mirror of
				https://github.com/ossrs/srs.git
				synced 2025-03-09 15:49:59 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			883 lines
		
	
	
	
		
			26 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			883 lines
		
	
	
	
		
			26 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright 1995-2021 The OpenSSL Project Authors. All Rights Reserved.
 | |
|  *
 | |
|  * Licensed under the OpenSSL license (the "License").  You may not use
 | |
|  * this file except in compliance with the License.  You can obtain a copy
 | |
|  * in the file LICENSE in the source distribution or at
 | |
|  * https://www.openssl.org/source/license.html
 | |
|  */
 | |
| 
 | |
| #ifndef _GNU_SOURCE
 | |
| # define _GNU_SOURCE
 | |
| #endif
 | |
| #include "e_os.h"
 | |
| #include <stdio.h>
 | |
| #include "internal/cryptlib.h"
 | |
| #include <openssl/rand.h>
 | |
| #include <openssl/crypto.h>
 | |
| #include "rand_local.h"
 | |
| #include "crypto/rand.h"
 | |
| #include <stdio.h>
 | |
| #include "internal/dso.h"
 | |
| #ifdef __linux
 | |
| # include <sys/syscall.h>
 | |
| # ifdef DEVRANDOM_WAIT
 | |
| #  include <sys/shm.h>
 | |
| #  include <sys/utsname.h>
 | |
| # endif
 | |
| #endif
 | |
| #if (defined(__FreeBSD__) || defined(__NetBSD__)) && !defined(OPENSSL_SYS_UEFI)
 | |
| # include <sys/types.h>
 | |
| # include <sys/sysctl.h>
 | |
| # include <sys/param.h>
 | |
| #endif
 | |
| #if defined(__OpenBSD__)
 | |
| # include <sys/param.h>
 | |
| #endif
 | |
| #if defined(__APPLE__)
 | |
| # include <CommonCrypto/CommonRandom.h>
 | |
| #endif
 | |
| 
 | |
| #if defined(OPENSSL_SYS_UNIX) || defined(__DJGPP__)
 | |
| # include <sys/types.h>
 | |
| # include <sys/stat.h>
 | |
| # include <fcntl.h>
 | |
| # include <unistd.h>
 | |
| # include <sys/time.h>
 | |
| 
 | |
| static uint64_t get_time_stamp(void);
 | |
| static uint64_t get_timer_bits(void);
 | |
| 
 | |
| /* Macro to convert two thirty two bit values into a sixty four bit one */
 | |
| # define TWO32TO64(a, b) ((((uint64_t)(a)) << 32) + (b))
 | |
| 
 | |
| /*
 | |
|  * Check for the existence and support of POSIX timers.  The standard
 | |
|  * says that the _POSIX_TIMERS macro will have a positive value if they
 | |
|  * are available.
 | |
|  *
 | |
|  * However, we want an additional constraint: that the timer support does
 | |
|  * not require an extra library dependency.  Early versions of glibc
 | |
|  * require -lrt to be specified on the link line to access the timers,
 | |
|  * so this needs to be checked for.
 | |
|  *
 | |
|  * It is worse because some libraries define __GLIBC__ but don't
 | |
|  * support the version testing macro (e.g. uClibc).  This means
 | |
|  * an extra check is needed.
 | |
|  *
 | |
|  * The final condition is:
 | |
|  *      "have posix timers and either not glibc or glibc without -lrt"
 | |
|  *
 | |
|  * The nested #if sequences are required to avoid using a parameterised
 | |
|  * macro that might be undefined.
 | |
|  */
 | |
| # undef OSSL_POSIX_TIMER_OKAY
 | |
| # if defined(_POSIX_TIMERS) && _POSIX_TIMERS > 0
 | |
| #  if defined(__GLIBC__)
 | |
| #   if defined(__GLIBC_PREREQ)
 | |
| #    if __GLIBC_PREREQ(2, 17)
 | |
| #     define OSSL_POSIX_TIMER_OKAY
 | |
| #    endif
 | |
| #   endif
 | |
| #  else
 | |
| #   define OSSL_POSIX_TIMER_OKAY
 | |
| #  endif
 | |
| # endif
 | |
| #endif /* (defined(OPENSSL_SYS_UNIX) && !defined(OPENSSL_SYS_VXWORKS))
 | |
|           || defined(__DJGPP__) */
 | |
| 
 | |
| #if defined(OPENSSL_RAND_SEED_NONE)
 | |
| /* none means none. this simplifies the following logic */
 | |
| # undef OPENSSL_RAND_SEED_OS
 | |
| # undef OPENSSL_RAND_SEED_GETRANDOM
 | |
| # undef OPENSSL_RAND_SEED_LIBRANDOM
 | |
| # undef OPENSSL_RAND_SEED_DEVRANDOM
 | |
| # undef OPENSSL_RAND_SEED_RDTSC
 | |
| # undef OPENSSL_RAND_SEED_RDCPU
 | |
| # undef OPENSSL_RAND_SEED_EGD
 | |
| #endif
 | |
| 
 | |
| #if (defined(OPENSSL_SYS_VXWORKS) || defined(OPENSSL_SYS_UEFI)) && \
 | |
|         !defined(OPENSSL_RAND_SEED_NONE)
 | |
| # error "UEFI and VXWorks only support seeding NONE"
 | |
| #endif
 | |
| 
 | |
| #if defined(OPENSSL_SYS_VXWORKS)
 | |
| /* empty implementation */
 | |
| int rand_pool_init(void)
 | |
| {
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| void rand_pool_cleanup(void)
 | |
| {
 | |
| }
 | |
| 
 | |
| void rand_pool_keep_random_devices_open(int keep)
 | |
| {
 | |
| }
 | |
| 
 | |
| size_t rand_pool_acquire_entropy(RAND_POOL *pool)
 | |
| {
 | |
|     return rand_pool_entropy_available(pool);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #if !(defined(OPENSSL_SYS_WINDOWS) || defined(OPENSSL_SYS_WIN32) \
 | |
|     || defined(OPENSSL_SYS_VMS) || defined(OPENSSL_SYS_VXWORKS) \
 | |
|     || defined(OPENSSL_SYS_UEFI))
 | |
| 
 | |
| # if defined(OPENSSL_SYS_VOS)
 | |
| 
 | |
| #  ifndef OPENSSL_RAND_SEED_OS
 | |
| #   error "Unsupported seeding method configured; must be os"
 | |
| #  endif
 | |
| 
 | |
| #  if defined(OPENSSL_SYS_VOS_HPPA) && defined(OPENSSL_SYS_VOS_IA32)
 | |
| #   error "Unsupported HP-PA and IA32 at the same time."
 | |
| #  endif
 | |
| #  if !defined(OPENSSL_SYS_VOS_HPPA) && !defined(OPENSSL_SYS_VOS_IA32)
 | |
| #   error "Must have one of HP-PA or IA32"
 | |
| #  endif
 | |
| 
 | |
| /*
 | |
|  * The following algorithm repeatedly samples the real-time clock (RTC) to
 | |
|  * generate a sequence of unpredictable data.  The algorithm relies upon the
 | |
|  * uneven execution speed of the code (due to factors such as cache misses,
 | |
|  * interrupts, bus activity, and scheduling) and upon the rather large
 | |
|  * relative difference between the speed of the clock and the rate at which
 | |
|  * it can be read.  If it is ported to an environment where execution speed
 | |
|  * is more constant or where the RTC ticks at a much slower rate, or the
 | |
|  * clock can be read with fewer instructions, it is likely that the results
 | |
|  * would be far more predictable.  This should only be used for legacy
 | |
|  * platforms.
 | |
|  *
 | |
|  * As a precaution, we assume only 2 bits of entropy per byte.
 | |
|  */
 | |
| size_t rand_pool_acquire_entropy(RAND_POOL *pool)
 | |
| {
 | |
|     short int code;
 | |
|     int i, k;
 | |
|     size_t bytes_needed;
 | |
|     struct timespec ts;
 | |
|     unsigned char v;
 | |
| #  ifdef OPENSSL_SYS_VOS_HPPA
 | |
|     long duration;
 | |
|     extern void s$sleep(long *_duration, short int *_code);
 | |
| #  else
 | |
|     long long duration;
 | |
|     extern void s$sleep2(long long *_duration, short int *_code);
 | |
| #  endif
 | |
| 
 | |
|     bytes_needed = rand_pool_bytes_needed(pool, 4 /*entropy_factor*/);
 | |
| 
 | |
|     for (i = 0; i < bytes_needed; i++) {
 | |
|         /*
 | |
|          * burn some cpu; hope for interrupts, cache collisions, bus
 | |
|          * interference, etc.
 | |
|          */
 | |
|         for (k = 0; k < 99; k++)
 | |
|             ts.tv_nsec = random();
 | |
| 
 | |
| #  ifdef OPENSSL_SYS_VOS_HPPA
 | |
|         /* sleep for 1/1024 of a second (976 us).  */
 | |
|         duration = 1;
 | |
|         s$sleep(&duration, &code);
 | |
| #  else
 | |
|         /* sleep for 1/65536 of a second (15 us).  */
 | |
|         duration = 1;
 | |
|         s$sleep2(&duration, &code);
 | |
| #  endif
 | |
| 
 | |
|         /* Get wall clock time, take 8 bits. */
 | |
|         clock_gettime(CLOCK_REALTIME, &ts);
 | |
|         v = (unsigned char)(ts.tv_nsec & 0xFF);
 | |
|         rand_pool_add(pool, arg, &v, sizeof(v) , 2);
 | |
|     }
 | |
|     return rand_pool_entropy_available(pool);
 | |
| }
 | |
| 
 | |
| void rand_pool_cleanup(void)
 | |
| {
 | |
| }
 | |
| 
 | |
| void rand_pool_keep_random_devices_open(int keep)
 | |
| {
 | |
| }
 | |
| 
 | |
| # else
 | |
| 
 | |
| #  if defined(OPENSSL_RAND_SEED_EGD) && \
 | |
|         (defined(OPENSSL_NO_EGD) || !defined(DEVRANDOM_EGD))
 | |
| #   error "Seeding uses EGD but EGD is turned off or no device given"
 | |
| #  endif
 | |
| 
 | |
| #  if defined(OPENSSL_RAND_SEED_DEVRANDOM) && !defined(DEVRANDOM)
 | |
| #   error "Seeding uses urandom but DEVRANDOM is not configured"
 | |
| #  endif
 | |
| 
 | |
| #  if defined(OPENSSL_RAND_SEED_OS)
 | |
| #   if !defined(DEVRANDOM)
 | |
| #    error "OS seeding requires DEVRANDOM to be configured"
 | |
| #   endif
 | |
| #   define OPENSSL_RAND_SEED_GETRANDOM
 | |
| #   define OPENSSL_RAND_SEED_DEVRANDOM
 | |
| #  endif
 | |
| 
 | |
| #  if defined(OPENSSL_RAND_SEED_LIBRANDOM)
 | |
| #   error "librandom not (yet) supported"
 | |
| #  endif
 | |
| 
 | |
| #  if (defined(__FreeBSD__) || defined(__NetBSD__)) && defined(KERN_ARND)
 | |
| /*
 | |
|  * sysctl_random(): Use sysctl() to read a random number from the kernel
 | |
|  * Returns the number of bytes returned in buf on success, -1 on failure.
 | |
|  */
 | |
| static ssize_t sysctl_random(char *buf, size_t buflen)
 | |
| {
 | |
|     int mib[2];
 | |
|     size_t done = 0;
 | |
|     size_t len;
 | |
| 
 | |
|     /*
 | |
|      * Note: sign conversion between size_t and ssize_t is safe even
 | |
|      * without a range check, see comment in syscall_random()
 | |
|      */
 | |
| 
 | |
|     /*
 | |
|      * On FreeBSD old implementations returned longs, newer versions support
 | |
|      * variable sizes up to 256 byte. The code below would not work properly
 | |
|      * when the sysctl returns long and we want to request something not a
 | |
|      * multiple of longs, which should never be the case.
 | |
|      */
 | |
| #if   defined(__FreeBSD__)
 | |
|     if (!ossl_assert(buflen % sizeof(long) == 0)) {
 | |
|         errno = EINVAL;
 | |
|         return -1;
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     /*
 | |
|      * On NetBSD before 4.0 KERN_ARND was an alias for KERN_URND, and only
 | |
|      * filled in an int, leaving the rest uninitialized. Since NetBSD 4.0
 | |
|      * it returns a variable number of bytes with the current version supporting
 | |
|      * up to 256 bytes.
 | |
|      * Just return an error on older NetBSD versions.
 | |
|      */
 | |
| #if   defined(__NetBSD__) && __NetBSD_Version__ < 400000000
 | |
|     errno = ENOSYS;
 | |
|     return -1;
 | |
| #endif
 | |
| 
 | |
|     mib[0] = CTL_KERN;
 | |
|     mib[1] = KERN_ARND;
 | |
| 
 | |
|     do {
 | |
|         len = buflen > 256 ? 256 : buflen;
 | |
|         if (sysctl(mib, 2, buf, &len, NULL, 0) == -1)
 | |
|             return done > 0 ? done : -1;
 | |
|         done += len;
 | |
|         buf += len;
 | |
|         buflen -= len;
 | |
|     } while (buflen > 0);
 | |
| 
 | |
|     return done;
 | |
| }
 | |
| #  endif
 | |
| 
 | |
| #  if defined(OPENSSL_RAND_SEED_GETRANDOM)
 | |
| 
 | |
| #   if defined(__linux) && !defined(__NR_getrandom)
 | |
| #    if defined(__arm__)
 | |
| #     define __NR_getrandom    (__NR_SYSCALL_BASE+384)
 | |
| #    elif defined(__i386__)
 | |
| #     define __NR_getrandom    355
 | |
| #    elif defined(__x86_64__)
 | |
| #     if defined(__ILP32__)
 | |
| #      define __NR_getrandom   (__X32_SYSCALL_BIT + 318)
 | |
| #     else
 | |
| #      define __NR_getrandom   318
 | |
| #     endif
 | |
| #    elif defined(__xtensa__)
 | |
| #     define __NR_getrandom    338
 | |
| #    elif defined(__s390__) || defined(__s390x__)
 | |
| #     define __NR_getrandom    349
 | |
| #    elif defined(__bfin__)
 | |
| #     define __NR_getrandom    389
 | |
| #    elif defined(__powerpc__)
 | |
| #     define __NR_getrandom    359
 | |
| #    elif defined(__mips__) || defined(__mips64)
 | |
| #     if _MIPS_SIM == _MIPS_SIM_ABI32
 | |
| #      define __NR_getrandom   (__NR_Linux + 353)
 | |
| #     elif _MIPS_SIM == _MIPS_SIM_ABI64
 | |
| #      define __NR_getrandom   (__NR_Linux + 313)
 | |
| #     elif _MIPS_SIM == _MIPS_SIM_NABI32
 | |
| #      define __NR_getrandom   (__NR_Linux + 317)
 | |
| #     endif
 | |
| #    elif defined(__hppa__)
 | |
| #     define __NR_getrandom    (__NR_Linux + 339)
 | |
| #    elif defined(__sparc__)
 | |
| #     define __NR_getrandom    347
 | |
| #    elif defined(__ia64__)
 | |
| #     define __NR_getrandom    1339
 | |
| #    elif defined(__alpha__)
 | |
| #     define __NR_getrandom    511
 | |
| #    elif defined(__sh__)
 | |
| #     if defined(__SH5__)
 | |
| #      define __NR_getrandom   373
 | |
| #     else
 | |
| #      define __NR_getrandom   384
 | |
| #     endif
 | |
| #    elif defined(__avr32__)
 | |
| #     define __NR_getrandom    317
 | |
| #    elif defined(__microblaze__)
 | |
| #     define __NR_getrandom    385
 | |
| #    elif defined(__m68k__)
 | |
| #     define __NR_getrandom    352
 | |
| #    elif defined(__cris__)
 | |
| #     define __NR_getrandom    356
 | |
| #    elif defined(__aarch64__)
 | |
| #     define __NR_getrandom    278
 | |
| #    else /* generic */
 | |
| #     define __NR_getrandom    278
 | |
| #    endif
 | |
| #   endif
 | |
| 
 | |
| /*
 | |
|  * syscall_random(): Try to get random data using a system call
 | |
|  * returns the number of bytes returned in buf, or < 0 on error.
 | |
|  */
 | |
| static ssize_t syscall_random(void *buf, size_t buflen)
 | |
| {
 | |
|     /*
 | |
|      * Note: 'buflen' equals the size of the buffer which is used by the
 | |
|      * get_entropy() callback of the RAND_DRBG. It is roughly bounded by
 | |
|      *
 | |
|      *   2 * RAND_POOL_FACTOR * (RAND_DRBG_STRENGTH / 8) = 2^14
 | |
|      *
 | |
|      * which is way below the OSSL_SSIZE_MAX limit. Therefore sign conversion
 | |
|      * between size_t and ssize_t is safe even without a range check.
 | |
|      */
 | |
| 
 | |
|     /*
 | |
|      * Do runtime detection to find getentropy().
 | |
|      *
 | |
|      * Known OSs that should support this:
 | |
|      * - Darwin since 16 (OSX 10.12, IOS 10.0).
 | |
|      * - Solaris since 11.3
 | |
|      * - OpenBSD since 5.6
 | |
|      * - Linux since 3.17 with glibc 2.25
 | |
|      * - FreeBSD since 12.0 (1200061)
 | |
|      *
 | |
|      * Note: Sometimes getentropy() can be provided but not implemented
 | |
|      * internally. So we need to check errno for ENOSYS
 | |
|      */
 | |
| #  if defined(__GNUC__) && __GNUC__>=2 && defined(__ELF__) && !defined(__hpux)
 | |
|     extern int getentropy(void *buffer, size_t length) __attribute__((weak));
 | |
| 
 | |
|     if (getentropy != NULL) {
 | |
|         if (getentropy(buf, buflen) == 0)
 | |
|             return (ssize_t)buflen;
 | |
|         if (errno != ENOSYS)
 | |
|             return -1;
 | |
|     }
 | |
| #  elif defined(__APPLE__)
 | |
|     if (CCRandomGenerateBytes(buf, buflen) == kCCSuccess)
 | |
| 	    return (ssize_t)buflen;
 | |
| 
 | |
|     return -1;
 | |
| #  else
 | |
|     union {
 | |
|         void *p;
 | |
|         int (*f)(void *buffer, size_t length);
 | |
|     } p_getentropy;
 | |
| 
 | |
|     /*
 | |
|      * We could cache the result of the lookup, but we normally don't
 | |
|      * call this function often.
 | |
|      */
 | |
|     ERR_set_mark();
 | |
|     p_getentropy.p = DSO_global_lookup("getentropy");
 | |
|     ERR_pop_to_mark();
 | |
|     if (p_getentropy.p != NULL)
 | |
|         return p_getentropy.f(buf, buflen) == 0 ? (ssize_t)buflen : -1;
 | |
| #  endif
 | |
| 
 | |
|     /* Linux supports this since version 3.17 */
 | |
| #  if defined(__linux) && defined(__NR_getrandom)
 | |
|     return syscall(__NR_getrandom, buf, buflen, 0);
 | |
| #  elif (defined(__FreeBSD__) || defined(__NetBSD__)) && defined(KERN_ARND)
 | |
|     return sysctl_random(buf, buflen);
 | |
| #  else
 | |
|     errno = ENOSYS;
 | |
|     return -1;
 | |
| #  endif
 | |
| }
 | |
| #  endif    /* defined(OPENSSL_RAND_SEED_GETRANDOM) */
 | |
| 
 | |
| #  if defined(OPENSSL_RAND_SEED_DEVRANDOM)
 | |
| static const char *random_device_paths[] = { DEVRANDOM };
 | |
| static struct random_device {
 | |
|     int fd;
 | |
|     dev_t dev;
 | |
|     ino_t ino;
 | |
|     mode_t mode;
 | |
|     dev_t rdev;
 | |
| } random_devices[OSSL_NELEM(random_device_paths)];
 | |
| static int keep_random_devices_open = 1;
 | |
| 
 | |
| #   if defined(__linux) && defined(DEVRANDOM_WAIT) \
 | |
|        && defined(OPENSSL_RAND_SEED_GETRANDOM)
 | |
| static void *shm_addr;
 | |
| 
 | |
| static void cleanup_shm(void)
 | |
| {
 | |
|     shmdt(shm_addr);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Ensure that the system randomness source has been adequately seeded.
 | |
|  * This is done by having the first start of libcrypto, wait until the device
 | |
|  * /dev/random becomes able to supply a byte of entropy.  Subsequent starts
 | |
|  * of the library and later reseedings do not need to do this.
 | |
|  */
 | |
| static int wait_random_seeded(void)
 | |
| {
 | |
|     static int seeded = OPENSSL_RAND_SEED_DEVRANDOM_SHM_ID < 0;
 | |
|     static const int kernel_version[] = { DEVRANDOM_SAFE_KERNEL };
 | |
|     int kernel[2];
 | |
|     int shm_id, fd, r;
 | |
|     char c, *p;
 | |
|     struct utsname un;
 | |
|     fd_set fds;
 | |
| 
 | |
|     if (!seeded) {
 | |
|         /* See if anything has created the global seeded indication */
 | |
|         if ((shm_id = shmget(OPENSSL_RAND_SEED_DEVRANDOM_SHM_ID, 1, 0)) == -1) {
 | |
|             /*
 | |
|              * Check the kernel's version and fail if it is too recent.
 | |
|              *
 | |
|              * Linux kernels from 4.8 onwards do not guarantee that
 | |
|              * /dev/urandom is properly seeded when /dev/random becomes
 | |
|              * readable.  However, such kernels support the getentropy(2)
 | |
|              * system call and this should always succeed which renders
 | |
|              * this alternative but essentially identical source moot.
 | |
|              */
 | |
|             if (uname(&un) == 0) {
 | |
|                 kernel[0] = atoi(un.release);
 | |
|                 p = strchr(un.release, '.');
 | |
|                 kernel[1] = p == NULL ? 0 : atoi(p + 1);
 | |
|                 if (kernel[0] > kernel_version[0]
 | |
|                     || (kernel[0] == kernel_version[0]
 | |
|                         && kernel[1] >= kernel_version[1])) {
 | |
|                     return 0;
 | |
|                 }
 | |
|             }
 | |
|             /* Open /dev/random and wait for it to be readable */
 | |
|             if ((fd = open(DEVRANDOM_WAIT, O_RDONLY)) != -1) {
 | |
|                 if (DEVRANDM_WAIT_USE_SELECT && fd < FD_SETSIZE) {
 | |
|                     FD_ZERO(&fds);
 | |
|                     FD_SET(fd, &fds);
 | |
|                     while ((r = select(fd + 1, &fds, NULL, NULL, NULL)) < 0
 | |
|                            && errno == EINTR);
 | |
|                 } else {
 | |
|                     while ((r = read(fd, &c, 1)) < 0 && errno == EINTR);
 | |
|                 }
 | |
|                 close(fd);
 | |
|                 if (r == 1) {
 | |
|                     seeded = 1;
 | |
|                     /* Create the shared memory indicator */
 | |
|                     shm_id = shmget(OPENSSL_RAND_SEED_DEVRANDOM_SHM_ID, 1,
 | |
|                                     IPC_CREAT | S_IRUSR | S_IRGRP | S_IROTH);
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         if (shm_id != -1) {
 | |
|             seeded = 1;
 | |
|             /*
 | |
|              * Map the shared memory to prevent its premature destruction.
 | |
|              * If this call fails, it isn't a big problem.
 | |
|              */
 | |
|             shm_addr = shmat(shm_id, NULL, SHM_RDONLY);
 | |
|             if (shm_addr != (void *)-1)
 | |
|                 OPENSSL_atexit(&cleanup_shm);
 | |
|         }
 | |
|     }
 | |
|     return seeded;
 | |
| }
 | |
| #   else /* defined __linux && DEVRANDOM_WAIT && OPENSSL_RAND_SEED_GETRANDOM */
 | |
| static int wait_random_seeded(void)
 | |
| {
 | |
|     return 1;
 | |
| }
 | |
| #   endif
 | |
| 
 | |
| /*
 | |
|  * Verify that the file descriptor associated with the random source is
 | |
|  * still valid. The rationale for doing this is the fact that it is not
 | |
|  * uncommon for daemons to close all open file handles when daemonizing.
 | |
|  * So the handle might have been closed or even reused for opening
 | |
|  * another file.
 | |
|  */
 | |
| static int check_random_device(struct random_device * rd)
 | |
| {
 | |
|     struct stat st;
 | |
| 
 | |
|     return rd->fd != -1
 | |
|            && fstat(rd->fd, &st) != -1
 | |
|            && rd->dev == st.st_dev
 | |
|            && rd->ino == st.st_ino
 | |
|            && ((rd->mode ^ st.st_mode) & ~(S_IRWXU | S_IRWXG | S_IRWXO)) == 0
 | |
|            && rd->rdev == st.st_rdev;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Open a random device if required and return its file descriptor or -1 on error
 | |
|  */
 | |
| static int get_random_device(size_t n)
 | |
| {
 | |
|     struct stat st;
 | |
|     struct random_device * rd = &random_devices[n];
 | |
| 
 | |
|     /* reuse existing file descriptor if it is (still) valid */
 | |
|     if (check_random_device(rd))
 | |
|         return rd->fd;
 | |
| 
 | |
|     /* open the random device ... */
 | |
|     if ((rd->fd = open(random_device_paths[n], O_RDONLY)) == -1)
 | |
|         return rd->fd;
 | |
| 
 | |
|     /* ... and cache its relevant stat(2) data */
 | |
|     if (fstat(rd->fd, &st) != -1) {
 | |
|         rd->dev = st.st_dev;
 | |
|         rd->ino = st.st_ino;
 | |
|         rd->mode = st.st_mode;
 | |
|         rd->rdev = st.st_rdev;
 | |
|     } else {
 | |
|         close(rd->fd);
 | |
|         rd->fd = -1;
 | |
|     }
 | |
| 
 | |
|     return rd->fd;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Close a random device making sure it is a random device
 | |
|  */
 | |
| static void close_random_device(size_t n)
 | |
| {
 | |
|     struct random_device * rd = &random_devices[n];
 | |
| 
 | |
|     if (check_random_device(rd))
 | |
|         close(rd->fd);
 | |
|     rd->fd = -1;
 | |
| }
 | |
| 
 | |
| int rand_pool_init(void)
 | |
| {
 | |
|     size_t i;
 | |
| 
 | |
|     for (i = 0; i < OSSL_NELEM(random_devices); i++)
 | |
|         random_devices[i].fd = -1;
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| void rand_pool_cleanup(void)
 | |
| {
 | |
|     size_t i;
 | |
| 
 | |
|     for (i = 0; i < OSSL_NELEM(random_devices); i++)
 | |
|         close_random_device(i);
 | |
| }
 | |
| 
 | |
| void rand_pool_keep_random_devices_open(int keep)
 | |
| {
 | |
|     if (!keep)
 | |
|         rand_pool_cleanup();
 | |
| 
 | |
|     keep_random_devices_open = keep;
 | |
| }
 | |
| 
 | |
| #  else     /* !defined(OPENSSL_RAND_SEED_DEVRANDOM) */
 | |
| 
 | |
| int rand_pool_init(void)
 | |
| {
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| void rand_pool_cleanup(void)
 | |
| {
 | |
| }
 | |
| 
 | |
| void rand_pool_keep_random_devices_open(int keep)
 | |
| {
 | |
| }
 | |
| 
 | |
| #  endif    /* defined(OPENSSL_RAND_SEED_DEVRANDOM) */
 | |
| 
 | |
| /*
 | |
|  * Try the various seeding methods in turn, exit when successful.
 | |
|  *
 | |
|  * TODO(DRBG): If more than one entropy source is available, is it
 | |
|  * preferable to stop as soon as enough entropy has been collected
 | |
|  * (as favored by @rsalz) or should one rather be defensive and add
 | |
|  * more entropy than requested and/or from different sources?
 | |
|  *
 | |
|  * Currently, the user can select multiple entropy sources in the
 | |
|  * configure step, yet in practice only the first available source
 | |
|  * will be used. A more flexible solution has been requested, but
 | |
|  * currently it is not clear how this can be achieved without
 | |
|  * overengineering the problem. There are many parameters which
 | |
|  * could be taken into account when selecting the order and amount
 | |
|  * of input from the different entropy sources (trust, quality,
 | |
|  * possibility of blocking).
 | |
|  */
 | |
| size_t rand_pool_acquire_entropy(RAND_POOL *pool)
 | |
| {
 | |
| #  if defined(OPENSSL_RAND_SEED_NONE)
 | |
|     return rand_pool_entropy_available(pool);
 | |
| #  else
 | |
|     size_t entropy_available;
 | |
| 
 | |
| #   if defined(OPENSSL_RAND_SEED_GETRANDOM)
 | |
|     {
 | |
|         size_t bytes_needed;
 | |
|         unsigned char *buffer;
 | |
|         ssize_t bytes;
 | |
|         /* Maximum allowed number of consecutive unsuccessful attempts */
 | |
|         int attempts = 3;
 | |
| 
 | |
|         bytes_needed = rand_pool_bytes_needed(pool, 1 /*entropy_factor*/);
 | |
|         while (bytes_needed != 0 && attempts-- > 0) {
 | |
|             buffer = rand_pool_add_begin(pool, bytes_needed);
 | |
|             bytes = syscall_random(buffer, bytes_needed);
 | |
|             if (bytes > 0) {
 | |
|                 rand_pool_add_end(pool, bytes, 8 * bytes);
 | |
|                 bytes_needed -= bytes;
 | |
|                 attempts = 3; /* reset counter after successful attempt */
 | |
|             } else if (bytes < 0 && errno != EINTR) {
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     entropy_available = rand_pool_entropy_available(pool);
 | |
|     if (entropy_available > 0)
 | |
|         return entropy_available;
 | |
| #   endif
 | |
| 
 | |
| #   if defined(OPENSSL_RAND_SEED_LIBRANDOM)
 | |
|     {
 | |
|         /* Not yet implemented. */
 | |
|     }
 | |
| #   endif
 | |
| 
 | |
| #   if defined(OPENSSL_RAND_SEED_DEVRANDOM)
 | |
|     if (wait_random_seeded()) {
 | |
|         size_t bytes_needed;
 | |
|         unsigned char *buffer;
 | |
|         size_t i;
 | |
| 
 | |
|         bytes_needed = rand_pool_bytes_needed(pool, 1 /*entropy_factor*/);
 | |
|         for (i = 0; bytes_needed > 0 && i < OSSL_NELEM(random_device_paths);
 | |
|              i++) {
 | |
|             ssize_t bytes = 0;
 | |
|             /* Maximum number of consecutive unsuccessful attempts */
 | |
|             int attempts = 3;
 | |
|             const int fd = get_random_device(i);
 | |
| 
 | |
|             if (fd == -1)
 | |
|                 continue;
 | |
| 
 | |
|             while (bytes_needed != 0 && attempts-- > 0) {
 | |
|                 buffer = rand_pool_add_begin(pool, bytes_needed);
 | |
|                 bytes = read(fd, buffer, bytes_needed);
 | |
| 
 | |
|                 if (bytes > 0) {
 | |
|                     rand_pool_add_end(pool, bytes, 8 * bytes);
 | |
|                     bytes_needed -= bytes;
 | |
|                     attempts = 3; /* reset counter on successful attempt */
 | |
|                 } else if (bytes < 0 && errno != EINTR) {
 | |
|                     break;
 | |
|                 }
 | |
|             }
 | |
|             if (bytes < 0 || !keep_random_devices_open)
 | |
|                 close_random_device(i);
 | |
| 
 | |
|             bytes_needed = rand_pool_bytes_needed(pool, 1);
 | |
|         }
 | |
|         entropy_available = rand_pool_entropy_available(pool);
 | |
|         if (entropy_available > 0)
 | |
|             return entropy_available;
 | |
|     }
 | |
| #   endif
 | |
| 
 | |
| #   if defined(OPENSSL_RAND_SEED_RDTSC)
 | |
|     entropy_available = rand_acquire_entropy_from_tsc(pool);
 | |
|     if (entropy_available > 0)
 | |
|         return entropy_available;
 | |
| #   endif
 | |
| 
 | |
| #   if defined(OPENSSL_RAND_SEED_RDCPU)
 | |
|     entropy_available = rand_acquire_entropy_from_cpu(pool);
 | |
|     if (entropy_available > 0)
 | |
|         return entropy_available;
 | |
| #   endif
 | |
| 
 | |
| #   if defined(OPENSSL_RAND_SEED_EGD)
 | |
|     {
 | |
|         static const char *paths[] = { DEVRANDOM_EGD, NULL };
 | |
|         size_t bytes_needed;
 | |
|         unsigned char *buffer;
 | |
|         int i;
 | |
| 
 | |
|         bytes_needed = rand_pool_bytes_needed(pool, 1 /*entropy_factor*/);
 | |
|         for (i = 0; bytes_needed > 0 && paths[i] != NULL; i++) {
 | |
|             size_t bytes = 0;
 | |
|             int num;
 | |
| 
 | |
|             buffer = rand_pool_add_begin(pool, bytes_needed);
 | |
|             num = RAND_query_egd_bytes(paths[i],
 | |
|                                        buffer, (int)bytes_needed);
 | |
|             if (num == (int)bytes_needed)
 | |
|                 bytes = bytes_needed;
 | |
| 
 | |
|             rand_pool_add_end(pool, bytes, 8 * bytes);
 | |
|             bytes_needed = rand_pool_bytes_needed(pool, 1);
 | |
|         }
 | |
|         entropy_available = rand_pool_entropy_available(pool);
 | |
|         if (entropy_available > 0)
 | |
|             return entropy_available;
 | |
|     }
 | |
| #   endif
 | |
| 
 | |
|     return rand_pool_entropy_available(pool);
 | |
| #  endif
 | |
| }
 | |
| # endif
 | |
| #endif
 | |
| 
 | |
| #if defined(OPENSSL_SYS_UNIX) || defined(__DJGPP__)
 | |
| int rand_pool_add_nonce_data(RAND_POOL *pool)
 | |
| {
 | |
|     struct {
 | |
|         pid_t pid;
 | |
|         CRYPTO_THREAD_ID tid;
 | |
|         uint64_t time;
 | |
|     } data = { 0 };
 | |
| 
 | |
|     /*
 | |
|      * Add process id, thread id, and a high resolution timestamp to
 | |
|      * ensure that the nonce is unique with high probability for
 | |
|      * different process instances.
 | |
|      */
 | |
|     data.pid = getpid();
 | |
|     data.tid = CRYPTO_THREAD_get_current_id();
 | |
|     data.time = get_time_stamp();
 | |
| 
 | |
|     return rand_pool_add(pool, (unsigned char *)&data, sizeof(data), 0);
 | |
| }
 | |
| 
 | |
| int rand_pool_add_additional_data(RAND_POOL *pool)
 | |
| {
 | |
|     struct {
 | |
|         int fork_id;
 | |
|         CRYPTO_THREAD_ID tid;
 | |
|         uint64_t time;
 | |
|     } data = { 0 };
 | |
| 
 | |
|     /*
 | |
|      * Add some noise from the thread id and a high resolution timer.
 | |
|      * The fork_id adds some extra fork-safety.
 | |
|      * The thread id adds a little randomness if the drbg is accessed
 | |
|      * concurrently (which is the case for the <master> drbg).
 | |
|      */
 | |
|     data.fork_id = openssl_get_fork_id();
 | |
|     data.tid = CRYPTO_THREAD_get_current_id();
 | |
|     data.time = get_timer_bits();
 | |
| 
 | |
|     return rand_pool_add(pool, (unsigned char *)&data, sizeof(data), 0);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Get the current time with the highest possible resolution
 | |
|  *
 | |
|  * The time stamp is added to the nonce, so it is optimized for not repeating.
 | |
|  * The current time is ideal for this purpose, provided the computer's clock
 | |
|  * is synchronized.
 | |
|  */
 | |
| static uint64_t get_time_stamp(void)
 | |
| {
 | |
| # if defined(OSSL_POSIX_TIMER_OKAY)
 | |
|     {
 | |
|         struct timespec ts;
 | |
| 
 | |
|         if (clock_gettime(CLOCK_REALTIME, &ts) == 0)
 | |
|             return TWO32TO64(ts.tv_sec, ts.tv_nsec);
 | |
|     }
 | |
| # endif
 | |
| # if defined(__unix__) \
 | |
|      || (defined(_POSIX_C_SOURCE) && _POSIX_C_SOURCE >= 200112L)
 | |
|     {
 | |
|         struct timeval tv;
 | |
| 
 | |
|         if (gettimeofday(&tv, NULL) == 0)
 | |
|             return TWO32TO64(tv.tv_sec, tv.tv_usec);
 | |
|     }
 | |
| # endif
 | |
|     return time(NULL);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Get an arbitrary timer value of the highest possible resolution
 | |
|  *
 | |
|  * The timer value is added as random noise to the additional data,
 | |
|  * which is not considered a trusted entropy sourec, so any result
 | |
|  * is acceptable.
 | |
|  */
 | |
| static uint64_t get_timer_bits(void)
 | |
| {
 | |
|     uint64_t res = OPENSSL_rdtsc();
 | |
| 
 | |
|     if (res != 0)
 | |
|         return res;
 | |
| 
 | |
| # if defined(__sun) || defined(__hpux)
 | |
|     return gethrtime();
 | |
| # elif defined(_AIX)
 | |
|     {
 | |
|         timebasestruct_t t;
 | |
| 
 | |
|         read_wall_time(&t, TIMEBASE_SZ);
 | |
|         return TWO32TO64(t.tb_high, t.tb_low);
 | |
|     }
 | |
| # elif defined(OSSL_POSIX_TIMER_OKAY)
 | |
|     {
 | |
|         struct timespec ts;
 | |
| 
 | |
| #  ifdef CLOCK_BOOTTIME
 | |
| #   define CLOCK_TYPE CLOCK_BOOTTIME
 | |
| #  elif defined(_POSIX_MONOTONIC_CLOCK)
 | |
| #   define CLOCK_TYPE CLOCK_MONOTONIC
 | |
| #  else
 | |
| #   define CLOCK_TYPE CLOCK_REALTIME
 | |
| #  endif
 | |
| 
 | |
|         if (clock_gettime(CLOCK_TYPE, &ts) == 0)
 | |
|             return TWO32TO64(ts.tv_sec, ts.tv_nsec);
 | |
|     }
 | |
| # endif
 | |
| # if defined(__unix__) \
 | |
|      || (defined(_POSIX_C_SOURCE) && _POSIX_C_SOURCE >= 200112L)
 | |
|     {
 | |
|         struct timeval tv;
 | |
| 
 | |
|         if (gettimeofday(&tv, NULL) == 0)
 | |
|             return TWO32TO64(tv.tv_sec, tv.tv_usec);
 | |
|     }
 | |
| # endif
 | |
|     return time(NULL);
 | |
| }
 | |
| #endif /* (defined(OPENSSL_SYS_UNIX) && !defined(OPENSSL_SYS_VXWORKS))
 | |
|           || defined(__DJGPP__) */
 |