mirror of
				https://github.com/ossrs/srs.git
				synced 2025-03-09 15:49:59 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			228 lines
		
	
	
	
		
			6 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			228 lines
		
	
	
	
		
			6 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright 1999-2017 The OpenSSL Project Authors. All Rights Reserved.
 | |
|  *
 | |
|  * Licensed under the OpenSSL license (the "License").  You may not use
 | |
|  * this file except in compliance with the License.  You can obtain a copy
 | |
|  * in the file LICENSE in the source distribution or at
 | |
|  * https://www.openssl.org/source/license.html
 | |
|  */
 | |
| 
 | |
| #include <openssl/bn.h>
 | |
| #include <openssl/err.h>
 | |
| #include "rsa_local.h"
 | |
| 
 | |
| int RSA_check_key(const RSA *key)
 | |
| {
 | |
|     return RSA_check_key_ex(key, NULL);
 | |
| }
 | |
| 
 | |
| int RSA_check_key_ex(const RSA *key, BN_GENCB *cb)
 | |
| {
 | |
|     BIGNUM *i, *j, *k, *l, *m;
 | |
|     BN_CTX *ctx;
 | |
|     int ret = 1, ex_primes = 0, idx;
 | |
|     RSA_PRIME_INFO *pinfo;
 | |
| 
 | |
|     if (key->p == NULL || key->q == NULL || key->n == NULL
 | |
|             || key->e == NULL || key->d == NULL) {
 | |
|         RSAerr(RSA_F_RSA_CHECK_KEY_EX, RSA_R_VALUE_MISSING);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     /* multi-prime? */
 | |
|     if (key->version == RSA_ASN1_VERSION_MULTI) {
 | |
|         ex_primes = sk_RSA_PRIME_INFO_num(key->prime_infos);
 | |
|         if (ex_primes <= 0
 | |
|                 || (ex_primes + 2) > rsa_multip_cap(BN_num_bits(key->n))) {
 | |
|             RSAerr(RSA_F_RSA_CHECK_KEY_EX, RSA_R_INVALID_MULTI_PRIME_KEY);
 | |
|             return 0;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     i = BN_new();
 | |
|     j = BN_new();
 | |
|     k = BN_new();
 | |
|     l = BN_new();
 | |
|     m = BN_new();
 | |
|     ctx = BN_CTX_new();
 | |
|     if (i == NULL || j == NULL || k == NULL || l == NULL
 | |
|             || m == NULL || ctx == NULL) {
 | |
|         ret = -1;
 | |
|         RSAerr(RSA_F_RSA_CHECK_KEY_EX, ERR_R_MALLOC_FAILURE);
 | |
|         goto err;
 | |
|     }
 | |
| 
 | |
|     if (BN_is_one(key->e)) {
 | |
|         ret = 0;
 | |
|         RSAerr(RSA_F_RSA_CHECK_KEY_EX, RSA_R_BAD_E_VALUE);
 | |
|     }
 | |
|     if (!BN_is_odd(key->e)) {
 | |
|         ret = 0;
 | |
|         RSAerr(RSA_F_RSA_CHECK_KEY_EX, RSA_R_BAD_E_VALUE);
 | |
|     }
 | |
| 
 | |
|     /* p prime? */
 | |
|     if (BN_is_prime_ex(key->p, BN_prime_checks, NULL, cb) != 1) {
 | |
|         ret = 0;
 | |
|         RSAerr(RSA_F_RSA_CHECK_KEY_EX, RSA_R_P_NOT_PRIME);
 | |
|     }
 | |
| 
 | |
|     /* q prime? */
 | |
|     if (BN_is_prime_ex(key->q, BN_prime_checks, NULL, cb) != 1) {
 | |
|         ret = 0;
 | |
|         RSAerr(RSA_F_RSA_CHECK_KEY_EX, RSA_R_Q_NOT_PRIME);
 | |
|     }
 | |
| 
 | |
|     /* r_i prime? */
 | |
|     for (idx = 0; idx < ex_primes; idx++) {
 | |
|         pinfo = sk_RSA_PRIME_INFO_value(key->prime_infos, idx);
 | |
|         if (BN_is_prime_ex(pinfo->r, BN_prime_checks, NULL, cb) != 1) {
 | |
|             ret = 0;
 | |
|             RSAerr(RSA_F_RSA_CHECK_KEY_EX, RSA_R_MP_R_NOT_PRIME);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* n = p*q * r_3...r_i? */
 | |
|     if (!BN_mul(i, key->p, key->q, ctx)) {
 | |
|         ret = -1;
 | |
|         goto err;
 | |
|     }
 | |
|     for (idx = 0; idx < ex_primes; idx++) {
 | |
|         pinfo = sk_RSA_PRIME_INFO_value(key->prime_infos, idx);
 | |
|         if (!BN_mul(i, i, pinfo->r, ctx)) {
 | |
|             ret = -1;
 | |
|             goto err;
 | |
|         }
 | |
|     }
 | |
|     if (BN_cmp(i, key->n) != 0) {
 | |
|         ret = 0;
 | |
|         if (ex_primes)
 | |
|             RSAerr(RSA_F_RSA_CHECK_KEY_EX,
 | |
|                    RSA_R_N_DOES_NOT_EQUAL_PRODUCT_OF_PRIMES);
 | |
|         else
 | |
|             RSAerr(RSA_F_RSA_CHECK_KEY_EX, RSA_R_N_DOES_NOT_EQUAL_P_Q);
 | |
|     }
 | |
| 
 | |
|     /* d*e = 1  mod \lambda(n)? */
 | |
|     if (!BN_sub(i, key->p, BN_value_one())) {
 | |
|         ret = -1;
 | |
|         goto err;
 | |
|     }
 | |
|     if (!BN_sub(j, key->q, BN_value_one())) {
 | |
|         ret = -1;
 | |
|         goto err;
 | |
|     }
 | |
| 
 | |
|     /* now compute k = \lambda(n) = LCM(i, j, r_3 - 1...) */
 | |
|     if (!BN_mul(l, i, j, ctx)) {
 | |
|         ret = -1;
 | |
|         goto err;
 | |
|     }
 | |
|     if (!BN_gcd(m, i, j, ctx)) {
 | |
|         ret = -1;
 | |
|         goto err;
 | |
|     }
 | |
|     for (idx = 0; idx < ex_primes; idx++) {
 | |
|         pinfo = sk_RSA_PRIME_INFO_value(key->prime_infos, idx);
 | |
|         if (!BN_sub(k, pinfo->r, BN_value_one())) {
 | |
|             ret = -1;
 | |
|             goto err;
 | |
|         }
 | |
|         if (!BN_mul(l, l, k, ctx)) {
 | |
|             ret = -1;
 | |
|             goto err;
 | |
|         }
 | |
|         if (!BN_gcd(m, m, k, ctx)) {
 | |
|             ret = -1;
 | |
|             goto err;
 | |
|         }
 | |
|     }
 | |
|     if (!BN_div(k, NULL, l, m, ctx)) { /* remainder is 0 */
 | |
|         ret = -1;
 | |
|         goto err;
 | |
|     }
 | |
|     if (!BN_mod_mul(i, key->d, key->e, k, ctx)) {
 | |
|         ret = -1;
 | |
|         goto err;
 | |
|     }
 | |
| 
 | |
|     if (!BN_is_one(i)) {
 | |
|         ret = 0;
 | |
|         RSAerr(RSA_F_RSA_CHECK_KEY_EX, RSA_R_D_E_NOT_CONGRUENT_TO_1);
 | |
|     }
 | |
| 
 | |
|     if (key->dmp1 != NULL && key->dmq1 != NULL && key->iqmp != NULL) {
 | |
|         /* dmp1 = d mod (p-1)? */
 | |
|         if (!BN_sub(i, key->p, BN_value_one())) {
 | |
|             ret = -1;
 | |
|             goto err;
 | |
|         }
 | |
|         if (!BN_mod(j, key->d, i, ctx)) {
 | |
|             ret = -1;
 | |
|             goto err;
 | |
|         }
 | |
|         if (BN_cmp(j, key->dmp1) != 0) {
 | |
|             ret = 0;
 | |
|             RSAerr(RSA_F_RSA_CHECK_KEY_EX, RSA_R_DMP1_NOT_CONGRUENT_TO_D);
 | |
|         }
 | |
| 
 | |
|         /* dmq1 = d mod (q-1)? */
 | |
|         if (!BN_sub(i, key->q, BN_value_one())) {
 | |
|             ret = -1;
 | |
|             goto err;
 | |
|         }
 | |
|         if (!BN_mod(j, key->d, i, ctx)) {
 | |
|             ret = -1;
 | |
|             goto err;
 | |
|         }
 | |
|         if (BN_cmp(j, key->dmq1) != 0) {
 | |
|             ret = 0;
 | |
|             RSAerr(RSA_F_RSA_CHECK_KEY_EX, RSA_R_DMQ1_NOT_CONGRUENT_TO_D);
 | |
|         }
 | |
| 
 | |
|         /* iqmp = q^-1 mod p? */
 | |
|         if (!BN_mod_inverse(i, key->q, key->p, ctx)) {
 | |
|             ret = -1;
 | |
|             goto err;
 | |
|         }
 | |
|         if (BN_cmp(i, key->iqmp) != 0) {
 | |
|             ret = 0;
 | |
|             RSAerr(RSA_F_RSA_CHECK_KEY_EX, RSA_R_IQMP_NOT_INVERSE_OF_Q);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for (idx = 0; idx < ex_primes; idx++) {
 | |
|         pinfo = sk_RSA_PRIME_INFO_value(key->prime_infos, idx);
 | |
|         /* d_i = d mod (r_i - 1)? */
 | |
|         if (!BN_sub(i, pinfo->r, BN_value_one())) {
 | |
|             ret = -1;
 | |
|             goto err;
 | |
|         }
 | |
|         if (!BN_mod(j, key->d, i, ctx)) {
 | |
|             ret = -1;
 | |
|             goto err;
 | |
|         }
 | |
|         if (BN_cmp(j, pinfo->d) != 0) {
 | |
|             ret = 0;
 | |
|             RSAerr(RSA_F_RSA_CHECK_KEY_EX, RSA_R_MP_EXPONENT_NOT_CONGRUENT_TO_D);
 | |
|         }
 | |
|         /* t_i = R_i ^ -1 mod r_i ? */
 | |
|         if (!BN_mod_inverse(i, pinfo->pp, pinfo->r, ctx)) {
 | |
|             ret = -1;
 | |
|             goto err;
 | |
|         }
 | |
|         if (BN_cmp(i, pinfo->t) != 0) {
 | |
|             ret = 0;
 | |
|             RSAerr(RSA_F_RSA_CHECK_KEY_EX, RSA_R_MP_COEFFICIENT_NOT_INVERSE_OF_R);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|  err:
 | |
|     BN_free(i);
 | |
|     BN_free(j);
 | |
|     BN_free(k);
 | |
|     BN_free(l);
 | |
|     BN_free(m);
 | |
|     BN_CTX_free(ctx);
 | |
|     return ret;
 | |
| }
 |