mirror of
				https://github.com/ossrs/srs.git
				synced 2025-03-09 15:49:59 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			266 lines
		
	
	
	
		
			7.4 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			266 lines
		
	
	
	
		
			7.4 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright 2015-2018 The OpenSSL Project Authors. All Rights Reserved.
 | |
|  *
 | |
|  * Licensed under the OpenSSL license (the "License").  You may not use
 | |
|  * this file except in compliance with the License.  You can obtain a copy
 | |
|  * in the file LICENSE in the source distribution or at
 | |
|  * https://www.openssl.org/source/license.html
 | |
|  */
 | |
| 
 | |
| #include <stddef.h>
 | |
| #include <stdio.h>
 | |
| #include <string.h>
 | |
| #include <openssl/evp.h>
 | |
| #include <openssl/err.h>
 | |
| #include "internal/numbers.h"
 | |
| 
 | |
| #ifndef OPENSSL_NO_SCRYPT
 | |
| 
 | |
| #define R(a,b) (((a) << (b)) | ((a) >> (32 - (b))))
 | |
| static void salsa208_word_specification(uint32_t inout[16])
 | |
| {
 | |
|     int i;
 | |
|     uint32_t x[16];
 | |
|     memcpy(x, inout, sizeof(x));
 | |
|     for (i = 8; i > 0; i -= 2) {
 | |
|         x[4] ^= R(x[0] + x[12], 7);
 | |
|         x[8] ^= R(x[4] + x[0], 9);
 | |
|         x[12] ^= R(x[8] + x[4], 13);
 | |
|         x[0] ^= R(x[12] + x[8], 18);
 | |
|         x[9] ^= R(x[5] + x[1], 7);
 | |
|         x[13] ^= R(x[9] + x[5], 9);
 | |
|         x[1] ^= R(x[13] + x[9], 13);
 | |
|         x[5] ^= R(x[1] + x[13], 18);
 | |
|         x[14] ^= R(x[10] + x[6], 7);
 | |
|         x[2] ^= R(x[14] + x[10], 9);
 | |
|         x[6] ^= R(x[2] + x[14], 13);
 | |
|         x[10] ^= R(x[6] + x[2], 18);
 | |
|         x[3] ^= R(x[15] + x[11], 7);
 | |
|         x[7] ^= R(x[3] + x[15], 9);
 | |
|         x[11] ^= R(x[7] + x[3], 13);
 | |
|         x[15] ^= R(x[11] + x[7], 18);
 | |
|         x[1] ^= R(x[0] + x[3], 7);
 | |
|         x[2] ^= R(x[1] + x[0], 9);
 | |
|         x[3] ^= R(x[2] + x[1], 13);
 | |
|         x[0] ^= R(x[3] + x[2], 18);
 | |
|         x[6] ^= R(x[5] + x[4], 7);
 | |
|         x[7] ^= R(x[6] + x[5], 9);
 | |
|         x[4] ^= R(x[7] + x[6], 13);
 | |
|         x[5] ^= R(x[4] + x[7], 18);
 | |
|         x[11] ^= R(x[10] + x[9], 7);
 | |
|         x[8] ^= R(x[11] + x[10], 9);
 | |
|         x[9] ^= R(x[8] + x[11], 13);
 | |
|         x[10] ^= R(x[9] + x[8], 18);
 | |
|         x[12] ^= R(x[15] + x[14], 7);
 | |
|         x[13] ^= R(x[12] + x[15], 9);
 | |
|         x[14] ^= R(x[13] + x[12], 13);
 | |
|         x[15] ^= R(x[14] + x[13], 18);
 | |
|     }
 | |
|     for (i = 0; i < 16; ++i)
 | |
|         inout[i] += x[i];
 | |
|     OPENSSL_cleanse(x, sizeof(x));
 | |
| }
 | |
| 
 | |
| static void scryptBlockMix(uint32_t *B_, uint32_t *B, uint64_t r)
 | |
| {
 | |
|     uint64_t i, j;
 | |
|     uint32_t X[16], *pB;
 | |
| 
 | |
|     memcpy(X, B + (r * 2 - 1) * 16, sizeof(X));
 | |
|     pB = B;
 | |
|     for (i = 0; i < r * 2; i++) {
 | |
|         for (j = 0; j < 16; j++)
 | |
|             X[j] ^= *pB++;
 | |
|         salsa208_word_specification(X);
 | |
|         memcpy(B_ + (i / 2 + (i & 1) * r) * 16, X, sizeof(X));
 | |
|     }
 | |
|     OPENSSL_cleanse(X, sizeof(X));
 | |
| }
 | |
| 
 | |
| static void scryptROMix(unsigned char *B, uint64_t r, uint64_t N,
 | |
|                         uint32_t *X, uint32_t *T, uint32_t *V)
 | |
| {
 | |
|     unsigned char *pB;
 | |
|     uint32_t *pV;
 | |
|     uint64_t i, k;
 | |
| 
 | |
|     /* Convert from little endian input */
 | |
|     for (pV = V, i = 0, pB = B; i < 32 * r; i++, pV++) {
 | |
|         *pV = *pB++;
 | |
|         *pV |= *pB++ << 8;
 | |
|         *pV |= *pB++ << 16;
 | |
|         *pV |= (uint32_t)*pB++ << 24;
 | |
|     }
 | |
| 
 | |
|     for (i = 1; i < N; i++, pV += 32 * r)
 | |
|         scryptBlockMix(pV, pV - 32 * r, r);
 | |
| 
 | |
|     scryptBlockMix(X, V + (N - 1) * 32 * r, r);
 | |
| 
 | |
|     for (i = 0; i < N; i++) {
 | |
|         uint32_t j;
 | |
|         j = X[16 * (2 * r - 1)] % N;
 | |
|         pV = V + 32 * r * j;
 | |
|         for (k = 0; k < 32 * r; k++)
 | |
|             T[k] = X[k] ^ *pV++;
 | |
|         scryptBlockMix(X, T, r);
 | |
|     }
 | |
|     /* Convert output to little endian */
 | |
|     for (i = 0, pB = B; i < 32 * r; i++) {
 | |
|         uint32_t xtmp = X[i];
 | |
|         *pB++ = xtmp & 0xff;
 | |
|         *pB++ = (xtmp >> 8) & 0xff;
 | |
|         *pB++ = (xtmp >> 16) & 0xff;
 | |
|         *pB++ = (xtmp >> 24) & 0xff;
 | |
|     }
 | |
| }
 | |
| 
 | |
| #ifndef SIZE_MAX
 | |
| # define SIZE_MAX    ((size_t)-1)
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Maximum power of two that will fit in uint64_t: this should work on
 | |
|  * most (all?) platforms.
 | |
|  */
 | |
| 
 | |
| #define LOG2_UINT64_MAX         (sizeof(uint64_t) * 8 - 1)
 | |
| 
 | |
| /*
 | |
|  * Maximum value of p * r:
 | |
|  * p <= ((2^32-1) * hLen) / MFLen =>
 | |
|  * p <= ((2^32-1) * 32) / (128 * r) =>
 | |
|  * p * r <= (2^30-1)
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #define SCRYPT_PR_MAX   ((1 << 30) - 1)
 | |
| 
 | |
| /*
 | |
|  * Maximum permitted memory allow this to be overridden with Configuration
 | |
|  * option: e.g. -DSCRYPT_MAX_MEM=0 for maximum possible.
 | |
|  */
 | |
| 
 | |
| #ifdef SCRYPT_MAX_MEM
 | |
| # if SCRYPT_MAX_MEM == 0
 | |
| #  undef SCRYPT_MAX_MEM
 | |
| /*
 | |
|  * Although we could theoretically allocate SIZE_MAX memory that would leave
 | |
|  * no memory available for anything else so set limit as half that.
 | |
|  */
 | |
| #  define SCRYPT_MAX_MEM (SIZE_MAX/2)
 | |
| # endif
 | |
| #else
 | |
| /* Default memory limit: 32 MB */
 | |
| # define SCRYPT_MAX_MEM  (1024 * 1024 * 32)
 | |
| #endif
 | |
| 
 | |
| int EVP_PBE_scrypt(const char *pass, size_t passlen,
 | |
|                    const unsigned char *salt, size_t saltlen,
 | |
|                    uint64_t N, uint64_t r, uint64_t p, uint64_t maxmem,
 | |
|                    unsigned char *key, size_t keylen)
 | |
| {
 | |
|     int rv = 0;
 | |
|     unsigned char *B;
 | |
|     uint32_t *X, *V, *T;
 | |
|     uint64_t i, Blen, Vlen;
 | |
| 
 | |
|     /* Sanity check parameters */
 | |
|     /* initial check, r,p must be non zero, N >= 2 and a power of 2 */
 | |
|     if (r == 0 || p == 0 || N < 2 || (N & (N - 1)))
 | |
|         return 0;
 | |
|     /* Check p * r < SCRYPT_PR_MAX avoiding overflow */
 | |
|     if (p > SCRYPT_PR_MAX / r) {
 | |
|         EVPerr(EVP_F_EVP_PBE_SCRYPT, EVP_R_MEMORY_LIMIT_EXCEEDED);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Need to check N: if 2^(128 * r / 8) overflows limit this is
 | |
|      * automatically satisfied since N <= UINT64_MAX.
 | |
|      */
 | |
| 
 | |
|     if (16 * r <= LOG2_UINT64_MAX) {
 | |
|         if (N >= (((uint64_t)1) << (16 * r))) {
 | |
|             EVPerr(EVP_F_EVP_PBE_SCRYPT, EVP_R_MEMORY_LIMIT_EXCEEDED);
 | |
|             return 0;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Memory checks: check total allocated buffer size fits in uint64_t */
 | |
| 
 | |
|     /*
 | |
|      * B size in section 5 step 1.S
 | |
|      * Note: we know p * 128 * r < UINT64_MAX because we already checked
 | |
|      * p * r < SCRYPT_PR_MAX
 | |
|      */
 | |
|     Blen = p * 128 * r;
 | |
|     /*
 | |
|      * Yet we pass it as integer to PKCS5_PBKDF2_HMAC... [This would
 | |
|      * have to be revised when/if PKCS5_PBKDF2_HMAC accepts size_t.]
 | |
|      */
 | |
|     if (Blen > INT_MAX) {
 | |
|         EVPerr(EVP_F_EVP_PBE_SCRYPT, EVP_R_MEMORY_LIMIT_EXCEEDED);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Check 32 * r * (N + 2) * sizeof(uint32_t) fits in uint64_t
 | |
|      * This is combined size V, X and T (section 4)
 | |
|      */
 | |
|     i = UINT64_MAX / (32 * sizeof(uint32_t));
 | |
|     if (N + 2 > i / r) {
 | |
|         EVPerr(EVP_F_EVP_PBE_SCRYPT, EVP_R_MEMORY_LIMIT_EXCEEDED);
 | |
|         return 0;
 | |
|     }
 | |
|     Vlen = 32 * r * (N + 2) * sizeof(uint32_t);
 | |
| 
 | |
|     /* check total allocated size fits in uint64_t */
 | |
|     if (Blen > UINT64_MAX - Vlen) {
 | |
|         EVPerr(EVP_F_EVP_PBE_SCRYPT, EVP_R_MEMORY_LIMIT_EXCEEDED);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     if (maxmem == 0)
 | |
|         maxmem = SCRYPT_MAX_MEM;
 | |
| 
 | |
|     /* Check that the maximum memory doesn't exceed a size_t limits */
 | |
|     if (maxmem > SIZE_MAX)
 | |
|         maxmem = SIZE_MAX;
 | |
| 
 | |
|     if (Blen + Vlen > maxmem) {
 | |
|         EVPerr(EVP_F_EVP_PBE_SCRYPT, EVP_R_MEMORY_LIMIT_EXCEEDED);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     /* If no key return to indicate parameters are OK */
 | |
|     if (key == NULL)
 | |
|         return 1;
 | |
| 
 | |
|     B = OPENSSL_malloc((size_t)(Blen + Vlen));
 | |
|     if (B == NULL) {
 | |
|         EVPerr(EVP_F_EVP_PBE_SCRYPT, ERR_R_MALLOC_FAILURE);
 | |
|         return 0;
 | |
|     }
 | |
|     X = (uint32_t *)(B + Blen);
 | |
|     T = X + 32 * r;
 | |
|     V = T + 32 * r;
 | |
|     if (PKCS5_PBKDF2_HMAC(pass, passlen, salt, saltlen, 1, EVP_sha256(),
 | |
|                           (int)Blen, B) == 0)
 | |
|         goto err;
 | |
| 
 | |
|     for (i = 0; i < p; i++)
 | |
|         scryptROMix(B + 128 * r * i, r, N, X, T, V);
 | |
| 
 | |
|     if (PKCS5_PBKDF2_HMAC(pass, passlen, B, (int)Blen, 1, EVP_sha256(),
 | |
|                           keylen, key) == 0)
 | |
|         goto err;
 | |
|     rv = 1;
 | |
|  err:
 | |
|     if (rv == 0)
 | |
|         EVPerr(EVP_F_EVP_PBE_SCRYPT, EVP_R_PBKDF2_ERROR);
 | |
| 
 | |
|     OPENSSL_clear_free(B, (size_t)(Blen + Vlen));
 | |
|     return rv;
 | |
| }
 | |
| #endif
 |