mirror of
				https://github.com/ossrs/srs.git
				synced 2025-03-09 15:49:59 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			684 lines
		
	
	
	
		
			19 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			684 lines
		
	
	
	
		
			19 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved.
 | 
						|
 *
 | 
						|
 * Licensed under the OpenSSL license (the "License").  You may not use
 | 
						|
 * this file except in compliance with the License.  You can obtain a copy
 | 
						|
 * in the file LICENSE in the source distribution or at
 | 
						|
 * https://www.openssl.org/source/license.html
 | 
						|
 */
 | 
						|
 | 
						|
#include <assert.h>
 | 
						|
#include "internal/cryptlib.h"
 | 
						|
#include "bn_local.h"
 | 
						|
 | 
						|
#if defined(OPENSSL_NO_ASM) || !defined(OPENSSL_BN_ASM_PART_WORDS)
 | 
						|
/*
 | 
						|
 * Here follows specialised variants of bn_add_words() and bn_sub_words().
 | 
						|
 * They have the property performing operations on arrays of different sizes.
 | 
						|
 * The sizes of those arrays is expressed through cl, which is the common
 | 
						|
 * length ( basically, min(len(a),len(b)) ), and dl, which is the delta
 | 
						|
 * between the two lengths, calculated as len(a)-len(b). All lengths are the
 | 
						|
 * number of BN_ULONGs...  For the operations that require a result array as
 | 
						|
 * parameter, it must have the length cl+abs(dl). These functions should
 | 
						|
 * probably end up in bn_asm.c as soon as there are assembler counterparts
 | 
						|
 * for the systems that use assembler files.
 | 
						|
 */
 | 
						|
 | 
						|
BN_ULONG bn_sub_part_words(BN_ULONG *r,
 | 
						|
                           const BN_ULONG *a, const BN_ULONG *b,
 | 
						|
                           int cl, int dl)
 | 
						|
{
 | 
						|
    BN_ULONG c, t;
 | 
						|
 | 
						|
    assert(cl >= 0);
 | 
						|
    c = bn_sub_words(r, a, b, cl);
 | 
						|
 | 
						|
    if (dl == 0)
 | 
						|
        return c;
 | 
						|
 | 
						|
    r += cl;
 | 
						|
    a += cl;
 | 
						|
    b += cl;
 | 
						|
 | 
						|
    if (dl < 0) {
 | 
						|
        for (;;) {
 | 
						|
            t = b[0];
 | 
						|
            r[0] = (0 - t - c) & BN_MASK2;
 | 
						|
            if (t != 0)
 | 
						|
                c = 1;
 | 
						|
            if (++dl >= 0)
 | 
						|
                break;
 | 
						|
 | 
						|
            t = b[1];
 | 
						|
            r[1] = (0 - t - c) & BN_MASK2;
 | 
						|
            if (t != 0)
 | 
						|
                c = 1;
 | 
						|
            if (++dl >= 0)
 | 
						|
                break;
 | 
						|
 | 
						|
            t = b[2];
 | 
						|
            r[2] = (0 - t - c) & BN_MASK2;
 | 
						|
            if (t != 0)
 | 
						|
                c = 1;
 | 
						|
            if (++dl >= 0)
 | 
						|
                break;
 | 
						|
 | 
						|
            t = b[3];
 | 
						|
            r[3] = (0 - t - c) & BN_MASK2;
 | 
						|
            if (t != 0)
 | 
						|
                c = 1;
 | 
						|
            if (++dl >= 0)
 | 
						|
                break;
 | 
						|
 | 
						|
            b += 4;
 | 
						|
            r += 4;
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        int save_dl = dl;
 | 
						|
        while (c) {
 | 
						|
            t = a[0];
 | 
						|
            r[0] = (t - c) & BN_MASK2;
 | 
						|
            if (t != 0)
 | 
						|
                c = 0;
 | 
						|
            if (--dl <= 0)
 | 
						|
                break;
 | 
						|
 | 
						|
            t = a[1];
 | 
						|
            r[1] = (t - c) & BN_MASK2;
 | 
						|
            if (t != 0)
 | 
						|
                c = 0;
 | 
						|
            if (--dl <= 0)
 | 
						|
                break;
 | 
						|
 | 
						|
            t = a[2];
 | 
						|
            r[2] = (t - c) & BN_MASK2;
 | 
						|
            if (t != 0)
 | 
						|
                c = 0;
 | 
						|
            if (--dl <= 0)
 | 
						|
                break;
 | 
						|
 | 
						|
            t = a[3];
 | 
						|
            r[3] = (t - c) & BN_MASK2;
 | 
						|
            if (t != 0)
 | 
						|
                c = 0;
 | 
						|
            if (--dl <= 0)
 | 
						|
                break;
 | 
						|
 | 
						|
            save_dl = dl;
 | 
						|
            a += 4;
 | 
						|
            r += 4;
 | 
						|
        }
 | 
						|
        if (dl > 0) {
 | 
						|
            if (save_dl > dl) {
 | 
						|
                switch (save_dl - dl) {
 | 
						|
                case 1:
 | 
						|
                    r[1] = a[1];
 | 
						|
                    if (--dl <= 0)
 | 
						|
                        break;
 | 
						|
                    /* fall thru */
 | 
						|
                case 2:
 | 
						|
                    r[2] = a[2];
 | 
						|
                    if (--dl <= 0)
 | 
						|
                        break;
 | 
						|
                    /* fall thru */
 | 
						|
                case 3:
 | 
						|
                    r[3] = a[3];
 | 
						|
                    if (--dl <= 0)
 | 
						|
                        break;
 | 
						|
                }
 | 
						|
                a += 4;
 | 
						|
                r += 4;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        if (dl > 0) {
 | 
						|
            for (;;) {
 | 
						|
                r[0] = a[0];
 | 
						|
                if (--dl <= 0)
 | 
						|
                    break;
 | 
						|
                r[1] = a[1];
 | 
						|
                if (--dl <= 0)
 | 
						|
                    break;
 | 
						|
                r[2] = a[2];
 | 
						|
                if (--dl <= 0)
 | 
						|
                    break;
 | 
						|
                r[3] = a[3];
 | 
						|
                if (--dl <= 0)
 | 
						|
                    break;
 | 
						|
 | 
						|
                a += 4;
 | 
						|
                r += 4;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return c;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef BN_RECURSION
 | 
						|
/*
 | 
						|
 * Karatsuba recursive multiplication algorithm (cf. Knuth, The Art of
 | 
						|
 * Computer Programming, Vol. 2)
 | 
						|
 */
 | 
						|
 | 
						|
/*-
 | 
						|
 * r is 2*n2 words in size,
 | 
						|
 * a and b are both n2 words in size.
 | 
						|
 * n2 must be a power of 2.
 | 
						|
 * We multiply and return the result.
 | 
						|
 * t must be 2*n2 words in size
 | 
						|
 * We calculate
 | 
						|
 * a[0]*b[0]
 | 
						|
 * a[0]*b[0]+a[1]*b[1]+(a[0]-a[1])*(b[1]-b[0])
 | 
						|
 * a[1]*b[1]
 | 
						|
 */
 | 
						|
/* dnX may not be positive, but n2/2+dnX has to be */
 | 
						|
void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
 | 
						|
                      int dna, int dnb, BN_ULONG *t)
 | 
						|
{
 | 
						|
    int n = n2 / 2, c1, c2;
 | 
						|
    int tna = n + dna, tnb = n + dnb;
 | 
						|
    unsigned int neg, zero;
 | 
						|
    BN_ULONG ln, lo, *p;
 | 
						|
 | 
						|
# ifdef BN_MUL_COMBA
 | 
						|
#  if 0
 | 
						|
    if (n2 == 4) {
 | 
						|
        bn_mul_comba4(r, a, b);
 | 
						|
        return;
 | 
						|
    }
 | 
						|
#  endif
 | 
						|
    /*
 | 
						|
     * Only call bn_mul_comba 8 if n2 == 8 and the two arrays are complete
 | 
						|
     * [steve]
 | 
						|
     */
 | 
						|
    if (n2 == 8 && dna == 0 && dnb == 0) {
 | 
						|
        bn_mul_comba8(r, a, b);
 | 
						|
        return;
 | 
						|
    }
 | 
						|
# endif                         /* BN_MUL_COMBA */
 | 
						|
    /* Else do normal multiply */
 | 
						|
    if (n2 < BN_MUL_RECURSIVE_SIZE_NORMAL) {
 | 
						|
        bn_mul_normal(r, a, n2 + dna, b, n2 + dnb);
 | 
						|
        if ((dna + dnb) < 0)
 | 
						|
            memset(&r[2 * n2 + dna + dnb], 0,
 | 
						|
                   sizeof(BN_ULONG) * -(dna + dnb));
 | 
						|
        return;
 | 
						|
    }
 | 
						|
    /* r=(a[0]-a[1])*(b[1]-b[0]) */
 | 
						|
    c1 = bn_cmp_part_words(a, &(a[n]), tna, n - tna);
 | 
						|
    c2 = bn_cmp_part_words(&(b[n]), b, tnb, tnb - n);
 | 
						|
    zero = neg = 0;
 | 
						|
    switch (c1 * 3 + c2) {
 | 
						|
    case -4:
 | 
						|
        bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */
 | 
						|
        bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */
 | 
						|
        break;
 | 
						|
    case -3:
 | 
						|
        zero = 1;
 | 
						|
        break;
 | 
						|
    case -2:
 | 
						|
        bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */
 | 
						|
        bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n); /* + */
 | 
						|
        neg = 1;
 | 
						|
        break;
 | 
						|
    case -1:
 | 
						|
    case 0:
 | 
						|
    case 1:
 | 
						|
        zero = 1;
 | 
						|
        break;
 | 
						|
    case 2:
 | 
						|
        bn_sub_part_words(t, a, &(a[n]), tna, n - tna); /* + */
 | 
						|
        bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */
 | 
						|
        neg = 1;
 | 
						|
        break;
 | 
						|
    case 3:
 | 
						|
        zero = 1;
 | 
						|
        break;
 | 
						|
    case 4:
 | 
						|
        bn_sub_part_words(t, a, &(a[n]), tna, n - tna);
 | 
						|
        bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n);
 | 
						|
        break;
 | 
						|
    }
 | 
						|
 | 
						|
# ifdef BN_MUL_COMBA
 | 
						|
    if (n == 4 && dna == 0 && dnb == 0) { /* XXX: bn_mul_comba4 could take
 | 
						|
                                           * extra args to do this well */
 | 
						|
        if (!zero)
 | 
						|
            bn_mul_comba4(&(t[n2]), t, &(t[n]));
 | 
						|
        else
 | 
						|
            memset(&t[n2], 0, sizeof(*t) * 8);
 | 
						|
 | 
						|
        bn_mul_comba4(r, a, b);
 | 
						|
        bn_mul_comba4(&(r[n2]), &(a[n]), &(b[n]));
 | 
						|
    } else if (n == 8 && dna == 0 && dnb == 0) { /* XXX: bn_mul_comba8 could
 | 
						|
                                                  * take extra args to do
 | 
						|
                                                  * this well */
 | 
						|
        if (!zero)
 | 
						|
            bn_mul_comba8(&(t[n2]), t, &(t[n]));
 | 
						|
        else
 | 
						|
            memset(&t[n2], 0, sizeof(*t) * 16);
 | 
						|
 | 
						|
        bn_mul_comba8(r, a, b);
 | 
						|
        bn_mul_comba8(&(r[n2]), &(a[n]), &(b[n]));
 | 
						|
    } else
 | 
						|
# endif                         /* BN_MUL_COMBA */
 | 
						|
    {
 | 
						|
        p = &(t[n2 * 2]);
 | 
						|
        if (!zero)
 | 
						|
            bn_mul_recursive(&(t[n2]), t, &(t[n]), n, 0, 0, p);
 | 
						|
        else
 | 
						|
            memset(&t[n2], 0, sizeof(*t) * n2);
 | 
						|
        bn_mul_recursive(r, a, b, n, 0, 0, p);
 | 
						|
        bn_mul_recursive(&(r[n2]), &(a[n]), &(b[n]), n, dna, dnb, p);
 | 
						|
    }
 | 
						|
 | 
						|
    /*-
 | 
						|
     * t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign
 | 
						|
     * r[10] holds (a[0]*b[0])
 | 
						|
     * r[32] holds (b[1]*b[1])
 | 
						|
     */
 | 
						|
 | 
						|
    c1 = (int)(bn_add_words(t, r, &(r[n2]), n2));
 | 
						|
 | 
						|
    if (neg) {                  /* if t[32] is negative */
 | 
						|
        c1 -= (int)(bn_sub_words(&(t[n2]), t, &(t[n2]), n2));
 | 
						|
    } else {
 | 
						|
        /* Might have a carry */
 | 
						|
        c1 += (int)(bn_add_words(&(t[n2]), &(t[n2]), t, n2));
 | 
						|
    }
 | 
						|
 | 
						|
    /*-
 | 
						|
     * t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1])
 | 
						|
     * r[10] holds (a[0]*b[0])
 | 
						|
     * r[32] holds (b[1]*b[1])
 | 
						|
     * c1 holds the carry bits
 | 
						|
     */
 | 
						|
    c1 += (int)(bn_add_words(&(r[n]), &(r[n]), &(t[n2]), n2));
 | 
						|
    if (c1) {
 | 
						|
        p = &(r[n + n2]);
 | 
						|
        lo = *p;
 | 
						|
        ln = (lo + c1) & BN_MASK2;
 | 
						|
        *p = ln;
 | 
						|
 | 
						|
        /*
 | 
						|
         * The overflow will stop before we over write words we should not
 | 
						|
         * overwrite
 | 
						|
         */
 | 
						|
        if (ln < (BN_ULONG)c1) {
 | 
						|
            do {
 | 
						|
                p++;
 | 
						|
                lo = *p;
 | 
						|
                ln = (lo + 1) & BN_MASK2;
 | 
						|
                *p = ln;
 | 
						|
            } while (ln == 0);
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * n+tn is the word length t needs to be n*4 is size, as does r
 | 
						|
 */
 | 
						|
/* tnX may not be negative but less than n */
 | 
						|
void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n,
 | 
						|
                           int tna, int tnb, BN_ULONG *t)
 | 
						|
{
 | 
						|
    int i, j, n2 = n * 2;
 | 
						|
    int c1, c2, neg;
 | 
						|
    BN_ULONG ln, lo, *p;
 | 
						|
 | 
						|
    if (n < 8) {
 | 
						|
        bn_mul_normal(r, a, n + tna, b, n + tnb);
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    /* r=(a[0]-a[1])*(b[1]-b[0]) */
 | 
						|
    c1 = bn_cmp_part_words(a, &(a[n]), tna, n - tna);
 | 
						|
    c2 = bn_cmp_part_words(&(b[n]), b, tnb, tnb - n);
 | 
						|
    neg = 0;
 | 
						|
    switch (c1 * 3 + c2) {
 | 
						|
    case -4:
 | 
						|
        bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */
 | 
						|
        bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */
 | 
						|
        break;
 | 
						|
    case -3:
 | 
						|
    case -2:
 | 
						|
        bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */
 | 
						|
        bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n); /* + */
 | 
						|
        neg = 1;
 | 
						|
        break;
 | 
						|
    case -1:
 | 
						|
    case 0:
 | 
						|
    case 1:
 | 
						|
    case 2:
 | 
						|
        bn_sub_part_words(t, a, &(a[n]), tna, n - tna); /* + */
 | 
						|
        bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */
 | 
						|
        neg = 1;
 | 
						|
        break;
 | 
						|
    case 3:
 | 
						|
    case 4:
 | 
						|
        bn_sub_part_words(t, a, &(a[n]), tna, n - tna);
 | 
						|
        bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n);
 | 
						|
        break;
 | 
						|
    }
 | 
						|
    /*
 | 
						|
     * The zero case isn't yet implemented here. The speedup would probably
 | 
						|
     * be negligible.
 | 
						|
     */
 | 
						|
# if 0
 | 
						|
    if (n == 4) {
 | 
						|
        bn_mul_comba4(&(t[n2]), t, &(t[n]));
 | 
						|
        bn_mul_comba4(r, a, b);
 | 
						|
        bn_mul_normal(&(r[n2]), &(a[n]), tn, &(b[n]), tn);
 | 
						|
        memset(&r[n2 + tn * 2], 0, sizeof(*r) * (n2 - tn * 2));
 | 
						|
    } else
 | 
						|
# endif
 | 
						|
    if (n == 8) {
 | 
						|
        bn_mul_comba8(&(t[n2]), t, &(t[n]));
 | 
						|
        bn_mul_comba8(r, a, b);
 | 
						|
        bn_mul_normal(&(r[n2]), &(a[n]), tna, &(b[n]), tnb);
 | 
						|
        memset(&r[n2 + tna + tnb], 0, sizeof(*r) * (n2 - tna - tnb));
 | 
						|
    } else {
 | 
						|
        p = &(t[n2 * 2]);
 | 
						|
        bn_mul_recursive(&(t[n2]), t, &(t[n]), n, 0, 0, p);
 | 
						|
        bn_mul_recursive(r, a, b, n, 0, 0, p);
 | 
						|
        i = n / 2;
 | 
						|
        /*
 | 
						|
         * If there is only a bottom half to the number, just do it
 | 
						|
         */
 | 
						|
        if (tna > tnb)
 | 
						|
            j = tna - i;
 | 
						|
        else
 | 
						|
            j = tnb - i;
 | 
						|
        if (j == 0) {
 | 
						|
            bn_mul_recursive(&(r[n2]), &(a[n]), &(b[n]),
 | 
						|
                             i, tna - i, tnb - i, p);
 | 
						|
            memset(&r[n2 + i * 2], 0, sizeof(*r) * (n2 - i * 2));
 | 
						|
        } else if (j > 0) {     /* eg, n == 16, i == 8 and tn == 11 */
 | 
						|
            bn_mul_part_recursive(&(r[n2]), &(a[n]), &(b[n]),
 | 
						|
                                  i, tna - i, tnb - i, p);
 | 
						|
            memset(&(r[n2 + tna + tnb]), 0,
 | 
						|
                   sizeof(BN_ULONG) * (n2 - tna - tnb));
 | 
						|
        } else {                /* (j < 0) eg, n == 16, i == 8 and tn == 5 */
 | 
						|
 | 
						|
            memset(&r[n2], 0, sizeof(*r) * n2);
 | 
						|
            if (tna < BN_MUL_RECURSIVE_SIZE_NORMAL
 | 
						|
                && tnb < BN_MUL_RECURSIVE_SIZE_NORMAL) {
 | 
						|
                bn_mul_normal(&(r[n2]), &(a[n]), tna, &(b[n]), tnb);
 | 
						|
            } else {
 | 
						|
                for (;;) {
 | 
						|
                    i /= 2;
 | 
						|
                    /*
 | 
						|
                     * these simplified conditions work exclusively because
 | 
						|
                     * difference between tna and tnb is 1 or 0
 | 
						|
                     */
 | 
						|
                    if (i < tna || i < tnb) {
 | 
						|
                        bn_mul_part_recursive(&(r[n2]),
 | 
						|
                                              &(a[n]), &(b[n]),
 | 
						|
                                              i, tna - i, tnb - i, p);
 | 
						|
                        break;
 | 
						|
                    } else if (i == tna || i == tnb) {
 | 
						|
                        bn_mul_recursive(&(r[n2]),
 | 
						|
                                         &(a[n]), &(b[n]),
 | 
						|
                                         i, tna - i, tnb - i, p);
 | 
						|
                        break;
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /*-
 | 
						|
     * t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign
 | 
						|
     * r[10] holds (a[0]*b[0])
 | 
						|
     * r[32] holds (b[1]*b[1])
 | 
						|
     */
 | 
						|
 | 
						|
    c1 = (int)(bn_add_words(t, r, &(r[n2]), n2));
 | 
						|
 | 
						|
    if (neg) {                  /* if t[32] is negative */
 | 
						|
        c1 -= (int)(bn_sub_words(&(t[n2]), t, &(t[n2]), n2));
 | 
						|
    } else {
 | 
						|
        /* Might have a carry */
 | 
						|
        c1 += (int)(bn_add_words(&(t[n2]), &(t[n2]), t, n2));
 | 
						|
    }
 | 
						|
 | 
						|
    /*-
 | 
						|
     * t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1])
 | 
						|
     * r[10] holds (a[0]*b[0])
 | 
						|
     * r[32] holds (b[1]*b[1])
 | 
						|
     * c1 holds the carry bits
 | 
						|
     */
 | 
						|
    c1 += (int)(bn_add_words(&(r[n]), &(r[n]), &(t[n2]), n2));
 | 
						|
    if (c1) {
 | 
						|
        p = &(r[n + n2]);
 | 
						|
        lo = *p;
 | 
						|
        ln = (lo + c1) & BN_MASK2;
 | 
						|
        *p = ln;
 | 
						|
 | 
						|
        /*
 | 
						|
         * The overflow will stop before we over write words we should not
 | 
						|
         * overwrite
 | 
						|
         */
 | 
						|
        if (ln < (BN_ULONG)c1) {
 | 
						|
            do {
 | 
						|
                p++;
 | 
						|
                lo = *p;
 | 
						|
                ln = (lo + 1) & BN_MASK2;
 | 
						|
                *p = ln;
 | 
						|
            } while (ln == 0);
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/*-
 | 
						|
 * a and b must be the same size, which is n2.
 | 
						|
 * r needs to be n2 words and t needs to be n2*2
 | 
						|
 */
 | 
						|
void bn_mul_low_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
 | 
						|
                          BN_ULONG *t)
 | 
						|
{
 | 
						|
    int n = n2 / 2;
 | 
						|
 | 
						|
    bn_mul_recursive(r, a, b, n, 0, 0, &(t[0]));
 | 
						|
    if (n >= BN_MUL_LOW_RECURSIVE_SIZE_NORMAL) {
 | 
						|
        bn_mul_low_recursive(&(t[0]), &(a[0]), &(b[n]), n, &(t[n2]));
 | 
						|
        bn_add_words(&(r[n]), &(r[n]), &(t[0]), n);
 | 
						|
        bn_mul_low_recursive(&(t[0]), &(a[n]), &(b[0]), n, &(t[n2]));
 | 
						|
        bn_add_words(&(r[n]), &(r[n]), &(t[0]), n);
 | 
						|
    } else {
 | 
						|
        bn_mul_low_normal(&(t[0]), &(a[0]), &(b[n]), n);
 | 
						|
        bn_mul_low_normal(&(t[n]), &(a[n]), &(b[0]), n);
 | 
						|
        bn_add_words(&(r[n]), &(r[n]), &(t[0]), n);
 | 
						|
        bn_add_words(&(r[n]), &(r[n]), &(t[n]), n);
 | 
						|
    }
 | 
						|
}
 | 
						|
#endif                          /* BN_RECURSION */
 | 
						|
 | 
						|
int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
 | 
						|
{
 | 
						|
    int ret = bn_mul_fixed_top(r, a, b, ctx);
 | 
						|
 | 
						|
    bn_correct_top(r);
 | 
						|
    bn_check_top(r);
 | 
						|
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
int bn_mul_fixed_top(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
 | 
						|
{
 | 
						|
    int ret = 0;
 | 
						|
    int top, al, bl;
 | 
						|
    BIGNUM *rr;
 | 
						|
#if defined(BN_MUL_COMBA) || defined(BN_RECURSION)
 | 
						|
    int i;
 | 
						|
#endif
 | 
						|
#ifdef BN_RECURSION
 | 
						|
    BIGNUM *t = NULL;
 | 
						|
    int j = 0, k;
 | 
						|
#endif
 | 
						|
 | 
						|
    bn_check_top(a);
 | 
						|
    bn_check_top(b);
 | 
						|
    bn_check_top(r);
 | 
						|
 | 
						|
    al = a->top;
 | 
						|
    bl = b->top;
 | 
						|
 | 
						|
    if ((al == 0) || (bl == 0)) {
 | 
						|
        BN_zero(r);
 | 
						|
        return 1;
 | 
						|
    }
 | 
						|
    top = al + bl;
 | 
						|
 | 
						|
    BN_CTX_start(ctx);
 | 
						|
    if ((r == a) || (r == b)) {
 | 
						|
        if ((rr = BN_CTX_get(ctx)) == NULL)
 | 
						|
            goto err;
 | 
						|
    } else
 | 
						|
        rr = r;
 | 
						|
 | 
						|
#if defined(BN_MUL_COMBA) || defined(BN_RECURSION)
 | 
						|
    i = al - bl;
 | 
						|
#endif
 | 
						|
#ifdef BN_MUL_COMBA
 | 
						|
    if (i == 0) {
 | 
						|
# if 0
 | 
						|
        if (al == 4) {
 | 
						|
            if (bn_wexpand(rr, 8) == NULL)
 | 
						|
                goto err;
 | 
						|
            rr->top = 8;
 | 
						|
            bn_mul_comba4(rr->d, a->d, b->d);
 | 
						|
            goto end;
 | 
						|
        }
 | 
						|
# endif
 | 
						|
        if (al == 8) {
 | 
						|
            if (bn_wexpand(rr, 16) == NULL)
 | 
						|
                goto err;
 | 
						|
            rr->top = 16;
 | 
						|
            bn_mul_comba8(rr->d, a->d, b->d);
 | 
						|
            goto end;
 | 
						|
        }
 | 
						|
    }
 | 
						|
#endif                          /* BN_MUL_COMBA */
 | 
						|
#ifdef BN_RECURSION
 | 
						|
    if ((al >= BN_MULL_SIZE_NORMAL) && (bl >= BN_MULL_SIZE_NORMAL)) {
 | 
						|
        if (i >= -1 && i <= 1) {
 | 
						|
            /*
 | 
						|
             * Find out the power of two lower or equal to the longest of the
 | 
						|
             * two numbers
 | 
						|
             */
 | 
						|
            if (i >= 0) {
 | 
						|
                j = BN_num_bits_word((BN_ULONG)al);
 | 
						|
            }
 | 
						|
            if (i == -1) {
 | 
						|
                j = BN_num_bits_word((BN_ULONG)bl);
 | 
						|
            }
 | 
						|
            j = 1 << (j - 1);
 | 
						|
            assert(j <= al || j <= bl);
 | 
						|
            k = j + j;
 | 
						|
            t = BN_CTX_get(ctx);
 | 
						|
            if (t == NULL)
 | 
						|
                goto err;
 | 
						|
            if (al > j || bl > j) {
 | 
						|
                if (bn_wexpand(t, k * 4) == NULL)
 | 
						|
                    goto err;
 | 
						|
                if (bn_wexpand(rr, k * 4) == NULL)
 | 
						|
                    goto err;
 | 
						|
                bn_mul_part_recursive(rr->d, a->d, b->d,
 | 
						|
                                      j, al - j, bl - j, t->d);
 | 
						|
            } else {            /* al <= j || bl <= j */
 | 
						|
 | 
						|
                if (bn_wexpand(t, k * 2) == NULL)
 | 
						|
                    goto err;
 | 
						|
                if (bn_wexpand(rr, k * 2) == NULL)
 | 
						|
                    goto err;
 | 
						|
                bn_mul_recursive(rr->d, a->d, b->d, j, al - j, bl - j, t->d);
 | 
						|
            }
 | 
						|
            rr->top = top;
 | 
						|
            goto end;
 | 
						|
        }
 | 
						|
    }
 | 
						|
#endif                          /* BN_RECURSION */
 | 
						|
    if (bn_wexpand(rr, top) == NULL)
 | 
						|
        goto err;
 | 
						|
    rr->top = top;
 | 
						|
    bn_mul_normal(rr->d, a->d, al, b->d, bl);
 | 
						|
 | 
						|
#if defined(BN_MUL_COMBA) || defined(BN_RECURSION)
 | 
						|
 end:
 | 
						|
#endif
 | 
						|
    rr->neg = a->neg ^ b->neg;
 | 
						|
    rr->flags |= BN_FLG_FIXED_TOP;
 | 
						|
    if (r != rr && BN_copy(r, rr) == NULL)
 | 
						|
        goto err;
 | 
						|
 | 
						|
    ret = 1;
 | 
						|
 err:
 | 
						|
    bn_check_top(r);
 | 
						|
    BN_CTX_end(ctx);
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
void bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b, int nb)
 | 
						|
{
 | 
						|
    BN_ULONG *rr;
 | 
						|
 | 
						|
    if (na < nb) {
 | 
						|
        int itmp;
 | 
						|
        BN_ULONG *ltmp;
 | 
						|
 | 
						|
        itmp = na;
 | 
						|
        na = nb;
 | 
						|
        nb = itmp;
 | 
						|
        ltmp = a;
 | 
						|
        a = b;
 | 
						|
        b = ltmp;
 | 
						|
 | 
						|
    }
 | 
						|
    rr = &(r[na]);
 | 
						|
    if (nb <= 0) {
 | 
						|
        (void)bn_mul_words(r, a, na, 0);
 | 
						|
        return;
 | 
						|
    } else
 | 
						|
        rr[0] = bn_mul_words(r, a, na, b[0]);
 | 
						|
 | 
						|
    for (;;) {
 | 
						|
        if (--nb <= 0)
 | 
						|
            return;
 | 
						|
        rr[1] = bn_mul_add_words(&(r[1]), a, na, b[1]);
 | 
						|
        if (--nb <= 0)
 | 
						|
            return;
 | 
						|
        rr[2] = bn_mul_add_words(&(r[2]), a, na, b[2]);
 | 
						|
        if (--nb <= 0)
 | 
						|
            return;
 | 
						|
        rr[3] = bn_mul_add_words(&(r[3]), a, na, b[3]);
 | 
						|
        if (--nb <= 0)
 | 
						|
            return;
 | 
						|
        rr[4] = bn_mul_add_words(&(r[4]), a, na, b[4]);
 | 
						|
        rr += 4;
 | 
						|
        r += 4;
 | 
						|
        b += 4;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n)
 | 
						|
{
 | 
						|
    bn_mul_words(r, a, n, b[0]);
 | 
						|
 | 
						|
    for (;;) {
 | 
						|
        if (--n <= 0)
 | 
						|
            return;
 | 
						|
        bn_mul_add_words(&(r[1]), a, n, b[1]);
 | 
						|
        if (--n <= 0)
 | 
						|
            return;
 | 
						|
        bn_mul_add_words(&(r[2]), a, n, b[2]);
 | 
						|
        if (--n <= 0)
 | 
						|
            return;
 | 
						|
        bn_mul_add_words(&(r[3]), a, n, b[3]);
 | 
						|
        if (--n <= 0)
 | 
						|
            return;
 | 
						|
        bn_mul_add_words(&(r[4]), a, n, b[4]);
 | 
						|
        r += 4;
 | 
						|
        b += 4;
 | 
						|
    }
 | 
						|
}
 |