mirror of
				https://github.com/ossrs/srs.git
				synced 2025-03-09 15:49:59 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			1491 lines
		
	
	
	
		
			43 KiB
		
	
	
	
		
			Perl
		
	
	
	
	
	
			
		
		
	
	
			1491 lines
		
	
	
	
		
			43 KiB
		
	
	
	
		
			Perl
		
	
	
	
	
	
#! /usr/bin/env perl
 | 
						|
# Copyright 1998-2018 The OpenSSL Project Authors. All Rights Reserved.
 | 
						|
#
 | 
						|
# Licensed under the OpenSSL license (the "License").  You may not use
 | 
						|
# this file except in compliance with the License.  You can obtain a copy
 | 
						|
# in the file LICENSE in the source distribution or at
 | 
						|
# https://www.openssl.org/source/license.html
 | 
						|
 | 
						|
 | 
						|
# ====================================================================
 | 
						|
# [Re]written by Andy Polyakov <appro@openssl.org> for the OpenSSL
 | 
						|
# project. The module is, however, dual licensed under OpenSSL and
 | 
						|
# CRYPTOGAMS licenses depending on where you obtain it. For further
 | 
						|
# details see http://www.openssl.org/~appro/cryptogams/.
 | 
						|
# ====================================================================
 | 
						|
 | 
						|
# "[Re]written" was achieved in two major overhauls. In 2004 BODY_*
 | 
						|
# functions were re-implemented to address P4 performance issue [see
 | 
						|
# commentary below], and in 2006 the rest was rewritten in order to
 | 
						|
# gain freedom to liberate licensing terms.
 | 
						|
 | 
						|
# January, September 2004.
 | 
						|
#
 | 
						|
# It was noted that Intel IA-32 C compiler generates code which
 | 
						|
# performs ~30% *faster* on P4 CPU than original *hand-coded*
 | 
						|
# SHA1 assembler implementation. To address this problem (and
 | 
						|
# prove that humans are still better than machines:-), the
 | 
						|
# original code was overhauled, which resulted in following
 | 
						|
# performance changes:
 | 
						|
#
 | 
						|
#		compared with original	compared with Intel cc
 | 
						|
#		assembler impl.		generated code
 | 
						|
# Pentium	-16%			+48%
 | 
						|
# PIII/AMD	+8%			+16%
 | 
						|
# P4		+85%(!)			+45%
 | 
						|
#
 | 
						|
# As you can see Pentium came out as looser:-( Yet I reckoned that
 | 
						|
# improvement on P4 outweighs the loss and incorporate this
 | 
						|
# re-tuned code to 0.9.7 and later.
 | 
						|
# ----------------------------------------------------------------
 | 
						|
 | 
						|
# August 2009.
 | 
						|
#
 | 
						|
# George Spelvin has tipped that F_40_59(b,c,d) can be rewritten as
 | 
						|
# '(c&d) + (b&(c^d))', which allows to accumulate partial results
 | 
						|
# and lighten "pressure" on scratch registers. This resulted in
 | 
						|
# >12% performance improvement on contemporary AMD cores (with no
 | 
						|
# degradation on other CPUs:-). Also, the code was revised to maximize
 | 
						|
# "distance" between instructions producing input to 'lea' instruction
 | 
						|
# and the 'lea' instruction itself, which is essential for Intel Atom
 | 
						|
# core and resulted in ~15% improvement.
 | 
						|
 | 
						|
# October 2010.
 | 
						|
#
 | 
						|
# Add SSSE3, Supplemental[!] SSE3, implementation. The idea behind it
 | 
						|
# is to offload message schedule denoted by Wt in NIST specification,
 | 
						|
# or Xupdate in OpenSSL source, to SIMD unit. The idea is not novel,
 | 
						|
# and in SSE2 context was first explored by Dean Gaudet in 2004, see
 | 
						|
# http://arctic.org/~dean/crypto/sha1.html. Since then several things
 | 
						|
# have changed that made it interesting again:
 | 
						|
#
 | 
						|
# a) XMM units became faster and wider;
 | 
						|
# b) instruction set became more versatile;
 | 
						|
# c) an important observation was made by Max Locktykhin, which made
 | 
						|
#    it possible to reduce amount of instructions required to perform
 | 
						|
#    the operation in question, for further details see
 | 
						|
#    http://software.intel.com/en-us/articles/improving-the-performance-of-the-secure-hash-algorithm-1/.
 | 
						|
 | 
						|
# April 2011.
 | 
						|
#
 | 
						|
# Add AVX code path, probably most controversial... The thing is that
 | 
						|
# switch to AVX alone improves performance by as little as 4% in
 | 
						|
# comparison to SSSE3 code path. But below result doesn't look like
 | 
						|
# 4% improvement... Trouble is that Sandy Bridge decodes 'ro[rl]' as
 | 
						|
# pair of µ-ops, and it's the additional µ-ops, two per round, that
 | 
						|
# make it run slower than Core2 and Westmere. But 'sh[rl]d' is decoded
 | 
						|
# as single µ-op by Sandy Bridge and it's replacing 'ro[rl]' with
 | 
						|
# equivalent 'sh[rl]d' that is responsible for the impressive 5.1
 | 
						|
# cycles per processed byte. But 'sh[rl]d' is not something that used
 | 
						|
# to be fast, nor does it appear to be fast in upcoming Bulldozer
 | 
						|
# [according to its optimization manual]. Which is why AVX code path
 | 
						|
# is guarded by *both* AVX and synthetic bit denoting Intel CPUs.
 | 
						|
# One can argue that it's unfair to AMD, but without 'sh[rl]d' it
 | 
						|
# makes no sense to keep the AVX code path. If somebody feels that
 | 
						|
# strongly, it's probably more appropriate to discuss possibility of
 | 
						|
# using vector rotate XOP on AMD...
 | 
						|
 | 
						|
# March 2014.
 | 
						|
#
 | 
						|
# Add support for Intel SHA Extensions.
 | 
						|
 | 
						|
######################################################################
 | 
						|
# Current performance is summarized in following table. Numbers are
 | 
						|
# CPU clock cycles spent to process single byte (less is better).
 | 
						|
#
 | 
						|
#		x86		SSSE3		AVX
 | 
						|
# Pentium	15.7		-
 | 
						|
# PIII		11.5		-
 | 
						|
# P4		10.6		-
 | 
						|
# AMD K8	7.1		-
 | 
						|
# Core2		7.3		6.0/+22%	-
 | 
						|
# Westmere	7.3		5.5/+33%	-
 | 
						|
# Sandy Bridge	8.8		6.2/+40%	5.1(**)/+73%
 | 
						|
# Ivy Bridge	7.2		4.8/+51%	4.7(**)/+53%
 | 
						|
# Haswell	6.5		4.3/+51%	4.1(**)/+58%
 | 
						|
# Skylake	6.4		4.1/+55%	4.1(**)/+55%
 | 
						|
# Bulldozer	11.6		6.0/+92%
 | 
						|
# VIA Nano	10.6		7.5/+41%
 | 
						|
# Atom		12.5		9.3(*)/+35%
 | 
						|
# Silvermont	14.5		9.9(*)/+46%
 | 
						|
# Goldmont	8.8		6.7/+30%	1.7(***)/+415%
 | 
						|
#
 | 
						|
# (*)	Loop is 1056 instructions long and expected result is ~8.25.
 | 
						|
#	The discrepancy is because of front-end limitations, so
 | 
						|
#	called MS-ROM penalties, and on Silvermont even rotate's
 | 
						|
#	limited parallelism.
 | 
						|
#
 | 
						|
# (**)	As per above comment, the result is for AVX *plus* sh[rl]d.
 | 
						|
#
 | 
						|
# (***)	SHAEXT result
 | 
						|
 | 
						|
$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
 | 
						|
push(@INC,"${dir}","${dir}../../perlasm");
 | 
						|
require "x86asm.pl";
 | 
						|
 | 
						|
$output=pop;
 | 
						|
open STDOUT,">$output";
 | 
						|
 | 
						|
&asm_init($ARGV[0],$ARGV[$#ARGV] eq "386");
 | 
						|
 | 
						|
$xmm=$ymm=0;
 | 
						|
for (@ARGV) { $xmm=1 if (/-DOPENSSL_IA32_SSE2/); }
 | 
						|
 | 
						|
$ymm=1 if ($xmm &&
 | 
						|
		`$ENV{CC} -Wa,-v -c -o /dev/null -x assembler /dev/null 2>&1`
 | 
						|
			=~ /GNU assembler version ([2-9]\.[0-9]+)/ &&
 | 
						|
		$1>=2.19);	# first version supporting AVX
 | 
						|
 | 
						|
$ymm=1 if ($xmm && !$ymm && $ARGV[0] eq "win32n" &&
 | 
						|
		`nasm -v 2>&1` =~ /NASM version ([2-9]\.[0-9]+)/ &&
 | 
						|
		$1>=2.03);	# first version supporting AVX
 | 
						|
 | 
						|
$ymm=1 if ($xmm && !$ymm && $ARGV[0] eq "win32" &&
 | 
						|
		`ml 2>&1` =~ /Version ([0-9]+)\./ &&
 | 
						|
		$1>=10);	# first version supporting AVX
 | 
						|
 | 
						|
$ymm=1 if ($xmm && !$ymm && `$ENV{CC} -v 2>&1` =~ /((?:^clang|LLVM) version|based on LLVM) ([3-9]\.[0-9]+)/ &&
 | 
						|
		$2>=3.0);	# first version supporting AVX
 | 
						|
 | 
						|
$shaext=$xmm;	### set to zero if compiling for 1.0.1
 | 
						|
 | 
						|
&external_label("OPENSSL_ia32cap_P") if ($xmm);
 | 
						|
 | 
						|
 | 
						|
$A="eax";
 | 
						|
$B="ebx";
 | 
						|
$C="ecx";
 | 
						|
$D="edx";
 | 
						|
$E="edi";
 | 
						|
$T="esi";
 | 
						|
$tmp1="ebp";
 | 
						|
 | 
						|
@V=($A,$B,$C,$D,$E,$T);
 | 
						|
 | 
						|
$alt=0;	# 1 denotes alternative IALU implementation, which performs
 | 
						|
	# 8% *worse* on P4, same on Westmere and Atom, 2% better on
 | 
						|
	# Sandy Bridge...
 | 
						|
 | 
						|
sub BODY_00_15
 | 
						|
	{
 | 
						|
	local($n,$a,$b,$c,$d,$e,$f)=@_;
 | 
						|
 | 
						|
	&comment("00_15 $n");
 | 
						|
 | 
						|
	&mov($f,$c);			# f to hold F_00_19(b,c,d)
 | 
						|
	 if ($n==0)  { &mov($tmp1,$a); }
 | 
						|
	 else        { &mov($a,$tmp1); }
 | 
						|
	&rotl($tmp1,5);			# tmp1=ROTATE(a,5)
 | 
						|
	 &xor($f,$d);
 | 
						|
	&add($tmp1,$e);			# tmp1+=e;
 | 
						|
	 &mov($e,&swtmp($n%16));	# e becomes volatile and is loaded
 | 
						|
	 				# with xi, also note that e becomes
 | 
						|
					# f in next round...
 | 
						|
	&and($f,$b);
 | 
						|
	&rotr($b,2);			# b=ROTATE(b,30)
 | 
						|
	 &xor($f,$d);			# f holds F_00_19(b,c,d)
 | 
						|
	&lea($tmp1,&DWP(0x5a827999,$tmp1,$e));	# tmp1+=K_00_19+xi
 | 
						|
 | 
						|
	if ($n==15) { &mov($e,&swtmp(($n+1)%16));# pre-fetch f for next round
 | 
						|
		      &add($f,$tmp1); }	# f+=tmp1
 | 
						|
	else        { &add($tmp1,$f); }	# f becomes a in next round
 | 
						|
	&mov($tmp1,$a)			if ($alt && $n==15);
 | 
						|
	}
 | 
						|
 | 
						|
sub BODY_16_19
 | 
						|
	{
 | 
						|
	local($n,$a,$b,$c,$d,$e,$f)=@_;
 | 
						|
 | 
						|
	&comment("16_19 $n");
 | 
						|
 | 
						|
if ($alt) {
 | 
						|
	&xor($c,$d);
 | 
						|
	 &xor($f,&swtmp(($n+2)%16));	# f to hold Xupdate(xi,xa,xb,xc,xd)
 | 
						|
	&and($tmp1,$c);			# tmp1 to hold F_00_19(b,c,d), b&=c^d
 | 
						|
	 &xor($f,&swtmp(($n+8)%16));
 | 
						|
	&xor($tmp1,$d);			# tmp1=F_00_19(b,c,d)
 | 
						|
	 &xor($f,&swtmp(($n+13)%16));	# f holds xa^xb^xc^xd
 | 
						|
	&rotl($f,1);			# f=ROTATE(f,1)
 | 
						|
	 &add($e,$tmp1);		# e+=F_00_19(b,c,d)
 | 
						|
	&xor($c,$d);			# restore $c
 | 
						|
	 &mov($tmp1,$a);		# b in next round
 | 
						|
	&rotr($b,$n==16?2:7);		# b=ROTATE(b,30)
 | 
						|
	 &mov(&swtmp($n%16),$f);	# xi=f
 | 
						|
	&rotl($a,5);			# ROTATE(a,5)
 | 
						|
	 &lea($f,&DWP(0x5a827999,$f,$e));# f+=F_00_19(b,c,d)+e
 | 
						|
	&mov($e,&swtmp(($n+1)%16));	# pre-fetch f for next round
 | 
						|
	 &add($f,$a);			# f+=ROTATE(a,5)
 | 
						|
} else {
 | 
						|
	&mov($tmp1,$c);			# tmp1 to hold F_00_19(b,c,d)
 | 
						|
	 &xor($f,&swtmp(($n+2)%16));	# f to hold Xupdate(xi,xa,xb,xc,xd)
 | 
						|
	&xor($tmp1,$d);
 | 
						|
	 &xor($f,&swtmp(($n+8)%16));
 | 
						|
	&and($tmp1,$b);
 | 
						|
	 &xor($f,&swtmp(($n+13)%16));	# f holds xa^xb^xc^xd
 | 
						|
	&rotl($f,1);			# f=ROTATE(f,1)
 | 
						|
	 &xor($tmp1,$d);		# tmp1=F_00_19(b,c,d)
 | 
						|
	&add($e,$tmp1);			# e+=F_00_19(b,c,d)
 | 
						|
	 &mov($tmp1,$a);
 | 
						|
	&rotr($b,2);			# b=ROTATE(b,30)
 | 
						|
	 &mov(&swtmp($n%16),$f);	# xi=f
 | 
						|
	&rotl($tmp1,5);			# ROTATE(a,5)
 | 
						|
	 &lea($f,&DWP(0x5a827999,$f,$e));# f+=F_00_19(b,c,d)+e
 | 
						|
	&mov($e,&swtmp(($n+1)%16));	# pre-fetch f for next round
 | 
						|
	 &add($f,$tmp1);		# f+=ROTATE(a,5)
 | 
						|
}
 | 
						|
	}
 | 
						|
 | 
						|
sub BODY_20_39
 | 
						|
	{
 | 
						|
	local($n,$a,$b,$c,$d,$e,$f)=@_;
 | 
						|
	local $K=($n<40)?0x6ed9eba1:0xca62c1d6;
 | 
						|
 | 
						|
	&comment("20_39 $n");
 | 
						|
 | 
						|
if ($alt) {
 | 
						|
	&xor($tmp1,$c);			# tmp1 to hold F_20_39(b,c,d), b^=c
 | 
						|
	 &xor($f,&swtmp(($n+2)%16));	# f to hold Xupdate(xi,xa,xb,xc,xd)
 | 
						|
	&xor($tmp1,$d);			# tmp1 holds F_20_39(b,c,d)
 | 
						|
	 &xor($f,&swtmp(($n+8)%16));
 | 
						|
	&add($e,$tmp1);			# e+=F_20_39(b,c,d)
 | 
						|
	 &xor($f,&swtmp(($n+13)%16));	# f holds xa^xb^xc^xd
 | 
						|
	&rotl($f,1);			# f=ROTATE(f,1)
 | 
						|
	 &mov($tmp1,$a);		# b in next round
 | 
						|
	&rotr($b,7);			# b=ROTATE(b,30)
 | 
						|
	 &mov(&swtmp($n%16),$f)		if($n<77);# xi=f
 | 
						|
	&rotl($a,5);			# ROTATE(a,5)
 | 
						|
	 &xor($b,$c)			if($n==39);# warm up for BODY_40_59
 | 
						|
	&and($tmp1,$b)			if($n==39);
 | 
						|
	 &lea($f,&DWP($K,$f,$e));	# f+=e+K_XX_YY
 | 
						|
	&mov($e,&swtmp(($n+1)%16))	if($n<79);# pre-fetch f for next round
 | 
						|
	 &add($f,$a);			# f+=ROTATE(a,5)
 | 
						|
	&rotr($a,5)			if ($n==79);
 | 
						|
} else {
 | 
						|
	&mov($tmp1,$b);			# tmp1 to hold F_20_39(b,c,d)
 | 
						|
	 &xor($f,&swtmp(($n+2)%16));	# f to hold Xupdate(xi,xa,xb,xc,xd)
 | 
						|
	&xor($tmp1,$c);
 | 
						|
	 &xor($f,&swtmp(($n+8)%16));
 | 
						|
	&xor($tmp1,$d);			# tmp1 holds F_20_39(b,c,d)
 | 
						|
	 &xor($f,&swtmp(($n+13)%16));	# f holds xa^xb^xc^xd
 | 
						|
	&rotl($f,1);			# f=ROTATE(f,1)
 | 
						|
	 &add($e,$tmp1);		# e+=F_20_39(b,c,d)
 | 
						|
	&rotr($b,2);			# b=ROTATE(b,30)
 | 
						|
	 &mov($tmp1,$a);
 | 
						|
	&rotl($tmp1,5);			# ROTATE(a,5)
 | 
						|
	 &mov(&swtmp($n%16),$f) if($n<77);# xi=f
 | 
						|
	&lea($f,&DWP($K,$f,$e));	# f+=e+K_XX_YY
 | 
						|
	 &mov($e,&swtmp(($n+1)%16)) if($n<79);# pre-fetch f for next round
 | 
						|
	&add($f,$tmp1);			# f+=ROTATE(a,5)
 | 
						|
}
 | 
						|
	}
 | 
						|
 | 
						|
sub BODY_40_59
 | 
						|
	{
 | 
						|
	local($n,$a,$b,$c,$d,$e,$f)=@_;
 | 
						|
 | 
						|
	&comment("40_59 $n");
 | 
						|
 | 
						|
if ($alt) {
 | 
						|
	&add($e,$tmp1);			# e+=b&(c^d)
 | 
						|
	 &xor($f,&swtmp(($n+2)%16));	# f to hold Xupdate(xi,xa,xb,xc,xd)
 | 
						|
	&mov($tmp1,$d);
 | 
						|
	 &xor($f,&swtmp(($n+8)%16));
 | 
						|
	&xor($c,$d);			# restore $c
 | 
						|
	 &xor($f,&swtmp(($n+13)%16));	# f holds xa^xb^xc^xd
 | 
						|
	&rotl($f,1);			# f=ROTATE(f,1)
 | 
						|
	 &and($tmp1,$c);
 | 
						|
	&rotr($b,7);			# b=ROTATE(b,30)
 | 
						|
	 &add($e,$tmp1);		# e+=c&d
 | 
						|
	&mov($tmp1,$a);			# b in next round
 | 
						|
	 &mov(&swtmp($n%16),$f);	# xi=f
 | 
						|
	&rotl($a,5);			# ROTATE(a,5)
 | 
						|
	 &xor($b,$c)			if ($n<59);
 | 
						|
	&and($tmp1,$b)			if ($n<59);# tmp1 to hold F_40_59(b,c,d)
 | 
						|
	 &lea($f,&DWP(0x8f1bbcdc,$f,$e));# f+=K_40_59+e+(b&(c^d))
 | 
						|
	&mov($e,&swtmp(($n+1)%16));	# pre-fetch f for next round
 | 
						|
	 &add($f,$a);			# f+=ROTATE(a,5)
 | 
						|
} else {
 | 
						|
	&mov($tmp1,$c);			# tmp1 to hold F_40_59(b,c,d)
 | 
						|
	 &xor($f,&swtmp(($n+2)%16));	# f to hold Xupdate(xi,xa,xb,xc,xd)
 | 
						|
	&xor($tmp1,$d);
 | 
						|
	 &xor($f,&swtmp(($n+8)%16));
 | 
						|
	&and($tmp1,$b);
 | 
						|
	 &xor($f,&swtmp(($n+13)%16));	# f holds xa^xb^xc^xd
 | 
						|
	&rotl($f,1);			# f=ROTATE(f,1)
 | 
						|
	 &add($tmp1,$e);		# b&(c^d)+=e
 | 
						|
	&rotr($b,2);			# b=ROTATE(b,30)
 | 
						|
	 &mov($e,$a);			# e becomes volatile
 | 
						|
	&rotl($e,5);			# ROTATE(a,5)
 | 
						|
	 &mov(&swtmp($n%16),$f);	# xi=f
 | 
						|
	&lea($f,&DWP(0x8f1bbcdc,$f,$tmp1));# f+=K_40_59+e+(b&(c^d))
 | 
						|
	 &mov($tmp1,$c);
 | 
						|
	&add($f,$e);			# f+=ROTATE(a,5)
 | 
						|
	 &and($tmp1,$d);
 | 
						|
	&mov($e,&swtmp(($n+1)%16));	# pre-fetch f for next round
 | 
						|
	 &add($f,$tmp1);		# f+=c&d
 | 
						|
}
 | 
						|
	}
 | 
						|
 | 
						|
&function_begin("sha1_block_data_order");
 | 
						|
if ($xmm) {
 | 
						|
  &static_label("shaext_shortcut")	if ($shaext);
 | 
						|
  &static_label("ssse3_shortcut");
 | 
						|
  &static_label("avx_shortcut")		if ($ymm);
 | 
						|
  &static_label("K_XX_XX");
 | 
						|
 | 
						|
	&call	(&label("pic_point"));	# make it PIC!
 | 
						|
  &set_label("pic_point");
 | 
						|
	&blindpop($tmp1);
 | 
						|
	&picmeup($T,"OPENSSL_ia32cap_P",$tmp1,&label("pic_point"));
 | 
						|
	&lea	($tmp1,&DWP(&label("K_XX_XX")."-".&label("pic_point"),$tmp1));
 | 
						|
 | 
						|
	&mov	($A,&DWP(0,$T));
 | 
						|
	&mov	($D,&DWP(4,$T));
 | 
						|
	&test	($D,1<<9);		# check SSSE3 bit
 | 
						|
	&jz	(&label("x86"));
 | 
						|
	&mov	($C,&DWP(8,$T));
 | 
						|
	&test	($A,1<<24);		# check FXSR bit
 | 
						|
	&jz	(&label("x86"));
 | 
						|
	if ($shaext) {
 | 
						|
		&test	($C,1<<29);		# check SHA bit
 | 
						|
		&jnz	(&label("shaext_shortcut"));
 | 
						|
	}
 | 
						|
	if ($ymm) {
 | 
						|
		&and	($D,1<<28);		# mask AVX bit
 | 
						|
		&and	($A,1<<30);		# mask "Intel CPU" bit
 | 
						|
		&or	($A,$D);
 | 
						|
		&cmp	($A,1<<28|1<<30);
 | 
						|
		&je	(&label("avx_shortcut"));
 | 
						|
	}
 | 
						|
	&jmp	(&label("ssse3_shortcut"));
 | 
						|
  &set_label("x86",16);
 | 
						|
}
 | 
						|
	&mov($tmp1,&wparam(0));	# SHA_CTX *c
 | 
						|
	&mov($T,&wparam(1));	# const void *input
 | 
						|
	&mov($A,&wparam(2));	# size_t num
 | 
						|
	&stack_push(16+3);	# allocate X[16]
 | 
						|
	&shl($A,6);
 | 
						|
	&add($A,$T);
 | 
						|
	&mov(&wparam(2),$A);	# pointer beyond the end of input
 | 
						|
	&mov($E,&DWP(16,$tmp1));# pre-load E
 | 
						|
	&jmp(&label("loop"));
 | 
						|
 | 
						|
&set_label("loop",16);
 | 
						|
 | 
						|
	# copy input chunk to X, but reversing byte order!
 | 
						|
	for ($i=0; $i<16; $i+=4)
 | 
						|
		{
 | 
						|
		&mov($A,&DWP(4*($i+0),$T));
 | 
						|
		&mov($B,&DWP(4*($i+1),$T));
 | 
						|
		&mov($C,&DWP(4*($i+2),$T));
 | 
						|
		&mov($D,&DWP(4*($i+3),$T));
 | 
						|
		&bswap($A);
 | 
						|
		&bswap($B);
 | 
						|
		&bswap($C);
 | 
						|
		&bswap($D);
 | 
						|
		&mov(&swtmp($i+0),$A);
 | 
						|
		&mov(&swtmp($i+1),$B);
 | 
						|
		&mov(&swtmp($i+2),$C);
 | 
						|
		&mov(&swtmp($i+3),$D);
 | 
						|
		}
 | 
						|
	&mov(&wparam(1),$T);	# redundant in 1st spin
 | 
						|
 | 
						|
	&mov($A,&DWP(0,$tmp1));	# load SHA_CTX
 | 
						|
	&mov($B,&DWP(4,$tmp1));
 | 
						|
	&mov($C,&DWP(8,$tmp1));
 | 
						|
	&mov($D,&DWP(12,$tmp1));
 | 
						|
	# E is pre-loaded
 | 
						|
 | 
						|
	for($i=0;$i<16;$i++)	{ &BODY_00_15($i,@V); unshift(@V,pop(@V)); }
 | 
						|
	for(;$i<20;$i++)	{ &BODY_16_19($i,@V); unshift(@V,pop(@V)); }
 | 
						|
	for(;$i<40;$i++)	{ &BODY_20_39($i,@V); unshift(@V,pop(@V)); }
 | 
						|
	for(;$i<60;$i++)	{ &BODY_40_59($i,@V); unshift(@V,pop(@V)); }
 | 
						|
	for(;$i<80;$i++)	{ &BODY_20_39($i,@V); unshift(@V,pop(@V)); }
 | 
						|
 | 
						|
	(($V[5] eq $D) and ($V[0] eq $E)) or die;	# double-check
 | 
						|
 | 
						|
	&mov($tmp1,&wparam(0));	# re-load SHA_CTX*
 | 
						|
	&mov($D,&wparam(1));	# D is last "T" and is discarded
 | 
						|
 | 
						|
	&add($E,&DWP(0,$tmp1));	# E is last "A"...
 | 
						|
	&add($T,&DWP(4,$tmp1));
 | 
						|
	&add($A,&DWP(8,$tmp1));
 | 
						|
	&add($B,&DWP(12,$tmp1));
 | 
						|
	&add($C,&DWP(16,$tmp1));
 | 
						|
 | 
						|
	&mov(&DWP(0,$tmp1),$E);	# update SHA_CTX
 | 
						|
	 &add($D,64);		# advance input pointer
 | 
						|
	&mov(&DWP(4,$tmp1),$T);
 | 
						|
	 &cmp($D,&wparam(2));	# have we reached the end yet?
 | 
						|
	&mov(&DWP(8,$tmp1),$A);
 | 
						|
	 &mov($E,$C);		# C is last "E" which needs to be "pre-loaded"
 | 
						|
	&mov(&DWP(12,$tmp1),$B);
 | 
						|
	 &mov($T,$D);		# input pointer
 | 
						|
	&mov(&DWP(16,$tmp1),$C);
 | 
						|
	&jb(&label("loop"));
 | 
						|
 | 
						|
	&stack_pop(16+3);
 | 
						|
&function_end("sha1_block_data_order");
 | 
						|
 | 
						|
if ($xmm) {
 | 
						|
if ($shaext) {
 | 
						|
######################################################################
 | 
						|
# Intel SHA Extensions implementation of SHA1 update function.
 | 
						|
#
 | 
						|
my ($ctx,$inp,$num)=("edi","esi","ecx");
 | 
						|
my ($ABCD,$E,$E_,$BSWAP)=map("xmm$_",(0..3));
 | 
						|
my @MSG=map("xmm$_",(4..7));
 | 
						|
 | 
						|
sub sha1rnds4 {
 | 
						|
 my ($dst,$src,$imm)=@_;
 | 
						|
    if ("$dst:$src" =~ /xmm([0-7]):xmm([0-7])/)
 | 
						|
    {	&data_byte(0x0f,0x3a,0xcc,0xc0|($1<<3)|$2,$imm);	}
 | 
						|
}
 | 
						|
sub sha1op38 {
 | 
						|
 my ($opcodelet,$dst,$src)=@_;
 | 
						|
    if ("$dst:$src" =~ /xmm([0-7]):xmm([0-7])/)
 | 
						|
    {	&data_byte(0x0f,0x38,$opcodelet,0xc0|($1<<3)|$2);	}
 | 
						|
}
 | 
						|
sub sha1nexte	{ sha1op38(0xc8,@_); }
 | 
						|
sub sha1msg1	{ sha1op38(0xc9,@_); }
 | 
						|
sub sha1msg2	{ sha1op38(0xca,@_); }
 | 
						|
 | 
						|
&function_begin("_sha1_block_data_order_shaext");
 | 
						|
	&call	(&label("pic_point"));	# make it PIC!
 | 
						|
	&set_label("pic_point");
 | 
						|
	&blindpop($tmp1);
 | 
						|
	&lea	($tmp1,&DWP(&label("K_XX_XX")."-".&label("pic_point"),$tmp1));
 | 
						|
&set_label("shaext_shortcut");
 | 
						|
	&mov	($ctx,&wparam(0));
 | 
						|
	&mov	("ebx","esp");
 | 
						|
	&mov	($inp,&wparam(1));
 | 
						|
	&mov	($num,&wparam(2));
 | 
						|
	&sub	("esp",32);
 | 
						|
 | 
						|
	&movdqu	($ABCD,&QWP(0,$ctx));
 | 
						|
	&movd	($E,&DWP(16,$ctx));
 | 
						|
	&and	("esp",-32);
 | 
						|
	&movdqa	($BSWAP,&QWP(0x50,$tmp1));	# byte-n-word swap
 | 
						|
 | 
						|
	&movdqu	(@MSG[0],&QWP(0,$inp));
 | 
						|
	&pshufd	($ABCD,$ABCD,0b00011011);	# flip word order
 | 
						|
	&movdqu	(@MSG[1],&QWP(0x10,$inp));
 | 
						|
	&pshufd	($E,$E,0b00011011);		# flip word order
 | 
						|
	&movdqu	(@MSG[2],&QWP(0x20,$inp));
 | 
						|
	&pshufb	(@MSG[0],$BSWAP);
 | 
						|
	&movdqu	(@MSG[3],&QWP(0x30,$inp));
 | 
						|
	&pshufb	(@MSG[1],$BSWAP);
 | 
						|
	&pshufb	(@MSG[2],$BSWAP);
 | 
						|
	&pshufb	(@MSG[3],$BSWAP);
 | 
						|
	&jmp	(&label("loop_shaext"));
 | 
						|
 | 
						|
&set_label("loop_shaext",16);
 | 
						|
	&dec		($num);
 | 
						|
	&lea		("eax",&DWP(0x40,$inp));
 | 
						|
	&movdqa		(&QWP(0,"esp"),$E);	# offload $E
 | 
						|
	&paddd		($E,@MSG[0]);
 | 
						|
	&cmovne		($inp,"eax");
 | 
						|
	&movdqa		(&QWP(16,"esp"),$ABCD);	# offload $ABCD
 | 
						|
 | 
						|
for($i=0;$i<20-4;$i+=2) {
 | 
						|
	&sha1msg1	(@MSG[0],@MSG[1]);
 | 
						|
	&movdqa		($E_,$ABCD);
 | 
						|
	&sha1rnds4	($ABCD,$E,int($i/5));	# 0-3...
 | 
						|
	&sha1nexte	($E_,@MSG[1]);
 | 
						|
	&pxor		(@MSG[0],@MSG[2]);
 | 
						|
	&sha1msg1	(@MSG[1],@MSG[2]);
 | 
						|
	&sha1msg2	(@MSG[0],@MSG[3]);
 | 
						|
 | 
						|
	&movdqa		($E,$ABCD);
 | 
						|
	&sha1rnds4	($ABCD,$E_,int(($i+1)/5));
 | 
						|
	&sha1nexte	($E,@MSG[2]);
 | 
						|
	&pxor		(@MSG[1],@MSG[3]);
 | 
						|
	&sha1msg2	(@MSG[1],@MSG[0]);
 | 
						|
 | 
						|
	push(@MSG,shift(@MSG));	push(@MSG,shift(@MSG));
 | 
						|
}
 | 
						|
	&movdqu		(@MSG[0],&QWP(0,$inp));
 | 
						|
	&movdqa		($E_,$ABCD);
 | 
						|
	&sha1rnds4	($ABCD,$E,3);		# 64-67
 | 
						|
	&sha1nexte	($E_,@MSG[1]);
 | 
						|
	&movdqu		(@MSG[1],&QWP(0x10,$inp));
 | 
						|
	&pshufb		(@MSG[0],$BSWAP);
 | 
						|
 | 
						|
	&movdqa		($E,$ABCD);
 | 
						|
	&sha1rnds4	($ABCD,$E_,3);		# 68-71
 | 
						|
	&sha1nexte	($E,@MSG[2]);
 | 
						|
	&movdqu		(@MSG[2],&QWP(0x20,$inp));
 | 
						|
	&pshufb		(@MSG[1],$BSWAP);
 | 
						|
 | 
						|
	&movdqa		($E_,$ABCD);
 | 
						|
	&sha1rnds4	($ABCD,$E,3);		# 72-75
 | 
						|
	&sha1nexte	($E_,@MSG[3]);
 | 
						|
	&movdqu		(@MSG[3],&QWP(0x30,$inp));
 | 
						|
	&pshufb		(@MSG[2],$BSWAP);
 | 
						|
 | 
						|
	&movdqa		($E,$ABCD);
 | 
						|
	&sha1rnds4	($ABCD,$E_,3);		# 76-79
 | 
						|
	&movdqa		($E_,&QWP(0,"esp"));
 | 
						|
	&pshufb		(@MSG[3],$BSWAP);
 | 
						|
	&sha1nexte	($E,$E_);
 | 
						|
	&paddd		($ABCD,&QWP(16,"esp"));
 | 
						|
 | 
						|
	&jnz		(&label("loop_shaext"));
 | 
						|
 | 
						|
	&pshufd	($ABCD,$ABCD,0b00011011);
 | 
						|
	&pshufd	($E,$E,0b00011011);
 | 
						|
	&movdqu	(&QWP(0,$ctx),$ABCD)
 | 
						|
	&movd	(&DWP(16,$ctx),$E);
 | 
						|
	&mov	("esp","ebx");
 | 
						|
&function_end("_sha1_block_data_order_shaext");
 | 
						|
}
 | 
						|
######################################################################
 | 
						|
# The SSSE3 implementation.
 | 
						|
#
 | 
						|
# %xmm[0-7] are used as ring @X[] buffer containing quadruples of last
 | 
						|
# 32 elements of the message schedule or Xupdate outputs. First 4
 | 
						|
# quadruples are simply byte-swapped input, next 4 are calculated
 | 
						|
# according to method originally suggested by Dean Gaudet (modulo
 | 
						|
# being implemented in SSSE3). Once 8 quadruples or 32 elements are
 | 
						|
# collected, it switches to routine proposed by Max Locktyukhin.
 | 
						|
#
 | 
						|
# Calculations inevitably require temporary registers, and there are
 | 
						|
# no %xmm registers left to spare. For this reason part of the ring
 | 
						|
# buffer, X[2..4] to be specific, is offloaded to 3 quadriples ring
 | 
						|
# buffer on the stack. Keep in mind that X[2] is alias X[-6], X[3] -
 | 
						|
# X[-5], and X[4] - X[-4]...
 | 
						|
#
 | 
						|
# Another notable optimization is aggressive stack frame compression
 | 
						|
# aiming to minimize amount of 9-byte instructions...
 | 
						|
#
 | 
						|
# Yet another notable optimization is "jumping" $B variable. It means
 | 
						|
# that there is no register permanently allocated for $B value. This
 | 
						|
# allowed to eliminate one instruction from body_20_39...
 | 
						|
#
 | 
						|
my $Xi=4;			# 4xSIMD Xupdate round, start pre-seeded
 | 
						|
my @X=map("xmm$_",(4..7,0..3));	# pre-seeded for $Xi=4
 | 
						|
my @V=($A,$B,$C,$D,$E);
 | 
						|
my $j=0;			# hash round
 | 
						|
my $rx=0;
 | 
						|
my @T=($T,$tmp1);
 | 
						|
my $inp;
 | 
						|
 | 
						|
my $_rol=sub { &rol(@_) };
 | 
						|
my $_ror=sub { &ror(@_) };
 | 
						|
 | 
						|
&function_begin("_sha1_block_data_order_ssse3");
 | 
						|
	&call	(&label("pic_point"));	# make it PIC!
 | 
						|
	&set_label("pic_point");
 | 
						|
	&blindpop($tmp1);
 | 
						|
	&lea	($tmp1,&DWP(&label("K_XX_XX")."-".&label("pic_point"),$tmp1));
 | 
						|
&set_label("ssse3_shortcut");
 | 
						|
 | 
						|
	&movdqa	(@X[3],&QWP(0,$tmp1));		# K_00_19
 | 
						|
	&movdqa	(@X[4],&QWP(16,$tmp1));		# K_20_39
 | 
						|
	&movdqa	(@X[5],&QWP(32,$tmp1));		# K_40_59
 | 
						|
	&movdqa	(@X[6],&QWP(48,$tmp1));		# K_60_79
 | 
						|
	&movdqa	(@X[2],&QWP(64,$tmp1));		# pbswap mask
 | 
						|
 | 
						|
	&mov	($E,&wparam(0));		# load argument block
 | 
						|
	&mov	($inp=@T[1],&wparam(1));
 | 
						|
	&mov	($D,&wparam(2));
 | 
						|
	&mov	(@T[0],"esp");
 | 
						|
 | 
						|
	# stack frame layout
 | 
						|
	#
 | 
						|
	# +0	X[0]+K	X[1]+K	X[2]+K	X[3]+K	# XMM->IALU xfer area
 | 
						|
	#	X[4]+K	X[5]+K	X[6]+K	X[7]+K
 | 
						|
	#	X[8]+K	X[9]+K	X[10]+K	X[11]+K
 | 
						|
	#	X[12]+K	X[13]+K	X[14]+K	X[15]+K
 | 
						|
	#
 | 
						|
	# +64	X[0]	X[1]	X[2]	X[3]	# XMM->XMM backtrace area
 | 
						|
	#	X[4]	X[5]	X[6]	X[7]
 | 
						|
	#	X[8]	X[9]	X[10]	X[11]	# even borrowed for K_00_19
 | 
						|
	#
 | 
						|
	# +112	K_20_39	K_20_39	K_20_39	K_20_39	# constants
 | 
						|
	#	K_40_59	K_40_59	K_40_59	K_40_59
 | 
						|
	#	K_60_79	K_60_79	K_60_79	K_60_79
 | 
						|
	#	K_00_19	K_00_19	K_00_19	K_00_19
 | 
						|
	#	pbswap mask
 | 
						|
	#
 | 
						|
	# +192	ctx				# argument block
 | 
						|
	# +196	inp
 | 
						|
	# +200	end
 | 
						|
	# +204	esp
 | 
						|
	&sub	("esp",208);
 | 
						|
	&and	("esp",-64);
 | 
						|
 | 
						|
	&movdqa	(&QWP(112+0,"esp"),@X[4]);	# copy constants
 | 
						|
	&movdqa	(&QWP(112+16,"esp"),@X[5]);
 | 
						|
	&movdqa	(&QWP(112+32,"esp"),@X[6]);
 | 
						|
	&shl	($D,6);				# len*64
 | 
						|
	&movdqa	(&QWP(112+48,"esp"),@X[3]);
 | 
						|
	&add	($D,$inp);			# end of input
 | 
						|
	&movdqa	(&QWP(112+64,"esp"),@X[2]);
 | 
						|
	&add	($inp,64);
 | 
						|
	&mov	(&DWP(192+0,"esp"),$E);		# save argument block
 | 
						|
	&mov	(&DWP(192+4,"esp"),$inp);
 | 
						|
	&mov	(&DWP(192+8,"esp"),$D);
 | 
						|
	&mov	(&DWP(192+12,"esp"),@T[0]);	# save original %esp
 | 
						|
 | 
						|
	&mov	($A,&DWP(0,$E));		# load context
 | 
						|
	&mov	($B,&DWP(4,$E));
 | 
						|
	&mov	($C,&DWP(8,$E));
 | 
						|
	&mov	($D,&DWP(12,$E));
 | 
						|
	&mov	($E,&DWP(16,$E));
 | 
						|
	&mov	(@T[0],$B);			# magic seed
 | 
						|
 | 
						|
	&movdqu	(@X[-4&7],&QWP(-64,$inp));	# load input to %xmm[0-3]
 | 
						|
	&movdqu	(@X[-3&7],&QWP(-48,$inp));
 | 
						|
	&movdqu	(@X[-2&7],&QWP(-32,$inp));
 | 
						|
	&movdqu	(@X[-1&7],&QWP(-16,$inp));
 | 
						|
	&pshufb	(@X[-4&7],@X[2]);		# byte swap
 | 
						|
	&pshufb	(@X[-3&7],@X[2]);
 | 
						|
	&pshufb	(@X[-2&7],@X[2]);
 | 
						|
	&movdqa	(&QWP(112-16,"esp"),@X[3]);	# borrow last backtrace slot
 | 
						|
	&pshufb	(@X[-1&7],@X[2]);
 | 
						|
	&paddd	(@X[-4&7],@X[3]);		# add K_00_19
 | 
						|
	&paddd	(@X[-3&7],@X[3]);
 | 
						|
	&paddd	(@X[-2&7],@X[3]);
 | 
						|
	&movdqa	(&QWP(0,"esp"),@X[-4&7]);	# X[]+K xfer to IALU
 | 
						|
	&psubd	(@X[-4&7],@X[3]);		# restore X[]
 | 
						|
	&movdqa	(&QWP(0+16,"esp"),@X[-3&7]);
 | 
						|
	&psubd	(@X[-3&7],@X[3]);
 | 
						|
	&movdqa	(&QWP(0+32,"esp"),@X[-2&7]);
 | 
						|
	&mov	(@T[1],$C);
 | 
						|
	&psubd	(@X[-2&7],@X[3]);
 | 
						|
	&xor	(@T[1],$D);
 | 
						|
	&pshufd	(@X[0],@X[-4&7],0xee);		# was &movdqa	(@X[0],@X[-3&7]);
 | 
						|
	&and	(@T[0],@T[1]);
 | 
						|
	&jmp	(&label("loop"));
 | 
						|
 | 
						|
######################################################################
 | 
						|
# SSE instruction sequence is first broken to groups of independent
 | 
						|
# instructions, independent in respect to their inputs and shifter
 | 
						|
# (not all architectures have more than one). Then IALU instructions
 | 
						|
# are "knitted in" between the SSE groups. Distance is maintained for
 | 
						|
# SSE latency of 2 in hope that it fits better upcoming AMD Bulldozer
 | 
						|
# [which allegedly also implements SSSE3]...
 | 
						|
#
 | 
						|
# Temporary registers usage. X[2] is volatile at the entry and at the
 | 
						|
# end is restored from backtrace ring buffer. X[3] is expected to
 | 
						|
# contain current K_XX_XX constant and is used to calculate X[-1]+K
 | 
						|
# from previous round, it becomes volatile the moment the value is
 | 
						|
# saved to stack for transfer to IALU. X[4] becomes volatile whenever
 | 
						|
# X[-4] is accumulated and offloaded to backtrace ring buffer, at the
 | 
						|
# end it is loaded with next K_XX_XX [which becomes X[3] in next
 | 
						|
# round]...
 | 
						|
#
 | 
						|
sub Xupdate_ssse3_16_31()		# recall that $Xi starts with 4
 | 
						|
{ use integer;
 | 
						|
  my $body = shift;
 | 
						|
  my @insns = (&$body,&$body,&$body,&$body);	# 40 instructions
 | 
						|
  my ($a,$b,$c,$d,$e);
 | 
						|
 | 
						|
	 eval(shift(@insns));		# ror
 | 
						|
	 eval(shift(@insns));
 | 
						|
	 eval(shift(@insns));
 | 
						|
	&punpcklqdq(@X[0],@X[-3&7]);	# compose "X[-14]" in "X[0]", was &palignr(@X[0],@X[-4&7],8);
 | 
						|
	&movdqa	(@X[2],@X[-1&7]);
 | 
						|
	 eval(shift(@insns));
 | 
						|
	 eval(shift(@insns));
 | 
						|
 | 
						|
	  &paddd	(@X[3],@X[-1&7]);
 | 
						|
	  &movdqa	(&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]);# save X[] to backtrace buffer
 | 
						|
	 eval(shift(@insns));		# rol
 | 
						|
	 eval(shift(@insns));
 | 
						|
	&psrldq	(@X[2],4);		# "X[-3]", 3 dwords
 | 
						|
	 eval(shift(@insns));
 | 
						|
	 eval(shift(@insns));
 | 
						|
	&pxor	(@X[0],@X[-4&7]);	# "X[0]"^="X[-16]"
 | 
						|
	 eval(shift(@insns));
 | 
						|
	 eval(shift(@insns));		# ror
 | 
						|
 | 
						|
	&pxor	(@X[2],@X[-2&7]);	# "X[-3]"^"X[-8]"
 | 
						|
	 eval(shift(@insns));
 | 
						|
	 eval(shift(@insns));
 | 
						|
	 eval(shift(@insns));
 | 
						|
 | 
						|
	&pxor	(@X[0],@X[2]);		# "X[0]"^="X[-3]"^"X[-8]"
 | 
						|
	 eval(shift(@insns));
 | 
						|
	 eval(shift(@insns));		# rol
 | 
						|
	  &movdqa	(&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]);	# X[]+K xfer to IALU
 | 
						|
	 eval(shift(@insns));
 | 
						|
	 eval(shift(@insns));
 | 
						|
 | 
						|
	&movdqa	(@X[4],@X[0]);
 | 
						|
	 eval(shift(@insns));
 | 
						|
	 eval(shift(@insns));
 | 
						|
	 eval(shift(@insns));		# ror
 | 
						|
	&movdqa (@X[2],@X[0]);
 | 
						|
	 eval(shift(@insns));
 | 
						|
 | 
						|
	&pslldq	(@X[4],12);		# "X[0]"<<96, extract one dword
 | 
						|
	&paddd	(@X[0],@X[0]);
 | 
						|
	 eval(shift(@insns));
 | 
						|
	 eval(shift(@insns));
 | 
						|
 | 
						|
	&psrld	(@X[2],31);
 | 
						|
	 eval(shift(@insns));
 | 
						|
	 eval(shift(@insns));		# rol
 | 
						|
	&movdqa	(@X[3],@X[4]);
 | 
						|
	 eval(shift(@insns));
 | 
						|
	 eval(shift(@insns));
 | 
						|
	 eval(shift(@insns));
 | 
						|
 | 
						|
	&psrld	(@X[4],30);
 | 
						|
	 eval(shift(@insns));
 | 
						|
	 eval(shift(@insns));		# ror
 | 
						|
	&por	(@X[0],@X[2]);		# "X[0]"<<<=1
 | 
						|
	 eval(shift(@insns));
 | 
						|
	  &movdqa	(@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if ($Xi>5);	# restore X[] from backtrace buffer
 | 
						|
	 eval(shift(@insns));
 | 
						|
	 eval(shift(@insns));
 | 
						|
 | 
						|
	&pslld	(@X[3],2);
 | 
						|
	 eval(shift(@insns));
 | 
						|
	 eval(shift(@insns));		# rol
 | 
						|
	&pxor   (@X[0],@X[4]);
 | 
						|
	  &movdqa	(@X[4],&QWP(112-16+16*(($Xi)/5),"esp"));	# K_XX_XX
 | 
						|
	 eval(shift(@insns));
 | 
						|
	 eval(shift(@insns));
 | 
						|
 | 
						|
	&pxor	(@X[0],@X[3]);		# "X[0]"^=("X[0]"<<96)<<<2
 | 
						|
	  &pshufd	(@X[1],@X[-3&7],0xee)	if ($Xi<7);	# was &movdqa	(@X[1],@X[-2&7])
 | 
						|
	  &pshufd	(@X[3],@X[-1&7],0xee)	if ($Xi==7);
 | 
						|
	 eval(shift(@insns));
 | 
						|
	 eval(shift(@insns));
 | 
						|
 | 
						|
	 foreach (@insns) { eval; }	# remaining instructions [if any]
 | 
						|
 | 
						|
  $Xi++;	push(@X,shift(@X));	# "rotate" X[]
 | 
						|
}
 | 
						|
 | 
						|
sub Xupdate_ssse3_32_79()
 | 
						|
{ use integer;
 | 
						|
  my $body = shift;
 | 
						|
  my @insns = (&$body,&$body,&$body,&$body);	# 32 to 44 instructions
 | 
						|
  my ($a,$b,$c,$d,$e);
 | 
						|
 | 
						|
	 eval(shift(@insns));		# body_20_39
 | 
						|
	&pxor	(@X[0],@X[-4&7]);	# "X[0]"="X[-32]"^"X[-16]"
 | 
						|
	&punpcklqdq(@X[2],@X[-1&7]);	# compose "X[-6]", was &palignr(@X[2],@X[-2&7],8)
 | 
						|
	 eval(shift(@insns));
 | 
						|
	 eval(shift(@insns));
 | 
						|
	 eval(shift(@insns));		# rol
 | 
						|
 | 
						|
	&pxor	(@X[0],@X[-7&7]);	# "X[0]"^="X[-28]"
 | 
						|
	  &movdqa	(&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]);	# save X[] to backtrace buffer
 | 
						|
	 eval(shift(@insns));
 | 
						|
	 eval(shift(@insns));
 | 
						|
	 eval(shift(@insns))		if (@insns[0] =~ /_rol/);
 | 
						|
	 if ($Xi%5) {
 | 
						|
	  &movdqa	(@X[4],@X[3]);	# "perpetuate" K_XX_XX...
 | 
						|
	 } else {			# ... or load next one
 | 
						|
	  &movdqa	(@X[4],&QWP(112-16+16*($Xi/5),"esp"));
 | 
						|
	 }
 | 
						|
	 eval(shift(@insns));		# ror
 | 
						|
	  &paddd	(@X[3],@X[-1&7]);
 | 
						|
	 eval(shift(@insns));
 | 
						|
 | 
						|
	&pxor	(@X[0],@X[2]);		# "X[0]"^="X[-6]"
 | 
						|
	 eval(shift(@insns));		# body_20_39
 | 
						|
	 eval(shift(@insns));
 | 
						|
	 eval(shift(@insns));
 | 
						|
	 eval(shift(@insns));		# rol
 | 
						|
 | 
						|
	&movdqa	(@X[2],@X[0]);
 | 
						|
	  &movdqa	(&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]);	# X[]+K xfer to IALU
 | 
						|
	 eval(shift(@insns));
 | 
						|
	 eval(shift(@insns));
 | 
						|
	 eval(shift(@insns));		# ror
 | 
						|
	 eval(shift(@insns));
 | 
						|
	 eval(shift(@insns))		if (@insns[0] =~ /_rol/);
 | 
						|
 | 
						|
	&pslld	(@X[0],2);
 | 
						|
	 eval(shift(@insns));		# body_20_39
 | 
						|
	 eval(shift(@insns));
 | 
						|
	&psrld	(@X[2],30);
 | 
						|
	 eval(shift(@insns));
 | 
						|
	 eval(shift(@insns));		# rol
 | 
						|
	 eval(shift(@insns));
 | 
						|
	 eval(shift(@insns));
 | 
						|
	 eval(shift(@insns));		# ror
 | 
						|
	 eval(shift(@insns));
 | 
						|
	 eval(shift(@insns))		if (@insns[1] =~ /_rol/);
 | 
						|
	 eval(shift(@insns))		if (@insns[0] =~ /_rol/);
 | 
						|
 | 
						|
	&por	(@X[0],@X[2]);		# "X[0]"<<<=2
 | 
						|
	 eval(shift(@insns));		# body_20_39
 | 
						|
	 eval(shift(@insns));
 | 
						|
	  &movdqa	(@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if($Xi<19);	# restore X[] from backtrace buffer
 | 
						|
	 eval(shift(@insns));
 | 
						|
	 eval(shift(@insns));		# rol
 | 
						|
	 eval(shift(@insns));
 | 
						|
	 eval(shift(@insns));
 | 
						|
	 eval(shift(@insns));		# ror
 | 
						|
	  &pshufd	(@X[3],@X[-1],0xee)	if ($Xi<19);	# was &movdqa	(@X[3],@X[0])
 | 
						|
	 eval(shift(@insns));
 | 
						|
 | 
						|
	 foreach (@insns) { eval; }	# remaining instructions
 | 
						|
 | 
						|
  $Xi++;	push(@X,shift(@X));	# "rotate" X[]
 | 
						|
}
 | 
						|
 | 
						|
sub Xuplast_ssse3_80()
 | 
						|
{ use integer;
 | 
						|
  my $body = shift;
 | 
						|
  my @insns = (&$body,&$body,&$body,&$body);	# 32 instructions
 | 
						|
  my ($a,$b,$c,$d,$e);
 | 
						|
 | 
						|
	 eval(shift(@insns));
 | 
						|
	 eval(shift(@insns));
 | 
						|
	 eval(shift(@insns));
 | 
						|
	 eval(shift(@insns));
 | 
						|
	 eval(shift(@insns));
 | 
						|
	 eval(shift(@insns));
 | 
						|
	 eval(shift(@insns));
 | 
						|
	  &paddd	(@X[3],@X[-1&7]);
 | 
						|
	 eval(shift(@insns));
 | 
						|
	 eval(shift(@insns));
 | 
						|
	 eval(shift(@insns));
 | 
						|
	 eval(shift(@insns));
 | 
						|
 | 
						|
	  &movdqa	(&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]);	# X[]+K xfer IALU
 | 
						|
 | 
						|
	 foreach (@insns) { eval; }		# remaining instructions
 | 
						|
 | 
						|
	&mov	($inp=@T[1],&DWP(192+4,"esp"));
 | 
						|
	&cmp	($inp,&DWP(192+8,"esp"));
 | 
						|
	&je	(&label("done"));
 | 
						|
 | 
						|
	&movdqa	(@X[3],&QWP(112+48,"esp"));	# K_00_19
 | 
						|
	&movdqa	(@X[2],&QWP(112+64,"esp"));	# pbswap mask
 | 
						|
	&movdqu	(@X[-4&7],&QWP(0,$inp));	# load input
 | 
						|
	&movdqu	(@X[-3&7],&QWP(16,$inp));
 | 
						|
	&movdqu	(@X[-2&7],&QWP(32,$inp));
 | 
						|
	&movdqu	(@X[-1&7],&QWP(48,$inp));
 | 
						|
	&add	($inp,64);
 | 
						|
	&pshufb	(@X[-4&7],@X[2]);		# byte swap
 | 
						|
	&mov	(&DWP(192+4,"esp"),$inp);
 | 
						|
	&movdqa	(&QWP(112-16,"esp"),@X[3]);	# borrow last backtrace slot
 | 
						|
 | 
						|
  $Xi=0;
 | 
						|
}
 | 
						|
 | 
						|
sub Xloop_ssse3()
 | 
						|
{ use integer;
 | 
						|
  my $body = shift;
 | 
						|
  my @insns = (&$body,&$body,&$body,&$body);	# 32 instructions
 | 
						|
  my ($a,$b,$c,$d,$e);
 | 
						|
 | 
						|
	 eval(shift(@insns));
 | 
						|
	 eval(shift(@insns));
 | 
						|
	 eval(shift(@insns));
 | 
						|
	 eval(shift(@insns));
 | 
						|
	 eval(shift(@insns));
 | 
						|
	 eval(shift(@insns));
 | 
						|
	 eval(shift(@insns));
 | 
						|
	&pshufb	(@X[($Xi-3)&7],@X[2]);
 | 
						|
	 eval(shift(@insns));
 | 
						|
	 eval(shift(@insns));
 | 
						|
	 eval(shift(@insns));
 | 
						|
	 eval(shift(@insns));
 | 
						|
	&paddd	(@X[($Xi-4)&7],@X[3]);
 | 
						|
	 eval(shift(@insns));
 | 
						|
	 eval(shift(@insns));
 | 
						|
	 eval(shift(@insns));
 | 
						|
	 eval(shift(@insns));
 | 
						|
	&movdqa	(&QWP(0+16*$Xi,"esp"),@X[($Xi-4)&7]);	# X[]+K xfer to IALU
 | 
						|
	 eval(shift(@insns));
 | 
						|
	 eval(shift(@insns));
 | 
						|
	 eval(shift(@insns));
 | 
						|
	 eval(shift(@insns));
 | 
						|
	&psubd	(@X[($Xi-4)&7],@X[3]);
 | 
						|
 | 
						|
	foreach (@insns) { eval; }
 | 
						|
  $Xi++;
 | 
						|
}
 | 
						|
 | 
						|
sub Xtail_ssse3()
 | 
						|
{ use integer;
 | 
						|
  my $body = shift;
 | 
						|
  my @insns = (&$body,&$body,&$body,&$body);	# 32 instructions
 | 
						|
  my ($a,$b,$c,$d,$e);
 | 
						|
 | 
						|
	foreach (@insns) { eval; }
 | 
						|
}
 | 
						|
 | 
						|
sub body_00_19 () {	# ((c^d)&b)^d
 | 
						|
	# on start @T[0]=(c^d)&b
 | 
						|
	return &body_20_39()	if ($rx==19);	$rx++;
 | 
						|
	(
 | 
						|
	'($a,$b,$c,$d,$e)=@V;'.
 | 
						|
	'&$_ror	($b,$j?7:2);',	# $b>>>2
 | 
						|
	'&xor	(@T[0],$d);',
 | 
						|
	'&mov	(@T[1],$a);',	# $b in next round
 | 
						|
 | 
						|
	'&add	($e,&DWP(4*($j&15),"esp"));',	# X[]+K xfer
 | 
						|
	'&xor	($b,$c);',	# $c^$d for next round
 | 
						|
 | 
						|
	'&$_rol	($a,5);',
 | 
						|
	'&add	($e,@T[0]);',
 | 
						|
	'&and	(@T[1],$b);',	# ($b&($c^$d)) for next round
 | 
						|
 | 
						|
	'&xor	($b,$c);',	# restore $b
 | 
						|
	'&add	($e,$a);'	.'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));'
 | 
						|
	);
 | 
						|
}
 | 
						|
 | 
						|
sub body_20_39 () {	# b^d^c
 | 
						|
	# on entry @T[0]=b^d
 | 
						|
	return &body_40_59()	if ($rx==39);	$rx++;
 | 
						|
	(
 | 
						|
	'($a,$b,$c,$d,$e)=@V;'.
 | 
						|
	'&add	($e,&DWP(4*($j&15),"esp"));',	# X[]+K xfer
 | 
						|
	'&xor	(@T[0],$d)	if($j==19);'.
 | 
						|
	'&xor	(@T[0],$c)	if($j> 19);',	# ($b^$d^$c)
 | 
						|
	'&mov	(@T[1],$a);',	# $b in next round
 | 
						|
 | 
						|
	'&$_rol	($a,5);',
 | 
						|
	'&add	($e,@T[0]);',
 | 
						|
	'&xor	(@T[1],$c)	if ($j< 79);',	# $b^$d for next round
 | 
						|
 | 
						|
	'&$_ror	($b,7);',	# $b>>>2
 | 
						|
	'&add	($e,$a);'	.'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));'
 | 
						|
	);
 | 
						|
}
 | 
						|
 | 
						|
sub body_40_59 () {	# ((b^c)&(c^d))^c
 | 
						|
	# on entry @T[0]=(b^c), (c^=d)
 | 
						|
	$rx++;
 | 
						|
	(
 | 
						|
	'($a,$b,$c,$d,$e)=@V;'.
 | 
						|
	'&add	($e,&DWP(4*($j&15),"esp"));',	# X[]+K xfer
 | 
						|
	'&and	(@T[0],$c)	if ($j>=40);',	# (b^c)&(c^d)
 | 
						|
	'&xor	($c,$d)		if ($j>=40);',	# restore $c
 | 
						|
 | 
						|
	'&$_ror	($b,7);',	# $b>>>2
 | 
						|
	'&mov	(@T[1],$a);',	# $b for next round
 | 
						|
	'&xor	(@T[0],$c);',
 | 
						|
 | 
						|
	'&$_rol	($a,5);',
 | 
						|
	'&add	($e,@T[0]);',
 | 
						|
	'&xor	(@T[1],$c)	if ($j==59);'.
 | 
						|
	'&xor	(@T[1],$b)	if ($j< 59);',	# b^c for next round
 | 
						|
 | 
						|
	'&xor	($b,$c)		if ($j< 59);',	# c^d for next round
 | 
						|
	'&add	($e,$a);'	.'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));'
 | 
						|
	);
 | 
						|
}
 | 
						|
######
 | 
						|
sub bodyx_00_19 () {	# ((c^d)&b)^d
 | 
						|
	# on start @T[0]=(b&c)^(~b&d), $e+=X[]+K
 | 
						|
	return &bodyx_20_39()	if ($rx==19);	$rx++;
 | 
						|
	(
 | 
						|
	'($a,$b,$c,$d,$e)=@V;'.
 | 
						|
 | 
						|
	'&rorx	($b,$b,2)			if ($j==0);'.	# $b>>>2
 | 
						|
	'&rorx	($b,@T[1],7)			if ($j!=0);',	# $b>>>2
 | 
						|
	'&lea	($e,&DWP(0,$e,@T[0]));',
 | 
						|
	'&rorx	(@T[0],$a,5);',
 | 
						|
 | 
						|
	'&andn	(@T[1],$a,$c);',
 | 
						|
	'&and	($a,$b)',
 | 
						|
	'&add	($d,&DWP(4*(($j+1)&15),"esp"));',	# X[]+K xfer
 | 
						|
 | 
						|
	'&xor	(@T[1],$a)',
 | 
						|
	'&add	($e,@T[0]);'	.'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));'
 | 
						|
	);
 | 
						|
}
 | 
						|
 | 
						|
sub bodyx_20_39 () {	# b^d^c
 | 
						|
	# on start $b=b^c^d
 | 
						|
	return &bodyx_40_59()	if ($rx==39);	$rx++;
 | 
						|
	(
 | 
						|
	'($a,$b,$c,$d,$e)=@V;'.
 | 
						|
 | 
						|
	'&add	($e,($j==19?@T[0]:$b))',
 | 
						|
	'&rorx	($b,@T[1],7);',	# $b>>>2
 | 
						|
	'&rorx	(@T[0],$a,5);',
 | 
						|
 | 
						|
	'&xor	($a,$b)				if ($j<79);',
 | 
						|
	'&add	($d,&DWP(4*(($j+1)&15),"esp"))	if ($j<79);',	# X[]+K xfer
 | 
						|
	'&xor	($a,$c)				if ($j<79);',
 | 
						|
	'&add	($e,@T[0]);'	.'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));'
 | 
						|
	);
 | 
						|
}
 | 
						|
 | 
						|
sub bodyx_40_59 () {	# ((b^c)&(c^d))^c
 | 
						|
	# on start $b=((b^c)&(c^d))^c
 | 
						|
	return &bodyx_20_39()	if ($rx==59);	$rx++;
 | 
						|
	(
 | 
						|
	'($a,$b,$c,$d,$e)=@V;'.
 | 
						|
 | 
						|
	'&rorx	(@T[0],$a,5)',
 | 
						|
	'&lea	($e,&DWP(0,$e,$b))',
 | 
						|
	'&rorx	($b,@T[1],7)',	# $b>>>2
 | 
						|
	'&add	($d,&DWP(4*(($j+1)&15),"esp"))',	# X[]+K xfer
 | 
						|
 | 
						|
	'&mov	(@T[1],$c)',
 | 
						|
	'&xor	($a,$b)',	# b^c for next round
 | 
						|
	'&xor	(@T[1],$b)',	# c^d for next round
 | 
						|
 | 
						|
	'&and	($a,@T[1])',
 | 
						|
	'&add	($e,@T[0])',
 | 
						|
	'&xor	($a,$b)'	.'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));'
 | 
						|
	);
 | 
						|
}
 | 
						|
 | 
						|
&set_label("loop",16);
 | 
						|
	&Xupdate_ssse3_16_31(\&body_00_19);
 | 
						|
	&Xupdate_ssse3_16_31(\&body_00_19);
 | 
						|
	&Xupdate_ssse3_16_31(\&body_00_19);
 | 
						|
	&Xupdate_ssse3_16_31(\&body_00_19);
 | 
						|
	&Xupdate_ssse3_32_79(\&body_00_19);
 | 
						|
	&Xupdate_ssse3_32_79(\&body_20_39);
 | 
						|
	&Xupdate_ssse3_32_79(\&body_20_39);
 | 
						|
	&Xupdate_ssse3_32_79(\&body_20_39);
 | 
						|
	&Xupdate_ssse3_32_79(\&body_20_39);
 | 
						|
	&Xupdate_ssse3_32_79(\&body_20_39);
 | 
						|
	&Xupdate_ssse3_32_79(\&body_40_59);
 | 
						|
	&Xupdate_ssse3_32_79(\&body_40_59);
 | 
						|
	&Xupdate_ssse3_32_79(\&body_40_59);
 | 
						|
	&Xupdate_ssse3_32_79(\&body_40_59);
 | 
						|
	&Xupdate_ssse3_32_79(\&body_40_59);
 | 
						|
	&Xupdate_ssse3_32_79(\&body_20_39);
 | 
						|
	&Xuplast_ssse3_80(\&body_20_39);	# can jump to "done"
 | 
						|
 | 
						|
				$saved_j=$j; @saved_V=@V;
 | 
						|
 | 
						|
	&Xloop_ssse3(\&body_20_39);
 | 
						|
	&Xloop_ssse3(\&body_20_39);
 | 
						|
	&Xloop_ssse3(\&body_20_39);
 | 
						|
 | 
						|
	&mov	(@T[1],&DWP(192,"esp"));	# update context
 | 
						|
	&add	($A,&DWP(0,@T[1]));
 | 
						|
	&add	(@T[0],&DWP(4,@T[1]));		# $b
 | 
						|
	&add	($C,&DWP(8,@T[1]));
 | 
						|
	&mov	(&DWP(0,@T[1]),$A);
 | 
						|
	&add	($D,&DWP(12,@T[1]));
 | 
						|
	&mov	(&DWP(4,@T[1]),@T[0]);
 | 
						|
	&add	($E,&DWP(16,@T[1]));
 | 
						|
	&mov	(&DWP(8,@T[1]),$C);
 | 
						|
	&mov	($B,$C);
 | 
						|
	&mov	(&DWP(12,@T[1]),$D);
 | 
						|
	&xor	($B,$D);
 | 
						|
	&mov	(&DWP(16,@T[1]),$E);
 | 
						|
	&mov	(@T[1],@T[0]);
 | 
						|
	&pshufd	(@X[0],@X[-4&7],0xee);		# was &movdqa	(@X[0],@X[-3&7]);
 | 
						|
	&and	(@T[0],$B);
 | 
						|
	&mov	($B,$T[1]);
 | 
						|
 | 
						|
	&jmp	(&label("loop"));
 | 
						|
 | 
						|
&set_label("done",16);		$j=$saved_j; @V=@saved_V;
 | 
						|
 | 
						|
	&Xtail_ssse3(\&body_20_39);
 | 
						|
	&Xtail_ssse3(\&body_20_39);
 | 
						|
	&Xtail_ssse3(\&body_20_39);
 | 
						|
 | 
						|
	&mov	(@T[1],&DWP(192,"esp"));	# update context
 | 
						|
	&add	($A,&DWP(0,@T[1]));
 | 
						|
	&mov	("esp",&DWP(192+12,"esp"));	# restore %esp
 | 
						|
	&add	(@T[0],&DWP(4,@T[1]));		# $b
 | 
						|
	&add	($C,&DWP(8,@T[1]));
 | 
						|
	&mov	(&DWP(0,@T[1]),$A);
 | 
						|
	&add	($D,&DWP(12,@T[1]));
 | 
						|
	&mov	(&DWP(4,@T[1]),@T[0]);
 | 
						|
	&add	($E,&DWP(16,@T[1]));
 | 
						|
	&mov	(&DWP(8,@T[1]),$C);
 | 
						|
	&mov	(&DWP(12,@T[1]),$D);
 | 
						|
	&mov	(&DWP(16,@T[1]),$E);
 | 
						|
 | 
						|
&function_end("_sha1_block_data_order_ssse3");
 | 
						|
 | 
						|
$rx=0;	# reset
 | 
						|
 | 
						|
if ($ymm) {
 | 
						|
my $Xi=4;			# 4xSIMD Xupdate round, start pre-seeded
 | 
						|
my @X=map("xmm$_",(4..7,0..3));	# pre-seeded for $Xi=4
 | 
						|
my @V=($A,$B,$C,$D,$E);
 | 
						|
my $j=0;			# hash round
 | 
						|
my @T=($T,$tmp1);
 | 
						|
my $inp;
 | 
						|
 | 
						|
my $_rol=sub { &shld(@_[0],@_) };
 | 
						|
my $_ror=sub { &shrd(@_[0],@_) };
 | 
						|
 | 
						|
&function_begin("_sha1_block_data_order_avx");
 | 
						|
	&call	(&label("pic_point"));	# make it PIC!
 | 
						|
	&set_label("pic_point");
 | 
						|
	&blindpop($tmp1);
 | 
						|
	&lea	($tmp1,&DWP(&label("K_XX_XX")."-".&label("pic_point"),$tmp1));
 | 
						|
&set_label("avx_shortcut");
 | 
						|
	&vzeroall();
 | 
						|
 | 
						|
	&vmovdqa(@X[3],&QWP(0,$tmp1));		# K_00_19
 | 
						|
	&vmovdqa(@X[4],&QWP(16,$tmp1));		# K_20_39
 | 
						|
	&vmovdqa(@X[5],&QWP(32,$tmp1));		# K_40_59
 | 
						|
	&vmovdqa(@X[6],&QWP(48,$tmp1));		# K_60_79
 | 
						|
	&vmovdqa(@X[2],&QWP(64,$tmp1));		# pbswap mask
 | 
						|
 | 
						|
	&mov	($E,&wparam(0));		# load argument block
 | 
						|
	&mov	($inp=@T[1],&wparam(1));
 | 
						|
	&mov	($D,&wparam(2));
 | 
						|
	&mov	(@T[0],"esp");
 | 
						|
 | 
						|
	# stack frame layout
 | 
						|
	#
 | 
						|
	# +0	X[0]+K	X[1]+K	X[2]+K	X[3]+K	# XMM->IALU xfer area
 | 
						|
	#	X[4]+K	X[5]+K	X[6]+K	X[7]+K
 | 
						|
	#	X[8]+K	X[9]+K	X[10]+K	X[11]+K
 | 
						|
	#	X[12]+K	X[13]+K	X[14]+K	X[15]+K
 | 
						|
	#
 | 
						|
	# +64	X[0]	X[1]	X[2]	X[3]	# XMM->XMM backtrace area
 | 
						|
	#	X[4]	X[5]	X[6]	X[7]
 | 
						|
	#	X[8]	X[9]	X[10]	X[11]	# even borrowed for K_00_19
 | 
						|
	#
 | 
						|
	# +112	K_20_39	K_20_39	K_20_39	K_20_39	# constants
 | 
						|
	#	K_40_59	K_40_59	K_40_59	K_40_59
 | 
						|
	#	K_60_79	K_60_79	K_60_79	K_60_79
 | 
						|
	#	K_00_19	K_00_19	K_00_19	K_00_19
 | 
						|
	#	pbswap mask
 | 
						|
	#
 | 
						|
	# +192	ctx				# argument block
 | 
						|
	# +196	inp
 | 
						|
	# +200	end
 | 
						|
	# +204	esp
 | 
						|
	&sub	("esp",208);
 | 
						|
	&and	("esp",-64);
 | 
						|
 | 
						|
	&vmovdqa(&QWP(112+0,"esp"),@X[4]);	# copy constants
 | 
						|
	&vmovdqa(&QWP(112+16,"esp"),@X[5]);
 | 
						|
	&vmovdqa(&QWP(112+32,"esp"),@X[6]);
 | 
						|
	&shl	($D,6);				# len*64
 | 
						|
	&vmovdqa(&QWP(112+48,"esp"),@X[3]);
 | 
						|
	&add	($D,$inp);			# end of input
 | 
						|
	&vmovdqa(&QWP(112+64,"esp"),@X[2]);
 | 
						|
	&add	($inp,64);
 | 
						|
	&mov	(&DWP(192+0,"esp"),$E);		# save argument block
 | 
						|
	&mov	(&DWP(192+4,"esp"),$inp);
 | 
						|
	&mov	(&DWP(192+8,"esp"),$D);
 | 
						|
	&mov	(&DWP(192+12,"esp"),@T[0]);	# save original %esp
 | 
						|
 | 
						|
	&mov	($A,&DWP(0,$E));		# load context
 | 
						|
	&mov	($B,&DWP(4,$E));
 | 
						|
	&mov	($C,&DWP(8,$E));
 | 
						|
	&mov	($D,&DWP(12,$E));
 | 
						|
	&mov	($E,&DWP(16,$E));
 | 
						|
	&mov	(@T[0],$B);			# magic seed
 | 
						|
 | 
						|
	&vmovdqu(@X[-4&7],&QWP(-64,$inp));	# load input to %xmm[0-3]
 | 
						|
	&vmovdqu(@X[-3&7],&QWP(-48,$inp));
 | 
						|
	&vmovdqu(@X[-2&7],&QWP(-32,$inp));
 | 
						|
	&vmovdqu(@X[-1&7],&QWP(-16,$inp));
 | 
						|
	&vpshufb(@X[-4&7],@X[-4&7],@X[2]);	# byte swap
 | 
						|
	&vpshufb(@X[-3&7],@X[-3&7],@X[2]);
 | 
						|
	&vpshufb(@X[-2&7],@X[-2&7],@X[2]);
 | 
						|
	&vmovdqa(&QWP(112-16,"esp"),@X[3]);	# borrow last backtrace slot
 | 
						|
	&vpshufb(@X[-1&7],@X[-1&7],@X[2]);
 | 
						|
	&vpaddd	(@X[0],@X[-4&7],@X[3]);		# add K_00_19
 | 
						|
	&vpaddd	(@X[1],@X[-3&7],@X[3]);
 | 
						|
	&vpaddd	(@X[2],@X[-2&7],@X[3]);
 | 
						|
	&vmovdqa(&QWP(0,"esp"),@X[0]);		# X[]+K xfer to IALU
 | 
						|
	&mov	(@T[1],$C);
 | 
						|
	&vmovdqa(&QWP(0+16,"esp"),@X[1]);
 | 
						|
	&xor	(@T[1],$D);
 | 
						|
	&vmovdqa(&QWP(0+32,"esp"),@X[2]);
 | 
						|
	&and	(@T[0],@T[1]);
 | 
						|
	&jmp	(&label("loop"));
 | 
						|
 | 
						|
sub Xupdate_avx_16_31()		# recall that $Xi starts with 4
 | 
						|
{ use integer;
 | 
						|
  my $body = shift;
 | 
						|
  my @insns = (&$body,&$body,&$body,&$body);	# 40 instructions
 | 
						|
  my ($a,$b,$c,$d,$e);
 | 
						|
 | 
						|
	 eval(shift(@insns));
 | 
						|
	 eval(shift(@insns));
 | 
						|
	&vpalignr(@X[0],@X[-3&7],@X[-4&7],8);	# compose "X[-14]" in "X[0]"
 | 
						|
	 eval(shift(@insns));
 | 
						|
	 eval(shift(@insns));
 | 
						|
 | 
						|
	  &vpaddd	(@X[3],@X[3],@X[-1&7]);
 | 
						|
	  &vmovdqa	(&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]);# save X[] to backtrace buffer
 | 
						|
	 eval(shift(@insns));
 | 
						|
	 eval(shift(@insns));
 | 
						|
	&vpsrldq(@X[2],@X[-1&7],4);		# "X[-3]", 3 dwords
 | 
						|
	 eval(shift(@insns));
 | 
						|
	 eval(shift(@insns));
 | 
						|
	&vpxor	(@X[0],@X[0],@X[-4&7]);		# "X[0]"^="X[-16]"
 | 
						|
	 eval(shift(@insns));
 | 
						|
	 eval(shift(@insns));
 | 
						|
 | 
						|
	&vpxor	(@X[2],@X[2],@X[-2&7]);		# "X[-3]"^"X[-8]"
 | 
						|
	 eval(shift(@insns));
 | 
						|
	 eval(shift(@insns));
 | 
						|
	  &vmovdqa	(&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]);	# X[]+K xfer to IALU
 | 
						|
	 eval(shift(@insns));
 | 
						|
	 eval(shift(@insns));
 | 
						|
 | 
						|
	&vpxor	(@X[0],@X[0],@X[2]);		# "X[0]"^="X[-3]"^"X[-8]"
 | 
						|
	 eval(shift(@insns));
 | 
						|
	 eval(shift(@insns));
 | 
						|
	 eval(shift(@insns));
 | 
						|
	 eval(shift(@insns));
 | 
						|
 | 
						|
	&vpsrld	(@X[2],@X[0],31);
 | 
						|
	 eval(shift(@insns));
 | 
						|
	 eval(shift(@insns));
 | 
						|
	 eval(shift(@insns));
 | 
						|
	 eval(shift(@insns));
 | 
						|
 | 
						|
	&vpslldq(@X[4],@X[0],12);		# "X[0]"<<96, extract one dword
 | 
						|
	&vpaddd	(@X[0],@X[0],@X[0]);
 | 
						|
	 eval(shift(@insns));
 | 
						|
	 eval(shift(@insns));
 | 
						|
	 eval(shift(@insns));
 | 
						|
	 eval(shift(@insns));
 | 
						|
 | 
						|
	&vpsrld	(@X[3],@X[4],30);
 | 
						|
	&vpor	(@X[0],@X[0],@X[2]);		# "X[0]"<<<=1
 | 
						|
	 eval(shift(@insns));
 | 
						|
	 eval(shift(@insns));
 | 
						|
	 eval(shift(@insns));
 | 
						|
	 eval(shift(@insns));
 | 
						|
 | 
						|
	&vpslld	(@X[4],@X[4],2);
 | 
						|
	  &vmovdqa	(@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if ($Xi>5);	# restore X[] from backtrace buffer
 | 
						|
	 eval(shift(@insns));
 | 
						|
	 eval(shift(@insns));
 | 
						|
	&vpxor	(@X[0],@X[0],@X[3]);
 | 
						|
	 eval(shift(@insns));
 | 
						|
	 eval(shift(@insns));
 | 
						|
	 eval(shift(@insns));
 | 
						|
	 eval(shift(@insns));
 | 
						|
 | 
						|
	&vpxor	(@X[0],@X[0],@X[4]);		# "X[0]"^=("X[0]"<<96)<<<2
 | 
						|
	 eval(shift(@insns));
 | 
						|
	 eval(shift(@insns));
 | 
						|
	  &vmovdqa	(@X[4],&QWP(112-16+16*(($Xi)/5),"esp"));	# K_XX_XX
 | 
						|
	 eval(shift(@insns));
 | 
						|
	 eval(shift(@insns));
 | 
						|
 | 
						|
	 foreach (@insns) { eval; }	# remaining instructions [if any]
 | 
						|
 | 
						|
  $Xi++;	push(@X,shift(@X));	# "rotate" X[]
 | 
						|
}
 | 
						|
 | 
						|
sub Xupdate_avx_32_79()
 | 
						|
{ use integer;
 | 
						|
  my $body = shift;
 | 
						|
  my @insns = (&$body,&$body,&$body,&$body);	# 32 to 44 instructions
 | 
						|
  my ($a,$b,$c,$d,$e);
 | 
						|
 | 
						|
	&vpalignr(@X[2],@X[-1&7],@X[-2&7],8);	# compose "X[-6]"
 | 
						|
	&vpxor	(@X[0],@X[0],@X[-4&7]);	# "X[0]"="X[-32]"^"X[-16]"
 | 
						|
	 eval(shift(@insns));		# body_20_39
 | 
						|
	 eval(shift(@insns));
 | 
						|
	 eval(shift(@insns));
 | 
						|
	 eval(shift(@insns));		# rol
 | 
						|
 | 
						|
	&vpxor	(@X[0],@X[0],@X[-7&7]);	# "X[0]"^="X[-28]"
 | 
						|
	  &vmovdqa	(&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]);	# save X[] to backtrace buffer
 | 
						|
	 eval(shift(@insns));
 | 
						|
	 eval(shift(@insns));
 | 
						|
	 if ($Xi%5) {
 | 
						|
	  &vmovdqa	(@X[4],@X[3]);	# "perpetuate" K_XX_XX...
 | 
						|
	 } else {			# ... or load next one
 | 
						|
	  &vmovdqa	(@X[4],&QWP(112-16+16*($Xi/5),"esp"));
 | 
						|
	 }
 | 
						|
	  &vpaddd	(@X[3],@X[3],@X[-1&7]);
 | 
						|
	 eval(shift(@insns));		# ror
 | 
						|
	 eval(shift(@insns));
 | 
						|
 | 
						|
	&vpxor	(@X[0],@X[0],@X[2]);		# "X[0]"^="X[-6]"
 | 
						|
	 eval(shift(@insns));		# body_20_39
 | 
						|
	 eval(shift(@insns));
 | 
						|
	 eval(shift(@insns));
 | 
						|
	 eval(shift(@insns));		# rol
 | 
						|
 | 
						|
	&vpsrld	(@X[2],@X[0],30);
 | 
						|
	  &vmovdqa	(&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]);	# X[]+K xfer to IALU
 | 
						|
	 eval(shift(@insns));
 | 
						|
	 eval(shift(@insns));
 | 
						|
	 eval(shift(@insns));		# ror
 | 
						|
	 eval(shift(@insns));
 | 
						|
 | 
						|
	&vpslld	(@X[0],@X[0],2);
 | 
						|
	 eval(shift(@insns));		# body_20_39
 | 
						|
	 eval(shift(@insns));
 | 
						|
	 eval(shift(@insns));
 | 
						|
	 eval(shift(@insns));		# rol
 | 
						|
	 eval(shift(@insns));
 | 
						|
	 eval(shift(@insns));
 | 
						|
	 eval(shift(@insns));		# ror
 | 
						|
	 eval(shift(@insns));
 | 
						|
 | 
						|
	&vpor	(@X[0],@X[0],@X[2]);	# "X[0]"<<<=2
 | 
						|
	 eval(shift(@insns));		# body_20_39
 | 
						|
	 eval(shift(@insns));
 | 
						|
	  &vmovdqa	(@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if($Xi<19);	# restore X[] from backtrace buffer
 | 
						|
	 eval(shift(@insns));
 | 
						|
	 eval(shift(@insns));		# rol
 | 
						|
	 eval(shift(@insns));
 | 
						|
	 eval(shift(@insns));
 | 
						|
	 eval(shift(@insns));		# ror
 | 
						|
	 eval(shift(@insns));
 | 
						|
 | 
						|
	 foreach (@insns) { eval; }	# remaining instructions
 | 
						|
 | 
						|
  $Xi++;	push(@X,shift(@X));	# "rotate" X[]
 | 
						|
}
 | 
						|
 | 
						|
sub Xuplast_avx_80()
 | 
						|
{ use integer;
 | 
						|
  my $body = shift;
 | 
						|
  my @insns = (&$body,&$body,&$body,&$body);	# 32 instructions
 | 
						|
  my ($a,$b,$c,$d,$e);
 | 
						|
 | 
						|
	 eval(shift(@insns));
 | 
						|
	  &vpaddd	(@X[3],@X[3],@X[-1&7]);
 | 
						|
	 eval(shift(@insns));
 | 
						|
	 eval(shift(@insns));
 | 
						|
	 eval(shift(@insns));
 | 
						|
	 eval(shift(@insns));
 | 
						|
 | 
						|
	  &vmovdqa	(&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]);	# X[]+K xfer IALU
 | 
						|
 | 
						|
	 foreach (@insns) { eval; }		# remaining instructions
 | 
						|
 | 
						|
	&mov	($inp=@T[1],&DWP(192+4,"esp"));
 | 
						|
	&cmp	($inp,&DWP(192+8,"esp"));
 | 
						|
	&je	(&label("done"));
 | 
						|
 | 
						|
	&vmovdqa(@X[3],&QWP(112+48,"esp"));	# K_00_19
 | 
						|
	&vmovdqa(@X[2],&QWP(112+64,"esp"));	# pbswap mask
 | 
						|
	&vmovdqu(@X[-4&7],&QWP(0,$inp));	# load input
 | 
						|
	&vmovdqu(@X[-3&7],&QWP(16,$inp));
 | 
						|
	&vmovdqu(@X[-2&7],&QWP(32,$inp));
 | 
						|
	&vmovdqu(@X[-1&7],&QWP(48,$inp));
 | 
						|
	&add	($inp,64);
 | 
						|
	&vpshufb(@X[-4&7],@X[-4&7],@X[2]);		# byte swap
 | 
						|
	&mov	(&DWP(192+4,"esp"),$inp);
 | 
						|
	&vmovdqa(&QWP(112-16,"esp"),@X[3]);	# borrow last backtrace slot
 | 
						|
 | 
						|
  $Xi=0;
 | 
						|
}
 | 
						|
 | 
						|
sub Xloop_avx()
 | 
						|
{ use integer;
 | 
						|
  my $body = shift;
 | 
						|
  my @insns = (&$body,&$body,&$body,&$body);	# 32 instructions
 | 
						|
  my ($a,$b,$c,$d,$e);
 | 
						|
 | 
						|
	 eval(shift(@insns));
 | 
						|
	 eval(shift(@insns));
 | 
						|
	&vpshufb	(@X[($Xi-3)&7],@X[($Xi-3)&7],@X[2]);
 | 
						|
	 eval(shift(@insns));
 | 
						|
	 eval(shift(@insns));
 | 
						|
	&vpaddd	(@X[$Xi&7],@X[($Xi-4)&7],@X[3]);
 | 
						|
	 eval(shift(@insns));
 | 
						|
	 eval(shift(@insns));
 | 
						|
	 eval(shift(@insns));
 | 
						|
	 eval(shift(@insns));
 | 
						|
	&vmovdqa	(&QWP(0+16*$Xi,"esp"),@X[$Xi&7]);	# X[]+K xfer to IALU
 | 
						|
	 eval(shift(@insns));
 | 
						|
	 eval(shift(@insns));
 | 
						|
 | 
						|
	foreach (@insns) { eval; }
 | 
						|
  $Xi++;
 | 
						|
}
 | 
						|
 | 
						|
sub Xtail_avx()
 | 
						|
{ use integer;
 | 
						|
  my $body = shift;
 | 
						|
  my @insns = (&$body,&$body,&$body,&$body);	# 32 instructions
 | 
						|
  my ($a,$b,$c,$d,$e);
 | 
						|
 | 
						|
	foreach (@insns) { eval; }
 | 
						|
}
 | 
						|
 | 
						|
&set_label("loop",16);
 | 
						|
	&Xupdate_avx_16_31(\&body_00_19);
 | 
						|
	&Xupdate_avx_16_31(\&body_00_19);
 | 
						|
	&Xupdate_avx_16_31(\&body_00_19);
 | 
						|
	&Xupdate_avx_16_31(\&body_00_19);
 | 
						|
	&Xupdate_avx_32_79(\&body_00_19);
 | 
						|
	&Xupdate_avx_32_79(\&body_20_39);
 | 
						|
	&Xupdate_avx_32_79(\&body_20_39);
 | 
						|
	&Xupdate_avx_32_79(\&body_20_39);
 | 
						|
	&Xupdate_avx_32_79(\&body_20_39);
 | 
						|
	&Xupdate_avx_32_79(\&body_20_39);
 | 
						|
	&Xupdate_avx_32_79(\&body_40_59);
 | 
						|
	&Xupdate_avx_32_79(\&body_40_59);
 | 
						|
	&Xupdate_avx_32_79(\&body_40_59);
 | 
						|
	&Xupdate_avx_32_79(\&body_40_59);
 | 
						|
	&Xupdate_avx_32_79(\&body_40_59);
 | 
						|
	&Xupdate_avx_32_79(\&body_20_39);
 | 
						|
	&Xuplast_avx_80(\&body_20_39);	# can jump to "done"
 | 
						|
 | 
						|
				$saved_j=$j; @saved_V=@V;
 | 
						|
 | 
						|
	&Xloop_avx(\&body_20_39);
 | 
						|
	&Xloop_avx(\&body_20_39);
 | 
						|
	&Xloop_avx(\&body_20_39);
 | 
						|
 | 
						|
	&mov	(@T[1],&DWP(192,"esp"));	# update context
 | 
						|
	&add	($A,&DWP(0,@T[1]));
 | 
						|
	&add	(@T[0],&DWP(4,@T[1]));		# $b
 | 
						|
	&add	($C,&DWP(8,@T[1]));
 | 
						|
	&mov	(&DWP(0,@T[1]),$A);
 | 
						|
	&add	($D,&DWP(12,@T[1]));
 | 
						|
	&mov	(&DWP(4,@T[1]),@T[0]);
 | 
						|
	&add	($E,&DWP(16,@T[1]));
 | 
						|
	&mov	($B,$C);
 | 
						|
	&mov	(&DWP(8,@T[1]),$C);
 | 
						|
	&xor	($B,$D);
 | 
						|
	&mov	(&DWP(12,@T[1]),$D);
 | 
						|
	&mov	(&DWP(16,@T[1]),$E);
 | 
						|
	&mov	(@T[1],@T[0]);
 | 
						|
	&and	(@T[0],$B);
 | 
						|
	&mov	($B,@T[1]);
 | 
						|
 | 
						|
	&jmp	(&label("loop"));
 | 
						|
 | 
						|
&set_label("done",16);		$j=$saved_j; @V=@saved_V;
 | 
						|
 | 
						|
	&Xtail_avx(\&body_20_39);
 | 
						|
	&Xtail_avx(\&body_20_39);
 | 
						|
	&Xtail_avx(\&body_20_39);
 | 
						|
 | 
						|
	&vzeroall();
 | 
						|
 | 
						|
	&mov	(@T[1],&DWP(192,"esp"));	# update context
 | 
						|
	&add	($A,&DWP(0,@T[1]));
 | 
						|
	&mov	("esp",&DWP(192+12,"esp"));	# restore %esp
 | 
						|
	&add	(@T[0],&DWP(4,@T[1]));		# $b
 | 
						|
	&add	($C,&DWP(8,@T[1]));
 | 
						|
	&mov	(&DWP(0,@T[1]),$A);
 | 
						|
	&add	($D,&DWP(12,@T[1]));
 | 
						|
	&mov	(&DWP(4,@T[1]),@T[0]);
 | 
						|
	&add	($E,&DWP(16,@T[1]));
 | 
						|
	&mov	(&DWP(8,@T[1]),$C);
 | 
						|
	&mov	(&DWP(12,@T[1]),$D);
 | 
						|
	&mov	(&DWP(16,@T[1]),$E);
 | 
						|
&function_end("_sha1_block_data_order_avx");
 | 
						|
}
 | 
						|
&set_label("K_XX_XX",64);
 | 
						|
&data_word(0x5a827999,0x5a827999,0x5a827999,0x5a827999);	# K_00_19
 | 
						|
&data_word(0x6ed9eba1,0x6ed9eba1,0x6ed9eba1,0x6ed9eba1);	# K_20_39
 | 
						|
&data_word(0x8f1bbcdc,0x8f1bbcdc,0x8f1bbcdc,0x8f1bbcdc);	# K_40_59
 | 
						|
&data_word(0xca62c1d6,0xca62c1d6,0xca62c1d6,0xca62c1d6);	# K_60_79
 | 
						|
&data_word(0x00010203,0x04050607,0x08090a0b,0x0c0d0e0f);	# pbswap mask
 | 
						|
&data_byte(0xf,0xe,0xd,0xc,0xb,0xa,0x9,0x8,0x7,0x6,0x5,0x4,0x3,0x2,0x1,0x0);
 | 
						|
}
 | 
						|
&asciz("SHA1 block transform for x86, CRYPTOGAMS by <appro\@openssl.org>");
 | 
						|
 | 
						|
&asm_finish();
 | 
						|
 | 
						|
close STDOUT;
 |