mirror of
				https://github.com/ossrs/srs.git
				synced 2025-03-09 15:49:59 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			882 lines
		
	
	
	
		
			31 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			882 lines
		
	
	
	
		
			31 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2012 Andrew D'Addesio
 | |
|  * Copyright (c) 2013-2014 Mozilla Corporation
 | |
|  *
 | |
|  * This file is part of FFmpeg.
 | |
|  *
 | |
|  * FFmpeg is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2.1 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * FFmpeg is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with FFmpeg; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * @file
 | |
|  * Opus SILK decoder
 | |
|  */
 | |
| 
 | |
| #include <stdint.h>
 | |
| 
 | |
| #include "opus.h"
 | |
| #include "opustab.h"
 | |
| 
 | |
| typedef struct SilkFrame {
 | |
|     int coded;
 | |
|     int log_gain;
 | |
|     int16_t nlsf[16];
 | |
|     float    lpc[16];
 | |
| 
 | |
|     float output     [2 * SILK_HISTORY];
 | |
|     float lpc_history[2 * SILK_HISTORY];
 | |
|     int primarylag;
 | |
| 
 | |
|     int prev_voiced;
 | |
| } SilkFrame;
 | |
| 
 | |
| struct SilkContext {
 | |
|     AVCodecContext *avctx;
 | |
|     int output_channels;
 | |
| 
 | |
|     int midonly;
 | |
|     int subframes;
 | |
|     int sflength;
 | |
|     int flength;
 | |
|     int nlsf_interp_factor;
 | |
| 
 | |
|     enum OpusBandwidth bandwidth;
 | |
|     int wb;
 | |
| 
 | |
|     SilkFrame frame[2];
 | |
|     float prev_stereo_weights[2];
 | |
|     float stereo_weights[2];
 | |
| 
 | |
|     int prev_coded_channels;
 | |
| };
 | |
| 
 | |
| static inline void silk_stabilize_lsf(int16_t nlsf[16], int order, const uint16_t min_delta[17])
 | |
| {
 | |
|     int pass, i;
 | |
|     for (pass = 0; pass < 20; pass++) {
 | |
|         int k, min_diff = 0;
 | |
|         for (i = 0; i < order+1; i++) {
 | |
|             int low  = i != 0     ? nlsf[i-1] : 0;
 | |
|             int high = i != order ? nlsf[i]   : 32768;
 | |
|             int diff = (high - low) - (min_delta[i]);
 | |
| 
 | |
|             if (diff < min_diff) {
 | |
|                 min_diff = diff;
 | |
|                 k = i;
 | |
| 
 | |
|                 if (pass == 20)
 | |
|                     break;
 | |
|             }
 | |
|         }
 | |
|         if (min_diff == 0) /* no issues; stabilized */
 | |
|             return;
 | |
| 
 | |
|         /* wiggle one or two LSFs */
 | |
|         if (k == 0) {
 | |
|             /* repel away from lower bound */
 | |
|             nlsf[0] = min_delta[0];
 | |
|         } else if (k == order) {
 | |
|             /* repel away from higher bound */
 | |
|             nlsf[order-1] = 32768 - min_delta[order];
 | |
|         } else {
 | |
|             /* repel away from current position */
 | |
|             int min_center = 0, max_center = 32768, center_val;
 | |
| 
 | |
|             /* lower extent */
 | |
|             for (i = 0; i < k; i++)
 | |
|                 min_center += min_delta[i];
 | |
|             min_center += min_delta[k] >> 1;
 | |
| 
 | |
|             /* upper extent */
 | |
|             for (i = order; i > k; i--)
 | |
|                 max_center -= min_delta[i];
 | |
|             max_center -= min_delta[k] >> 1;
 | |
| 
 | |
|             /* move apart */
 | |
|             center_val = nlsf[k - 1] + nlsf[k];
 | |
|             center_val = (center_val >> 1) + (center_val & 1); // rounded divide by 2
 | |
|             center_val = FFMIN(max_center, FFMAX(min_center, center_val));
 | |
| 
 | |
|             nlsf[k - 1] = center_val - (min_delta[k] >> 1);
 | |
|             nlsf[k]     = nlsf[k - 1] + min_delta[k];
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* resort to the fall-back method, the standard method for LSF stabilization */
 | |
| 
 | |
|     /* sort; as the LSFs should be nearly sorted, use insertion sort */
 | |
|     for (i = 1; i < order; i++) {
 | |
|         int j, value = nlsf[i];
 | |
|         for (j = i - 1; j >= 0 && nlsf[j] > value; j--)
 | |
|             nlsf[j + 1] = nlsf[j];
 | |
|         nlsf[j + 1] = value;
 | |
|     }
 | |
| 
 | |
|     /* push forwards to increase distance */
 | |
|     if (nlsf[0] < min_delta[0])
 | |
|         nlsf[0] = min_delta[0];
 | |
|     for (i = 1; i < order; i++)
 | |
|         nlsf[i] = FFMAX(nlsf[i], FFMIN(nlsf[i - 1] + min_delta[i], 32767));
 | |
| 
 | |
|     /* push backwards to increase distance */
 | |
|     if (nlsf[order-1] > 32768 - min_delta[order])
 | |
|         nlsf[order-1] = 32768 - min_delta[order];
 | |
|     for (i = order-2; i >= 0; i--)
 | |
|         if (nlsf[i] > nlsf[i + 1] - min_delta[i+1])
 | |
|             nlsf[i] = nlsf[i + 1] - min_delta[i+1];
 | |
| 
 | |
|     return;
 | |
| }
 | |
| 
 | |
| static inline int silk_is_lpc_stable(const int16_t lpc[16], int order)
 | |
| {
 | |
|     int k, j, DC_resp = 0;
 | |
|     int32_t lpc32[2][16];       // Q24
 | |
|     int totalinvgain = 1 << 30; // 1.0 in Q30
 | |
|     int32_t *row = lpc32[0], *prevrow;
 | |
| 
 | |
|     /* initialize the first row for the Levinson recursion */
 | |
|     for (k = 0; k < order; k++) {
 | |
|         DC_resp += lpc[k];
 | |
|         row[k] = lpc[k] * 4096;
 | |
|     }
 | |
| 
 | |
|     if (DC_resp >= 4096)
 | |
|         return 0;
 | |
| 
 | |
|     /* check if prediction gain pushes any coefficients too far */
 | |
|     for (k = order - 1; 1; k--) {
 | |
|         int rc;      // Q31; reflection coefficient
 | |
|         int gaindiv; // Q30; inverse of the gain (the divisor)
 | |
|         int gain;    // gain for this reflection coefficient
 | |
|         int fbits;   // fractional bits used for the gain
 | |
|         int error;   // Q29; estimate of the error of our partial estimate of 1/gaindiv
 | |
| 
 | |
|         if (FFABS(row[k]) > 16773022)
 | |
|             return 0;
 | |
| 
 | |
|         rc      = -(row[k] * 128);
 | |
|         gaindiv = (1 << 30) - MULH(rc, rc);
 | |
| 
 | |
|         totalinvgain = MULH(totalinvgain, gaindiv) << 2;
 | |
|         if (k == 0)
 | |
|             return (totalinvgain >= 107374);
 | |
| 
 | |
|         /* approximate 1.0/gaindiv */
 | |
|         fbits = opus_ilog(gaindiv);
 | |
|         gain  = ((1 << 29) - 1) / (gaindiv >> (fbits + 1 - 16)); // Q<fbits-16>
 | |
|         error = (1 << 29) - MULL(gaindiv << (15 + 16 - fbits), gain, 16);
 | |
|         gain  = ((gain << 16) + (error * gain >> 13));
 | |
| 
 | |
|         /* switch to the next row of the LPC coefficients */
 | |
|         prevrow = row;
 | |
|         row = lpc32[k & 1];
 | |
| 
 | |
|         for (j = 0; j < k; j++) {
 | |
|             int x = av_sat_sub32(prevrow[j], ROUND_MULL(prevrow[k - j - 1], rc, 31));
 | |
|             int64_t tmp = ROUND_MULL(x, gain, fbits);
 | |
| 
 | |
|             /* per RFC 8251 section 6, if this calculation overflows, the filter
 | |
|                is considered unstable. */
 | |
|             if (tmp < INT32_MIN || tmp > INT32_MAX)
 | |
|                 return 0;
 | |
| 
 | |
|             row[j] = (int32_t)tmp;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void silk_lsp2poly(const int32_t lsp[16], int32_t pol[16], int half_order)
 | |
| {
 | |
|     int i, j;
 | |
| 
 | |
|     pol[0] = 65536; // 1.0 in Q16
 | |
|     pol[1] = -lsp[0];
 | |
| 
 | |
|     for (i = 1; i < half_order; i++) {
 | |
|         pol[i + 1] = pol[i - 1] * 2 - ROUND_MULL(lsp[2 * i], pol[i], 16);
 | |
|         for (j = i; j > 1; j--)
 | |
|             pol[j] += pol[j - 2] - ROUND_MULL(lsp[2 * i], pol[j - 1], 16);
 | |
| 
 | |
|         pol[1] -= lsp[2 * i];
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void silk_lsf2lpc(const int16_t nlsf[16], float lpcf[16], int order)
 | |
| {
 | |
|     int i, k;
 | |
|     int32_t lsp[16];     // Q17; 2*cos(LSF)
 | |
|     int32_t p[9], q[9];  // Q16
 | |
|     int32_t lpc32[16];   // Q17
 | |
|     int16_t lpc[16];     // Q12
 | |
| 
 | |
|     /* convert the LSFs to LSPs, i.e. 2*cos(LSF) */
 | |
|     for (k = 0; k < order; k++) {
 | |
|         int index = nlsf[k] >> 8;
 | |
|         int offset = nlsf[k] & 255;
 | |
|         int k2 = (order == 10) ? ff_silk_lsf_ordering_nbmb[k] : ff_silk_lsf_ordering_wb[k];
 | |
| 
 | |
|         /* interpolate and round */
 | |
|         lsp[k2]  = ff_silk_cosine[index] * 256;
 | |
|         lsp[k2] += (ff_silk_cosine[index + 1] - ff_silk_cosine[index]) * offset;
 | |
|         lsp[k2]  = (lsp[k2] + 4) >> 3;
 | |
|     }
 | |
| 
 | |
|     silk_lsp2poly(lsp    , p, order >> 1);
 | |
|     silk_lsp2poly(lsp + 1, q, order >> 1);
 | |
| 
 | |
|     /* reconstruct A(z) */
 | |
|     for (k = 0; k < order>>1; k++) {
 | |
|         int32_t p_tmp = p[k + 1] + p[k];
 | |
|         int32_t q_tmp = q[k + 1] - q[k];
 | |
|         lpc32[k]         = -q_tmp - p_tmp;
 | |
|         lpc32[order-k-1] =  q_tmp - p_tmp;
 | |
|     }
 | |
| 
 | |
|     /* limit the range of the LPC coefficients to each fit within an int16_t */
 | |
|     for (i = 0; i < 10; i++) {
 | |
|         int j;
 | |
|         unsigned int maxabs = 0;
 | |
|         for (j = 0, k = 0; j < order; j++) {
 | |
|             unsigned int x = FFABS(lpc32[k]);
 | |
|             if (x > maxabs) {
 | |
|                 maxabs = x; // Q17
 | |
|                 k      = j;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         maxabs = (maxabs + 16) >> 5; // convert to Q12
 | |
| 
 | |
|         if (maxabs > 32767) {
 | |
|             /* perform bandwidth expansion */
 | |
|             unsigned int chirp, chirp_base; // Q16
 | |
|             maxabs = FFMIN(maxabs, 163838); // anything above this overflows chirp's numerator
 | |
|             chirp_base = chirp = 65470 - ((maxabs - 32767) << 14) / ((maxabs * (k+1)) >> 2);
 | |
| 
 | |
|             for (k = 0; k < order; k++) {
 | |
|                 lpc32[k] = ROUND_MULL(lpc32[k], chirp, 16);
 | |
|                 chirp    = (chirp_base * chirp + 32768) >> 16;
 | |
|             }
 | |
|         } else break;
 | |
|     }
 | |
| 
 | |
|     if (i == 10) {
 | |
|         /* time's up: just clamp */
 | |
|         for (k = 0; k < order; k++) {
 | |
|             int x = (lpc32[k] + 16) >> 5;
 | |
|             lpc[k] = av_clip_int16(x);
 | |
|             lpc32[k] = lpc[k] << 5; // shortcut mandated by the spec; drops lower 5 bits
 | |
|         }
 | |
|     } else {
 | |
|         for (k = 0; k < order; k++)
 | |
|             lpc[k] = (lpc32[k] + 16) >> 5;
 | |
|     }
 | |
| 
 | |
|     /* if the prediction gain causes the LPC filter to become unstable,
 | |
|        apply further bandwidth expansion on the Q17 coefficients */
 | |
|     for (i = 1; i <= 16 && !silk_is_lpc_stable(lpc, order); i++) {
 | |
|         unsigned int chirp, chirp_base;
 | |
|         chirp_base = chirp = 65536 - (1 << i);
 | |
| 
 | |
|         for (k = 0; k < order; k++) {
 | |
|             lpc32[k] = ROUND_MULL(lpc32[k], chirp, 16);
 | |
|             lpc[k]   = (lpc32[k] + 16) >> 5;
 | |
|             chirp    = (chirp_base * chirp + 32768) >> 16;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < order; i++)
 | |
|         lpcf[i] = lpc[i] / 4096.0f;
 | |
| }
 | |
| 
 | |
| static inline void silk_decode_lpc(SilkContext *s, SilkFrame *frame,
 | |
|                                    OpusRangeCoder *rc,
 | |
|                                    float lpc_leadin[16], float lpc[16],
 | |
|                                    int *lpc_order, int *has_lpc_leadin, int voiced)
 | |
| {
 | |
|     int i;
 | |
|     int order;                   // order of the LP polynomial; 10 for NB/MB and 16 for WB
 | |
|     int8_t  lsf_i1, lsf_i2[16];  // stage-1 and stage-2 codebook indices
 | |
|     int16_t lsf_res[16];         // residual as a Q10 value
 | |
|     int16_t nlsf[16];            // Q15
 | |
| 
 | |
|     *lpc_order = order = s->wb ? 16 : 10;
 | |
| 
 | |
|     /* obtain LSF stage-1 and stage-2 indices */
 | |
|     lsf_i1 = ff_opus_rc_dec_cdf(rc, ff_silk_model_lsf_s1[s->wb][voiced]);
 | |
|     for (i = 0; i < order; i++) {
 | |
|         int index = s->wb ? ff_silk_lsf_s2_model_sel_wb  [lsf_i1][i] :
 | |
|                             ff_silk_lsf_s2_model_sel_nbmb[lsf_i1][i];
 | |
|         lsf_i2[i] = ff_opus_rc_dec_cdf(rc, ff_silk_model_lsf_s2[index]) - 4;
 | |
|         if (lsf_i2[i] == -4)
 | |
|             lsf_i2[i] -= ff_opus_rc_dec_cdf(rc, ff_silk_model_lsf_s2_ext);
 | |
|         else if (lsf_i2[i] == 4)
 | |
|             lsf_i2[i] += ff_opus_rc_dec_cdf(rc, ff_silk_model_lsf_s2_ext);
 | |
|     }
 | |
| 
 | |
|     /* reverse the backwards-prediction step */
 | |
|     for (i = order - 1; i >= 0; i--) {
 | |
|         int qstep = s->wb ? 9830 : 11796;
 | |
| 
 | |
|         lsf_res[i] = lsf_i2[i] * 1024;
 | |
|         if (lsf_i2[i] < 0)      lsf_res[i] += 102;
 | |
|         else if (lsf_i2[i] > 0) lsf_res[i] -= 102;
 | |
|         lsf_res[i] = (lsf_res[i] * qstep) >> 16;
 | |
| 
 | |
|         if (i + 1 < order) {
 | |
|             int weight = s->wb ? ff_silk_lsf_pred_weights_wb  [ff_silk_lsf_weight_sel_wb  [lsf_i1][i]][i] :
 | |
|                                  ff_silk_lsf_pred_weights_nbmb[ff_silk_lsf_weight_sel_nbmb[lsf_i1][i]][i];
 | |
|             lsf_res[i] += (lsf_res[i+1] * weight) >> 8;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* reconstruct the NLSF coefficients from the supplied indices */
 | |
|     for (i = 0; i < order; i++) {
 | |
|         const uint8_t * codebook = s->wb ? ff_silk_lsf_codebook_wb  [lsf_i1] :
 | |
|                                            ff_silk_lsf_codebook_nbmb[lsf_i1];
 | |
|         int cur, prev, next, weight_sq, weight, ipart, fpart, y, value;
 | |
| 
 | |
|         /* find the weight of the residual */
 | |
|         /* TODO: precompute */
 | |
|         cur = codebook[i];
 | |
|         prev = i ? codebook[i - 1] : 0;
 | |
|         next = i + 1 < order ? codebook[i + 1] : 256;
 | |
|         weight_sq = (1024 / (cur - prev) + 1024 / (next - cur)) << 16;
 | |
| 
 | |
|         /* approximate square-root with mandated fixed-point arithmetic */
 | |
|         ipart = opus_ilog(weight_sq);
 | |
|         fpart = (weight_sq >> (ipart-8)) & 127;
 | |
|         y = ((ipart & 1) ? 32768 : 46214) >> ((32 - ipart)>>1);
 | |
|         weight = y + ((213 * fpart * y) >> 16);
 | |
| 
 | |
|         value = cur * 128 + (lsf_res[i] * 16384) / weight;
 | |
|         nlsf[i] = av_clip_uintp2(value, 15);
 | |
|     }
 | |
| 
 | |
|     /* stabilize the NLSF coefficients */
 | |
|     silk_stabilize_lsf(nlsf, order, s->wb ? ff_silk_lsf_min_spacing_wb :
 | |
|                                             ff_silk_lsf_min_spacing_nbmb);
 | |
| 
 | |
|     /* produce an interpolation for the first 2 subframes, */
 | |
|     /* and then convert both sets of NLSFs to LPC coefficients */
 | |
|     *has_lpc_leadin = 0;
 | |
|     if (s->subframes == 4) {
 | |
|         int offset = ff_opus_rc_dec_cdf(rc, ff_silk_model_lsf_interpolation_offset);
 | |
|         if (offset != 4 && frame->coded) {
 | |
|             *has_lpc_leadin = 1;
 | |
|             if (offset != 0) {
 | |
|                 int16_t nlsf_leadin[16];
 | |
|                 for (i = 0; i < order; i++)
 | |
|                     nlsf_leadin[i] = frame->nlsf[i] +
 | |
|                         ((nlsf[i] - frame->nlsf[i]) * offset >> 2);
 | |
|                 silk_lsf2lpc(nlsf_leadin, lpc_leadin, order);
 | |
|             } else  /* avoid re-computation for a (roughly) 1-in-4 occurrence */
 | |
|                 memcpy(lpc_leadin, frame->lpc, 16 * sizeof(float));
 | |
|         } else
 | |
|             offset = 4;
 | |
|         s->nlsf_interp_factor = offset;
 | |
| 
 | |
|         silk_lsf2lpc(nlsf, lpc, order);
 | |
|     } else {
 | |
|         s->nlsf_interp_factor = 4;
 | |
|         silk_lsf2lpc(nlsf, lpc, order);
 | |
|     }
 | |
| 
 | |
|     memcpy(frame->nlsf, nlsf, order * sizeof(nlsf[0]));
 | |
|     memcpy(frame->lpc,  lpc,  order * sizeof(lpc[0]));
 | |
| }
 | |
| 
 | |
| static inline void silk_count_children(OpusRangeCoder *rc, int model, int32_t total,
 | |
|                                        int32_t child[2])
 | |
| {
 | |
|     if (total != 0) {
 | |
|         child[0] = ff_opus_rc_dec_cdf(rc,
 | |
|                        ff_silk_model_pulse_location[model] + (((total - 1 + 5) * (total - 1)) >> 1));
 | |
|         child[1] = total - child[0];
 | |
|     } else {
 | |
|         child[0] = 0;
 | |
|         child[1] = 0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static inline void silk_decode_excitation(SilkContext *s, OpusRangeCoder *rc,
 | |
|                                           float* excitationf,
 | |
|                                           int qoffset_high, int active, int voiced)
 | |
| {
 | |
|     int i;
 | |
|     uint32_t seed;
 | |
|     int shellblocks;
 | |
|     int ratelevel;
 | |
|     uint8_t pulsecount[20];     // total pulses in each shell block
 | |
|     uint8_t lsbcount[20] = {0}; // raw lsbits defined for each pulse in each shell block
 | |
|     int32_t excitation[320];    // Q23
 | |
| 
 | |
|     /* excitation parameters */
 | |
|     seed = ff_opus_rc_dec_cdf(rc, ff_silk_model_lcg_seed);
 | |
|     shellblocks = ff_silk_shell_blocks[s->bandwidth][s->subframes >> 2];
 | |
|     ratelevel = ff_opus_rc_dec_cdf(rc, ff_silk_model_exc_rate[voiced]);
 | |
| 
 | |
|     for (i = 0; i < shellblocks; i++) {
 | |
|         pulsecount[i] = ff_opus_rc_dec_cdf(rc, ff_silk_model_pulse_count[ratelevel]);
 | |
|         if (pulsecount[i] == 17) {
 | |
|             while (pulsecount[i] == 17 && ++lsbcount[i] != 10)
 | |
|                 pulsecount[i] = ff_opus_rc_dec_cdf(rc, ff_silk_model_pulse_count[9]);
 | |
|             if (lsbcount[i] == 10)
 | |
|                 pulsecount[i] = ff_opus_rc_dec_cdf(rc, ff_silk_model_pulse_count[10]);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* decode pulse locations using PVQ */
 | |
|     for (i = 0; i < shellblocks; i++) {
 | |
|         if (pulsecount[i] != 0) {
 | |
|             int a, b, c, d;
 | |
|             int32_t * location = excitation + 16*i;
 | |
|             int32_t branch[4][2];
 | |
|             branch[0][0] = pulsecount[i];
 | |
| 
 | |
|             /* unrolled tail recursion */
 | |
|             for (a = 0; a < 1; a++) {
 | |
|                 silk_count_children(rc, 0, branch[0][a], branch[1]);
 | |
|                 for (b = 0; b < 2; b++) {
 | |
|                     silk_count_children(rc, 1, branch[1][b], branch[2]);
 | |
|                     for (c = 0; c < 2; c++) {
 | |
|                         silk_count_children(rc, 2, branch[2][c], branch[3]);
 | |
|                         for (d = 0; d < 2; d++) {
 | |
|                             silk_count_children(rc, 3, branch[3][d], location);
 | |
|                             location += 2;
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         } else
 | |
|             memset(excitation + 16*i, 0, 16*sizeof(int32_t));
 | |
|     }
 | |
| 
 | |
|     /* decode least significant bits */
 | |
|     for (i = 0; i < shellblocks << 4; i++) {
 | |
|         int bit;
 | |
|         for (bit = 0; bit < lsbcount[i >> 4]; bit++)
 | |
|             excitation[i] = (excitation[i] << 1) |
 | |
|                             ff_opus_rc_dec_cdf(rc, ff_silk_model_excitation_lsb);
 | |
|     }
 | |
| 
 | |
|     /* decode signs */
 | |
|     for (i = 0; i < shellblocks << 4; i++) {
 | |
|         if (excitation[i] != 0) {
 | |
|             int sign = ff_opus_rc_dec_cdf(rc, ff_silk_model_excitation_sign[active +
 | |
|                                          voiced][qoffset_high][FFMIN(pulsecount[i >> 4], 6)]);
 | |
|             if (sign == 0)
 | |
|                 excitation[i] *= -1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* assemble the excitation */
 | |
|     for (i = 0; i < shellblocks << 4; i++) {
 | |
|         int value = excitation[i];
 | |
|         excitation[i] = value * 256 | ff_silk_quant_offset[voiced][qoffset_high];
 | |
|         if (value < 0)      excitation[i] += 20;
 | |
|         else if (value > 0) excitation[i] -= 20;
 | |
| 
 | |
|         /* invert samples pseudorandomly */
 | |
|         seed = 196314165 * seed + 907633515;
 | |
|         if (seed & 0x80000000)
 | |
|             excitation[i] *= -1;
 | |
|         seed += value;
 | |
| 
 | |
|         excitationf[i] = excitation[i] / 8388608.0f;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /** Maximum residual history according to 4.2.7.6.1 */
 | |
| #define SILK_MAX_LAG  (288 + LTP_ORDER / 2)
 | |
| 
 | |
| /** Order of the LTP filter */
 | |
| #define LTP_ORDER 5
 | |
| 
 | |
| static void silk_decode_frame(SilkContext *s, OpusRangeCoder *rc,
 | |
|                               int frame_num, int channel, int coded_channels, int active, int active1)
 | |
| {
 | |
|     /* per frame */
 | |
|     int voiced;       // combines with active to indicate inactive, active, or active+voiced
 | |
|     int qoffset_high;
 | |
|     int order;                             // order of the LPC coefficients
 | |
|     float lpc_leadin[16], lpc_body[16], residual[SILK_MAX_LAG + SILK_HISTORY];
 | |
|     int has_lpc_leadin;
 | |
|     float ltpscale;
 | |
| 
 | |
|     /* per subframe */
 | |
|     struct {
 | |
|         float gain;
 | |
|         int pitchlag;
 | |
|         float ltptaps[5];
 | |
|     } sf[4];
 | |
| 
 | |
|     SilkFrame * const frame = s->frame + channel;
 | |
| 
 | |
|     int i;
 | |
| 
 | |
|     /* obtain stereo weights */
 | |
|     if (coded_channels == 2 && channel == 0) {
 | |
|         int n, wi[2], ws[2], w[2];
 | |
|         n     = ff_opus_rc_dec_cdf(rc, ff_silk_model_stereo_s1);
 | |
|         wi[0] = ff_opus_rc_dec_cdf(rc, ff_silk_model_stereo_s2) + 3 * (n / 5);
 | |
|         ws[0] = ff_opus_rc_dec_cdf(rc, ff_silk_model_stereo_s3);
 | |
|         wi[1] = ff_opus_rc_dec_cdf(rc, ff_silk_model_stereo_s2) + 3 * (n % 5);
 | |
|         ws[1] = ff_opus_rc_dec_cdf(rc, ff_silk_model_stereo_s3);
 | |
| 
 | |
|         for (i = 0; i < 2; i++)
 | |
|             w[i] = ff_silk_stereo_weights[wi[i]] +
 | |
|                    (((ff_silk_stereo_weights[wi[i] + 1] - ff_silk_stereo_weights[wi[i]]) * 6554) >> 16)
 | |
|                     * (ws[i]*2 + 1);
 | |
| 
 | |
|         s->stereo_weights[0] = (w[0] - w[1]) / 8192.0;
 | |
|         s->stereo_weights[1] = w[1]          / 8192.0;
 | |
| 
 | |
|         /* and read the mid-only flag */
 | |
|         s->midonly = active1 ? 0 : ff_opus_rc_dec_cdf(rc, ff_silk_model_mid_only);
 | |
|     }
 | |
| 
 | |
|     /* obtain frame type */
 | |
|     if (!active) {
 | |
|         qoffset_high = ff_opus_rc_dec_cdf(rc, ff_silk_model_frame_type_inactive);
 | |
|         voiced = 0;
 | |
|     } else {
 | |
|         int type = ff_opus_rc_dec_cdf(rc, ff_silk_model_frame_type_active);
 | |
|         qoffset_high = type & 1;
 | |
|         voiced = type >> 1;
 | |
|     }
 | |
| 
 | |
|     /* obtain subframe quantization gains */
 | |
|     for (i = 0; i < s->subframes; i++) {
 | |
|         int log_gain;     //Q7
 | |
|         int ipart, fpart, lingain;
 | |
| 
 | |
|         if (i == 0 && (frame_num == 0 || !frame->coded)) {
 | |
|             /* gain is coded absolute */
 | |
|             int x = ff_opus_rc_dec_cdf(rc, ff_silk_model_gain_highbits[active + voiced]);
 | |
|             log_gain = (x<<3) | ff_opus_rc_dec_cdf(rc, ff_silk_model_gain_lowbits);
 | |
| 
 | |
|             if (frame->coded)
 | |
|                 log_gain = FFMAX(log_gain, frame->log_gain - 16);
 | |
|         } else {
 | |
|             /* gain is coded relative */
 | |
|             int delta_gain = ff_opus_rc_dec_cdf(rc, ff_silk_model_gain_delta);
 | |
|             log_gain = av_clip_uintp2(FFMAX((delta_gain<<1) - 16,
 | |
|                                      frame->log_gain + delta_gain - 4), 6);
 | |
|         }
 | |
| 
 | |
|         frame->log_gain = log_gain;
 | |
| 
 | |
|         /* approximate 2**(x/128) with a Q7 (i.e. non-integer) input */
 | |
|         log_gain = (log_gain * 0x1D1C71 >> 16) + 2090;
 | |
|         ipart = log_gain >> 7;
 | |
|         fpart = log_gain & 127;
 | |
|         lingain = (1 << ipart) + ((-174 * fpart * (128-fpart) >>16) + fpart) * ((1<<ipart) >> 7);
 | |
|         sf[i].gain = lingain / 65536.0f;
 | |
|     }
 | |
| 
 | |
|     /* obtain LPC filter coefficients */
 | |
|     silk_decode_lpc(s, frame, rc, lpc_leadin, lpc_body, &order, &has_lpc_leadin, voiced);
 | |
| 
 | |
|     /* obtain pitch lags, if this is a voiced frame */
 | |
|     if (voiced) {
 | |
|         int lag_absolute = (!frame_num || !frame->prev_voiced);
 | |
|         int primarylag;         // primary pitch lag for the entire SILK frame
 | |
|         int ltpfilter;
 | |
|         const int8_t * offsets;
 | |
| 
 | |
|         if (!lag_absolute) {
 | |
|             int delta = ff_opus_rc_dec_cdf(rc, ff_silk_model_pitch_delta);
 | |
|             if (delta)
 | |
|                 primarylag = frame->primarylag + delta - 9;
 | |
|             else
 | |
|                 lag_absolute = 1;
 | |
|         }
 | |
| 
 | |
|         if (lag_absolute) {
 | |
|             /* primary lag is coded absolute */
 | |
|             int highbits, lowbits;
 | |
|             static const uint16_t * const model[] = {
 | |
|                 ff_silk_model_pitch_lowbits_nb, ff_silk_model_pitch_lowbits_mb,
 | |
|                 ff_silk_model_pitch_lowbits_wb
 | |
|             };
 | |
|             highbits = ff_opus_rc_dec_cdf(rc, ff_silk_model_pitch_highbits);
 | |
|             lowbits  = ff_opus_rc_dec_cdf(rc, model[s->bandwidth]);
 | |
| 
 | |
|             primarylag = ff_silk_pitch_min_lag[s->bandwidth] +
 | |
|                          highbits*ff_silk_pitch_scale[s->bandwidth] + lowbits;
 | |
|         }
 | |
|         frame->primarylag = primarylag;
 | |
| 
 | |
|         if (s->subframes == 2)
 | |
|             offsets = (s->bandwidth == OPUS_BANDWIDTH_NARROWBAND)
 | |
|                      ? ff_silk_pitch_offset_nb10ms[ff_opus_rc_dec_cdf(rc,
 | |
|                                                 ff_silk_model_pitch_contour_nb10ms)]
 | |
|                      : ff_silk_pitch_offset_mbwb10ms[ff_opus_rc_dec_cdf(rc,
 | |
|                                                 ff_silk_model_pitch_contour_mbwb10ms)];
 | |
|         else
 | |
|             offsets = (s->bandwidth == OPUS_BANDWIDTH_NARROWBAND)
 | |
|                      ? ff_silk_pitch_offset_nb20ms[ff_opus_rc_dec_cdf(rc,
 | |
|                                                 ff_silk_model_pitch_contour_nb20ms)]
 | |
|                      : ff_silk_pitch_offset_mbwb20ms[ff_opus_rc_dec_cdf(rc,
 | |
|                                                 ff_silk_model_pitch_contour_mbwb20ms)];
 | |
| 
 | |
|         for (i = 0; i < s->subframes; i++)
 | |
|             sf[i].pitchlag = av_clip(primarylag + offsets[i],
 | |
|                                      ff_silk_pitch_min_lag[s->bandwidth],
 | |
|                                      ff_silk_pitch_max_lag[s->bandwidth]);
 | |
| 
 | |
|         /* obtain LTP filter coefficients */
 | |
|         ltpfilter = ff_opus_rc_dec_cdf(rc, ff_silk_model_ltp_filter);
 | |
|         for (i = 0; i < s->subframes; i++) {
 | |
|             int index, j;
 | |
|             static const uint16_t * const filter_sel[] = {
 | |
|                 ff_silk_model_ltp_filter0_sel, ff_silk_model_ltp_filter1_sel,
 | |
|                 ff_silk_model_ltp_filter2_sel
 | |
|             };
 | |
|             static const int8_t (* const filter_taps[])[5] = {
 | |
|                 ff_silk_ltp_filter0_taps, ff_silk_ltp_filter1_taps, ff_silk_ltp_filter2_taps
 | |
|             };
 | |
|             index = ff_opus_rc_dec_cdf(rc, filter_sel[ltpfilter]);
 | |
|             for (j = 0; j < 5; j++)
 | |
|                 sf[i].ltptaps[j] = filter_taps[ltpfilter][index][j] / 128.0f;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* obtain LTP scale factor */
 | |
|     if (voiced && frame_num == 0)
 | |
|         ltpscale = ff_silk_ltp_scale_factor[ff_opus_rc_dec_cdf(rc,
 | |
|                                          ff_silk_model_ltp_scale_index)] / 16384.0f;
 | |
|     else ltpscale = 15565.0f/16384.0f;
 | |
| 
 | |
|     /* generate the excitation signal for the entire frame */
 | |
|     silk_decode_excitation(s, rc, residual + SILK_MAX_LAG, qoffset_high,
 | |
|                            active, voiced);
 | |
| 
 | |
|     /* skip synthesising the side channel if we want mono-only */
 | |
|     if (s->output_channels == channel)
 | |
|         return;
 | |
| 
 | |
|     /* generate the output signal */
 | |
|     for (i = 0; i < s->subframes; i++) {
 | |
|         const float * lpc_coeff = (i < 2 && has_lpc_leadin) ? lpc_leadin : lpc_body;
 | |
|         float *dst    = frame->output      + SILK_HISTORY + i * s->sflength;
 | |
|         float *resptr = residual           + SILK_MAX_LAG + i * s->sflength;
 | |
|         float *lpc    = frame->lpc_history + SILK_HISTORY + i * s->sflength;
 | |
|         float sum;
 | |
|         int j, k;
 | |
| 
 | |
|         if (voiced) {
 | |
|             int out_end;
 | |
|             float scale;
 | |
| 
 | |
|             if (i < 2 || s->nlsf_interp_factor == 4) {
 | |
|                 out_end = -i * s->sflength;
 | |
|                 scale   = ltpscale;
 | |
|             } else {
 | |
|                 out_end = -(i - 2) * s->sflength;
 | |
|                 scale   = 1.0f;
 | |
|             }
 | |
| 
 | |
|             /* when the LPC coefficients change, a re-whitening filter is used */
 | |
|             /* to produce a residual that accounts for the change */
 | |
|             for (j = - sf[i].pitchlag - LTP_ORDER/2; j < out_end; j++) {
 | |
|                 sum = dst[j];
 | |
|                 for (k = 0; k < order; k++)
 | |
|                     sum -= lpc_coeff[k] * dst[j - k - 1];
 | |
|                 resptr[j] = av_clipf(sum, -1.0f, 1.0f) * scale / sf[i].gain;
 | |
|             }
 | |
| 
 | |
|             if (out_end) {
 | |
|                 float rescale = sf[i-1].gain / sf[i].gain;
 | |
|                 for (j = out_end; j < 0; j++)
 | |
|                     resptr[j] *= rescale;
 | |
|             }
 | |
| 
 | |
|             /* LTP synthesis */
 | |
|             for (j = 0; j < s->sflength; j++) {
 | |
|                 sum = resptr[j];
 | |
|                 for (k = 0; k < LTP_ORDER; k++)
 | |
|                     sum += sf[i].ltptaps[k] * resptr[j - sf[i].pitchlag + LTP_ORDER/2 - k];
 | |
|                 resptr[j] = sum;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         /* LPC synthesis */
 | |
|         for (j = 0; j < s->sflength; j++) {
 | |
|             sum = resptr[j] * sf[i].gain;
 | |
|             for (k = 1; k <= order; k++)
 | |
|                 sum += lpc_coeff[k - 1] * lpc[j - k];
 | |
| 
 | |
|             lpc[j] = sum;
 | |
|             dst[j] = av_clipf(sum, -1.0f, 1.0f);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     frame->prev_voiced = voiced;
 | |
|     memmove(frame->lpc_history, frame->lpc_history + s->flength, SILK_HISTORY * sizeof(float));
 | |
|     memmove(frame->output,      frame->output      + s->flength, SILK_HISTORY * sizeof(float));
 | |
| 
 | |
|     frame->coded = 1;
 | |
| }
 | |
| 
 | |
| static void silk_unmix_ms(SilkContext *s, float *l, float *r)
 | |
| {
 | |
|     float *mid    = s->frame[0].output + SILK_HISTORY - s->flength;
 | |
|     float *side   = s->frame[1].output + SILK_HISTORY - s->flength;
 | |
|     float w0_prev = s->prev_stereo_weights[0];
 | |
|     float w1_prev = s->prev_stereo_weights[1];
 | |
|     float w0      = s->stereo_weights[0];
 | |
|     float w1      = s->stereo_weights[1];
 | |
|     int n1        = ff_silk_stereo_interp_len[s->bandwidth];
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < n1; i++) {
 | |
|         float interp0 = w0_prev + i * (w0 - w0_prev) / n1;
 | |
|         float interp1 = w1_prev + i * (w1 - w1_prev) / n1;
 | |
|         float p0      = 0.25 * (mid[i - 2] + 2 * mid[i - 1] + mid[i]);
 | |
| 
 | |
|         l[i] = av_clipf((1 + interp1) * mid[i - 1] + side[i - 1] + interp0 * p0, -1.0, 1.0);
 | |
|         r[i] = av_clipf((1 - interp1) * mid[i - 1] - side[i - 1] - interp0 * p0, -1.0, 1.0);
 | |
|     }
 | |
| 
 | |
|     for (; i < s->flength; i++) {
 | |
|         float p0 = 0.25 * (mid[i - 2] + 2 * mid[i - 1] + mid[i]);
 | |
| 
 | |
|         l[i] = av_clipf((1 + w1) * mid[i - 1] + side[i - 1] + w0 * p0, -1.0, 1.0);
 | |
|         r[i] = av_clipf((1 - w1) * mid[i - 1] - side[i - 1] - w0 * p0, -1.0, 1.0);
 | |
|     }
 | |
| 
 | |
|     memcpy(s->prev_stereo_weights, s->stereo_weights, sizeof(s->stereo_weights));
 | |
| }
 | |
| 
 | |
| static void silk_flush_frame(SilkFrame *frame)
 | |
| {
 | |
|     if (!frame->coded)
 | |
|         return;
 | |
| 
 | |
|     memset(frame->output,      0, sizeof(frame->output));
 | |
|     memset(frame->lpc_history, 0, sizeof(frame->lpc_history));
 | |
| 
 | |
|     memset(frame->lpc,  0, sizeof(frame->lpc));
 | |
|     memset(frame->nlsf, 0, sizeof(frame->nlsf));
 | |
| 
 | |
|     frame->log_gain = 0;
 | |
| 
 | |
|     frame->primarylag  = 0;
 | |
|     frame->prev_voiced = 0;
 | |
|     frame->coded       = 0;
 | |
| }
 | |
| 
 | |
| int ff_silk_decode_superframe(SilkContext *s, OpusRangeCoder *rc,
 | |
|                               float *output[2],
 | |
|                               enum OpusBandwidth bandwidth,
 | |
|                               int coded_channels,
 | |
|                               int duration_ms)
 | |
| {
 | |
|     int active[2][6], redundancy[2];
 | |
|     int nb_frames, i, j;
 | |
| 
 | |
|     if (bandwidth > OPUS_BANDWIDTH_WIDEBAND ||
 | |
|         coded_channels > 2 || duration_ms > 60) {
 | |
|         av_log(s->avctx, AV_LOG_ERROR, "Invalid parameters passed "
 | |
|                "to the SILK decoder.\n");
 | |
|         return AVERROR(EINVAL);
 | |
|     }
 | |
| 
 | |
|     nb_frames = 1 + (duration_ms > 20) + (duration_ms > 40);
 | |
|     s->subframes = duration_ms / nb_frames / 5;         // 5ms subframes
 | |
|     s->sflength  = 20 * (bandwidth + 2);
 | |
|     s->flength   = s->sflength * s->subframes;
 | |
|     s->bandwidth = bandwidth;
 | |
|     s->wb        = bandwidth == OPUS_BANDWIDTH_WIDEBAND;
 | |
| 
 | |
|     /* make sure to flush the side channel when switching from mono to stereo */
 | |
|     if (coded_channels > s->prev_coded_channels)
 | |
|         silk_flush_frame(&s->frame[1]);
 | |
|     s->prev_coded_channels = coded_channels;
 | |
| 
 | |
|     /* read the LP-layer header bits */
 | |
|     for (i = 0; i < coded_channels; i++) {
 | |
|         for (j = 0; j < nb_frames; j++)
 | |
|             active[i][j] = ff_opus_rc_dec_log(rc, 1);
 | |
| 
 | |
|         redundancy[i] = ff_opus_rc_dec_log(rc, 1);
 | |
|         if (redundancy[i]) {
 | |
|             avpriv_report_missing_feature(s->avctx, "LBRR frames");
 | |
|             return AVERROR_PATCHWELCOME;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < nb_frames; i++) {
 | |
|         for (j = 0; j < coded_channels && !s->midonly; j++)
 | |
|             silk_decode_frame(s, rc, i, j, coded_channels, active[j][i], active[1][i]);
 | |
| 
 | |
|         /* reset the side channel if it is not coded */
 | |
|         if (s->midonly && s->frame[1].coded)
 | |
|             silk_flush_frame(&s->frame[1]);
 | |
| 
 | |
|         if (coded_channels == 1 || s->output_channels == 1) {
 | |
|             for (j = 0; j < s->output_channels; j++) {
 | |
|                 memcpy(output[j] + i * s->flength,
 | |
|                        s->frame[0].output + SILK_HISTORY - s->flength - 2,
 | |
|                        s->flength * sizeof(float));
 | |
|             }
 | |
|         } else {
 | |
|             silk_unmix_ms(s, output[0] + i * s->flength, output[1] + i * s->flength);
 | |
|         }
 | |
| 
 | |
|         s->midonly        = 0;
 | |
|     }
 | |
| 
 | |
|     return nb_frames * s->flength;
 | |
| }
 | |
| 
 | |
| void ff_silk_free(SilkContext **ps)
 | |
| {
 | |
|     av_freep(ps);
 | |
| }
 | |
| 
 | |
| void ff_silk_flush(SilkContext *s)
 | |
| {
 | |
|     silk_flush_frame(&s->frame[0]);
 | |
|     silk_flush_frame(&s->frame[1]);
 | |
| 
 | |
|     memset(s->prev_stereo_weights, 0, sizeof(s->prev_stereo_weights));
 | |
| }
 | |
| 
 | |
| int ff_silk_init(AVCodecContext *avctx, SilkContext **ps, int output_channels)
 | |
| {
 | |
|     SilkContext *s;
 | |
| 
 | |
|     if (output_channels != 1 && output_channels != 2) {
 | |
|         av_log(avctx, AV_LOG_ERROR, "Invalid number of output channels: %d\n",
 | |
|                output_channels);
 | |
|         return AVERROR(EINVAL);
 | |
|     }
 | |
| 
 | |
|     s = av_mallocz(sizeof(*s));
 | |
|     if (!s)
 | |
|         return AVERROR(ENOMEM);
 | |
| 
 | |
|     s->avctx           = avctx;
 | |
|     s->output_channels = output_channels;
 | |
| 
 | |
|     ff_silk_flush(s);
 | |
| 
 | |
|     *ps = s;
 | |
| 
 | |
|     return 0;
 | |
| }
 |