mirror of
				https://github.com/ossrs/srs.git
				synced 2025-03-09 15:49:59 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			562 lines
		
	
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			562 lines
		
	
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright 2014-2018 The OpenSSL Project Authors. All Rights Reserved.
 | |
|  *
 | |
|  * Licensed under the OpenSSL license (the "License").  You may not use
 | |
|  * this file except in compliance with the License.  You can obtain a copy
 | |
|  * in the file LICENSE in the source distribution or at
 | |
|  * https://www.openssl.org/source/license.html
 | |
|  */
 | |
| 
 | |
| #include <string.h>
 | |
| #include <openssl/crypto.h>
 | |
| #include <openssl/err.h>
 | |
| #include "modes_lcl.h"
 | |
| 
 | |
| #ifndef OPENSSL_NO_OCB
 | |
| 
 | |
| /*
 | |
|  * Calculate the number of binary trailing zero's in any given number
 | |
|  */
 | |
| static u32 ocb_ntz(u64 n)
 | |
| {
 | |
|     u32 cnt = 0;
 | |
| 
 | |
|     /*
 | |
|      * We do a right-to-left simple sequential search. This is surprisingly
 | |
|      * efficient as the distribution of trailing zeros is not uniform,
 | |
|      * e.g. the number of possible inputs with no trailing zeros is equal to
 | |
|      * the number with 1 or more; the number with exactly 1 is equal to the
 | |
|      * number with 2 or more, etc. Checking the last two bits covers 75% of
 | |
|      * all numbers. Checking the last three covers 87.5%
 | |
|      */
 | |
|     while (!(n & 1)) {
 | |
|         n >>= 1;
 | |
|         cnt++;
 | |
|     }
 | |
|     return cnt;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Shift a block of 16 bytes left by shift bits
 | |
|  */
 | |
| static void ocb_block_lshift(const unsigned char *in, size_t shift,
 | |
|                              unsigned char *out)
 | |
| {
 | |
|     int i;
 | |
|     unsigned char carry = 0, carry_next;
 | |
| 
 | |
|     for (i = 15; i >= 0; i--) {
 | |
|         carry_next = in[i] >> (8 - shift);
 | |
|         out[i] = (in[i] << shift) | carry;
 | |
|         carry = carry_next;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Perform a "double" operation as per OCB spec
 | |
|  */
 | |
| static void ocb_double(OCB_BLOCK *in, OCB_BLOCK *out)
 | |
| {
 | |
|     unsigned char mask;
 | |
| 
 | |
|     /*
 | |
|      * Calculate the mask based on the most significant bit. There are more
 | |
|      * efficient ways to do this - but this way is constant time
 | |
|      */
 | |
|     mask = in->c[0] & 0x80;
 | |
|     mask >>= 7;
 | |
|     mask = (0 - mask) & 0x87;
 | |
| 
 | |
|     ocb_block_lshift(in->c, 1, out->c);
 | |
| 
 | |
|     out->c[15] ^= mask;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Perform an xor on in1 and in2 - each of len bytes. Store result in out
 | |
|  */
 | |
| static void ocb_block_xor(const unsigned char *in1,
 | |
|                           const unsigned char *in2, size_t len,
 | |
|                           unsigned char *out)
 | |
| {
 | |
|     size_t i;
 | |
|     for (i = 0; i < len; i++) {
 | |
|         out[i] = in1[i] ^ in2[i];
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Lookup L_index in our lookup table. If we haven't already got it we need to
 | |
|  * calculate it
 | |
|  */
 | |
| static OCB_BLOCK *ocb_lookup_l(OCB128_CONTEXT *ctx, size_t idx)
 | |
| {
 | |
|     size_t l_index = ctx->l_index;
 | |
| 
 | |
|     if (idx <= l_index) {
 | |
|         return ctx->l + idx;
 | |
|     }
 | |
| 
 | |
|     /* We don't have it - so calculate it */
 | |
|     if (idx >= ctx->max_l_index) {
 | |
|         void *tmp_ptr;
 | |
|         /*
 | |
|          * Each additional entry allows to process almost double as
 | |
|          * much data, so that in linear world the table will need to
 | |
|          * be expanded with smaller and smaller increments. Originally
 | |
|          * it was doubling in size, which was a waste. Growing it
 | |
|          * linearly is not formally optimal, but is simpler to implement.
 | |
|          * We grow table by minimally required 4*n that would accommodate
 | |
|          * the index.
 | |
|          */
 | |
|         ctx->max_l_index += (idx - ctx->max_l_index + 4) & ~3;
 | |
|         tmp_ptr = OPENSSL_realloc(ctx->l, ctx->max_l_index * sizeof(OCB_BLOCK));
 | |
|         if (tmp_ptr == NULL) /* prevent ctx->l from being clobbered */
 | |
|             return NULL;
 | |
|         ctx->l = tmp_ptr;
 | |
|     }
 | |
|     while (l_index < idx) {
 | |
|         ocb_double(ctx->l + l_index, ctx->l + l_index + 1);
 | |
|         l_index++;
 | |
|     }
 | |
|     ctx->l_index = l_index;
 | |
| 
 | |
|     return ctx->l + idx;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Create a new OCB128_CONTEXT
 | |
|  */
 | |
| OCB128_CONTEXT *CRYPTO_ocb128_new(void *keyenc, void *keydec,
 | |
|                                   block128_f encrypt, block128_f decrypt,
 | |
|                                   ocb128_f stream)
 | |
| {
 | |
|     OCB128_CONTEXT *octx;
 | |
|     int ret;
 | |
| 
 | |
|     if ((octx = OPENSSL_malloc(sizeof(*octx))) != NULL) {
 | |
|         ret = CRYPTO_ocb128_init(octx, keyenc, keydec, encrypt, decrypt,
 | |
|                                  stream);
 | |
|         if (ret)
 | |
|             return octx;
 | |
|         OPENSSL_free(octx);
 | |
|     }
 | |
| 
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Initialise an existing OCB128_CONTEXT
 | |
|  */
 | |
| int CRYPTO_ocb128_init(OCB128_CONTEXT *ctx, void *keyenc, void *keydec,
 | |
|                        block128_f encrypt, block128_f decrypt,
 | |
|                        ocb128_f stream)
 | |
| {
 | |
|     memset(ctx, 0, sizeof(*ctx));
 | |
|     ctx->l_index = 0;
 | |
|     ctx->max_l_index = 5;
 | |
|     if ((ctx->l = OPENSSL_malloc(ctx->max_l_index * 16)) == NULL) {
 | |
|         CRYPTOerr(CRYPTO_F_CRYPTO_OCB128_INIT, ERR_R_MALLOC_FAILURE);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * We set both the encryption and decryption key schedules - decryption
 | |
|      * needs both. Don't really need decryption schedule if only doing
 | |
|      * encryption - but it simplifies things to take it anyway
 | |
|      */
 | |
|     ctx->encrypt = encrypt;
 | |
|     ctx->decrypt = decrypt;
 | |
|     ctx->stream = stream;
 | |
|     ctx->keyenc = keyenc;
 | |
|     ctx->keydec = keydec;
 | |
| 
 | |
|     /* L_* = ENCIPHER(K, zeros(128)) */
 | |
|     ctx->encrypt(ctx->l_star.c, ctx->l_star.c, ctx->keyenc);
 | |
| 
 | |
|     /* L_$ = double(L_*) */
 | |
|     ocb_double(&ctx->l_star, &ctx->l_dollar);
 | |
| 
 | |
|     /* L_0 = double(L_$) */
 | |
|     ocb_double(&ctx->l_dollar, ctx->l);
 | |
| 
 | |
|     /* L_{i} = double(L_{i-1}) */
 | |
|     ocb_double(ctx->l, ctx->l+1);
 | |
|     ocb_double(ctx->l+1, ctx->l+2);
 | |
|     ocb_double(ctx->l+2, ctx->l+3);
 | |
|     ocb_double(ctx->l+3, ctx->l+4);
 | |
|     ctx->l_index = 4;   /* enough to process up to 496 bytes */
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Copy an OCB128_CONTEXT object
 | |
|  */
 | |
| int CRYPTO_ocb128_copy_ctx(OCB128_CONTEXT *dest, OCB128_CONTEXT *src,
 | |
|                            void *keyenc, void *keydec)
 | |
| {
 | |
|     memcpy(dest, src, sizeof(OCB128_CONTEXT));
 | |
|     if (keyenc)
 | |
|         dest->keyenc = keyenc;
 | |
|     if (keydec)
 | |
|         dest->keydec = keydec;
 | |
|     if (src->l) {
 | |
|         if ((dest->l = OPENSSL_malloc(src->max_l_index * 16)) == NULL) {
 | |
|             CRYPTOerr(CRYPTO_F_CRYPTO_OCB128_COPY_CTX, ERR_R_MALLOC_FAILURE);
 | |
|             return 0;
 | |
|         }
 | |
|         memcpy(dest->l, src->l, (src->l_index + 1) * 16);
 | |
|     }
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Set the IV to be used for this operation. Must be 1 - 15 bytes.
 | |
|  */
 | |
| int CRYPTO_ocb128_setiv(OCB128_CONTEXT *ctx, const unsigned char *iv,
 | |
|                         size_t len, size_t taglen)
 | |
| {
 | |
|     unsigned char ktop[16], tmp[16], mask;
 | |
|     unsigned char stretch[24], nonce[16];
 | |
|     size_t bottom, shift;
 | |
| 
 | |
|     /*
 | |
|      * Spec says IV is 120 bits or fewer - it allows non byte aligned lengths.
 | |
|      * We don't support this at this stage
 | |
|      */
 | |
|     if ((len > 15) || (len < 1) || (taglen > 16) || (taglen < 1)) {
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     /* Reset nonce-dependent variables */
 | |
|     memset(&ctx->sess, 0, sizeof(ctx->sess));
 | |
| 
 | |
|     /* Nonce = num2str(TAGLEN mod 128,7) || zeros(120-bitlen(N)) || 1 || N */
 | |
|     nonce[0] = ((taglen * 8) % 128) << 1;
 | |
|     memset(nonce + 1, 0, 15);
 | |
|     memcpy(nonce + 16 - len, iv, len);
 | |
|     nonce[15 - len] |= 1;
 | |
| 
 | |
|     /* Ktop = ENCIPHER(K, Nonce[1..122] || zeros(6)) */
 | |
|     memcpy(tmp, nonce, 16);
 | |
|     tmp[15] &= 0xc0;
 | |
|     ctx->encrypt(tmp, ktop, ctx->keyenc);
 | |
| 
 | |
|     /* Stretch = Ktop || (Ktop[1..64] xor Ktop[9..72]) */
 | |
|     memcpy(stretch, ktop, 16);
 | |
|     ocb_block_xor(ktop, ktop + 1, 8, stretch + 16);
 | |
| 
 | |
|     /* bottom = str2num(Nonce[123..128]) */
 | |
|     bottom = nonce[15] & 0x3f;
 | |
| 
 | |
|     /* Offset_0 = Stretch[1+bottom..128+bottom] */
 | |
|     shift = bottom % 8;
 | |
|     ocb_block_lshift(stretch + (bottom / 8), shift, ctx->sess.offset.c);
 | |
|     mask = 0xff;
 | |
|     mask <<= 8 - shift;
 | |
|     ctx->sess.offset.c[15] |=
 | |
|         (*(stretch + (bottom / 8) + 16) & mask) >> (8 - shift);
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Provide any AAD. This can be called multiple times. Only the final time can
 | |
|  * have a partial block
 | |
|  */
 | |
| int CRYPTO_ocb128_aad(OCB128_CONTEXT *ctx, const unsigned char *aad,
 | |
|                       size_t len)
 | |
| {
 | |
|     u64 i, all_num_blocks;
 | |
|     size_t num_blocks, last_len;
 | |
|     OCB_BLOCK tmp;
 | |
| 
 | |
|     /* Calculate the number of blocks of AAD provided now, and so far */
 | |
|     num_blocks = len / 16;
 | |
|     all_num_blocks = num_blocks + ctx->sess.blocks_hashed;
 | |
| 
 | |
|     /* Loop through all full blocks of AAD */
 | |
|     for (i = ctx->sess.blocks_hashed + 1; i <= all_num_blocks; i++) {
 | |
|         OCB_BLOCK *lookup;
 | |
| 
 | |
|         /* Offset_i = Offset_{i-1} xor L_{ntz(i)} */
 | |
|         lookup = ocb_lookup_l(ctx, ocb_ntz(i));
 | |
|         if (lookup == NULL)
 | |
|             return 0;
 | |
|         ocb_block16_xor(&ctx->sess.offset_aad, lookup, &ctx->sess.offset_aad);
 | |
| 
 | |
|         memcpy(tmp.c, aad, 16);
 | |
|         aad += 16;
 | |
| 
 | |
|         /* Sum_i = Sum_{i-1} xor ENCIPHER(K, A_i xor Offset_i) */
 | |
|         ocb_block16_xor(&ctx->sess.offset_aad, &tmp, &tmp);
 | |
|         ctx->encrypt(tmp.c, tmp.c, ctx->keyenc);
 | |
|         ocb_block16_xor(&tmp, &ctx->sess.sum, &ctx->sess.sum);
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Check if we have any partial blocks left over. This is only valid in the
 | |
|      * last call to this function
 | |
|      */
 | |
|     last_len = len % 16;
 | |
| 
 | |
|     if (last_len > 0) {
 | |
|         /* Offset_* = Offset_m xor L_* */
 | |
|         ocb_block16_xor(&ctx->sess.offset_aad, &ctx->l_star,
 | |
|                         &ctx->sess.offset_aad);
 | |
| 
 | |
|         /* CipherInput = (A_* || 1 || zeros(127-bitlen(A_*))) xor Offset_* */
 | |
|         memset(tmp.c, 0, 16);
 | |
|         memcpy(tmp.c, aad, last_len);
 | |
|         tmp.c[last_len] = 0x80;
 | |
|         ocb_block16_xor(&ctx->sess.offset_aad, &tmp, &tmp);
 | |
| 
 | |
|         /* Sum = Sum_m xor ENCIPHER(K, CipherInput) */
 | |
|         ctx->encrypt(tmp.c, tmp.c, ctx->keyenc);
 | |
|         ocb_block16_xor(&tmp, &ctx->sess.sum, &ctx->sess.sum);
 | |
|     }
 | |
| 
 | |
|     ctx->sess.blocks_hashed = all_num_blocks;
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Provide any data to be encrypted. This can be called multiple times. Only
 | |
|  * the final time can have a partial block
 | |
|  */
 | |
| int CRYPTO_ocb128_encrypt(OCB128_CONTEXT *ctx,
 | |
|                           const unsigned char *in, unsigned char *out,
 | |
|                           size_t len)
 | |
| {
 | |
|     u64 i, all_num_blocks;
 | |
|     size_t num_blocks, last_len;
 | |
| 
 | |
|     /*
 | |
|      * Calculate the number of blocks of data to be encrypted provided now, and
 | |
|      * so far
 | |
|      */
 | |
|     num_blocks = len / 16;
 | |
|     all_num_blocks = num_blocks + ctx->sess.blocks_processed;
 | |
| 
 | |
|     if (num_blocks && all_num_blocks == (size_t)all_num_blocks
 | |
|         && ctx->stream != NULL) {
 | |
|         size_t max_idx = 0, top = (size_t)all_num_blocks;
 | |
| 
 | |
|         /*
 | |
|          * See how many L_{i} entries we need to process data at hand
 | |
|          * and pre-compute missing entries in the table [if any]...
 | |
|          */
 | |
|         while (top >>= 1)
 | |
|             max_idx++;
 | |
|         if (ocb_lookup_l(ctx, max_idx) == NULL)
 | |
|             return 0;
 | |
| 
 | |
|         ctx->stream(in, out, num_blocks, ctx->keyenc,
 | |
|                     (size_t)ctx->sess.blocks_processed + 1, ctx->sess.offset.c,
 | |
|                     (const unsigned char (*)[16])ctx->l, ctx->sess.checksum.c);
 | |
|     } else {
 | |
|         /* Loop through all full blocks to be encrypted */
 | |
|         for (i = ctx->sess.blocks_processed + 1; i <= all_num_blocks; i++) {
 | |
|             OCB_BLOCK *lookup;
 | |
|             OCB_BLOCK tmp;
 | |
| 
 | |
|             /* Offset_i = Offset_{i-1} xor L_{ntz(i)} */
 | |
|             lookup = ocb_lookup_l(ctx, ocb_ntz(i));
 | |
|             if (lookup == NULL)
 | |
|                 return 0;
 | |
|             ocb_block16_xor(&ctx->sess.offset, lookup, &ctx->sess.offset);
 | |
| 
 | |
|             memcpy(tmp.c, in, 16);
 | |
|             in += 16;
 | |
| 
 | |
|             /* Checksum_i = Checksum_{i-1} xor P_i */
 | |
|             ocb_block16_xor(&tmp, &ctx->sess.checksum, &ctx->sess.checksum);
 | |
| 
 | |
|             /* C_i = Offset_i xor ENCIPHER(K, P_i xor Offset_i) */
 | |
|             ocb_block16_xor(&ctx->sess.offset, &tmp, &tmp);
 | |
|             ctx->encrypt(tmp.c, tmp.c, ctx->keyenc);
 | |
|             ocb_block16_xor(&ctx->sess.offset, &tmp, &tmp);
 | |
| 
 | |
|             memcpy(out, tmp.c, 16);
 | |
|             out += 16;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Check if we have any partial blocks left over. This is only valid in the
 | |
|      * last call to this function
 | |
|      */
 | |
|     last_len = len % 16;
 | |
| 
 | |
|     if (last_len > 0) {
 | |
|         OCB_BLOCK pad;
 | |
| 
 | |
|         /* Offset_* = Offset_m xor L_* */
 | |
|         ocb_block16_xor(&ctx->sess.offset, &ctx->l_star, &ctx->sess.offset);
 | |
| 
 | |
|         /* Pad = ENCIPHER(K, Offset_*) */
 | |
|         ctx->encrypt(ctx->sess.offset.c, pad.c, ctx->keyenc);
 | |
| 
 | |
|         /* C_* = P_* xor Pad[1..bitlen(P_*)] */
 | |
|         ocb_block_xor(in, pad.c, last_len, out);
 | |
| 
 | |
|         /* Checksum_* = Checksum_m xor (P_* || 1 || zeros(127-bitlen(P_*))) */
 | |
|         memset(pad.c, 0, 16);           /* borrow pad */
 | |
|         memcpy(pad.c, in, last_len);
 | |
|         pad.c[last_len] = 0x80;
 | |
|         ocb_block16_xor(&pad, &ctx->sess.checksum, &ctx->sess.checksum);
 | |
|     }
 | |
| 
 | |
|     ctx->sess.blocks_processed = all_num_blocks;
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Provide any data to be decrypted. This can be called multiple times. Only
 | |
|  * the final time can have a partial block
 | |
|  */
 | |
| int CRYPTO_ocb128_decrypt(OCB128_CONTEXT *ctx,
 | |
|                           const unsigned char *in, unsigned char *out,
 | |
|                           size_t len)
 | |
| {
 | |
|     u64 i, all_num_blocks;
 | |
|     size_t num_blocks, last_len;
 | |
| 
 | |
|     /*
 | |
|      * Calculate the number of blocks of data to be decrypted provided now, and
 | |
|      * so far
 | |
|      */
 | |
|     num_blocks = len / 16;
 | |
|     all_num_blocks = num_blocks + ctx->sess.blocks_processed;
 | |
| 
 | |
|     if (num_blocks && all_num_blocks == (size_t)all_num_blocks
 | |
|         && ctx->stream != NULL) {
 | |
|         size_t max_idx = 0, top = (size_t)all_num_blocks;
 | |
| 
 | |
|         /*
 | |
|          * See how many L_{i} entries we need to process data at hand
 | |
|          * and pre-compute missing entries in the table [if any]...
 | |
|          */
 | |
|         while (top >>= 1)
 | |
|             max_idx++;
 | |
|         if (ocb_lookup_l(ctx, max_idx) == NULL)
 | |
|             return 0;
 | |
| 
 | |
|         ctx->stream(in, out, num_blocks, ctx->keydec,
 | |
|                     (size_t)ctx->sess.blocks_processed + 1, ctx->sess.offset.c,
 | |
|                     (const unsigned char (*)[16])ctx->l, ctx->sess.checksum.c);
 | |
|     } else {
 | |
|         OCB_BLOCK tmp;
 | |
| 
 | |
|         /* Loop through all full blocks to be decrypted */
 | |
|         for (i = ctx->sess.blocks_processed + 1; i <= all_num_blocks; i++) {
 | |
| 
 | |
|             /* Offset_i = Offset_{i-1} xor L_{ntz(i)} */
 | |
|             OCB_BLOCK *lookup = ocb_lookup_l(ctx, ocb_ntz(i));
 | |
|             if (lookup == NULL)
 | |
|                 return 0;
 | |
|             ocb_block16_xor(&ctx->sess.offset, lookup, &ctx->sess.offset);
 | |
| 
 | |
|             memcpy(tmp.c, in, 16);
 | |
|             in += 16;
 | |
| 
 | |
|             /* P_i = Offset_i xor DECIPHER(K, C_i xor Offset_i) */
 | |
|             ocb_block16_xor(&ctx->sess.offset, &tmp, &tmp);
 | |
|             ctx->decrypt(tmp.c, tmp.c, ctx->keydec);
 | |
|             ocb_block16_xor(&ctx->sess.offset, &tmp, &tmp);
 | |
| 
 | |
|             /* Checksum_i = Checksum_{i-1} xor P_i */
 | |
|             ocb_block16_xor(&tmp, &ctx->sess.checksum, &ctx->sess.checksum);
 | |
| 
 | |
|             memcpy(out, tmp.c, 16);
 | |
|             out += 16;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Check if we have any partial blocks left over. This is only valid in the
 | |
|      * last call to this function
 | |
|      */
 | |
|     last_len = len % 16;
 | |
| 
 | |
|     if (last_len > 0) {
 | |
|         OCB_BLOCK pad;
 | |
| 
 | |
|         /* Offset_* = Offset_m xor L_* */
 | |
|         ocb_block16_xor(&ctx->sess.offset, &ctx->l_star, &ctx->sess.offset);
 | |
| 
 | |
|         /* Pad = ENCIPHER(K, Offset_*) */
 | |
|         ctx->encrypt(ctx->sess.offset.c, pad.c, ctx->keyenc);
 | |
| 
 | |
|         /* P_* = C_* xor Pad[1..bitlen(C_*)] */
 | |
|         ocb_block_xor(in, pad.c, last_len, out);
 | |
| 
 | |
|         /* Checksum_* = Checksum_m xor (P_* || 1 || zeros(127-bitlen(P_*))) */
 | |
|         memset(pad.c, 0, 16);           /* borrow pad */
 | |
|         memcpy(pad.c, out, last_len);
 | |
|         pad.c[last_len] = 0x80;
 | |
|         ocb_block16_xor(&pad, &ctx->sess.checksum, &ctx->sess.checksum);
 | |
|     }
 | |
| 
 | |
|     ctx->sess.blocks_processed = all_num_blocks;
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| static int ocb_finish(OCB128_CONTEXT *ctx, unsigned char *tag, size_t len,
 | |
|                       int write)
 | |
| {
 | |
|     OCB_BLOCK tmp;
 | |
| 
 | |
|     if (len > 16 || len < 1) {
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Tag = ENCIPHER(K, Checksum_* xor Offset_* xor L_$) xor HASH(K,A)
 | |
|      */
 | |
|     ocb_block16_xor(&ctx->sess.checksum, &ctx->sess.offset, &tmp);
 | |
|     ocb_block16_xor(&ctx->l_dollar, &tmp, &tmp);
 | |
|     ctx->encrypt(tmp.c, tmp.c, ctx->keyenc);
 | |
|     ocb_block16_xor(&tmp, &ctx->sess.sum, &tmp);
 | |
| 
 | |
|     if (write) {
 | |
|         memcpy(tag, &tmp, len);
 | |
|         return 1;
 | |
|     } else {
 | |
|         return CRYPTO_memcmp(&tmp, tag, len);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Calculate the tag and verify it against the supplied tag
 | |
|  */
 | |
| int CRYPTO_ocb128_finish(OCB128_CONTEXT *ctx, const unsigned char *tag,
 | |
|                          size_t len)
 | |
| {
 | |
|     return ocb_finish(ctx, (unsigned char*)tag, len, 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Retrieve the calculated tag
 | |
|  */
 | |
| int CRYPTO_ocb128_tag(OCB128_CONTEXT *ctx, unsigned char *tag, size_t len)
 | |
| {
 | |
|     return ocb_finish(ctx, tag, len, 1);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Release all resources
 | |
|  */
 | |
| void CRYPTO_ocb128_cleanup(OCB128_CONTEXT *ctx)
 | |
| {
 | |
|     if (ctx) {
 | |
|         OPENSSL_clear_free(ctx->l, ctx->max_l_index * 16);
 | |
|         OPENSSL_cleanse(ctx, sizeof(*ctx));
 | |
|     }
 | |
| }
 | |
| 
 | |
| #endif                          /* OPENSSL_NO_OCB */
 |