchers like StrEq, StrCaseNe, and etc.
 | |
| template <typename StringType>
 | |
| class StrEqualityMatcher {
 | |
|  public:
 | |
|   StrEqualityMatcher(StringType str, bool expect_eq, bool case_sensitive)
 | |
|       : string_(std::move(str)),
 | |
|         expect_eq_(expect_eq),
 | |
|         case_sensitive_(case_sensitive) {}
 | |
| 
 | |
| #if GTEST_INTERNAL_HAS_STRING_VIEW
 | |
|   bool MatchAndExplain(const internal::StringView& s,
 | |
|                        MatchResultListener* listener) const {
 | |
|     // This should fail to compile if StringView is used with wide
 | |
|     // strings.
 | |
|     const StringType& str = std::string(s);
 | |
|     return MatchAndExplain(str, listener);
 | |
|   }
 | |
| #endif  // GTEST_INTERNAL_HAS_STRING_VIEW
 | |
| 
 | |
|   // Accepts pointer types, particularly:
 | |
|   //   const char*
 | |
|   //   char*
 | |
|   //   const wchar_t*
 | |
|   //   wchar_t*
 | |
|   template <typename CharType>
 | |
|   bool MatchAndExplain(CharType* s, MatchResultListener* listener) const {
 | |
|     if (s == nullptr) {
 | |
|       return !expect_eq_;
 | |
|     }
 | |
|     return MatchAndExplain(StringType(s), listener);
 | |
|   }
 | |
| 
 | |
|   // Matches anything that can convert to StringType.
 | |
|   //
 | |
|   // This is a template, not just a plain function with const StringType&,
 | |
|   // because StringView has some interfering non-explicit constructors.
 | |
|   template <typename MatcheeStringType>
 | |
|   bool MatchAndExplain(const MatcheeStringType& s,
 | |
|                        MatchResultListener* /* listener */) const {
 | |
|     const StringType s2(s);
 | |
|     const bool eq = case_sensitive_ ? s2 == string_ :
 | |
|         CaseInsensitiveStringEquals(s2, string_);
 | |
|     return expect_eq_ == eq;
 | |
|   }
 | |
| 
 | |
|   void DescribeTo(::std::ostream* os) const {
 | |
|     DescribeToHelper(expect_eq_, os);
 | |
|   }
 | |
| 
 | |
|   void DescribeNegationTo(::std::ostream* os) const {
 | |
|     DescribeToHelper(!expect_eq_, os);
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   void DescribeToHelper(bool expect_eq, ::std::ostream* os) const {
 | |
|     *os << (expect_eq ? "is " : "isn't ");
 | |
|     *os << "equal to ";
 | |
|     if (!case_sensitive_) {
 | |
|       *os << "(ignoring case) ";
 | |
|     }
 | |
|     UniversalPrint(string_, os);
 | |
|   }
 | |
| 
 | |
|   const StringType string_;
 | |
|   const bool expect_eq_;
 | |
|   const bool case_sensitive_;
 | |
| };
 | |
| 
 | |
| // Implements the polymorphic HasSubstr(substring) matcher, which
 | |
| // can be used as a Matcher<T> as long as T can be converted to a
 | |
| // string.
 | |
| template <typename StringType>
 | |
| class HasSubstrMatcher {
 | |
|  public:
 | |
|   explicit HasSubstrMatcher(const StringType& substring)
 | |
|       : substring_(substring) {}
 | |
| 
 | |
| #if GTEST_INTERNAL_HAS_STRING_VIEW
 | |
|   bool MatchAndExplain(const internal::StringView& s,
 | |
|                        MatchResultListener* listener) const {
 | |
|     // This should fail to compile if StringView is used with wide
 | |
|     // strings.
 | |
|     const StringType& str = std::string(s);
 | |
|     return MatchAndExplain(str, listener);
 | |
|   }
 | |
| #endif  // GTEST_INTERNAL_HAS_STRING_VIEW
 | |
| 
 | |
|   // Accepts pointer types, particularly:
 | |
|   //   const char*
 | |
|   //   char*
 | |
|   //   const wchar_t*
 | |
|   //   wchar_t*
 | |
|   template <typename CharType>
 | |
|   bool MatchAndExplain(CharType* s, MatchResultListener* listener) const {
 | |
|     return s != nullptr && MatchAndExplain(StringType(s), listener);
 | |
|   }
 | |
| 
 | |
|   // Matches anything that can convert to StringType.
 | |
|   //
 | |
|   // This is a template, not just a plain function with const StringType&,
 | |
|   // because StringView has some interfering non-explicit constructors.
 | |
|   template <typename MatcheeStringType>
 | |
|   bool MatchAndExplain(const MatcheeStringType& s,
 | |
|                        MatchResultListener* /* listener */) const {
 | |
|     return StringType(s).find(substring_) != StringType::npos;
 | |
|   }
 | |
| 
 | |
|   // Describes what this matcher matches.
 | |
|   void DescribeTo(::std::ostream* os) const {
 | |
|     *os << "has substring ";
 | |
|     UniversalPrint(substring_, os);
 | |
|   }
 | |
| 
 | |
|   void DescribeNegationTo(::std::ostream* os) const {
 | |
|     *os << "has no substring ";
 | |
|     UniversalPrint(substring_, os);
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   const StringType substring_;
 | |
| };
 | |
| 
 | |
| // Implements the polymorphic StartsWith(substring) matcher, which
 | |
| // can be used as a Matcher<T> as long as T can be converted to a
 | |
| // string.
 | |
| template <typename StringType>
 | |
| class StartsWithMatcher {
 | |
|  public:
 | |
|   explicit StartsWithMatcher(const StringType& prefix) : prefix_(prefix) {
 | |
|   }
 | |
| 
 | |
| #if GTEST_INTERNAL_HAS_STRING_VIEW
 | |
|   bool MatchAndExplain(const internal::StringView& s,
 | |
|                        MatchResultListener* listener) const {
 | |
|     // This should fail to compile if StringView is used with wide
 | |
|     // strings.
 | |
|     const StringType& str = std::string(s);
 | |
|     return MatchAndExplain(str, listener);
 | |
|   }
 | |
| #endif  // GTEST_INTERNAL_HAS_STRING_VIEW
 | |
| 
 | |
|   // Accepts pointer types, particularly:
 | |
|   //   const char*
 | |
|   //   char*
 | |
|   //   const wchar_t*
 | |
|   //   wchar_t*
 | |
|   template <typename CharType>
 | |
|   bool MatchAndExplain(CharType* s, MatchResultListener* listener) const {
 | |
|     return s != nullptr && MatchAndExplain(StringType(s), listener);
 | |
|   }
 | |
| 
 | |
|   // Matches anything that can convert to StringType.
 | |
|   //
 | |
|   // This is a template, not just a plain function with const StringType&,
 | |
|   // because StringView has some interfering non-explicit constructors.
 | |
|   template <typename MatcheeStringType>
 | |
|   bool MatchAndExplain(const MatcheeStringType& s,
 | |
|                        MatchResultListener* /* listener */) const {
 | |
|     const StringType& s2(s);
 | |
|     return s2.length() >= prefix_.length() &&
 | |
|         s2.substr(0, prefix_.length()) == prefix_;
 | |
|   }
 | |
| 
 | |
|   void DescribeTo(::std::ostream* os) const {
 | |
|     *os << "starts with ";
 | |
|     UniversalPrint(prefix_, os);
 | |
|   }
 | |
| 
 | |
|   void DescribeNegationTo(::std::ostream* os) const {
 | |
|     *os << "doesn't start with ";
 | |
|     UniversalPrint(prefix_, os);
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   const StringType prefix_;
 | |
| };
 | |
| 
 | |
| // Implements the polymorphic EndsWith(substring) matcher, which
 | |
| // can be used as a Matcher<T> as long as T can be converted to a
 | |
| // string.
 | |
| template <typename StringType>
 | |
| class EndsWithMatcher {
 | |
|  public:
 | |
|   explicit EndsWithMatcher(const StringType& suffix) : suffix_(suffix) {}
 | |
| 
 | |
| #if GTEST_INTERNAL_HAS_STRING_VIEW
 | |
|   bool MatchAndExplain(const internal::StringView& s,
 | |
|                        MatchResultListener* listener) const {
 | |
|     // This should fail to compile if StringView is used with wide
 | |
|     // strings.
 | |
|     const StringType& str = std::string(s);
 | |
|     return MatchAndExplain(str, listener);
 | |
|   }
 | |
| #endif  // GTEST_INTERNAL_HAS_STRING_VIEW
 | |
| 
 | |
|   // Accepts pointer types, particularly:
 | |
|   //   const char*
 | |
|   //   char*
 | |
|   //   const wchar_t*
 | |
|   //   wchar_t*
 | |
|   template <typename CharType>
 | |
|   bool MatchAndExplain(CharType* s, MatchResultListener* listener) const {
 | |
|     return s != nullptr && MatchAndExplain(StringType(s), listener);
 | |
|   }
 | |
| 
 | |
|   // Matches anything that can convert to StringType.
 | |
|   //
 | |
|   // This is a template, not just a plain function with const StringType&,
 | |
|   // because StringView has some interfering non-explicit constructors.
 | |
|   template <typename MatcheeStringType>
 | |
|   bool MatchAndExplain(const MatcheeStringType& s,
 | |
|                        MatchResultListener* /* listener */) const {
 | |
|     const StringType& s2(s);
 | |
|     return s2.length() >= suffix_.length() &&
 | |
|         s2.substr(s2.length() - suffix_.length()) == suffix_;
 | |
|   }
 | |
| 
 | |
|   void DescribeTo(::std::ostream* os) const {
 | |
|     *os << "ends with ";
 | |
|     UniversalPrint(suffix_, os);
 | |
|   }
 | |
| 
 | |
|   void DescribeNegationTo(::std::ostream* os) const {
 | |
|     *os << "doesn't end with ";
 | |
|     UniversalPrint(suffix_, os);
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   const StringType suffix_;
 | |
| };
 | |
| 
 | |
| // Implements a matcher that compares the two fields of a 2-tuple
 | |
| // using one of the ==, <=, <, etc, operators.  The two fields being
 | |
| // compared don't have to have the same type.
 | |
| //
 | |
| // The matcher defined here is polymorphic (for example, Eq() can be
 | |
| // used to match a std::tuple<int, short>, a std::tuple<const long&, double>,
 | |
| // etc).  Therefore we use a template type conversion operator in the
 | |
| // implementation.
 | |
| template <typename D, typename Op>
 | |
| class PairMatchBase {
 | |
|  public:
 | |
|   template <typename T1, typename T2>
 | |
|   operator Matcher<::std::tuple<T1, T2>>() const {
 | |
|     return Matcher<::std::tuple<T1, T2>>(new Impl<const ::std::tuple<T1, T2>&>);
 | |
|   }
 | |
|   template <typename T1, typename T2>
 | |
|   operator Matcher<const ::std::tuple<T1, T2>&>() const {
 | |
|     return MakeMatcher(new Impl<const ::std::tuple<T1, T2>&>);
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   static ::std::ostream& GetDesc(::std::ostream& os) {  // NOLINT
 | |
|     return os << D::Desc();
 | |
|   }
 | |
| 
 | |
|   template <typename Tuple>
 | |
|   class Impl : public MatcherInterface<Tuple> {
 | |
|    public:
 | |
|     bool MatchAndExplain(Tuple args,
 | |
|                          MatchResultListener* /* listener */) const override {
 | |
|       return Op()(::std::get<0>(args), ::std::get<1>(args));
 | |
|     }
 | |
|     void DescribeTo(::std::ostream* os) const override {
 | |
|       *os << "are " << GetDesc;
 | |
|     }
 | |
|     void DescribeNegationTo(::std::ostream* os) const override {
 | |
|       *os << "aren't " << GetDesc;
 | |
|     }
 | |
|   };
 | |
| };
 | |
| 
 | |
| class Eq2Matcher : public PairMatchBase<Eq2Matcher, AnyEq> {
 | |
|  public:
 | |
|   static const char* Desc() { return "an equal pair"; }
 | |
| };
 | |
| class Ne2Matcher : public PairMatchBase<Ne2Matcher, AnyNe> {
 | |
|  public:
 | |
|   static const char* Desc() { return "an unequal pair"; }
 | |
| };
 | |
| class Lt2Matcher : public PairMatchBase<Lt2Matcher, AnyLt> {
 | |
|  public:
 | |
|   static const char* Desc() { return "a pair where the first < the second"; }
 | |
| };
 | |
| class Gt2Matcher : public PairMatchBase<Gt2Matcher, AnyGt> {
 | |
|  public:
 | |
|   static const char* Desc() { return "a pair where the first > the second"; }
 | |
| };
 | |
| class Le2Matcher : public PairMatchBase<Le2Matcher, AnyLe> {
 | |
|  public:
 | |
|   static const char* Desc() { return "a pair where the first <= the second"; }
 | |
| };
 | |
| class Ge2Matcher : public PairMatchBase<Ge2Matcher, AnyGe> {
 | |
|  public:
 | |
|   static const char* Desc() { return "a pair where the first >= the second"; }
 | |
| };
 | |
| 
 | |
| // Implements the Not(...) matcher for a particular argument type T.
 | |
| // We do not nest it inside the NotMatcher class template, as that
 | |
| // will prevent different instantiations of NotMatcher from sharing
 | |
| // the same NotMatcherImpl<T> class.
 | |
| template <typename T>
 | |
| class NotMatcherImpl : public MatcherInterface<const T&> {
 | |
|  public:
 | |
|   explicit NotMatcherImpl(const Matcher<T>& matcher)
 | |
|       : matcher_(matcher) {}
 | |
| 
 | |
|   bool MatchAndExplain(const T& x,
 | |
|                        MatchResultListener* listener) const override {
 | |
|     return !matcher_.MatchAndExplain(x, listener);
 | |
|   }
 | |
| 
 | |
|   void DescribeTo(::std::ostream* os) const override {
 | |
|     matcher_.DescribeNegationTo(os);
 | |
|   }
 | |
| 
 | |
|   void DescribeNegationTo(::std::ostream* os) const override {
 | |
|     matcher_.DescribeTo(os);
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   const Matcher<T> matcher_;
 | |
| };
 | |
| 
 | |
| // Implements the Not(m) matcher, which matches a value that doesn't
 | |
| // match matcher m.
 | |
| template <typename InnerMatcher>
 | |
| class NotMatcher {
 | |
|  public:
 | |
|   explicit NotMatcher(InnerMatcher matcher) : matcher_(matcher) {}
 | |
| 
 | |
|   // This template type conversion operator allows Not(m) to be used
 | |
|   // to match any type m can match.
 | |
|   template <typename T>
 | |
|   operator Matcher<T>() const {
 | |
|     return Matcher<T>(new NotMatcherImpl<T>(SafeMatcherCast<T>(matcher_)));
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   InnerMatcher matcher_;
 | |
| };
 | |
| 
 | |
| // Implements the AllOf(m1, m2) matcher for a particular argument type
 | |
| // T. We do not nest it inside the BothOfMatcher class template, as
 | |
| // that will prevent different instantiations of BothOfMatcher from
 | |
| // sharing the same BothOfMatcherImpl<T> class.
 | |
| template <typename T>
 | |
| class AllOfMatcherImpl : public MatcherInterface<const T&> {
 | |
|  public:
 | |
|   explicit AllOfMatcherImpl(std::vector<Matcher<T> > matchers)
 | |
|       : matchers_(std::move(matchers)) {}
 | |
| 
 | |
|   void DescribeTo(::std::ostream* os) const override {
 | |
|     *os << "(";
 | |
|     for (size_t i = 0; i < matchers_.size(); ++i) {
 | |
|       if (i != 0) *os << ") and (";
 | |
|       matchers_[i].DescribeTo(os);
 | |
|     }
 | |
|     *os << ")";
 | |
|   }
 | |
| 
 | |
|   void DescribeNegationTo(::std::ostream* os) const override {
 | |
|     *os << "(";
 | |
|     for (size_t i = 0; i < matchers_.size(); ++i) {
 | |
|       if (i != 0) *os << ") or (";
 | |
|       matchers_[i].DescribeNegationTo(os);
 | |
|     }
 | |
|     *os << ")";
 | |
|   }
 | |
| 
 | |
|   bool MatchAndExplain(const T& x,
 | |
|                        MatchResultListener* listener) const override {
 | |
|     // If either matcher1_ or matcher2_ doesn't match x, we only need
 | |
|     // to explain why one of them fails.
 | |
|     std::string all_match_result;
 | |
| 
 | |
|     for (size_t i = 0; i < matchers_.size(); ++i) {
 | |
|       StringMatchResultListener slistener;
 | |
|       if (matchers_[i].MatchAndExplain(x, &slistener)) {
 | |
|         if (all_match_result.empty()) {
 | |
|           all_match_result = slistener.str();
 | |
|         } else {
 | |
|           std::string result = slistener.str();
 | |
|           if (!result.empty()) {
 | |
|             all_match_result += ", and ";
 | |
|             all_match_result += result;
 | |
|           }
 | |
|         }
 | |
|       } else {
 | |
|         *listener << slistener.str();
 | |
|         return false;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Otherwise we need to explain why *both* of them match.
 | |
|     *listener << all_match_result;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   const std::vector<Matcher<T> > matchers_;
 | |
| };
 | |
| 
 | |
| // VariadicMatcher is used for the variadic implementation of
 | |
| // AllOf(m_1, m_2, ...) and AnyOf(m_1, m_2, ...).
 | |
| // CombiningMatcher<T> is used to recursively combine the provided matchers
 | |
| // (of type Args...).
 | |
| template <template <typename T> class CombiningMatcher, typename... Args>
 | |
| class VariadicMatcher {
 | |
|  public:
 | |
|   VariadicMatcher(const Args&... matchers)  // NOLINT
 | |
|       : matchers_(matchers...) {
 | |
|     static_assert(sizeof...(Args) > 0, "Must have at least one matcher.");
 | |
|   }
 | |
| 
 | |
|   VariadicMatcher(const VariadicMatcher&) = default;
 | |
|   VariadicMatcher& operator=(const VariadicMatcher&) = delete;
 | |
| 
 | |
|   // This template type conversion operator allows an
 | |
|   // VariadicMatcher<Matcher1, Matcher2...> object to match any type that
 | |
|   // all of the provided matchers (Matcher1, Matcher2, ...) can match.
 | |
|   template <typename T>
 | |
|   operator Matcher<T>() const {
 | |
|     std::vector<Matcher<T> > values;
 | |
|     CreateVariadicMatcher<T>(&values, std::integral_constant<size_t, 0>());
 | |
|     return Matcher<T>(new CombiningMatcher<T>(std::move(values)));
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   template <typename T, size_t I>
 | |
|   void CreateVariadicMatcher(std::vector<Matcher<T> >* values,
 | |
|                              std::integral_constant<size_t, I>) const {
 | |
|     values->push_back(SafeMatcherCast<T>(std::get<I>(matchers_)));
 | |
|     CreateVariadicMatcher<T>(values, std::integral_constant<size_t, I + 1>());
 | |
|   }
 | |
| 
 | |
|   template <typename T>
 | |
|   void CreateVariadicMatcher(
 | |
|       std::vector<Matcher<T> >*,
 | |
|       std::integral_constant<size_t, sizeof...(Args)>) const {}
 | |
| 
 | |
|   std::tuple<Args...> matchers_;
 | |
| };
 | |
| 
 | |
| template <typename... Args>
 | |
| using AllOfMatcher = VariadicMatcher<AllOfMatcherImpl, Args...>;
 | |
| 
 | |
| // Implements the AnyOf(m1, m2) matcher for a particular argument type
 | |
| // T.  We do not nest it inside the AnyOfMatcher class template, as
 | |
| // that will prevent different instantiations of AnyOfMatcher from
 | |
| // sharing the same EitherOfMatcherImpl<T> class.
 | |
| template <typename T>
 | |
| class AnyOfMatcherImpl : public MatcherInterface<const T&> {
 | |
|  public:
 | |
|   explicit AnyOfMatcherImpl(std::vector<Matcher<T> > matchers)
 | |
|       : matchers_(std::move(matchers)) {}
 | |
| 
 | |
|   void DescribeTo(::std::ostream* os) const override {
 | |
|     *os << "(";
 | |
|     for (size_t i = 0; i < matchers_.size(); ++i) {
 | |
|       if (i != 0) *os << ") or (";
 | |
|       matchers_[i].DescribeTo(os);
 | |
|     }
 | |
|     *os << ")";
 | |
|   }
 | |
| 
 | |
|   void DescribeNegationTo(::std::ostream* os) const override {
 | |
|     *os << "(";
 | |
|     for (size_t i = 0; i < matchers_.size(); ++i) {
 | |
|       if (i != 0) *os << ") and (";
 | |
|       matchers_[i].DescribeNegationTo(os);
 | |
|     }
 | |
|     *os << ")";
 | |
|   }
 | |
| 
 | |
|   bool MatchAndExplain(const T& x,
 | |
|                        MatchResultListener* listener) const override {
 | |
|     std::string no_match_result;
 | |
| 
 | |
|     // If either matcher1_ or matcher2_ matches x, we just need to
 | |
|     // explain why *one* of them matches.
 | |
|     for (size_t i = 0; i < matchers_.size(); ++i) {
 | |
|       StringMatchResultListener slistener;
 | |
|       if (matchers_[i].MatchAndExplain(x, &slistener)) {
 | |
|         *listener << slistener.str();
 | |
|         return true;
 | |
|       } else {
 | |
|         if (no_match_result.empty()) {
 | |
|           no_match_result = slistener.str();
 | |
|         } else {
 | |
|           std::string result = slistener.str();
 | |
|           if (!result.empty()) {
 | |
|             no_match_result += ", and ";
 | |
|             no_match_result += result;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Otherwise we need to explain why *both* of them fail.
 | |
|     *listener << no_match_result;
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   const std::vector<Matcher<T> > matchers_;
 | |
| };
 | |
| 
 | |
| // AnyOfMatcher is used for the variadic implementation of AnyOf(m_1, m_2, ...).
 | |
| template <typename... Args>
 | |
| using AnyOfMatcher = VariadicMatcher<AnyOfMatcherImpl, Args...>;
 | |
| 
 | |
| // Wrapper for implementation of Any/AllOfArray().
 | |
| template <template <class> class MatcherImpl, typename T>
 | |
| class SomeOfArrayMatcher {
 | |
|  public:
 | |
|   // Constructs the matcher from a sequence of element values or
 | |
|   // element matchers.
 | |
|   template <typename Iter>
 | |
|   SomeOfArrayMatcher(Iter first, Iter last) : matchers_(first, last) {}
 | |
| 
 | |
|   template <typename U>
 | |
|   operator Matcher<U>() const {  // NOLINT
 | |
|     using RawU = typename std::decay<U>::type;
 | |
|     std::vector<Matcher<RawU>> matchers;
 | |
|     for (const auto& matcher : matchers_) {
 | |
|       matchers.push_back(MatcherCast<RawU>(matcher));
 | |
|     }
 | |
|     return Matcher<U>(new MatcherImpl<RawU>(std::move(matchers)));
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   const ::std::vector<T> matchers_;
 | |
| };
 | |
| 
 | |
| template <typename T>
 | |
| using AllOfArrayMatcher = SomeOfArrayMatcher<AllOfMatcherImpl, T>;
 | |
| 
 | |
| template <typename T>
 | |
| using AnyOfArrayMatcher = SomeOfArrayMatcher<AnyOfMatcherImpl, T>;
 | |
| 
 | |
| // Used for implementing Truly(pred), which turns a predicate into a
 | |
| // matcher.
 | |
| template <typename Predicate>
 | |
| class TrulyMatcher {
 | |
|  public:
 | |
|   explicit TrulyMatcher(Predicate pred) : predicate_(pred) {}
 | |
| 
 | |
|   // This method template allows Truly(pred) to be used as a matcher
 | |
|   // for type T where T is the argument type of predicate 'pred'.  The
 | |
|   // argument is passed by reference as the predicate may be
 | |
|   // interested in the address of the argument.
 | |
|   template <typename T>
 | |
|   bool MatchAndExplain(T& x,  // NOLINT
 | |
|                        MatchResultListener* listener) const {
 | |
|     // Without the if-statement, MSVC sometimes warns about converting
 | |
|     // a value to bool (warning 4800).
 | |
|     //
 | |
|     // We cannot write 'return !!predicate_(x);' as that doesn't work
 | |
|     // when predicate_(x) returns a class convertible to bool but
 | |
|     // having no operator!().
 | |
|     if (predicate_(x))
 | |
|       return true;
 | |
|     *listener << "didn't satisfy the given predicate";
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   void DescribeTo(::std::ostream* os) const {
 | |
|     *os << "satisfies the given predicate";
 | |
|   }
 | |
| 
 | |
|   void DescribeNegationTo(::std::ostream* os) const {
 | |
|     *os << "doesn't satisfy the given predicate";
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   Predicate predicate_;
 | |
| };
 | |
| 
 | |
| // Used for implementing Matches(matcher), which turns a matcher into
 | |
| // a predicate.
 | |
| template <typename M>
 | |
| class MatcherAsPredicate {
 | |
|  public:
 | |
|   explicit MatcherAsPredicate(M matcher) : matcher_(matcher) {}
 | |
| 
 | |
|   // This template operator() allows Matches(m) to be used as a
 | |
|   // predicate on type T where m is a matcher on type T.
 | |
|   //
 | |
|   // The argument x is passed by reference instead of by value, as
 | |
|   // some matcher may be interested in its address (e.g. as in
 | |
|   // Matches(Ref(n))(x)).
 | |
|   template <typename T>
 | |
|   bool operator()(const T& x) const {
 | |
|     // We let matcher_ commit to a particular type here instead of
 | |
|     // when the MatcherAsPredicate object was constructed.  This
 | |
|     // allows us to write Matches(m) where m is a polymorphic matcher
 | |
|     // (e.g. Eq(5)).
 | |
|     //
 | |
|     // If we write Matcher<T>(matcher_).Matches(x) here, it won't
 | |
|     // compile when matcher_ has type Matcher<const T&>; if we write
 | |
|     // Matcher<const T&>(matcher_).Matches(x) here, it won't compile
 | |
|     // when matcher_ has type Matcher<T>; if we just write
 | |
|     // matcher_.Matches(x), it won't compile when matcher_ is
 | |
|     // polymorphic, e.g. Eq(5).
 | |
|     //
 | |
|     // MatcherCast<const T&>() is necessary for making the code work
 | |
|     // in all of the above situations.
 | |
|     return MatcherCast<const T&>(matcher_).Matches(x);
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   M matcher_;
 | |
| };
 | |
| 
 | |
| // For implementing ASSERT_THAT() and EXPECT_THAT().  The template
 | |
| // argument M must be a type that can be converted to a matcher.
 | |
| template <typename M>
 | |
| class PredicateFormatterFromMatcher {
 | |
|  public:
 | |
|   explicit PredicateFormatterFromMatcher(M m) : matcher_(std::move(m)) {}
 | |
| 
 | |
|   // This template () operator allows a PredicateFormatterFromMatcher
 | |
|   // object to act as a predicate-formatter suitable for using with
 | |
|   // Google Test's EXPECT_PRED_FORMAT1() macro.
 | |
|   template <typename T>
 | |
|   AssertionResult operator()(const char* value_text, const T& x) const {
 | |
|     // We convert matcher_ to a Matcher<const T&> *now* instead of
 | |
|     // when the PredicateFormatterFromMatcher object was constructed,
 | |
|     // as matcher_ may be polymorphic (e.g. NotNull()) and we won't
 | |
|     // know which type to instantiate it to until we actually see the
 | |
|     // type of x here.
 | |
|     //
 | |
|     // We write SafeMatcherCast<const T&>(matcher_) instead of
 | |
|     // Matcher<const T&>(matcher_), as the latter won't compile when
 | |
|     // matcher_ has type Matcher<T> (e.g. An<int>()).
 | |
|     // We don't write MatcherCast<const T&> either, as that allows
 | |
|     // potentially unsafe downcasting of the matcher argument.
 | |
|     const Matcher<const T&> matcher = SafeMatcherCast<const T&>(matcher_);
 | |
| 
 | |
|     // The expected path here is that the matcher should match (i.e. that most
 | |
|     // tests pass) so optimize for this case.
 | |
|     if (matcher.Matches(x)) {
 | |
|       return AssertionSuccess();
 | |
|     }
 | |
| 
 | |
|     ::std::stringstream ss;
 | |
|     ss << "Value of: " << value_text << "\n"
 | |
|        << "Expected: ";
 | |
|     matcher.DescribeTo(&ss);
 | |
| 
 | |
|     // Rerun the matcher to "PrintAndExplain" the failure.
 | |
|     StringMatchResultListener listener;
 | |
|     if (MatchPrintAndExplain(x, matcher, &listener)) {
 | |
|       ss << "\n  The matcher failed on the initial attempt; but passed when "
 | |
|             "rerun to generate the explanation.";
 | |
|     }
 | |
|     ss << "\n  Actual: " << listener.str();
 | |
|     return AssertionFailure() << ss.str();
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   const M matcher_;
 | |
| };
 | |
| 
 | |
| // A helper function for converting a matcher to a predicate-formatter
 | |
| // without the user needing to explicitly write the type.  This is
 | |
| // used for implementing ASSERT_THAT() and EXPECT_THAT().
 | |
| // Implementation detail: 'matcher' is received by-value to force decaying.
 | |
| template <typename M>
 | |
| inline PredicateFormatterFromMatcher<M>
 | |
| MakePredicateFormatterFromMatcher(M matcher) {
 | |
|   return PredicateFormatterFromMatcher<M>(std::move(matcher));
 | |
| }
 | |
| 
 | |
| // Implements the polymorphic IsNan() matcher, which matches any floating type
 | |
| // value that is Nan.
 | |
| class IsNanMatcher {
 | |
|  public:
 | |
|   template <typename FloatType>
 | |
|   bool MatchAndExplain(const FloatType& f,
 | |
|                        MatchResultListener* /* listener */) const {
 | |
|     return (::std::isnan)(f);
 | |
|   }
 | |
| 
 | |
|   void DescribeTo(::std::ostream* os) const { *os << "is NaN"; }
 | |
|   void DescribeNegationTo(::std::ostream* os) const {
 | |
|     *os << "isn't NaN";
 | |
|   }
 | |
| };
 | |
| 
 | |
| // Implements the polymorphic floating point equality matcher, which matches
 | |
| // two float values using ULP-based approximation or, optionally, a
 | |
| // user-specified epsilon.  The template is meant to be instantiated with
 | |
| // FloatType being either float or double.
 | |
| template <typename FloatType>
 | |
| class FloatingEqMatcher {
 | |
|  public:
 | |
|   // Constructor for FloatingEqMatcher.
 | |
|   // The matcher's input will be compared with expected.  The matcher treats two
 | |
|   // NANs as equal if nan_eq_nan is true.  Otherwise, under IEEE standards,
 | |
|   // equality comparisons between NANs will always return false.  We specify a
 | |
|   // negative max_abs_error_ term to indicate that ULP-based approximation will
 | |
|   // be used for comparison.
 | |
|   FloatingEqMatcher(FloatType expected, bool nan_eq_nan) :
 | |
|     expected_(expected), nan_eq_nan_(nan_eq_nan), max_abs_error_(-1) {
 | |
|   }
 | |
| 
 | |
|   // Constructor that supports a user-specified max_abs_error that will be used
 | |
|   // for comparison instead of ULP-based approximation.  The max absolute
 | |
|   // should be non-negative.
 | |
|   FloatingEqMatcher(FloatType expected, bool nan_eq_nan,
 | |
|                     FloatType max_abs_error)
 | |
|       : expected_(expected),
 | |
|         nan_eq_nan_(nan_eq_nan),
 | |
|         max_abs_error_(max_abs_error) {
 | |
|     GTEST_CHECK_(max_abs_error >= 0)
 | |
|         << ", where max_abs_error is" << max_abs_error;
 | |
|   }
 | |
| 
 | |
|   // Implements floating point equality matcher as a Matcher<T>.
 | |
|   template <typename T>
 | |
|   class Impl : public MatcherInterface<T> {
 | |
|    public:
 | |
|     Impl(FloatType expected, bool nan_eq_nan, FloatType max_abs_error)
 | |
|         : expected_(expected),
 | |
|           nan_eq_nan_(nan_eq_nan),
 | |
|           max_abs_error_(max_abs_error) {}
 | |
| 
 | |
|     bool MatchAndExplain(T value,
 | |
|                          MatchResultListener* listener) const override {
 | |
|       const FloatingPoint<FloatType> actual(value), expected(expected_);
 | |
| 
 | |
|       // Compares NaNs first, if nan_eq_nan_ is true.
 | |
|       if (actual.is_nan() || expected.is_nan()) {
 | |
|         if (actual.is_nan() && expected.is_nan()) {
 | |
|           return nan_eq_nan_;
 | |
|         }
 | |
|         // One is nan; the other is not nan.
 | |
|         return false;
 | |
|       }
 | |
|       if (HasMaxAbsError()) {
 | |
|         // We perform an equality check so that inf will match inf, regardless
 | |
|         // of error bounds.  If the result of value - expected_ would result in
 | |
|         // overflow or if either value is inf, the default result is infinity,
 | |
|         // which should only match if max_abs_error_ is also infinity.
 | |
|         if (value == expected_) {
 | |
|           return true;
 | |
|         }
 | |
| 
 | |
|         const FloatType diff = value - expected_;
 | |
|         if (::std::fabs(diff) <= max_abs_error_) {
 | |
|           return true;
 | |
|         }
 | |
| 
 | |
|         if (listener->IsInterested()) {
 | |
|           *listener << "which is " << diff << " from " << expected_;
 | |
|         }
 | |
|         return false;
 | |
|       } else {
 | |
|         return actual.AlmostEquals(expected);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     void DescribeTo(::std::ostream* os) const override {
 | |
|       // os->precision() returns the previously set precision, which we
 | |
|       // store to restore the ostream to its original configuration
 | |
|       // after outputting.
 | |
|       const ::std::streamsize old_precision = os->precision(
 | |
|           ::std::numeric_limits<FloatType>::digits10 + 2);
 | |
|       if (FloatingPoint<FloatType>(expected_).is_nan()) {
 | |
|         if (nan_eq_nan_) {
 | |
|           *os << "is NaN";
 | |
|         } else {
 | |
|           *os << "never matches";
 | |
|         }
 | |
|       } else {
 | |
|         *os << "is approximately " << expected_;
 | |
|         if (HasMaxAbsError()) {
 | |
|           *os << " (absolute error <= " << max_abs_error_ << ")";
 | |
|         }
 | |
|       }
 | |
|       os->precision(old_precision);
 | |
|     }
 | |
| 
 | |
|     void DescribeNegationTo(::std::ostream* os) const override {
 | |
|       // As before, get original precision.
 | |
|       const ::std::streamsize old_precision = os->precision(
 | |
|           ::std::numeric_limits<FloatType>::digits10 + 2);
 | |
|       if (FloatingPoint<FloatType>(expected_).is_nan()) {
 | |
|         if (nan_eq_nan_) {
 | |
|           *os << "isn't NaN";
 | |
|         } else {
 | |
|           *os << "is anything";
 | |
|         }
 | |
|       } else {
 | |
|         *os << "isn't approximately " << expected_;
 | |
|         if (HasMaxAbsError()) {
 | |
|           *os << " (absolute error > " << max_abs_error_ << ")";
 | |
|         }
 | |
|       }
 | |
|       // Restore original precision.
 | |
|       os->precision(old_precision);
 | |
|     }
 | |
| 
 | |
|    private:
 | |
|     bool HasMaxAbsError() const {
 | |
|       return max_abs_error_ >= 0;
 | |
|     }
 | |
| 
 | |
|     const FloatType expected_;
 | |
|     const bool nan_eq_nan_;
 | |
|     // max_abs_error will be used for value comparison when >= 0.
 | |
|     const FloatType max_abs_error_;
 | |
|   };
 | |
| 
 | |
|   // The following 3 type conversion operators allow FloatEq(expected) and
 | |
|   // NanSensitiveFloatEq(expected) to be used as a Matcher<float>, a
 | |
|   // Matcher<const float&>, or a Matcher<float&>, but nothing else.
 | |
|   operator Matcher<FloatType>() const {
 | |
|     return MakeMatcher(
 | |
|         new Impl<FloatType>(expected_, nan_eq_nan_, max_abs_error_));
 | |
|   }
 | |
| 
 | |
|   operator Matcher<const FloatType&>() const {
 | |
|     return MakeMatcher(
 | |
|         new Impl<const FloatType&>(expected_, nan_eq_nan_, max_abs_error_));
 | |
|   }
 | |
| 
 | |
|   operator Matcher<FloatType&>() const {
 | |
|     return MakeMatcher(
 | |
|         new Impl<FloatType&>(expected_, nan_eq_nan_, max_abs_error_));
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   const FloatType expected_;
 | |
|   const bool nan_eq_nan_;
 | |
|   // max_abs_error will be used for value comparison when >= 0.
 | |
|   const FloatType max_abs_error_;
 | |
| };
 | |
| 
 | |
| // A 2-tuple ("binary") wrapper around FloatingEqMatcher:
 | |
| // FloatingEq2Matcher() matches (x, y) by matching FloatingEqMatcher(x, false)
 | |
| // against y, and FloatingEq2Matcher(e) matches FloatingEqMatcher(x, false, e)
 | |
| // against y. The former implements "Eq", the latter "Near". At present, there
 | |
| // is no version that compares NaNs as equal.
 | |
| template <typename FloatType>
 | |
| class FloatingEq2Matcher {
 | |
|  public:
 | |
|   FloatingEq2Matcher() { Init(-1, false); }
 | |
| 
 | |
|   explicit FloatingEq2Matcher(bool nan_eq_nan) { Init(-1, nan_eq_nan); }
 | |
| 
 | |
|   explicit FloatingEq2Matcher(FloatType max_abs_error) {
 | |
|     Init(max_abs_error, false);
 | |
|   }
 | |
| 
 | |
|   FloatingEq2Matcher(FloatType max_abs_error, bool nan_eq_nan) {
 | |
|     Init(max_abs_error, nan_eq_nan);
 | |
|   }
 | |
| 
 | |
|   template <typename T1, typename T2>
 | |
|   operator Matcher<::std::tuple<T1, T2>>() const {
 | |
|     return MakeMatcher(
 | |
|         new Impl<::std::tuple<T1, T2>>(max_abs_error_, nan_eq_nan_));
 | |
|   }
 | |
|   template <typename T1, typename T2>
 | |
|   operator Matcher<const ::std::tuple<T1, T2>&>() const {
 | |
|     return MakeMatcher(
 | |
|         new Impl<const ::std::tuple<T1, T2>&>(max_abs_error_, nan_eq_nan_));
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   static ::std::ostream& GetDesc(::std::ostream& os) {  // NOLINT
 | |
|     return os << "an almost-equal pair";
 | |
|   }
 | |
| 
 | |
|   template <typename Tuple>
 | |
|   class Impl : public MatcherInterface<Tuple> {
 | |
|    public:
 | |
|     Impl(FloatType max_abs_error, bool nan_eq_nan) :
 | |
|         max_abs_error_(max_abs_error),
 | |
|         nan_eq_nan_(nan_eq_nan) {}
 | |
| 
 | |
|     bool MatchAndExplain(Tuple args,
 | |
|                          MatchResultListener* listener) const override {
 | |
|       if (max_abs_error_ == -1) {
 | |
|         FloatingEqMatcher<FloatType> fm(::std::get<0>(args), nan_eq_nan_);
 | |
|         return static_cast<Matcher<FloatType>>(fm).MatchAndExplain(
 | |
|             ::std::get<1>(args), listener);
 | |
|       } else {
 | |
|         FloatingEqMatcher<FloatType> fm(::std::get<0>(args), nan_eq_nan_,
 | |
|                                         max_abs_error_);
 | |
|         return static_cast<Matcher<FloatType>>(fm).MatchAndExplain(
 | |
|             ::std::get<1>(args), listener);
 | |
|       }
 | |
|     }
 | |
|     void DescribeTo(::std::ostream* os) const override {
 | |
|       *os << "are " << GetDesc;
 | |
|     }
 | |
|     void DescribeNegationTo(::std::ostream* os) const override {
 | |
|       *os << "aren't " << GetDesc;
 | |
|     }
 | |
| 
 | |
|    private:
 | |
|     FloatType max_abs_error_;
 | |
|     const bool nan_eq_nan_;
 | |
|   };
 | |
| 
 | |
|   void Init(FloatType max_abs_error_val, bool nan_eq_nan_val) {
 | |
|     max_abs_error_ = max_abs_error_val;
 | |
|     nan_eq_nan_ = nan_eq_nan_val;
 | |
|   }
 | |
|   FloatType max_abs_error_;
 | |
|   bool nan_eq_nan_;
 | |
| };
 | |
| 
 | |
| // Implements the Pointee(m) matcher for matching a pointer whose
 | |
| // pointee matches matcher m.  The pointer can be either raw or smart.
 | |
| template <typename InnerMatcher>
 | |
| class PointeeMatcher {
 | |
|  public:
 | |
|   explicit PointeeMatcher(const InnerMatcher& matcher) : matcher_(matcher) {}
 | |
| 
 | |
|   // This type conversion operator template allows Pointee(m) to be
 | |
|   // used as a matcher for any pointer type whose pointee type is
 | |
|   // compatible with the inner matcher, where type Pointer can be
 | |
|   // either a raw pointer or a smart pointer.
 | |
|   //
 | |
|   // The reason we do this instead of relying on
 | |
|   // MakePolymorphicMatcher() is that the latter is not flexible
 | |
|   // enough for implementing the DescribeTo() method of Pointee().
 | |
|   template <typename Pointer>
 | |
|   operator Matcher<Pointer>() const {
 | |
|     return Matcher<Pointer>(new Impl<const Pointer&>(matcher_));
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   // The monomorphic implementation that works for a particular pointer type.
 | |
|   template <typename Pointer>
 | |
|   class Impl : public MatcherInterface<Pointer> {
 | |
|    public:
 | |
|     using Pointee =
 | |
|         typename std::pointer_traits<GTEST_REMOVE_REFERENCE_AND_CONST_(
 | |
|             Pointer)>::element_type;
 | |
| 
 | |
|     explicit Impl(const InnerMatcher& matcher)
 | |
|         : matcher_(MatcherCast<const Pointee&>(matcher)) {}
 | |
| 
 | |
|     void DescribeTo(::std::ostream* os) const override {
 | |
|       *os << "points to a value that ";
 | |
|       matcher_.DescribeTo(os);
 | |
|     }
 | |
| 
 | |
|     void DescribeNegationTo(::std::ostream* os) const override {
 | |
|       *os << "does not point to a value that ";
 | |
|       matcher_.DescribeTo(os);
 | |
|     }
 | |
| 
 | |
|     bool MatchAndExplain(Pointer pointer,
 | |
|                          MatchResultListener* listener) const override {
 | |
|       if (GetRawPointer(pointer) == nullptr) return false;
 | |
| 
 | |
|       *listener << "which points to ";
 | |
|       return MatchPrintAndExplain(*pointer, matcher_, listener);
 | |
|     }
 | |
| 
 | |
|    private:
 | |
|     const Matcher<const Pointee&> matcher_;
 | |
|   };
 | |
| 
 | |
|   const InnerMatcher matcher_;
 | |
| };
 | |
| 
 | |
| // Implements the Pointer(m) matcher
 | |
| // Implements the Pointer(m) matcher for matching a pointer that matches matcher
 | |
| // m.  The pointer can be either raw or smart, and will match `m` against the
 | |
| // raw pointer.
 | |
| template <typename InnerMatcher>
 | |
| class PointerMatcher {
 | |
|  public:
 | |
|   explicit PointerMatcher(const InnerMatcher& matcher) : matcher_(matcher) {}
 | |
| 
 | |
|   // This type conversion operator template allows Pointer(m) to be
 | |
|   // used as a matcher for any pointer type whose pointer type is
 | |
|   // compatible with the inner matcher, where type PointerType can be
 | |
|   // either a raw pointer or a smart pointer.
 | |
|   //
 | |
|   // The reason we do this instead of relying on
 | |
|   // MakePolymorphicMatcher() is that the latter is not flexible
 | |
|   // enough for implementing the DescribeTo() method of Pointer().
 | |
|   template <typename PointerType>
 | |
|   operator Matcher<PointerType>() const {  // NOLINT
 | |
|     return Matcher<PointerType>(new Impl<const PointerType&>(matcher_));
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   // The monomorphic implementation that works for a particular pointer type.
 | |
|   template <typename PointerType>
 | |
|   class Impl : public MatcherInterface<PointerType> {
 | |
|    public:
 | |
|     using Pointer =
 | |
|         const typename std::pointer_traits<GTEST_REMOVE_REFERENCE_AND_CONST_(
 | |
|             PointerType)>::element_type*;
 | |
| 
 | |
|     explicit Impl(const InnerMatcher& matcher)
 | |
|         : matcher_(MatcherCast<Pointer>(matcher)) {}
 | |
| 
 | |
|     void DescribeTo(::std::ostream* os) const override {
 | |
|       *os << "is a pointer that ";
 | |
|       matcher_.DescribeTo(os);
 | |
|     }
 | |
| 
 | |
|     void DescribeNegationTo(::std::ostream* os) const override {
 | |
|       *os << "is not a pointer that ";
 | |
|       matcher_.DescribeTo(os);
 | |
|     }
 | |
| 
 | |
|     bool MatchAndExplain(PointerType pointer,
 | |
|                          MatchResultListener* listener) const override {
 | |
|       *listener << "which is a pointer that ";
 | |
|       Pointer p = GetRawPointer(pointer);
 | |
|       return MatchPrintAndExplain(p, matcher_, listener);
 | |
|     }
 | |
| 
 | |
|    private:
 | |
|     Matcher<Pointer> matcher_;
 | |
|   };
 | |
| 
 | |
|   const InnerMatcher matcher_;
 | |
| };
 | |
| 
 | |
| #if GTEST_HAS_RTTI
 | |
| // Implements the WhenDynamicCastTo<T>(m) matcher that matches a pointer or
 | |
| // reference that matches inner_matcher when dynamic_cast<T> is applied.
 | |
| // The result of dynamic_cast<To> is forwarded to the inner matcher.
 | |
| // If To is a pointer and the cast fails, the inner matcher will receive NULL.
 | |
| // If To is a reference and the cast fails, this matcher returns false
 | |
| // immediately.
 | |
| template <typename To>
 | |
| class WhenDynamicCastToMatcherBase {
 | |
|  public:
 | |
|   explicit WhenDynamicCastToMatcherBase(const Matcher<To>& matcher)
 | |
|       : matcher_(matcher) {}
 | |
| 
 | |
|   void DescribeTo(::std::ostream* os) const {
 | |
|     GetCastTypeDescription(os);
 | |
|     matcher_.DescribeTo(os);
 | |
|   }
 | |
| 
 | |
|   void DescribeNegationTo(::std::ostream* os) const {
 | |
|     GetCastTypeDescription(os);
 | |
|     matcher_.DescribeNegationTo(os);
 | |
|   }
 | |
| 
 | |
|  protected:
 | |
|   const Matcher<To> matcher_;
 | |
| 
 | |
|   static std::string GetToName() {
 | |
|     return GetTypeName<To>();
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   static void GetCastTypeDescription(::std::ostream* os) {
 | |
|     *os << "when dynamic_cast to " << GetToName() << ", ";
 | |
|   }
 | |
| };
 | |
| 
 | |
| // Primary template.
 | |
| // To is a pointer. Cast and forward the result.
 | |
| template <typename To>
 | |
| class WhenDynamicCastToMatcher : public WhenDynamicCastToMatcherBase<To> {
 | |
|  public:
 | |
|   explicit WhenDynamicCastToMatcher(const Matcher<To>& matcher)
 | |
|       : WhenDynamicCastToMatcherBase<To>(matcher) {}
 | |
| 
 | |
|   template <typename From>
 | |
|   bool MatchAndExplain(From from, MatchResultListener* listener) const {
 | |
|     To to = dynamic_cast<To>(from);
 | |
|     return MatchPrintAndExplain(to, this->matcher_, listener);
 | |
|   }
 | |
| };
 | |
| 
 | |
| // Specialize for references.
 | |
| // In this case we return false if the dynamic_cast fails.
 | |
| template <typename To>
 | |
| class WhenDynamicCastToMatcher<To&> : public WhenDynamicCastToMatcherBase<To&> {
 | |
|  public:
 | |
|   explicit WhenDynamicCastToMatcher(const Matcher<To&>& matcher)
 | |
|       : WhenDynamicCastToMatcherBase<To&>(matcher) {}
 | |
| 
 | |
|   template <typename From>
 | |
|   bool MatchAndExplain(From& from, MatchResultListener* listener) const {
 | |
|     // We don't want an std::bad_cast here, so do the cast with pointers.
 | |
|     To* to = dynamic_cast<To*>(&from);
 | |
|     if (to == nullptr) {
 | |
|       *listener << "which cannot be dynamic_cast to " << this->GetToName();
 | |
|       return false;
 | |
|     }
 | |
|     return MatchPrintAndExplain(*to, this->matcher_, listener);
 | |
|   }
 | |
| };
 | |
| #endif  // GTEST_HAS_RTTI
 | |
| 
 | |
| // Implements the Field() matcher for matching a field (i.e. member
 | |
| // variable) of an object.
 | |
| template <typename Class, typename FieldType>
 | |
| class FieldMatcher {
 | |
|  public:
 | |
|   FieldMatcher(FieldType Class::*field,
 | |
|                const Matcher<const FieldType&>& matcher)
 | |
|       : field_(field), matcher_(matcher), whose_field_("whose given field ") {}
 | |
| 
 | |
|   FieldMatcher(const std::string& field_name, FieldType Class::*field,
 | |
|                const Matcher<const FieldType&>& matcher)
 | |
|       : field_(field),
 | |
|         matcher_(matcher),
 | |
|         whose_field_("whose field `" + field_name + "` ") {}
 | |
| 
 | |
|   void DescribeTo(::std::ostream* os) const {
 | |
|     *os << "is an object " << whose_field_;
 | |
|     matcher_.DescribeTo(os);
 | |
|   }
 | |
| 
 | |
|   void DescribeNegationTo(::std::ostream* os) const {
 | |
|     *os << "is an object " << whose_field_;
 | |
|     matcher_.DescribeNegationTo(os);
 | |
|   }
 | |
| 
 | |
|   template <typename T>
 | |
|   bool MatchAndExplain(const T& value, MatchResultListener* listener) const {
 | |
|     // FIXME: The dispatch on std::is_pointer was introduced as a workaround for
 | |
|     // a compiler bug, and can now be removed.
 | |
|     return MatchAndExplainImpl(
 | |
|         typename std::is_pointer<typename std::remove_const<T>::type>::type(),
 | |
|         value, listener);
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   bool MatchAndExplainImpl(std::false_type /* is_not_pointer */,
 | |
|                            const Class& obj,
 | |
|                            MatchResultListener* listener) const {
 | |
|     *listener << whose_field_ << "is ";
 | |
|     return MatchPrintAndExplain(obj.*field_, matcher_, listener);
 | |
|   }
 | |
| 
 | |
|   bool MatchAndExplainImpl(std::true_type /* is_pointer */, const Class* p,
 | |
|                            MatchResultListener* listener) const {
 | |
|     if (p == nullptr) return false;
 | |
| 
 | |
|     *listener << "which points to an object ";
 | |
|     // Since *p has a field, it must be a class/struct/union type and
 | |
|     // thus cannot be a pointer.  Therefore we pass false_type() as
 | |
|     // the first argument.
 | |
|     return MatchAndExplainImpl(std::false_type(), *p, listener);
 | |
|   }
 | |
| 
 | |
|   const FieldType Class::*field_;
 | |
|   const Matcher<const FieldType&> matcher_;
 | |
| 
 | |
|   // Contains either "whose given field " if the name of the field is unknown
 | |
|   // or "whose field `name_of_field` " if the name is known.
 | |
|   const std::string whose_field_;
 | |
| };
 | |
| 
 | |
| // Implements the Property() matcher for matching a property
 | |
| // (i.e. return value of a getter method) of an object.
 | |
| //
 | |
| // Property is a const-qualified member function of Class returning
 | |
| // PropertyType.
 | |
| template <typename Class, typename PropertyType, typename Property>
 | |
| class PropertyMatcher {
 | |
|  public:
 | |
|   typedef const PropertyType& RefToConstProperty;
 | |
| 
 | |
|   PropertyMatcher(Property property, const Matcher<RefToConstProperty>& matcher)
 | |
|       : property_(property),
 | |
|         matcher_(matcher),
 | |
|         whose_property_("whose given property ") {}
 | |
| 
 | |
|   PropertyMatcher(const std::string& property_name, Property property,
 | |
|                   const Matcher<RefToConstProperty>& matcher)
 | |
|       : property_(property),
 | |
|         matcher_(matcher),
 | |
|         whose_property_("whose property `" + property_name + "` ") {}
 | |
| 
 | |
|   void DescribeTo(::std::ostream* os) const {
 | |
|     *os << "is an object " << whose_property_;
 | |
|     matcher_.DescribeTo(os);
 | |
|   }
 | |
| 
 | |
|   void DescribeNegationTo(::std::ostream* os) const {
 | |
|     *os << "is an object " << whose_property_;
 | |
|     matcher_.DescribeNegationTo(os);
 | |
|   }
 | |
| 
 | |
|   template <typename T>
 | |
|   bool MatchAndExplain(const T&value, MatchResultListener* listener) const {
 | |
|     return MatchAndExplainImpl(
 | |
|         typename std::is_pointer<typename std::remove_const<T>::type>::type(),
 | |
|         value, listener);
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   bool MatchAndExplainImpl(std::false_type /* is_not_pointer */,
 | |
|                            const Class& obj,
 | |
|                            MatchResultListener* listener) const {
 | |
|     *listener << whose_property_ << "is ";
 | |
|     // Cannot pass the return value (for example, int) to MatchPrintAndExplain,
 | |
|     // which takes a non-const reference as argument.
 | |
|     RefToConstProperty result = (obj.*property_)();
 | |
|     return MatchPrintAndExplain(result, matcher_, listener);
 | |
|   }
 | |
| 
 | |
|   bool MatchAndExplainImpl(std::true_type /* is_pointer */, const Class* p,
 | |
|                            MatchResultListener* listener) const {
 | |
|     if (p == nullptr) return false;
 | |
| 
 | |
|     *listener << "which points to an object ";
 | |
|     // Since *p has a property method, it must be a class/struct/union
 | |
|     // type and thus cannot be a pointer.  Therefore we pass
 | |
|     // false_type() as the first argument.
 | |
|     return MatchAndExplainImpl(std::false_type(), *p, listener);
 | |
|   }
 | |
| 
 | |
|   Property property_;
 | |
|   const Matcher<RefToConstProperty> matcher_;
 | |
| 
 | |
|   // Contains either "whose given property " if the name of the property is
 | |
|   // unknown or "whose property `name_of_property` " if the name is known.
 | |
|   const std::string whose_property_;
 | |
| };
 | |
| 
 | |
| // Type traits specifying various features of different functors for ResultOf.
 | |
| // The default template specifies features for functor objects.
 | |
| template <typename Functor>
 | |
| struct CallableTraits {
 | |
|   typedef Functor StorageType;
 | |
| 
 | |
|   static void CheckIsValid(Functor /* functor */) {}
 | |
| 
 | |
|   template <typename T>
 | |
|   static auto Invoke(Functor f, const T& arg) -> decltype(f(arg)) {
 | |
|     return f(arg);
 | |
|   }
 | |
| };
 | |
| 
 | |
| // Specialization for function pointers.
 | |
| template <typename ArgType, typename ResType>
 | |
| struct CallableTraits<ResType(*)(ArgType)> {
 | |
|   typedef ResType ResultType;
 | |
|   typedef ResType(*StorageType)(ArgType);
 | |
| 
 | |
|   static void CheckIsValid(ResType(*f)(ArgType)) {
 | |
|     GTEST_CHECK_(f != nullptr)
 | |
|         << "NULL function pointer is passed into ResultOf().";
 | |
|   }
 | |
|   template <typename T>
 | |
|   static ResType Invoke(ResType(*f)(ArgType), T arg) {
 | |
|     return (*f)(arg);
 | |
|   }
 | |
| };
 | |
| 
 | |
| // Implements the ResultOf() matcher for matching a return value of a
 | |
| // unary function of an object.
 | |
| template <typename Callable, typename InnerMatcher>
 | |
| class ResultOfMatcher {
 | |
|  public:
 | |
|   ResultOfMatcher(Callable callable, InnerMatcher matcher)
 | |
|       : callable_(std::move(callable)), matcher_(std::move(matcher)) {
 | |
|     CallableTraits<Callable>::CheckIsValid(callable_);
 | |
|   }
 | |
| 
 | |
|   template <typename T>
 | |
|   operator Matcher<T>() const {
 | |
|     return Matcher<T>(new Impl<const T&>(callable_, matcher_));
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   typedef typename CallableTraits<Callable>::StorageType CallableStorageType;
 | |
| 
 | |
|   template <typename T>
 | |
|   class Impl : public MatcherInterface<T> {
 | |
|     using ResultType = decltype(CallableTraits<Callable>::template Invoke<T>(
 | |
|         std::declval<CallableStorageType>(), std::declval<T>()));
 | |
| 
 | |
|    public:
 | |
|     template <typename M>
 | |
|     Impl(const CallableStorageType& callable, const M& matcher)
 | |
|         : callable_(callable), matcher_(MatcherCast<ResultType>(matcher)) {}
 | |
| 
 | |
|     void DescribeTo(::std::ostream* os) const override {
 | |
|       *os << "is mapped by the given callable to a value that ";
 | |
|       matcher_.DescribeTo(os);
 | |
|     }
 | |
| 
 | |
|     void DescribeNegationTo(::std::ostream* os) const override {
 | |
|       *os << "is mapped by the given callable to a value that ";
 | |
|       matcher_.DescribeNegationTo(os);
 | |
|     }
 | |
| 
 | |
|     bool MatchAndExplain(T obj, MatchResultListener* listener) const override {
 | |
|       *listener << "which is mapped by the given callable to ";
 | |
|       // Cannot pass the return value directly to MatchPrintAndExplain, which
 | |
|       // takes a non-const reference as argument.
 | |
|       // Also, specifying template argument explicitly is needed because T could
 | |
|       // be a non-const reference (e.g. Matcher<Uncopyable&>).
 | |
|       ResultType result =
 | |
|           CallableTraits<Callable>::template Invoke<T>(callable_, obj);
 | |
|       return MatchPrintAndExplain(result, matcher_, listener);
 | |
|     }
 | |
| 
 | |
|    private:
 | |
|     // Functors often define operator() as non-const method even though
 | |
|     // they are actually stateless. But we need to use them even when
 | |
|     // 'this' is a const pointer. It's the user's responsibility not to
 | |
|     // use stateful callables with ResultOf(), which doesn't guarantee
 | |
|     // how many times the callable will be invoked.
 | |
|     mutable CallableStorageType callable_;
 | |
|     const Matcher<ResultType> matcher_;
 | |
|   };  // class Impl
 | |
| 
 | |
|   const CallableStorageType callable_;
 | |
|   const InnerMatcher matcher_;
 | |
| };
 | |
| 
 | |
| // Implements a matcher that checks the size of an STL-style container.
 | |
| template <typename SizeMatcher>
 | |
| class SizeIsMatcher {
 | |
|  public:
 | |
|   explicit SizeIsMatcher(const SizeMatcher& size_matcher)
 | |
|        : size_matcher_(size_matcher) {
 | |
|   }
 | |
| 
 | |
|   template <typename Container>
 | |
|   operator Matcher<Container>() const {
 | |
|     return Matcher<Container>(new Impl<const Container&>(size_matcher_));
 | |
|   }
 | |
| 
 | |
|   template <typename Container>
 | |
|   class Impl : public MatcherInterface<Container> {
 | |
|    public:
 | |
|     using SizeType = decltype(std::declval<Container>().size());
 | |
|     explicit Impl(const SizeMatcher& size_matcher)
 | |
|         : size_matcher_(MatcherCast<SizeType>(size_matcher)) {}
 | |
| 
 | |
|     void DescribeTo(::std::ostream* os) const override {
 | |
|       *os << "size ";
 | |
|       size_matcher_.DescribeTo(os);
 | |
|     }
 | |
|     void DescribeNegationTo(::std::ostream* os) const override {
 | |
|       *os << "size ";
 | |
|       size_matcher_.DescribeNegationTo(os);
 | |
|     }
 | |
| 
 | |
|     bool MatchAndExplain(Container container,
 | |
|                          MatchResultListener* listener) const override {
 | |
|       SizeType size = container.size();
 | |
|       StringMatchResultListener size_listener;
 | |
|       const bool result = size_matcher_.MatchAndExplain(size, &size_listener);
 | |
|       *listener
 | |
|           << "whose size " << size << (result ? " matches" : " doesn't match");
 | |
|       PrintIfNotEmpty(size_listener.str(), listener->stream());
 | |
|       return result;
 | |
|     }
 | |
| 
 | |
|    private:
 | |
|     const Matcher<SizeType> size_matcher_;
 | |
|   };
 | |
| 
 | |
|  private:
 | |
|   const SizeMatcher size_matcher_;
 | |
| };
 | |
| 
 | |
| // Implements a matcher that checks the begin()..end() distance of an STL-style
 | |
| // container.
 | |
| template <typename DistanceMatcher>
 | |
| class BeginEndDistanceIsMatcher {
 | |
|  public:
 | |
|   explicit BeginEndDistanceIsMatcher(const DistanceMatcher& distance_matcher)
 | |
|       : distance_matcher_(distance_matcher) {}
 | |
| 
 | |
|   template <typename Container>
 | |
|   operator Matcher<Container>() const {
 | |
|     return Matcher<Container>(new Impl<const Container&>(distance_matcher_));
 | |
|   }
 | |
| 
 | |
|   template <typename Container>
 | |
|   class Impl : public MatcherInterface<Container> {
 | |
|    public:
 | |
|     typedef internal::StlContainerView<
 | |
|         GTEST_REMOVE_REFERENCE_AND_CONST_(Container)> ContainerView;
 | |
|     typedef typename std::iterator_traits<
 | |
|         typename ContainerView::type::const_iterator>::difference_type
 | |
|         DistanceType;
 | |
|     explicit Impl(const DistanceMatcher& distance_matcher)
 | |
|         : distance_matcher_(MatcherCast<DistanceType>(distance_matcher)) {}
 | |
| 
 | |
|     void DescribeTo(::std::ostream* os) const override {
 | |
|       *os << "distance between begin() and end() ";
 | |
|       distance_matcher_.DescribeTo(os);
 | |
|     }
 | |
|     void DescribeNegationTo(::std::ostream* os) const override {
 | |
|       *os << "distance between begin() and end() ";
 | |
|       distance_matcher_.DescribeNegationTo(os);
 | |
|     }
 | |
| 
 | |
|     bool MatchAndExplain(Container container,
 | |
|                          MatchResultListener* listener) const override {
 | |
|       using std::begin;
 | |
|       using std::end;
 | |
|       DistanceType distance = std::distance(begin(container), end(container));
 | |
|       StringMatchResultListener distance_listener;
 | |
|       const bool result =
 | |
|           distance_matcher_.MatchAndExplain(distance, &distance_listener);
 | |
|       *listener << "whose distance between begin() and end() " << distance
 | |
|                 << (result ? " matches" : " doesn't match");
 | |
|       PrintIfNotEmpty(distance_listener.str(), listener->stream());
 | |
|       return result;
 | |
|     }
 | |
| 
 | |
|    private:
 | |
|     const Matcher<DistanceType> distance_matcher_;
 | |
|   };
 | |
| 
 | |
|  private:
 | |
|   const DistanceMatcher distance_matcher_;
 | |
| };
 | |
| 
 | |
| // Implements an equality matcher for any STL-style container whose elements
 | |
| // support ==. This matcher is like Eq(), but its failure explanations provide
 | |
| // more detailed information that is useful when the container is used as a set.
 | |
| // The failure message reports elements that are in one of the operands but not
 | |
| // the other. The failure messages do not report duplicate or out-of-order
 | |
| // elements in the containers (which don't properly matter to sets, but can
 | |
| // occur if the containers are vectors or lists, for example).
 | |
| //
 | |
| // Uses the container's const_iterator, value_type, operator ==,
 | |
| // begin(), and end().
 | |
| template <typename Container>
 | |
| class ContainerEqMatcher {
 | |
|  public:
 | |
|   typedef internal::StlContainerView<Container> View;
 | |
|   typedef typename View::type StlContainer;
 | |
|   typedef typename View::const_reference StlContainerReference;
 | |
| 
 | |
|   static_assert(!std::is_const<Container>::value,
 | |
|                 "Container type must not be const");
 | |
|   static_assert(!std::is_reference<Container>::value,
 | |
|                 "Container type must not be a reference");
 | |
| 
 | |
|   // We make a copy of expected in case the elements in it are modified
 | |
|   // after this matcher is created.
 | |
|   explicit ContainerEqMatcher(const Container& expected)
 | |
|       : expected_(View::Copy(expected)) {}
 | |
| 
 | |
|   void DescribeTo(::std::ostream* os) const {
 | |
|     *os << "equals ";
 | |
|     UniversalPrint(expected_, os);
 | |
|   }
 | |
|   void DescribeNegationTo(::std::ostream* os) const {
 | |
|     *os << "does not equal ";
 | |
|     UniversalPrint(expected_, os);
 | |
|   }
 | |
| 
 | |
|   template <typename LhsContainer>
 | |
|   bool MatchAndExplain(const LhsContainer& lhs,
 | |
|                        MatchResultListener* listener) const {
 | |
|     typedef internal::StlContainerView<
 | |
|         typename std::remove_const<LhsContainer>::type>
 | |
|         LhsView;
 | |
|     typedef typename LhsView::type LhsStlContainer;
 | |
|     StlContainerReference lhs_stl_container = LhsView::ConstReference(lhs);
 | |
|     if (lhs_stl_container == expected_)
 | |
|       return true;
 | |
| 
 | |
|     ::std::ostream* const os = listener->stream();
 | |
|     if (os != nullptr) {
 | |
|       // Something is different. Check for extra values first.
 | |
|       bool printed_header = false;
 | |
|       for (typename LhsStlContainer::const_iterator it =
 | |
|                lhs_stl_container.begin();
 | |
|            it != lhs_stl_container.end(); ++it) {
 | |
|         if (internal::ArrayAwareFind(expected_.begin(), expected_.end(), *it) ==
 | |
|             expected_.end()) {
 | |
|           if (printed_header) {
 | |
|             *os << ", ";
 | |
|           } else {
 | |
|             *os << "which has these unexpected elements: ";
 | |
|             printed_header = true;
 | |
|           }
 | |
|           UniversalPrint(*it, os);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Now check for missing values.
 | |
|       bool printed_header2 = false;
 | |
|       for (typename StlContainer::const_iterator it = expected_.begin();
 | |
|            it != expected_.end(); ++it) {
 | |
|         if (internal::ArrayAwareFind(
 | |
|                 lhs_stl_container.begin(), lhs_stl_container.end(), *it) ==
 | |
|             lhs_stl_container.end()) {
 | |
|           if (printed_header2) {
 | |
|             *os << ", ";
 | |
|           } else {
 | |
|             *os << (printed_header ? ",\nand" : "which")
 | |
|                 << " doesn't have these expected elements: ";
 | |
|             printed_header2 = true;
 | |
|           }
 | |
|           UniversalPrint(*it, os);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   const StlContainer expected_;
 | |
| };
 | |
| 
 | |
| // A comparator functor that uses the < operator to compare two values.
 | |
| struct LessComparator {
 | |
|   template <typename T, typename U>
 | |
|   bool operator()(const T& lhs, const U& rhs) const { return lhs < rhs; }
 | |
| };
 | |
| 
 | |
| // Implements WhenSortedBy(comparator, container_matcher).
 | |
| template <typename Comparator, typename ContainerMatcher>
 | |
| class WhenSortedByMatcher {
 | |
|  public:
 | |
|   WhenSortedByMatcher(const Comparator& comparator,
 | |
|                       const ContainerMatcher& matcher)
 | |
|       : comparator_(comparator), matcher_(matcher) {}
 | |
| 
 | |
|   template <typename LhsContainer>
 | |
|   operator Matcher<LhsContainer>() const {
 | |
|     return MakeMatcher(new Impl<LhsContainer>(comparator_, matcher_));
 | |
|   }
 | |
| 
 | |
|   template <typename LhsContainer>
 | |
|   class Impl : public MatcherInterface<LhsContainer> {
 | |
|    public:
 | |
|     typedef internal::StlContainerView<
 | |
|          GTEST_REMOVE_REFERENCE_AND_CONST_(LhsContainer)> LhsView;
 | |
|     typedef typename LhsView::type LhsStlContainer;
 | |
|     typedef typename LhsView::const_reference LhsStlContainerReference;
 | |
|     // Transforms std::pair<const Key, Value> into std::pair<Key, Value>
 | |
|     // so that we can match associative containers.
 | |
|     typedef typename RemoveConstFromKey<
 | |
|         typename LhsStlContainer::value_type>::type LhsValue;
 | |
| 
 | |
|     Impl(const Comparator& comparator, const ContainerMatcher& matcher)
 | |
|         : comparator_(comparator), matcher_(matcher) {}
 | |
| 
 | |
|     void DescribeTo(::std::ostream* os) const override {
 | |
|       *os << "(when sorted) ";
 | |
|       matcher_.DescribeTo(os);
 | |
|     }
 | |
| 
 | |
|     void DescribeNegationTo(::std::ostream* os) const override {
 | |
|       *os << "(when sorted) ";
 | |
|       matcher_.DescribeNegationTo(os);
 | |
|     }
 | |
| 
 | |
|     bool MatchAndExplain(LhsContainer lhs,
 | |
|                          MatchResultListener* listener) const override {
 | |
|       LhsStlContainerReference lhs_stl_container = LhsView::ConstReference(lhs);
 | |
|       ::std::vector<LhsValue> sorted_container(lhs_stl_container.begin(),
 | |
|                                                lhs_stl_container.end());
 | |
|       ::std::sort(
 | |
|            sorted_container.begin(), sorted_container.end(), comparator_);
 | |
| 
 | |
|       if (!listener->IsInterested()) {
 | |
|         // If the listener is not interested, we do not need to
 | |
|         // construct the inner explanation.
 | |
|         return matcher_.Matches(sorted_container);
 | |
|       }
 | |
| 
 | |
|       *listener << "which is ";
 | |
|       UniversalPrint(sorted_container, listener->stream());
 | |
|       *listener << " when sorted";
 | |
| 
 | |
|       StringMatchResultListener inner_listener;
 | |
|       const bool match = matcher_.MatchAndExplain(sorted_container,
 | |
|                                                   &inner_listener);
 | |
|       PrintIfNotEmpty(inner_listener.str(), listener->stream());
 | |
|       return match;
 | |
|     }
 | |
| 
 | |
|    private:
 | |
|     const Comparator comparator_;
 | |
|     const Matcher<const ::std::vector<LhsValue>&> matcher_;
 | |
| 
 | |
|     GTEST_DISALLOW_COPY_AND_ASSIGN_(Impl);
 | |
|   };
 | |
| 
 | |
|  private:
 | |
|   const Comparator comparator_;
 | |
|   const ContainerMatcher matcher_;
 | |
| };
 | |
| 
 | |
| // Implements Pointwise(tuple_matcher, rhs_container).  tuple_matcher
 | |
| // must be able to be safely cast to Matcher<std::tuple<const T1&, const
 | |
| // T2&> >, where T1 and T2 are the types of elements in the LHS
 | |
| // container and the RHS container respectively.
 | |
| template <typename TupleMatcher, typename RhsContainer>
 | |
| class PointwiseMatcher {
 | |
|   GTEST_COMPILE_ASSERT_(
 | |
|       !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(RhsContainer)>::value,
 | |
|       use_UnorderedPointwise_with_hash_tables);
 | |
| 
 | |
|  public:
 | |
|   typedef internal::StlContainerView<RhsContainer> RhsView;
 | |
|   typedef typename RhsView::type RhsStlContainer;
 | |
|   typedef typename RhsStlContainer::value_type RhsValue;
 | |
| 
 | |
|   static_assert(!std::is_const<RhsContainer>::value,
 | |
|                 "RhsContainer type must not be const");
 | |
|   static_assert(!std::is_reference<RhsContainer>::value,
 | |
|                 "RhsContainer type must not be a reference");
 | |
| 
 | |
|   // Like ContainerEq, we make a copy of rhs in case the elements in
 | |
|   // it are modified after this matcher is created.
 | |
|   PointwiseMatcher(const TupleMatcher& tuple_matcher, const RhsContainer& rhs)
 | |
|       : tuple_matcher_(tuple_matcher), rhs_(RhsView::Copy(rhs)) {}
 | |
| 
 | |
|   template <typename LhsContainer>
 | |
|   operator Matcher<LhsContainer>() const {
 | |
|     GTEST_COMPILE_ASSERT_(
 | |
|         !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(LhsContainer)>::value,
 | |
|         use_UnorderedPointwise_with_hash_tables);
 | |
| 
 | |
|     return Matcher<LhsContainer>(
 | |
|         new Impl<const LhsContainer&>(tuple_matcher_, rhs_));
 | |
|   }
 | |
| 
 | |
|   template <typename LhsContainer>
 | |
|   class Impl : public MatcherInterface<LhsContainer> {
 | |
|    public:
 | |
|     typedef internal::StlContainerView<
 | |
|          GTEST_REMOVE_REFERENCE_AND_CONST_(LhsContainer)> LhsView;
 | |
|     typedef typename LhsView::type LhsStlContainer;
 | |
|     typedef typename LhsView::const_reference LhsStlContainerReference;
 | |
|     typedef typename LhsStlContainer::value_type LhsValue;
 | |
|     // We pass the LHS value and the RHS value to the inner matcher by
 | |
|     // reference, as they may be expensive to copy.  We must use tuple
 | |
|     // instead of pair here, as a pair cannot hold references (C++ 98,
 | |
|     // 20.2.2 [lib.pairs]).
 | |
|     typedef ::std::tuple<const LhsValue&, const RhsValue&> InnerMatcherArg;
 | |
| 
 | |
|     Impl(const TupleMatcher& tuple_matcher, const RhsStlContainer& rhs)
 | |
|         // mono_tuple_matcher_ holds a monomorphic version of the tuple matcher.
 | |
|         : mono_tuple_matcher_(SafeMatcherCast<InnerMatcherArg>(tuple_matcher)),
 | |
|           rhs_(rhs) {}
 | |
| 
 | |
|     void DescribeTo(::std::ostream* os) const override {
 | |
|       *os << "contains " << rhs_.size()
 | |
|           << " values, where each value and its corresponding value in ";
 | |
|       UniversalPrinter<RhsStlContainer>::Print(rhs_, os);
 | |
|       *os << " ";
 | |
|       mono_tuple_matcher_.DescribeTo(os);
 | |
|     }
 | |
|     void DescribeNegationTo(::std::ostream* os) const override {
 | |
|       *os << "doesn't contain exactly " << rhs_.size()
 | |
|           << " values, or contains a value x at some index i"
 | |
|           << " where x and the i-th value of ";
 | |
|       UniversalPrint(rhs_, os);
 | |
|       *os << " ";
 | |
|       mono_tuple_matcher_.DescribeNegationTo(os);
 | |
|     }
 | |
| 
 | |
|     bool MatchAndExplain(LhsContainer lhs,
 | |
|                          MatchResultListener* listener) const override {
 | |
|       LhsStlContainerReference lhs_stl_container = LhsView::ConstReference(lhs);
 | |
|       const size_t actual_size = lhs_stl_container.size();
 | |
|       if (actual_size != rhs_.size()) {
 | |
|         *listener << "which contains " << actual_size << " values";
 | |
|         return false;
 | |
|       }
 | |
| 
 | |
|       typename LhsStlContainer::const_iterator left = lhs_stl_container.begin();
 | |
|       typename RhsStlContainer::const_iterator right = rhs_.begin();
 | |
|       for (size_t i = 0; i != actual_size; ++i, ++left, ++right) {
 | |
|         if (listener->IsInterested()) {
 | |
|           StringMatchResultListener inner_listener;
 | |
|           // Create InnerMatcherArg as a temporarily object to avoid it outlives
 | |
|           // *left and *right. Dereference or the conversion to `const T&` may
 | |
|           // return temp objects, e.g for vector<bool>.
 | |
|           if (!mono_tuple_matcher_.MatchAndExplain(
 | |
|                   InnerMatcherArg(ImplicitCast_<const LhsValue&>(*left),
 | |
|                                   ImplicitCast_<const RhsValue&>(*right)),
 | |
|                   &inner_listener)) {
 | |
|             *listener << "where the value pair (";
 | |
|             UniversalPrint(*left, listener->stream());
 | |
|             *listener << ", ";
 | |
|             UniversalPrint(*right, listener->stream());
 | |
|             *listener << ") at index #" << i << " don't match";
 | |
|             PrintIfNotEmpty(inner_listener.str(), listener->stream());
 | |
|             return false;
 | |
|           }
 | |
|         } else {
 | |
|           if (!mono_tuple_matcher_.Matches(
 | |
|                   InnerMatcherArg(ImplicitCast_<const LhsValue&>(*left),
 | |
|                                   ImplicitCast_<const RhsValue&>(*right))))
 | |
|             return false;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|    private:
 | |
|     const Matcher<InnerMatcherArg> mono_tuple_matcher_;
 | |
|     const RhsStlContainer rhs_;
 | |
|   };
 | |
| 
 | |
|  private:
 | |
|   const TupleMatcher tuple_matcher_;
 | |
|   const RhsStlContainer rhs_;
 | |
| };
 | |
| 
 | |
| // Holds the logic common to ContainsMatcherImpl and EachMatcherImpl.
 | |
| template <typename Container>
 | |
| class QuantifierMatcherImpl : public MatcherInterface<Container> {
 | |
|  public:
 | |
|   typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
 | |
|   typedef StlContainerView<RawContainer> View;
 | |
|   typedef typename View::type StlContainer;
 | |
|   typedef typename View::const_reference StlContainerReference;
 | |
|   typedef typename StlContainer::value_type Element;
 | |
| 
 | |
|   template <typename InnerMatcher>
 | |
|   explicit QuantifierMatcherImpl(InnerMatcher inner_matcher)
 | |
|       : inner_matcher_(
 | |
|            testing::SafeMatcherCast<const Element&>(inner_matcher)) {}
 | |
| 
 | |
|   // Checks whether:
 | |
|   // * All elements in the container match, if all_elements_should_match.
 | |
|   // * Any element in the container matches, if !all_elements_should_match.
 | |
|   bool MatchAndExplainImpl(bool all_elements_should_match,
 | |
|                            Container container,
 | |
|                            MatchResultListener* listener) const {
 | |
|     StlContainerReference stl_container = View::ConstReference(container);
 | |
|     size_t i = 0;
 | |
|     for (typename StlContainer::const_iterator it = stl_container.begin();
 | |
|          it != stl_container.end(); ++it, ++i) {
 | |
|       StringMatchResultListener inner_listener;
 | |
|       const bool matches = inner_matcher_.MatchAndExplain(*it, &inner_listener);
 | |
| 
 | |
|       if (matches != all_elements_should_match) {
 | |
|         *listener << "whose element #" << i
 | |
|                   << (matches ? " matches" : " doesn't match");
 | |
|         PrintIfNotEmpty(inner_listener.str(), listener->stream());
 | |
|         return !all_elements_should_match;
 | |
|       }
 | |
|     }
 | |
|     return all_elements_should_match;
 | |
|   }
 | |
| 
 | |
|  protected:
 | |
|   const Matcher<const Element&> inner_matcher_;
 | |
| };
 | |
| 
 | |
| // Implements Contains(element_matcher) for the given argument type Container.
 | |
| // Symmetric to EachMatcherImpl.
 | |
| template <typename Container>
 | |
| class ContainsMatcherImpl : public QuantifierMatcherImpl<Container> {
 | |
|  public:
 | |
|   template <typename InnerMatcher>
 | |
|   explicit ContainsMatcherImpl(InnerMatcher inner_matcher)
 | |
|       : QuantifierMatcherImpl<Container>(inner_matcher) {}
 | |
| 
 | |
|   // Describes what this matcher does.
 | |
|   void DescribeTo(::std::ostream* os) const override {
 | |
|     *os << "contains at least one element that ";
 | |
|     this->inner_matcher_.DescribeTo(os);
 | |
|   }
 | |
| 
 | |
|   void DescribeNegationTo(::std::ostream* os) const override {
 | |
|     *os << "doesn't contain any element that ";
 | |
|     this->inner_matcher_.DescribeTo(os);
 | |
|   }
 | |
| 
 | |
|   bool MatchAndExplain(Container container,
 | |
|                        MatchResultListener* listener) const override {
 | |
|     return this->MatchAndExplainImpl(false, container, listener);
 | |
|   }
 | |
| };
 | |
| 
 | |
| // Implements Each(element_matcher) for the given argument type Container.
 | |
| // Symmetric to ContainsMatcherImpl.
 | |
| template <typename Container>
 | |
| class EachMatcherImpl : public QuantifierMatcherImpl<Container> {
 | |
|  public:
 | |
|   template <typename InnerMatcher>
 | |
|   explicit EachMatcherImpl(InnerMatcher inner_matcher)
 | |
|       : QuantifierMatcherImpl<Container>(inner_matcher) {}
 | |
| 
 | |
|   // Describes what this matcher does.
 | |
|   void DescribeTo(::std::ostream* os) const override {
 | |
|     *os << "only contains elements that ";
 | |
|     this->inner_matcher_.DescribeTo(os);
 | |
|   }
 | |
| 
 | |
|   void DescribeNegationTo(::std::ostream* os) const override {
 | |
|     *os << "contains some element that ";
 | |
|     this->inner_matcher_.DescribeNegationTo(os);
 | |
|   }
 | |
| 
 | |
|   bool MatchAndExplain(Container container,
 | |
|                        MatchResultListener* listener) const override {
 | |
|     return this->MatchAndExplainImpl(true, container, listener);
 | |
|   }
 | |
| };
 | |
| 
 | |
| // Implements polymorphic Contains(element_matcher).
 | |
| template <typename M>
 | |
| class ContainsMatcher {
 | |
|  public:
 | |
|   explicit ContainsMatcher(M m) : inner_matcher_(m) {}
 | |
| 
 | |
|   template <typename Container>
 | |
|   operator Matcher<Container>() const {
 | |
|     return Matcher<Container>(
 | |
|         new ContainsMatcherImpl<const Container&>(inner_matcher_));
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   const M inner_matcher_;
 | |
| };
 | |
| 
 | |
| // Implements polymorphic Each(element_matcher).
 | |
| template <typename M>
 | |
| class EachMatcher {
 | |
|  public:
 | |
|   explicit EachMatcher(M m) : inner_matcher_(m) {}
 | |
| 
 | |
|   template <typename Container>
 | |
|   operator Matcher<Container>() const {
 | |
|     return Matcher<Container>(
 | |
|         new EachMatcherImpl<const Container&>(inner_matcher_));
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   const M inner_matcher_;
 | |
| };
 | |
| 
 | |
| struct Rank1 {};
 | |
| struct Rank0 : Rank1 {};
 | |
| 
 | |
| namespace pair_getters {
 | |
| using std::get;
 | |
| template <typename T>
 | |
| auto First(T& x, Rank1) -> decltype(get<0>(x)) {  // NOLINT
 | |
|   return get<0>(x);
 | |
| }
 | |
| template <typename T>
 | |
| auto First(T& x, Rank0) -> decltype((x.first)) {  // NOLINT
 | |
|   return x.first;
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| auto Second(T& x, Rank1) -> decltype(get<1>(x)) {  // NOLINT
 | |
|   return get<1>(x);
 | |
| }
 | |
| template <typename T>
 | |
| auto Second(T& x, Rank0) -> decltype((x.second)) {  // NOLINT
 | |
|   return x.second;
 | |
| }
 | |
| }  // namespace pair_getters
 | |
| 
 | |
| // Implements Key(inner_matcher) for the given argument pair type.
 | |
| // Key(inner_matcher) matches an std::pair whose 'first' field matches
 | |
| // inner_matcher.  For example, Contains(Key(Ge(5))) can be used to match an
 | |
| // std::map that contains at least one element whose key is >= 5.
 | |
| template <typename PairType>
 | |
| class KeyMatcherImpl : public MatcherInterface<PairType> {
 | |
|  public:
 | |
|   typedef GTEST_REMOVE_REFERENCE_AND_CONST_(PairType) RawPairType;
 | |
|   typedef typename RawPairType::first_type KeyType;
 | |
| 
 | |
|   template <typename InnerMatcher>
 | |
|   explicit KeyMatcherImpl(InnerMatcher inner_matcher)
 | |
|       : inner_matcher_(
 | |
|           testing::SafeMatcherCast<const KeyType&>(inner_matcher)) {
 | |
|   }
 | |
| 
 | |
|   // Returns true if and only if 'key_value.first' (the key) matches the inner
 | |
|   // matcher.
 | |
|   bool MatchAndExplain(PairType key_value,
 | |
|                        MatchResultListener* listener) const override {
 | |
|     StringMatchResultListener inner_listener;
 | |
|     const bool match = inner_matcher_.MatchAndExplain(
 | |
|         pair_getters::First(key_value, Rank0()), &inner_listener);
 | |
|     const std::string explanation = inner_listener.str();
 | |
|     if (explanation != "") {
 | |
|       *listener << "whose first field is a value " << explanation;
 | |
|     }
 | |
|     return match;
 | |
|   }
 | |
| 
 | |
|   // Describes what this matcher does.
 | |
|   void DescribeTo(::std::ostream* os) const override {
 | |
|     *os << "has a key that ";
 | |
|     inner_matcher_.DescribeTo(os);
 | |
|   }
 | |
| 
 | |
|   // Describes what the negation of this matcher does.
 | |
|   void DescribeNegationTo(::std::ostream* os) const override {
 | |
|     *os << "doesn't have a key that ";
 | |
|     inner_matcher_.DescribeTo(os);
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   const Matcher<const KeyType&> inner_matcher_;
 | |
| };
 | |
| 
 | |
| // Implements polymorphic Key(matcher_for_key).
 | |
| template <typename M>
 | |
| class KeyMatcher {
 | |
|  public:
 | |
|   explicit KeyMatcher(M m) : matcher_for_key_(m) {}
 | |
| 
 | |
|   template <typename PairType>
 | |
|   operator Matcher<PairType>() const {
 | |
|     return Matcher<PairType>(
 | |
|         new KeyMatcherImpl<const PairType&>(matcher_for_key_));
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   const M matcher_for_key_;
 | |
| };
 | |
| 
 | |
| // Implements polymorphic Address(matcher_for_address).
 | |
| template <typename InnerMatcher>
 | |
| class AddressMatcher {
 | |
|  public:
 | |
|   explicit AddressMatcher(InnerMatcher m) : matcher_(m) {}
 | |
| 
 | |
|   template <typename Type>
 | |
|   operator Matcher<Type>() const {  // NOLINT
 | |
|     return Matcher<Type>(new Impl<const Type&>(matcher_));
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   // The monomorphic implementation that works for a particular object type.
 | |
|   template <typename Type>
 | |
|   class Impl : public MatcherInterface<Type> {
 | |
|    public:
 | |
|     using Address = const GTEST_REMOVE_REFERENCE_AND_CONST_(Type) *;
 | |
|     explicit Impl(const InnerMatcher& matcher)
 | |
|         : matcher_(MatcherCast<Address>(matcher)) {}
 | |
| 
 | |
|     void DescribeTo(::std::ostream* os) const override {
 | |
|       *os << "has address that ";
 | |
|       matcher_.DescribeTo(os);
 | |
|     }
 | |
| 
 | |
|     void DescribeNegationTo(::std::ostream* os) const override {
 | |
|       *os << "does not have address that ";
 | |
|       matcher_.DescribeTo(os);
 | |
|     }
 | |
| 
 | |
|     bool MatchAndExplain(Type object,
 | |
|                          MatchResultListener* listener) const override {
 | |
|       *listener << "which has address ";
 | |
|       Address address = std::addressof(object);
 | |
|       return MatchPrintAndExplain(address, matcher_, listener);
 | |
|     }
 | |
| 
 | |
|    private:
 | |
|     const Matcher<Address> matcher_;
 | |
|   };
 | |
|   const InnerMatcher matcher_;
 | |
| };
 | |
| 
 | |
| // Implements Pair(first_matcher, second_matcher) for the given argument pair
 | |
| // type with its two matchers. See Pair() function below.
 | |
| template <typename PairType>
 | |
| class PairMatcherImpl : public MatcherInterface<PairType> {
 | |
|  public:
 | |
|   typedef GTEST_REMOVE_REFERENCE_AND_CONST_(PairType) RawPairType;
 | |
|   typedef typename RawPairType::first_type FirstType;
 | |
|   typedef typename RawPairType::second_type SecondType;
 | |
| 
 | |
|   template <typename FirstMatcher, typename SecondMatcher>
 | |
|   PairMatcherImpl(FirstMatcher first_matcher, SecondMatcher second_matcher)
 | |
|       : first_matcher_(
 | |
|             testing::SafeMatcherCast<const FirstType&>(first_matcher)),
 | |
|         second_matcher_(
 | |
|             testing::SafeMatcherCast<const SecondType&>(second_matcher)) {
 | |
|   }
 | |
| 
 | |
|   // Describes what this matcher does.
 | |
|   void DescribeTo(::std::ostream* os) const override {
 | |
|     *os << "has a first field that ";
 | |
|     first_matcher_.DescribeTo(os);
 | |
|     *os << ", and has a second field that ";
 | |
|     second_matcher_.DescribeTo(os);
 | |
|   }
 | |
| 
 | |
|   // Describes what the negation of this matcher does.
 | |
|   void DescribeNegationTo(::std::ostream* os) const override {
 | |
|     *os << "has a first field that ";
 | |
|     first_matcher_.DescribeNegationTo(os);
 | |
|     *os << ", or has a second field that ";
 | |
|     second_matcher_.DescribeNegationTo(os);
 | |
|   }
 | |
| 
 | |
|   // Returns true if and only if 'a_pair.first' matches first_matcher and
 | |
|   // 'a_pair.second' matches second_matcher.
 | |
|   bool MatchAndExplain(PairType a_pair,
 | |
|                        MatchResultListener* listener) const override {
 | |
|     if (!listener->IsInterested()) {
 | |
|       // If the listener is not interested, we don't need to construct the
 | |
|       // explanation.
 | |
|       return first_matcher_.Matches(pair_getters::First(a_pair, Rank0())) &&
 | |
|              second_matcher_.Matches(pair_getters::Second(a_pair, Rank0()));
 | |
|     }
 | |
|     StringMatchResultListener first_inner_listener;
 | |
|     if (!first_matcher_.MatchAndExplain(pair_getters::First(a_pair, Rank0()),
 | |
|                                         &first_inner_listener)) {
 | |
|       *listener << "whose first field does not match";
 | |
|       PrintIfNotEmpty(first_inner_listener.str(), listener->stream());
 | |
|       return false;
 | |
|     }
 | |
|     StringMatchResultListener second_inner_listener;
 | |
|     if (!second_matcher_.MatchAndExplain(pair_getters::Second(a_pair, Rank0()),
 | |
|                                          &second_inner_listener)) {
 | |
|       *listener << "whose second field does not match";
 | |
|       PrintIfNotEmpty(second_inner_listener.str(), listener->stream());
 | |
|       return false;
 | |
|     }
 | |
|     ExplainSuccess(first_inner_listener.str(), second_inner_listener.str(),
 | |
|                    listener);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   void ExplainSuccess(const std::string& first_explanation,
 | |
|                       const std::string& second_explanation,
 | |
|                       MatchResultListener* listener) const {
 | |
|     *listener << "whose both fields match";
 | |
|     if (first_explanation != "") {
 | |
|       *listener << ", where the first field is a value " << first_explanation;
 | |
|     }
 | |
|     if (second_explanation != "") {
 | |
|       *listener << ", ";
 | |
|       if (first_explanation != "") {
 | |
|         *listener << "and ";
 | |
|       } else {
 | |
|         *listener << "where ";
 | |
|       }
 | |
|       *listener << "the second field is a value " << second_explanation;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   const Matcher<const FirstType&> first_matcher_;
 | |
|   const Matcher<const SecondType&> second_matcher_;
 | |
| };
 | |
| 
 | |
| // Implements polymorphic Pair(first_matcher, second_matcher).
 | |
| template <typename FirstMatcher, typename SecondMatcher>
 | |
| class PairMatcher {
 | |
|  public:
 | |
|   PairMatcher(FirstMatcher first_matcher, SecondMatcher second_matcher)
 | |
|       : first_matcher_(first_matcher), second_matcher_(second_matcher) {}
 | |
| 
 | |
|   template <typename PairType>
 | |
|   operator Matcher<PairType> () const {
 | |
|     return Matcher<PairType>(
 | |
|         new PairMatcherImpl<const PairType&>(first_matcher_, second_matcher_));
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   const FirstMatcher first_matcher_;
 | |
|   const SecondMatcher second_matcher_;
 | |
| };
 | |
| 
 | |
| template <typename T, size_t... I>
 | |
| auto UnpackStructImpl(const T& t, IndexSequence<I...>, int)
 | |
|     -> decltype(std::tie(get<I>(t)...)) {
 | |
|   static_assert(std::tuple_size<T>::value == sizeof...(I),
 | |
|                 "Number of arguments doesn't match the number of fields.");
 | |
|   return std::tie(get<I>(t)...);
 | |
| }
 | |
| 
 | |
| #if defined(__cpp_structured_bindings) && __cpp_structured_bindings >= 201606
 | |
| template <typename T>
 | |
| auto UnpackStructImpl(const T& t, MakeIndexSequence<1>, char) {
 | |
|   const auto& [a] = t;
 | |
|   return std::tie(a);
 | |
| }
 | |
| template <typename T>
 | |
| auto UnpackStructImpl(const T& t, MakeIndexSequence<2>, char) {
 | |
|   const auto& [a, b] = t;
 | |
|   return std::tie(a, b);
 | |
| }
 | |
| template <typename T>
 | |
| auto UnpackStructImpl(const T& t, MakeIndexSequence<3>, char) {
 | |
|   const auto& [a, b, c] = t;
 | |
|   return std::tie(a, b, c);
 | |
| }
 | |
| template <typename T>
 | |
| auto UnpackStructImpl(const T& t, MakeIndexSequence<4>, char) {
 | |
|   const auto& [a, b, c, d] = t;
 | |
|   return std::tie(a, b, c, d);
 | |
| }
 | |
| template <typename T>
 | |
| auto UnpackStructImpl(const T& t, MakeIndexSequence<5>, char) {
 | |
|   const auto& [a, b, c, d, e] = t;
 | |
|   return std::tie(a, b, c, d, e);
 | |
| }
 | |
| template <typename T>
 | |
| auto UnpackStructImpl(const T& t, MakeIndexSequence<6>, char) {
 | |
|   const auto& [a, b, c, d, e, f] = t;
 | |
|   return std::tie(a, b, c, d, e, f);
 | |
| }
 | |
| template <typename T>
 | |
| auto UnpackStructImpl(const T& t, MakeIndexSequence<7>, char) {
 | |
|   const auto& [a, b, c, d, e, f, g] = t;
 | |
|   return std::tie(a, b, c, d, e, f, g);
 | |
| }
 | |
| template <typename T>
 | |
| auto UnpackStructImpl(const T& t, MakeIndexSequence<8>, char) {
 | |
|   const auto& [a, b, c, d, e, f, g, h] = t;
 | |
|   return std::tie(a, b, c, d, e, f, g, h);
 | |
| }
 | |
| template <typename T>
 | |
| auto UnpackStructImpl(const T& t, MakeIndexSequence<9>, char) {
 | |
|   const auto& [a, b, c, d, e, f, g, h, i] = t;
 | |
|   return std::tie(a, b, c, d, e, f, g, h, i);
 | |
| }
 | |
| template <typename T>
 | |
| auto UnpackStructImpl(const T& t, MakeIndexSequence<10>, char) {
 | |
|   const auto& [a, b, c, d, e, f, g, h, i, j] = t;
 | |
|   return std::tie(a, b, c, d, e, f, g, h, i, j);
 | |
| }
 | |
| template <typename T>
 | |
| auto UnpackStructImpl(const T& t, MakeIndexSequence<11>, char) {
 | |
|   const auto& [a, b, c, d, e, f, g, h, i, j, k] = t;
 | |
|   return std::tie(a, b, c, d, e, f, g, h, i, j, k);
 | |
| }
 | |
| template <typename T>
 | |
| auto UnpackStructImpl(const T& t, MakeIndexSequence<12>, char) {
 | |
|   const auto& [a, b, c, d, e, f, g, h, i, j, k, l] = t;
 | |
|   return std::tie(a, b, c, d, e, f, g, h, i, j, k, l);
 | |
| }
 | |
| template <typename T>
 | |
| auto UnpackStructImpl(const T& t, MakeIndexSequence<13>, char) {
 | |
|   const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m] = t;
 | |
|   return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m);
 | |
| }
 | |
| template <typename T>
 | |
| auto UnpackStructImpl(const T& t, MakeIndexSequence<14>, char) {
 | |
|   const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n] = t;
 | |
|   return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n);
 | |
| }
 | |
| template <typename T>
 | |
| auto UnpackStructImpl(const T& t, MakeIndexSequence<15>, char) {
 | |
|   const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n, o] = t;
 | |
|   return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o);
 | |
| }
 | |
| template <typename T>
 | |
| auto UnpackStructImpl(const T& t, MakeIndexSequence<16>, char) {
 | |
|   const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p] = t;
 | |
|   return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p);
 | |
| }
 | |
| #endif  // defined(__cpp_structured_bindings)
 | |
| 
 | |
| template <size_t I, typename T>
 | |
| auto UnpackStruct(const T& t)
 | |
|     -> decltype((UnpackStructImpl)(t, MakeIndexSequence<I>{}, 0)) {
 | |
|   return (UnpackStructImpl)(t, MakeIndexSequence<I>{}, 0);
 | |
| }
 | |
| 
 | |
| // Helper function to do comma folding in C++11.
 | |
| // The array ensures left-to-right order of evaluation.
 | |
| // Usage: VariadicExpand({expr...});
 | |
| template <typename T, size_t N>
 | |
| void VariadicExpand(const T (&)[N]) {}
 | |
| 
 | |
| template <typename Struct, typename StructSize>
 | |
| class FieldsAreMatcherImpl;
 | |
| 
 | |
| template <typename Struct, size_t... I>
 | |
| class FieldsAreMatcherImpl<Struct, IndexSequence<I...>>
 | |
|     : public MatcherInterface<Struct> {
 | |
|   using UnpackedType =
 | |
|       decltype(UnpackStruct<sizeof...(I)>(std::declval<const Struct&>()));
 | |
|   using MatchersType = std::tuple<
 | |
|       Matcher<const typename std::tuple_element<I, UnpackedType>::type&>...>;
 | |
| 
 | |
|  public:
 | |
|   template <typename Inner>
 | |
|   explicit FieldsAreMatcherImpl(const Inner& matchers)
 | |
|       : matchers_(testing::SafeMatcherCast<
 | |
|                   const typename std::tuple_element<I, UnpackedType>::type&>(
 | |
|             std::get<I>(matchers))...) {}
 | |
| 
 | |
|   void DescribeTo(::std::ostream* os) const override {
 | |
|     const char* separator = "";
 | |
|     VariadicExpand(
 | |
|         {(*os << separator << "has field #" << I << " that ",
 | |
|           std::get<I>(matchers_).DescribeTo(os), separator = ", and ")...});
 | |
|   }
 | |
| 
 | |
|   void DescribeNegationTo(::std::ostream* os) const override {
 | |
|     const char* separator = "";
 | |
|     VariadicExpand({(*os << separator << "has field #" << I << " that ",
 | |
|                      std::get<I>(matchers_).DescribeNegationTo(os),
 | |
|                      separator = ", or ")...});
 | |
|   }
 | |
| 
 | |
|   bool MatchAndExplain(Struct t, MatchResultListener* listener) const override {
 | |
|     return MatchInternal((UnpackStruct<sizeof...(I)>)(t), listener);
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   bool MatchInternal(UnpackedType tuple, MatchResultListener* listener) const {
 | |
|     if (!listener->IsInterested()) {
 | |
|       // If the listener is not interested, we don't need to construct the
 | |
|       // explanation.
 | |
|       bool good = true;
 | |
|       VariadicExpand({good = good && std::get<I>(matchers_).Matches(
 | |
|                                          std::get<I>(tuple))...});
 | |
|       return good;
 | |
|     }
 | |
| 
 | |
|     size_t failed_pos = ~size_t{};
 | |
| 
 | |
|     std::vector<StringMatchResultListener> inner_listener(sizeof...(I));
 | |
| 
 | |
|     VariadicExpand(
 | |
|         {failed_pos == ~size_t{} && !std::get<I>(matchers_).MatchAndExplain(
 | |
|                                         std::get<I>(tuple), &inner_listener[I])
 | |
|              ? failed_pos = I
 | |
|              : 0 ...});
 | |
|     if (failed_pos != ~size_t{}) {
 | |
|       *listener << "whose field #" << failed_pos << " does not match";
 | |
|       PrintIfNotEmpty(inner_listener[failed_pos].str(), listener->stream());
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     *listener << "whose all elements match";
 | |
|     const char* separator = ", where";
 | |
|     for (size_t index = 0; index < sizeof...(I); ++index) {
 | |
|       const std::string str = inner_listener[index].str();
 | |
|       if (!str.empty()) {
 | |
|         *listener << separator << " field #" << index << " is a value " << str;
 | |
|         separator = ", and";
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   MatchersType matchers_;
 | |
| };
 | |
| 
 | |
| template <typename... Inner>
 | |
| class FieldsAreMatcher {
 | |
|  public:
 | |
|   explicit FieldsAreMatcher(Inner... inner) : matchers_(std::move(inner)...) {}
 | |
| 
 | |
|   template <typename Struct>
 | |
|   operator Matcher<Struct>() const {  // NOLINT
 | |
|     return Matcher<Struct>(
 | |
|         new FieldsAreMatcherImpl<const Struct&, IndexSequenceFor<Inner...>>(
 | |
|             matchers_));
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   std::tuple<Inner...> matchers_;
 | |
| };
 | |
| 
 | |
| // Implements ElementsAre() and ElementsAreArray().
 | |
| template <typename Container>
 | |
| class ElementsAreMatcherImpl : public MatcherInterface<Container> {
 | |
|  public:
 | |
|   typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
 | |
|   typedef internal::StlContainerView<RawContainer> View;
 | |
|   typedef typename View::type StlContainer;
 | |
|   typedef typename View::const_reference StlContainerReference;
 | |
|   typedef typename StlContainer::value_type Element;
 | |
| 
 | |
|   // Constructs the matcher from a sequence of element values or
 | |
|   // element matchers.
 | |
|   template <typename InputIter>
 | |
|   ElementsAreMatcherImpl(InputIter first, InputIter last) {
 | |
|     while (first != last) {
 | |
|       matchers_.push_back(MatcherCast<const Element&>(*first++));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Describes what this matcher does.
 | |
|   void DescribeTo(::std::ostream* os) const override {
 | |
|     if (count() == 0) {
 | |
|       *os << "is empty";
 | |
|     } else if (count() == 1) {
 | |
|       *os << "has 1 element that ";
 | |
|       matchers_[0].DescribeTo(os);
 | |
|     } else {
 | |
|       *os << "has " << Elements(count()) << " where\n";
 | |
|       for (size_t i = 0; i != count(); ++i) {
 | |
|         *os << "element #" << i << " ";
 | |
|         matchers_[i].DescribeTo(os);
 | |
|         if (i + 1 < count()) {
 | |
|           *os << ",\n";
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Describes what the negation of this matcher does.
 | |
|   void DescribeNegationTo(::std::ostream* os) const override {
 | |
|     if (count() == 0) {
 | |
|       *os << "isn't empty";
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     *os << "doesn't have " << Elements(count()) << ", or\n";
 | |
|     for (size_t i = 0; i != count(); ++i) {
 | |
|       *os << "element #" << i << " ";
 | |
|       matchers_[i].DescribeNegationTo(os);
 | |
|       if (i + 1 < count()) {
 | |
|         *os << ", or\n";
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   bool MatchAndExplain(Container container,
 | |
|                        MatchResultListener* listener) const override {
 | |
|     // To work with stream-like "containers", we must only walk
 | |
|     // through the elements in one pass.
 | |
| 
 | |
|     const bool listener_interested = listener->IsInterested();
 | |
| 
 | |
|     // explanations[i] is the explanation of the element at index i.
 | |
|     ::std::vector<std::string> explanations(count());
 | |
|     StlContainerReference stl_container = View::ConstReference(container);
 | |
|     typename StlContainer::const_iterator it = stl_container.begin();
 | |
|     size_t exam_pos = 0;
 | |
|     bool mismatch_found = false;  // Have we found a mismatched element yet?
 | |
| 
 | |
|     // Go through the elements and matchers in pairs, until we reach
 | |
|     // the end of either the elements or the matchers, or until we find a
 | |
|     // mismatch.
 | |
|     for (; it != stl_container.end() && exam_pos != count(); ++it, ++exam_pos) {
 | |
|       bool match;  // Does the current element match the current matcher?
 | |
|       if (listener_interested) {
 | |
|         StringMatchResultListener s;
 | |
|         match = matchers_[exam_pos].MatchAndExplain(*it, &s);
 | |
|         explanations[exam_pos] = s.str();
 | |
|       } else {
 | |
|         match = matchers_[exam_pos].Matches(*it);
 | |
|       }
 | |
| 
 | |
|       if (!match) {
 | |
|         mismatch_found = true;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     // If mismatch_found is true, 'exam_pos' is the index of the mismatch.
 | |
| 
 | |
|     // Find how many elements the actual container has.  We avoid
 | |
|     // calling size() s.t. this code works for stream-like "containers"
 | |
|     // that don't define size().
 | |
|     size_t actual_count = exam_pos;
 | |
|     for (; it != stl_container.end(); ++it) {
 | |
|       ++actual_count;
 | |
|     }
 | |
| 
 | |
|     if (actual_count != count()) {
 | |
|       // The element count doesn't match.  If the container is empty,
 | |
|       // there's no need to explain anything as Google Mock already
 | |
|       // prints the empty container.  Otherwise we just need to show
 | |
|       // how many elements there actually are.
 | |
|       if (listener_interested && (actual_count != 0)) {
 | |
|         *listener << "which has " << Elements(actual_count);
 | |
|       }
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     if (mismatch_found) {
 | |
|       // The element count matches, but the exam_pos-th element doesn't match.
 | |
|       if (listener_interested) {
 | |
|         *listener << "whose element #" << exam_pos << " doesn't match";
 | |
|         PrintIfNotEmpty(explanations[exam_pos], listener->stream());
 | |
|       }
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     // Every element matches its expectation.  We need to explain why
 | |
|     // (the obvious ones can be skipped).
 | |
|     if (listener_interested) {
 | |
|       bool reason_printed = false;
 | |
|       for (size_t i = 0; i != count(); ++i) {
 | |
|         const std::string& s = explanations[i];
 | |
|         if (!s.empty()) {
 | |
|           if (reason_printed) {
 | |
|             *listener << ",\nand ";
 | |
|           }
 | |
|           *listener << "whose element #" << i << " matches, " << s;
 | |
|           reason_printed = true;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   static Message Elements(size_t count) {
 | |
|     return Message() << count << (count == 1 ? " element" : " elements");
 | |
|   }
 | |
| 
 | |
|   size_t count() const { return matchers_.size(); }
 | |
| 
 | |
|   ::std::vector<Matcher<const Element&> > matchers_;
 | |
| };
 | |
| 
 | |
| // Connectivity matrix of (elements X matchers), in element-major order.
 | |
| // Initially, there are no edges.
 | |
| // Use NextGraph() to iterate over all possible edge configurations.
 | |
| // Use Randomize() to generate a random edge configuration.
 | |
| class GTEST_API_ MatchMatrix {
 | |
|  public:
 | |
|   MatchMatrix(size_t num_elements, size_t num_matchers)
 | |
|       : num_elements_(num_elements),
 | |
|         num_matchers_(num_matchers),
 | |
|         matched_(num_elements_* num_matchers_, 0) {
 | |
|   }
 | |
| 
 | |
|   size_t LhsSize() const { return num_elements_; }
 | |
|   size_t RhsSize() const { return num_matchers_; }
 | |
|   bool HasEdge(size_t ilhs, size_t irhs) const {
 | |
|     return matched_[SpaceIndex(ilhs, irhs)] == 1;
 | |
|   }
 | |
|   void SetEdge(size_t ilhs, size_t irhs, bool b) {
 | |
|     matched_[SpaceIndex(ilhs, irhs)] = b ? 1 : 0;
 | |
|   }
 | |
| 
 | |
|   // Treating the connectivity matrix as a (LhsSize()*RhsSize())-bit number,
 | |
|   // adds 1 to that number; returns false if incrementing the graph left it
 | |
|   // empty.
 | |
|   bool NextGraph();
 | |
| 
 | |
|   void Randomize();
 | |
| 
 | |
|   std::string DebugString() const;
 | |
| 
 | |
|  private:
 | |
|   size_t SpaceIndex(size_t ilhs, size_t irhs) const {
 | |
|     return ilhs * num_matchers_ + irhs;
 | |
|   }
 | |
| 
 | |
|   size_t num_elements_;
 | |
|   size_t num_matchers_;
 | |
| 
 | |
|   // Each element is a char interpreted as bool. They are stored as a
 | |
|   // flattened array in lhs-major order, use 'SpaceIndex()' to translate
 | |
|   // a (ilhs, irhs) matrix coordinate into an offset.
 | |
|   ::std::vector<char> matched_;
 | |
| };
 | |
| 
 | |
| typedef ::std::pair<size_t, size_t> ElementMatcherPair;
 | |
| typedef ::std::vector<ElementMatcherPair> ElementMatcherPairs;
 | |
| 
 | |
| // Returns a maximum bipartite matching for the specified graph 'g'.
 | |
| // The matching is represented as a vector of {element, matcher} pairs.
 | |
| GTEST_API_ ElementMatcherPairs
 | |
| FindMaxBipartiteMatching(const MatchMatrix& g);
 | |
| 
 | |
| struct UnorderedMatcherRequire {
 | |
|   enum Flags {
 | |
|     Superset = 1 << 0,
 | |
|     Subset = 1 << 1,
 | |
|     ExactMatch = Superset | Subset,
 | |
|   };
 | |
| };
 | |
| 
 | |
| // Untyped base class for implementing UnorderedElementsAre.  By
 | |
| // putting logic that's not specific to the element type here, we
 | |
| // reduce binary bloat and increase compilation speed.
 | |
| class GTEST_API_ UnorderedElementsAreMatcherImplBase {
 | |
|  protected:
 | |
|   explicit UnorderedElementsAreMatcherImplBase(
 | |
|       UnorderedMatcherRequire::Flags matcher_flags)
 | |
|       : match_flags_(matcher_flags) {}
 | |
| 
 | |
|   // A vector of matcher describers, one for each element matcher.
 | |
|   // Does not own the describers (and thus can be used only when the
 | |
|   // element matchers are alive).
 | |
|   typedef ::std::vector<const MatcherDescriberInterface*> MatcherDescriberVec;
 | |
| 
 | |
|   // Describes this UnorderedElementsAre matcher.
 | |
|   void DescribeToImpl(::std::ostream* os) const;
 | |
| 
 | |
|   // Describes the negation of this UnorderedElementsAre matcher.
 | |
|   void DescribeNegationToImpl(::std::ostream* os) const;
 | |
| 
 | |
|   bool VerifyMatchMatrix(const ::std::vector<std::string>& element_printouts,
 | |
|                          const MatchMatrix& matrix,
 | |
|                          MatchResultListener* listener) const;
 | |
| 
 | |
|   bool FindPairing(const MatchMatrix& matrix,
 | |
|                    MatchResultListener* listener) const;
 | |
| 
 | |
|   MatcherDescriberVec& matcher_describers() {
 | |
|     return matcher_describers_;
 | |
|   }
 | |
| 
 | |
|   static Message Elements(size_t n) {
 | |
|     return Message() << n << " element" << (n == 1 ? "" : "s");
 | |
|   }
 | |
| 
 | |
|   UnorderedMatcherRequire::Flags match_flags() const { return match_flags_; }
 | |
| 
 | |
|  private:
 | |
|   UnorderedMatcherRequire::Flags match_flags_;
 | |
|   MatcherDescriberVec matcher_describers_;
 | |
| };
 | |
| 
 | |
| // Implements UnorderedElementsAre, UnorderedElementsAreArray, IsSubsetOf, and
 | |
| // IsSupersetOf.
 | |
| template <typename Container>
 | |
| class UnorderedElementsAreMatcherImpl
 | |
|     : public MatcherInterface<Container>,
 | |
|       public UnorderedElementsAreMatcherImplBase {
 | |
|  public:
 | |
|   typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
 | |
|   typedef internal::StlContainerView<RawContainer> View;
 | |
|   typedef typename View::type StlContainer;
 | |
|   typedef typename View::const_reference StlContainerReference;
 | |
|   typedef typename StlContainer::const_iterator StlContainerConstIterator;
 | |
|   typedef typename StlContainer::value_type Element;
 | |
| 
 | |
|   template <typename InputIter>
 | |
|   UnorderedElementsAreMatcherImpl(UnorderedMatcherRequire::Flags matcher_flags,
 | |
|                                   InputIter first, InputIter last)
 | |
|       : UnorderedElementsAreMatcherImplBase(matcher_flags) {
 | |
|     for (; first != last; ++first) {
 | |
|       matchers_.push_back(MatcherCast<const Element&>(*first));
 | |
|     }
 | |
|     for (const auto& m : matchers_) {
 | |
|       matcher_describers().push_back(m.GetDescriber());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Describes what this matcher does.
 | |
|   void DescribeTo(::std::ostream* os) const override {
 | |
|     return UnorderedElementsAreMatcherImplBase::DescribeToImpl(os);
 | |
|   }
 | |
| 
 | |
|   // Describes what the negation of this matcher does.
 | |
|   void DescribeNegationTo(::std::ostream* os) const override {
 | |
|     return UnorderedElementsAreMatcherImplBase::DescribeNegationToImpl(os);
 | |
|   }
 | |
| 
 | |
|   bool MatchAndExplain(Container container,
 | |
|                        MatchResultListener* listener) const override {
 | |
|     StlContainerReference stl_container = View::ConstReference(container);
 | |
|     ::std::vector<std::string> element_printouts;
 | |
|     MatchMatrix matrix =
 | |
|         AnalyzeElements(stl_container.begin(), stl_container.end(),
 | |
|                         &element_printouts, listener);
 | |
| 
 | |
|     if (matrix.LhsSize() == 0 && matrix.RhsSize() == 0) {
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     if (match_flags() == UnorderedMatcherRequire::ExactMatch) {
 | |
|       if (matrix.LhsSize() != matrix.RhsSize()) {
 | |
|         // The element count doesn't match.  If the container is empty,
 | |
|         // there's no need to explain anything as Google Mock already
 | |
|         // prints the empty container. Otherwise we just need to show
 | |
|         // how many elements there actually are.
 | |
|         if (matrix.LhsSize() != 0 && listener->IsInterested()) {
 | |
|           *listener << "which has " << Elements(matrix.LhsSize());
 | |
|         }
 | |
|         return false;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     return VerifyMatchMatrix(element_printouts, matrix, listener) &&
 | |
|            FindPairing(matrix, listener);
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   template <typename ElementIter>
 | |
|   MatchMatrix AnalyzeElements(ElementIter elem_first, ElementIter elem_last,
 | |
|                               ::std::vector<std::string>* element_printouts,
 | |
|                               MatchResultListener* listener) const {
 | |
|     element_printouts->clear();
 | |
|     ::std::vector<char> did_match;
 | |
|     size_t num_elements = 0;
 | |
|     DummyMatchResultListener dummy;
 | |
|     for (; elem_first != elem_last; ++num_elements, ++elem_first) {
 | |
|       if (listener->IsInterested()) {
 | |
|         element_printouts->push_back(PrintToString(*elem_first));
 | |
|       }
 | |
|       for (size_t irhs = 0; irhs != matchers_.size(); ++irhs) {
 | |
|         did_match.push_back(
 | |
|             matchers_[irhs].MatchAndExplain(*elem_first, &dummy));
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     MatchMatrix matrix(num_elements, matchers_.size());
 | |
|     ::std::vector<char>::const_iterator did_match_iter = did_match.begin();
 | |
|     for (size_t ilhs = 0; ilhs != num_elements; ++ilhs) {
 | |
|       for (size_t irhs = 0; irhs != matchers_.size(); ++irhs) {
 | |
|         matrix.SetEdge(ilhs, irhs, *did_match_iter++ != 0);
 | |
|       }
 | |
|     }
 | |
|     return matrix;
 | |
|   }
 | |
| 
 | |
|   ::std::vector<Matcher<const Element&> > matchers_;
 | |
| };
 | |
| 
 | |
| // Functor for use in TransformTuple.
 | |
| // Performs MatcherCast<Target> on an input argument of any type.
 | |
| template <typename Target>
 | |
| struct CastAndAppendTransform {
 | |
|   template <typename Arg>
 | |
|   Matcher<Target> operator()(const Arg& a) const {
 | |
|     return MatcherCast<Target>(a);
 | |
|   }
 | |
| };
 | |
| 
 | |
| // Implements UnorderedElementsAre.
 | |
| template <typename MatcherTuple>
 | |
| class UnorderedElementsAreMatcher {
 | |
|  public:
 | |
|   explicit UnorderedElementsAreMatcher(const MatcherTuple& args)
 | |
|       : matchers_(args) {}
 | |
| 
 | |
|   template <typename Container>
 | |
|   operator Matcher<Container>() const {
 | |
|     typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
 | |
|     typedef typename internal::StlContainerView<RawContainer>::type View;
 | |
|     typedef typename View::value_type Element;
 | |
|     typedef ::std::vector<Matcher<const Element&> > MatcherVec;
 | |
|     MatcherVec matchers;
 | |
|     matchers.reserve(::std::tuple_size<MatcherTuple>::value);
 | |
|     TransformTupleValues(CastAndAppendTransform<const Element&>(), matchers_,
 | |
|                          ::std::back_inserter(matchers));
 | |
|     return Matcher<Container>(
 | |
|         new UnorderedElementsAreMatcherImpl<const Container&>(
 | |
|             UnorderedMatcherRequire::ExactMatch, matchers.begin(),
 | |
|             matchers.end()));
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   const MatcherTuple matchers_;
 | |
| };
 | |
| 
 | |
| // Implements ElementsAre.
 | |
| template <typename MatcherTuple>
 | |
| class ElementsAreMatcher {
 | |
|  public:
 | |
|   explicit ElementsAreMatcher(const MatcherTuple& args) : matchers_(args) {}
 | |
| 
 | |
|   template <typename Container>
 | |
|   operator Matcher<Container>() const {
 | |
|     GTEST_COMPILE_ASSERT_(
 | |
|         !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(Container)>::value ||
 | |
|             ::std::tuple_size<MatcherTuple>::value < 2,
 | |
|         use_UnorderedElementsAre_with_hash_tables);
 | |
| 
 | |
|     typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
 | |
|     typedef typename internal::StlContainerView<RawContainer>::type View;
 | |
|     typedef typename View::value_type Element;
 | |
|     typedef ::std::vector<Matcher<const Element&> > MatcherVec;
 | |
|     MatcherVec matchers;
 | |
|     matchers.reserve(::std::tuple_size<MatcherTuple>::value);
 | |
|     TransformTupleValues(CastAndAppendTransform<const Element&>(), matchers_,
 | |
|                          ::std::back_inserter(matchers));
 | |
|     return Matcher<Container>(new ElementsAreMatcherImpl<const Container&>(
 | |
|         matchers.begin(), matchers.end()));
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   const MatcherTuple matchers_;
 | |
| };
 | |
| 
 | |
| // Implements UnorderedElementsAreArray(), IsSubsetOf(), and IsSupersetOf().
 | |
| template <typename T>
 | |
| class UnorderedElementsAreArrayMatcher {
 | |
|  public:
 | |
|   template <typename Iter>
 | |
|   UnorderedElementsAreArrayMatcher(UnorderedMatcherRequire::Flags match_flags,
 | |
|                                    Iter first, Iter last)
 | |
|       : match_flags_(match_flags), matchers_(first, last) {}
 | |
| 
 | |
|   template <typename Container>
 | |
|   operator Matcher<Container>() const {
 | |
|     return Matcher<Container>(
 | |
|         new UnorderedElementsAreMatcherImpl<const Container&>(
 | |
|             match_flags_, matchers_.begin(), matchers_.end()));
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   UnorderedMatcherRequire::Flags match_flags_;
 | |
|   ::std::vector<T> matchers_;
 | |
| };
 | |
| 
 | |
| // Implements ElementsAreArray().
 | |
| template <typename T>
 | |
| class ElementsAreArrayMatcher {
 | |
|  public:
 | |
|   template <typename Iter>
 | |
|   ElementsAreArrayMatcher(Iter first, Iter last) : matchers_(first, last) {}
 | |
| 
 | |
|   template <typename Container>
 | |
|   operator Matcher<Container>() const {
 | |
|     GTEST_COMPILE_ASSERT_(
 | |
|         !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(Container)>::value,
 | |
|         use_UnorderedElementsAreArray_with_hash_tables);
 | |
| 
 | |
|     return Matcher<Container>(new ElementsAreMatcherImpl<const Container&>(
 | |
|         matchers_.begin(), matchers_.end()));
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   const ::std::vector<T> matchers_;
 | |
| };
 | |
| 
 | |
| // Given a 2-tuple matcher tm of type Tuple2Matcher and a value second
 | |
| // of type Second, BoundSecondMatcher<Tuple2Matcher, Second>(tm,
 | |
| // second) is a polymorphic matcher that matches a value x if and only if
 | |
| // tm matches tuple (x, second).  Useful for implementing
 | |
| // UnorderedPointwise() in terms of UnorderedElementsAreArray().
 | |
| //
 | |
| // BoundSecondMatcher is copyable and assignable, as we need to put
 | |
| // instances of this class in a vector when implementing
 | |
| // UnorderedPointwise().
 | |
| template <typename Tuple2Matcher, typename Second>
 | |
| class BoundSecondMatcher {
 | |
|  public:
 | |
|   BoundSecondMatcher(const Tuple2Matcher& tm, const Second& second)
 | |
|       : tuple2_matcher_(tm), second_value_(second) {}
 | |
| 
 | |
|   BoundSecondMatcher(const BoundSecondMatcher& other) = default;
 | |
| 
 | |
|   template <typename T>
 | |
|   operator Matcher<T>() const {
 | |
|     return MakeMatcher(new Impl<T>(tuple2_matcher_, second_value_));
 | |
|   }
 | |
| 
 | |
|   // We have to define this for UnorderedPointwise() to compile in
 | |
|   // C++98 mode, as it puts BoundSecondMatcher instances in a vector,
 | |
|   // which requires the elements to be assignable in C++98.  The
 | |
|   // compiler cannot generate the operator= for us, as Tuple2Matcher
 | |
|   // and Second may not be assignable.
 | |
|   //
 | |
|   // However, this should never be called, so the implementation just
 | |
|   // need to assert.
 | |
|   void operator=(const BoundSecondMatcher& /*rhs*/) {
 | |
|     GTEST_LOG_(FATAL) << "BoundSecondMatcher should never be assigned.";
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   template <typename T>
 | |
|   class Impl : public MatcherInterface<T> {
 | |
|    public:
 | |
|     typedef ::std::tuple<T, Second> ArgTuple;
 | |
| 
 | |
|     Impl(const Tuple2Matcher& tm, const Second& second)
 | |
|         : mono_tuple2_matcher_(SafeMatcherCast<const ArgTuple&>(tm)),
 | |
|           second_value_(second) {}
 | |
| 
 | |
|     void DescribeTo(::std::ostream* os) const override {
 | |
|       *os << "and ";
 | |
|       UniversalPrint(second_value_, os);
 | |
|       *os << " ";
 | |
|       mono_tuple2_matcher_.DescribeTo(os);
 | |
|     }
 | |
| 
 | |
|     bool MatchAndExplain(T x, MatchResultListener* listener) const override {
 | |
|       return mono_tuple2_matcher_.MatchAndExplain(ArgTuple(x, second_value_),
 | |
|                                                   listener);
 | |
|     }
 | |
| 
 | |
|    private:
 | |
|     const Matcher<const ArgTuple&> mono_tuple2_matcher_;
 | |
|     const Second second_value_;
 | |
|   };
 | |
| 
 | |
|   const Tuple2Matcher tuple2_matcher_;
 | |
|   const Second second_value_;
 | |
| };
 | |
| 
 | |
| // Given a 2-tuple matcher tm and a value second,
 | |
| // MatcherBindSecond(tm, second) returns a matcher that matches a
 | |
| // value x if and only if tm matches tuple (x, second).  Useful for
 | |
| // implementing UnorderedPointwise() in terms of UnorderedElementsAreArray().
 | |
| template <typename Tuple2Matcher, typename Second>
 | |
| BoundSecondMatcher<Tuple2Matcher, Second> MatcherBindSecond(
 | |
|     const Tuple2Matcher& tm, const Second& second) {
 | |
|   return BoundSecondMatcher<Tuple2Matcher, Second>(tm, second);
 | |
| }
 | |
| 
 | |
| // Returns the description for a matcher defined using the MATCHER*()
 | |
| // macro where the user-supplied description string is "", if
 | |
| // 'negation' is false; otherwise returns the description of the
 | |
| // negation of the matcher.  'param_values' contains a list of strings
 | |
| // that are the print-out of the matcher's parameters.
 | |
| GTEST_API_ std::string FormatMatcherDescription(bool negation,
 | |
|                                                 const char* matcher_name,
 | |
|                                                 const Strings& param_values);
 | |
| 
 | |
| // Implements a matcher that checks the value of a optional<> type variable.
 | |
| template <typename ValueMatcher>
 | |
| class OptionalMatcher {
 | |
|  public:
 | |
|   explicit OptionalMatcher(const ValueMatcher& value_matcher)
 | |
|       : value_matcher_(value_matcher) {}
 | |
| 
 | |
|   template <typename Optional>
 | |
|   operator Matcher<Optional>() const {
 | |
|     return Matcher<Optional>(new Impl<const Optional&>(value_matcher_));
 | |
|   }
 | |
| 
 | |
|   template <typename Optional>
 | |
|   class Impl : public MatcherInterface<Optional> {
 | |
|    public:
 | |
|     typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Optional) OptionalView;
 | |
|     typedef typename OptionalView::value_type ValueType;
 | |
|     explicit Impl(const ValueMatcher& value_matcher)
 | |
|         : value_matcher_(MatcherCast<ValueType>(value_matcher)) {}
 | |
| 
 | |
|     void DescribeTo(::std::ostream* os) const override {
 | |
|       *os << "value ";
 | |
|       value_matcher_.DescribeTo(os);
 | |
|     }
 | |
| 
 | |
|     void DescribeNegationTo(::std::ostream* os) const override {
 | |
|       *os << "value ";
 | |
|       value_matcher_.DescribeNegationTo(os);
 | |
|     }
 | |
| 
 | |
|     bool MatchAndExplain(Optional optional,
 | |
|                          MatchResultListener* listener) const override {
 | |
|       if (!optional) {
 | |
|         *listener << "which is not engaged";
 | |
|         return false;
 | |
|       }
 | |
|       const ValueType& value = *optional;
 | |
|       StringMatchResultListener value_listener;
 | |
|       const bool match = value_matcher_.MatchAndExplain(value, &value_listener);
 | |
|       *listener << "whose value " << PrintToString(value)
 | |
|                 << (match ? " matches" : " doesn't match");
 | |
|       PrintIfNotEmpty(value_listener.str(), listener->stream());
 | |
|       return match;
 | |
|     }
 | |
| 
 | |
|    private:
 | |
|     const Matcher<ValueType> value_matcher_;
 | |
|   };
 | |
| 
 | |
|  private:
 | |
|   const ValueMatcher value_matcher_;
 | |
| };
 | |
| 
 | |
| namespace variant_matcher {
 | |
| // Overloads to allow VariantMatcher to do proper ADL lookup.
 | |
| template <typename T>
 | |
| void holds_alternative() {}
 | |
| template <typename T>
 | |
| void get() {}
 | |
| 
 | |
| // Implements a matcher that checks the value of a variant<> type variable.
 | |
| template <typename T>
 | |
| class VariantMatcher {
 | |
|  public:
 | |
|   explicit VariantMatcher(::testing::Matcher<const T&> matcher)
 | |
|       : matcher_(std::move(matcher)) {}
 | |
| 
 | |
|   template <typename Variant>
 | |
|   bool MatchAndExplain(const Variant& value,
 | |
|                        ::testing::MatchResultListener* listener) const {
 | |
|     using std::get;
 | |
|     if (!listener->IsInterested()) {
 | |
|       return holds_alternative<T>(value) && matcher_.Matches(get<T>(value));
 | |
|     }
 | |
| 
 | |
|     if (!holds_alternative<T>(value)) {
 | |
|       *listener << "whose value is not of type '" << GetTypeName() << "'";
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     const T& elem = get<T>(value);
 | |
|     StringMatchResultListener elem_listener;
 | |
|     const bool match = matcher_.MatchAndExplain(elem, &elem_listener);
 | |
|     *listener << "whose value " << PrintToString(elem)
 | |
|               << (match ? " matches" : " doesn't match");
 | |
|     PrintIfNotEmpty(elem_listener.str(), listener->stream());
 | |
|     return match;
 | |
|   }
 | |
| 
 | |
|   void DescribeTo(std::ostream* os) const {
 | |
|     *os << "is a variant<> with value of type '" << GetTypeName()
 | |
|         << "' and the value ";
 | |
|     matcher_.DescribeTo(os);
 | |
|   }
 | |
| 
 | |
|   void DescribeNegationTo(std::ostream* os) const {
 | |
|     *os << "is a variant<> with value of type other than '" << GetTypeName()
 | |
|         << "' or the value ";
 | |
|     matcher_.DescribeNegationTo(os);
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   static std::string GetTypeName() {
 | |
| #if GTEST_HAS_RTTI
 | |
|     GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(
 | |
|         return internal::GetTypeName<T>());
 | |
| #endif
 | |
|     return "the element type";
 | |
|   }
 | |
| 
 | |
|   const ::testing::Matcher<const T&> matcher_;
 | |
| };
 | |
| 
 | |
| }  // namespace variant_matcher
 | |
| 
 | |
| namespace any_cast_matcher {
 | |
| 
 | |
| // Overloads to allow AnyCastMatcher to do proper ADL lookup.
 | |
| template <typename T>
 | |
| void any_cast() {}
 | |
| 
 | |
| // Implements a matcher that any_casts the value.
 | |
| template <typename T>
 | |
| class AnyCastMatcher {
 | |
|  public:
 | |
|   explicit AnyCastMatcher(const ::testing::Matcher<const T&>& matcher)
 | |
|       : matcher_(matcher) {}
 | |
| 
 | |
|   template <typename AnyType>
 | |
|   bool MatchAndExplain(const AnyType& value,
 | |
|                        ::testing::MatchResultListener* listener) const {
 | |
|     if (!listener->IsInterested()) {
 | |
|       const T* ptr = any_cast<T>(&value);
 | |
|       return ptr != nullptr && matcher_.Matches(*ptr);
 | |
|     }
 | |
| 
 | |
|     const T* elem = any_cast<T>(&value);
 | |
|     if (elem == nullptr) {
 | |
|       *listener << "whose value is not of type '" << GetTypeName() << "'";
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     StringMatchResultListener elem_listener;
 | |
|     const bool match = matcher_.MatchAndExplain(*elem, &elem_listener);
 | |
|     *listener << "whose value " << PrintToString(*elem)
 | |
|               << (match ? " matches" : " doesn't match");
 | |
|     PrintIfNotEmpty(elem_listener.str(), listener->stream());
 | |
|     return match;
 | |
|   }
 | |
| 
 | |
|   void DescribeTo(std::ostream* os) const {
 | |
|     *os << "is an 'any' type with value of type '" << GetTypeName()
 | |
|         << "' and the value ";
 | |
|     matcher_.DescribeTo(os);
 | |
|   }
 | |
| 
 | |
|   void DescribeNegationTo(std::ostream* os) const {
 | |
|     *os << "is an 'any' type with value of type other than '" << GetTypeName()
 | |
|         << "' or the value ";
 | |
|     matcher_.DescribeNegationTo(os);
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   static std::string GetTypeName() {
 | |
| #if GTEST_HAS_RTTI
 | |
|     GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(
 | |
|         return internal::GetTypeName<T>());
 | |
| #endif
 | |
|     return "the element type";
 | |
|   }
 | |
| 
 | |
|   const ::testing::Matcher<const T&> matcher_;
 | |
| };
 | |
| 
 | |
| }  // namespace any_cast_matcher
 | |
| 
 | |
| // Implements the Args() matcher.
 | |
| template <class ArgsTuple, size_t... k>
 | |
| class ArgsMatcherImpl : public MatcherInterface<ArgsTuple> {
 | |
|  public:
 | |
|   using RawArgsTuple = typename std::decay<ArgsTuple>::type;
 | |
|   using SelectedArgs =
 | |
|       std::tuple<typename std::tuple_element<k, RawArgsTuple>::type...>;
 | |
|   using MonomorphicInnerMatcher = Matcher<const SelectedArgs&>;
 | |
| 
 | |
|   template <typename InnerMatcher>
 | |
|   explicit ArgsMatcherImpl(const InnerMatcher& inner_matcher)
 | |
|       : inner_matcher_(SafeMatcherCast<const SelectedArgs&>(inner_matcher)) {}
 | |
| 
 | |
|   bool MatchAndExplain(ArgsTuple args,
 | |
|                        MatchResultListener* listener) const override {
 | |
|     // Workaround spurious C4100 on MSVC<=15.7 when k is empty.
 | |
|     (void)args;
 | |
|     const SelectedArgs& selected_args =
 | |
|         std::forward_as_tuple(std::get<k>(args)...);
 | |
|     if (!listener->IsInterested()) return inner_matcher_.Matches(selected_args);
 | |
| 
 | |
|     PrintIndices(listener->stream());
 | |
|     *listener << "are " << PrintToString(selected_args);
 | |
| 
 | |
|     StringMatchResultListener inner_listener;
 | |
|     const bool match =
 | |
|         inner_matcher_.MatchAndExplain(selected_args, &inner_listener);
 | |
|     PrintIfNotEmpty(inner_listener.str(), listener->stream());
 | |
|     return match;
 | |
|   }
 | |
| 
 | |
|   void DescribeTo(::std::ostream* os) const override {
 | |
|     *os << "are a tuple ";
 | |
|     PrintIndices(os);
 | |
|     inner_matcher_.DescribeTo(os);
 | |
|   }
 | |
| 
 | |
|   void DescribeNegationTo(::std::ostream* os) const override {
 | |
|     *os << "are a tuple ";
 | |
|     PrintIndices(os);
 | |
|     inner_matcher_.DescribeNegationTo(os);
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   // Prints the indices of the selected fields.
 | |
|   static void PrintIndices(::std::ostream* os) {
 | |
|     *os << "whose fields (";
 | |
|     const char* sep = "";
 | |
|     // Workaround spurious C4189 on MSVC<=15.7 when k is empty.
 | |
|     (void)sep;
 | |
|     const char* dummy[] = {"", (*os << sep << "#" << k, sep = ", ")...};
 | |
|     (void)dummy;
 | |
|     *os << ") ";
 | |
|   }
 | |
| 
 | |
|   MonomorphicInnerMatcher inner_matcher_;
 | |
| };
 | |
| 
 | |
| template <class InnerMatcher, size_t... k>
 | |
| class ArgsMatcher {
 | |
|  public:
 | |
|   explicit ArgsMatcher(InnerMatcher inner_matcher)
 | |
|       : inner_matcher_(std::move(inner_matcher)) {}
 | |
| 
 | |
|   template <typename ArgsTuple>
 | |
|   operator Matcher<ArgsTuple>() const {  // NOLINT
 | |
|     return MakeMatcher(new ArgsMatcherImpl<ArgsTuple, k...>(inner_matcher_));
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   InnerMatcher inner_matcher_;
 | |
| };
 | |
| 
 | |
| }  // namespace internal
 | |
| 
 | |
| // ElementsAreArray(iterator_first, iterator_last)
 | |
| // ElementsAreArray(pointer, count)
 | |
| // ElementsAreArray(array)
 | |
| // ElementsAreArray(container)
 | |
| // ElementsAreArray({ e1, e2, ..., en })
 | |
| //
 | |
| // The ElementsAreArray() functions are like ElementsAre(...), except
 | |
| // that they are given a homogeneous sequence rather than taking each
 | |
| // element as a function argument. The sequence can be specified as an
 | |
| // array, a pointer and count, a vector, an initializer list, or an
 | |
| // STL iterator range. In each of these cases, the underlying sequence
 | |
| // can be either a sequence of values or a sequence of matchers.
 | |
| //
 | |
| // All forms of ElementsAreArray() make a copy of the input matcher sequence.
 | |
| 
 | |
| template <typename Iter>
 | |
| inline internal::ElementsAreArrayMatcher<
 | |
|     typename ::std::iterator_traits<Iter>::value_type>
 | |
| ElementsAreArray(Iter first, Iter last) {
 | |
|   typedef typename ::std::iterator_traits<Iter>::value_type T;
 | |
|   return internal::ElementsAreArrayMatcher<T>(first, last);
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| inline internal::ElementsAreArrayMatcher<T> ElementsAreArray(
 | |
|     const T* pointer, size_t count) {
 | |
|   return ElementsAreArray(pointer, pointer + count);
 | |
| }
 | |
| 
 | |
| template <typename T, size_t N>
 | |
| inline internal::ElementsAreArrayMatcher<T> ElementsAreArray(
 | |
|     const T (&array)[N]) {
 | |
|   return ElementsAreArray(array, N);
 | |
| }
 | |
| 
 | |
| template <typename Container>
 | |
| inline internal::ElementsAreArrayMatcher<typename Container::value_type>
 | |
| ElementsAreArray(const Container& container) {
 | |
|   return ElementsAreArray(container.begin(), container.end());
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| inline internal::ElementsAreArrayMatcher<T>
 | |
| ElementsAreArray(::std::initializer_list<T> xs) {
 | |
|   return ElementsAreArray(xs.begin(), xs.end());
 | |
| }
 | |
| 
 | |
| // UnorderedElementsAreArray(iterator_first, iterator_last)
 | |
| // UnorderedElementsAreArray(pointer, count)
 | |
| // UnorderedElementsAreArray(array)
 | |
| // UnorderedElementsAreArray(container)
 | |
| // UnorderedElementsAreArray({ e1, e2, ..., en })
 | |
| //
 | |
| // UnorderedElementsAreArray() verifies that a bijective mapping onto a
 | |
| // collection of matchers exists.
 | |
| //
 | |
| // The matchers can be specified as an array, a pointer and count, a container,
 | |
| // an initializer list, or an STL iterator range. In each of these cases, the
 | |
| // underlying matchers can be either values or matchers.
 | |
| 
 | |
| template <typename Iter>
 | |
| inline internal::UnorderedElementsAreArrayMatcher<
 | |
|     typename ::std::iterator_traits<Iter>::value_type>
 | |
| UnorderedElementsAreArray(Iter first, Iter last) {
 | |
|   typedef typename ::std::iterator_traits<Iter>::value_type T;
 | |
|   return internal::UnorderedElementsAreArrayMatcher<T>(
 | |
|       internal::UnorderedMatcherRequire::ExactMatch, first, last);
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| inline internal::UnorderedElementsAreArrayMatcher<T>
 | |
| UnorderedElementsAreArray(const T* pointer, size_t count) {
 | |
|   return UnorderedElementsAreArray(pointer, pointer + count);
 | |
| }
 | |
| 
 | |
| template <typename T, size_t N>
 | |
| inline internal::UnorderedElementsAreArrayMatcher<T>
 | |
| UnorderedElementsAreArray(const T (&array)[N]) {
 | |
|   return UnorderedElementsAreArray(array, N);
 | |
| }
 | |
| 
 | |
| template <typename Container>
 | |
| inline internal::UnorderedElementsAreArrayMatcher<
 | |
|     typename Container::value_type>
 | |
| UnorderedElementsAreArray(const Container& container) {
 | |
|   return UnorderedElementsAreArray(container.begin(), container.end());
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| inline internal::UnorderedElementsAreArrayMatcher<T>
 | |
| UnorderedElementsAreArray(::std::initializer_list<T> xs) {
 | |
|   return UnorderedElementsAreArray(xs.begin(), xs.end());
 | |
| }
 | |
| 
 | |
| // _ is a matcher that matches anything of any type.
 | |
| //
 | |
| // This definition is fine as:
 | |
| //
 | |
| //   1. The C++ standard permits using the name _ in a namespace that
 | |
| //      is not the global namespace or ::std.
 | |
| //   2. The AnythingMatcher class has no data member or constructor,
 | |
| //      so it's OK to create global variables of this type.
 | |
| //   3. c-style has approved of using _ in this case.
 | |
| const internal::AnythingMatcher _ = {};
 | |
| // Creates a matcher that matches any value of the given type T.
 | |
| template <typename T>
 | |
| inline Matcher<T> A() {
 | |
|   return _;
 | |
| }
 | |
| 
 | |
| // Creates a matcher that matches any value of the given type T.
 | |
| template <typename T>
 | |
| inline Matcher<T> An() {
 | |
|   return _;
 | |
| }
 | |
| 
 | |
| template <typename T, typename M>
 | |
| Matcher<T> internal::MatcherCastImpl<T, M>::CastImpl(
 | |
|     const M& value, std::false_type /* convertible_to_matcher */,
 | |
|     std::false_type /* convertible_to_T */) {
 | |
|   return Eq(value);
 | |
| }
 | |
| 
 | |
| // Creates a polymorphic matcher that matches any NULL pointer.
 | |
| inline PolymorphicMatcher<internal::IsNullMatcher > IsNull() {
 | |
|   return MakePolymorphicMatcher(internal::IsNullMatcher());
 | |
| }
 | |
| 
 | |
| // Creates a polymorphic matcher that matches any non-NULL pointer.
 | |
| // This is convenient as Not(NULL) doesn't compile (the compiler
 | |
| // thinks that that expression is comparing a pointer with an integer).
 | |
| inline PolymorphicMatcher<internal::NotNullMatcher > NotNull() {
 | |
|   return MakePolymorphicMatcher(internal::NotNullMatcher());
 | |
| }
 | |
| 
 | |
| // Creates a polymorphic matcher that matches any argument that
 | |
| // references variable x.
 | |
| template <typename T>
 | |
| inline internal::RefMatcher<T&> Ref(T& x) {  // NOLINT
 | |
|   return internal::RefMatcher<T&>(x);
 | |
| }
 | |
| 
 | |
| // Creates a polymorphic matcher that matches any NaN floating point.
 | |
| inline PolymorphicMatcher<internal::IsNanMatcher> IsNan() {
 | |
|   return MakePolymorphicMatcher(internal::IsNanMatcher());
 | |
| }
 | |
| 
 | |
| // Creates a matcher that matches any double argument approximately
 | |
| // equal to rhs, where two NANs are considered unequal.
 | |
| inline internal::FloatingEqMatcher<double> DoubleEq(double rhs) {
 | |
|   return internal::FloatingEqMatcher<double>(rhs, false);
 | |
| }
 | |
| 
 | |
| // Creates a matcher that matches any double argument approximately
 | |
| // equal to rhs, including NaN values when rhs is NaN.
 | |
| inline internal::FloatingEqMatcher<double> NanSensitiveDoubleEq(double rhs) {
 | |
|   return internal::FloatingEqMatcher<double>(rhs, true);
 | |
| }
 | |
| 
 | |
| // Creates a matcher that matches any double argument approximately equal to
 | |
| // rhs, up to the specified max absolute error bound, where two NANs are
 | |
| // considered unequal.  The max absolute error bound must be non-negative.
 | |
| inline internal::FloatingEqMatcher<double> DoubleNear(
 | |
|     double rhs, double max_abs_error) {
 | |
|   return internal::FloatingEqMatcher<double>(rhs, false, max_abs_error);
 | |
| }
 | |
| 
 | |
| // Creates a matcher that matches any double argument approximately equal to
 | |
| // rhs, up to the specified max absolute error bound, including NaN values when
 | |
| // rhs is NaN.  The max absolute error bound must be non-negative.
 | |
| inline internal::FloatingEqMatcher<double> NanSensitiveDoubleNear(
 | |
|     double rhs, double max_abs_error) {
 | |
|   return internal::FloatingEqMatcher<double>(rhs, true, max_abs_error);
 | |
| }
 | |
| 
 | |
| // Creates a matcher that matches any float argument approximately
 | |
| // equal to rhs, where two NANs are considered unequal.
 | |
| inline internal::FloatingEqMatcher<float> FloatEq(float rhs) {
 | |
|   return internal::FloatingEqMatcher<float>(rhs, false);
 | |
| }
 | |
| 
 | |
| // Creates a matcher that matches any float argument approximately
 | |
| // equal to rhs, including NaN values when rhs is NaN.
 | |
| inline internal::FloatingEqMatcher<float> NanSensitiveFloatEq(float rhs) {
 | |
|   return internal::FloatingEqMatcher<float>(rhs, true);
 | |
| }
 | |
| 
 | |
| // Creates a matcher that matches any float argument approximately equal to
 | |
| // rhs, up to the specified max absolute error bound, where two NANs are
 | |
| // considered unequal.  The max absolute error bound must be non-negative.
 | |
| inline internal::FloatingEqMatcher<float> FloatNear(
 | |
|     float rhs, float max_abs_error) {
 | |
|   return internal::FloatingEqMatcher<float>(rhs, false, max_abs_error);
 | |
| }
 | |
| 
 | |
| // Creates a matcher that matches any float argument approximately equal to
 | |
| // rhs, up to the specified max absolute error bound, including NaN values when
 | |
| // rhs is NaN.  The max absolute error bound must be non-negative.
 | |
| inline internal::FloatingEqMatcher<float> NanSensitiveFloatNear(
 | |
|     float rhs, float max_abs_error) {
 | |
|   return internal::FloatingEqMatcher<float>(rhs, true, max_abs_error);
 | |
| }
 | |
| 
 | |
| // Creates a matcher that matches a pointer (raw or smart) that points
 | |
| // to a value that matches inner_matcher.
 | |
| template <typename InnerMatcher>
 | |
| inline internal::PointeeMatcher<InnerMatcher> Pointee(
 | |
|     const InnerMatcher& inner_matcher) {
 | |
|   return internal::PointeeMatcher<InnerMatcher>(inner_matcher);
 | |
| }
 | |
| 
 | |
| #if GTEST_HAS_RTTI
 | |
| // Creates a matcher that matches a pointer or reference that matches
 | |
| // inner_matcher when dynamic_cast<To> is applied.
 | |
| // The result of dynamic_cast<To> is forwarded to the inner matcher.
 | |
| // If To is a pointer and the cast fails, the inner matcher will receive NULL.
 | |
| // If To is a reference and the cast fails, this matcher returns false
 | |
| // immediately.
 | |
| template <typename To>
 | |
| inline PolymorphicMatcher<internal::WhenDynamicCastToMatcher<To> >
 | |
| WhenDynamicCastTo(const Matcher<To>& inner_matcher) {
 | |
|   return MakePolymorphicMatcher(
 | |
|       internal::WhenDynamicCastToMatcher<To>(inner_matcher));
 | |
| }
 | |
| #endif  // GTEST_HAS_RTTI
 | |
| 
 | |
| // Creates a matcher that matches an object whose given field matches
 | |
| // 'matcher'.  For example,
 | |
| //   Field(&Foo::number, Ge(5))
 | |
| // matches a Foo object x if and only if x.number >= 5.
 | |
| template <typename Class, typename FieldType, typename FieldMatcher>
 | |
| inline PolymorphicMatcher<
 | |
|   internal::FieldMatcher<Class, FieldType> > Field(
 | |
|     FieldType Class::*field, const FieldMatcher& matcher) {
 | |
|   return MakePolymorphicMatcher(
 | |
|       internal::FieldMatcher<Class, FieldType>(
 | |
|           field, MatcherCast<const FieldType&>(matcher)));
 | |
|   // The call to MatcherCast() is required for supporting inner
 | |
|   // matchers of compatible types.  For example, it allows
 | |
|   //   Field(&Foo::bar, m)
 | |
|   // to compile where bar is an int32 and m is a matcher for int64.
 | |
| }
 | |
| 
 | |
| // Same as Field() but also takes the name of the field to provide better error
 | |
| // messages.
 | |
| template <typename Class, typename FieldType, typename FieldMatcher>
 | |
| inline PolymorphicMatcher<internal::FieldMatcher<Class, FieldType> > Field(
 | |
|     const std::string& field_name, FieldType Class::*field,
 | |
|     const FieldMatcher& matcher) {
 | |
|   return MakePolymorphicMatcher(internal::FieldMatcher<Class, FieldType>(
 | |
|       field_name, field, MatcherCast<const FieldType&>(matcher)));
 | |
| }
 | |
| 
 | |
| // Creates a matcher that matches an object whose given property
 | |
| // matches 'matcher'.  For example,
 | |
| //   Property(&Foo::str, StartsWith("hi"))
 | |
| // matches a Foo object x if and only if x.str() starts with "hi".
 | |
| template <typename Class, typename PropertyType, typename PropertyMatcher>
 | |
| inline PolymorphicMatcher<internal::PropertyMatcher<
 | |
|     Class, PropertyType, PropertyType (Class::*)() const> >
 | |
| Property(PropertyType (Class::*property)() const,
 | |
|          const PropertyMatcher& matcher) {
 | |
|   return MakePolymorphicMatcher(
 | |
|       internal::PropertyMatcher<Class, PropertyType,
 | |
|                                 PropertyType (Class::*)() const>(
 | |
|           property, MatcherCast<const PropertyType&>(matcher)));
 | |
|   // The call to MatcherCast() is required for supporting inner
 | |
|   // matchers of compatible types.  For example, it allows
 | |
|   //   Property(&Foo::bar, m)
 | |
|   // to compile where bar() returns an int32 and m is a matcher for int64.
 | |
| }
 | |
| 
 | |
| // Same as Property() above, but also takes the name of the property to provide
 | |
| // better error messages.
 | |
| template <typename Class, typename PropertyType, typename PropertyMatcher>
 | |
| inline PolymorphicMatcher<internal::PropertyMatcher<
 | |
|     Class, PropertyType, PropertyType (Class::*)() const> >
 | |
| Property(const std::string& property_name,
 | |
|          PropertyType (Class::*property)() const,
 | |
|          const PropertyMatcher& matcher) {
 | |
|   return MakePolymorphicMatcher(
 | |
|       internal::PropertyMatcher<Class, PropertyType,
 | |
|                                 PropertyType (Class::*)() const>(
 | |
|           property_name, property, MatcherCast<const PropertyType&>(matcher)));
 | |
| }
 | |
| 
 | |
| // The same as above but for reference-qualified member functions.
 | |
| template <typename Class, typename PropertyType, typename PropertyMatcher>
 | |
| inline PolymorphicMatcher<internal::PropertyMatcher<
 | |
|     Class, PropertyType, PropertyType (Class::*)() const &> >
 | |
| Property(PropertyType (Class::*property)() const &,
 | |
|          const PropertyMatcher& matcher) {
 | |
|   return MakePolymorphicMatcher(
 | |
|       internal::PropertyMatcher<Class, PropertyType,
 | |
|                                 PropertyType (Class::*)() const&>(
 | |
|           property, MatcherCast<const PropertyType&>(matcher)));
 | |
| }
 | |
| 
 | |
| // Three-argument form for reference-qualified member functions.
 | |
| template <typename Class, typename PropertyType, typename PropertyMatcher>
 | |
| inline PolymorphicMatcher<internal::PropertyMatcher<
 | |
|     Class, PropertyType, PropertyType (Class::*)() const &> >
 | |
| Property(const std::string& property_name,
 | |
|          PropertyType (Class::*property)() const &,
 | |
|          const PropertyMatcher& matcher) {
 | |
|   return MakePolymorphicMatcher(
 | |
|       internal::PropertyMatcher<Class, PropertyType,
 | |
|                                 PropertyType (Class::*)() const&>(
 | |
|           property_name, property, MatcherCast<const PropertyType&>(matcher)));
 | |
| }
 | |
| 
 | |
| // Creates a matcher that matches an object if and only if the result of
 | |
| // applying a callable to x matches 'matcher'. For example,
 | |
| //   ResultOf(f, StartsWith("hi"))
 | |
| // matches a Foo object x if and only if f(x) starts with "hi".
 | |
| // `callable` parameter can be a function, function pointer, or a functor. It is
 | |
| // required to keep no state affecting the results of the calls on it and make
 | |
| // no assumptions about how many calls will be made. Any state it keeps must be
 | |
| // protected from the concurrent access.
 | |
| template <typename Callable, typename InnerMatcher>
 | |
| internal::ResultOfMatcher<Callable, InnerMatcher> ResultOf(
 | |
|     Callable callable, InnerMatcher matcher) {
 | |
|   return internal::ResultOfMatcher<Callable, InnerMatcher>(
 | |
|       std::move(callable), std::move(matcher));
 | |
| }
 | |
| 
 | |
| // String matchers.
 | |
| 
 | |
| // Matches a string equal to str.
 | |
| template <typename T = std::string>
 | |
| PolymorphicMatcher<internal::StrEqualityMatcher<std::string> > StrEq(
 | |
|     const internal::StringLike<T>& str) {
 | |
|   return MakePolymorphicMatcher(
 | |
|       internal::StrEqualityMatcher<std::string>(std::string(str), true, true));
 | |
| }
 | |
| 
 | |
| // Matches a string not equal to str.
 | |
| template <typename T = std::string>
 | |
| PolymorphicMatcher<internal::StrEqualityMatcher<std::string> > StrNe(
 | |
|     const internal::StringLike<T>& str) {
 | |
|   return MakePolymorphicMatcher(
 | |
|       internal::StrEqualityMatcher<std::string>(std::string(str), false, true));
 | |
| }
 | |
| 
 | |
| // Matches a string equal to str, ignoring case.
 | |
| template <typename T = std::string>
 | |
| PolymorphicMatcher<internal::StrEqualityMatcher<std::string> > StrCaseEq(
 | |
|     const internal::StringLike<T>& str) {
 | |
|   return MakePolymorphicMatcher(
 | |
|       internal::StrEqualityMatcher<std::string>(std::string(str), true, false));
 | |
| }
 | |
| 
 | |
| // Matches a string not equal to str, ignoring case.
 | |
| template <typename T = std::string>
 | |
| PolymorphicMatcher<internal::StrEqualityMatcher<std::string> > StrCaseNe(
 | |
|     const internal::StringLike<T>& str) {
 | |
|   return MakePolymorphicMatcher(internal::StrEqualityMatcher<std::string>(
 | |
|       std::string(str), false, false));
 | |
| }
 | |
| 
 | |
| // Creates a matcher that matches any string, std::string, or C string
 | |
| // that contains the given substring.
 | |
| template <typename T = std::string>
 | |
| PolymorphicMatcher<internal::HasSubstrMatcher<std::string> > HasSubstr(
 | |
|     const internal::StringLike<T>& substring) {
 | |
|   return MakePolymorphicMatcher(
 | |
|       internal::HasSubstrMatcher<std::string>(std::string(substring)));
 | |
| }
 | |
| 
 | |
| // Matches a string that starts with 'prefix' (case-sensitive).
 | |
| template <typename T = std::string>
 | |
| PolymorphicMatcher<internal::StartsWithMatcher<std::string> > StartsWith(
 | |
|     const internal::StringLike<T>& prefix) {
 | |
|   return MakePolymorphicMatcher(
 | |
|       internal::StartsWithMatcher<std::string>(std::string(prefix)));
 | |
| }
 | |
| 
 | |
| // Matches a string that ends with 'suffix' (case-sensitive).
 | |
| template <typename T = std::string>
 | |
| PolymorphicMatcher<internal::EndsWithMatcher<std::string> > EndsWith(
 | |
|     const internal::StringLike<T>& suffix) {
 | |
|   return MakePolymorphicMatcher(
 | |
|       internal::EndsWithMatcher<std::string>(std::string(suffix)));
 | |
| }
 | |
| 
 | |
| #if GTEST_HAS_STD_WSTRING
 | |
| // Wide string matchers.
 | |
| 
 | |
| // Matches a string equal to str.
 | |
| inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring> > StrEq(
 | |
|     const std::wstring& str) {
 | |
|   return MakePolymorphicMatcher(
 | |
|       internal::StrEqualityMatcher<std::wstring>(str, true, true));
 | |
| }
 | |
| 
 | |
| // Matches a string not equal to str.
 | |
| inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring> > StrNe(
 | |
|     const std::wstring& str) {
 | |
|   return MakePolymorphicMatcher(
 | |
|       internal::StrEqualityMatcher<std::wstring>(str, false, true));
 | |
| }
 | |
| 
 | |
| // Matches a string equal to str, ignoring case.
 | |
| inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring> >
 | |
| StrCaseEq(const std::wstring& str) {
 | |
|   return MakePolymorphicMatcher(
 | |
|       internal::StrEqualityMatcher<std::wstring>(str, true, false));
 | |
| }
 | |
| 
 | |
| // Matches a string not equal to str, ignoring case.
 | |
| inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring> >
 | |
| StrCaseNe(const std::wstring& str) {
 | |
|   return MakePolymorphicMatcher(
 | |
|       internal::StrEqualityMatcher<std::wstring>(str, false, false));
 | |
| }
 | |
| 
 | |
| // Creates a matcher that matches any ::wstring, std::wstring, or C wide string
 | |
| // that contains the given substring.
 | |
| inline PolymorphicMatcher<internal::HasSubstrMatcher<std::wstring> > HasSubstr(
 | |
|     const std::wstring& substring) {
 | |
|   return MakePolymorphicMatcher(
 | |
|       internal::HasSubstrMatcher<std::wstring>(substring));
 | |
| }
 | |
| 
 | |
| // Matches a string that starts with 'prefix' (case-sensitive).
 | |
| inline PolymorphicMatcher<internal::StartsWithMatcher<std::wstring> >
 | |
| StartsWith(const std::wstring& prefix) {
 | |
|   return MakePolymorphicMatcher(
 | |
|       internal::StartsWithMatcher<std::wstring>(prefix));
 | |
| }
 | |
| 
 | |
| // Matches a string that ends with 'suffix' (case-sensitive).
 | |
| inline PolymorphicMatcher<internal::EndsWithMatcher<std::wstring> > EndsWith(
 | |
|     const std::wstring& suffix) {
 | |
|   return MakePolymorphicMatcher(
 | |
|       internal::EndsWithMatcher<std::wstring>(suffix));
 | |
| }
 | |
| 
 | |
| #endif  // GTEST_HAS_STD_WSTRING
 | |
| 
 | |
| // Creates a polymorphic matcher that matches a 2-tuple where the
 | |
| // first field == the second field.
 | |
| inline internal::Eq2Matcher Eq() { return internal::Eq2Matcher(); }
 | |
| 
 | |
| // Creates a polymorphic matcher that matches a 2-tuple where the
 | |
| // first field >= the second field.
 | |
| inline internal::Ge2Matcher Ge() { return internal::Ge2Matcher(); }
 | |
| 
 | |
| // Creates a polymorphic matcher that matches a 2-tuple where the
 | |
| // first field > the second field.
 | |
| inline internal::Gt2Matcher Gt() { return internal::Gt2Matcher(); }
 | |
| 
 | |
| // Creates a polymorphic matcher that matches a 2-tuple where the
 | |
| // first field <= the second field.
 | |
| inline internal::Le2Matcher Le() { return internal::Le2Matcher(); }
 | |
| 
 | |
| // Creates a polymorphic matcher that matches a 2-tuple where the
 | |
| // first field < the second field.
 | |
| inline internal::Lt2Matcher Lt() { return internal::Lt2Matcher(); }
 | |
| 
 | |
| // Creates a polymorphic matcher that matches a 2-tuple where the
 | |
| // first field != the second field.
 | |
| inline internal::Ne2Matcher Ne() { return internal::Ne2Matcher(); }
 | |
| 
 | |
| // Creates a polymorphic matcher that matches a 2-tuple where
 | |
| // FloatEq(first field) matches the second field.
 | |
| inline internal::FloatingEq2Matcher<float> FloatEq() {
 | |
|   return internal::FloatingEq2Matcher<float>();
 | |
| }
 | |
| 
 | |
| // Creates a polymorphic matcher that matches a 2-tuple where
 | |
| // DoubleEq(first field) matches the second field.
 | |
| inline internal::FloatingEq2Matcher<double> DoubleEq() {
 | |
|   return internal::FloatingEq2Matcher<double>();
 | |
| }
 | |
| 
 | |
| // Creates a polymorphic matcher that matches a 2-tuple where
 | |
| // FloatEq(first field) matches the second field with NaN equality.
 | |
| inline internal::FloatingEq2Matcher<float> NanSensitiveFloatEq() {
 | |
|   return internal::FloatingEq2Matcher<float>(true);
 | |
| }
 | |
| 
 | |
| // Creates a polymorphic matcher that matches a 2-tuple where
 | |
| // DoubleEq(first field) matches the second field with NaN equality.
 | |
| inline internal::FloatingEq2Matcher<double> NanSensitiveDoubleEq() {
 | |
|   return internal::FloatingEq2Matcher<double>(true);
 | |
| }
 | |
| 
 | |
| // Creates a polymorphic matcher that matches a 2-tuple where
 | |
| // FloatNear(first field, max_abs_error) matches the second field.
 | |
| inline internal::FloatingEq2Matcher<float> FloatNear(float max_abs_error) {
 | |
|   return internal::FloatingEq2Matcher<float>(max_abs_error);
 | |
| }
 | |
| 
 | |
| // Creates a polymorphic matcher that matches a 2-tuple where
 | |
| // DoubleNear(first field, max_abs_error) matches the second field.
 | |
| inline internal::FloatingEq2Matcher<double> DoubleNear(double max_abs_error) {
 | |
|   return internal::FloatingEq2Matcher<double>(max_abs_error);
 | |
| }
 | |
| 
 | |
| // Creates a polymorphic matcher that matches a 2-tuple where
 | |
| // FloatNear(first field, max_abs_error) matches the second field with NaN
 | |
| // equality.
 | |
| inline internal::FloatingEq2Matcher<float> NanSensitiveFloatNear(
 | |
|     float max_abs_error) {
 | |
|   return internal::FloatingEq2Matcher<float>(max_abs_error, true);
 | |
| }
 | |
| 
 | |
| // Creates a polymorphic matcher that matches a 2-tuple where
 | |
| // DoubleNear(first field, max_abs_error) matches the second field with NaN
 | |
| // equality.
 | |
| inline internal::FloatingEq2Matcher<double> NanSensitiveDoubleNear(
 | |
|     double max_abs_error) {
 | |
|   return internal::FloatingEq2Matcher<double>(max_abs_error, true);
 | |
| }
 | |
| 
 | |
| // Creates a matcher that matches any value of type T that m doesn't
 | |
| // match.
 | |
| template <typename InnerMatcher>
 | |
| inline internal::NotMatcher<InnerMatcher> Not(InnerMatcher m) {
 | |
|   return internal::NotMatcher<InnerMatcher>(m);
 | |
| }
 | |
| 
 | |
| // Returns a matcher that matches anything that satisfies the given
 | |
| // predicate.  The predicate can be any unary function or functor
 | |
| // whose return type can be implicitly converted to bool.
 | |
| template <typename Predicate>
 | |
| inline PolymorphicMatcher<internal::TrulyMatcher<Predicate> >
 | |
| Truly(Predicate pred) {
 | |
|   return MakePolymorphicMatcher(internal::TrulyMatcher<Predicate>(pred));
 | |
| }
 | |
| 
 | |
| // Returns a matcher that matches the container size. The container must
 | |
| // support both size() and size_type which all STL-like containers provide.
 | |
| // Note that the parameter 'size' can be a value of type size_type as well as
 | |
| // matcher. For instance:
 | |
| //   EXPECT_THAT(container, SizeIs(2));     // Checks container has 2 elements.
 | |
| //   EXPECT_THAT(container, SizeIs(Le(2));  // Checks container has at most 2.
 | |
| template <typename SizeMatcher>
 | |
| inline internal::SizeIsMatcher<SizeMatcher>
 | |
| SizeIs(const SizeMatcher& size_matcher) {
 | |
|   return internal::SizeIsMatcher<SizeMatcher>(size_matcher);
 | |
| }
 | |
| 
 | |
| // Returns a matcher that matches the distance between the container's begin()
 | |
| // iterator and its end() iterator, i.e. the size of the container. This matcher
 | |
| // can be used instead of SizeIs with containers such as std::forward_list which
 | |
| // do not implement size(). The container must provide const_iterator (with
 | |
| // valid iterator_traits), begin() and end().
 | |
| template <typename DistanceMatcher>
 | |
| inline internal::BeginEndDistanceIsMatcher<DistanceMatcher>
 | |
| BeginEndDistanceIs(const DistanceMatcher& distance_matcher) {
 | |
|   return internal::BeginEndDistanceIsMatcher<DistanceMatcher>(distance_matcher);
 | |
| }
 | |
| 
 | |
| // Returns a matcher that matches an equal container.
 | |
| // This matcher behaves like Eq(), but in the event of mismatch lists the
 | |
| // values that are included in one container but not the other. (Duplicate
 | |
| // values and order differences are not explained.)
 | |
| template <typename Container>
 | |
| inline PolymorphicMatcher<internal::ContainerEqMatcher<
 | |
|     typename std::remove_const<Container>::type>>
 | |
| ContainerEq(const Container& rhs) {
 | |
|   return MakePolymorphicMatcher(internal::ContainerEqMatcher<Container>(rhs));
 | |
| }
 | |
| 
 | |
| // Returns a matcher that matches a container that, when sorted using
 | |
| // the given comparator, matches container_matcher.
 | |
| template <typename Comparator, typename ContainerMatcher>
 | |
| inline internal::WhenSortedByMatcher<Comparator, ContainerMatcher>
 | |
| WhenSortedBy(const Comparator& comparator,
 | |
|              const ContainerMatcher& container_matcher) {
 | |
|   return internal::WhenSortedByMatcher<Comparator, ContainerMatcher>(
 | |
|       comparator, container_matcher);
 | |
| }
 | |
| 
 | |
| // Returns a matcher that matches a container that, when sorted using
 | |
| // the < operator, matches container_matcher.
 | |
| template <typename ContainerMatcher>
 | |
| inline internal::WhenSortedByMatcher<internal::LessComparator, ContainerMatcher>
 | |
| WhenSorted(const ContainerMatcher& container_matcher) {
 | |
|   return
 | |
|       internal::WhenSortedByMatcher<internal::LessComparator, ContainerMatcher>(
 | |
|           internal::LessComparator(), container_matcher);
 | |
| }
 | |
| 
 | |
| // Matches an STL-style container or a native array that contains the
 | |
| // same number of elements as in rhs, where its i-th element and rhs's
 | |
| // i-th element (as a pair) satisfy the given pair matcher, for all i.
 | |
| // TupleMatcher must be able to be safely cast to Matcher<std::tuple<const
 | |
| // T1&, const T2&> >, where T1 and T2 are the types of elements in the
 | |
| // LHS container and the RHS container respectively.
 | |
| template <typename TupleMatcher, typename Container>
 | |
| inline internal::PointwiseMatcher<TupleMatcher,
 | |
|                                   typename std::remove_const<Container>::type>
 | |
| Pointwise(const TupleMatcher& tuple_matcher, const Container& rhs) {
 | |
|   return internal::PointwiseMatcher<TupleMatcher, Container>(tuple_matcher,
 | |
|                                                              rhs);
 | |
| }
 | |
| 
 | |
| 
 | |
| // Supports the Pointwise(m, {a, b, c}) syntax.
 | |
| template <typename TupleMatcher, typename T>
 | |
| inline internal::PointwiseMatcher<TupleMatcher, std::vector<T> > Pointwise(
 | |
|     const TupleMatcher& tuple_matcher, std::initializer_list<T> rhs) {
 | |
|   return Pointwise(tuple_matcher, std::vector<T>(rhs));
 | |
| }
 | |
| 
 | |
| 
 | |
| // UnorderedPointwise(pair_matcher, rhs) matches an STL-style
 | |
| // container or a native array that contains the same number of
 | |
| // elements as in rhs, where in some permutation of the container, its
 | |
| // i-th element and rhs's i-th element (as a pair) satisfy the given
 | |
| // pair matcher, for all i.  Tuple2Matcher must be able to be safely
 | |
| // cast to Matcher<std::tuple<const T1&, const T2&> >, where T1 and T2 are
 | |
| // the types of elements in the LHS container and the RHS container
 | |
| // respectively.
 | |
| //
 | |
| // This is like Pointwise(pair_matcher, rhs), except that the element
 | |
| // order doesn't matter.
 | |
| template <typename Tuple2Matcher, typename RhsContainer>
 | |
| inline internal::UnorderedElementsAreArrayMatcher<
 | |
|     typename internal::BoundSecondMatcher<
 | |
|         Tuple2Matcher,
 | |
|         typename internal::StlContainerView<
 | |
|             typename std::remove_const<RhsContainer>::type>::type::value_type>>
 | |
| UnorderedPointwise(const Tuple2Matcher& tuple2_matcher,
 | |
|                    const RhsContainer& rhs_container) {
 | |
|   // RhsView allows the same code to handle RhsContainer being a
 | |
|   // STL-style container and it being a native C-style array.
 | |
|   typedef typename internal::StlContainerView<RhsContainer> RhsView;
 | |
|   typedef typename RhsView::type RhsStlContainer;
 | |
|   typedef typename RhsStlContainer::value_type Second;
 | |
|   const RhsStlContainer& rhs_stl_container =
 | |
|       RhsView::ConstReference(rhs_container);
 | |
| 
 | |
|   // Create a matcher for each element in rhs_container.
 | |
|   ::std::vector<internal::BoundSecondMatcher<Tuple2Matcher, Second> > matchers;
 | |
|   for (typename RhsStlContainer::const_iterator it = rhs_stl_container.begin();
 | |
|        it != rhs_stl_container.end(); ++it) {
 | |
|     matchers.push_back(
 | |
|         internal::MatcherBindSecond(tuple2_matcher, *it));
 | |
|   }
 | |
| 
 | |
|   // Delegate the work to UnorderedElementsAreArray().
 | |
|   return UnorderedElementsAreArray(matchers);
 | |
| }
 | |
| 
 | |
| 
 | |
| // Supports the UnorderedPointwise(m, {a, b, c}) syntax.
 | |
| template <typename Tuple2Matcher, typename T>
 | |
| inline internal::UnorderedElementsAreArrayMatcher<
 | |
|     typename internal::BoundSecondMatcher<Tuple2Matcher, T> >
 | |
| UnorderedPointwise(const Tuple2Matcher& tuple2_matcher,
 | |
|                    std::initializer_list<T> rhs) {
 | |
|   return UnorderedPointwise(tuple2_matcher, std::vector<T>(rhs));
 | |
| }
 | |
| 
 | |
| 
 | |
| // Matches an STL-style container or a native array that contains at
 | |
| // least one element matching the given value or matcher.
 | |
| //
 | |
| // Examples:
 | |
| //   ::std::set<int> page_ids;
 | |
| //   page_ids.insert(3);
 | |
| //   page_ids.insert(1);
 | |
| //   EXPECT_THAT(page_ids, Contains(1));
 | |
| //   EXPECT_THAT(page_ids, Contains(Gt(2)));
 | |
| //   EXPECT_THAT(page_ids, Not(Contains(4)));
 | |
| //
 | |
| //   ::std::map<int, size_t> page_lengths;
 | |
| //   page_lengths[1] = 100;
 | |
| //   EXPECT_THAT(page_lengths,
 | |
| //               Contains(::std::pair<const int, size_t>(1, 100)));
 | |
| //
 | |
| //   const char* user_ids[] = { "joe", "mike", "tom" };
 | |
| //   EXPECT_THAT(user_ids, Contains(Eq(::std::string("tom"))));
 | |
| template <typename M>
 | |
| inline internal::ContainsMatcher<M> Contains(M matcher) {
 | |
|   return internal::ContainsMatcher<M>(matcher);
 | |
| }
 | |
| 
 | |
| // IsSupersetOf(iterator_first, iterator_last)
 | |
| // IsSupersetOf(pointer, count)
 | |
| // IsSupersetOf(array)
 | |
| // IsSupersetOf(container)
 | |
| // IsSupersetOf({e1, e2, ..., en})
 | |
| //
 | |
| // IsSupersetOf() verifies that a surjective partial mapping onto a collection
 | |
| // of matchers exists. In other words, a container matches
 | |
| // IsSupersetOf({e1, ..., en}) if and only if there is a permutation
 | |
| // {y1, ..., yn} of some of the container's elements where y1 matches e1,
 | |
| // ..., and yn matches en. Obviously, the size of the container must be >= n
 | |
| // in order to have a match. Examples:
 | |
| //
 | |
| // - {1, 2, 3} matches IsSupersetOf({Ge(3), Ne(0)}), as 3 matches Ge(3) and
 | |
| //   1 matches Ne(0).
 | |
| // - {1, 2} doesn't match IsSupersetOf({Eq(1), Lt(2)}), even though 1 matches
 | |
| //   both Eq(1) and Lt(2). The reason is that different matchers must be used
 | |
| //   for elements in different slots of the container.
 | |
| // - {1, 1, 2} matches IsSupersetOf({Eq(1), Lt(2)}), as (the first) 1 matches
 | |
| //   Eq(1) and (the second) 1 matches Lt(2).
 | |
| // - {1, 2, 3} matches IsSupersetOf(Gt(1), Gt(1)), as 2 matches (the first)
 | |
| //   Gt(1) and 3 matches (the second) Gt(1).
 | |
| //
 | |
| // The matchers can be specified as an array, a pointer and count, a container,
 | |
| // an initializer list, or an STL iterator range. In each of these cases, the
 | |
| // underlying matchers can be either values or matchers.
 | |
| 
 | |
| template <typename Iter>
 | |
| inline internal::UnorderedElementsAreArrayMatcher<
 | |
|     typename ::std::iterator_traits<Iter>::value_type>
 | |
| IsSupersetOf(Iter first, Iter last) {
 | |
|   typedef typename ::std::iterator_traits<Iter>::value_type T;
 | |
|   return internal::UnorderedElementsAreArrayMatcher<T>(
 | |
|       internal::UnorderedMatcherRequire::Superset, first, last);
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf(
 | |
|     const T* pointer, size_t count) {
 | |
|   return IsSupersetOf(pointer, pointer + count);
 | |
| }
 | |
| 
 | |
| template <typename T, size_t N>
 | |
| inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf(
 | |
|     const T (&array)[N]) {
 | |
|   return IsSupersetOf(array, N);
 | |
| }
 | |
| 
 | |
| template <typename Container>
 | |
| inline internal::UnorderedElementsAreArrayMatcher<
 | |
|     typename Container::value_type>
 | |
| IsSupersetOf(const Container& container) {
 | |
|   return IsSupersetOf(container.begin(), container.end());
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf(
 | |
|     ::std::initializer_list<T> xs) {
 | |
|   return IsSupersetOf(xs.begin(), xs.end());
 | |
| }
 | |
| 
 | |
| // IsSubsetOf(iterator_first, iterator_last)
 | |
| // IsSubsetOf(pointer, count)
 | |
| // IsSubsetOf(array)
 | |
| // IsSubsetOf(container)
 | |
| // IsSubsetOf({e1, e2, ..., en})
 | |
| //
 | |
| // IsSubsetOf() verifies that an injective mapping onto a collection of matchers
 | |
| // exists.  In other words, a container matches IsSubsetOf({e1, ..., en}) if and
 | |
| // only if there is a subset of matchers {m1, ..., mk} which would match the
 | |
| // container using UnorderedElementsAre.  Obviously, the size of the container
 | |
| // must be <= n in order to have a match. Examples:
 | |
| //
 | |
| // - {1} matches IsSubsetOf({Gt(0), Lt(0)}), as 1 matches Gt(0).
 | |
| // - {1, -1} matches IsSubsetOf({Lt(0), Gt(0)}), as 1 matches Gt(0) and -1
 | |
| //   matches Lt(0).
 | |
| // - {1, 2} doesn't matches IsSubsetOf({Gt(0), Lt(0)}), even though 1 and 2 both
 | |
| //   match Gt(0). The reason is that different matchers must be used for
 | |
| //   elements in different slots of the container.
 | |
| //
 | |
| // The matchers can be specified as an array, a pointer and count, a container,
 | |
| // an initializer list, or an STL iterator range. In each of these cases, the
 | |
| // underlying matchers can be either values or matchers.
 | |
| 
 | |
| template <typename Iter>
 | |
| inline internal::UnorderedElementsAreArrayMatcher<
 | |
|     typename ::std::iterator_traits<Iter>::value_type>
 | |
| IsSubsetOf(Iter first, Iter last) {
 | |
|   typedef typename ::std::iterator_traits<Iter>::value_type T;
 | |
|   return internal::UnorderedElementsAreArrayMatcher<T>(
 | |
|       internal::UnorderedMatcherRequire::Subset, first, last);
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf(
 | |
|     const T* pointer, size_t count) {
 | |
|   return IsSubsetOf(pointer, pointer + count);
 | |
| }
 | |
| 
 | |
| template <typename T, size_t N>
 | |
| inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf(
 | |
|     const T (&array)[N]) {
 | |
|   return IsSubsetOf(array, N);
 | |
| }
 | |
| 
 | |
| template <typename Container>
 | |
| inline internal::UnorderedElementsAreArrayMatcher<
 | |
|     typename Container::value_type>
 | |
| IsSubsetOf(const Container& container) {
 | |
|   return IsSubsetOf(container.begin(), container.end());
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf(
 | |
|     ::std::initializer_list<T> xs) {
 | |
|   return IsSubsetOf(xs.begin(), xs.end());
 | |
| }
 | |
| 
 | |
| // Matches an STL-style container or a native array that contains only
 | |
| // elements matching the given value or matcher.
 | |
| //
 | |
| // Each(m) is semantically equivalent to Not(Contains(Not(m))). Only
 | |
| // the messages are different.
 | |
| //
 | |
| // Examples:
 | |
| //   ::std::set<int> page_ids;
 | |
| //   // Each(m) matches an empty container, regardless of what m is.
 | |
| //   EXPECT_THAT(page_ids, Each(Eq(1)));
 | |
| //   EXPECT_THAT(page_ids, Each(Eq(77)));
 | |
| //
 | |
| //   page_ids.insert(3);
 | |
| //   EXPECT_THAT(page_ids, Each(Gt(0)));
 | |
| //   EXPECT_THAT(page_ids, Not(Each(Gt(4))));
 | |
| //   page_ids.insert(1);
 | |
| //   EXPECT_THAT(page_ids, Not(Each(Lt(2))));
 | |
| //
 | |
| //   ::std::map<int, size_t> page_lengths;
 | |
| //   page_lengths[1] = 100;
 | |
| //   page_lengths[2] = 200;
 | |
| //   page_lengths[3] = 300;
 | |
| //   EXPECT_THAT(page_lengths, Not(Each(Pair(1, 100))));
 | |
| //   EXPECT_THAT(page_lengths, Each(Key(Le(3))));
 | |
| //
 | |
| //   const char* user_ids[] = { "joe", "mike", "tom" };
 | |
| //   EXPECT_THAT(user_ids, Not(Each(Eq(::std::string("tom")))));
 | |
| template <typename M>
 | |
| inline internal::EachMatcher<M> Each(M matcher) {
 | |
|   return internal::EachMatcher<M>(matcher);
 | |
| }
 | |
| 
 | |
| // Key(inner_matcher) matches an std::pair whose 'first' field matches
 | |
| // inner_matcher.  For example, Contains(Key(Ge(5))) can be used to match an
 | |
| // std::map that contains at least one element whose key is >= 5.
 | |
| template <typename M>
 | |
| inline internal::KeyMatcher<M> Key(M inner_matcher) {
 | |
|   return internal::KeyMatcher<M>(inner_matcher);
 | |
| }
 | |
| 
 | |
| // Pair(first_matcher, second_matcher) matches a std::pair whose 'first' field
 | |
| // matches first_matcher and whose 'second' field matches second_matcher.  For
 | |
| // example, EXPECT_THAT(map_type, ElementsAre(Pair(Ge(5), "foo"))) can be used
 | |
| // to match a std::map<int, string> that contains exactly one element whose key
 | |
| // is >= 5 and whose value equals "foo".
 | |
| template <typename FirstMatcher, typename SecondMatcher>
 | |
| inline internal::PairMatcher<FirstMatcher, SecondMatcher>
 | |
| Pair(FirstMatcher first_matcher, SecondMatcher second_matcher) {
 | |
|   return internal::PairMatcher<FirstMatcher, SecondMatcher>(
 | |
|       first_matcher, second_matcher);
 | |
| }
 | |
| 
 | |
| namespace no_adl {
 | |
| // FieldsAre(matchers...) matches piecewise the fields of compatible structs.
 | |
| // These include those that support `get<I>(obj)`, and when structured bindings
 | |
| // are enabled any class that supports them.
 | |
| // In particular, `std::tuple`, `std::pair`, `std::array` and aggregate types.
 | |
| template <typename... M>
 | |
| internal::FieldsAreMatcher<typename std::decay<M>::type...> FieldsAre(
 | |
|     M&&... matchers) {
 | |
|   return internal::FieldsAreMatcher<typename std::decay<M>::type...>(
 | |
|       std::forward<M>(matchers)...);
 | |
| }
 | |
| 
 | |
| // Creates a matcher that matches a pointer (raw or smart) that matches
 | |
| // inner_matcher.
 | |
| template <typename InnerMatcher>
 | |
| inline internal::PointerMatcher<InnerMatcher> Pointer(
 | |
|     const InnerMatcher& inner_matcher) {
 | |
|   return internal::PointerMatcher<InnerMatcher>(inner_matcher);
 | |
| }
 | |
| 
 | |
| // Creates a matcher that matches an object that has an address that matches
 | |
| // inner_matcher.
 | |
| template <typename InnerMatcher>
 | |
| inline internal::AddressMatcher<InnerMatcher> Address(
 | |
|     const InnerMatcher& inner_matcher) {
 | |
|   return internal::AddressMatcher<InnerMatcher>(inner_matcher);
 | |
| }
 | |
| }  // namespace no_adl
 | |
| 
 | |
| // Returns a predicate that is satisfied by anything that matches the
 | |
| // given matcher.
 | |
| template <typename M>
 | |
| inline internal::MatcherAsPredicate<M> Matches(M matcher) {
 | |
|   return internal::MatcherAsPredicate<M>(matcher);
 | |
| }
 | |
| 
 | |
| // Returns true if and only if the value matches the matcher.
 | |
| template <typename T, typename M>
 | |
| inline bool Value(const T& value, M matcher) {
 | |
|   return testing::Matches(matcher)(value);
 | |
| }
 | |
| 
 | |
| // Matches the value against the given matcher and explains the match
 | |
| // result to listener.
 | |
| template <typename T, typename M>
 | |
| inline bool ExplainMatchResult(
 | |
|     M matcher, const T& value, MatchResultListener* listener) {
 | |
|   return SafeMatcherCast<const T&>(matcher).MatchAndExplain(value, listener);
 | |
| }
 | |
| 
 | |
| // Returns a string representation of the given matcher.  Useful for description
 | |
| // strings of matchers defined using MATCHER_P* macros that accept matchers as
 | |
| // their arguments.  For example:
 | |
| //
 | |
| // MATCHER_P(XAndYThat, matcher,
 | |
| //           "X that " + DescribeMatcher<int>(matcher, negation) +
 | |
| //               " and Y that " + DescribeMatcher<double>(matcher, negation)) {
 | |
| //   return ExplainMatchResult(matcher, arg.x(), result_listener) &&
 | |
| //          ExplainMatchResult(matcher, arg.y(), result_listener);
 | |
| // }
 | |
| template <typename T, typename M>
 | |
| std::string DescribeMatcher(const M& matcher, bool negation = false) {
 | |
|   ::std::stringstream ss;
 | |
|   Matcher<T> monomorphic_matcher = SafeMatcherCast<T>(matcher);
 | |
|   if (negation) {
 | |
|     monomorphic_matcher.DescribeNegationTo(&ss);
 | |
|   } else {
 | |
|     monomorphic_matcher.DescribeTo(&ss);
 | |
|   }
 | |
|   return ss.str();
 | |
| }
 | |
| 
 | |
| template <typename... Args>
 | |
| internal::ElementsAreMatcher<
 | |
|     std::tuple<typename std::decay<const Args&>::type...>>
 | |
| ElementsAre(const Args&... matchers) {
 | |
|   return internal::ElementsAreMatcher<
 | |
|       std::tuple<typename std::decay<const Args&>::type...>>(
 | |
|       std::make_tuple(matchers...));
 | |
| }
 | |
| 
 | |
| template <typename... Args>
 | |
| internal::UnorderedElementsAreMatcher<
 | |
|     std::tuple<typename std::decay<const Args&>::type...>>
 | |
| UnorderedElementsAre(const Args&... matchers) {
 | |
|   return internal::UnorderedElementsAreMatcher<
 | |
|       std::tuple<typename std::decay<const Args&>::type...>>(
 | |
|       std::make_tuple(matchers...));
 | |
| }
 | |
| 
 | |
| // Define variadic matcher versions.
 | |
| template <typename... Args>
 | |
| internal::AllOfMatcher<typename std::decay<const Args&>::type...> AllOf(
 | |
|     const Args&... matchers) {
 | |
|   return internal::AllOfMatcher<typename std::decay<const Args&>::type...>(
 | |
|       matchers...);
 | |
| }
 | |
| 
 | |
| template <typename... Args>
 | |
| internal::AnyOfMatcher<typename std::decay<const Args&>::type...> AnyOf(
 | |
|     const Args&... matchers) {
 | |
|   return internal::AnyOfMatcher<typename std::decay<const Args&>::type...>(
 | |
|       matchers...);
 | |
| }
 | |
| 
 | |
| // AnyOfArray(array)
 | |
| // AnyOfArray(pointer, count)
 | |
| // AnyOfArray(container)
 | |
| // AnyOfArray({ e1, e2, ..., en })
 | |
| // AnyOfArray(iterator_first, iterator_last)
 | |
| //
 | |
| // AnyOfArray() verifies whether a given value matches any member of a
 | |
| // collection of matchers.
 | |
| //
 | |
| // AllOfArray(array)
 | |
| // AllOfArray(pointer, count)
 | |
| // AllOfArray(container)
 | |
| // AllOfArray({ e1, e2, ..., en })
 | |
| // AllOfArray(iterator_first, iterator_last)
 | |
| //
 | |
| // AllOfArray() verifies whether a given value matches all members of a
 | |
| // collection of matchers.
 | |
| //
 | |
| // The matchers can be specified as an array, a pointer and count, a container,
 | |
| // an initializer list, or an STL iterator range. In each of these cases, the
 | |
| // underlying matchers can be either values or matchers.
 | |
| 
 | |
| template <typename Iter>
 | |
| inline internal::AnyOfArrayMatcher<
 | |
|     typename ::std::iterator_traits<Iter>::value_type>
 | |
| AnyOfArray(Iter first, Iter last) {
 | |
|   return internal::AnyOfArrayMatcher<
 | |
|       typename ::std::iterator_traits<Iter>::value_type>(first, last);
 | |
| }
 | |
| 
 | |
| template <typename Iter>
 | |
| inline internal::AllOfArrayMatcher<
 | |
|     typename ::std::iterator_traits<Iter>::value_type>
 | |
| AllOfArray(Iter first, Iter last) {
 | |
|   return internal::AllOfArrayMatcher<
 | |
|       typename ::std::iterator_traits<Iter>::value_type>(first, last);
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| inline internal::AnyOfArrayMatcher<T> AnyOfArray(const T* ptr, size_t count) {
 | |
|   return AnyOfArray(ptr, ptr + count);
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| inline internal::AllOfArrayMatcher<T> AllOfArray(const T* ptr, size_t count) {
 | |
|   return AllOfArray(ptr, ptr + count);
 | |
| }
 | |
| 
 | |
| template <typename T, size_t N>
 | |
| inline internal::AnyOfArrayMatcher<T> AnyOfArray(const T (&array)[N]) {
 | |
|   return AnyOfArray(array, N);
 | |
| }
 | |
| 
 | |
| template <typename T, size_t N>
 | |
| inline internal::AllOfArrayMatcher<T> AllOfArray(const T (&array)[N]) {
 | |
|   return AllOfArray(array, N);
 | |
| }
 | |
| 
 | |
| template <typename Container>
 | |
| inline internal::AnyOfArrayMatcher<typename Container::value_type> AnyOfArray(
 | |
|     const Container& container) {
 | |
|   return AnyOfArray(container.begin(), container.end());
 | |
| }
 | |
| 
 | |
| template <typename Container>
 | |
| inline internal::AllOfArrayMatcher<typename Container::value_type> AllOfArray(
 | |
|     const Container& container) {
 | |
|   return AllOfArray(container.begin(), container.end());
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| inline internal::AnyOfArrayMatcher<T> AnyOfArray(
 | |
|     ::std::initializer_list<T> xs) {
 | |
|   return AnyOfArray(xs.begin(), xs.end());
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| inline internal::AllOfArrayMatcher<T> AllOfArray(
 | |
|     ::std::initializer_list<T> xs) {
 | |
|   return AllOfArray(xs.begin(), xs.end());
 | |
| }
 | |
| 
 | |
| // Args<N1, N2, ..., Nk>(a_matcher) matches a tuple if the selected
 | |
| // fields of it matches a_matcher.  C++ doesn't support default
 | |
| // arguments for function templates, so we have to overload it.
 | |
| template <size_t... k, typename InnerMatcher>
 | |
| internal::ArgsMatcher<typename std::decay<InnerMatcher>::type, k...> Args(
 | |
|     InnerMatcher&& matcher) {
 | |
|   return internal::ArgsMatcher<typename std::decay<InnerMatcher>::type, k...>(
 | |
|       std::forward<InnerMatcher>(matcher));
 | |
| }
 | |
| 
 | |
| // AllArgs(m) is a synonym of m.  This is useful in
 | |
| //
 | |
| //   EXPECT_CALL(foo, Bar(_, _)).With(AllArgs(Eq()));
 | |
| //
 | |
| // which is easier to read than
 | |
| //
 | |
| //   EXPECT_CALL(foo, Bar(_, _)).With(Eq());
 | |
| template <typename InnerMatcher>
 | |
| inline InnerMatcher AllArgs(const InnerMatcher& matcher) { return matcher; }
 | |
| 
 | |
| // Returns a matcher that matches the value of an optional<> type variable.
 | |
| // The matcher implementation only uses '!arg' and requires that the optional<>
 | |
| // type has a 'value_type' member type and that '*arg' is of type 'value_type'
 | |
| // and is printable using 'PrintToString'. It is compatible with
 | |
| // std::optional/std::experimental::optional.
 | |
| // Note that to compare an optional type variable against nullopt you should
 | |
| // use Eq(nullopt) and not Eq(Optional(nullopt)). The latter implies that the
 | |
| // optional value contains an optional itself.
 | |
| template <typename ValueMatcher>
 | |
| inline internal::OptionalMatcher<ValueMatcher> Optional(
 | |
|     const ValueMatcher& value_matcher) {
 | |
|   return internal::OptionalMatcher<ValueMatcher>(value_matcher);
 | |
| }
 | |
| 
 | |
| // Returns a matcher that matches the value of a absl::any type variable.
 | |
| template <typename T>
 | |
| PolymorphicMatcher<internal::any_cast_matcher::AnyCastMatcher<T> > AnyWith(
 | |
|     const Matcher<const T&>& matcher) {
 | |
|   return MakePolymorphicMatcher(
 | |
|       internal::any_cast_matcher::AnyCastMatcher<T>(matcher));
 | |
| }
 | |
| 
 | |
| // Returns a matcher that matches the value of a variant<> type variable.
 | |
| // The matcher implementation uses ADL to find the holds_alternative and get
 | |
| // functions.
 | |
| // It is compatible with std::variant.
 | |
| template <typename T>
 | |
| PolymorphicMatcher<internal::variant_matcher::VariantMatcher<T> > VariantWith(
 | |
|     const Matcher<const T&>& matcher) {
 | |
|   return MakePolymorphicMatcher(
 | |
|       internal::variant_matcher::VariantMatcher<T>(matcher));
 | |
| }
 | |
| 
 | |
| #if GTEST_HAS_EXCEPTIONS
 | |
| 
 | |
| // Anything inside the `internal` namespace is internal to the implementation
 | |
| // and must not be used in user code!
 | |
| namespace internal {
 | |
| 
 | |
| class WithWhatMatcherImpl {
 | |
|  public:
 | |
|   WithWhatMatcherImpl(Matcher<std::string> matcher)
 | |
|       : matcher_(std::move(matcher)) {}
 | |
| 
 | |
|   void DescribeTo(std::ostream* os) const {
 | |
|     *os << "contains .what() that ";
 | |
|     matcher_.DescribeTo(os);
 | |
|   }
 | |
| 
 | |
|   void DescribeNegationTo(std::ostream* os) const {
 | |
|     *os << "contains .what() that does not ";
 | |
|     matcher_.DescribeTo(os);
 | |
|   }
 | |
| 
 | |
|   template <typename Err>
 | |
|   bool MatchAndExplain(const Err& err, MatchResultListener* listener) const {
 | |
|     *listener << "which contains .what() that ";
 | |
|     return matcher_.MatchAndExplain(err.what(), listener);
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   const Matcher<std::string> matcher_;
 | |
| };
 | |
| 
 | |
| inline PolymorphicMatcher<WithWhatMatcherImpl> WithWhat(
 | |
|     Matcher<std::string> m) {
 | |
|   return MakePolymorphicMatcher(WithWhatMatcherImpl(std::move(m)));
 | |
| }
 | |
| 
 | |
| template <typename Err>
 | |
| class ExceptionMatcherImpl {
 | |
|   class NeverThrown {
 | |
|    public:
 | |
|     const char* what() const noexcept {
 | |
|       return "this exception should never be thrown";
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   // If the matchee raises an exception of a wrong type, we'd like to
 | |
|   // catch it and print its message and type. To do that, we add an additional
 | |
|   // catch clause:
 | |
|   //
 | |
|   //     try { ... }
 | |
|   //     catch (const Err&) { /* an expected exception */ }
 | |
|   //     catch (const std::exception&) { /* exception of a wrong type */ }
 | |
|   //
 | |
|   // However, if the `Err` itself is `std::exception`, we'd end up with two
 | |
|   // identical `catch` clauses:
 | |
|   //
 | |
|   //     try { ... }
 | |
|   //     catch (const std::exception&) { /* an expected exception */ }
 | |
|   //     catch (const std::exception&) { /* exception of a wrong type */ }
 | |
|   //
 | |
|   // This can cause a warning or an error in some compilers. To resolve
 | |
|   // the issue, we use a fake error type whenever `Err` is `std::exception`:
 | |
|   //
 | |
|   //     try { ... }
 | |
|   //     catch (const std::exception&) { /* an expected exception */ }
 | |
|   //     catch (const NeverThrown&) { /* exception of a wrong type */ }
 | |
|   using DefaultExceptionType = typename std::conditional<
 | |
|       std::is_same<typename std::remove_cv<
 | |
|                        typename std::remove_reference<Err>::type>::type,
 | |
|                    std::exception>::value,
 | |
|       const NeverThrown&, const std::exception&>::type;
 | |
| 
 | |
|  public:
 | |
|   ExceptionMatcherImpl(Matcher<const Err&> matcher)
 | |
|       : matcher_(std::move(matcher)) {}
 | |
| 
 | |
|   void DescribeTo(std::ostream* os) const {
 | |
|     *os << "throws an exception which is a " << GetTypeName<Err>();
 | |
|     *os << " which ";
 | |
|     matcher_.DescribeTo(os);
 | |
|   }
 | |
| 
 | |
|   void DescribeNegationTo(std::ostream* os) const {
 | |
|     *os << "throws an exception which is not a " << GetTypeName<Err>();
 | |
|     *os << " which ";
 | |
|     matcher_.DescribeNegationTo(os);
 | |
|   }
 | |
| 
 | |
|   template <typename T>
 | |
|   bool MatchAndExplain(T&& x, MatchResultListener* listener) const {
 | |
|     try {
 | |
|       (void)(std::forward<T>(x)());
 | |
|     } catch (const Err& err) {
 | |
|       *listener << "throws an exception which is a " << GetTypeName<Err>();
 | |
|       *listener << " ";
 | |
|       return matcher_.MatchAndExplain(err, listener);
 | |
|     } catch (DefaultExceptionType err) {
 | |
| #if GTEST_HAS_RTTI
 | |
|       *listener << "throws an exception of type " << GetTypeName(typeid(err));
 | |
|       *listener << " ";
 | |
| #else
 | |
|       *listener << "throws an std::exception-derived type ";
 | |
| #endif
 | |
|       *listener << "with description \"" << err.what() << "\"";
 | |
|       return false;
 | |
|     } catch (...) {
 | |
|       *listener << "throws an exception of an unknown type";
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     *listener << "does not throw any exception";
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   const Matcher<const Err&> matcher_;
 | |
| };
 | |
| 
 | |
| }  // namespace internal
 | |
| 
 | |
| // Throws()
 | |
| // Throws(exceptionMatcher)
 | |
| // ThrowsMessage(messageMatcher)
 | |
| //
 | |
| // This matcher accepts a callable and verifies that when invoked, it throws
 | |
| // an exception with the given type and properties.
 | |
| //
 | |
| // Examples:
 | |
| //
 | |
| //   EXPECT_THAT(
 | |
| //       []() { throw std::runtime_error("message"); },
 | |
| //       Throws<std::runtime_error>());
 | |
| //
 | |
| //   EXPECT_THAT(
 | |
| //       []() { throw std::runtime_error("message"); },
 | |
| //       ThrowsMessage<std::runtime_error>(HasSubstr("message")));
 | |
| //
 | |
| //   EXPECT_THAT(
 | |
| //       []() { throw std::runtime_error("message"); },
 | |
| //       Throws<std::runtime_error>(
 | |
| //           Property(&std::runtime_error::what, HasSubstr("message"))));
 | |
| 
 | |
| template <typename Err>
 | |
| PolymorphicMatcher<internal::ExceptionMatcherImpl<Err>> Throws() {
 | |
|   return MakePolymorphicMatcher(
 | |
|       internal::ExceptionMatcherImpl<Err>(A<const Err&>()));
 | |
| }
 | |
| 
 | |
| template <typename Err, typename ExceptionMatcher>
 | |
| PolymorphicMatcher<internal::ExceptionMatcherImpl<Err>> Throws(
 | |
|     const ExceptionMatcher& exception_matcher) {
 | |
|   // Using matcher cast allows users to pass a matcher of a more broad type.
 | |
|   // For example user may want to pass Matcher<std::exception>
 | |
|   // to Throws<std::runtime_error>, or Matcher<int64> to Throws<int32>.
 | |
|   return MakePolymorphicMatcher(internal::ExceptionMatcherImpl<Err>(
 | |
|       SafeMatcherCast<const Err&>(exception_matcher)));
 | |
| }
 | |
| 
 | |
| template <typename Err, typename MessageMatcher>
 | |
| PolymorphicMatcher<internal::ExceptionMatcherImpl<Err>> ThrowsMessage(
 | |
|     MessageMatcher&& message_matcher) {
 | |
|   static_assert(std::is_base_of<std::exception, Err>::value,
 | |
|                 "expected an std::exception-derived type");
 | |
|   return Throws<Err>(internal::WithWhat(
 | |
|       MatcherCast<std::string>(std::forward<MessageMatcher>(message_matcher))));
 | |
| }
 | |
| 
 | |
| #endif  // GTEST_HAS_EXCEPTIONS
 | |
| 
 | |
| // These macros allow using matchers to check values in Google Test
 | |
| // tests.  ASSERT_THAT(value, matcher) and EXPECT_THAT(value, matcher)
 | |
| // succeed if and only if the value matches the matcher.  If the assertion
 | |
| // fails, the value and the description of the matcher will be printed.
 | |
| #define ASSERT_THAT(value, matcher) ASSERT_PRED_FORMAT1(\
 | |
|     ::testing::internal::MakePredicateFormatterFromMatcher(matcher), value)
 | |
| #define EXPECT_THAT(value, matcher) EXPECT_PRED_FORMAT1(\
 | |
|     ::testing::internal::MakePredicateFormatterFromMatcher(matcher), value)
 | |
| 
 | |
| // MATCHER* macroses itself are listed below.
 | |
| #define MATCHER(name, description)                                             \
 | |
|   class name##Matcher                                                          \
 | |
|       : public ::testing::internal::MatcherBaseImpl<name##Matcher> {           \
 | |
|    public:                                                                     \
 | |
|     template <typename arg_type>                                               \
 | |
|     class gmock_Impl : public ::testing::MatcherInterface<const arg_type&> {   \
 | |
|      public:                                                                   \
 | |
|       gmock_Impl() {}                                                          \
 | |
|       bool MatchAndExplain(                                                    \
 | |
|           const arg_type& arg,                                                 \
 | |
|           ::testing::MatchResultListener* result_listener) const override;     \
 | |
|       void DescribeTo(::std::ostream* gmock_os) const override {               \
 | |
|         *gmock_os << FormatDescription(false);                                 \
 | |
|       }                                                                        \
 | |
|       void DescribeNegationTo(::std::ostream* gmock_os) const override {       \
 | |
|         *gmock_os << FormatDescription(true);                                  \
 | |
|       }                                                                        \
 | |
|                                                                                \
 | |
|      private:                                                                  \
 | |
|       ::std::string FormatDescription(bool negation) const {                   \
 | |
|         ::std::string gmock_description = (description);                       \
 | |
|         if (!gmock_description.empty()) {                                      \
 | |
|           return gmock_description;                                            \
 | |
|         }                                                                      \
 | |
|         return ::testing::internal::FormatMatcherDescription(negation, #name,  \
 | |
|                                                              {});              \
 | |
|       }                                                                        \
 | |
|     };                                                                         \
 | |
|   };                                                                           \
 | |
|   GTEST_ATTRIBUTE_UNUSED_ inline name##Matcher name() { return {}; }           \
 | |
|   template <typename arg_type>                                                 \
 | |
|   bool name##Matcher::gmock_Impl<arg_type>::MatchAndExplain(                   \
 | |
|       const arg_type& arg,                                                     \
 | |
|       ::testing::MatchResultListener* result_listener GTEST_ATTRIBUTE_UNUSED_) \
 | |
|       const
 | |
| 
 | |
| #define MATCHER_P(name, p0, description) \
 | |
|   GMOCK_INTERNAL_MATCHER(name, name##MatcherP, description, (p0))
 | |
| #define MATCHER_P2(name, p0, p1, description) \
 | |
|   GMOCK_INTERNAL_MATCHER(name, name##MatcherP2, description, (p0, p1))
 | |
| #define MATCHER_P3(name, p0, p1, p2, description) \
 | |
|   GMOCK_INTERNAL_MATCHER(name, name##MatcherP3, description, (p0, p1, p2))
 | |
| #define MATCHER_P4(name, p0, p1, p2, p3, description) \
 | |
|   GMOCK_INTERNAL_MATCHER(name, name##MatcherP4, description, (p0, p1, p2, p3))
 | |
| #define MATCHER_P5(name, p0, p1, p2, p3, p4, description)    \
 | |
|   GMOCK_INTERNAL_MATCHER(name, name##MatcherP5, description, \
 | |
|                          (p0, p1, p2, p3, p4))
 | |
| #define MATCHER_P6(name, p0, p1, p2, p3, p4, p5, description) \
 | |
|   GMOCK_INTERNAL_MATCHER(name, name##MatcherP6, description,  \
 | |
|                          (p0, p1, p2, p3, p4, p5))
 | |
| #define MATCHER_P7(name, p0, p1, p2, p3, p4, p5, p6, description) \
 | |
|   GMOCK_INTERNAL_MATCHER(name, name##MatcherP7, description,      \
 | |
|                          (p0, p1, p2, p3, p4, p5, p6))
 | |
| #define MATCHER_P8(name, p0, p1, p2, p3, p4, p5, p6, p7, description) \
 | |
|   GMOCK_INTERNAL_MATCHER(name, name##MatcherP8, description,          \
 | |
|                          (p0, p1, p2, p3, p4, p5, p6, p7))
 | |
| #define MATCHER_P9(name, p0, p1, p2, p3, p4, p5, p6, p7, p8, description) \
 | |
|   GMOCK_INTERNAL_MATCHER(name, name##MatcherP9, description,              \
 | |
|                          (p0, p1, p2, p3, p4, p5, p6, p7, p8))
 | |
| #define MATCHER_P10(name, p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, description) \
 | |
|   GMOCK_INTERNAL_MATCHER(name, name##MatcherP10, description,                  \
 | |
|                          (p0, p1, p2, p3, p4, p5, p6, p7, p8, p9))
 | |
| 
 | |
| #define GMOCK_INTERNAL_MATCHER(name, full_name, description, args)             \
 | |
|   template <GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args)>                      \
 | |
|   class full_name : public ::testing::internal::MatcherBaseImpl<               \
 | |
|                         full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>> { \
 | |
|    public:                                                                     \
 | |
|     using full_name::MatcherBaseImpl::MatcherBaseImpl;                         \
 | |
|     template <typename arg_type>                                               \
 | |
|     class gmock_Impl : public ::testing::MatcherInterface<const arg_type&> {   \
 | |
|      public:                                                                   \
 | |
|       explicit gmock_Impl(GMOCK_INTERNAL_MATCHER_FUNCTION_ARGS(args))          \
 | |
|           : GMOCK_INTERNAL_MATCHER_FORWARD_ARGS(args) {}                       \
 | |
|       bool MatchAndExplain(                                                    \
 | |
|           const arg_type& arg,                                                 \
 | |
|           ::testing::MatchResultListener* result_listener) const override;     \
 | |
|       void DescribeTo(::std::ostream* gmock_os) const override {               \
 | |
|         *gmock_os << FormatDescription(false);                                 \
 | |
|       }                                                                        \
 | |
|       void DescribeNegationTo(::std::ostream* gmock_os) const override {       \
 | |
|         *gmock_os << FormatDescription(true);                                  \
 | |
|       }                                                                        \
 | |
|       GMOCK_INTERNAL_MATCHER_MEMBERS(args)                                     \
 | |
|                                                                                \
 | |
|      private:                                                                  \
 | |
|       ::std::string FormatDescription(bool negation) const {                   \
 | |
|         ::std::string gmock_description = (description);                       \
 | |
|         if (!gmock_description.empty()) {                                      \
 | |
|           return gmock_description;                                            \
 | |
|         }                                                                      \
 | |
|         return ::testing::internal::FormatMatcherDescription(                  \
 | |
|             negation, #name,                                                   \
 | |
|             ::testing::internal::UniversalTersePrintTupleFieldsToStrings(      \
 | |
|                 ::std::tuple<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>(        \
 | |
|                     GMOCK_INTERNAL_MATCHER_MEMBERS_USAGE(args))));             \
 | |
|       }                                                                        \
 | |
|     };                                                                         \
 | |
|   };                                                                           \
 | |
|   template <GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args)>                      \
 | |
|   inline full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)> name(             \
 | |
|       GMOCK_INTERNAL_MATCHER_FUNCTION_ARGS(args)) {                            \
 | |
|     return full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>(                \
 | |
|         GMOCK_INTERNAL_MATCHER_ARGS_USAGE(args));                              \
 | |
|   }                                                                            \
 | |
|   template <GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args)>                      \
 | |
|   template <typename arg_type>                                                 \
 | |
|   bool full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>::gmock_Impl<        \
 | |
|       arg_type>::MatchAndExplain(const arg_type& arg,                          \
 | |
|                                  ::testing::MatchResultListener*               \
 | |
|                                      result_listener GTEST_ATTRIBUTE_UNUSED_)  \
 | |
|       const
 | |
| 
 | |
| #define GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args) \
 | |
|   GMOCK_PP_TAIL(                                     \
 | |
|       GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAM, , args))
 | |
| #define GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAM(i_unused, data_unused, arg) \
 | |
|   , typename arg##_type
 | |
| 
 | |
| #define GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args) \
 | |
|   GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_TYPE_PARAM, , args))
 | |
| #define GMOCK_INTERNAL_MATCHER_TYPE_PARAM(i_unused, data_unused, arg) \
 | |
|   , arg##_type
 | |
| 
 | |
| #define GMOCK_INTERNAL_MATCHER_FUNCTION_ARGS(args) \
 | |
|   GMOCK_PP_TAIL(dummy_first GMOCK_PP_FOR_EACH(     \
 | |
|       GMOCK_INTERNAL_MATCHER_FUNCTION_ARG, , args))
 | |
| #define GMOCK_INTERNAL_MATCHER_FUNCTION_ARG(i, data_unused, arg) \
 | |
|   , arg##_type gmock_p##i
 | |
| 
 | |
| #define GMOCK_INTERNAL_MATCHER_FORWARD_ARGS(args) \
 | |
|   GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_FORWARD_ARG, , args))
 | |
| #define GMOCK_INTERNAL_MATCHER_FORWARD_ARG(i, data_unused, arg) \
 | |
|   , arg(::std::forward<arg##_type>(gmock_p##i))
 | |
| 
 | |
| #define GMOCK_INTERNAL_MATCHER_MEMBERS(args) \
 | |
|   GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_MEMBER, , args)
 | |
| #define GMOCK_INTERNAL_MATCHER_MEMBER(i_unused, data_unused, arg) \
 | |
|   const arg##_type arg;
 | |
| 
 | |
| #define GMOCK_INTERNAL_MATCHER_MEMBERS_USAGE(args) \
 | |
|   GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_MEMBER_USAGE, , args))
 | |
| #define GMOCK_INTERNAL_MATCHER_MEMBER_USAGE(i_unused, data_unused, arg) , arg
 | |
| 
 | |
| #define GMOCK_INTERNAL_MATCHER_ARGS_USAGE(args) \
 | |
|   GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_ARG_USAGE, , args))
 | |
| #define GMOCK_INTERNAL_MATCHER_ARG_USAGE(i, data_unused, arg_unused) \
 | |
|   , gmock_p##i
 | |
| 
 | |
| // To prevent ADL on certain functions we put them on a separate namespace.
 | |
| using namespace no_adl;  // NOLINT
 | |
| 
 | |
| }  // namespace testing
 | |
| 
 | |
| GTEST_DISABLE_MSC_WARNINGS_POP_()  //  4251 5046
 | |
| 
 | |
| // Include any custom callback matchers added by the local installation.
 | |
| // We must include this header at the end to make sure it can use the
 | |
| // declarations from this file.
 | |
| #include "gmock/internal/custom/gmock-matchers.h"
 | |
| 
 | |
| #endif  // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_
 |