mirror of
				https://github.com/ossrs/srs.git
				synced 2025-03-09 15:49:59 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			684 lines
		
	
	
	
		
			19 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			684 lines
		
	
	
	
		
			19 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved.
 | |
|  *
 | |
|  * Licensed under the OpenSSL license (the "License").  You may not use
 | |
|  * this file except in compliance with the License.  You can obtain a copy
 | |
|  * in the file LICENSE in the source distribution or at
 | |
|  * https://www.openssl.org/source/license.html
 | |
|  */
 | |
| 
 | |
| #include <assert.h>
 | |
| #include "internal/cryptlib.h"
 | |
| #include "bn_lcl.h"
 | |
| 
 | |
| #if defined(OPENSSL_NO_ASM) || !defined(OPENSSL_BN_ASM_PART_WORDS)
 | |
| /*
 | |
|  * Here follows specialised variants of bn_add_words() and bn_sub_words().
 | |
|  * They have the property performing operations on arrays of different sizes.
 | |
|  * The sizes of those arrays is expressed through cl, which is the common
 | |
|  * length ( basically, min(len(a),len(b)) ), and dl, which is the delta
 | |
|  * between the two lengths, calculated as len(a)-len(b). All lengths are the
 | |
|  * number of BN_ULONGs...  For the operations that require a result array as
 | |
|  * parameter, it must have the length cl+abs(dl). These functions should
 | |
|  * probably end up in bn_asm.c as soon as there are assembler counterparts
 | |
|  * for the systems that use assembler files.
 | |
|  */
 | |
| 
 | |
| BN_ULONG bn_sub_part_words(BN_ULONG *r,
 | |
|                            const BN_ULONG *a, const BN_ULONG *b,
 | |
|                            int cl, int dl)
 | |
| {
 | |
|     BN_ULONG c, t;
 | |
| 
 | |
|     assert(cl >= 0);
 | |
|     c = bn_sub_words(r, a, b, cl);
 | |
| 
 | |
|     if (dl == 0)
 | |
|         return c;
 | |
| 
 | |
|     r += cl;
 | |
|     a += cl;
 | |
|     b += cl;
 | |
| 
 | |
|     if (dl < 0) {
 | |
|         for (;;) {
 | |
|             t = b[0];
 | |
|             r[0] = (0 - t - c) & BN_MASK2;
 | |
|             if (t != 0)
 | |
|                 c = 1;
 | |
|             if (++dl >= 0)
 | |
|                 break;
 | |
| 
 | |
|             t = b[1];
 | |
|             r[1] = (0 - t - c) & BN_MASK2;
 | |
|             if (t != 0)
 | |
|                 c = 1;
 | |
|             if (++dl >= 0)
 | |
|                 break;
 | |
| 
 | |
|             t = b[2];
 | |
|             r[2] = (0 - t - c) & BN_MASK2;
 | |
|             if (t != 0)
 | |
|                 c = 1;
 | |
|             if (++dl >= 0)
 | |
|                 break;
 | |
| 
 | |
|             t = b[3];
 | |
|             r[3] = (0 - t - c) & BN_MASK2;
 | |
|             if (t != 0)
 | |
|                 c = 1;
 | |
|             if (++dl >= 0)
 | |
|                 break;
 | |
| 
 | |
|             b += 4;
 | |
|             r += 4;
 | |
|         }
 | |
|     } else {
 | |
|         int save_dl = dl;
 | |
|         while (c) {
 | |
|             t = a[0];
 | |
|             r[0] = (t - c) & BN_MASK2;
 | |
|             if (t != 0)
 | |
|                 c = 0;
 | |
|             if (--dl <= 0)
 | |
|                 break;
 | |
| 
 | |
|             t = a[1];
 | |
|             r[1] = (t - c) & BN_MASK2;
 | |
|             if (t != 0)
 | |
|                 c = 0;
 | |
|             if (--dl <= 0)
 | |
|                 break;
 | |
| 
 | |
|             t = a[2];
 | |
|             r[2] = (t - c) & BN_MASK2;
 | |
|             if (t != 0)
 | |
|                 c = 0;
 | |
|             if (--dl <= 0)
 | |
|                 break;
 | |
| 
 | |
|             t = a[3];
 | |
|             r[3] = (t - c) & BN_MASK2;
 | |
|             if (t != 0)
 | |
|                 c = 0;
 | |
|             if (--dl <= 0)
 | |
|                 break;
 | |
| 
 | |
|             save_dl = dl;
 | |
|             a += 4;
 | |
|             r += 4;
 | |
|         }
 | |
|         if (dl > 0) {
 | |
|             if (save_dl > dl) {
 | |
|                 switch (save_dl - dl) {
 | |
|                 case 1:
 | |
|                     r[1] = a[1];
 | |
|                     if (--dl <= 0)
 | |
|                         break;
 | |
|                     /* fall thru */
 | |
|                 case 2:
 | |
|                     r[2] = a[2];
 | |
|                     if (--dl <= 0)
 | |
|                         break;
 | |
|                     /* fall thru */
 | |
|                 case 3:
 | |
|                     r[3] = a[3];
 | |
|                     if (--dl <= 0)
 | |
|                         break;
 | |
|                 }
 | |
|                 a += 4;
 | |
|                 r += 4;
 | |
|             }
 | |
|         }
 | |
|         if (dl > 0) {
 | |
|             for (;;) {
 | |
|                 r[0] = a[0];
 | |
|                 if (--dl <= 0)
 | |
|                     break;
 | |
|                 r[1] = a[1];
 | |
|                 if (--dl <= 0)
 | |
|                     break;
 | |
|                 r[2] = a[2];
 | |
|                 if (--dl <= 0)
 | |
|                     break;
 | |
|                 r[3] = a[3];
 | |
|                 if (--dl <= 0)
 | |
|                     break;
 | |
| 
 | |
|                 a += 4;
 | |
|                 r += 4;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     return c;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef BN_RECURSION
 | |
| /*
 | |
|  * Karatsuba recursive multiplication algorithm (cf. Knuth, The Art of
 | |
|  * Computer Programming, Vol. 2)
 | |
|  */
 | |
| 
 | |
| /*-
 | |
|  * r is 2*n2 words in size,
 | |
|  * a and b are both n2 words in size.
 | |
|  * n2 must be a power of 2.
 | |
|  * We multiply and return the result.
 | |
|  * t must be 2*n2 words in size
 | |
|  * We calculate
 | |
|  * a[0]*b[0]
 | |
|  * a[0]*b[0]+a[1]*b[1]+(a[0]-a[1])*(b[1]-b[0])
 | |
|  * a[1]*b[1]
 | |
|  */
 | |
| /* dnX may not be positive, but n2/2+dnX has to be */
 | |
| void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
 | |
|                       int dna, int dnb, BN_ULONG *t)
 | |
| {
 | |
|     int n = n2 / 2, c1, c2;
 | |
|     int tna = n + dna, tnb = n + dnb;
 | |
|     unsigned int neg, zero;
 | |
|     BN_ULONG ln, lo, *p;
 | |
| 
 | |
| # ifdef BN_MUL_COMBA
 | |
| #  if 0
 | |
|     if (n2 == 4) {
 | |
|         bn_mul_comba4(r, a, b);
 | |
|         return;
 | |
|     }
 | |
| #  endif
 | |
|     /*
 | |
|      * Only call bn_mul_comba 8 if n2 == 8 and the two arrays are complete
 | |
|      * [steve]
 | |
|      */
 | |
|     if (n2 == 8 && dna == 0 && dnb == 0) {
 | |
|         bn_mul_comba8(r, a, b);
 | |
|         return;
 | |
|     }
 | |
| # endif                         /* BN_MUL_COMBA */
 | |
|     /* Else do normal multiply */
 | |
|     if (n2 < BN_MUL_RECURSIVE_SIZE_NORMAL) {
 | |
|         bn_mul_normal(r, a, n2 + dna, b, n2 + dnb);
 | |
|         if ((dna + dnb) < 0)
 | |
|             memset(&r[2 * n2 + dna + dnb], 0,
 | |
|                    sizeof(BN_ULONG) * -(dna + dnb));
 | |
|         return;
 | |
|     }
 | |
|     /* r=(a[0]-a[1])*(b[1]-b[0]) */
 | |
|     c1 = bn_cmp_part_words(a, &(a[n]), tna, n - tna);
 | |
|     c2 = bn_cmp_part_words(&(b[n]), b, tnb, tnb - n);
 | |
|     zero = neg = 0;
 | |
|     switch (c1 * 3 + c2) {
 | |
|     case -4:
 | |
|         bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */
 | |
|         bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */
 | |
|         break;
 | |
|     case -3:
 | |
|         zero = 1;
 | |
|         break;
 | |
|     case -2:
 | |
|         bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */
 | |
|         bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n); /* + */
 | |
|         neg = 1;
 | |
|         break;
 | |
|     case -1:
 | |
|     case 0:
 | |
|     case 1:
 | |
|         zero = 1;
 | |
|         break;
 | |
|     case 2:
 | |
|         bn_sub_part_words(t, a, &(a[n]), tna, n - tna); /* + */
 | |
|         bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */
 | |
|         neg = 1;
 | |
|         break;
 | |
|     case 3:
 | |
|         zero = 1;
 | |
|         break;
 | |
|     case 4:
 | |
|         bn_sub_part_words(t, a, &(a[n]), tna, n - tna);
 | |
|         bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n);
 | |
|         break;
 | |
|     }
 | |
| 
 | |
| # ifdef BN_MUL_COMBA
 | |
|     if (n == 4 && dna == 0 && dnb == 0) { /* XXX: bn_mul_comba4 could take
 | |
|                                            * extra args to do this well */
 | |
|         if (!zero)
 | |
|             bn_mul_comba4(&(t[n2]), t, &(t[n]));
 | |
|         else
 | |
|             memset(&t[n2], 0, sizeof(*t) * 8);
 | |
| 
 | |
|         bn_mul_comba4(r, a, b);
 | |
|         bn_mul_comba4(&(r[n2]), &(a[n]), &(b[n]));
 | |
|     } else if (n == 8 && dna == 0 && dnb == 0) { /* XXX: bn_mul_comba8 could
 | |
|                                                   * take extra args to do
 | |
|                                                   * this well */
 | |
|         if (!zero)
 | |
|             bn_mul_comba8(&(t[n2]), t, &(t[n]));
 | |
|         else
 | |
|             memset(&t[n2], 0, sizeof(*t) * 16);
 | |
| 
 | |
|         bn_mul_comba8(r, a, b);
 | |
|         bn_mul_comba8(&(r[n2]), &(a[n]), &(b[n]));
 | |
|     } else
 | |
| # endif                         /* BN_MUL_COMBA */
 | |
|     {
 | |
|         p = &(t[n2 * 2]);
 | |
|         if (!zero)
 | |
|             bn_mul_recursive(&(t[n2]), t, &(t[n]), n, 0, 0, p);
 | |
|         else
 | |
|             memset(&t[n2], 0, sizeof(*t) * n2);
 | |
|         bn_mul_recursive(r, a, b, n, 0, 0, p);
 | |
|         bn_mul_recursive(&(r[n2]), &(a[n]), &(b[n]), n, dna, dnb, p);
 | |
|     }
 | |
| 
 | |
|     /*-
 | |
|      * t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign
 | |
|      * r[10] holds (a[0]*b[0])
 | |
|      * r[32] holds (b[1]*b[1])
 | |
|      */
 | |
| 
 | |
|     c1 = (int)(bn_add_words(t, r, &(r[n2]), n2));
 | |
| 
 | |
|     if (neg) {                  /* if t[32] is negative */
 | |
|         c1 -= (int)(bn_sub_words(&(t[n2]), t, &(t[n2]), n2));
 | |
|     } else {
 | |
|         /* Might have a carry */
 | |
|         c1 += (int)(bn_add_words(&(t[n2]), &(t[n2]), t, n2));
 | |
|     }
 | |
| 
 | |
|     /*-
 | |
|      * t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1])
 | |
|      * r[10] holds (a[0]*b[0])
 | |
|      * r[32] holds (b[1]*b[1])
 | |
|      * c1 holds the carry bits
 | |
|      */
 | |
|     c1 += (int)(bn_add_words(&(r[n]), &(r[n]), &(t[n2]), n2));
 | |
|     if (c1) {
 | |
|         p = &(r[n + n2]);
 | |
|         lo = *p;
 | |
|         ln = (lo + c1) & BN_MASK2;
 | |
|         *p = ln;
 | |
| 
 | |
|         /*
 | |
|          * The overflow will stop before we over write words we should not
 | |
|          * overwrite
 | |
|          */
 | |
|         if (ln < (BN_ULONG)c1) {
 | |
|             do {
 | |
|                 p++;
 | |
|                 lo = *p;
 | |
|                 ln = (lo + 1) & BN_MASK2;
 | |
|                 *p = ln;
 | |
|             } while (ln == 0);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * n+tn is the word length t needs to be n*4 is size, as does r
 | |
|  */
 | |
| /* tnX may not be negative but less than n */
 | |
| void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n,
 | |
|                            int tna, int tnb, BN_ULONG *t)
 | |
| {
 | |
|     int i, j, n2 = n * 2;
 | |
|     int c1, c2, neg;
 | |
|     BN_ULONG ln, lo, *p;
 | |
| 
 | |
|     if (n < 8) {
 | |
|         bn_mul_normal(r, a, n + tna, b, n + tnb);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     /* r=(a[0]-a[1])*(b[1]-b[0]) */
 | |
|     c1 = bn_cmp_part_words(a, &(a[n]), tna, n - tna);
 | |
|     c2 = bn_cmp_part_words(&(b[n]), b, tnb, tnb - n);
 | |
|     neg = 0;
 | |
|     switch (c1 * 3 + c2) {
 | |
|     case -4:
 | |
|         bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */
 | |
|         bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */
 | |
|         break;
 | |
|     case -3:
 | |
|     case -2:
 | |
|         bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */
 | |
|         bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n); /* + */
 | |
|         neg = 1;
 | |
|         break;
 | |
|     case -1:
 | |
|     case 0:
 | |
|     case 1:
 | |
|     case 2:
 | |
|         bn_sub_part_words(t, a, &(a[n]), tna, n - tna); /* + */
 | |
|         bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */
 | |
|         neg = 1;
 | |
|         break;
 | |
|     case 3:
 | |
|     case 4:
 | |
|         bn_sub_part_words(t, a, &(a[n]), tna, n - tna);
 | |
|         bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n);
 | |
|         break;
 | |
|     }
 | |
|     /*
 | |
|      * The zero case isn't yet implemented here. The speedup would probably
 | |
|      * be negligible.
 | |
|      */
 | |
| # if 0
 | |
|     if (n == 4) {
 | |
|         bn_mul_comba4(&(t[n2]), t, &(t[n]));
 | |
|         bn_mul_comba4(r, a, b);
 | |
|         bn_mul_normal(&(r[n2]), &(a[n]), tn, &(b[n]), tn);
 | |
|         memset(&r[n2 + tn * 2], 0, sizeof(*r) * (n2 - tn * 2));
 | |
|     } else
 | |
| # endif
 | |
|     if (n == 8) {
 | |
|         bn_mul_comba8(&(t[n2]), t, &(t[n]));
 | |
|         bn_mul_comba8(r, a, b);
 | |
|         bn_mul_normal(&(r[n2]), &(a[n]), tna, &(b[n]), tnb);
 | |
|         memset(&r[n2 + tna + tnb], 0, sizeof(*r) * (n2 - tna - tnb));
 | |
|     } else {
 | |
|         p = &(t[n2 * 2]);
 | |
|         bn_mul_recursive(&(t[n2]), t, &(t[n]), n, 0, 0, p);
 | |
|         bn_mul_recursive(r, a, b, n, 0, 0, p);
 | |
|         i = n / 2;
 | |
|         /*
 | |
|          * If there is only a bottom half to the number, just do it
 | |
|          */
 | |
|         if (tna > tnb)
 | |
|             j = tna - i;
 | |
|         else
 | |
|             j = tnb - i;
 | |
|         if (j == 0) {
 | |
|             bn_mul_recursive(&(r[n2]), &(a[n]), &(b[n]),
 | |
|                              i, tna - i, tnb - i, p);
 | |
|             memset(&r[n2 + i * 2], 0, sizeof(*r) * (n2 - i * 2));
 | |
|         } else if (j > 0) {     /* eg, n == 16, i == 8 and tn == 11 */
 | |
|             bn_mul_part_recursive(&(r[n2]), &(a[n]), &(b[n]),
 | |
|                                   i, tna - i, tnb - i, p);
 | |
|             memset(&(r[n2 + tna + tnb]), 0,
 | |
|                    sizeof(BN_ULONG) * (n2 - tna - tnb));
 | |
|         } else {                /* (j < 0) eg, n == 16, i == 8 and tn == 5 */
 | |
| 
 | |
|             memset(&r[n2], 0, sizeof(*r) * n2);
 | |
|             if (tna < BN_MUL_RECURSIVE_SIZE_NORMAL
 | |
|                 && tnb < BN_MUL_RECURSIVE_SIZE_NORMAL) {
 | |
|                 bn_mul_normal(&(r[n2]), &(a[n]), tna, &(b[n]), tnb);
 | |
|             } else {
 | |
|                 for (;;) {
 | |
|                     i /= 2;
 | |
|                     /*
 | |
|                      * these simplified conditions work exclusively because
 | |
|                      * difference between tna and tnb is 1 or 0
 | |
|                      */
 | |
|                     if (i < tna || i < tnb) {
 | |
|                         bn_mul_part_recursive(&(r[n2]),
 | |
|                                               &(a[n]), &(b[n]),
 | |
|                                               i, tna - i, tnb - i, p);
 | |
|                         break;
 | |
|                     } else if (i == tna || i == tnb) {
 | |
|                         bn_mul_recursive(&(r[n2]),
 | |
|                                          &(a[n]), &(b[n]),
 | |
|                                          i, tna - i, tnb - i, p);
 | |
|                         break;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /*-
 | |
|      * t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign
 | |
|      * r[10] holds (a[0]*b[0])
 | |
|      * r[32] holds (b[1]*b[1])
 | |
|      */
 | |
| 
 | |
|     c1 = (int)(bn_add_words(t, r, &(r[n2]), n2));
 | |
| 
 | |
|     if (neg) {                  /* if t[32] is negative */
 | |
|         c1 -= (int)(bn_sub_words(&(t[n2]), t, &(t[n2]), n2));
 | |
|     } else {
 | |
|         /* Might have a carry */
 | |
|         c1 += (int)(bn_add_words(&(t[n2]), &(t[n2]), t, n2));
 | |
|     }
 | |
| 
 | |
|     /*-
 | |
|      * t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1])
 | |
|      * r[10] holds (a[0]*b[0])
 | |
|      * r[32] holds (b[1]*b[1])
 | |
|      * c1 holds the carry bits
 | |
|      */
 | |
|     c1 += (int)(bn_add_words(&(r[n]), &(r[n]), &(t[n2]), n2));
 | |
|     if (c1) {
 | |
|         p = &(r[n + n2]);
 | |
|         lo = *p;
 | |
|         ln = (lo + c1) & BN_MASK2;
 | |
|         *p = ln;
 | |
| 
 | |
|         /*
 | |
|          * The overflow will stop before we over write words we should not
 | |
|          * overwrite
 | |
|          */
 | |
|         if (ln < (BN_ULONG)c1) {
 | |
|             do {
 | |
|                 p++;
 | |
|                 lo = *p;
 | |
|                 ln = (lo + 1) & BN_MASK2;
 | |
|                 *p = ln;
 | |
|             } while (ln == 0);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*-
 | |
|  * a and b must be the same size, which is n2.
 | |
|  * r needs to be n2 words and t needs to be n2*2
 | |
|  */
 | |
| void bn_mul_low_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
 | |
|                           BN_ULONG *t)
 | |
| {
 | |
|     int n = n2 / 2;
 | |
| 
 | |
|     bn_mul_recursive(r, a, b, n, 0, 0, &(t[0]));
 | |
|     if (n >= BN_MUL_LOW_RECURSIVE_SIZE_NORMAL) {
 | |
|         bn_mul_low_recursive(&(t[0]), &(a[0]), &(b[n]), n, &(t[n2]));
 | |
|         bn_add_words(&(r[n]), &(r[n]), &(t[0]), n);
 | |
|         bn_mul_low_recursive(&(t[0]), &(a[n]), &(b[0]), n, &(t[n2]));
 | |
|         bn_add_words(&(r[n]), &(r[n]), &(t[0]), n);
 | |
|     } else {
 | |
|         bn_mul_low_normal(&(t[0]), &(a[0]), &(b[n]), n);
 | |
|         bn_mul_low_normal(&(t[n]), &(a[n]), &(b[0]), n);
 | |
|         bn_add_words(&(r[n]), &(r[n]), &(t[0]), n);
 | |
|         bn_add_words(&(r[n]), &(r[n]), &(t[n]), n);
 | |
|     }
 | |
| }
 | |
| #endif                          /* BN_RECURSION */
 | |
| 
 | |
| int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
 | |
| {
 | |
|     int ret = bn_mul_fixed_top(r, a, b, ctx);
 | |
| 
 | |
|     bn_correct_top(r);
 | |
|     bn_check_top(r);
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| int bn_mul_fixed_top(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
 | |
| {
 | |
|     int ret = 0;
 | |
|     int top, al, bl;
 | |
|     BIGNUM *rr;
 | |
| #if defined(BN_MUL_COMBA) || defined(BN_RECURSION)
 | |
|     int i;
 | |
| #endif
 | |
| #ifdef BN_RECURSION
 | |
|     BIGNUM *t = NULL;
 | |
|     int j = 0, k;
 | |
| #endif
 | |
| 
 | |
|     bn_check_top(a);
 | |
|     bn_check_top(b);
 | |
|     bn_check_top(r);
 | |
| 
 | |
|     al = a->top;
 | |
|     bl = b->top;
 | |
| 
 | |
|     if ((al == 0) || (bl == 0)) {
 | |
|         BN_zero(r);
 | |
|         return 1;
 | |
|     }
 | |
|     top = al + bl;
 | |
| 
 | |
|     BN_CTX_start(ctx);
 | |
|     if ((r == a) || (r == b)) {
 | |
|         if ((rr = BN_CTX_get(ctx)) == NULL)
 | |
|             goto err;
 | |
|     } else
 | |
|         rr = r;
 | |
| 
 | |
| #if defined(BN_MUL_COMBA) || defined(BN_RECURSION)
 | |
|     i = al - bl;
 | |
| #endif
 | |
| #ifdef BN_MUL_COMBA
 | |
|     if (i == 0) {
 | |
| # if 0
 | |
|         if (al == 4) {
 | |
|             if (bn_wexpand(rr, 8) == NULL)
 | |
|                 goto err;
 | |
|             rr->top = 8;
 | |
|             bn_mul_comba4(rr->d, a->d, b->d);
 | |
|             goto end;
 | |
|         }
 | |
| # endif
 | |
|         if (al == 8) {
 | |
|             if (bn_wexpand(rr, 16) == NULL)
 | |
|                 goto err;
 | |
|             rr->top = 16;
 | |
|             bn_mul_comba8(rr->d, a->d, b->d);
 | |
|             goto end;
 | |
|         }
 | |
|     }
 | |
| #endif                          /* BN_MUL_COMBA */
 | |
| #ifdef BN_RECURSION
 | |
|     if ((al >= BN_MULL_SIZE_NORMAL) && (bl >= BN_MULL_SIZE_NORMAL)) {
 | |
|         if (i >= -1 && i <= 1) {
 | |
|             /*
 | |
|              * Find out the power of two lower or equal to the longest of the
 | |
|              * two numbers
 | |
|              */
 | |
|             if (i >= 0) {
 | |
|                 j = BN_num_bits_word((BN_ULONG)al);
 | |
|             }
 | |
|             if (i == -1) {
 | |
|                 j = BN_num_bits_word((BN_ULONG)bl);
 | |
|             }
 | |
|             j = 1 << (j - 1);
 | |
|             assert(j <= al || j <= bl);
 | |
|             k = j + j;
 | |
|             t = BN_CTX_get(ctx);
 | |
|             if (t == NULL)
 | |
|                 goto err;
 | |
|             if (al > j || bl > j) {
 | |
|                 if (bn_wexpand(t, k * 4) == NULL)
 | |
|                     goto err;
 | |
|                 if (bn_wexpand(rr, k * 4) == NULL)
 | |
|                     goto err;
 | |
|                 bn_mul_part_recursive(rr->d, a->d, b->d,
 | |
|                                       j, al - j, bl - j, t->d);
 | |
|             } else {            /* al <= j || bl <= j */
 | |
| 
 | |
|                 if (bn_wexpand(t, k * 2) == NULL)
 | |
|                     goto err;
 | |
|                 if (bn_wexpand(rr, k * 2) == NULL)
 | |
|                     goto err;
 | |
|                 bn_mul_recursive(rr->d, a->d, b->d, j, al - j, bl - j, t->d);
 | |
|             }
 | |
|             rr->top = top;
 | |
|             goto end;
 | |
|         }
 | |
|     }
 | |
| #endif                          /* BN_RECURSION */
 | |
|     if (bn_wexpand(rr, top) == NULL)
 | |
|         goto err;
 | |
|     rr->top = top;
 | |
|     bn_mul_normal(rr->d, a->d, al, b->d, bl);
 | |
| 
 | |
| #if defined(BN_MUL_COMBA) || defined(BN_RECURSION)
 | |
|  end:
 | |
| #endif
 | |
|     rr->neg = a->neg ^ b->neg;
 | |
|     rr->flags |= BN_FLG_FIXED_TOP;
 | |
|     if (r != rr && BN_copy(r, rr) == NULL)
 | |
|         goto err;
 | |
| 
 | |
|     ret = 1;
 | |
|  err:
 | |
|     bn_check_top(r);
 | |
|     BN_CTX_end(ctx);
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| void bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b, int nb)
 | |
| {
 | |
|     BN_ULONG *rr;
 | |
| 
 | |
|     if (na < nb) {
 | |
|         int itmp;
 | |
|         BN_ULONG *ltmp;
 | |
| 
 | |
|         itmp = na;
 | |
|         na = nb;
 | |
|         nb = itmp;
 | |
|         ltmp = a;
 | |
|         a = b;
 | |
|         b = ltmp;
 | |
| 
 | |
|     }
 | |
|     rr = &(r[na]);
 | |
|     if (nb <= 0) {
 | |
|         (void)bn_mul_words(r, a, na, 0);
 | |
|         return;
 | |
|     } else
 | |
|         rr[0] = bn_mul_words(r, a, na, b[0]);
 | |
| 
 | |
|     for (;;) {
 | |
|         if (--nb <= 0)
 | |
|             return;
 | |
|         rr[1] = bn_mul_add_words(&(r[1]), a, na, b[1]);
 | |
|         if (--nb <= 0)
 | |
|             return;
 | |
|         rr[2] = bn_mul_add_words(&(r[2]), a, na, b[2]);
 | |
|         if (--nb <= 0)
 | |
|             return;
 | |
|         rr[3] = bn_mul_add_words(&(r[3]), a, na, b[3]);
 | |
|         if (--nb <= 0)
 | |
|             return;
 | |
|         rr[4] = bn_mul_add_words(&(r[4]), a, na, b[4]);
 | |
|         rr += 4;
 | |
|         r += 4;
 | |
|         b += 4;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n)
 | |
| {
 | |
|     bn_mul_words(r, a, n, b[0]);
 | |
| 
 | |
|     for (;;) {
 | |
|         if (--n <= 0)
 | |
|             return;
 | |
|         bn_mul_add_words(&(r[1]), a, n, b[1]);
 | |
|         if (--n <= 0)
 | |
|             return;
 | |
|         bn_mul_add_words(&(r[2]), a, n, b[2]);
 | |
|         if (--n <= 0)
 | |
|             return;
 | |
|         bn_mul_add_words(&(r[3]), a, n, b[3]);
 | |
|         if (--n <= 0)
 | |
|             return;
 | |
|         bn_mul_add_words(&(r[4]), a, n, b[4]);
 | |
|         r += 4;
 | |
|         b += 4;
 | |
|     }
 | |
| }
 |