mirror of
				https://github.com/ossrs/srs.git
				synced 2025-03-09 15:49:59 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			969 lines
		
	
	
	
		
			27 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			969 lines
		
	
	
	
		
			27 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * Copyright 2002-2019 The OpenSSL Project Authors. All Rights Reserved.
 | 
						|
 * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
 | 
						|
 *
 | 
						|
 * Licensed under the OpenSSL license (the "License").  You may not use
 | 
						|
 * this file except in compliance with the License.  You can obtain a copy
 | 
						|
 * in the file LICENSE in the source distribution or at
 | 
						|
 * https://www.openssl.org/source/license.html
 | 
						|
 */
 | 
						|
 | 
						|
#include <openssl/err.h>
 | 
						|
 | 
						|
#include "crypto/bn.h"
 | 
						|
#include "ec_local.h"
 | 
						|
 | 
						|
#ifndef OPENSSL_NO_EC2M
 | 
						|
 | 
						|
/*
 | 
						|
 * Initialize a GF(2^m)-based EC_GROUP structure. Note that all other members
 | 
						|
 * are handled by EC_GROUP_new.
 | 
						|
 */
 | 
						|
int ec_GF2m_simple_group_init(EC_GROUP *group)
 | 
						|
{
 | 
						|
    group->field = BN_new();
 | 
						|
    group->a = BN_new();
 | 
						|
    group->b = BN_new();
 | 
						|
 | 
						|
    if (group->field == NULL || group->a == NULL || group->b == NULL) {
 | 
						|
        BN_free(group->field);
 | 
						|
        BN_free(group->a);
 | 
						|
        BN_free(group->b);
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
    return 1;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Free a GF(2^m)-based EC_GROUP structure. Note that all other members are
 | 
						|
 * handled by EC_GROUP_free.
 | 
						|
 */
 | 
						|
void ec_GF2m_simple_group_finish(EC_GROUP *group)
 | 
						|
{
 | 
						|
    BN_free(group->field);
 | 
						|
    BN_free(group->a);
 | 
						|
    BN_free(group->b);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Clear and free a GF(2^m)-based EC_GROUP structure. Note that all other
 | 
						|
 * members are handled by EC_GROUP_clear_free.
 | 
						|
 */
 | 
						|
void ec_GF2m_simple_group_clear_finish(EC_GROUP *group)
 | 
						|
{
 | 
						|
    BN_clear_free(group->field);
 | 
						|
    BN_clear_free(group->a);
 | 
						|
    BN_clear_free(group->b);
 | 
						|
    group->poly[0] = 0;
 | 
						|
    group->poly[1] = 0;
 | 
						|
    group->poly[2] = 0;
 | 
						|
    group->poly[3] = 0;
 | 
						|
    group->poly[4] = 0;
 | 
						|
    group->poly[5] = -1;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Copy a GF(2^m)-based EC_GROUP structure. Note that all other members are
 | 
						|
 * handled by EC_GROUP_copy.
 | 
						|
 */
 | 
						|
int ec_GF2m_simple_group_copy(EC_GROUP *dest, const EC_GROUP *src)
 | 
						|
{
 | 
						|
    if (!BN_copy(dest->field, src->field))
 | 
						|
        return 0;
 | 
						|
    if (!BN_copy(dest->a, src->a))
 | 
						|
        return 0;
 | 
						|
    if (!BN_copy(dest->b, src->b))
 | 
						|
        return 0;
 | 
						|
    dest->poly[0] = src->poly[0];
 | 
						|
    dest->poly[1] = src->poly[1];
 | 
						|
    dest->poly[2] = src->poly[2];
 | 
						|
    dest->poly[3] = src->poly[3];
 | 
						|
    dest->poly[4] = src->poly[4];
 | 
						|
    dest->poly[5] = src->poly[5];
 | 
						|
    if (bn_wexpand(dest->a, (int)(dest->poly[0] + BN_BITS2 - 1) / BN_BITS2) ==
 | 
						|
        NULL)
 | 
						|
        return 0;
 | 
						|
    if (bn_wexpand(dest->b, (int)(dest->poly[0] + BN_BITS2 - 1) / BN_BITS2) ==
 | 
						|
        NULL)
 | 
						|
        return 0;
 | 
						|
    bn_set_all_zero(dest->a);
 | 
						|
    bn_set_all_zero(dest->b);
 | 
						|
    return 1;
 | 
						|
}
 | 
						|
 | 
						|
/* Set the curve parameters of an EC_GROUP structure. */
 | 
						|
int ec_GF2m_simple_group_set_curve(EC_GROUP *group,
 | 
						|
                                   const BIGNUM *p, const BIGNUM *a,
 | 
						|
                                   const BIGNUM *b, BN_CTX *ctx)
 | 
						|
{
 | 
						|
    int ret = 0, i;
 | 
						|
 | 
						|
    /* group->field */
 | 
						|
    if (!BN_copy(group->field, p))
 | 
						|
        goto err;
 | 
						|
    i = BN_GF2m_poly2arr(group->field, group->poly, 6) - 1;
 | 
						|
    if ((i != 5) && (i != 3)) {
 | 
						|
        ECerr(EC_F_EC_GF2M_SIMPLE_GROUP_SET_CURVE, EC_R_UNSUPPORTED_FIELD);
 | 
						|
        goto err;
 | 
						|
    }
 | 
						|
 | 
						|
    /* group->a */
 | 
						|
    if (!BN_GF2m_mod_arr(group->a, a, group->poly))
 | 
						|
        goto err;
 | 
						|
    if (bn_wexpand(group->a, (int)(group->poly[0] + BN_BITS2 - 1) / BN_BITS2)
 | 
						|
        == NULL)
 | 
						|
        goto err;
 | 
						|
    bn_set_all_zero(group->a);
 | 
						|
 | 
						|
    /* group->b */
 | 
						|
    if (!BN_GF2m_mod_arr(group->b, b, group->poly))
 | 
						|
        goto err;
 | 
						|
    if (bn_wexpand(group->b, (int)(group->poly[0] + BN_BITS2 - 1) / BN_BITS2)
 | 
						|
        == NULL)
 | 
						|
        goto err;
 | 
						|
    bn_set_all_zero(group->b);
 | 
						|
 | 
						|
    ret = 1;
 | 
						|
 err:
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Get the curve parameters of an EC_GROUP structure. If p, a, or b are NULL
 | 
						|
 * then there values will not be set but the method will return with success.
 | 
						|
 */
 | 
						|
int ec_GF2m_simple_group_get_curve(const EC_GROUP *group, BIGNUM *p,
 | 
						|
                                   BIGNUM *a, BIGNUM *b, BN_CTX *ctx)
 | 
						|
{
 | 
						|
    int ret = 0;
 | 
						|
 | 
						|
    if (p != NULL) {
 | 
						|
        if (!BN_copy(p, group->field))
 | 
						|
            return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    if (a != NULL) {
 | 
						|
        if (!BN_copy(a, group->a))
 | 
						|
            goto err;
 | 
						|
    }
 | 
						|
 | 
						|
    if (b != NULL) {
 | 
						|
        if (!BN_copy(b, group->b))
 | 
						|
            goto err;
 | 
						|
    }
 | 
						|
 | 
						|
    ret = 1;
 | 
						|
 | 
						|
 err:
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Gets the degree of the field.  For a curve over GF(2^m) this is the value
 | 
						|
 * m.
 | 
						|
 */
 | 
						|
int ec_GF2m_simple_group_get_degree(const EC_GROUP *group)
 | 
						|
{
 | 
						|
    return BN_num_bits(group->field) - 1;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Checks the discriminant of the curve. y^2 + x*y = x^3 + a*x^2 + b is an
 | 
						|
 * elliptic curve <=> b != 0 (mod p)
 | 
						|
 */
 | 
						|
int ec_GF2m_simple_group_check_discriminant(const EC_GROUP *group,
 | 
						|
                                            BN_CTX *ctx)
 | 
						|
{
 | 
						|
    int ret = 0;
 | 
						|
    BIGNUM *b;
 | 
						|
    BN_CTX *new_ctx = NULL;
 | 
						|
 | 
						|
    if (ctx == NULL) {
 | 
						|
        ctx = new_ctx = BN_CTX_new();
 | 
						|
        if (ctx == NULL) {
 | 
						|
            ECerr(EC_F_EC_GF2M_SIMPLE_GROUP_CHECK_DISCRIMINANT,
 | 
						|
                  ERR_R_MALLOC_FAILURE);
 | 
						|
            goto err;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    BN_CTX_start(ctx);
 | 
						|
    b = BN_CTX_get(ctx);
 | 
						|
    if (b == NULL)
 | 
						|
        goto err;
 | 
						|
 | 
						|
    if (!BN_GF2m_mod_arr(b, group->b, group->poly))
 | 
						|
        goto err;
 | 
						|
 | 
						|
    /*
 | 
						|
     * check the discriminant: y^2 + x*y = x^3 + a*x^2 + b is an elliptic
 | 
						|
     * curve <=> b != 0 (mod p)
 | 
						|
     */
 | 
						|
    if (BN_is_zero(b))
 | 
						|
        goto err;
 | 
						|
 | 
						|
    ret = 1;
 | 
						|
 | 
						|
 err:
 | 
						|
    BN_CTX_end(ctx);
 | 
						|
    BN_CTX_free(new_ctx);
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
/* Initializes an EC_POINT. */
 | 
						|
int ec_GF2m_simple_point_init(EC_POINT *point)
 | 
						|
{
 | 
						|
    point->X = BN_new();
 | 
						|
    point->Y = BN_new();
 | 
						|
    point->Z = BN_new();
 | 
						|
 | 
						|
    if (point->X == NULL || point->Y == NULL || point->Z == NULL) {
 | 
						|
        BN_free(point->X);
 | 
						|
        BN_free(point->Y);
 | 
						|
        BN_free(point->Z);
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
    return 1;
 | 
						|
}
 | 
						|
 | 
						|
/* Frees an EC_POINT. */
 | 
						|
void ec_GF2m_simple_point_finish(EC_POINT *point)
 | 
						|
{
 | 
						|
    BN_free(point->X);
 | 
						|
    BN_free(point->Y);
 | 
						|
    BN_free(point->Z);
 | 
						|
}
 | 
						|
 | 
						|
/* Clears and frees an EC_POINT. */
 | 
						|
void ec_GF2m_simple_point_clear_finish(EC_POINT *point)
 | 
						|
{
 | 
						|
    BN_clear_free(point->X);
 | 
						|
    BN_clear_free(point->Y);
 | 
						|
    BN_clear_free(point->Z);
 | 
						|
    point->Z_is_one = 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Copy the contents of one EC_POINT into another.  Assumes dest is
 | 
						|
 * initialized.
 | 
						|
 */
 | 
						|
int ec_GF2m_simple_point_copy(EC_POINT *dest, const EC_POINT *src)
 | 
						|
{
 | 
						|
    if (!BN_copy(dest->X, src->X))
 | 
						|
        return 0;
 | 
						|
    if (!BN_copy(dest->Y, src->Y))
 | 
						|
        return 0;
 | 
						|
    if (!BN_copy(dest->Z, src->Z))
 | 
						|
        return 0;
 | 
						|
    dest->Z_is_one = src->Z_is_one;
 | 
						|
    dest->curve_name = src->curve_name;
 | 
						|
 | 
						|
    return 1;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Set an EC_POINT to the point at infinity. A point at infinity is
 | 
						|
 * represented by having Z=0.
 | 
						|
 */
 | 
						|
int ec_GF2m_simple_point_set_to_infinity(const EC_GROUP *group,
 | 
						|
                                         EC_POINT *point)
 | 
						|
{
 | 
						|
    point->Z_is_one = 0;
 | 
						|
    BN_zero(point->Z);
 | 
						|
    return 1;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Set the coordinates of an EC_POINT using affine coordinates. Note that
 | 
						|
 * the simple implementation only uses affine coordinates.
 | 
						|
 */
 | 
						|
int ec_GF2m_simple_point_set_affine_coordinates(const EC_GROUP *group,
 | 
						|
                                                EC_POINT *point,
 | 
						|
                                                const BIGNUM *x,
 | 
						|
                                                const BIGNUM *y, BN_CTX *ctx)
 | 
						|
{
 | 
						|
    int ret = 0;
 | 
						|
    if (x == NULL || y == NULL) {
 | 
						|
        ECerr(EC_F_EC_GF2M_SIMPLE_POINT_SET_AFFINE_COORDINATES,
 | 
						|
              ERR_R_PASSED_NULL_PARAMETER);
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    if (!BN_copy(point->X, x))
 | 
						|
        goto err;
 | 
						|
    BN_set_negative(point->X, 0);
 | 
						|
    if (!BN_copy(point->Y, y))
 | 
						|
        goto err;
 | 
						|
    BN_set_negative(point->Y, 0);
 | 
						|
    if (!BN_copy(point->Z, BN_value_one()))
 | 
						|
        goto err;
 | 
						|
    BN_set_negative(point->Z, 0);
 | 
						|
    point->Z_is_one = 1;
 | 
						|
    ret = 1;
 | 
						|
 | 
						|
 err:
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Gets the affine coordinates of an EC_POINT. Note that the simple
 | 
						|
 * implementation only uses affine coordinates.
 | 
						|
 */
 | 
						|
int ec_GF2m_simple_point_get_affine_coordinates(const EC_GROUP *group,
 | 
						|
                                                const EC_POINT *point,
 | 
						|
                                                BIGNUM *x, BIGNUM *y,
 | 
						|
                                                BN_CTX *ctx)
 | 
						|
{
 | 
						|
    int ret = 0;
 | 
						|
 | 
						|
    if (EC_POINT_is_at_infinity(group, point)) {
 | 
						|
        ECerr(EC_F_EC_GF2M_SIMPLE_POINT_GET_AFFINE_COORDINATES,
 | 
						|
              EC_R_POINT_AT_INFINITY);
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    if (BN_cmp(point->Z, BN_value_one())) {
 | 
						|
        ECerr(EC_F_EC_GF2M_SIMPLE_POINT_GET_AFFINE_COORDINATES,
 | 
						|
              ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
    if (x != NULL) {
 | 
						|
        if (!BN_copy(x, point->X))
 | 
						|
            goto err;
 | 
						|
        BN_set_negative(x, 0);
 | 
						|
    }
 | 
						|
    if (y != NULL) {
 | 
						|
        if (!BN_copy(y, point->Y))
 | 
						|
            goto err;
 | 
						|
        BN_set_negative(y, 0);
 | 
						|
    }
 | 
						|
    ret = 1;
 | 
						|
 | 
						|
 err:
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Computes a + b and stores the result in r.  r could be a or b, a could be
 | 
						|
 * b. Uses algorithm A.10.2 of IEEE P1363.
 | 
						|
 */
 | 
						|
int ec_GF2m_simple_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a,
 | 
						|
                       const EC_POINT *b, BN_CTX *ctx)
 | 
						|
{
 | 
						|
    BN_CTX *new_ctx = NULL;
 | 
						|
    BIGNUM *x0, *y0, *x1, *y1, *x2, *y2, *s, *t;
 | 
						|
    int ret = 0;
 | 
						|
 | 
						|
    if (EC_POINT_is_at_infinity(group, a)) {
 | 
						|
        if (!EC_POINT_copy(r, b))
 | 
						|
            return 0;
 | 
						|
        return 1;
 | 
						|
    }
 | 
						|
 | 
						|
    if (EC_POINT_is_at_infinity(group, b)) {
 | 
						|
        if (!EC_POINT_copy(r, a))
 | 
						|
            return 0;
 | 
						|
        return 1;
 | 
						|
    }
 | 
						|
 | 
						|
    if (ctx == NULL) {
 | 
						|
        ctx = new_ctx = BN_CTX_new();
 | 
						|
        if (ctx == NULL)
 | 
						|
            return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    BN_CTX_start(ctx);
 | 
						|
    x0 = BN_CTX_get(ctx);
 | 
						|
    y0 = BN_CTX_get(ctx);
 | 
						|
    x1 = BN_CTX_get(ctx);
 | 
						|
    y1 = BN_CTX_get(ctx);
 | 
						|
    x2 = BN_CTX_get(ctx);
 | 
						|
    y2 = BN_CTX_get(ctx);
 | 
						|
    s = BN_CTX_get(ctx);
 | 
						|
    t = BN_CTX_get(ctx);
 | 
						|
    if (t == NULL)
 | 
						|
        goto err;
 | 
						|
 | 
						|
    if (a->Z_is_one) {
 | 
						|
        if (!BN_copy(x0, a->X))
 | 
						|
            goto err;
 | 
						|
        if (!BN_copy(y0, a->Y))
 | 
						|
            goto err;
 | 
						|
    } else {
 | 
						|
        if (!EC_POINT_get_affine_coordinates(group, a, x0, y0, ctx))
 | 
						|
            goto err;
 | 
						|
    }
 | 
						|
    if (b->Z_is_one) {
 | 
						|
        if (!BN_copy(x1, b->X))
 | 
						|
            goto err;
 | 
						|
        if (!BN_copy(y1, b->Y))
 | 
						|
            goto err;
 | 
						|
    } else {
 | 
						|
        if (!EC_POINT_get_affine_coordinates(group, b, x1, y1, ctx))
 | 
						|
            goto err;
 | 
						|
    }
 | 
						|
 | 
						|
    if (BN_GF2m_cmp(x0, x1)) {
 | 
						|
        if (!BN_GF2m_add(t, x0, x1))
 | 
						|
            goto err;
 | 
						|
        if (!BN_GF2m_add(s, y0, y1))
 | 
						|
            goto err;
 | 
						|
        if (!group->meth->field_div(group, s, s, t, ctx))
 | 
						|
            goto err;
 | 
						|
        if (!group->meth->field_sqr(group, x2, s, ctx))
 | 
						|
            goto err;
 | 
						|
        if (!BN_GF2m_add(x2, x2, group->a))
 | 
						|
            goto err;
 | 
						|
        if (!BN_GF2m_add(x2, x2, s))
 | 
						|
            goto err;
 | 
						|
        if (!BN_GF2m_add(x2, x2, t))
 | 
						|
            goto err;
 | 
						|
    } else {
 | 
						|
        if (BN_GF2m_cmp(y0, y1) || BN_is_zero(x1)) {
 | 
						|
            if (!EC_POINT_set_to_infinity(group, r))
 | 
						|
                goto err;
 | 
						|
            ret = 1;
 | 
						|
            goto err;
 | 
						|
        }
 | 
						|
        if (!group->meth->field_div(group, s, y1, x1, ctx))
 | 
						|
            goto err;
 | 
						|
        if (!BN_GF2m_add(s, s, x1))
 | 
						|
            goto err;
 | 
						|
 | 
						|
        if (!group->meth->field_sqr(group, x2, s, ctx))
 | 
						|
            goto err;
 | 
						|
        if (!BN_GF2m_add(x2, x2, s))
 | 
						|
            goto err;
 | 
						|
        if (!BN_GF2m_add(x2, x2, group->a))
 | 
						|
            goto err;
 | 
						|
    }
 | 
						|
 | 
						|
    if (!BN_GF2m_add(y2, x1, x2))
 | 
						|
        goto err;
 | 
						|
    if (!group->meth->field_mul(group, y2, y2, s, ctx))
 | 
						|
        goto err;
 | 
						|
    if (!BN_GF2m_add(y2, y2, x2))
 | 
						|
        goto err;
 | 
						|
    if (!BN_GF2m_add(y2, y2, y1))
 | 
						|
        goto err;
 | 
						|
 | 
						|
    if (!EC_POINT_set_affine_coordinates(group, r, x2, y2, ctx))
 | 
						|
        goto err;
 | 
						|
 | 
						|
    ret = 1;
 | 
						|
 | 
						|
 err:
 | 
						|
    BN_CTX_end(ctx);
 | 
						|
    BN_CTX_free(new_ctx);
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Computes 2 * a and stores the result in r.  r could be a. Uses algorithm
 | 
						|
 * A.10.2 of IEEE P1363.
 | 
						|
 */
 | 
						|
int ec_GF2m_simple_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a,
 | 
						|
                       BN_CTX *ctx)
 | 
						|
{
 | 
						|
    return ec_GF2m_simple_add(group, r, a, a, ctx);
 | 
						|
}
 | 
						|
 | 
						|
int ec_GF2m_simple_invert(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx)
 | 
						|
{
 | 
						|
    if (EC_POINT_is_at_infinity(group, point) || BN_is_zero(point->Y))
 | 
						|
        /* point is its own inverse */
 | 
						|
        return 1;
 | 
						|
 | 
						|
    if (!EC_POINT_make_affine(group, point, ctx))
 | 
						|
        return 0;
 | 
						|
    return BN_GF2m_add(point->Y, point->X, point->Y);
 | 
						|
}
 | 
						|
 | 
						|
/* Indicates whether the given point is the point at infinity. */
 | 
						|
int ec_GF2m_simple_is_at_infinity(const EC_GROUP *group,
 | 
						|
                                  const EC_POINT *point)
 | 
						|
{
 | 
						|
    return BN_is_zero(point->Z);
 | 
						|
}
 | 
						|
 | 
						|
/*-
 | 
						|
 * Determines whether the given EC_POINT is an actual point on the curve defined
 | 
						|
 * in the EC_GROUP.  A point is valid if it satisfies the Weierstrass equation:
 | 
						|
 *      y^2 + x*y = x^3 + a*x^2 + b.
 | 
						|
 */
 | 
						|
int ec_GF2m_simple_is_on_curve(const EC_GROUP *group, const EC_POINT *point,
 | 
						|
                               BN_CTX *ctx)
 | 
						|
{
 | 
						|
    int ret = -1;
 | 
						|
    BN_CTX *new_ctx = NULL;
 | 
						|
    BIGNUM *lh, *y2;
 | 
						|
    int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *,
 | 
						|
                      const BIGNUM *, BN_CTX *);
 | 
						|
    int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
 | 
						|
 | 
						|
    if (EC_POINT_is_at_infinity(group, point))
 | 
						|
        return 1;
 | 
						|
 | 
						|
    field_mul = group->meth->field_mul;
 | 
						|
    field_sqr = group->meth->field_sqr;
 | 
						|
 | 
						|
    /* only support affine coordinates */
 | 
						|
    if (!point->Z_is_one)
 | 
						|
        return -1;
 | 
						|
 | 
						|
    if (ctx == NULL) {
 | 
						|
        ctx = new_ctx = BN_CTX_new();
 | 
						|
        if (ctx == NULL)
 | 
						|
            return -1;
 | 
						|
    }
 | 
						|
 | 
						|
    BN_CTX_start(ctx);
 | 
						|
    y2 = BN_CTX_get(ctx);
 | 
						|
    lh = BN_CTX_get(ctx);
 | 
						|
    if (lh == NULL)
 | 
						|
        goto err;
 | 
						|
 | 
						|
    /*-
 | 
						|
     * We have a curve defined by a Weierstrass equation
 | 
						|
     *      y^2 + x*y = x^3 + a*x^2 + b.
 | 
						|
     *  <=> x^3 + a*x^2 + x*y + b + y^2 = 0
 | 
						|
     *  <=> ((x + a) * x + y ) * x + b + y^2 = 0
 | 
						|
     */
 | 
						|
    if (!BN_GF2m_add(lh, point->X, group->a))
 | 
						|
        goto err;
 | 
						|
    if (!field_mul(group, lh, lh, point->X, ctx))
 | 
						|
        goto err;
 | 
						|
    if (!BN_GF2m_add(lh, lh, point->Y))
 | 
						|
        goto err;
 | 
						|
    if (!field_mul(group, lh, lh, point->X, ctx))
 | 
						|
        goto err;
 | 
						|
    if (!BN_GF2m_add(lh, lh, group->b))
 | 
						|
        goto err;
 | 
						|
    if (!field_sqr(group, y2, point->Y, ctx))
 | 
						|
        goto err;
 | 
						|
    if (!BN_GF2m_add(lh, lh, y2))
 | 
						|
        goto err;
 | 
						|
    ret = BN_is_zero(lh);
 | 
						|
 | 
						|
 err:
 | 
						|
    BN_CTX_end(ctx);
 | 
						|
    BN_CTX_free(new_ctx);
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*-
 | 
						|
 * Indicates whether two points are equal.
 | 
						|
 * Return values:
 | 
						|
 *  -1   error
 | 
						|
 *   0   equal (in affine coordinates)
 | 
						|
 *   1   not equal
 | 
						|
 */
 | 
						|
int ec_GF2m_simple_cmp(const EC_GROUP *group, const EC_POINT *a,
 | 
						|
                       const EC_POINT *b, BN_CTX *ctx)
 | 
						|
{
 | 
						|
    BIGNUM *aX, *aY, *bX, *bY;
 | 
						|
    BN_CTX *new_ctx = NULL;
 | 
						|
    int ret = -1;
 | 
						|
 | 
						|
    if (EC_POINT_is_at_infinity(group, a)) {
 | 
						|
        return EC_POINT_is_at_infinity(group, b) ? 0 : 1;
 | 
						|
    }
 | 
						|
 | 
						|
    if (EC_POINT_is_at_infinity(group, b))
 | 
						|
        return 1;
 | 
						|
 | 
						|
    if (a->Z_is_one && b->Z_is_one) {
 | 
						|
        return ((BN_cmp(a->X, b->X) == 0) && BN_cmp(a->Y, b->Y) == 0) ? 0 : 1;
 | 
						|
    }
 | 
						|
 | 
						|
    if (ctx == NULL) {
 | 
						|
        ctx = new_ctx = BN_CTX_new();
 | 
						|
        if (ctx == NULL)
 | 
						|
            return -1;
 | 
						|
    }
 | 
						|
 | 
						|
    BN_CTX_start(ctx);
 | 
						|
    aX = BN_CTX_get(ctx);
 | 
						|
    aY = BN_CTX_get(ctx);
 | 
						|
    bX = BN_CTX_get(ctx);
 | 
						|
    bY = BN_CTX_get(ctx);
 | 
						|
    if (bY == NULL)
 | 
						|
        goto err;
 | 
						|
 | 
						|
    if (!EC_POINT_get_affine_coordinates(group, a, aX, aY, ctx))
 | 
						|
        goto err;
 | 
						|
    if (!EC_POINT_get_affine_coordinates(group, b, bX, bY, ctx))
 | 
						|
        goto err;
 | 
						|
    ret = ((BN_cmp(aX, bX) == 0) && BN_cmp(aY, bY) == 0) ? 0 : 1;
 | 
						|
 | 
						|
 err:
 | 
						|
    BN_CTX_end(ctx);
 | 
						|
    BN_CTX_free(new_ctx);
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
/* Forces the given EC_POINT to internally use affine coordinates. */
 | 
						|
int ec_GF2m_simple_make_affine(const EC_GROUP *group, EC_POINT *point,
 | 
						|
                               BN_CTX *ctx)
 | 
						|
{
 | 
						|
    BN_CTX *new_ctx = NULL;
 | 
						|
    BIGNUM *x, *y;
 | 
						|
    int ret = 0;
 | 
						|
 | 
						|
    if (point->Z_is_one || EC_POINT_is_at_infinity(group, point))
 | 
						|
        return 1;
 | 
						|
 | 
						|
    if (ctx == NULL) {
 | 
						|
        ctx = new_ctx = BN_CTX_new();
 | 
						|
        if (ctx == NULL)
 | 
						|
            return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    BN_CTX_start(ctx);
 | 
						|
    x = BN_CTX_get(ctx);
 | 
						|
    y = BN_CTX_get(ctx);
 | 
						|
    if (y == NULL)
 | 
						|
        goto err;
 | 
						|
 | 
						|
    if (!EC_POINT_get_affine_coordinates(group, point, x, y, ctx))
 | 
						|
        goto err;
 | 
						|
    if (!BN_copy(point->X, x))
 | 
						|
        goto err;
 | 
						|
    if (!BN_copy(point->Y, y))
 | 
						|
        goto err;
 | 
						|
    if (!BN_one(point->Z))
 | 
						|
        goto err;
 | 
						|
    point->Z_is_one = 1;
 | 
						|
 | 
						|
    ret = 1;
 | 
						|
 | 
						|
 err:
 | 
						|
    BN_CTX_end(ctx);
 | 
						|
    BN_CTX_free(new_ctx);
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Forces each of the EC_POINTs in the given array to use affine coordinates.
 | 
						|
 */
 | 
						|
int ec_GF2m_simple_points_make_affine(const EC_GROUP *group, size_t num,
 | 
						|
                                      EC_POINT *points[], BN_CTX *ctx)
 | 
						|
{
 | 
						|
    size_t i;
 | 
						|
 | 
						|
    for (i = 0; i < num; i++) {
 | 
						|
        if (!group->meth->make_affine(group, points[i], ctx))
 | 
						|
            return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    return 1;
 | 
						|
}
 | 
						|
 | 
						|
/* Wrapper to simple binary polynomial field multiplication implementation. */
 | 
						|
int ec_GF2m_simple_field_mul(const EC_GROUP *group, BIGNUM *r,
 | 
						|
                             const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
 | 
						|
{
 | 
						|
    return BN_GF2m_mod_mul_arr(r, a, b, group->poly, ctx);
 | 
						|
}
 | 
						|
 | 
						|
/* Wrapper to simple binary polynomial field squaring implementation. */
 | 
						|
int ec_GF2m_simple_field_sqr(const EC_GROUP *group, BIGNUM *r,
 | 
						|
                             const BIGNUM *a, BN_CTX *ctx)
 | 
						|
{
 | 
						|
    return BN_GF2m_mod_sqr_arr(r, a, group->poly, ctx);
 | 
						|
}
 | 
						|
 | 
						|
/* Wrapper to simple binary polynomial field division implementation. */
 | 
						|
int ec_GF2m_simple_field_div(const EC_GROUP *group, BIGNUM *r,
 | 
						|
                             const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
 | 
						|
{
 | 
						|
    return BN_GF2m_mod_div(r, a, b, group->field, ctx);
 | 
						|
}
 | 
						|
 | 
						|
/*-
 | 
						|
 * Lopez-Dahab ladder, pre step.
 | 
						|
 * See e.g. "Guide to ECC" Alg 3.40.
 | 
						|
 * Modified to blind s and r independently.
 | 
						|
 * s:= p, r := 2p
 | 
						|
 */
 | 
						|
static
 | 
						|
int ec_GF2m_simple_ladder_pre(const EC_GROUP *group,
 | 
						|
                              EC_POINT *r, EC_POINT *s,
 | 
						|
                              EC_POINT *p, BN_CTX *ctx)
 | 
						|
{
 | 
						|
    /* if p is not affine, something is wrong */
 | 
						|
    if (p->Z_is_one == 0)
 | 
						|
        return 0;
 | 
						|
 | 
						|
    /* s blinding: make sure lambda (s->Z here) is not zero */
 | 
						|
    do {
 | 
						|
        if (!BN_priv_rand(s->Z, BN_num_bits(group->field) - 1,
 | 
						|
                          BN_RAND_TOP_ANY, BN_RAND_BOTTOM_ANY)) {
 | 
						|
            ECerr(EC_F_EC_GF2M_SIMPLE_LADDER_PRE, ERR_R_BN_LIB);
 | 
						|
            return 0;
 | 
						|
        }
 | 
						|
    } while (BN_is_zero(s->Z));
 | 
						|
 | 
						|
    /* if field_encode defined convert between representations */
 | 
						|
    if ((group->meth->field_encode != NULL
 | 
						|
         && !group->meth->field_encode(group, s->Z, s->Z, ctx))
 | 
						|
        || !group->meth->field_mul(group, s->X, p->X, s->Z, ctx))
 | 
						|
        return 0;
 | 
						|
 | 
						|
    /* r blinding: make sure lambda (r->Y here for storage) is not zero */
 | 
						|
    do {
 | 
						|
        if (!BN_priv_rand(r->Y, BN_num_bits(group->field) - 1,
 | 
						|
                          BN_RAND_TOP_ANY, BN_RAND_BOTTOM_ANY)) {
 | 
						|
            ECerr(EC_F_EC_GF2M_SIMPLE_LADDER_PRE, ERR_R_BN_LIB);
 | 
						|
            return 0;
 | 
						|
        }
 | 
						|
    } while (BN_is_zero(r->Y));
 | 
						|
 | 
						|
    if ((group->meth->field_encode != NULL
 | 
						|
         && !group->meth->field_encode(group, r->Y, r->Y, ctx))
 | 
						|
        || !group->meth->field_sqr(group, r->Z, p->X, ctx)
 | 
						|
        || !group->meth->field_sqr(group, r->X, r->Z, ctx)
 | 
						|
        || !BN_GF2m_add(r->X, r->X, group->b)
 | 
						|
        || !group->meth->field_mul(group, r->Z, r->Z, r->Y, ctx)
 | 
						|
        || !group->meth->field_mul(group, r->X, r->X, r->Y, ctx))
 | 
						|
        return 0;
 | 
						|
 | 
						|
    s->Z_is_one = 0;
 | 
						|
    r->Z_is_one = 0;
 | 
						|
 | 
						|
    return 1;
 | 
						|
}
 | 
						|
 | 
						|
/*-
 | 
						|
 * Ladder step: differential addition-and-doubling, mixed Lopez-Dahab coords.
 | 
						|
 * http://www.hyperelliptic.org/EFD/g12o/auto-code/shortw/xz/ladder/mladd-2003-s.op3
 | 
						|
 * s := r + s, r := 2r
 | 
						|
 */
 | 
						|
static
 | 
						|
int ec_GF2m_simple_ladder_step(const EC_GROUP *group,
 | 
						|
                               EC_POINT *r, EC_POINT *s,
 | 
						|
                               EC_POINT *p, BN_CTX *ctx)
 | 
						|
{
 | 
						|
    if (!group->meth->field_mul(group, r->Y, r->Z, s->X, ctx)
 | 
						|
        || !group->meth->field_mul(group, s->X, r->X, s->Z, ctx)
 | 
						|
        || !group->meth->field_sqr(group, s->Y, r->Z, ctx)
 | 
						|
        || !group->meth->field_sqr(group, r->Z, r->X, ctx)
 | 
						|
        || !BN_GF2m_add(s->Z, r->Y, s->X)
 | 
						|
        || !group->meth->field_sqr(group, s->Z, s->Z, ctx)
 | 
						|
        || !group->meth->field_mul(group, s->X, r->Y, s->X, ctx)
 | 
						|
        || !group->meth->field_mul(group, r->Y, s->Z, p->X, ctx)
 | 
						|
        || !BN_GF2m_add(s->X, s->X, r->Y)
 | 
						|
        || !group->meth->field_sqr(group, r->Y, r->Z, ctx)
 | 
						|
        || !group->meth->field_mul(group, r->Z, r->Z, s->Y, ctx)
 | 
						|
        || !group->meth->field_sqr(group, s->Y, s->Y, ctx)
 | 
						|
        || !group->meth->field_mul(group, s->Y, s->Y, group->b, ctx)
 | 
						|
        || !BN_GF2m_add(r->X, r->Y, s->Y))
 | 
						|
        return 0;
 | 
						|
 | 
						|
    return 1;
 | 
						|
}
 | 
						|
 | 
						|
/*-
 | 
						|
 * Recover affine (x,y) result from Lopez-Dahab r and s, affine p.
 | 
						|
 * See e.g. "Fast Multiplication on Elliptic Curves over GF(2**m)
 | 
						|
 * without Precomputation" (Lopez and Dahab, CHES 1999),
 | 
						|
 * Appendix Alg Mxy.
 | 
						|
 */
 | 
						|
static
 | 
						|
int ec_GF2m_simple_ladder_post(const EC_GROUP *group,
 | 
						|
                               EC_POINT *r, EC_POINT *s,
 | 
						|
                               EC_POINT *p, BN_CTX *ctx)
 | 
						|
{
 | 
						|
    int ret = 0;
 | 
						|
    BIGNUM *t0, *t1, *t2 = NULL;
 | 
						|
 | 
						|
    if (BN_is_zero(r->Z))
 | 
						|
        return EC_POINT_set_to_infinity(group, r);
 | 
						|
 | 
						|
    if (BN_is_zero(s->Z)) {
 | 
						|
        if (!EC_POINT_copy(r, p)
 | 
						|
            || !EC_POINT_invert(group, r, ctx)) {
 | 
						|
            ECerr(EC_F_EC_GF2M_SIMPLE_LADDER_POST, ERR_R_EC_LIB);
 | 
						|
            return 0;
 | 
						|
        }
 | 
						|
        return 1;
 | 
						|
    }
 | 
						|
 | 
						|
    BN_CTX_start(ctx);
 | 
						|
    t0 = BN_CTX_get(ctx);
 | 
						|
    t1 = BN_CTX_get(ctx);
 | 
						|
    t2 = BN_CTX_get(ctx);
 | 
						|
    if (t2 == NULL) {
 | 
						|
        ECerr(EC_F_EC_GF2M_SIMPLE_LADDER_POST, ERR_R_MALLOC_FAILURE);
 | 
						|
        goto err;
 | 
						|
    }
 | 
						|
 | 
						|
    if (!group->meth->field_mul(group, t0, r->Z, s->Z, ctx)
 | 
						|
        || !group->meth->field_mul(group, t1, p->X, r->Z, ctx)
 | 
						|
        || !BN_GF2m_add(t1, r->X, t1)
 | 
						|
        || !group->meth->field_mul(group, t2, p->X, s->Z, ctx)
 | 
						|
        || !group->meth->field_mul(group, r->Z, r->X, t2, ctx)
 | 
						|
        || !BN_GF2m_add(t2, t2, s->X)
 | 
						|
        || !group->meth->field_mul(group, t1, t1, t2, ctx)
 | 
						|
        || !group->meth->field_sqr(group, t2, p->X, ctx)
 | 
						|
        || !BN_GF2m_add(t2, p->Y, t2)
 | 
						|
        || !group->meth->field_mul(group, t2, t2, t0, ctx)
 | 
						|
        || !BN_GF2m_add(t1, t2, t1)
 | 
						|
        || !group->meth->field_mul(group, t2, p->X, t0, ctx)
 | 
						|
        || !group->meth->field_inv(group, t2, t2, ctx)
 | 
						|
        || !group->meth->field_mul(group, t1, t1, t2, ctx)
 | 
						|
        || !group->meth->field_mul(group, r->X, r->Z, t2, ctx)
 | 
						|
        || !BN_GF2m_add(t2, p->X, r->X)
 | 
						|
        || !group->meth->field_mul(group, t2, t2, t1, ctx)
 | 
						|
        || !BN_GF2m_add(r->Y, p->Y, t2)
 | 
						|
        || !BN_one(r->Z))
 | 
						|
        goto err;
 | 
						|
 | 
						|
    r->Z_is_one = 1;
 | 
						|
 | 
						|
    /* GF(2^m) field elements should always have BIGNUM::neg = 0 */
 | 
						|
    BN_set_negative(r->X, 0);
 | 
						|
    BN_set_negative(r->Y, 0);
 | 
						|
 | 
						|
    ret = 1;
 | 
						|
 | 
						|
 err:
 | 
						|
    BN_CTX_end(ctx);
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
static
 | 
						|
int ec_GF2m_simple_points_mul(const EC_GROUP *group, EC_POINT *r,
 | 
						|
                              const BIGNUM *scalar, size_t num,
 | 
						|
                              const EC_POINT *points[],
 | 
						|
                              const BIGNUM *scalars[],
 | 
						|
                              BN_CTX *ctx)
 | 
						|
{
 | 
						|
    int ret = 0;
 | 
						|
    EC_POINT *t = NULL;
 | 
						|
 | 
						|
    /*-
 | 
						|
     * We limit use of the ladder only to the following cases:
 | 
						|
     * - r := scalar * G
 | 
						|
     *   Fixed point mul: scalar != NULL && num == 0;
 | 
						|
     * - r := scalars[0] * points[0]
 | 
						|
     *   Variable point mul: scalar == NULL && num == 1;
 | 
						|
     * - r := scalar * G + scalars[0] * points[0]
 | 
						|
     *   used, e.g., in ECDSA verification: scalar != NULL && num == 1
 | 
						|
     *
 | 
						|
     * In any other case (num > 1) we use the default wNAF implementation.
 | 
						|
     *
 | 
						|
     * We also let the default implementation handle degenerate cases like group
 | 
						|
     * order or cofactor set to 0.
 | 
						|
     */
 | 
						|
    if (num > 1 || BN_is_zero(group->order) || BN_is_zero(group->cofactor))
 | 
						|
        return ec_wNAF_mul(group, r, scalar, num, points, scalars, ctx);
 | 
						|
 | 
						|
    if (scalar != NULL && num == 0)
 | 
						|
        /* Fixed point multiplication */
 | 
						|
        return ec_scalar_mul_ladder(group, r, scalar, NULL, ctx);
 | 
						|
 | 
						|
    if (scalar == NULL && num == 1)
 | 
						|
        /* Variable point multiplication */
 | 
						|
        return ec_scalar_mul_ladder(group, r, scalars[0], points[0], ctx);
 | 
						|
 | 
						|
    /*-
 | 
						|
     * Double point multiplication:
 | 
						|
     *  r := scalar * G + scalars[0] * points[0]
 | 
						|
     */
 | 
						|
 | 
						|
    if ((t = EC_POINT_new(group)) == NULL) {
 | 
						|
        ECerr(EC_F_EC_GF2M_SIMPLE_POINTS_MUL, ERR_R_MALLOC_FAILURE);
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    if (!ec_scalar_mul_ladder(group, t, scalar, NULL, ctx)
 | 
						|
        || !ec_scalar_mul_ladder(group, r, scalars[0], points[0], ctx)
 | 
						|
        || !EC_POINT_add(group, r, t, r, ctx))
 | 
						|
        goto err;
 | 
						|
 | 
						|
    ret = 1;
 | 
						|
 | 
						|
 err:
 | 
						|
    EC_POINT_free(t);
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*-
 | 
						|
 * Computes the multiplicative inverse of a in GF(2^m), storing the result in r.
 | 
						|
 * If a is zero (or equivalent), you'll get a EC_R_CANNOT_INVERT error.
 | 
						|
 * SCA hardening is with blinding: BN_GF2m_mod_inv does that.
 | 
						|
 */
 | 
						|
static int ec_GF2m_simple_field_inv(const EC_GROUP *group, BIGNUM *r,
 | 
						|
                                    const BIGNUM *a, BN_CTX *ctx)
 | 
						|
{
 | 
						|
    int ret;
 | 
						|
 | 
						|
    if (!(ret = BN_GF2m_mod_inv(r, a, group->field, ctx)))
 | 
						|
        ECerr(EC_F_EC_GF2M_SIMPLE_FIELD_INV, EC_R_CANNOT_INVERT);
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
const EC_METHOD *EC_GF2m_simple_method(void)
 | 
						|
{
 | 
						|
    static const EC_METHOD ret = {
 | 
						|
        EC_FLAGS_DEFAULT_OCT,
 | 
						|
        NID_X9_62_characteristic_two_field,
 | 
						|
        ec_GF2m_simple_group_init,
 | 
						|
        ec_GF2m_simple_group_finish,
 | 
						|
        ec_GF2m_simple_group_clear_finish,
 | 
						|
        ec_GF2m_simple_group_copy,
 | 
						|
        ec_GF2m_simple_group_set_curve,
 | 
						|
        ec_GF2m_simple_group_get_curve,
 | 
						|
        ec_GF2m_simple_group_get_degree,
 | 
						|
        ec_group_simple_order_bits,
 | 
						|
        ec_GF2m_simple_group_check_discriminant,
 | 
						|
        ec_GF2m_simple_point_init,
 | 
						|
        ec_GF2m_simple_point_finish,
 | 
						|
        ec_GF2m_simple_point_clear_finish,
 | 
						|
        ec_GF2m_simple_point_copy,
 | 
						|
        ec_GF2m_simple_point_set_to_infinity,
 | 
						|
        0, /* set_Jprojective_coordinates_GFp */
 | 
						|
        0, /* get_Jprojective_coordinates_GFp */
 | 
						|
        ec_GF2m_simple_point_set_affine_coordinates,
 | 
						|
        ec_GF2m_simple_point_get_affine_coordinates,
 | 
						|
        0, /* point_set_compressed_coordinates */
 | 
						|
        0, /* point2oct */
 | 
						|
        0, /* oct2point */
 | 
						|
        ec_GF2m_simple_add,
 | 
						|
        ec_GF2m_simple_dbl,
 | 
						|
        ec_GF2m_simple_invert,
 | 
						|
        ec_GF2m_simple_is_at_infinity,
 | 
						|
        ec_GF2m_simple_is_on_curve,
 | 
						|
        ec_GF2m_simple_cmp,
 | 
						|
        ec_GF2m_simple_make_affine,
 | 
						|
        ec_GF2m_simple_points_make_affine,
 | 
						|
        ec_GF2m_simple_points_mul,
 | 
						|
        0, /* precompute_mult */
 | 
						|
        0, /* have_precompute_mult */
 | 
						|
        ec_GF2m_simple_field_mul,
 | 
						|
        ec_GF2m_simple_field_sqr,
 | 
						|
        ec_GF2m_simple_field_div,
 | 
						|
        ec_GF2m_simple_field_inv,
 | 
						|
        0, /* field_encode */
 | 
						|
        0, /* field_decode */
 | 
						|
        0, /* field_set_to_one */
 | 
						|
        ec_key_simple_priv2oct,
 | 
						|
        ec_key_simple_oct2priv,
 | 
						|
        0, /* set private */
 | 
						|
        ec_key_simple_generate_key,
 | 
						|
        ec_key_simple_check_key,
 | 
						|
        ec_key_simple_generate_public_key,
 | 
						|
        0, /* keycopy */
 | 
						|
        0, /* keyfinish */
 | 
						|
        ecdh_simple_compute_key,
 | 
						|
        0, /* field_inverse_mod_ord */
 | 
						|
        0, /* blind_coordinates */
 | 
						|
        ec_GF2m_simple_ladder_pre,
 | 
						|
        ec_GF2m_simple_ladder_step,
 | 
						|
        ec_GF2m_simple_ladder_post
 | 
						|
    };
 | 
						|
 | 
						|
    return &ret;
 | 
						|
}
 | 
						|
 | 
						|
#endif
 |