mirror of
				https://github.com/ossrs/srs.git
				synced 2025-03-09 15:49:59 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			458 lines
		
	
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			458 lines
		
	
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright 1995-2021 The OpenSSL Project Authors. All Rights Reserved.
 | |
|  *
 | |
|  * Licensed under the OpenSSL license (the "License").  You may not use
 | |
|  * this file except in compliance with the License.  You can obtain a copy
 | |
|  * in the file LICENSE in the source distribution or at
 | |
|  * https://www.openssl.org/source/license.html
 | |
|  */
 | |
| 
 | |
| #include <assert.h>
 | |
| #include <openssl/bn.h>
 | |
| #include "internal/cryptlib.h"
 | |
| #include "bn_local.h"
 | |
| 
 | |
| /* The old slow way */
 | |
| #if 0
 | |
| int BN_div(BIGNUM *dv, BIGNUM *rem, const BIGNUM *m, const BIGNUM *d,
 | |
|            BN_CTX *ctx)
 | |
| {
 | |
|     int i, nm, nd;
 | |
|     int ret = 0;
 | |
|     BIGNUM *D;
 | |
| 
 | |
|     bn_check_top(m);
 | |
|     bn_check_top(d);
 | |
|     if (BN_is_zero(d)) {
 | |
|         BNerr(BN_F_BN_DIV, BN_R_DIV_BY_ZERO);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     if (BN_ucmp(m, d) < 0) {
 | |
|         if (rem != NULL) {
 | |
|             if (BN_copy(rem, m) == NULL)
 | |
|                 return 0;
 | |
|         }
 | |
|         if (dv != NULL)
 | |
|             BN_zero(dv);
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     BN_CTX_start(ctx);
 | |
|     D = BN_CTX_get(ctx);
 | |
|     if (dv == NULL)
 | |
|         dv = BN_CTX_get(ctx);
 | |
|     if (rem == NULL)
 | |
|         rem = BN_CTX_get(ctx);
 | |
|     if (D == NULL || dv == NULL || rem == NULL)
 | |
|         goto end;
 | |
| 
 | |
|     nd = BN_num_bits(d);
 | |
|     nm = BN_num_bits(m);
 | |
|     if (BN_copy(D, d) == NULL)
 | |
|         goto end;
 | |
|     if (BN_copy(rem, m) == NULL)
 | |
|         goto end;
 | |
| 
 | |
|     /*
 | |
|      * The next 2 are needed so we can do a dv->d[0]|=1 later since
 | |
|      * BN_lshift1 will only work once there is a value :-)
 | |
|      */
 | |
|     BN_zero(dv);
 | |
|     if (bn_wexpand(dv, 1) == NULL)
 | |
|         goto end;
 | |
|     dv->top = 1;
 | |
| 
 | |
|     if (!BN_lshift(D, D, nm - nd))
 | |
|         goto end;
 | |
|     for (i = nm - nd; i >= 0; i--) {
 | |
|         if (!BN_lshift1(dv, dv))
 | |
|             goto end;
 | |
|         if (BN_ucmp(rem, D) >= 0) {
 | |
|             dv->d[0] |= 1;
 | |
|             if (!BN_usub(rem, rem, D))
 | |
|                 goto end;
 | |
|         }
 | |
| /* CAN IMPROVE (and have now :=) */
 | |
|         if (!BN_rshift1(D, D))
 | |
|             goto end;
 | |
|     }
 | |
|     rem->neg = BN_is_zero(rem) ? 0 : m->neg;
 | |
|     dv->neg = m->neg ^ d->neg;
 | |
|     ret = 1;
 | |
|  end:
 | |
|     BN_CTX_end(ctx);
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| # if defined(BN_DIV3W)
 | |
| BN_ULONG bn_div_3_words(const BN_ULONG *m, BN_ULONG d1, BN_ULONG d0);
 | |
| # elif 0
 | |
| /*
 | |
|  * This is #if-ed away, because it's a reference for assembly implementations,
 | |
|  * where it can and should be made constant-time. But if you want to test it,
 | |
|  * just replace 0 with 1.
 | |
|  */
 | |
| #  if BN_BITS2 == 64 && defined(__SIZEOF_INT128__) && __SIZEOF_INT128__==16
 | |
| #   undef BN_ULLONG
 | |
| #   define BN_ULLONG __uint128_t
 | |
| #   define BN_LLONG
 | |
| #  endif
 | |
| 
 | |
| #  ifdef BN_LLONG
 | |
| #   define BN_DIV3W
 | |
| /*
 | |
|  * Interface is somewhat quirky, |m| is pointer to most significant limb,
 | |
|  * and less significant limb is referred at |m[-1]|. This means that caller
 | |
|  * is responsible for ensuring that |m[-1]| is valid. Second condition that
 | |
|  * has to be met is that |d0|'s most significant bit has to be set. Or in
 | |
|  * other words divisor has to be "bit-aligned to the left." bn_div_fixed_top
 | |
|  * does all this. The subroutine considers four limbs, two of which are
 | |
|  * "overlapping," hence the name...
 | |
|  */
 | |
| static BN_ULONG bn_div_3_words(const BN_ULONG *m, BN_ULONG d1, BN_ULONG d0)
 | |
| {
 | |
|     BN_ULLONG R = ((BN_ULLONG)m[0] << BN_BITS2) | m[-1];
 | |
|     BN_ULLONG D = ((BN_ULLONG)d0 << BN_BITS2) | d1;
 | |
|     BN_ULONG Q = 0, mask;
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < BN_BITS2; i++) {
 | |
|         Q <<= 1;
 | |
|         if (R >= D) {
 | |
|             Q |= 1;
 | |
|             R -= D;
 | |
|         }
 | |
|         D >>= 1;
 | |
|     }
 | |
| 
 | |
|     mask = 0 - (Q >> (BN_BITS2 - 1));   /* does it overflow? */
 | |
| 
 | |
|     Q <<= 1;
 | |
|     Q |= (R >= D);
 | |
| 
 | |
|     return (Q | mask) & BN_MASK2;
 | |
| }
 | |
| #  endif
 | |
| # endif
 | |
| 
 | |
| static int bn_left_align(BIGNUM *num)
 | |
| {
 | |
|     BN_ULONG *d = num->d, n, m, rmask;
 | |
|     int top = num->top;
 | |
|     int rshift = BN_num_bits_word(d[top - 1]), lshift, i;
 | |
| 
 | |
|     lshift = BN_BITS2 - rshift;
 | |
|     rshift %= BN_BITS2;            /* say no to undefined behaviour */
 | |
|     rmask = (BN_ULONG)0 - rshift;  /* rmask = 0 - (rshift != 0) */
 | |
|     rmask |= rmask >> 8;
 | |
| 
 | |
|     for (i = 0, m = 0; i < top; i++) {
 | |
|         n = d[i];
 | |
|         d[i] = ((n << lshift) | m) & BN_MASK2;
 | |
|         m = (n >> rshift) & rmask;
 | |
|     }
 | |
| 
 | |
|     return lshift;
 | |
| }
 | |
| 
 | |
| # if !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM) \
 | |
|     && !defined(PEDANTIC) && !defined(BN_DIV3W)
 | |
| #  if defined(__GNUC__) && __GNUC__>=2
 | |
| #   if defined(__i386) || defined (__i386__)
 | |
|    /*-
 | |
|     * There were two reasons for implementing this template:
 | |
|     * - GNU C generates a call to a function (__udivdi3 to be exact)
 | |
|     *   in reply to ((((BN_ULLONG)n0)<<BN_BITS2)|n1)/d0 (I fail to
 | |
|     *   understand why...);
 | |
|     * - divl doesn't only calculate quotient, but also leaves
 | |
|     *   remainder in %edx which we can definitely use here:-)
 | |
|     */
 | |
| #    undef bn_div_words
 | |
| #    define bn_div_words(n0,n1,d0)                \
 | |
|         ({  asm volatile (                      \
 | |
|                 "divl   %4"                     \
 | |
|                 : "=a"(q), "=d"(rem)            \
 | |
|                 : "a"(n1), "d"(n0), "r"(d0)     \
 | |
|                 : "cc");                        \
 | |
|             q;                                  \
 | |
|         })
 | |
| #    define REMAINDER_IS_ALREADY_CALCULATED
 | |
| #   elif defined(__x86_64) && defined(SIXTY_FOUR_BIT_LONG)
 | |
|    /*
 | |
|     * Same story here, but it's 128-bit by 64-bit division. Wow!
 | |
|     */
 | |
| #    undef bn_div_words
 | |
| #    define bn_div_words(n0,n1,d0)                \
 | |
|         ({  asm volatile (                      \
 | |
|                 "divq   %4"                     \
 | |
|                 : "=a"(q), "=d"(rem)            \
 | |
|                 : "a"(n1), "d"(n0), "r"(d0)     \
 | |
|                 : "cc");                        \
 | |
|             q;                                  \
 | |
|         })
 | |
| #    define REMAINDER_IS_ALREADY_CALCULATED
 | |
| #   endif                       /* __<cpu> */
 | |
| #  endif                        /* __GNUC__ */
 | |
| # endif                         /* OPENSSL_NO_ASM */
 | |
| 
 | |
| /*-
 | |
|  * BN_div computes  dv := num / divisor, rounding towards
 | |
|  * zero, and sets up rm  such that  dv*divisor + rm = num  holds.
 | |
|  * Thus:
 | |
|  *     dv->neg == num->neg ^ divisor->neg  (unless the result is zero)
 | |
|  *     rm->neg == num->neg                 (unless the remainder is zero)
 | |
|  * If 'dv' or 'rm' is NULL, the respective value is not returned.
 | |
|  */
 | |
| int BN_div(BIGNUM *dv, BIGNUM *rm, const BIGNUM *num, const BIGNUM *divisor,
 | |
|            BN_CTX *ctx)
 | |
| {
 | |
|     int ret;
 | |
| 
 | |
|     if (BN_is_zero(divisor)) {
 | |
|         BNerr(BN_F_BN_DIV, BN_R_DIV_BY_ZERO);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Invalid zero-padding would have particularly bad consequences so don't
 | |
|      * just rely on bn_check_top() here (bn_check_top() works only for
 | |
|      * BN_DEBUG builds)
 | |
|      */
 | |
|     if (divisor->d[divisor->top - 1] == 0) {
 | |
|         BNerr(BN_F_BN_DIV, BN_R_NOT_INITIALIZED);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     ret = bn_div_fixed_top(dv, rm, num, divisor, ctx);
 | |
| 
 | |
|     if (ret) {
 | |
|         if (dv != NULL)
 | |
|             bn_correct_top(dv);
 | |
|         if (rm != NULL)
 | |
|             bn_correct_top(rm);
 | |
|     }
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * It's argued that *length* of *significant* part of divisor is public.
 | |
|  * Even if it's private modulus that is. Again, *length* is assumed
 | |
|  * public, but not *value*. Former is likely to be pre-defined by
 | |
|  * algorithm with bit granularity, though below subroutine is invariant
 | |
|  * of limb length. Thanks to this assumption we can require that |divisor|
 | |
|  * may not be zero-padded, yet claim this subroutine "constant-time"(*).
 | |
|  * This is because zero-padded dividend, |num|, is tolerated, so that
 | |
|  * caller can pass dividend of public length(*), but with smaller amount
 | |
|  * of significant limbs. This naturally means that quotient, |dv|, would
 | |
|  * contain correspongly less significant limbs as well, and will be zero-
 | |
|  * padded accordingly. Returned remainder, |rm|, will have same bit length
 | |
|  * as divisor, also zero-padded if needed. These actually leave sign bits
 | |
|  * in ambiguous state. In sense that we try to avoid negative zeros, while
 | |
|  * zero-padded zeros would retain sign.
 | |
|  *
 | |
|  * (*) "Constant-time-ness" has two pre-conditions:
 | |
|  *
 | |
|  *     - availability of constant-time bn_div_3_words;
 | |
|  *     - dividend is at least as "wide" as divisor, limb-wise, zero-padded
 | |
|  *       if so required, which shouldn't be a privacy problem, because
 | |
|  *       divisor's length is considered public;
 | |
|  */
 | |
| int bn_div_fixed_top(BIGNUM *dv, BIGNUM *rm, const BIGNUM *num,
 | |
|                      const BIGNUM *divisor, BN_CTX *ctx)
 | |
| {
 | |
|     int norm_shift, i, j, loop;
 | |
|     BIGNUM *tmp, *snum, *sdiv, *res;
 | |
|     BN_ULONG *resp, *wnum, *wnumtop;
 | |
|     BN_ULONG d0, d1;
 | |
|     int num_n, div_n, num_neg;
 | |
| 
 | |
|     assert(divisor->top > 0 && divisor->d[divisor->top - 1] != 0);
 | |
| 
 | |
|     bn_check_top(num);
 | |
|     bn_check_top(divisor);
 | |
|     bn_check_top(dv);
 | |
|     bn_check_top(rm);
 | |
| 
 | |
|     BN_CTX_start(ctx);
 | |
|     res = (dv == NULL) ? BN_CTX_get(ctx) : dv;
 | |
|     tmp = BN_CTX_get(ctx);
 | |
|     snum = BN_CTX_get(ctx);
 | |
|     sdiv = BN_CTX_get(ctx);
 | |
|     if (sdiv == NULL)
 | |
|         goto err;
 | |
| 
 | |
|     /* First we normalise the numbers */
 | |
|     if (!BN_copy(sdiv, divisor))
 | |
|         goto err;
 | |
|     norm_shift = bn_left_align(sdiv);
 | |
|     sdiv->neg = 0;
 | |
|     /*
 | |
|      * Note that bn_lshift_fixed_top's output is always one limb longer
 | |
|      * than input, even when norm_shift is zero. This means that amount of
 | |
|      * inner loop iterations is invariant of dividend value, and that one
 | |
|      * doesn't need to compare dividend and divisor if they were originally
 | |
|      * of the same bit length.
 | |
|      */
 | |
|     if (!(bn_lshift_fixed_top(snum, num, norm_shift)))
 | |
|         goto err;
 | |
| 
 | |
|     div_n = sdiv->top;
 | |
|     num_n = snum->top;
 | |
| 
 | |
|     if (num_n <= div_n) {
 | |
|         /* caller didn't pad dividend -> no constant-time guarantee... */
 | |
|         if (bn_wexpand(snum, div_n + 1) == NULL)
 | |
|             goto err;
 | |
|         memset(&(snum->d[num_n]), 0, (div_n - num_n + 1) * sizeof(BN_ULONG));
 | |
|         snum->top = num_n = div_n + 1;
 | |
|     }
 | |
| 
 | |
|     loop = num_n - div_n;
 | |
|     /*
 | |
|      * Lets setup a 'window' into snum This is the part that corresponds to
 | |
|      * the current 'area' being divided
 | |
|      */
 | |
|     wnum = &(snum->d[loop]);
 | |
|     wnumtop = &(snum->d[num_n - 1]);
 | |
| 
 | |
|     /* Get the top 2 words of sdiv */
 | |
|     d0 = sdiv->d[div_n - 1];
 | |
|     d1 = (div_n == 1) ? 0 : sdiv->d[div_n - 2];
 | |
| 
 | |
|     /* Setup quotient */
 | |
|     if (!bn_wexpand(res, loop))
 | |
|         goto err;
 | |
|     num_neg = num->neg;
 | |
|     res->neg = (num_neg ^ divisor->neg);
 | |
|     res->top = loop;
 | |
|     res->flags |= BN_FLG_FIXED_TOP;
 | |
|     resp = &(res->d[loop]);
 | |
| 
 | |
|     /* space for temp */
 | |
|     if (!bn_wexpand(tmp, (div_n + 1)))
 | |
|         goto err;
 | |
| 
 | |
|     for (i = 0; i < loop; i++, wnumtop--) {
 | |
|         BN_ULONG q, l0;
 | |
|         /*
 | |
|          * the first part of the loop uses the top two words of snum and sdiv
 | |
|          * to calculate a BN_ULONG q such that | wnum - sdiv * q | < sdiv
 | |
|          */
 | |
| # if defined(BN_DIV3W)
 | |
|         q = bn_div_3_words(wnumtop, d1, d0);
 | |
| # else
 | |
|         BN_ULONG n0, n1, rem = 0;
 | |
| 
 | |
|         n0 = wnumtop[0];
 | |
|         n1 = wnumtop[-1];
 | |
|         if (n0 == d0)
 | |
|             q = BN_MASK2;
 | |
|         else {                  /* n0 < d0 */
 | |
|             BN_ULONG n2 = (wnumtop == wnum) ? 0 : wnumtop[-2];
 | |
| #  ifdef BN_LLONG
 | |
|             BN_ULLONG t2;
 | |
| 
 | |
| #   if defined(BN_LLONG) && defined(BN_DIV2W) && !defined(bn_div_words)
 | |
|             q = (BN_ULONG)(((((BN_ULLONG) n0) << BN_BITS2) | n1) / d0);
 | |
| #   else
 | |
|             q = bn_div_words(n0, n1, d0);
 | |
| #   endif
 | |
| 
 | |
| #   ifndef REMAINDER_IS_ALREADY_CALCULATED
 | |
|             /*
 | |
|              * rem doesn't have to be BN_ULLONG. The least we
 | |
|              * know it's less that d0, isn't it?
 | |
|              */
 | |
|             rem = (n1 - q * d0) & BN_MASK2;
 | |
| #   endif
 | |
|             t2 = (BN_ULLONG) d1 *q;
 | |
| 
 | |
|             for (;;) {
 | |
|                 if (t2 <= ((((BN_ULLONG) rem) << BN_BITS2) | n2))
 | |
|                     break;
 | |
|                 q--;
 | |
|                 rem += d0;
 | |
|                 if (rem < d0)
 | |
|                     break;      /* don't let rem overflow */
 | |
|                 t2 -= d1;
 | |
|             }
 | |
| #  else                         /* !BN_LLONG */
 | |
|             BN_ULONG t2l, t2h;
 | |
| 
 | |
|             q = bn_div_words(n0, n1, d0);
 | |
| #   ifndef REMAINDER_IS_ALREADY_CALCULATED
 | |
|             rem = (n1 - q * d0) & BN_MASK2;
 | |
| #   endif
 | |
| 
 | |
| #   if defined(BN_UMULT_LOHI)
 | |
|             BN_UMULT_LOHI(t2l, t2h, d1, q);
 | |
| #   elif defined(BN_UMULT_HIGH)
 | |
|             t2l = d1 * q;
 | |
|             t2h = BN_UMULT_HIGH(d1, q);
 | |
| #   else
 | |
|             {
 | |
|                 BN_ULONG ql, qh;
 | |
|                 t2l = LBITS(d1);
 | |
|                 t2h = HBITS(d1);
 | |
|                 ql = LBITS(q);
 | |
|                 qh = HBITS(q);
 | |
|                 mul64(t2l, t2h, ql, qh); /* t2=(BN_ULLONG)d1*q; */
 | |
|             }
 | |
| #   endif
 | |
| 
 | |
|             for (;;) {
 | |
|                 if ((t2h < rem) || ((t2h == rem) && (t2l <= n2)))
 | |
|                     break;
 | |
|                 q--;
 | |
|                 rem += d0;
 | |
|                 if (rem < d0)
 | |
|                     break;      /* don't let rem overflow */
 | |
|                 if (t2l < d1)
 | |
|                     t2h--;
 | |
|                 t2l -= d1;
 | |
|             }
 | |
| #  endif                        /* !BN_LLONG */
 | |
|         }
 | |
| # endif                         /* !BN_DIV3W */
 | |
| 
 | |
|         l0 = bn_mul_words(tmp->d, sdiv->d, div_n, q);
 | |
|         tmp->d[div_n] = l0;
 | |
|         wnum--;
 | |
|         /*
 | |
|          * ignore top values of the bignums just sub the two BN_ULONG arrays
 | |
|          * with bn_sub_words
 | |
|          */
 | |
|         l0 = bn_sub_words(wnum, wnum, tmp->d, div_n + 1);
 | |
|         q -= l0;
 | |
|         /*
 | |
|          * Note: As we have considered only the leading two BN_ULONGs in
 | |
|          * the calculation of q, sdiv * q might be greater than wnum (but
 | |
|          * then (q-1) * sdiv is less or equal than wnum)
 | |
|          */
 | |
|         for (l0 = 0 - l0, j = 0; j < div_n; j++)
 | |
|             tmp->d[j] = sdiv->d[j] & l0;
 | |
|         l0 = bn_add_words(wnum, wnum, tmp->d, div_n);
 | |
|         (*wnumtop) += l0;
 | |
|         assert((*wnumtop) == 0);
 | |
| 
 | |
|         /* store part of the result */
 | |
|         *--resp = q;
 | |
|     }
 | |
|     /* snum holds remainder, it's as wide as divisor */
 | |
|     snum->neg = num_neg;
 | |
|     snum->top = div_n;
 | |
|     snum->flags |= BN_FLG_FIXED_TOP;
 | |
|     if (rm != NULL)
 | |
|         bn_rshift_fixed_top(rm, snum, norm_shift);
 | |
|     BN_CTX_end(ctx);
 | |
|     return 1;
 | |
|  err:
 | |
|     bn_check_top(rm);
 | |
|     BN_CTX_end(ctx);
 | |
|     return 0;
 | |
| }
 | |
| #endif
 |