mirror of
				https://github.com/ossrs/srs.git
				synced 2025-03-09 15:49:59 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			976 lines
		
	
	
	
		
			31 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			976 lines
		
	
	
	
		
			31 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright 2001-2020 The OpenSSL Project Authors. All Rights Reserved.
 | |
|  * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
 | |
|  *
 | |
|  * Licensed under the OpenSSL license (the "License").  You may not use
 | |
|  * this file except in compliance with the License.  You can obtain a copy
 | |
|  * in the file LICENSE in the source distribution or at
 | |
|  * https://www.openssl.org/source/license.html
 | |
|  */
 | |
| 
 | |
| #include <string.h>
 | |
| #include <openssl/err.h>
 | |
| 
 | |
| #include "internal/cryptlib.h"
 | |
| #include "crypto/bn.h"
 | |
| #include "ec_local.h"
 | |
| #include "internal/refcount.h"
 | |
| 
 | |
| /*
 | |
|  * This file implements the wNAF-based interleaving multi-exponentiation method
 | |
|  * Formerly at:
 | |
|  *   http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#multiexp
 | |
|  * You might now find it here:
 | |
|  *   http://link.springer.com/chapter/10.1007%2F3-540-45537-X_13
 | |
|  *   http://www.bmoeller.de/pdf/TI-01-08.multiexp.pdf
 | |
|  * For multiplication with precomputation, we use wNAF splitting, formerly at:
 | |
|  *   http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#fastexp
 | |
|  */
 | |
| 
 | |
| /* structure for precomputed multiples of the generator */
 | |
| struct ec_pre_comp_st {
 | |
|     const EC_GROUP *group;      /* parent EC_GROUP object */
 | |
|     size_t blocksize;           /* block size for wNAF splitting */
 | |
|     size_t numblocks;           /* max. number of blocks for which we have
 | |
|                                  * precomputation */
 | |
|     size_t w;                   /* window size */
 | |
|     EC_POINT **points;          /* array with pre-calculated multiples of
 | |
|                                  * generator: 'num' pointers to EC_POINT
 | |
|                                  * objects followed by a NULL */
 | |
|     size_t num;                 /* numblocks * 2^(w-1) */
 | |
|     CRYPTO_REF_COUNT references;
 | |
|     CRYPTO_RWLOCK *lock;
 | |
| };
 | |
| 
 | |
| static EC_PRE_COMP *ec_pre_comp_new(const EC_GROUP *group)
 | |
| {
 | |
|     EC_PRE_COMP *ret = NULL;
 | |
| 
 | |
|     if (!group)
 | |
|         return NULL;
 | |
| 
 | |
|     ret = OPENSSL_zalloc(sizeof(*ret));
 | |
|     if (ret == NULL) {
 | |
|         ECerr(EC_F_EC_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     ret->group = group;
 | |
|     ret->blocksize = 8;         /* default */
 | |
|     ret->w = 4;                 /* default */
 | |
|     ret->references = 1;
 | |
| 
 | |
|     ret->lock = CRYPTO_THREAD_lock_new();
 | |
|     if (ret->lock == NULL) {
 | |
|         ECerr(EC_F_EC_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
 | |
|         OPENSSL_free(ret);
 | |
|         return NULL;
 | |
|     }
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| EC_PRE_COMP *EC_ec_pre_comp_dup(EC_PRE_COMP *pre)
 | |
| {
 | |
|     int i;
 | |
|     if (pre != NULL)
 | |
|         CRYPTO_UP_REF(&pre->references, &i, pre->lock);
 | |
|     return pre;
 | |
| }
 | |
| 
 | |
| void EC_ec_pre_comp_free(EC_PRE_COMP *pre)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     if (pre == NULL)
 | |
|         return;
 | |
| 
 | |
|     CRYPTO_DOWN_REF(&pre->references, &i, pre->lock);
 | |
|     REF_PRINT_COUNT("EC_ec", pre);
 | |
|     if (i > 0)
 | |
|         return;
 | |
|     REF_ASSERT_ISNT(i < 0);
 | |
| 
 | |
|     if (pre->points != NULL) {
 | |
|         EC_POINT **pts;
 | |
| 
 | |
|         for (pts = pre->points; *pts != NULL; pts++)
 | |
|             EC_POINT_free(*pts);
 | |
|         OPENSSL_free(pre->points);
 | |
|     }
 | |
|     CRYPTO_THREAD_lock_free(pre->lock);
 | |
|     OPENSSL_free(pre);
 | |
| }
 | |
| 
 | |
| #define EC_POINT_BN_set_flags(P, flags) do { \
 | |
|     BN_set_flags((P)->X, (flags)); \
 | |
|     BN_set_flags((P)->Y, (flags)); \
 | |
|     BN_set_flags((P)->Z, (flags)); \
 | |
| } while(0)
 | |
| 
 | |
| /*-
 | |
|  * This functions computes a single point multiplication over the EC group,
 | |
|  * using, at a high level, a Montgomery ladder with conditional swaps, with
 | |
|  * various timing attack defenses.
 | |
|  *
 | |
|  * It performs either a fixed point multiplication
 | |
|  *          (scalar * generator)
 | |
|  * when point is NULL, or a variable point multiplication
 | |
|  *          (scalar * point)
 | |
|  * when point is not NULL.
 | |
|  *
 | |
|  * `scalar` cannot be NULL and should be in the range [0,n) otherwise all
 | |
|  * constant time bets are off (where n is the cardinality of the EC group).
 | |
|  *
 | |
|  * This function expects `group->order` and `group->cardinality` to be well
 | |
|  * defined and non-zero: it fails with an error code otherwise.
 | |
|  *
 | |
|  * NB: This says nothing about the constant-timeness of the ladder step
 | |
|  * implementation (i.e., the default implementation is based on EC_POINT_add and
 | |
|  * EC_POINT_dbl, which of course are not constant time themselves) or the
 | |
|  * underlying multiprecision arithmetic.
 | |
|  *
 | |
|  * The product is stored in `r`.
 | |
|  *
 | |
|  * This is an internal function: callers are in charge of ensuring that the
 | |
|  * input parameters `group`, `r`, `scalar` and `ctx` are not NULL.
 | |
|  *
 | |
|  * Returns 1 on success, 0 otherwise.
 | |
|  */
 | |
| int ec_scalar_mul_ladder(const EC_GROUP *group, EC_POINT *r,
 | |
|                          const BIGNUM *scalar, const EC_POINT *point,
 | |
|                          BN_CTX *ctx)
 | |
| {
 | |
|     int i, cardinality_bits, group_top, kbit, pbit, Z_is_one;
 | |
|     EC_POINT *p = NULL;
 | |
|     EC_POINT *s = NULL;
 | |
|     BIGNUM *k = NULL;
 | |
|     BIGNUM *lambda = NULL;
 | |
|     BIGNUM *cardinality = NULL;
 | |
|     int ret = 0;
 | |
| 
 | |
|     /* early exit if the input point is the point at infinity */
 | |
|     if (point != NULL && EC_POINT_is_at_infinity(group, point))
 | |
|         return EC_POINT_set_to_infinity(group, r);
 | |
| 
 | |
|     if (BN_is_zero(group->order)) {
 | |
|         ECerr(EC_F_EC_SCALAR_MUL_LADDER, EC_R_UNKNOWN_ORDER);
 | |
|         return 0;
 | |
|     }
 | |
|     if (BN_is_zero(group->cofactor)) {
 | |
|         ECerr(EC_F_EC_SCALAR_MUL_LADDER, EC_R_UNKNOWN_COFACTOR);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     BN_CTX_start(ctx);
 | |
| 
 | |
|     if (((p = EC_POINT_new(group)) == NULL)
 | |
|         || ((s = EC_POINT_new(group)) == NULL)) {
 | |
|         ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_MALLOC_FAILURE);
 | |
|         goto err;
 | |
|     }
 | |
| 
 | |
|     if (point == NULL) {
 | |
|         if (!EC_POINT_copy(p, group->generator)) {
 | |
|             ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_EC_LIB);
 | |
|             goto err;
 | |
|         }
 | |
|     } else {
 | |
|         if (!EC_POINT_copy(p, point)) {
 | |
|             ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_EC_LIB);
 | |
|             goto err;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     EC_POINT_BN_set_flags(p, BN_FLG_CONSTTIME);
 | |
|     EC_POINT_BN_set_flags(r, BN_FLG_CONSTTIME);
 | |
|     EC_POINT_BN_set_flags(s, BN_FLG_CONSTTIME);
 | |
| 
 | |
|     cardinality = BN_CTX_get(ctx);
 | |
|     lambda = BN_CTX_get(ctx);
 | |
|     k = BN_CTX_get(ctx);
 | |
|     if (k == NULL) {
 | |
|         ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_MALLOC_FAILURE);
 | |
|         goto err;
 | |
|     }
 | |
| 
 | |
|     if (!BN_mul(cardinality, group->order, group->cofactor, ctx)) {
 | |
|         ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_BN_LIB);
 | |
|         goto err;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Group cardinalities are often on a word boundary.
 | |
|      * So when we pad the scalar, some timing diff might
 | |
|      * pop if it needs to be expanded due to carries.
 | |
|      * So expand ahead of time.
 | |
|      */
 | |
|     cardinality_bits = BN_num_bits(cardinality);
 | |
|     group_top = bn_get_top(cardinality);
 | |
|     if ((bn_wexpand(k, group_top + 2) == NULL)
 | |
|         || (bn_wexpand(lambda, group_top + 2) == NULL)) {
 | |
|         ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_BN_LIB);
 | |
|         goto err;
 | |
|     }
 | |
| 
 | |
|     if (!BN_copy(k, scalar)) {
 | |
|         ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_BN_LIB);
 | |
|         goto err;
 | |
|     }
 | |
| 
 | |
|     BN_set_flags(k, BN_FLG_CONSTTIME);
 | |
| 
 | |
|     if ((BN_num_bits(k) > cardinality_bits) || (BN_is_negative(k))) {
 | |
|         /*-
 | |
|          * this is an unusual input, and we don't guarantee
 | |
|          * constant-timeness
 | |
|          */
 | |
|         if (!BN_nnmod(k, k, cardinality, ctx)) {
 | |
|             ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_BN_LIB);
 | |
|             goto err;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (!BN_add(lambda, k, cardinality)) {
 | |
|         ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_BN_LIB);
 | |
|         goto err;
 | |
|     }
 | |
|     BN_set_flags(lambda, BN_FLG_CONSTTIME);
 | |
|     if (!BN_add(k, lambda, cardinality)) {
 | |
|         ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_BN_LIB);
 | |
|         goto err;
 | |
|     }
 | |
|     /*
 | |
|      * lambda := scalar + cardinality
 | |
|      * k := scalar + 2*cardinality
 | |
|      */
 | |
|     kbit = BN_is_bit_set(lambda, cardinality_bits);
 | |
|     BN_consttime_swap(kbit, k, lambda, group_top + 2);
 | |
| 
 | |
|     group_top = bn_get_top(group->field);
 | |
|     if ((bn_wexpand(s->X, group_top) == NULL)
 | |
|         || (bn_wexpand(s->Y, group_top) == NULL)
 | |
|         || (bn_wexpand(s->Z, group_top) == NULL)
 | |
|         || (bn_wexpand(r->X, group_top) == NULL)
 | |
|         || (bn_wexpand(r->Y, group_top) == NULL)
 | |
|         || (bn_wexpand(r->Z, group_top) == NULL)
 | |
|         || (bn_wexpand(p->X, group_top) == NULL)
 | |
|         || (bn_wexpand(p->Y, group_top) == NULL)
 | |
|         || (bn_wexpand(p->Z, group_top) == NULL)) {
 | |
|         ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_BN_LIB);
 | |
|         goto err;
 | |
|     }
 | |
| 
 | |
|     /* ensure input point is in affine coords for ladder step efficiency */
 | |
|     if (!p->Z_is_one && !EC_POINT_make_affine(group, p, ctx)) {
 | |
|             ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_EC_LIB);
 | |
|             goto err;
 | |
|     }
 | |
| 
 | |
|     /* Initialize the Montgomery ladder */
 | |
|     if (!ec_point_ladder_pre(group, r, s, p, ctx)) {
 | |
|         ECerr(EC_F_EC_SCALAR_MUL_LADDER, EC_R_LADDER_PRE_FAILURE);
 | |
|         goto err;
 | |
|     }
 | |
| 
 | |
|     /* top bit is a 1, in a fixed pos */
 | |
|     pbit = 1;
 | |
| 
 | |
| #define EC_POINT_CSWAP(c, a, b, w, t) do {         \
 | |
|         BN_consttime_swap(c, (a)->X, (b)->X, w);   \
 | |
|         BN_consttime_swap(c, (a)->Y, (b)->Y, w);   \
 | |
|         BN_consttime_swap(c, (a)->Z, (b)->Z, w);   \
 | |
|         t = ((a)->Z_is_one ^ (b)->Z_is_one) & (c); \
 | |
|         (a)->Z_is_one ^= (t);                      \
 | |
|         (b)->Z_is_one ^= (t);                      \
 | |
| } while(0)
 | |
| 
 | |
|     /*-
 | |
|      * The ladder step, with branches, is
 | |
|      *
 | |
|      * k[i] == 0: S = add(R, S), R = dbl(R)
 | |
|      * k[i] == 1: R = add(S, R), S = dbl(S)
 | |
|      *
 | |
|      * Swapping R, S conditionally on k[i] leaves you with state
 | |
|      *
 | |
|      * k[i] == 0: T, U = R, S
 | |
|      * k[i] == 1: T, U = S, R
 | |
|      *
 | |
|      * Then perform the ECC ops.
 | |
|      *
 | |
|      * U = add(T, U)
 | |
|      * T = dbl(T)
 | |
|      *
 | |
|      * Which leaves you with state
 | |
|      *
 | |
|      * k[i] == 0: U = add(R, S), T = dbl(R)
 | |
|      * k[i] == 1: U = add(S, R), T = dbl(S)
 | |
|      *
 | |
|      * Swapping T, U conditionally on k[i] leaves you with state
 | |
|      *
 | |
|      * k[i] == 0: R, S = T, U
 | |
|      * k[i] == 1: R, S = U, T
 | |
|      *
 | |
|      * Which leaves you with state
 | |
|      *
 | |
|      * k[i] == 0: S = add(R, S), R = dbl(R)
 | |
|      * k[i] == 1: R = add(S, R), S = dbl(S)
 | |
|      *
 | |
|      * So we get the same logic, but instead of a branch it's a
 | |
|      * conditional swap, followed by ECC ops, then another conditional swap.
 | |
|      *
 | |
|      * Optimization: The end of iteration i and start of i-1 looks like
 | |
|      *
 | |
|      * ...
 | |
|      * CSWAP(k[i], R, S)
 | |
|      * ECC
 | |
|      * CSWAP(k[i], R, S)
 | |
|      * (next iteration)
 | |
|      * CSWAP(k[i-1], R, S)
 | |
|      * ECC
 | |
|      * CSWAP(k[i-1], R, S)
 | |
|      * ...
 | |
|      *
 | |
|      * So instead of two contiguous swaps, you can merge the condition
 | |
|      * bits and do a single swap.
 | |
|      *
 | |
|      * k[i]   k[i-1]    Outcome
 | |
|      * 0      0         No Swap
 | |
|      * 0      1         Swap
 | |
|      * 1      0         Swap
 | |
|      * 1      1         No Swap
 | |
|      *
 | |
|      * This is XOR. pbit tracks the previous bit of k.
 | |
|      */
 | |
| 
 | |
|     for (i = cardinality_bits - 1; i >= 0; i--) {
 | |
|         kbit = BN_is_bit_set(k, i) ^ pbit;
 | |
|         EC_POINT_CSWAP(kbit, r, s, group_top, Z_is_one);
 | |
| 
 | |
|         /* Perform a single step of the Montgomery ladder */
 | |
|         if (!ec_point_ladder_step(group, r, s, p, ctx)) {
 | |
|             ECerr(EC_F_EC_SCALAR_MUL_LADDER, EC_R_LADDER_STEP_FAILURE);
 | |
|             goto err;
 | |
|         }
 | |
|         /*
 | |
|          * pbit logic merges this cswap with that of the
 | |
|          * next iteration
 | |
|          */
 | |
|         pbit ^= kbit;
 | |
|     }
 | |
|     /* one final cswap to move the right value into r */
 | |
|     EC_POINT_CSWAP(pbit, r, s, group_top, Z_is_one);
 | |
| #undef EC_POINT_CSWAP
 | |
| 
 | |
|     /* Finalize ladder (and recover full point coordinates) */
 | |
|     if (!ec_point_ladder_post(group, r, s, p, ctx)) {
 | |
|         ECerr(EC_F_EC_SCALAR_MUL_LADDER, EC_R_LADDER_POST_FAILURE);
 | |
|         goto err;
 | |
|     }
 | |
| 
 | |
|     ret = 1;
 | |
| 
 | |
|  err:
 | |
|     EC_POINT_free(p);
 | |
|     EC_POINT_clear_free(s);
 | |
|     BN_CTX_end(ctx);
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| #undef EC_POINT_BN_set_flags
 | |
| 
 | |
| /*
 | |
|  * TODO: table should be optimised for the wNAF-based implementation,
 | |
|  * sometimes smaller windows will give better performance (thus the
 | |
|  * boundaries should be increased)
 | |
|  */
 | |
| #define EC_window_bits_for_scalar_size(b) \
 | |
|                 ((size_t) \
 | |
|                  ((b) >= 2000 ? 6 : \
 | |
|                   (b) >=  800 ? 5 : \
 | |
|                   (b) >=  300 ? 4 : \
 | |
|                   (b) >=   70 ? 3 : \
 | |
|                   (b) >=   20 ? 2 : \
 | |
|                   1))
 | |
| 
 | |
| /*-
 | |
|  * Compute
 | |
|  *      \sum scalars[i]*points[i],
 | |
|  * also including
 | |
|  *      scalar*generator
 | |
|  * in the addition if scalar != NULL
 | |
|  */
 | |
| int ec_wNAF_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar,
 | |
|                 size_t num, const EC_POINT *points[], const BIGNUM *scalars[],
 | |
|                 BN_CTX *ctx)
 | |
| {
 | |
|     const EC_POINT *generator = NULL;
 | |
|     EC_POINT *tmp = NULL;
 | |
|     size_t totalnum;
 | |
|     size_t blocksize = 0, numblocks = 0; /* for wNAF splitting */
 | |
|     size_t pre_points_per_block = 0;
 | |
|     size_t i, j;
 | |
|     int k;
 | |
|     int r_is_inverted = 0;
 | |
|     int r_is_at_infinity = 1;
 | |
|     size_t *wsize = NULL;       /* individual window sizes */
 | |
|     signed char **wNAF = NULL;  /* individual wNAFs */
 | |
|     size_t *wNAF_len = NULL;
 | |
|     size_t max_len = 0;
 | |
|     size_t num_val;
 | |
|     EC_POINT **val = NULL;      /* precomputation */
 | |
|     EC_POINT **v;
 | |
|     EC_POINT ***val_sub = NULL; /* pointers to sub-arrays of 'val' or
 | |
|                                  * 'pre_comp->points' */
 | |
|     const EC_PRE_COMP *pre_comp = NULL;
 | |
|     int num_scalar = 0;         /* flag: will be set to 1 if 'scalar' must be
 | |
|                                  * treated like other scalars, i.e.
 | |
|                                  * precomputation is not available */
 | |
|     int ret = 0;
 | |
| 
 | |
|     if (!BN_is_zero(group->order) && !BN_is_zero(group->cofactor)) {
 | |
|         /*-
 | |
|          * Handle the common cases where the scalar is secret, enforcing a
 | |
|          * scalar multiplication implementation based on a Montgomery ladder,
 | |
|          * with various timing attack defenses.
 | |
|          */
 | |
|         if ((scalar != group->order) && (scalar != NULL) && (num == 0)) {
 | |
|             /*-
 | |
|              * In this case we want to compute scalar * GeneratorPoint: this
 | |
|              * codepath is reached most prominently by (ephemeral) key
 | |
|              * generation of EC cryptosystems (i.e. ECDSA keygen and sign setup,
 | |
|              * ECDH keygen/first half), where the scalar is always secret. This
 | |
|              * is why we ignore if BN_FLG_CONSTTIME is actually set and we
 | |
|              * always call the ladder version.
 | |
|              */
 | |
|             return ec_scalar_mul_ladder(group, r, scalar, NULL, ctx);
 | |
|         }
 | |
|         if ((scalar == NULL) && (num == 1) && (scalars[0] != group->order)) {
 | |
|             /*-
 | |
|              * In this case we want to compute scalar * VariablePoint: this
 | |
|              * codepath is reached most prominently by the second half of ECDH,
 | |
|              * where the secret scalar is multiplied by the peer's public point.
 | |
|              * To protect the secret scalar, we ignore if BN_FLG_CONSTTIME is
 | |
|              * actually set and we always call the ladder version.
 | |
|              */
 | |
|             return ec_scalar_mul_ladder(group, r, scalars[0], points[0], ctx);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (scalar != NULL) {
 | |
|         generator = EC_GROUP_get0_generator(group);
 | |
|         if (generator == NULL) {
 | |
|             ECerr(EC_F_EC_WNAF_MUL, EC_R_UNDEFINED_GENERATOR);
 | |
|             goto err;
 | |
|         }
 | |
| 
 | |
|         /* look if we can use precomputed multiples of generator */
 | |
| 
 | |
|         pre_comp = group->pre_comp.ec;
 | |
|         if (pre_comp && pre_comp->numblocks
 | |
|             && (EC_POINT_cmp(group, generator, pre_comp->points[0], ctx) ==
 | |
|                 0)) {
 | |
|             blocksize = pre_comp->blocksize;
 | |
| 
 | |
|             /*
 | |
|              * determine maximum number of blocks that wNAF splitting may
 | |
|              * yield (NB: maximum wNAF length is bit length plus one)
 | |
|              */
 | |
|             numblocks = (BN_num_bits(scalar) / blocksize) + 1;
 | |
| 
 | |
|             /*
 | |
|              * we cannot use more blocks than we have precomputation for
 | |
|              */
 | |
|             if (numblocks > pre_comp->numblocks)
 | |
|                 numblocks = pre_comp->numblocks;
 | |
| 
 | |
|             pre_points_per_block = (size_t)1 << (pre_comp->w - 1);
 | |
| 
 | |
|             /* check that pre_comp looks sane */
 | |
|             if (pre_comp->num != (pre_comp->numblocks * pre_points_per_block)) {
 | |
|                 ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
 | |
|                 goto err;
 | |
|             }
 | |
|         } else {
 | |
|             /* can't use precomputation */
 | |
|             pre_comp = NULL;
 | |
|             numblocks = 1;
 | |
|             num_scalar = 1;     /* treat 'scalar' like 'num'-th element of
 | |
|                                  * 'scalars' */
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     totalnum = num + numblocks;
 | |
| 
 | |
|     wsize = OPENSSL_malloc(totalnum * sizeof(wsize[0]));
 | |
|     wNAF_len = OPENSSL_malloc(totalnum * sizeof(wNAF_len[0]));
 | |
|     /* include space for pivot */
 | |
|     wNAF = OPENSSL_malloc((totalnum + 1) * sizeof(wNAF[0]));
 | |
|     val_sub = OPENSSL_malloc(totalnum * sizeof(val_sub[0]));
 | |
| 
 | |
|     /* Ensure wNAF is initialised in case we end up going to err */
 | |
|     if (wNAF != NULL)
 | |
|         wNAF[0] = NULL;         /* preliminary pivot */
 | |
| 
 | |
|     if (wsize == NULL || wNAF_len == NULL || wNAF == NULL || val_sub == NULL) {
 | |
|         ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE);
 | |
|         goto err;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * num_val will be the total number of temporarily precomputed points
 | |
|      */
 | |
|     num_val = 0;
 | |
| 
 | |
|     for (i = 0; i < num + num_scalar; i++) {
 | |
|         size_t bits;
 | |
| 
 | |
|         bits = i < num ? BN_num_bits(scalars[i]) : BN_num_bits(scalar);
 | |
|         wsize[i] = EC_window_bits_for_scalar_size(bits);
 | |
|         num_val += (size_t)1 << (wsize[i] - 1);
 | |
|         wNAF[i + 1] = NULL;     /* make sure we always have a pivot */
 | |
|         wNAF[i] =
 | |
|             bn_compute_wNAF((i < num ? scalars[i] : scalar), wsize[i],
 | |
|                             &wNAF_len[i]);
 | |
|         if (wNAF[i] == NULL)
 | |
|             goto err;
 | |
|         if (wNAF_len[i] > max_len)
 | |
|             max_len = wNAF_len[i];
 | |
|     }
 | |
| 
 | |
|     if (numblocks) {
 | |
|         /* we go here iff scalar != NULL */
 | |
| 
 | |
|         if (pre_comp == NULL) {
 | |
|             if (num_scalar != 1) {
 | |
|                 ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
 | |
|                 goto err;
 | |
|             }
 | |
|             /* we have already generated a wNAF for 'scalar' */
 | |
|         } else {
 | |
|             signed char *tmp_wNAF = NULL;
 | |
|             size_t tmp_len = 0;
 | |
| 
 | |
|             if (num_scalar != 0) {
 | |
|                 ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
 | |
|                 goto err;
 | |
|             }
 | |
| 
 | |
|             /*
 | |
|              * use the window size for which we have precomputation
 | |
|              */
 | |
|             wsize[num] = pre_comp->w;
 | |
|             tmp_wNAF = bn_compute_wNAF(scalar, wsize[num], &tmp_len);
 | |
|             if (!tmp_wNAF)
 | |
|                 goto err;
 | |
| 
 | |
|             if (tmp_len <= max_len) {
 | |
|                 /*
 | |
|                  * One of the other wNAFs is at least as long as the wNAF
 | |
|                  * belonging to the generator, so wNAF splitting will not buy
 | |
|                  * us anything.
 | |
|                  */
 | |
| 
 | |
|                 numblocks = 1;
 | |
|                 totalnum = num + 1; /* don't use wNAF splitting */
 | |
|                 wNAF[num] = tmp_wNAF;
 | |
|                 wNAF[num + 1] = NULL;
 | |
|                 wNAF_len[num] = tmp_len;
 | |
|                 /*
 | |
|                  * pre_comp->points starts with the points that we need here:
 | |
|                  */
 | |
|                 val_sub[num] = pre_comp->points;
 | |
|             } else {
 | |
|                 /*
 | |
|                  * don't include tmp_wNAF directly into wNAF array - use wNAF
 | |
|                  * splitting and include the blocks
 | |
|                  */
 | |
| 
 | |
|                 signed char *pp;
 | |
|                 EC_POINT **tmp_points;
 | |
| 
 | |
|                 if (tmp_len < numblocks * blocksize) {
 | |
|                     /*
 | |
|                      * possibly we can do with fewer blocks than estimated
 | |
|                      */
 | |
|                     numblocks = (tmp_len + blocksize - 1) / blocksize;
 | |
|                     if (numblocks > pre_comp->numblocks) {
 | |
|                         ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
 | |
|                         OPENSSL_free(tmp_wNAF);
 | |
|                         goto err;
 | |
|                     }
 | |
|                     totalnum = num + numblocks;
 | |
|                 }
 | |
| 
 | |
|                 /* split wNAF in 'numblocks' parts */
 | |
|                 pp = tmp_wNAF;
 | |
|                 tmp_points = pre_comp->points;
 | |
| 
 | |
|                 for (i = num; i < totalnum; i++) {
 | |
|                     if (i < totalnum - 1) {
 | |
|                         wNAF_len[i] = blocksize;
 | |
|                         if (tmp_len < blocksize) {
 | |
|                             ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
 | |
|                             OPENSSL_free(tmp_wNAF);
 | |
|                             goto err;
 | |
|                         }
 | |
|                         tmp_len -= blocksize;
 | |
|                     } else
 | |
|                         /*
 | |
|                          * last block gets whatever is left (this could be
 | |
|                          * more or less than 'blocksize'!)
 | |
|                          */
 | |
|                         wNAF_len[i] = tmp_len;
 | |
| 
 | |
|                     wNAF[i + 1] = NULL;
 | |
|                     wNAF[i] = OPENSSL_malloc(wNAF_len[i]);
 | |
|                     if (wNAF[i] == NULL) {
 | |
|                         ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE);
 | |
|                         OPENSSL_free(tmp_wNAF);
 | |
|                         goto err;
 | |
|                     }
 | |
|                     memcpy(wNAF[i], pp, wNAF_len[i]);
 | |
|                     if (wNAF_len[i] > max_len)
 | |
|                         max_len = wNAF_len[i];
 | |
| 
 | |
|                     if (*tmp_points == NULL) {
 | |
|                         ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
 | |
|                         OPENSSL_free(tmp_wNAF);
 | |
|                         goto err;
 | |
|                     }
 | |
|                     val_sub[i] = tmp_points;
 | |
|                     tmp_points += pre_points_per_block;
 | |
|                     pp += blocksize;
 | |
|                 }
 | |
|                 OPENSSL_free(tmp_wNAF);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * All points we precompute now go into a single array 'val'.
 | |
|      * 'val_sub[i]' is a pointer to the subarray for the i-th point, or to a
 | |
|      * subarray of 'pre_comp->points' if we already have precomputation.
 | |
|      */
 | |
|     val = OPENSSL_malloc((num_val + 1) * sizeof(val[0]));
 | |
|     if (val == NULL) {
 | |
|         ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE);
 | |
|         goto err;
 | |
|     }
 | |
|     val[num_val] = NULL;        /* pivot element */
 | |
| 
 | |
|     /* allocate points for precomputation */
 | |
|     v = val;
 | |
|     for (i = 0; i < num + num_scalar; i++) {
 | |
|         val_sub[i] = v;
 | |
|         for (j = 0; j < ((size_t)1 << (wsize[i] - 1)); j++) {
 | |
|             *v = EC_POINT_new(group);
 | |
|             if (*v == NULL)
 | |
|                 goto err;
 | |
|             v++;
 | |
|         }
 | |
|     }
 | |
|     if (!(v == val + num_val)) {
 | |
|         ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
 | |
|         goto err;
 | |
|     }
 | |
| 
 | |
|     if ((tmp = EC_POINT_new(group)) == NULL)
 | |
|         goto err;
 | |
| 
 | |
|     /*-
 | |
|      * prepare precomputed values:
 | |
|      *    val_sub[i][0] :=     points[i]
 | |
|      *    val_sub[i][1] := 3 * points[i]
 | |
|      *    val_sub[i][2] := 5 * points[i]
 | |
|      *    ...
 | |
|      */
 | |
|     for (i = 0; i < num + num_scalar; i++) {
 | |
|         if (i < num) {
 | |
|             if (!EC_POINT_copy(val_sub[i][0], points[i]))
 | |
|                 goto err;
 | |
|         } else {
 | |
|             if (!EC_POINT_copy(val_sub[i][0], generator))
 | |
|                 goto err;
 | |
|         }
 | |
| 
 | |
|         if (wsize[i] > 1) {
 | |
|             if (!EC_POINT_dbl(group, tmp, val_sub[i][0], ctx))
 | |
|                 goto err;
 | |
|             for (j = 1; j < ((size_t)1 << (wsize[i] - 1)); j++) {
 | |
|                 if (!EC_POINT_add
 | |
|                     (group, val_sub[i][j], val_sub[i][j - 1], tmp, ctx))
 | |
|                     goto err;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (!EC_POINTs_make_affine(group, num_val, val, ctx))
 | |
|         goto err;
 | |
| 
 | |
|     r_is_at_infinity = 1;
 | |
| 
 | |
|     for (k = max_len - 1; k >= 0; k--) {
 | |
|         if (!r_is_at_infinity) {
 | |
|             if (!EC_POINT_dbl(group, r, r, ctx))
 | |
|                 goto err;
 | |
|         }
 | |
| 
 | |
|         for (i = 0; i < totalnum; i++) {
 | |
|             if (wNAF_len[i] > (size_t)k) {
 | |
|                 int digit = wNAF[i][k];
 | |
|                 int is_neg;
 | |
| 
 | |
|                 if (digit) {
 | |
|                     is_neg = digit < 0;
 | |
| 
 | |
|                     if (is_neg)
 | |
|                         digit = -digit;
 | |
| 
 | |
|                     if (is_neg != r_is_inverted) {
 | |
|                         if (!r_is_at_infinity) {
 | |
|                             if (!EC_POINT_invert(group, r, ctx))
 | |
|                                 goto err;
 | |
|                         }
 | |
|                         r_is_inverted = !r_is_inverted;
 | |
|                     }
 | |
| 
 | |
|                     /* digit > 0 */
 | |
| 
 | |
|                     if (r_is_at_infinity) {
 | |
|                         if (!EC_POINT_copy(r, val_sub[i][digit >> 1]))
 | |
|                             goto err;
 | |
| 
 | |
|                         /*-
 | |
|                          * Apply coordinate blinding for EC_POINT.
 | |
|                          *
 | |
|                          * The underlying EC_METHOD can optionally implement this function:
 | |
|                          * ec_point_blind_coordinates() returns 0 in case of errors or 1 on
 | |
|                          * success or if coordinate blinding is not implemented for this
 | |
|                          * group.
 | |
|                          */
 | |
|                         if (!ec_point_blind_coordinates(group, r, ctx)) {
 | |
|                             ECerr(EC_F_EC_WNAF_MUL, EC_R_POINT_COORDINATES_BLIND_FAILURE);
 | |
|                             goto err;
 | |
|                         }
 | |
| 
 | |
|                         r_is_at_infinity = 0;
 | |
|                     } else {
 | |
|                         if (!EC_POINT_add
 | |
|                             (group, r, r, val_sub[i][digit >> 1], ctx))
 | |
|                             goto err;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (r_is_at_infinity) {
 | |
|         if (!EC_POINT_set_to_infinity(group, r))
 | |
|             goto err;
 | |
|     } else {
 | |
|         if (r_is_inverted)
 | |
|             if (!EC_POINT_invert(group, r, ctx))
 | |
|                 goto err;
 | |
|     }
 | |
| 
 | |
|     ret = 1;
 | |
| 
 | |
|  err:
 | |
|     EC_POINT_free(tmp);
 | |
|     OPENSSL_free(wsize);
 | |
|     OPENSSL_free(wNAF_len);
 | |
|     if (wNAF != NULL) {
 | |
|         signed char **w;
 | |
| 
 | |
|         for (w = wNAF; *w != NULL; w++)
 | |
|             OPENSSL_free(*w);
 | |
| 
 | |
|         OPENSSL_free(wNAF);
 | |
|     }
 | |
|     if (val != NULL) {
 | |
|         for (v = val; *v != NULL; v++)
 | |
|             EC_POINT_clear_free(*v);
 | |
| 
 | |
|         OPENSSL_free(val);
 | |
|     }
 | |
|     OPENSSL_free(val_sub);
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /*-
 | |
|  * ec_wNAF_precompute_mult()
 | |
|  * creates an EC_PRE_COMP object with preprecomputed multiples of the generator
 | |
|  * for use with wNAF splitting as implemented in ec_wNAF_mul().
 | |
|  *
 | |
|  * 'pre_comp->points' is an array of multiples of the generator
 | |
|  * of the following form:
 | |
|  * points[0] =     generator;
 | |
|  * points[1] = 3 * generator;
 | |
|  * ...
 | |
|  * points[2^(w-1)-1] =     (2^(w-1)-1) * generator;
 | |
|  * points[2^(w-1)]   =     2^blocksize * generator;
 | |
|  * points[2^(w-1)+1] = 3 * 2^blocksize * generator;
 | |
|  * ...
 | |
|  * points[2^(w-1)*(numblocks-1)-1] = (2^(w-1)) *  2^(blocksize*(numblocks-2)) * generator
 | |
|  * points[2^(w-1)*(numblocks-1)]   =              2^(blocksize*(numblocks-1)) * generator
 | |
|  * ...
 | |
|  * points[2^(w-1)*numblocks-1]     = (2^(w-1)) *  2^(blocksize*(numblocks-1)) * generator
 | |
|  * points[2^(w-1)*numblocks]       = NULL
 | |
|  */
 | |
| int ec_wNAF_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
 | |
| {
 | |
|     const EC_POINT *generator;
 | |
|     EC_POINT *tmp_point = NULL, *base = NULL, **var;
 | |
|     BN_CTX *new_ctx = NULL;
 | |
|     const BIGNUM *order;
 | |
|     size_t i, bits, w, pre_points_per_block, blocksize, numblocks, num;
 | |
|     EC_POINT **points = NULL;
 | |
|     EC_PRE_COMP *pre_comp;
 | |
|     int ret = 0;
 | |
| 
 | |
|     /* if there is an old EC_PRE_COMP object, throw it away */
 | |
|     EC_pre_comp_free(group);
 | |
|     if ((pre_comp = ec_pre_comp_new(group)) == NULL)
 | |
|         return 0;
 | |
| 
 | |
|     generator = EC_GROUP_get0_generator(group);
 | |
|     if (generator == NULL) {
 | |
|         ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, EC_R_UNDEFINED_GENERATOR);
 | |
|         goto err;
 | |
|     }
 | |
| 
 | |
|     if (ctx == NULL) {
 | |
|         ctx = new_ctx = BN_CTX_new();
 | |
|         if (ctx == NULL)
 | |
|             goto err;
 | |
|     }
 | |
| 
 | |
|     BN_CTX_start(ctx);
 | |
| 
 | |
|     order = EC_GROUP_get0_order(group);
 | |
|     if (order == NULL)
 | |
|         goto err;
 | |
|     if (BN_is_zero(order)) {
 | |
|         ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, EC_R_UNKNOWN_ORDER);
 | |
|         goto err;
 | |
|     }
 | |
| 
 | |
|     bits = BN_num_bits(order);
 | |
|     /*
 | |
|      * The following parameters mean we precompute (approximately) one point
 | |
|      * per bit. TBD: The combination 8, 4 is perfect for 160 bits; for other
 | |
|      * bit lengths, other parameter combinations might provide better
 | |
|      * efficiency.
 | |
|      */
 | |
|     blocksize = 8;
 | |
|     w = 4;
 | |
|     if (EC_window_bits_for_scalar_size(bits) > w) {
 | |
|         /* let's not make the window too small ... */
 | |
|         w = EC_window_bits_for_scalar_size(bits);
 | |
|     }
 | |
| 
 | |
|     numblocks = (bits + blocksize - 1) / blocksize; /* max. number of blocks
 | |
|                                                      * to use for wNAF
 | |
|                                                      * splitting */
 | |
| 
 | |
|     pre_points_per_block = (size_t)1 << (w - 1);
 | |
|     num = pre_points_per_block * numblocks; /* number of points to compute
 | |
|                                              * and store */
 | |
| 
 | |
|     points = OPENSSL_malloc(sizeof(*points) * (num + 1));
 | |
|     if (points == NULL) {
 | |
|         ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE);
 | |
|         goto err;
 | |
|     }
 | |
| 
 | |
|     var = points;
 | |
|     var[num] = NULL;            /* pivot */
 | |
|     for (i = 0; i < num; i++) {
 | |
|         if ((var[i] = EC_POINT_new(group)) == NULL) {
 | |
|             ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE);
 | |
|             goto err;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if ((tmp_point = EC_POINT_new(group)) == NULL
 | |
|         || (base = EC_POINT_new(group)) == NULL) {
 | |
|         ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE);
 | |
|         goto err;
 | |
|     }
 | |
| 
 | |
|     if (!EC_POINT_copy(base, generator))
 | |
|         goto err;
 | |
| 
 | |
|     /* do the precomputation */
 | |
|     for (i = 0; i < numblocks; i++) {
 | |
|         size_t j;
 | |
| 
 | |
|         if (!EC_POINT_dbl(group, tmp_point, base, ctx))
 | |
|             goto err;
 | |
| 
 | |
|         if (!EC_POINT_copy(*var++, base))
 | |
|             goto err;
 | |
| 
 | |
|         for (j = 1; j < pre_points_per_block; j++, var++) {
 | |
|             /*
 | |
|              * calculate odd multiples of the current base point
 | |
|              */
 | |
|             if (!EC_POINT_add(group, *var, tmp_point, *(var - 1), ctx))
 | |
|                 goto err;
 | |
|         }
 | |
| 
 | |
|         if (i < numblocks - 1) {
 | |
|             /*
 | |
|              * get the next base (multiply current one by 2^blocksize)
 | |
|              */
 | |
|             size_t k;
 | |
| 
 | |
|             if (blocksize <= 2) {
 | |
|                 ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_INTERNAL_ERROR);
 | |
|                 goto err;
 | |
|             }
 | |
| 
 | |
|             if (!EC_POINT_dbl(group, base, tmp_point, ctx))
 | |
|                 goto err;
 | |
|             for (k = 2; k < blocksize; k++) {
 | |
|                 if (!EC_POINT_dbl(group, base, base, ctx))
 | |
|                     goto err;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (!EC_POINTs_make_affine(group, num, points, ctx))
 | |
|         goto err;
 | |
| 
 | |
|     pre_comp->group = group;
 | |
|     pre_comp->blocksize = blocksize;
 | |
|     pre_comp->numblocks = numblocks;
 | |
|     pre_comp->w = w;
 | |
|     pre_comp->points = points;
 | |
|     points = NULL;
 | |
|     pre_comp->num = num;
 | |
|     SETPRECOMP(group, ec, pre_comp);
 | |
|     pre_comp = NULL;
 | |
|     ret = 1;
 | |
| 
 | |
|  err:
 | |
|     BN_CTX_end(ctx);
 | |
|     BN_CTX_free(new_ctx);
 | |
|     EC_ec_pre_comp_free(pre_comp);
 | |
|     if (points) {
 | |
|         EC_POINT **p;
 | |
| 
 | |
|         for (p = points; *p != NULL; p++)
 | |
|             EC_POINT_free(*p);
 | |
|         OPENSSL_free(points);
 | |
|     }
 | |
|     EC_POINT_free(tmp_point);
 | |
|     EC_POINT_free(base);
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| int ec_wNAF_have_precompute_mult(const EC_GROUP *group)
 | |
| {
 | |
|     return HAVEPRECOMP(group, ec);
 | |
| }
 |