mirror of
				https://github.com/ossrs/srs.git
				synced 2025-03-09 15:49:59 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			436 lines
		
	
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			436 lines
		
	
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * AC-3 encoder float/fixed template
 | |
|  * Copyright (c) 2000 Fabrice Bellard
 | |
|  * Copyright (c) 2006-2011 Justin Ruggles <justin.ruggles@gmail.com>
 | |
|  * Copyright (c) 2006-2010 Prakash Punnoor <prakash@punnoor.de>
 | |
|  *
 | |
|  * This file is part of FFmpeg.
 | |
|  *
 | |
|  * FFmpeg is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2.1 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * FFmpeg is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with FFmpeg; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * @file
 | |
|  * AC-3 encoder float/fixed template
 | |
|  */
 | |
| 
 | |
| #include <stdint.h>
 | |
| 
 | |
| #include "libavutil/attributes.h"
 | |
| #include "libavutil/internal.h"
 | |
| 
 | |
| #include "audiodsp.h"
 | |
| #include "internal.h"
 | |
| #include "ac3enc.h"
 | |
| #include "eac3enc.h"
 | |
| 
 | |
| 
 | |
| int AC3_NAME(allocate_sample_buffers)(AC3EncodeContext *s)
 | |
| {
 | |
|     int ch;
 | |
| 
 | |
|     FF_ALLOC_OR_GOTO(s->avctx, s->windowed_samples, AC3_WINDOW_SIZE *
 | |
|                      sizeof(*s->windowed_samples), alloc_fail);
 | |
|     FF_ALLOC_ARRAY_OR_GOTO(s->avctx, s->planar_samples, s->channels, sizeof(*s->planar_samples),
 | |
|                      alloc_fail);
 | |
|     for (ch = 0; ch < s->channels; ch++) {
 | |
|         FF_ALLOCZ_OR_GOTO(s->avctx, s->planar_samples[ch],
 | |
|                           (AC3_FRAME_SIZE+AC3_BLOCK_SIZE) * sizeof(**s->planar_samples),
 | |
|                           alloc_fail);
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| alloc_fail:
 | |
|     return AVERROR(ENOMEM);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Copy input samples.
 | |
|  * Channels are reordered from FFmpeg's default order to AC-3 order.
 | |
|  */
 | |
| static void copy_input_samples(AC3EncodeContext *s, SampleType **samples)
 | |
| {
 | |
|     int ch;
 | |
| 
 | |
|     /* copy and remap input samples */
 | |
|     for (ch = 0; ch < s->channels; ch++) {
 | |
|         /* copy last 256 samples of previous frame to the start of the current frame */
 | |
|         memcpy(&s->planar_samples[ch][0], &s->planar_samples[ch][AC3_BLOCK_SIZE * s->num_blocks],
 | |
|                AC3_BLOCK_SIZE * sizeof(s->planar_samples[0][0]));
 | |
| 
 | |
|         /* copy new samples for current frame */
 | |
|         memcpy(&s->planar_samples[ch][AC3_BLOCK_SIZE],
 | |
|                samples[s->channel_map[ch]],
 | |
|                AC3_BLOCK_SIZE * s->num_blocks * sizeof(s->planar_samples[0][0]));
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Apply the MDCT to input samples to generate frequency coefficients.
 | |
|  * This applies the KBD window and normalizes the input to reduce precision
 | |
|  * loss due to fixed-point calculations.
 | |
|  */
 | |
| static void apply_mdct(AC3EncodeContext *s)
 | |
| {
 | |
|     int blk, ch;
 | |
| 
 | |
|     for (ch = 0; ch < s->channels; ch++) {
 | |
|         for (blk = 0; blk < s->num_blocks; blk++) {
 | |
|             AC3Block *block = &s->blocks[blk];
 | |
|             const SampleType *input_samples = &s->planar_samples[ch][blk * AC3_BLOCK_SIZE];
 | |
| 
 | |
| #if CONFIG_AC3ENC_FLOAT
 | |
|             s->fdsp->vector_fmul(s->windowed_samples, input_samples,
 | |
|                                 s->mdct_window, AC3_WINDOW_SIZE);
 | |
| #else
 | |
|             s->ac3dsp.apply_window_int16(s->windowed_samples, input_samples,
 | |
|                                          s->mdct_window, AC3_WINDOW_SIZE);
 | |
| 
 | |
|             if (s->fixed_point)
 | |
|                 block->coeff_shift[ch+1] = normalize_samples(s);
 | |
| #endif
 | |
| 
 | |
|             s->mdct.mdct_calcw(&s->mdct, block->mdct_coef[ch+1],
 | |
|                                s->windowed_samples);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Calculate coupling channel and coupling coordinates.
 | |
|  */
 | |
| static void apply_channel_coupling(AC3EncodeContext *s)
 | |
| {
 | |
|     LOCAL_ALIGNED_16(CoefType, cpl_coords,      [AC3_MAX_BLOCKS], [AC3_MAX_CHANNELS][16]);
 | |
| #if CONFIG_AC3ENC_FLOAT
 | |
|     LOCAL_ALIGNED_16(int32_t, fixed_cpl_coords, [AC3_MAX_BLOCKS], [AC3_MAX_CHANNELS][16]);
 | |
| #else
 | |
|     int32_t (*fixed_cpl_coords)[AC3_MAX_CHANNELS][16] = cpl_coords;
 | |
| #endif
 | |
|     int av_uninit(blk), ch, bnd, i, j;
 | |
|     CoefSumType energy[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][16] = {{{0}}};
 | |
|     int cpl_start, num_cpl_coefs;
 | |
| 
 | |
|     memset(cpl_coords,       0, AC3_MAX_BLOCKS * sizeof(*cpl_coords));
 | |
| #if CONFIG_AC3ENC_FLOAT
 | |
|     memset(fixed_cpl_coords, 0, AC3_MAX_BLOCKS * sizeof(*cpl_coords));
 | |
| #endif
 | |
| 
 | |
|     /* align start to 16-byte boundary. align length to multiple of 32.
 | |
|         note: coupling start bin % 4 will always be 1 */
 | |
|     cpl_start     = s->start_freq[CPL_CH] - 1;
 | |
|     num_cpl_coefs = FFALIGN(s->num_cpl_subbands * 12 + 1, 32);
 | |
|     cpl_start     = FFMIN(256, cpl_start + num_cpl_coefs) - num_cpl_coefs;
 | |
| 
 | |
|     /* calculate coupling channel from fbw channels */
 | |
|     for (blk = 0; blk < s->num_blocks; blk++) {
 | |
|         AC3Block *block = &s->blocks[blk];
 | |
|         CoefType *cpl_coef = &block->mdct_coef[CPL_CH][cpl_start];
 | |
|         if (!block->cpl_in_use)
 | |
|             continue;
 | |
|         memset(cpl_coef, 0, num_cpl_coefs * sizeof(*cpl_coef));
 | |
|         for (ch = 1; ch <= s->fbw_channels; ch++) {
 | |
|             CoefType *ch_coef = &block->mdct_coef[ch][cpl_start];
 | |
|             if (!block->channel_in_cpl[ch])
 | |
|                 continue;
 | |
|             for (i = 0; i < num_cpl_coefs; i++)
 | |
|                 cpl_coef[i] += ch_coef[i];
 | |
|         }
 | |
| 
 | |
|         /* coefficients must be clipped in order to be encoded */
 | |
|         clip_coefficients(&s->adsp, cpl_coef, num_cpl_coefs);
 | |
|     }
 | |
| 
 | |
|     /* calculate energy in each band in coupling channel and each fbw channel */
 | |
|     /* TODO: possibly use SIMD to speed up energy calculation */
 | |
|     bnd = 0;
 | |
|     i = s->start_freq[CPL_CH];
 | |
|     while (i < s->cpl_end_freq) {
 | |
|         int band_size = s->cpl_band_sizes[bnd];
 | |
|         for (ch = CPL_CH; ch <= s->fbw_channels; ch++) {
 | |
|             for (blk = 0; blk < s->num_blocks; blk++) {
 | |
|                 AC3Block *block = &s->blocks[blk];
 | |
|                 if (!block->cpl_in_use || (ch > CPL_CH && !block->channel_in_cpl[ch]))
 | |
|                     continue;
 | |
|                 for (j = 0; j < band_size; j++) {
 | |
|                     CoefType v = block->mdct_coef[ch][i+j];
 | |
|                     MAC_COEF(energy[blk][ch][bnd], v, v);
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         i += band_size;
 | |
|         bnd++;
 | |
|     }
 | |
| 
 | |
|     /* calculate coupling coordinates for all blocks for all channels */
 | |
|     for (blk = 0; blk < s->num_blocks; blk++) {
 | |
|         AC3Block *block  = &s->blocks[blk];
 | |
|         if (!block->cpl_in_use)
 | |
|             continue;
 | |
|         for (ch = 1; ch <= s->fbw_channels; ch++) {
 | |
|             if (!block->channel_in_cpl[ch])
 | |
|                 continue;
 | |
|             for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
 | |
|                 cpl_coords[blk][ch][bnd] = calc_cpl_coord(energy[blk][ch][bnd],
 | |
|                                                           energy[blk][CPL_CH][bnd]);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* determine which blocks to send new coupling coordinates for */
 | |
|     for (blk = 0; blk < s->num_blocks; blk++) {
 | |
|         AC3Block *block  = &s->blocks[blk];
 | |
|         AC3Block *block0 = blk ? &s->blocks[blk-1] : NULL;
 | |
| 
 | |
|         memset(block->new_cpl_coords, 0, sizeof(block->new_cpl_coords));
 | |
| 
 | |
|         if (block->cpl_in_use) {
 | |
|             /* send new coordinates if this is the first block, if previous
 | |
|              * block did not use coupling but this block does, the channels
 | |
|              * using coupling has changed from the previous block, or the
 | |
|              * coordinate difference from the last block for any channel is
 | |
|              * greater than a threshold value. */
 | |
|             if (blk == 0 || !block0->cpl_in_use) {
 | |
|                 for (ch = 1; ch <= s->fbw_channels; ch++)
 | |
|                     block->new_cpl_coords[ch] = 1;
 | |
|             } else {
 | |
|                 for (ch = 1; ch <= s->fbw_channels; ch++) {
 | |
|                     if (!block->channel_in_cpl[ch])
 | |
|                         continue;
 | |
|                     if (!block0->channel_in_cpl[ch]) {
 | |
|                         block->new_cpl_coords[ch] = 1;
 | |
|                     } else {
 | |
|                         CoefSumType coord_diff = 0;
 | |
|                         for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
 | |
|                             coord_diff += FFABS(cpl_coords[blk-1][ch][bnd] -
 | |
|                                                 cpl_coords[blk  ][ch][bnd]);
 | |
|                         }
 | |
|                         coord_diff /= s->num_cpl_bands;
 | |
|                         if (coord_diff > NEW_CPL_COORD_THRESHOLD)
 | |
|                             block->new_cpl_coords[ch] = 1;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* calculate final coupling coordinates, taking into account reusing of
 | |
|        coordinates in successive blocks */
 | |
|     for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
 | |
|         blk = 0;
 | |
|         while (blk < s->num_blocks) {
 | |
|             int av_uninit(blk1);
 | |
|             AC3Block *block  = &s->blocks[blk];
 | |
| 
 | |
|             if (!block->cpl_in_use) {
 | |
|                 blk++;
 | |
|                 continue;
 | |
|             }
 | |
| 
 | |
|             for (ch = 1; ch <= s->fbw_channels; ch++) {
 | |
|                 CoefSumType energy_ch, energy_cpl;
 | |
|                 if (!block->channel_in_cpl[ch])
 | |
|                     continue;
 | |
|                 energy_cpl = energy[blk][CPL_CH][bnd];
 | |
|                 energy_ch = energy[blk][ch][bnd];
 | |
|                 blk1 = blk+1;
 | |
|                 while (blk1 < s->num_blocks && !s->blocks[blk1].new_cpl_coords[ch]) {
 | |
|                     if (s->blocks[blk1].cpl_in_use) {
 | |
|                         energy_cpl += energy[blk1][CPL_CH][bnd];
 | |
|                         energy_ch += energy[blk1][ch][bnd];
 | |
|                     }
 | |
|                     blk1++;
 | |
|                 }
 | |
|                 cpl_coords[blk][ch][bnd] = calc_cpl_coord(energy_ch, energy_cpl);
 | |
|             }
 | |
|             blk = blk1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* calculate exponents/mantissas for coupling coordinates */
 | |
|     for (blk = 0; blk < s->num_blocks; blk++) {
 | |
|         AC3Block *block = &s->blocks[blk];
 | |
|         if (!block->cpl_in_use)
 | |
|             continue;
 | |
| 
 | |
| #if CONFIG_AC3ENC_FLOAT
 | |
|         s->ac3dsp.float_to_fixed24(fixed_cpl_coords[blk][1],
 | |
|                                    cpl_coords[blk][1],
 | |
|                                    s->fbw_channels * 16);
 | |
| #endif
 | |
|         s->ac3dsp.extract_exponents(block->cpl_coord_exp[1],
 | |
|                                     fixed_cpl_coords[blk][1],
 | |
|                                     s->fbw_channels * 16);
 | |
| 
 | |
|         for (ch = 1; ch <= s->fbw_channels; ch++) {
 | |
|             int bnd, min_exp, max_exp, master_exp;
 | |
| 
 | |
|             if (!block->new_cpl_coords[ch])
 | |
|                 continue;
 | |
| 
 | |
|             /* determine master exponent */
 | |
|             min_exp = max_exp = block->cpl_coord_exp[ch][0];
 | |
|             for (bnd = 1; bnd < s->num_cpl_bands; bnd++) {
 | |
|                 int exp = block->cpl_coord_exp[ch][bnd];
 | |
|                 min_exp = FFMIN(exp, min_exp);
 | |
|                 max_exp = FFMAX(exp, max_exp);
 | |
|             }
 | |
|             master_exp = ((max_exp - 15) + 2) / 3;
 | |
|             master_exp = FFMAX(master_exp, 0);
 | |
|             while (min_exp < master_exp * 3)
 | |
|                 master_exp--;
 | |
|             for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
 | |
|                 block->cpl_coord_exp[ch][bnd] = av_clip(block->cpl_coord_exp[ch][bnd] -
 | |
|                                                         master_exp * 3, 0, 15);
 | |
|             }
 | |
|             block->cpl_master_exp[ch] = master_exp;
 | |
| 
 | |
|             /* quantize mantissas */
 | |
|             for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
 | |
|                 int cpl_exp  = block->cpl_coord_exp[ch][bnd];
 | |
|                 int cpl_mant = (fixed_cpl_coords[blk][ch][bnd] << (5 + cpl_exp + master_exp * 3)) >> 24;
 | |
|                 if (cpl_exp == 15)
 | |
|                     cpl_mant >>= 1;
 | |
|                 else
 | |
|                     cpl_mant -= 16;
 | |
| 
 | |
|                 block->cpl_coord_mant[ch][bnd] = cpl_mant;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (CONFIG_EAC3_ENCODER && s->eac3)
 | |
|         ff_eac3_set_cpl_states(s);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Determine rematrixing flags for each block and band.
 | |
|  */
 | |
| static void compute_rematrixing_strategy(AC3EncodeContext *s)
 | |
| {
 | |
|     int nb_coefs;
 | |
|     int blk, bnd;
 | |
|     AC3Block *block, *block0 = NULL;
 | |
| 
 | |
|     if (s->channel_mode != AC3_CHMODE_STEREO)
 | |
|         return;
 | |
| 
 | |
|     for (blk = 0; blk < s->num_blocks; blk++) {
 | |
|         block = &s->blocks[blk];
 | |
|         block->new_rematrixing_strategy = !blk;
 | |
| 
 | |
|         block->num_rematrixing_bands = 4;
 | |
|         if (block->cpl_in_use) {
 | |
|             block->num_rematrixing_bands -= (s->start_freq[CPL_CH] <= 61);
 | |
|             block->num_rematrixing_bands -= (s->start_freq[CPL_CH] == 37);
 | |
|             if (blk && block->num_rematrixing_bands != block0->num_rematrixing_bands)
 | |
|                 block->new_rematrixing_strategy = 1;
 | |
|         }
 | |
|         nb_coefs = FFMIN(block->end_freq[1], block->end_freq[2]);
 | |
| 
 | |
|         if (!s->rematrixing_enabled) {
 | |
|             block0 = block;
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         for (bnd = 0; bnd < block->num_rematrixing_bands; bnd++) {
 | |
|             /* calculate sum of squared coeffs for one band in one block */
 | |
|             int start = ff_ac3_rematrix_band_tab[bnd];
 | |
|             int end   = FFMIN(nb_coefs, ff_ac3_rematrix_band_tab[bnd+1]);
 | |
|             CoefSumType sum[4];
 | |
|             sum_square_butterfly(s, sum, block->mdct_coef[1] + start,
 | |
|                                  block->mdct_coef[2] + start, end - start);
 | |
| 
 | |
|             /* compare sums to determine if rematrixing will be used for this band */
 | |
|             if (FFMIN(sum[2], sum[3]) < FFMIN(sum[0], sum[1]))
 | |
|                 block->rematrixing_flags[bnd] = 1;
 | |
|             else
 | |
|                 block->rematrixing_flags[bnd] = 0;
 | |
| 
 | |
|             /* determine if new rematrixing flags will be sent */
 | |
|             if (blk &&
 | |
|                 block->rematrixing_flags[bnd] != block0->rematrixing_flags[bnd]) {
 | |
|                 block->new_rematrixing_strategy = 1;
 | |
|             }
 | |
|         }
 | |
|         block0 = block;
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| int AC3_NAME(encode_frame)(AVCodecContext *avctx, AVPacket *avpkt,
 | |
|                            const AVFrame *frame, int *got_packet_ptr)
 | |
| {
 | |
|     AC3EncodeContext *s = avctx->priv_data;
 | |
|     int ret;
 | |
| 
 | |
|     if (s->options.allow_per_frame_metadata) {
 | |
|         ret = ff_ac3_validate_metadata(s);
 | |
|         if (ret)
 | |
|             return ret;
 | |
|     }
 | |
| 
 | |
|     if (s->bit_alloc.sr_code == 1 || s->eac3)
 | |
|         ff_ac3_adjust_frame_size(s);
 | |
| 
 | |
|     copy_input_samples(s, (SampleType **)frame->extended_data);
 | |
| 
 | |
|     apply_mdct(s);
 | |
| 
 | |
|     if (s->fixed_point)
 | |
|         scale_coefficients(s);
 | |
| 
 | |
|     clip_coefficients(&s->adsp, s->blocks[0].mdct_coef[1],
 | |
|                       AC3_MAX_COEFS * s->num_blocks * s->channels);
 | |
| 
 | |
|     s->cpl_on = s->cpl_enabled;
 | |
|     ff_ac3_compute_coupling_strategy(s);
 | |
| 
 | |
|     if (s->cpl_on)
 | |
|         apply_channel_coupling(s);
 | |
| 
 | |
|     compute_rematrixing_strategy(s);
 | |
| 
 | |
|     if (!s->fixed_point)
 | |
|         scale_coefficients(s);
 | |
| 
 | |
|     ff_ac3_apply_rematrixing(s);
 | |
| 
 | |
|     ff_ac3_process_exponents(s);
 | |
| 
 | |
|     ret = ff_ac3_compute_bit_allocation(s);
 | |
|     if (ret) {
 | |
|         av_log(avctx, AV_LOG_ERROR, "Bit allocation failed. Try increasing the bitrate.\n");
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     ff_ac3_group_exponents(s);
 | |
| 
 | |
|     ff_ac3_quantize_mantissas(s);
 | |
| 
 | |
|     if ((ret = ff_alloc_packet2(avctx, avpkt, s->frame_size, 0)) < 0)
 | |
|         return ret;
 | |
|     ff_ac3_output_frame(s, avpkt->data);
 | |
| 
 | |
|     if (frame->pts != AV_NOPTS_VALUE)
 | |
|         avpkt->pts = frame->pts - ff_samples_to_time_base(avctx, avctx->initial_padding);
 | |
| 
 | |
|     *got_packet_ptr = 1;
 | |
|     return 0;
 | |
| }
 |