1
0
Fork 0
mirror of https://github.com/ossrs/srs.git synced 2025-02-15 04:42:04 +00:00
srs/trunk/src/protocol/srs_protocol_utility.cpp
2023-10-23 14:33:19 +08:00

1025 lines
29 KiB
C++

//
// Copyright (c) 2013-2023 The SRS Authors
//
// SPDX-License-Identifier: MIT
//
#include <srs_protocol_utility.hpp>
#ifndef _WIN32
#include <unistd.h>
#endif
#include <arpa/inet.h>
#include <stdlib.h>
#include <sstream>
using namespace std;
#include <srs_kernel_log.hpp>
#include <srs_kernel_utility.hpp>
#include <srs_kernel_buffer.hpp>
#include <srs_protocol_rtmp_stack.hpp>
#include <srs_kernel_codec.hpp>
#include <srs_kernel_consts.hpp>
#include <srs_protocol_rtmp_stack.hpp>
#include <srs_protocol_io.hpp>
#include <limits.h>
#include <unistd.h>
#include <arpa/inet.h>
#include <net/if.h>
#include <ifaddrs.h>
#include <netdb.h>
#include <math.h>
#include <stdlib.h>
#include <map>
#include <sstream>
using namespace std;
#include <srs_protocol_st.hpp>
#include <srs_kernel_error.hpp>
#include <srs_kernel_consts.hpp>
#include <srs_kernel_log.hpp>
#include <srs_kernel_utility.hpp>
#include <srs_protocol_http_stack.hpp>
#include <srs_core_autofree.hpp>
void srs_discovery_tc_url(string tcUrl, string& schema, string& host, string& vhost, string& app, string& stream, int& port, string& param)
{
// For compatibility, transform
// rtmp://ip/app...vhost...VHOST/stream
// to typical format:
// rtmp://ip/app?vhost=VHOST/stream
string fullUrl = srs_string_replace(tcUrl, "...vhost...", "?vhost=");
// Standard URL is:
// rtmp://ip/app/app2/stream?k=v
// Where after last slash is stream.
fullUrl += stream.empty() ? "/" : (stream.at(0) == '/' ? stream : "/" + stream);
fullUrl += param.empty() ? "" : (param.at(0) == '?' ? param : "?" + param);
// First, we covert the FMLE URL to standard URL:
// rtmp://ip/app/app2?k=v/stream , or:
// rtmp://ip/app/app2#k=v/stream
size_t pos_query = fullUrl.find_first_of("?#");
size_t pos_rslash = fullUrl.rfind("/");
if (pos_rslash != string::npos && pos_query != string::npos && pos_query < pos_rslash) {
fullUrl = fullUrl.substr(0, pos_query) // rtmp://ip/app/app2
+ fullUrl.substr(pos_rslash) // /stream
+ fullUrl.substr(pos_query, pos_rslash - pos_query); // ?k=v
}
// Remove the _definst_ of FMLE URL.
if (fullUrl.find("/_definst_") != string::npos) {
fullUrl = srs_string_replace(fullUrl, "/_definst_", "");
}
// Parse the standard URL.
SrsHttpUri uri;
srs_error_t err = srs_success;
if ((err = uri.initialize(fullUrl)) != srs_success) {
srs_warn("Ignore parse url=%s err %s", fullUrl.c_str(), srs_error_desc(err).c_str());
srs_freep(err);
return;
}
schema = uri.get_schema();
host = uri.get_host();
port = uri.get_port();
stream = srs_path_basename(uri.get_path());
param = uri.get_query().empty() ? "" : "?" + uri.get_query();
param += uri.get_fragment().empty() ? "" : "#" + uri.get_fragment();
// Parse app without the prefix slash.
app = srs_path_dirname(uri.get_path());
if (!app.empty() && app.at(0) == '/') app = app.substr(1);
if (app.empty()) app = SRS_CONSTS_RTMP_DEFAULT_APP;
// Try to parse vhost from query, or use host if not specified.
string vhost_in_query = uri.get_query_by_key("vhost");
if (vhost_in_query.empty()) vhost_in_query = uri.get_query_by_key("domain");
if (!vhost_in_query.empty() && vhost_in_query != SRS_CONSTS_RTMP_DEFAULT_VHOST) vhost = vhost_in_query;
if (vhost.empty()) vhost = host;
// Only one param, the default vhost, clear it.
if (param.find("&") == string::npos && vhost_in_query == SRS_CONSTS_RTMP_DEFAULT_VHOST) {
param = "";
}
}
void srs_guess_stream_by_app(string& app, string& param, string& stream)
{
size_t pos = std::string::npos;
// Extract stream from app, if contains slash.
if ((pos = app.find("/")) != std::string::npos) {
stream = app.substr(pos + 1);
app = app.substr(0, pos);
if ((pos = stream.find("?")) != std::string::npos) {
param = stream.substr(pos);
stream = stream.substr(0, pos);
}
return;
}
// Extract stream from param, if contains slash.
if ((pos = param.find("/")) != std::string::npos) {
stream = param.substr(pos + 1);
param = param.substr(0, pos);
}
}
void srs_parse_query_string(string q, map<string,string>& query)
{
// query string flags.
static vector<string> flags;
if (flags.empty()) {
flags.push_back("=");
flags.push_back(",");
flags.push_back("&&");
flags.push_back("&");
flags.push_back(";");
}
vector<string> kvs = srs_string_split(q, flags);
for (int i = 0; i < (int)kvs.size(); i+=2) {
string k = kvs.at(i);
string v = (i < (int)kvs.size() - 1)? kvs.at(i+1):"";
query[k] = v;
}
}
void srs_random_generate(char* bytes, int size)
{
for (int i = 0; i < size; i++) {
// the common value in [0x0f, 0xf0]
bytes[i] = 0x0f + (srs_random() % (256 - 0x0f - 0x0f));
}
}
std::string srs_random_str(int len)
{
static string random_table = "01234567890123456789012345678901234567890123456789abcdefghijklmnopqrstuvwxyz";
string ret;
ret.reserve(len);
for (int i = 0; i < len; ++i) {
ret.append(1, random_table[srs_random() % random_table.size()]);
}
return ret;
}
long srs_random()
{
static bool _random_initialized = false;
if (!_random_initialized) {
_random_initialized = true;
::srandom((unsigned long)(srs_update_system_time() | (::getpid()<<13)));
}
return random();
}
string srs_generate_tc_url(string schema, string host, string vhost, string app, int port)
{
string tcUrl = schema + "://";
if (vhost == SRS_CONSTS_RTMP_DEFAULT_VHOST) {
tcUrl += host.empty() ? SRS_CONSTS_RTMP_DEFAULT_VHOST : host;
} else {
tcUrl += vhost;
}
if (port && port != SRS_CONSTS_RTMP_DEFAULT_PORT) {
tcUrl += ":" + srs_int2str(port);
}
tcUrl += "/" + app;
return tcUrl;
}
string srs_generate_stream_with_query(string host, string vhost, string stream, string param, bool with_vhost)
{
string url = stream;
string query = param;
// If no vhost in param, try to append one.
string guessVhost;
if (query.find("vhost=") == string::npos) {
if (vhost != SRS_CONSTS_RTMP_DEFAULT_VHOST) {
guessVhost = vhost;
} else if (!srs_is_ipv4(host)) {
guessVhost = host;
}
}
// Well, if vhost exists, always append in query string.
if (!guessVhost.empty() && query.find("vhost=") == string::npos) {
query += "&vhost=" + guessVhost;
}
// If not pass in query, remove it.
if (!with_vhost) {
size_t pos = query.find("&vhost=");
if (pos == string::npos) {
pos = query.find("vhost=");
}
size_t end = query.find("&", pos + 1);
if (end == string::npos) {
end = query.length();
}
if (pos != string::npos && end != string::npos && end > pos) {
query = query.substr(0, pos) + query.substr(end);
}
}
// Remove the start & and ? when param is empty.
query = srs_string_trim_start(query, "&?");
// Prefix query with ?.
if (!query.empty() && !srs_string_starts_with(query, "?")) {
url += "?";
}
// Append query to url.
if (!query.empty()) {
url += query;
}
return url;
}
template<typename T>
srs_error_t srs_do_rtmp_create_msg(char type, uint32_t timestamp, char* data, int size, int stream_id, T** ppmsg)
{
srs_error_t err = srs_success;
*ppmsg = NULL;
T* msg = NULL;
if (type == SrsFrameTypeAudio) {
SrsMessageHeader header;
header.initialize_audio(size, timestamp, stream_id);
msg = new T();
if ((err = msg->create(&header, data, size)) != srs_success) {
srs_freep(msg);
return srs_error_wrap(err, "create message");
}
} else if (type == SrsFrameTypeVideo) {
SrsMessageHeader header;
header.initialize_video(size, timestamp, stream_id);
msg = new T();
if ((err = msg->create(&header, data, size)) != srs_success) {
srs_freep(msg);
return srs_error_wrap(err, "create message");
}
} else if (type == SrsFrameTypeScript) {
SrsMessageHeader header;
header.initialize_amf0_script(size, stream_id);
msg = new T();
if ((err = msg->create(&header, data, size)) != srs_success) {
srs_freep(msg);
return srs_error_wrap(err, "create message");
}
} else {
return srs_error_new(ERROR_STREAM_CASTER_FLV_TAG, "unknown tag=%#x", (uint8_t)type);
}
*ppmsg = msg;
return err;
}
srs_error_t srs_rtmp_create_msg(char type, uint32_t timestamp, char* data, int size, int stream_id, SrsSharedPtrMessage** ppmsg)
{
srs_error_t err = srs_success;
// only when failed, we must free the data.
if ((err = srs_do_rtmp_create_msg(type, timestamp, data, size, stream_id, ppmsg)) != srs_success) {
srs_freepa(data);
return srs_error_wrap(err, "create message");
}
return err;
}
srs_error_t srs_rtmp_create_msg(char type, uint32_t timestamp, char* data, int size, int stream_id, SrsCommonMessage** ppmsg)
{
srs_error_t err = srs_success;
// only when failed, we must free the data.
if ((err = srs_do_rtmp_create_msg(type, timestamp, data, size, stream_id, ppmsg)) != srs_success) {
srs_freepa(data);
return srs_error_wrap(err, "create message");
}
return err;
}
string srs_generate_stream_url(string vhost, string app, string stream)
{
std::string url = "";
if (SRS_CONSTS_RTMP_DEFAULT_VHOST != vhost){
url += vhost;
}
url += "/" + app;
// Note that we ignore any extension.
url += "/" + srs_path_filename(stream);
return url;
}
void srs_parse_rtmp_url(string url, string& tcUrl, string& stream)
{
size_t pos;
if ((pos = url.rfind("/")) != string::npos) {
stream = url.substr(pos + 1);
tcUrl = url.substr(0, pos);
} else {
tcUrl = url;
}
}
string srs_generate_rtmp_url(string server, int port, string host, string vhost, string app, string stream, string param)
{
string tcUrl = "rtmp://" + server + ":" + srs_int2str(port) + "/" + app;
string streamWithQuery = srs_generate_stream_with_query(host, vhost, stream, param);
string url = tcUrl + "/" + streamWithQuery;
return url;
}
srs_error_t srs_write_large_iovs(ISrsProtocolReadWriter* skt, iovec* iovs, int size, ssize_t* pnwrite)
{
srs_error_t err = srs_success;
// the limits of writev iovs.
#ifndef _WIN32
// for linux, generally it's 1024.
static int limits = (int)sysconf(_SC_IOV_MAX);
#else
static int limits = 1024;
#endif
// send in a time.
if (size <= limits) {
if ((err = skt->writev(iovs, size, pnwrite)) != srs_success) {
return srs_error_wrap(err, "writev");
}
return err;
}
// send in multiple times.
int cur_iov = 0;
ssize_t nwrite = 0;
while (cur_iov < size) {
int cur_count = srs_min(limits, size - cur_iov);
if ((err = skt->writev(iovs + cur_iov, cur_count, &nwrite)) != srs_success) {
return srs_error_wrap(err, "writev");
}
cur_iov += cur_count;
if (pnwrite) {
*pnwrite += nwrite;
}
}
return err;
}
bool srs_is_ipv4(string domain)
{
for (int i = 0; i < (int)domain.length(); i++) {
char ch = domain.at(i);
if (ch == '.') {
continue;
}
if (ch >= '0' && ch <= '9') {
continue;
}
return false;
}
return true;
}
uint32_t srs_ipv4_to_num(string ip) {
uint32_t addr = 0;
if (inet_pton(AF_INET, ip.c_str(), &addr) <= 0) {
return 0;
}
return ntohl(addr);
}
bool srs_ipv4_within_mask(string ip, string network, string mask) {
uint32_t ip_addr = srs_ipv4_to_num(ip);
uint32_t mask_addr = srs_ipv4_to_num(mask);
uint32_t network_addr = srs_ipv4_to_num(network);
return (ip_addr & mask_addr) == (network_addr & mask_addr);
}
static struct CIDR_VALUE {
size_t length;
std::string mask;
} CIDR_VALUES[32] = {
{ 1, "128.0.0.0" },
{ 2, "192.0.0.0" },
{ 3, "224.0.0.0" },
{ 4, "240.0.0.0" },
{ 5, "248.0.0.0" },
{ 6, "252.0.0.0" },
{ 7, "254.0.0.0" },
{ 8, "255.0.0.0" },
{ 9, "255.128.0.0" },
{ 10, "255.192.0.0" },
{ 11, "255.224.0.0" },
{ 12, "255.240.0.0" },
{ 13, "255.248.0.0" },
{ 14, "255.252.0.0" },
{ 15, "255.254.0.0" },
{ 16, "255.255.0.0" },
{ 17, "255.255.128.0" },
{ 18, "255.255.192.0" },
{ 19, "255.255.224.0" },
{ 20, "255.255.240.0" },
{ 21, "255.255.248.0" },
{ 22, "255.255.252.0" },
{ 23, "255.255.254.0" },
{ 24, "255.255.255.0" },
{ 25, "255.255.255.128" },
{ 26, "255.255.255.192" },
{ 27, "255.255.255.224" },
{ 28, "255.255.255.240" },
{ 29, "255.255.255.248" },
{ 30, "255.255.255.252" },
{ 31, "255.255.255.254" },
{ 32, "255.255.255.255" },
};
string srs_get_cidr_mask(string network_address) {
string delimiter = "/";
size_t delimiter_position = network_address.find(delimiter);
if (delimiter_position == string::npos) {
// Even if it does not have "/N", it can be a valid IP, by default "/32".
if (srs_is_ipv4(network_address)) {
return CIDR_VALUES[32-1].mask;
}
return "";
}
// Change here to include IPv6 support.
string is_ipv4_address = network_address.substr(0, delimiter_position);
if (!srs_is_ipv4(is_ipv4_address)) {
return "";
}
size_t cidr_length_position = delimiter_position + delimiter.length();
if (cidr_length_position >= network_address.length()) {
return "";
}
string cidr_length = network_address.substr(cidr_length_position, network_address.length());
if (cidr_length.length() <= 0) {
return "";
}
size_t cidr_length_num = 31;
try {
cidr_length_num = atoi(cidr_length.c_str());
if (cidr_length_num <= 0) {
return "";
}
} catch (...) {
return "";
}
return CIDR_VALUES[cidr_length_num-1].mask;
}
string srs_get_cidr_ipv4(string network_address) {
string delimiter = "/";
size_t delimiter_position = network_address.find(delimiter);
if (delimiter_position == string::npos) {
// Even if it does not have "/N", it can be a valid IP, by default "/32".
if (srs_is_ipv4(network_address)) {
return network_address;
}
return "";
}
// Change here to include IPv6 support.
string ipv4_address = network_address.substr(0, delimiter_position);
if (!srs_is_ipv4(ipv4_address)) {
return "";
}
size_t cidr_length_position = delimiter_position + delimiter.length();
if (cidr_length_position >= network_address.length()) {
return "";
}
string cidr_length = network_address.substr(cidr_length_position, network_address.length());
if (cidr_length.length() <= 0) {
return "";
}
try {
size_t cidr_length_num = atoi(cidr_length.c_str());
if (cidr_length_num <= 0) {
return "";
}
} catch (...) {
return "";
}
return ipv4_address;
}
bool srs_string_is_http(string url)
{
return srs_string_starts_with(url, "http://", "https://");
}
bool srs_string_is_rtmp(string url)
{
return srs_string_starts_with(url, "rtmp://");
}
bool srs_is_digit_number(string str)
{
if (str.empty()) {
return false;
}
const char* p = str.c_str();
const char* p_end = str.data() + str.length();
for (; p < p_end; p++) {
if (*p != '0') {
break;
}
}
if (p == p_end) {
return true;
}
int64_t v = ::atoll(p);
int64_t powv = (int64_t)pow(10, p_end - p - 1);
return v / powv >= 1 && v / powv <= 9;
}
// we detect all network device as internet or intranet device, by its ip address.
// key is device name, for instance, eth0
// value is whether internet, for instance, true.
static std::map<std::string, bool> _srs_device_ifs;
bool srs_net_device_is_internet(string ifname)
{
srs_info("check ifname=%s", ifname.c_str());
if (_srs_device_ifs.find(ifname) == _srs_device_ifs.end()) {
return false;
}
return _srs_device_ifs[ifname];
}
bool srs_net_device_is_internet(const sockaddr* addr)
{
if(addr->sa_family == AF_INET) {
const in_addr inaddr = ((sockaddr_in*)addr)->sin_addr;
const uint32_t addr_h = ntohl(inaddr.s_addr);
// lo, 127.0.0.0-127.0.0.1
if (addr_h >= 0x7f000000 && addr_h <= 0x7f000001) {
return false;
}
// Class A 10.0.0.0-10.255.255.255
if (addr_h >= 0x0a000000 && addr_h <= 0x0affffff) {
return false;
}
// Class B 172.16.0.0-172.31.255.255
if (addr_h >= 0xac100000 && addr_h <= 0xac1fffff) {
return false;
}
// Class C 192.168.0.0-192.168.255.255
if (addr_h >= 0xc0a80000 && addr_h <= 0xc0a8ffff) {
return false;
}
} else if(addr->sa_family == AF_INET6) {
const sockaddr_in6* a6 = (const sockaddr_in6*)addr;
// IPv6 loopback is ::1
if (IN6_IS_ADDR_LOOPBACK(&a6->sin6_addr)) {
return false;
}
// IPv6 unspecified is ::
if (IN6_IS_ADDR_UNSPECIFIED(&a6->sin6_addr)) {
return false;
}
// From IPv4, you might know APIPA (Automatic Private IP Addressing) or AutoNet.
// Whenever automatic IP configuration through DHCP fails.
// The prefix of a site-local address is FE80::/10.
if (IN6_IS_ADDR_LINKLOCAL(&a6->sin6_addr)) {
return false;
}
// Site-local addresses are equivalent to private IP addresses in IPv4.
// The prefix of a site-local address is FEC0::/10.
// https://4sysops.com/archives/ipv6-tutorial-part-6-site-local-addresses-and-link-local-addresses/
if (IN6_IS_ADDR_SITELOCAL(&a6->sin6_addr)) {
return false;
}
// Others.
if (IN6_IS_ADDR_MULTICAST(&a6->sin6_addr)) {
return false;
}
if (IN6_IS_ADDR_MC_NODELOCAL(&a6->sin6_addr)) {
return false;
}
if (IN6_IS_ADDR_MC_LINKLOCAL(&a6->sin6_addr)) {
return false;
}
if (IN6_IS_ADDR_MC_SITELOCAL(&a6->sin6_addr)) {
return false;
}
if (IN6_IS_ADDR_MC_ORGLOCAL(&a6->sin6_addr)) {
return false;
}
if (IN6_IS_ADDR_MC_GLOBAL(&a6->sin6_addr)) {
return false;
}
}
return true;
}
vector<SrsIPAddress*> _srs_system_ips;
void srs_free_global_system_ips()
{
vector<SrsIPAddress*>& ips = _srs_system_ips;
// Release previous IPs.
for (int i = 0; i < (int)ips.size(); i++) {
SrsIPAddress* ip = ips[i];
srs_freep(ip);
}
ips.clear();
}
void discover_network_iface(ifaddrs* cur, vector<SrsIPAddress*>& ips, stringstream& ss0, stringstream& ss1, bool ipv6, bool loopback)
{
char saddr[64];
char* h = (char*)saddr;
socklen_t nbh = (socklen_t)sizeof(saddr);
const int r0 = getnameinfo(cur->ifa_addr, sizeof(sockaddr_storage), h, nbh, NULL, 0, NI_NUMERICHOST);
if(r0) {
srs_warn("convert local ip failed: %s", gai_strerror(r0));
return;
}
std::string ip(saddr, strlen(saddr));
ss0 << ", iface[" << (int)ips.size() << "] " << cur->ifa_name << " " << (ipv6? "ipv6":"ipv4")
<< " 0x" << std::hex << cur->ifa_flags << std::dec << " " << ip;
SrsIPAddress* ip_address = new SrsIPAddress();
ip_address->ip = ip;
ip_address->is_ipv4 = !ipv6;
ip_address->is_loopback = loopback;
ip_address->ifname = cur->ifa_name;
ip_address->is_internet = srs_net_device_is_internet(cur->ifa_addr);
ips.push_back(ip_address);
// set the device internet status.
if (!ip_address->is_internet) {
ss1 << ", intranet ";
_srs_device_ifs[cur->ifa_name] = false;
} else {
ss1 << ", internet ";
_srs_device_ifs[cur->ifa_name] = true;
}
ss1 << cur->ifa_name << " " << ip;
}
void retrieve_local_ips()
{
// Release previous IPs.
srs_free_global_system_ips();
vector<SrsIPAddress*>& ips = _srs_system_ips;
// Get the addresses.
ifaddrs* ifap;
if (getifaddrs(&ifap) == -1) {
srs_warn("retrieve local ips, getifaddrs failed.");
return;
}
stringstream ss0;
ss0 << "ips";
stringstream ss1;
ss1 << "devices";
// Discover IPv4 first.
for (ifaddrs* p = ifap; p ; p = p->ifa_next) {
ifaddrs* cur = p;
// Ignore if no address for this interface.
// @see https://github.com/ossrs/srs/issues/1087#issuecomment-408847115
if (!cur->ifa_addr) {
continue;
}
// retrieve IP address, ignore the tun0 network device, whose addr is NULL.
// @see: https://github.com/ossrs/srs/issues/141
bool ipv4 = (cur->ifa_addr->sa_family == AF_INET);
bool ready = (cur->ifa_flags & IFF_UP) && (cur->ifa_flags & IFF_RUNNING);
// Ignore IFF_PROMISC(Interface is in promiscuous mode), which may be set by Wireshark.
bool ignored = (!cur->ifa_addr) || (cur->ifa_flags & IFF_LOOPBACK) || (cur->ifa_flags & IFF_POINTOPOINT);
bool loopback = (cur->ifa_flags & IFF_LOOPBACK);
if (ipv4 && ready && !ignored) {
discover_network_iface(cur, ips, ss0, ss1, false, loopback);
}
}
// Then, discover IPv6 addresses.
for (ifaddrs* p = ifap; p ; p = p->ifa_next) {
ifaddrs* cur = p;
// Ignore if no address for this interface.
// @see https://github.com/ossrs/srs/issues/1087#issuecomment-408847115
if (!cur->ifa_addr) {
continue;
}
// retrieve IP address, ignore the tun0 network device, whose addr is NULL.
// @see: https://github.com/ossrs/srs/issues/141
bool ipv6 = (cur->ifa_addr->sa_family == AF_INET6);
bool ready = (cur->ifa_flags & IFF_UP) && (cur->ifa_flags & IFF_RUNNING);
bool ignored = (!cur->ifa_addr) || (cur->ifa_flags & IFF_POINTOPOINT) || (cur->ifa_flags & IFF_PROMISC) || (cur->ifa_flags & IFF_LOOPBACK);
bool loopback = (cur->ifa_flags & IFF_LOOPBACK);
if (ipv6 && ready && !ignored) {
discover_network_iface(cur, ips, ss0, ss1, true, loopback);
}
}
// If empty, disover IPv4 loopback.
if (ips.empty()) {
for (ifaddrs* p = ifap; p ; p = p->ifa_next) {
ifaddrs* cur = p;
// Ignore if no address for this interface.
// @see https://github.com/ossrs/srs/issues/1087#issuecomment-408847115
if (!cur->ifa_addr) {
continue;
}
// retrieve IP address, ignore the tun0 network device, whose addr is NULL.
// @see: https://github.com/ossrs/srs/issues/141
bool ipv4 = (cur->ifa_addr->sa_family == AF_INET);
bool ready = (cur->ifa_flags & IFF_UP) && (cur->ifa_flags & IFF_RUNNING);
bool ignored = (!cur->ifa_addr) || (cur->ifa_flags & IFF_POINTOPOINT) || (cur->ifa_flags & IFF_PROMISC);
bool loopback = (cur->ifa_flags & IFF_LOOPBACK);
if (ipv4 && ready && !ignored) {
discover_network_iface(cur, ips, ss0, ss1, false, loopback);
}
}
}
srs_trace("%s", ss0.str().c_str());
srs_trace("%s", ss1.str().c_str());
freeifaddrs(ifap);
}
vector<SrsIPAddress*>& srs_get_local_ips()
{
if (_srs_system_ips.empty()) {
retrieve_local_ips();
}
return _srs_system_ips;
}
std::string _public_internet_address;
string srs_get_public_internet_address(bool ipv4_only)
{
if (!_public_internet_address.empty()) {
return _public_internet_address;
}
std::vector<SrsIPAddress*>& ips = srs_get_local_ips();
// find the best match public address.
for (int i = 0; i < (int)ips.size(); i++) {
SrsIPAddress* ip = ips[i];
if (!ip->is_internet) {
continue;
}
if (ipv4_only && !ip->is_ipv4) {
continue;
}
srs_warn("use public address as ip: %s, ifname=%s", ip->ip.c_str(), ip->ifname.c_str());
_public_internet_address = ip->ip;
return ip->ip;
}
// no public address, use private address.
for (int i = 0; i < (int)ips.size(); i++) {
SrsIPAddress* ip = ips[i];
if (ip->is_loopback) {
continue;
}
if (ipv4_only && !ip->is_ipv4) {
continue;
}
srs_warn("use private address as ip: %s, ifname=%s", ip->ip.c_str(), ip->ifname.c_str());
_public_internet_address = ip->ip;
return ip->ip;
}
// Finally, use first whatever kind of address.
if (!ips.empty() && _public_internet_address.empty()) {
SrsIPAddress* ip = ips[0];
srs_warn("use first address as ip: %s, ifname=%s", ip->ip.c_str(), ip->ifname.c_str());
_public_internet_address = ip->ip;
return ip->ip;
}
return "";
}
string srs_get_original_ip(ISrsHttpMessage* r)
{
SrsHttpHeader* h = r->header();
string x_forwarded_for = h->get("X-Forwarded-For");
if (!x_forwarded_for.empty()) {
size_t pos = string::npos;
if ((pos = x_forwarded_for.find(",")) == string::npos) {
return x_forwarded_for;
}
return x_forwarded_for.substr(0, pos);
}
string x_real_ip = h->get("X-Real-IP");
if (!x_real_ip.empty()) {
size_t pos = string::npos;
if ((pos = x_real_ip.find(":")) == string::npos) {
return x_real_ip;
}
return x_real_ip.substr(0, pos);
}
return "";
}
std::string _srs_system_hostname;
string srs_get_system_hostname()
{
if (!_srs_system_hostname.empty()) {
return _srs_system_hostname;
}
char buf[256];
if (-1 == gethostname(buf, sizeof(buf))) {
srs_warn("gethostbyname fail");
return "";
}
_srs_system_hostname = std::string(buf);
return _srs_system_hostname;
}
srs_error_t srs_ioutil_read_all(ISrsReader* in, std::string& content)
{
srs_error_t err = srs_success;
// Cache to read, it might cause coroutine switch, so we use local cache here.
char* buf = new char[SRS_HTTP_READ_CACHE_BYTES];
SrsAutoFreeA(char, buf);
// Whatever, read util EOF.
while (true) {
ssize_t nb_read = 0;
if ((err = in->read(buf, SRS_HTTP_READ_CACHE_BYTES, &nb_read)) != srs_success) {
int code = srs_error_code(err);
if (code == ERROR_SYSTEM_FILE_EOF || code == ERROR_HTTP_RESPONSE_EOF || code == ERROR_HTTP_REQUEST_EOF
|| code == ERROR_HTTP_STREAM_EOF
) {
srs_freep(err);
return err;
}
return srs_error_wrap(err, "read body");
}
if (nb_read > 0) {
content.append(buf, nb_read);
}
}
return err;
}
#if defined(__linux__) || defined(SRS_OSX)
utsname* srs_get_system_uname_info()
{
static utsname* system_info = NULL;
if (system_info != NULL) {
return system_info;
}
system_info = new utsname();
memset(system_info, 0, sizeof(utsname));
if (uname(system_info) < 0) {
srs_warn("uname failed");
}
return system_info;
}
#endif
string srs_string_dumps_hex(const std::string& str)
{
return srs_string_dumps_hex(str.c_str(), str.size());
}
string srs_string_dumps_hex(const char* str, int length)
{
return srs_string_dumps_hex(str, length, INT_MAX);
}
string srs_string_dumps_hex(const char* str, int length, int limit)
{
return srs_string_dumps_hex(str, length, limit, ' ', 128, '\n');
}
string srs_string_dumps_hex(const char* str, int length, int limit, char seperator, int line_limit, char newline)
{
// 1 byte trailing '\0'.
const int LIMIT = 1024*16 + 1;
static char buf[LIMIT];
int len = 0;
for (int i = 0; i < length && i < limit && len < LIMIT; ++i) {
int nb = snprintf(buf + len, LIMIT - len, "%02x", (uint8_t)str[i]);
if (nb <= 0 || nb >= LIMIT - len) {
break;
}
len += nb;
// Only append seperator and newline when not last byte.
if (i < length - 1 && i < limit - 1 && len < LIMIT) {
if (seperator) {
buf[len++] = seperator;
}
if (newline && line_limit && i > 0 && ((i + 1) % line_limit) == 0) {
buf[len++] = newline;
}
}
}
// Empty string.
if (len <= 0) {
return "";
}
// If overflow, cut the trailing newline.
if (newline && len >= LIMIT - 2 && buf[len - 1] == newline) {
len--;
}
// If overflow, cut the trailing seperator.
if (seperator && len >= LIMIT - 3 && buf[len - 1] == seperator) {
len--;
}
return string(buf, len);
}