mirror of
				https://github.com/ossrs/srs.git
				synced 2025-03-09 15:49:59 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			645 lines
		
	
	
	
		
			19 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			645 lines
		
	
	
	
		
			19 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved.
 | |
|  *
 | |
|  * Licensed under the OpenSSL license (the "License").  You may not use
 | |
|  * this file except in compliance with the License.  You can obtain a copy
 | |
|  * in the file LICENSE in the source distribution or at
 | |
|  * https://www.openssl.org/source/license.html
 | |
|  */
 | |
| 
 | |
| #include "internal/cryptlib.h"
 | |
| #include "bn_local.h"
 | |
| 
 | |
| /*
 | |
|  * bn_mod_inverse_no_branch is a special version of BN_mod_inverse. It does
 | |
|  * not contain branches that may leak sensitive information.
 | |
|  *
 | |
|  * This is a static function, we ensure all callers in this file pass valid
 | |
|  * arguments: all passed pointers here are non-NULL.
 | |
|  */
 | |
| static ossl_inline
 | |
| BIGNUM *bn_mod_inverse_no_branch(BIGNUM *in,
 | |
|                                  const BIGNUM *a, const BIGNUM *n,
 | |
|                                  BN_CTX *ctx, int *pnoinv)
 | |
| {
 | |
|     BIGNUM *A, *B, *X, *Y, *M, *D, *T, *R = NULL;
 | |
|     BIGNUM *ret = NULL;
 | |
|     int sign;
 | |
| 
 | |
|     bn_check_top(a);
 | |
|     bn_check_top(n);
 | |
| 
 | |
|     BN_CTX_start(ctx);
 | |
|     A = BN_CTX_get(ctx);
 | |
|     B = BN_CTX_get(ctx);
 | |
|     X = BN_CTX_get(ctx);
 | |
|     D = BN_CTX_get(ctx);
 | |
|     M = BN_CTX_get(ctx);
 | |
|     Y = BN_CTX_get(ctx);
 | |
|     T = BN_CTX_get(ctx);
 | |
|     if (T == NULL)
 | |
|         goto err;
 | |
| 
 | |
|     if (in == NULL)
 | |
|         R = BN_new();
 | |
|     else
 | |
|         R = in;
 | |
|     if (R == NULL)
 | |
|         goto err;
 | |
| 
 | |
|     BN_one(X);
 | |
|     BN_zero(Y);
 | |
|     if (BN_copy(B, a) == NULL)
 | |
|         goto err;
 | |
|     if (BN_copy(A, n) == NULL)
 | |
|         goto err;
 | |
|     A->neg = 0;
 | |
| 
 | |
|     if (B->neg || (BN_ucmp(B, A) >= 0)) {
 | |
|         /*
 | |
|          * Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked,
 | |
|          * BN_div_no_branch will be called eventually.
 | |
|          */
 | |
|          {
 | |
|             BIGNUM local_B;
 | |
|             bn_init(&local_B);
 | |
|             BN_with_flags(&local_B, B, BN_FLG_CONSTTIME);
 | |
|             if (!BN_nnmod(B, &local_B, A, ctx))
 | |
|                 goto err;
 | |
|             /* Ensure local_B goes out of scope before any further use of B */
 | |
|         }
 | |
|     }
 | |
|     sign = -1;
 | |
|     /*-
 | |
|      * From  B = a mod |n|,  A = |n|  it follows that
 | |
|      *
 | |
|      *      0 <= B < A,
 | |
|      *     -sign*X*a  ==  B   (mod |n|),
 | |
|      *      sign*Y*a  ==  A   (mod |n|).
 | |
|      */
 | |
| 
 | |
|     while (!BN_is_zero(B)) {
 | |
|         BIGNUM *tmp;
 | |
| 
 | |
|         /*-
 | |
|          *      0 < B < A,
 | |
|          * (*) -sign*X*a  ==  B   (mod |n|),
 | |
|          *      sign*Y*a  ==  A   (mod |n|)
 | |
|          */
 | |
| 
 | |
|         /*
 | |
|          * Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked,
 | |
|          * BN_div_no_branch will be called eventually.
 | |
|          */
 | |
|         {
 | |
|             BIGNUM local_A;
 | |
|             bn_init(&local_A);
 | |
|             BN_with_flags(&local_A, A, BN_FLG_CONSTTIME);
 | |
| 
 | |
|             /* (D, M) := (A/B, A%B) ... */
 | |
|             if (!BN_div(D, M, &local_A, B, ctx))
 | |
|                 goto err;
 | |
|             /* Ensure local_A goes out of scope before any further use of A */
 | |
|         }
 | |
| 
 | |
|         /*-
 | |
|          * Now
 | |
|          *      A = D*B + M;
 | |
|          * thus we have
 | |
|          * (**)  sign*Y*a  ==  D*B + M   (mod |n|).
 | |
|          */
 | |
| 
 | |
|         tmp = A;                /* keep the BIGNUM object, the value does not
 | |
|                                  * matter */
 | |
| 
 | |
|         /* (A, B) := (B, A mod B) ... */
 | |
|         A = B;
 | |
|         B = M;
 | |
|         /* ... so we have  0 <= B < A  again */
 | |
| 
 | |
|         /*-
 | |
|          * Since the former  M  is now  B  and the former  B  is now  A,
 | |
|          * (**) translates into
 | |
|          *       sign*Y*a  ==  D*A + B    (mod |n|),
 | |
|          * i.e.
 | |
|          *       sign*Y*a - D*A  ==  B    (mod |n|).
 | |
|          * Similarly, (*) translates into
 | |
|          *      -sign*X*a  ==  A          (mod |n|).
 | |
|          *
 | |
|          * Thus,
 | |
|          *   sign*Y*a + D*sign*X*a  ==  B  (mod |n|),
 | |
|          * i.e.
 | |
|          *        sign*(Y + D*X)*a  ==  B  (mod |n|).
 | |
|          *
 | |
|          * So if we set  (X, Y, sign) := (Y + D*X, X, -sign), we arrive back at
 | |
|          *      -sign*X*a  ==  B   (mod |n|),
 | |
|          *       sign*Y*a  ==  A   (mod |n|).
 | |
|          * Note that  X  and  Y  stay non-negative all the time.
 | |
|          */
 | |
| 
 | |
|         if (!BN_mul(tmp, D, X, ctx))
 | |
|             goto err;
 | |
|         if (!BN_add(tmp, tmp, Y))
 | |
|             goto err;
 | |
| 
 | |
|         M = Y;                  /* keep the BIGNUM object, the value does not
 | |
|                                  * matter */
 | |
|         Y = X;
 | |
|         X = tmp;
 | |
|         sign = -sign;
 | |
|     }
 | |
| 
 | |
|     /*-
 | |
|      * The while loop (Euclid's algorithm) ends when
 | |
|      *      A == gcd(a,n);
 | |
|      * we have
 | |
|      *       sign*Y*a  ==  A  (mod |n|),
 | |
|      * where  Y  is non-negative.
 | |
|      */
 | |
| 
 | |
|     if (sign < 0) {
 | |
|         if (!BN_sub(Y, n, Y))
 | |
|             goto err;
 | |
|     }
 | |
|     /* Now  Y*a  ==  A  (mod |n|).  */
 | |
| 
 | |
|     if (BN_is_one(A)) {
 | |
|         /* Y*a == 1  (mod |n|) */
 | |
|         if (!Y->neg && BN_ucmp(Y, n) < 0) {
 | |
|             if (!BN_copy(R, Y))
 | |
|                 goto err;
 | |
|         } else {
 | |
|             if (!BN_nnmod(R, Y, n, ctx))
 | |
|                 goto err;
 | |
|         }
 | |
|     } else {
 | |
|         *pnoinv = 1;
 | |
|         /* caller sets the BN_R_NO_INVERSE error */
 | |
|         goto err;
 | |
|     }
 | |
| 
 | |
|     ret = R;
 | |
|     *pnoinv = 0;
 | |
| 
 | |
|  err:
 | |
|     if ((ret == NULL) && (in == NULL))
 | |
|         BN_free(R);
 | |
|     BN_CTX_end(ctx);
 | |
|     bn_check_top(ret);
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is an internal function, we assume all callers pass valid arguments:
 | |
|  * all pointers passed here are assumed non-NULL.
 | |
|  */
 | |
| BIGNUM *int_bn_mod_inverse(BIGNUM *in,
 | |
|                            const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx,
 | |
|                            int *pnoinv)
 | |
| {
 | |
|     BIGNUM *A, *B, *X, *Y, *M, *D, *T, *R = NULL;
 | |
|     BIGNUM *ret = NULL;
 | |
|     int sign;
 | |
| 
 | |
|     /* This is invalid input so we don't worry about constant time here */
 | |
|     if (BN_abs_is_word(n, 1) || BN_is_zero(n)) {
 | |
|         *pnoinv = 1;
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     *pnoinv = 0;
 | |
| 
 | |
|     if ((BN_get_flags(a, BN_FLG_CONSTTIME) != 0)
 | |
|         || (BN_get_flags(n, BN_FLG_CONSTTIME) != 0)) {
 | |
|         return bn_mod_inverse_no_branch(in, a, n, ctx, pnoinv);
 | |
|     }
 | |
| 
 | |
|     bn_check_top(a);
 | |
|     bn_check_top(n);
 | |
| 
 | |
|     BN_CTX_start(ctx);
 | |
|     A = BN_CTX_get(ctx);
 | |
|     B = BN_CTX_get(ctx);
 | |
|     X = BN_CTX_get(ctx);
 | |
|     D = BN_CTX_get(ctx);
 | |
|     M = BN_CTX_get(ctx);
 | |
|     Y = BN_CTX_get(ctx);
 | |
|     T = BN_CTX_get(ctx);
 | |
|     if (T == NULL)
 | |
|         goto err;
 | |
| 
 | |
|     if (in == NULL)
 | |
|         R = BN_new();
 | |
|     else
 | |
|         R = in;
 | |
|     if (R == NULL)
 | |
|         goto err;
 | |
| 
 | |
|     BN_one(X);
 | |
|     BN_zero(Y);
 | |
|     if (BN_copy(B, a) == NULL)
 | |
|         goto err;
 | |
|     if (BN_copy(A, n) == NULL)
 | |
|         goto err;
 | |
|     A->neg = 0;
 | |
|     if (B->neg || (BN_ucmp(B, A) >= 0)) {
 | |
|         if (!BN_nnmod(B, B, A, ctx))
 | |
|             goto err;
 | |
|     }
 | |
|     sign = -1;
 | |
|     /*-
 | |
|      * From  B = a mod |n|,  A = |n|  it follows that
 | |
|      *
 | |
|      *      0 <= B < A,
 | |
|      *     -sign*X*a  ==  B   (mod |n|),
 | |
|      *      sign*Y*a  ==  A   (mod |n|).
 | |
|      */
 | |
| 
 | |
|     if (BN_is_odd(n) && (BN_num_bits(n) <= 2048)) {
 | |
|         /*
 | |
|          * Binary inversion algorithm; requires odd modulus. This is faster
 | |
|          * than the general algorithm if the modulus is sufficiently small
 | |
|          * (about 400 .. 500 bits on 32-bit systems, but much more on 64-bit
 | |
|          * systems)
 | |
|          */
 | |
|         int shift;
 | |
| 
 | |
|         while (!BN_is_zero(B)) {
 | |
|             /*-
 | |
|              *      0 < B < |n|,
 | |
|              *      0 < A <= |n|,
 | |
|              * (1) -sign*X*a  ==  B   (mod |n|),
 | |
|              * (2)  sign*Y*a  ==  A   (mod |n|)
 | |
|              */
 | |
| 
 | |
|             /*
 | |
|              * Now divide B by the maximum possible power of two in the
 | |
|              * integers, and divide X by the same value mod |n|. When we're
 | |
|              * done, (1) still holds.
 | |
|              */
 | |
|             shift = 0;
 | |
|             while (!BN_is_bit_set(B, shift)) { /* note that 0 < B */
 | |
|                 shift++;
 | |
| 
 | |
|                 if (BN_is_odd(X)) {
 | |
|                     if (!BN_uadd(X, X, n))
 | |
|                         goto err;
 | |
|                 }
 | |
|                 /*
 | |
|                  * now X is even, so we can easily divide it by two
 | |
|                  */
 | |
|                 if (!BN_rshift1(X, X))
 | |
|                     goto err;
 | |
|             }
 | |
|             if (shift > 0) {
 | |
|                 if (!BN_rshift(B, B, shift))
 | |
|                     goto err;
 | |
|             }
 | |
| 
 | |
|             /*
 | |
|              * Same for A and Y.  Afterwards, (2) still holds.
 | |
|              */
 | |
|             shift = 0;
 | |
|             while (!BN_is_bit_set(A, shift)) { /* note that 0 < A */
 | |
|                 shift++;
 | |
| 
 | |
|                 if (BN_is_odd(Y)) {
 | |
|                     if (!BN_uadd(Y, Y, n))
 | |
|                         goto err;
 | |
|                 }
 | |
|                 /* now Y is even */
 | |
|                 if (!BN_rshift1(Y, Y))
 | |
|                     goto err;
 | |
|             }
 | |
|             if (shift > 0) {
 | |
|                 if (!BN_rshift(A, A, shift))
 | |
|                     goto err;
 | |
|             }
 | |
| 
 | |
|             /*-
 | |
|              * We still have (1) and (2).
 | |
|              * Both  A  and  B  are odd.
 | |
|              * The following computations ensure that
 | |
|              *
 | |
|              *     0 <= B < |n|,
 | |
|              *      0 < A < |n|,
 | |
|              * (1) -sign*X*a  ==  B   (mod |n|),
 | |
|              * (2)  sign*Y*a  ==  A   (mod |n|),
 | |
|              *
 | |
|              * and that either  A  or  B  is even in the next iteration.
 | |
|              */
 | |
|             if (BN_ucmp(B, A) >= 0) {
 | |
|                 /* -sign*(X + Y)*a == B - A  (mod |n|) */
 | |
|                 if (!BN_uadd(X, X, Y))
 | |
|                     goto err;
 | |
|                 /*
 | |
|                  * NB: we could use BN_mod_add_quick(X, X, Y, n), but that
 | |
|                  * actually makes the algorithm slower
 | |
|                  */
 | |
|                 if (!BN_usub(B, B, A))
 | |
|                     goto err;
 | |
|             } else {
 | |
|                 /*  sign*(X + Y)*a == A - B  (mod |n|) */
 | |
|                 if (!BN_uadd(Y, Y, X))
 | |
|                     goto err;
 | |
|                 /*
 | |
|                  * as above, BN_mod_add_quick(Y, Y, X, n) would slow things down
 | |
|                  */
 | |
|                 if (!BN_usub(A, A, B))
 | |
|                     goto err;
 | |
|             }
 | |
|         }
 | |
|     } else {
 | |
|         /* general inversion algorithm */
 | |
| 
 | |
|         while (!BN_is_zero(B)) {
 | |
|             BIGNUM *tmp;
 | |
| 
 | |
|             /*-
 | |
|              *      0 < B < A,
 | |
|              * (*) -sign*X*a  ==  B   (mod |n|),
 | |
|              *      sign*Y*a  ==  A   (mod |n|)
 | |
|              */
 | |
| 
 | |
|             /* (D, M) := (A/B, A%B) ... */
 | |
|             if (BN_num_bits(A) == BN_num_bits(B)) {
 | |
|                 if (!BN_one(D))
 | |
|                     goto err;
 | |
|                 if (!BN_sub(M, A, B))
 | |
|                     goto err;
 | |
|             } else if (BN_num_bits(A) == BN_num_bits(B) + 1) {
 | |
|                 /* A/B is 1, 2, or 3 */
 | |
|                 if (!BN_lshift1(T, B))
 | |
|                     goto err;
 | |
|                 if (BN_ucmp(A, T) < 0) {
 | |
|                     /* A < 2*B, so D=1 */
 | |
|                     if (!BN_one(D))
 | |
|                         goto err;
 | |
|                     if (!BN_sub(M, A, B))
 | |
|                         goto err;
 | |
|                 } else {
 | |
|                     /* A >= 2*B, so D=2 or D=3 */
 | |
|                     if (!BN_sub(M, A, T))
 | |
|                         goto err;
 | |
|                     if (!BN_add(D, T, B))
 | |
|                         goto err; /* use D (:= 3*B) as temp */
 | |
|                     if (BN_ucmp(A, D) < 0) {
 | |
|                         /* A < 3*B, so D=2 */
 | |
|                         if (!BN_set_word(D, 2))
 | |
|                             goto err;
 | |
|                         /*
 | |
|                          * M (= A - 2*B) already has the correct value
 | |
|                          */
 | |
|                     } else {
 | |
|                         /* only D=3 remains */
 | |
|                         if (!BN_set_word(D, 3))
 | |
|                             goto err;
 | |
|                         /*
 | |
|                          * currently M = A - 2*B, but we need M = A - 3*B
 | |
|                          */
 | |
|                         if (!BN_sub(M, M, B))
 | |
|                             goto err;
 | |
|                     }
 | |
|                 }
 | |
|             } else {
 | |
|                 if (!BN_div(D, M, A, B, ctx))
 | |
|                     goto err;
 | |
|             }
 | |
| 
 | |
|             /*-
 | |
|              * Now
 | |
|              *      A = D*B + M;
 | |
|              * thus we have
 | |
|              * (**)  sign*Y*a  ==  D*B + M   (mod |n|).
 | |
|              */
 | |
| 
 | |
|             tmp = A;    /* keep the BIGNUM object, the value does not matter */
 | |
| 
 | |
|             /* (A, B) := (B, A mod B) ... */
 | |
|             A = B;
 | |
|             B = M;
 | |
|             /* ... so we have  0 <= B < A  again */
 | |
| 
 | |
|             /*-
 | |
|              * Since the former  M  is now  B  and the former  B  is now  A,
 | |
|              * (**) translates into
 | |
|              *       sign*Y*a  ==  D*A + B    (mod |n|),
 | |
|              * i.e.
 | |
|              *       sign*Y*a - D*A  ==  B    (mod |n|).
 | |
|              * Similarly, (*) translates into
 | |
|              *      -sign*X*a  ==  A          (mod |n|).
 | |
|              *
 | |
|              * Thus,
 | |
|              *   sign*Y*a + D*sign*X*a  ==  B  (mod |n|),
 | |
|              * i.e.
 | |
|              *        sign*(Y + D*X)*a  ==  B  (mod |n|).
 | |
|              *
 | |
|              * So if we set  (X, Y, sign) := (Y + D*X, X, -sign), we arrive back at
 | |
|              *      -sign*X*a  ==  B   (mod |n|),
 | |
|              *       sign*Y*a  ==  A   (mod |n|).
 | |
|              * Note that  X  and  Y  stay non-negative all the time.
 | |
|              */
 | |
| 
 | |
|             /*
 | |
|              * most of the time D is very small, so we can optimize tmp := D*X+Y
 | |
|              */
 | |
|             if (BN_is_one(D)) {
 | |
|                 if (!BN_add(tmp, X, Y))
 | |
|                     goto err;
 | |
|             } else {
 | |
|                 if (BN_is_word(D, 2)) {
 | |
|                     if (!BN_lshift1(tmp, X))
 | |
|                         goto err;
 | |
|                 } else if (BN_is_word(D, 4)) {
 | |
|                     if (!BN_lshift(tmp, X, 2))
 | |
|                         goto err;
 | |
|                 } else if (D->top == 1) {
 | |
|                     if (!BN_copy(tmp, X))
 | |
|                         goto err;
 | |
|                     if (!BN_mul_word(tmp, D->d[0]))
 | |
|                         goto err;
 | |
|                 } else {
 | |
|                     if (!BN_mul(tmp, D, X, ctx))
 | |
|                         goto err;
 | |
|                 }
 | |
|                 if (!BN_add(tmp, tmp, Y))
 | |
|                     goto err;
 | |
|             }
 | |
| 
 | |
|             M = Y;      /* keep the BIGNUM object, the value does not matter */
 | |
|             Y = X;
 | |
|             X = tmp;
 | |
|             sign = -sign;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /*-
 | |
|      * The while loop (Euclid's algorithm) ends when
 | |
|      *      A == gcd(a,n);
 | |
|      * we have
 | |
|      *       sign*Y*a  ==  A  (mod |n|),
 | |
|      * where  Y  is non-negative.
 | |
|      */
 | |
| 
 | |
|     if (sign < 0) {
 | |
|         if (!BN_sub(Y, n, Y))
 | |
|             goto err;
 | |
|     }
 | |
|     /* Now  Y*a  ==  A  (mod |n|).  */
 | |
| 
 | |
|     if (BN_is_one(A)) {
 | |
|         /* Y*a == 1  (mod |n|) */
 | |
|         if (!Y->neg && BN_ucmp(Y, n) < 0) {
 | |
|             if (!BN_copy(R, Y))
 | |
|                 goto err;
 | |
|         } else {
 | |
|             if (!BN_nnmod(R, Y, n, ctx))
 | |
|                 goto err;
 | |
|         }
 | |
|     } else {
 | |
|         *pnoinv = 1;
 | |
|         goto err;
 | |
|     }
 | |
|     ret = R;
 | |
|  err:
 | |
|     if ((ret == NULL) && (in == NULL))
 | |
|         BN_free(R);
 | |
|     BN_CTX_end(ctx);
 | |
|     bn_check_top(ret);
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /* solves ax == 1 (mod n) */
 | |
| BIGNUM *BN_mod_inverse(BIGNUM *in,
 | |
|                        const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx)
 | |
| {
 | |
|     BN_CTX *new_ctx = NULL;
 | |
|     BIGNUM *rv;
 | |
|     int noinv = 0;
 | |
| 
 | |
|     if (ctx == NULL) {
 | |
|         ctx = new_ctx = BN_CTX_new();
 | |
|         if (ctx == NULL) {
 | |
|             BNerr(BN_F_BN_MOD_INVERSE, ERR_R_MALLOC_FAILURE);
 | |
|             return NULL;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     rv = int_bn_mod_inverse(in, a, n, ctx, &noinv);
 | |
|     if (noinv)
 | |
|         BNerr(BN_F_BN_MOD_INVERSE, BN_R_NO_INVERSE);
 | |
|     BN_CTX_free(new_ctx);
 | |
|     return rv;
 | |
| }
 | |
| 
 | |
| /*-
 | |
|  * This function is based on the constant-time GCD work by Bernstein and Yang:
 | |
|  * https://eprint.iacr.org/2019/266
 | |
|  * Generalized fast GCD function to allow even inputs.
 | |
|  * The algorithm first finds the shared powers of 2 between
 | |
|  * the inputs, and removes them, reducing at least one of the
 | |
|  * inputs to an odd value. Then it proceeds to calculate the GCD.
 | |
|  * Before returning the resulting GCD, we take care of adding
 | |
|  * back the powers of two removed at the beginning.
 | |
|  * Note 1: we assume the bit length of both inputs is public information,
 | |
|  * since access to top potentially leaks this information.
 | |
|  */
 | |
| int BN_gcd(BIGNUM *r, const BIGNUM *in_a, const BIGNUM *in_b, BN_CTX *ctx)
 | |
| {
 | |
|     BIGNUM *g, *temp = NULL;
 | |
|     BN_ULONG mask = 0;
 | |
|     int i, j, top, rlen, glen, m, bit = 1, delta = 1, cond = 0, shifts = 0, ret = 0;
 | |
| 
 | |
|     /* Note 2: zero input corner cases are not constant-time since they are
 | |
|      * handled immediately. An attacker can run an attack under this
 | |
|      * assumption without the need of side-channel information. */
 | |
|     if (BN_is_zero(in_b)) {
 | |
|         ret = BN_copy(r, in_a) != NULL;
 | |
|         r->neg = 0;
 | |
|         return ret;
 | |
|     }
 | |
|     if (BN_is_zero(in_a)) {
 | |
|         ret = BN_copy(r, in_b) != NULL;
 | |
|         r->neg = 0;
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     bn_check_top(in_a);
 | |
|     bn_check_top(in_b);
 | |
| 
 | |
|     BN_CTX_start(ctx);
 | |
|     temp = BN_CTX_get(ctx);
 | |
|     g = BN_CTX_get(ctx);
 | |
| 
 | |
|     /* make r != 0, g != 0 even, so BN_rshift is not a potential nop */
 | |
|     if (g == NULL
 | |
|         || !BN_lshift1(g, in_b)
 | |
|         || !BN_lshift1(r, in_a))
 | |
|         goto err;
 | |
| 
 | |
|     /* find shared powers of two, i.e. "shifts" >= 1 */
 | |
|     for (i = 0; i < r->dmax && i < g->dmax; i++) {
 | |
|         mask = ~(r->d[i] | g->d[i]);
 | |
|         for (j = 0; j < BN_BITS2; j++) {
 | |
|             bit &= mask;
 | |
|             shifts += bit;
 | |
|             mask >>= 1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* subtract shared powers of two; shifts >= 1 */
 | |
|     if (!BN_rshift(r, r, shifts)
 | |
|         || !BN_rshift(g, g, shifts))
 | |
|         goto err;
 | |
| 
 | |
|     /* expand to biggest nword, with room for a possible extra word */
 | |
|     top = 1 + ((r->top >= g->top) ? r->top : g->top);
 | |
|     if (bn_wexpand(r, top) == NULL
 | |
|         || bn_wexpand(g, top) == NULL
 | |
|         || bn_wexpand(temp, top) == NULL)
 | |
|         goto err;
 | |
| 
 | |
|     /* re arrange inputs s.t. r is odd */
 | |
|     BN_consttime_swap((~r->d[0]) & 1, r, g, top);
 | |
| 
 | |
|     /* compute the number of iterations */
 | |
|     rlen = BN_num_bits(r);
 | |
|     glen = BN_num_bits(g);
 | |
|     m = 4 + 3 * ((rlen >= glen) ? rlen : glen);
 | |
| 
 | |
|     for (i = 0; i < m; i++) {
 | |
|         /* conditionally flip signs if delta is positive and g is odd */
 | |
|         cond = (-delta >> (8 * sizeof(delta) - 1)) & g->d[0] & 1
 | |
|             /* make sure g->top > 0 (i.e. if top == 0 then g == 0 always) */
 | |
|             & (~((g->top - 1) >> (sizeof(g->top) * 8 - 1)));
 | |
|         delta = (-cond & -delta) | ((cond - 1) & delta);
 | |
|         r->neg ^= cond;
 | |
|         /* swap */
 | |
|         BN_consttime_swap(cond, r, g, top);
 | |
| 
 | |
|         /* elimination step */
 | |
|         delta++;
 | |
|         if (!BN_add(temp, g, r))
 | |
|             goto err;
 | |
|         BN_consttime_swap(g->d[0] & 1 /* g is odd */
 | |
|                 /* make sure g->top > 0 (i.e. if top == 0 then g == 0 always) */
 | |
|                 & (~((g->top - 1) >> (sizeof(g->top) * 8 - 1))),
 | |
|                 g, temp, top);
 | |
|         if (!BN_rshift1(g, g))
 | |
|             goto err;
 | |
|     }
 | |
| 
 | |
|     /* remove possible negative sign */
 | |
|     r->neg = 0;
 | |
|     /* add powers of 2 removed, then correct the artificial shift */
 | |
|     if (!BN_lshift(r, r, shifts)
 | |
|         || !BN_rshift1(r, r))
 | |
|         goto err;
 | |
| 
 | |
|     ret = 1;
 | |
| 
 | |
|  err:
 | |
|     BN_CTX_end(ctx);
 | |
|     bn_check_top(r);
 | |
|     return ret;
 | |
| }
 |