mirror of
				https://github.com/ossrs/srs.git
				synced 2025-03-09 15:49:59 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			428 lines
		
	
	
	
		
			12 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			428 lines
		
	
	
	
		
			12 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved.
 | |
|  *
 | |
|  * Licensed under the OpenSSL license (the "License").  You may not use
 | |
|  * this file except in compliance with the License.  You can obtain a copy
 | |
|  * in the file LICENSE in the source distribution or at
 | |
|  * https://www.openssl.org/source/license.html
 | |
|  */
 | |
| 
 | |
| #include <stdio.h>
 | |
| #include "internal/cryptlib.h"
 | |
| #include "internal/bn_int.h"
 | |
| #include <openssl/bn.h>
 | |
| #include <openssl/sha.h>
 | |
| #include "dsa_locl.h"
 | |
| #include <openssl/asn1.h>
 | |
| 
 | |
| static DSA_SIG *dsa_do_sign(const unsigned char *dgst, int dlen, DSA *dsa);
 | |
| static int dsa_sign_setup_no_digest(DSA *dsa, BN_CTX *ctx_in, BIGNUM **kinvp,
 | |
|                                     BIGNUM **rp);
 | |
| static int dsa_sign_setup(DSA *dsa, BN_CTX *ctx_in, BIGNUM **kinvp,
 | |
|                           BIGNUM **rp, const unsigned char *dgst, int dlen);
 | |
| static int dsa_do_verify(const unsigned char *dgst, int dgst_len,
 | |
|                          DSA_SIG *sig, DSA *dsa);
 | |
| static int dsa_init(DSA *dsa);
 | |
| static int dsa_finish(DSA *dsa);
 | |
| static BIGNUM *dsa_mod_inverse_fermat(const BIGNUM *k, const BIGNUM *q,
 | |
|                                       BN_CTX *ctx);
 | |
| 
 | |
| static DSA_METHOD openssl_dsa_meth = {
 | |
|     "OpenSSL DSA method",
 | |
|     dsa_do_sign,
 | |
|     dsa_sign_setup_no_digest,
 | |
|     dsa_do_verify,
 | |
|     NULL,                       /* dsa_mod_exp, */
 | |
|     NULL,                       /* dsa_bn_mod_exp, */
 | |
|     dsa_init,
 | |
|     dsa_finish,
 | |
|     DSA_FLAG_FIPS_METHOD,
 | |
|     NULL,
 | |
|     NULL,
 | |
|     NULL
 | |
| };
 | |
| 
 | |
| static const DSA_METHOD *default_DSA_method = &openssl_dsa_meth;
 | |
| 
 | |
| void DSA_set_default_method(const DSA_METHOD *meth)
 | |
| {
 | |
|     default_DSA_method = meth;
 | |
| }
 | |
| 
 | |
| const DSA_METHOD *DSA_get_default_method(void)
 | |
| {
 | |
|     return default_DSA_method;
 | |
| }
 | |
| 
 | |
| const DSA_METHOD *DSA_OpenSSL(void)
 | |
| {
 | |
|     return &openssl_dsa_meth;
 | |
| }
 | |
| 
 | |
| static DSA_SIG *dsa_do_sign(const unsigned char *dgst, int dlen, DSA *dsa)
 | |
| {
 | |
|     BIGNUM *kinv = NULL;
 | |
|     BIGNUM *m, *blind, *blindm, *tmp;
 | |
|     BN_CTX *ctx = NULL;
 | |
|     int reason = ERR_R_BN_LIB;
 | |
|     DSA_SIG *ret = NULL;
 | |
|     int rv = 0;
 | |
| 
 | |
|     if (dsa->p == NULL || dsa->q == NULL || dsa->g == NULL) {
 | |
|         reason = DSA_R_MISSING_PARAMETERS;
 | |
|         goto err;
 | |
|     }
 | |
| 
 | |
|     ret = DSA_SIG_new();
 | |
|     if (ret == NULL)
 | |
|         goto err;
 | |
|     ret->r = BN_new();
 | |
|     ret->s = BN_new();
 | |
|     if (ret->r == NULL || ret->s == NULL)
 | |
|         goto err;
 | |
| 
 | |
|     ctx = BN_CTX_new();
 | |
|     if (ctx == NULL)
 | |
|         goto err;
 | |
|     m = BN_CTX_get(ctx);
 | |
|     blind = BN_CTX_get(ctx);
 | |
|     blindm = BN_CTX_get(ctx);
 | |
|     tmp = BN_CTX_get(ctx);
 | |
|     if (tmp == NULL)
 | |
|         goto err;
 | |
| 
 | |
|  redo:
 | |
|     if (!dsa_sign_setup(dsa, ctx, &kinv, &ret->r, dgst, dlen))
 | |
|         goto err;
 | |
| 
 | |
|     if (dlen > BN_num_bytes(dsa->q))
 | |
|         /*
 | |
|          * if the digest length is greater than the size of q use the
 | |
|          * BN_num_bits(dsa->q) leftmost bits of the digest, see fips 186-3,
 | |
|          * 4.2
 | |
|          */
 | |
|         dlen = BN_num_bytes(dsa->q);
 | |
|     if (BN_bin2bn(dgst, dlen, m) == NULL)
 | |
|         goto err;
 | |
| 
 | |
|     /*
 | |
|      * The normal signature calculation is:
 | |
|      *
 | |
|      *   s := k^-1 * (m + r * priv_key) mod q
 | |
|      *
 | |
|      * We will blind this to protect against side channel attacks
 | |
|      *
 | |
|      *   s := blind^-1 * k^-1 * (blind * m + blind * r * priv_key) mod q
 | |
|      */
 | |
| 
 | |
|     /* Generate a blinding value */
 | |
|     do {
 | |
|         if (!BN_priv_rand(blind, BN_num_bits(dsa->q) - 1,
 | |
|                           BN_RAND_TOP_ANY, BN_RAND_BOTTOM_ANY))
 | |
|             goto err;
 | |
|     } while (BN_is_zero(blind));
 | |
|     BN_set_flags(blind, BN_FLG_CONSTTIME);
 | |
|     BN_set_flags(blindm, BN_FLG_CONSTTIME);
 | |
|     BN_set_flags(tmp, BN_FLG_CONSTTIME);
 | |
| 
 | |
|     /* tmp := blind * priv_key * r mod q */
 | |
|     if (!BN_mod_mul(tmp, blind, dsa->priv_key, dsa->q, ctx))
 | |
|         goto err;
 | |
|     if (!BN_mod_mul(tmp, tmp, ret->r, dsa->q, ctx))
 | |
|         goto err;
 | |
| 
 | |
|     /* blindm := blind * m mod q */
 | |
|     if (!BN_mod_mul(blindm, blind, m, dsa->q, ctx))
 | |
|         goto err;
 | |
| 
 | |
|     /* s : = (blind * priv_key * r) + (blind * m) mod q */
 | |
|     if (!BN_mod_add_quick(ret->s, tmp, blindm, dsa->q))
 | |
|         goto err;
 | |
| 
 | |
|     /* s := s * k^-1 mod q */
 | |
|     if (!BN_mod_mul(ret->s, ret->s, kinv, dsa->q, ctx))
 | |
|         goto err;
 | |
| 
 | |
|     /* s:= s * blind^-1 mod q */
 | |
|     if (BN_mod_inverse(blind, blind, dsa->q, ctx) == NULL)
 | |
|         goto err;
 | |
|     if (!BN_mod_mul(ret->s, ret->s, blind, dsa->q, ctx))
 | |
|         goto err;
 | |
| 
 | |
|     /*
 | |
|      * Redo if r or s is zero as required by FIPS 186-3: this is very
 | |
|      * unlikely.
 | |
|      */
 | |
|     if (BN_is_zero(ret->r) || BN_is_zero(ret->s))
 | |
|         goto redo;
 | |
| 
 | |
|     rv = 1;
 | |
| 
 | |
|  err:
 | |
|     if (rv == 0) {
 | |
|         DSAerr(DSA_F_DSA_DO_SIGN, reason);
 | |
|         DSA_SIG_free(ret);
 | |
|         ret = NULL;
 | |
|     }
 | |
|     BN_CTX_free(ctx);
 | |
|     BN_clear_free(kinv);
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static int dsa_sign_setup_no_digest(DSA *dsa, BN_CTX *ctx_in,
 | |
|                                     BIGNUM **kinvp, BIGNUM **rp)
 | |
| {
 | |
|     return dsa_sign_setup(dsa, ctx_in, kinvp, rp, NULL, 0);
 | |
| }
 | |
| 
 | |
| static int dsa_sign_setup(DSA *dsa, BN_CTX *ctx_in,
 | |
|                           BIGNUM **kinvp, BIGNUM **rp,
 | |
|                           const unsigned char *dgst, int dlen)
 | |
| {
 | |
|     BN_CTX *ctx = NULL;
 | |
|     BIGNUM *k, *kinv = NULL, *r = *rp;
 | |
|     BIGNUM *l;
 | |
|     int ret = 0;
 | |
|     int q_bits, q_words;
 | |
| 
 | |
|     if (!dsa->p || !dsa->q || !dsa->g) {
 | |
|         DSAerr(DSA_F_DSA_SIGN_SETUP, DSA_R_MISSING_PARAMETERS);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     k = BN_new();
 | |
|     l = BN_new();
 | |
|     if (k == NULL || l == NULL)
 | |
|         goto err;
 | |
| 
 | |
|     if (ctx_in == NULL) {
 | |
|         if ((ctx = BN_CTX_new()) == NULL)
 | |
|             goto err;
 | |
|     } else
 | |
|         ctx = ctx_in;
 | |
| 
 | |
|     /* Preallocate space */
 | |
|     q_bits = BN_num_bits(dsa->q);
 | |
|     q_words = bn_get_top(dsa->q);
 | |
|     if (!bn_wexpand(k, q_words + 2)
 | |
|         || !bn_wexpand(l, q_words + 2))
 | |
|         goto err;
 | |
| 
 | |
|     /* Get random k */
 | |
|     do {
 | |
|         if (dgst != NULL) {
 | |
|             /*
 | |
|              * We calculate k from SHA512(private_key + H(message) + random).
 | |
|              * This protects the private key from a weak PRNG.
 | |
|              */
 | |
|             if (!BN_generate_dsa_nonce(k, dsa->q, dsa->priv_key, dgst,
 | |
|                                        dlen, ctx))
 | |
|                 goto err;
 | |
|         } else if (!BN_priv_rand_range(k, dsa->q))
 | |
|             goto err;
 | |
|     } while (BN_is_zero(k));
 | |
| 
 | |
|     BN_set_flags(k, BN_FLG_CONSTTIME);
 | |
|     BN_set_flags(l, BN_FLG_CONSTTIME);
 | |
| 
 | |
|     if (dsa->flags & DSA_FLAG_CACHE_MONT_P) {
 | |
|         if (!BN_MONT_CTX_set_locked(&dsa->method_mont_p,
 | |
|                                     dsa->lock, dsa->p, ctx))
 | |
|             goto err;
 | |
|     }
 | |
| 
 | |
|     /* Compute r = (g^k mod p) mod q */
 | |
| 
 | |
|     /*
 | |
|      * We do not want timing information to leak the length of k, so we
 | |
|      * compute G^k using an equivalent scalar of fixed bit-length.
 | |
|      *
 | |
|      * We unconditionally perform both of these additions to prevent a
 | |
|      * small timing information leakage.  We then choose the sum that is
 | |
|      * one bit longer than the modulus.
 | |
|      *
 | |
|      * There are some concerns about the efficacy of doing this.  More
 | |
|      * specificly refer to the discussion starting with:
 | |
|      *     https://github.com/openssl/openssl/pull/7486#discussion_r228323705
 | |
|      * The fix is to rework BN so these gymnastics aren't required.
 | |
|      */
 | |
|     if (!BN_add(l, k, dsa->q)
 | |
|         || !BN_add(k, l, dsa->q))
 | |
|         goto err;
 | |
| 
 | |
|     BN_consttime_swap(BN_is_bit_set(l, q_bits), k, l, q_words + 2);
 | |
| 
 | |
|     if ((dsa)->meth->bn_mod_exp != NULL) {
 | |
|             if (!dsa->meth->bn_mod_exp(dsa, r, dsa->g, k, dsa->p, ctx,
 | |
|                                        dsa->method_mont_p))
 | |
|                 goto err;
 | |
|     } else {
 | |
|             if (!BN_mod_exp_mont(r, dsa->g, k, dsa->p, ctx, dsa->method_mont_p))
 | |
|                 goto err;
 | |
|     }
 | |
| 
 | |
|     if (!BN_mod(r, r, dsa->q, ctx))
 | |
|         goto err;
 | |
| 
 | |
|     /* Compute part of 's = inv(k) (m + xr) mod q' */
 | |
|     if ((kinv = dsa_mod_inverse_fermat(k, dsa->q, ctx)) == NULL)
 | |
|         goto err;
 | |
| 
 | |
|     BN_clear_free(*kinvp);
 | |
|     *kinvp = kinv;
 | |
|     kinv = NULL;
 | |
|     ret = 1;
 | |
|  err:
 | |
|     if (!ret)
 | |
|         DSAerr(DSA_F_DSA_SIGN_SETUP, ERR_R_BN_LIB);
 | |
|     if (ctx != ctx_in)
 | |
|         BN_CTX_free(ctx);
 | |
|     BN_clear_free(k);
 | |
|     BN_clear_free(l);
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static int dsa_do_verify(const unsigned char *dgst, int dgst_len,
 | |
|                          DSA_SIG *sig, DSA *dsa)
 | |
| {
 | |
|     BN_CTX *ctx;
 | |
|     BIGNUM *u1, *u2, *t1;
 | |
|     BN_MONT_CTX *mont = NULL;
 | |
|     const BIGNUM *r, *s;
 | |
|     int ret = -1, i;
 | |
|     if (!dsa->p || !dsa->q || !dsa->g) {
 | |
|         DSAerr(DSA_F_DSA_DO_VERIFY, DSA_R_MISSING_PARAMETERS);
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     i = BN_num_bits(dsa->q);
 | |
|     /* fips 186-3 allows only different sizes for q */
 | |
|     if (i != 160 && i != 224 && i != 256) {
 | |
|         DSAerr(DSA_F_DSA_DO_VERIFY, DSA_R_BAD_Q_VALUE);
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     if (BN_num_bits(dsa->p) > OPENSSL_DSA_MAX_MODULUS_BITS) {
 | |
|         DSAerr(DSA_F_DSA_DO_VERIFY, DSA_R_MODULUS_TOO_LARGE);
 | |
|         return -1;
 | |
|     }
 | |
|     u1 = BN_new();
 | |
|     u2 = BN_new();
 | |
|     t1 = BN_new();
 | |
|     ctx = BN_CTX_new();
 | |
|     if (u1 == NULL || u2 == NULL || t1 == NULL || ctx == NULL)
 | |
|         goto err;
 | |
| 
 | |
|     DSA_SIG_get0(sig, &r, &s);
 | |
| 
 | |
|     if (BN_is_zero(r) || BN_is_negative(r) ||
 | |
|         BN_ucmp(r, dsa->q) >= 0) {
 | |
|         ret = 0;
 | |
|         goto err;
 | |
|     }
 | |
|     if (BN_is_zero(s) || BN_is_negative(s) ||
 | |
|         BN_ucmp(s, dsa->q) >= 0) {
 | |
|         ret = 0;
 | |
|         goto err;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Calculate W = inv(S) mod Q save W in u2
 | |
|      */
 | |
|     if ((BN_mod_inverse(u2, s, dsa->q, ctx)) == NULL)
 | |
|         goto err;
 | |
| 
 | |
|     /* save M in u1 */
 | |
|     if (dgst_len > (i >> 3))
 | |
|         /*
 | |
|          * if the digest length is greater than the size of q use the
 | |
|          * BN_num_bits(dsa->q) leftmost bits of the digest, see fips 186-3,
 | |
|          * 4.2
 | |
|          */
 | |
|         dgst_len = (i >> 3);
 | |
|     if (BN_bin2bn(dgst, dgst_len, u1) == NULL)
 | |
|         goto err;
 | |
| 
 | |
|     /* u1 = M * w mod q */
 | |
|     if (!BN_mod_mul(u1, u1, u2, dsa->q, ctx))
 | |
|         goto err;
 | |
| 
 | |
|     /* u2 = r * w mod q */
 | |
|     if (!BN_mod_mul(u2, r, u2, dsa->q, ctx))
 | |
|         goto err;
 | |
| 
 | |
|     if (dsa->flags & DSA_FLAG_CACHE_MONT_P) {
 | |
|         mont = BN_MONT_CTX_set_locked(&dsa->method_mont_p,
 | |
|                                       dsa->lock, dsa->p, ctx);
 | |
|         if (!mont)
 | |
|             goto err;
 | |
|     }
 | |
| 
 | |
|     if (dsa->meth->dsa_mod_exp != NULL) {
 | |
|         if (!dsa->meth->dsa_mod_exp(dsa, t1, dsa->g, u1, dsa->pub_key, u2,
 | |
|                                     dsa->p, ctx, mont))
 | |
|             goto err;
 | |
|     } else {
 | |
|         if (!BN_mod_exp2_mont(t1, dsa->g, u1, dsa->pub_key, u2, dsa->p, ctx,
 | |
|                               mont))
 | |
|             goto err;
 | |
|     }
 | |
| 
 | |
|     /* let u1 = u1 mod q */
 | |
|     if (!BN_mod(u1, t1, dsa->q, ctx))
 | |
|         goto err;
 | |
| 
 | |
|     /*
 | |
|      * V is now in u1.  If the signature is correct, it will be equal to R.
 | |
|      */
 | |
|     ret = (BN_ucmp(u1, r) == 0);
 | |
| 
 | |
|  err:
 | |
|     if (ret < 0)
 | |
|         DSAerr(DSA_F_DSA_DO_VERIFY, ERR_R_BN_LIB);
 | |
|     BN_CTX_free(ctx);
 | |
|     BN_free(u1);
 | |
|     BN_free(u2);
 | |
|     BN_free(t1);
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static int dsa_init(DSA *dsa)
 | |
| {
 | |
|     dsa->flags |= DSA_FLAG_CACHE_MONT_P;
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| static int dsa_finish(DSA *dsa)
 | |
| {
 | |
|     BN_MONT_CTX_free(dsa->method_mont_p);
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Compute the inverse of k modulo q.
 | |
|  * Since q is prime, Fermat's Little Theorem applies, which reduces this to
 | |
|  * mod-exp operation.  Both the exponent and modulus are public information
 | |
|  * so a mod-exp that doesn't leak the base is sufficient.  A newly allocated
 | |
|  * BIGNUM is returned which the caller must free.
 | |
|  */
 | |
| static BIGNUM *dsa_mod_inverse_fermat(const BIGNUM *k, const BIGNUM *q,
 | |
|                                       BN_CTX *ctx)
 | |
| {
 | |
|     BIGNUM *res = NULL;
 | |
|     BIGNUM *r, *e;
 | |
| 
 | |
|     if ((r = BN_new()) == NULL)
 | |
|         return NULL;
 | |
| 
 | |
|     BN_CTX_start(ctx);
 | |
|     if ((e = BN_CTX_get(ctx)) != NULL
 | |
|             && BN_set_word(r, 2)
 | |
|             && BN_sub(e, q, r)
 | |
|             && BN_mod_exp_mont(r, k, e, q, ctx, NULL))
 | |
|         res = r;
 | |
|     else
 | |
|         BN_free(r);
 | |
|     BN_CTX_end(ctx);
 | |
|     return res;
 | |
| }
 |