mirror of
				https://github.com/ossrs/srs.git
				synced 2025-03-09 15:49:59 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			2174 lines
		
	
	
	
		
			72 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2174 lines
		
	
	
	
		
			72 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright 2011-2020 The OpenSSL Project Authors. All Rights Reserved.
 | |
|  *
 | |
|  * Licensed under the OpenSSL license (the "License").  You may not use
 | |
|  * this file except in compliance with the License.  You can obtain a copy
 | |
|  * in the file LICENSE in the source distribution or at
 | |
|  * https://www.openssl.org/source/license.html
 | |
|  */
 | |
| 
 | |
| /* Copyright 2011 Google Inc.
 | |
|  *
 | |
|  * Licensed under the Apache License, Version 2.0 (the "License");
 | |
|  *
 | |
|  * you may not use this file except in compliance with the License.
 | |
|  * You may obtain a copy of the License at
 | |
|  *
 | |
|  *     http://www.apache.org/licenses/LICENSE-2.0
 | |
|  *
 | |
|  *  Unless required by applicable law or agreed to in writing, software
 | |
|  *  distributed under the License is distributed on an "AS IS" BASIS,
 | |
|  *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
|  *  See the License for the specific language governing permissions and
 | |
|  *  limitations under the License.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * A 64-bit implementation of the NIST P-521 elliptic curve point multiplication
 | |
|  *
 | |
|  * OpenSSL integration was taken from Emilia Kasper's work in ecp_nistp224.c.
 | |
|  * Otherwise based on Emilia's P224 work, which was inspired by my curve25519
 | |
|  * work which got its smarts from Daniel J. Bernstein's work on the same.
 | |
|  */
 | |
| 
 | |
| #include <openssl/e_os2.h>
 | |
| #ifdef OPENSSL_NO_EC_NISTP_64_GCC_128
 | |
| NON_EMPTY_TRANSLATION_UNIT
 | |
| #else
 | |
| 
 | |
| # include <string.h>
 | |
| # include <openssl/err.h>
 | |
| # include "ec_local.h"
 | |
| 
 | |
| # if defined(__SIZEOF_INT128__) && __SIZEOF_INT128__==16
 | |
|   /* even with gcc, the typedef won't work for 32-bit platforms */
 | |
| typedef __uint128_t uint128_t;  /* nonstandard; implemented by gcc on 64-bit
 | |
|                                  * platforms */
 | |
| # else
 | |
| #  error "Your compiler doesn't appear to support 128-bit integer types"
 | |
| # endif
 | |
| 
 | |
| typedef uint8_t u8;
 | |
| typedef uint64_t u64;
 | |
| 
 | |
| /*
 | |
|  * The underlying field. P521 operates over GF(2^521-1). We can serialise an
 | |
|  * element of this field into 66 bytes where the most significant byte
 | |
|  * contains only a single bit. We call this an felem_bytearray.
 | |
|  */
 | |
| 
 | |
| typedef u8 felem_bytearray[66];
 | |
| 
 | |
| /*
 | |
|  * These are the parameters of P521, taken from FIPS 186-3, section D.1.2.5.
 | |
|  * These values are big-endian.
 | |
|  */
 | |
| static const felem_bytearray nistp521_curve_params[5] = {
 | |
|     {0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* p */
 | |
|      0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
 | |
|      0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
 | |
|      0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
 | |
|      0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
 | |
|      0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
 | |
|      0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
 | |
|      0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
 | |
|      0xff, 0xff},
 | |
|     {0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* a = -3 */
 | |
|      0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
 | |
|      0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
 | |
|      0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
 | |
|      0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
 | |
|      0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
 | |
|      0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
 | |
|      0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
 | |
|      0xff, 0xfc},
 | |
|     {0x00, 0x51, 0x95, 0x3e, 0xb9, 0x61, 0x8e, 0x1c, /* b */
 | |
|      0x9a, 0x1f, 0x92, 0x9a, 0x21, 0xa0, 0xb6, 0x85,
 | |
|      0x40, 0xee, 0xa2, 0xda, 0x72, 0x5b, 0x99, 0xb3,
 | |
|      0x15, 0xf3, 0xb8, 0xb4, 0x89, 0x91, 0x8e, 0xf1,
 | |
|      0x09, 0xe1, 0x56, 0x19, 0x39, 0x51, 0xec, 0x7e,
 | |
|      0x93, 0x7b, 0x16, 0x52, 0xc0, 0xbd, 0x3b, 0xb1,
 | |
|      0xbf, 0x07, 0x35, 0x73, 0xdf, 0x88, 0x3d, 0x2c,
 | |
|      0x34, 0xf1, 0xef, 0x45, 0x1f, 0xd4, 0x6b, 0x50,
 | |
|      0x3f, 0x00},
 | |
|     {0x00, 0xc6, 0x85, 0x8e, 0x06, 0xb7, 0x04, 0x04, /* x */
 | |
|      0xe9, 0xcd, 0x9e, 0x3e, 0xcb, 0x66, 0x23, 0x95,
 | |
|      0xb4, 0x42, 0x9c, 0x64, 0x81, 0x39, 0x05, 0x3f,
 | |
|      0xb5, 0x21, 0xf8, 0x28, 0xaf, 0x60, 0x6b, 0x4d,
 | |
|      0x3d, 0xba, 0xa1, 0x4b, 0x5e, 0x77, 0xef, 0xe7,
 | |
|      0x59, 0x28, 0xfe, 0x1d, 0xc1, 0x27, 0xa2, 0xff,
 | |
|      0xa8, 0xde, 0x33, 0x48, 0xb3, 0xc1, 0x85, 0x6a,
 | |
|      0x42, 0x9b, 0xf9, 0x7e, 0x7e, 0x31, 0xc2, 0xe5,
 | |
|      0xbd, 0x66},
 | |
|     {0x01, 0x18, 0x39, 0x29, 0x6a, 0x78, 0x9a, 0x3b, /* y */
 | |
|      0xc0, 0x04, 0x5c, 0x8a, 0x5f, 0xb4, 0x2c, 0x7d,
 | |
|      0x1b, 0xd9, 0x98, 0xf5, 0x44, 0x49, 0x57, 0x9b,
 | |
|      0x44, 0x68, 0x17, 0xaf, 0xbd, 0x17, 0x27, 0x3e,
 | |
|      0x66, 0x2c, 0x97, 0xee, 0x72, 0x99, 0x5e, 0xf4,
 | |
|      0x26, 0x40, 0xc5, 0x50, 0xb9, 0x01, 0x3f, 0xad,
 | |
|      0x07, 0x61, 0x35, 0x3c, 0x70, 0x86, 0xa2, 0x72,
 | |
|      0xc2, 0x40, 0x88, 0xbe, 0x94, 0x76, 0x9f, 0xd1,
 | |
|      0x66, 0x50}
 | |
| };
 | |
| 
 | |
| /*-
 | |
|  * The representation of field elements.
 | |
|  * ------------------------------------
 | |
|  *
 | |
|  * We represent field elements with nine values. These values are either 64 or
 | |
|  * 128 bits and the field element represented is:
 | |
|  *   v[0]*2^0 + v[1]*2^58 + v[2]*2^116 + ... + v[8]*2^464  (mod p)
 | |
|  * Each of the nine values is called a 'limb'. Since the limbs are spaced only
 | |
|  * 58 bits apart, but are greater than 58 bits in length, the most significant
 | |
|  * bits of each limb overlap with the least significant bits of the next.
 | |
|  *
 | |
|  * A field element with 64-bit limbs is an 'felem'. One with 128-bit limbs is a
 | |
|  * 'largefelem' */
 | |
| 
 | |
| # define NLIMBS 9
 | |
| 
 | |
| typedef uint64_t limb;
 | |
| typedef limb limb_aX __attribute((__aligned__(1)));
 | |
| typedef limb felem[NLIMBS];
 | |
| typedef uint128_t largefelem[NLIMBS];
 | |
| 
 | |
| static const limb bottom57bits = 0x1ffffffffffffff;
 | |
| static const limb bottom58bits = 0x3ffffffffffffff;
 | |
| 
 | |
| /*
 | |
|  * bin66_to_felem takes a little-endian byte array and converts it into felem
 | |
|  * form. This assumes that the CPU is little-endian.
 | |
|  */
 | |
| static void bin66_to_felem(felem out, const u8 in[66])
 | |
| {
 | |
|     out[0] = (*((limb *) & in[0])) & bottom58bits;
 | |
|     out[1] = (*((limb_aX *) & in[7]) >> 2) & bottom58bits;
 | |
|     out[2] = (*((limb_aX *) & in[14]) >> 4) & bottom58bits;
 | |
|     out[3] = (*((limb_aX *) & in[21]) >> 6) & bottom58bits;
 | |
|     out[4] = (*((limb_aX *) & in[29])) & bottom58bits;
 | |
|     out[5] = (*((limb_aX *) & in[36]) >> 2) & bottom58bits;
 | |
|     out[6] = (*((limb_aX *) & in[43]) >> 4) & bottom58bits;
 | |
|     out[7] = (*((limb_aX *) & in[50]) >> 6) & bottom58bits;
 | |
|     out[8] = (*((limb_aX *) & in[58])) & bottom57bits;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * felem_to_bin66 takes an felem and serialises into a little endian, 66 byte
 | |
|  * array. This assumes that the CPU is little-endian.
 | |
|  */
 | |
| static void felem_to_bin66(u8 out[66], const felem in)
 | |
| {
 | |
|     memset(out, 0, 66);
 | |
|     (*((limb *) & out[0])) = in[0];
 | |
|     (*((limb_aX *) & out[7])) |= in[1] << 2;
 | |
|     (*((limb_aX *) & out[14])) |= in[2] << 4;
 | |
|     (*((limb_aX *) & out[21])) |= in[3] << 6;
 | |
|     (*((limb_aX *) & out[29])) = in[4];
 | |
|     (*((limb_aX *) & out[36])) |= in[5] << 2;
 | |
|     (*((limb_aX *) & out[43])) |= in[6] << 4;
 | |
|     (*((limb_aX *) & out[50])) |= in[7] << 6;
 | |
|     (*((limb_aX *) & out[58])) = in[8];
 | |
| }
 | |
| 
 | |
| /* BN_to_felem converts an OpenSSL BIGNUM into an felem */
 | |
| static int BN_to_felem(felem out, const BIGNUM *bn)
 | |
| {
 | |
|     felem_bytearray b_out;
 | |
|     int num_bytes;
 | |
| 
 | |
|     if (BN_is_negative(bn)) {
 | |
|         ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE);
 | |
|         return 0;
 | |
|     }
 | |
|     num_bytes = BN_bn2lebinpad(bn, b_out, sizeof(b_out));
 | |
|     if (num_bytes < 0) {
 | |
|         ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE);
 | |
|         return 0;
 | |
|     }
 | |
|     bin66_to_felem(out, b_out);
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /* felem_to_BN converts an felem into an OpenSSL BIGNUM */
 | |
| static BIGNUM *felem_to_BN(BIGNUM *out, const felem in)
 | |
| {
 | |
|     felem_bytearray b_out;
 | |
|     felem_to_bin66(b_out, in);
 | |
|     return BN_lebin2bn(b_out, sizeof(b_out), out);
 | |
| }
 | |
| 
 | |
| /*-
 | |
|  * Field operations
 | |
|  * ----------------
 | |
|  */
 | |
| 
 | |
| static void felem_one(felem out)
 | |
| {
 | |
|     out[0] = 1;
 | |
|     out[1] = 0;
 | |
|     out[2] = 0;
 | |
|     out[3] = 0;
 | |
|     out[4] = 0;
 | |
|     out[5] = 0;
 | |
|     out[6] = 0;
 | |
|     out[7] = 0;
 | |
|     out[8] = 0;
 | |
| }
 | |
| 
 | |
| static void felem_assign(felem out, const felem in)
 | |
| {
 | |
|     out[0] = in[0];
 | |
|     out[1] = in[1];
 | |
|     out[2] = in[2];
 | |
|     out[3] = in[3];
 | |
|     out[4] = in[4];
 | |
|     out[5] = in[5];
 | |
|     out[6] = in[6];
 | |
|     out[7] = in[7];
 | |
|     out[8] = in[8];
 | |
| }
 | |
| 
 | |
| /* felem_sum64 sets out = out + in. */
 | |
| static void felem_sum64(felem out, const felem in)
 | |
| {
 | |
|     out[0] += in[0];
 | |
|     out[1] += in[1];
 | |
|     out[2] += in[2];
 | |
|     out[3] += in[3];
 | |
|     out[4] += in[4];
 | |
|     out[5] += in[5];
 | |
|     out[6] += in[6];
 | |
|     out[7] += in[7];
 | |
|     out[8] += in[8];
 | |
| }
 | |
| 
 | |
| /* felem_scalar sets out = in * scalar */
 | |
| static void felem_scalar(felem out, const felem in, limb scalar)
 | |
| {
 | |
|     out[0] = in[0] * scalar;
 | |
|     out[1] = in[1] * scalar;
 | |
|     out[2] = in[2] * scalar;
 | |
|     out[3] = in[3] * scalar;
 | |
|     out[4] = in[4] * scalar;
 | |
|     out[5] = in[5] * scalar;
 | |
|     out[6] = in[6] * scalar;
 | |
|     out[7] = in[7] * scalar;
 | |
|     out[8] = in[8] * scalar;
 | |
| }
 | |
| 
 | |
| /* felem_scalar64 sets out = out * scalar */
 | |
| static void felem_scalar64(felem out, limb scalar)
 | |
| {
 | |
|     out[0] *= scalar;
 | |
|     out[1] *= scalar;
 | |
|     out[2] *= scalar;
 | |
|     out[3] *= scalar;
 | |
|     out[4] *= scalar;
 | |
|     out[5] *= scalar;
 | |
|     out[6] *= scalar;
 | |
|     out[7] *= scalar;
 | |
|     out[8] *= scalar;
 | |
| }
 | |
| 
 | |
| /* felem_scalar128 sets out = out * scalar */
 | |
| static void felem_scalar128(largefelem out, limb scalar)
 | |
| {
 | |
|     out[0] *= scalar;
 | |
|     out[1] *= scalar;
 | |
|     out[2] *= scalar;
 | |
|     out[3] *= scalar;
 | |
|     out[4] *= scalar;
 | |
|     out[5] *= scalar;
 | |
|     out[6] *= scalar;
 | |
|     out[7] *= scalar;
 | |
|     out[8] *= scalar;
 | |
| }
 | |
| 
 | |
| /*-
 | |
|  * felem_neg sets |out| to |-in|
 | |
|  * On entry:
 | |
|  *   in[i] < 2^59 + 2^14
 | |
|  * On exit:
 | |
|  *   out[i] < 2^62
 | |
|  */
 | |
| static void felem_neg(felem out, const felem in)
 | |
| {
 | |
|     /* In order to prevent underflow, we subtract from 0 mod p. */
 | |
|     static const limb two62m3 = (((limb) 1) << 62) - (((limb) 1) << 5);
 | |
|     static const limb two62m2 = (((limb) 1) << 62) - (((limb) 1) << 4);
 | |
| 
 | |
|     out[0] = two62m3 - in[0];
 | |
|     out[1] = two62m2 - in[1];
 | |
|     out[2] = two62m2 - in[2];
 | |
|     out[3] = two62m2 - in[3];
 | |
|     out[4] = two62m2 - in[4];
 | |
|     out[5] = two62m2 - in[5];
 | |
|     out[6] = two62m2 - in[6];
 | |
|     out[7] = two62m2 - in[7];
 | |
|     out[8] = two62m2 - in[8];
 | |
| }
 | |
| 
 | |
| /*-
 | |
|  * felem_diff64 subtracts |in| from |out|
 | |
|  * On entry:
 | |
|  *   in[i] < 2^59 + 2^14
 | |
|  * On exit:
 | |
|  *   out[i] < out[i] + 2^62
 | |
|  */
 | |
| static void felem_diff64(felem out, const felem in)
 | |
| {
 | |
|     /*
 | |
|      * In order to prevent underflow, we add 0 mod p before subtracting.
 | |
|      */
 | |
|     static const limb two62m3 = (((limb) 1) << 62) - (((limb) 1) << 5);
 | |
|     static const limb two62m2 = (((limb) 1) << 62) - (((limb) 1) << 4);
 | |
| 
 | |
|     out[0] += two62m3 - in[0];
 | |
|     out[1] += two62m2 - in[1];
 | |
|     out[2] += two62m2 - in[2];
 | |
|     out[3] += two62m2 - in[3];
 | |
|     out[4] += two62m2 - in[4];
 | |
|     out[5] += two62m2 - in[5];
 | |
|     out[6] += two62m2 - in[6];
 | |
|     out[7] += two62m2 - in[7];
 | |
|     out[8] += two62m2 - in[8];
 | |
| }
 | |
| 
 | |
| /*-
 | |
|  * felem_diff_128_64 subtracts |in| from |out|
 | |
|  * On entry:
 | |
|  *   in[i] < 2^62 + 2^17
 | |
|  * On exit:
 | |
|  *   out[i] < out[i] + 2^63
 | |
|  */
 | |
| static void felem_diff_128_64(largefelem out, const felem in)
 | |
| {
 | |
|     /*
 | |
|      * In order to prevent underflow, we add 64p mod p (which is equivalent
 | |
|      * to 0 mod p) before subtracting. p is 2^521 - 1, i.e. in binary a 521
 | |
|      * digit number with all bits set to 1. See "The representation of field
 | |
|      * elements" comment above for a description of how limbs are used to
 | |
|      * represent a number. 64p is represented with 8 limbs containing a number
 | |
|      * with 58 bits set and one limb with a number with 57 bits set.
 | |
|      */
 | |
|     static const limb two63m6 = (((limb) 1) << 63) - (((limb) 1) << 6);
 | |
|     static const limb two63m5 = (((limb) 1) << 63) - (((limb) 1) << 5);
 | |
| 
 | |
|     out[0] += two63m6 - in[0];
 | |
|     out[1] += two63m5 - in[1];
 | |
|     out[2] += two63m5 - in[2];
 | |
|     out[3] += two63m5 - in[3];
 | |
|     out[4] += two63m5 - in[4];
 | |
|     out[5] += two63m5 - in[5];
 | |
|     out[6] += two63m5 - in[6];
 | |
|     out[7] += two63m5 - in[7];
 | |
|     out[8] += two63m5 - in[8];
 | |
| }
 | |
| 
 | |
| /*-
 | |
|  * felem_diff_128_64 subtracts |in| from |out|
 | |
|  * On entry:
 | |
|  *   in[i] < 2^126
 | |
|  * On exit:
 | |
|  *   out[i] < out[i] + 2^127 - 2^69
 | |
|  */
 | |
| static void felem_diff128(largefelem out, const largefelem in)
 | |
| {
 | |
|     /*
 | |
|      * In order to prevent underflow, we add 0 mod p before subtracting.
 | |
|      */
 | |
|     static const uint128_t two127m70 =
 | |
|         (((uint128_t) 1) << 127) - (((uint128_t) 1) << 70);
 | |
|     static const uint128_t two127m69 =
 | |
|         (((uint128_t) 1) << 127) - (((uint128_t) 1) << 69);
 | |
| 
 | |
|     out[0] += (two127m70 - in[0]);
 | |
|     out[1] += (two127m69 - in[1]);
 | |
|     out[2] += (two127m69 - in[2]);
 | |
|     out[3] += (two127m69 - in[3]);
 | |
|     out[4] += (two127m69 - in[4]);
 | |
|     out[5] += (two127m69 - in[5]);
 | |
|     out[6] += (two127m69 - in[6]);
 | |
|     out[7] += (two127m69 - in[7]);
 | |
|     out[8] += (two127m69 - in[8]);
 | |
| }
 | |
| 
 | |
| /*-
 | |
|  * felem_square sets |out| = |in|^2
 | |
|  * On entry:
 | |
|  *   in[i] < 2^62
 | |
|  * On exit:
 | |
|  *   out[i] < 17 * max(in[i]) * max(in[i])
 | |
|  */
 | |
| static void felem_square(largefelem out, const felem in)
 | |
| {
 | |
|     felem inx2, inx4;
 | |
|     felem_scalar(inx2, in, 2);
 | |
|     felem_scalar(inx4, in, 4);
 | |
| 
 | |
|     /*-
 | |
|      * We have many cases were we want to do
 | |
|      *   in[x] * in[y] +
 | |
|      *   in[y] * in[x]
 | |
|      * This is obviously just
 | |
|      *   2 * in[x] * in[y]
 | |
|      * However, rather than do the doubling on the 128 bit result, we
 | |
|      * double one of the inputs to the multiplication by reading from
 | |
|      * |inx2|
 | |
|      */
 | |
| 
 | |
|     out[0] = ((uint128_t) in[0]) * in[0];
 | |
|     out[1] = ((uint128_t) in[0]) * inx2[1];
 | |
|     out[2] = ((uint128_t) in[0]) * inx2[2] + ((uint128_t) in[1]) * in[1];
 | |
|     out[3] = ((uint128_t) in[0]) * inx2[3] + ((uint128_t) in[1]) * inx2[2];
 | |
|     out[4] = ((uint128_t) in[0]) * inx2[4] +
 | |
|              ((uint128_t) in[1]) * inx2[3] + ((uint128_t) in[2]) * in[2];
 | |
|     out[5] = ((uint128_t) in[0]) * inx2[5] +
 | |
|              ((uint128_t) in[1]) * inx2[4] + ((uint128_t) in[2]) * inx2[3];
 | |
|     out[6] = ((uint128_t) in[0]) * inx2[6] +
 | |
|              ((uint128_t) in[1]) * inx2[5] +
 | |
|              ((uint128_t) in[2]) * inx2[4] + ((uint128_t) in[3]) * in[3];
 | |
|     out[7] = ((uint128_t) in[0]) * inx2[7] +
 | |
|              ((uint128_t) in[1]) * inx2[6] +
 | |
|              ((uint128_t) in[2]) * inx2[5] + ((uint128_t) in[3]) * inx2[4];
 | |
|     out[8] = ((uint128_t) in[0]) * inx2[8] +
 | |
|              ((uint128_t) in[1]) * inx2[7] +
 | |
|              ((uint128_t) in[2]) * inx2[6] +
 | |
|              ((uint128_t) in[3]) * inx2[5] + ((uint128_t) in[4]) * in[4];
 | |
| 
 | |
|     /*
 | |
|      * The remaining limbs fall above 2^521, with the first falling at 2^522.
 | |
|      * They correspond to locations one bit up from the limbs produced above
 | |
|      * so we would have to multiply by two to align them. Again, rather than
 | |
|      * operate on the 128-bit result, we double one of the inputs to the
 | |
|      * multiplication. If we want to double for both this reason, and the
 | |
|      * reason above, then we end up multiplying by four.
 | |
|      */
 | |
| 
 | |
|     /* 9 */
 | |
|     out[0] += ((uint128_t) in[1]) * inx4[8] +
 | |
|               ((uint128_t) in[2]) * inx4[7] +
 | |
|               ((uint128_t) in[3]) * inx4[6] + ((uint128_t) in[4]) * inx4[5];
 | |
| 
 | |
|     /* 10 */
 | |
|     out[1] += ((uint128_t) in[2]) * inx4[8] +
 | |
|               ((uint128_t) in[3]) * inx4[7] +
 | |
|               ((uint128_t) in[4]) * inx4[6] + ((uint128_t) in[5]) * inx2[5];
 | |
| 
 | |
|     /* 11 */
 | |
|     out[2] += ((uint128_t) in[3]) * inx4[8] +
 | |
|               ((uint128_t) in[4]) * inx4[7] + ((uint128_t) in[5]) * inx4[6];
 | |
| 
 | |
|     /* 12 */
 | |
|     out[3] += ((uint128_t) in[4]) * inx4[8] +
 | |
|               ((uint128_t) in[5]) * inx4[7] + ((uint128_t) in[6]) * inx2[6];
 | |
| 
 | |
|     /* 13 */
 | |
|     out[4] += ((uint128_t) in[5]) * inx4[8] + ((uint128_t) in[6]) * inx4[7];
 | |
| 
 | |
|     /* 14 */
 | |
|     out[5] += ((uint128_t) in[6]) * inx4[8] + ((uint128_t) in[7]) * inx2[7];
 | |
| 
 | |
|     /* 15 */
 | |
|     out[6] += ((uint128_t) in[7]) * inx4[8];
 | |
| 
 | |
|     /* 16 */
 | |
|     out[7] += ((uint128_t) in[8]) * inx2[8];
 | |
| }
 | |
| 
 | |
| /*-
 | |
|  * felem_mul sets |out| = |in1| * |in2|
 | |
|  * On entry:
 | |
|  *   in1[i] < 2^64
 | |
|  *   in2[i] < 2^63
 | |
|  * On exit:
 | |
|  *   out[i] < 17 * max(in1[i]) * max(in2[i])
 | |
|  */
 | |
| static void felem_mul(largefelem out, const felem in1, const felem in2)
 | |
| {
 | |
|     felem in2x2;
 | |
|     felem_scalar(in2x2, in2, 2);
 | |
| 
 | |
|     out[0] = ((uint128_t) in1[0]) * in2[0];
 | |
| 
 | |
|     out[1] = ((uint128_t) in1[0]) * in2[1] +
 | |
|              ((uint128_t) in1[1]) * in2[0];
 | |
| 
 | |
|     out[2] = ((uint128_t) in1[0]) * in2[2] +
 | |
|              ((uint128_t) in1[1]) * in2[1] +
 | |
|              ((uint128_t) in1[2]) * in2[0];
 | |
| 
 | |
|     out[3] = ((uint128_t) in1[0]) * in2[3] +
 | |
|              ((uint128_t) in1[1]) * in2[2] +
 | |
|              ((uint128_t) in1[2]) * in2[1] +
 | |
|              ((uint128_t) in1[3]) * in2[0];
 | |
| 
 | |
|     out[4] = ((uint128_t) in1[0]) * in2[4] +
 | |
|              ((uint128_t) in1[1]) * in2[3] +
 | |
|              ((uint128_t) in1[2]) * in2[2] +
 | |
|              ((uint128_t) in1[3]) * in2[1] +
 | |
|              ((uint128_t) in1[4]) * in2[0];
 | |
| 
 | |
|     out[5] = ((uint128_t) in1[0]) * in2[5] +
 | |
|              ((uint128_t) in1[1]) * in2[4] +
 | |
|              ((uint128_t) in1[2]) * in2[3] +
 | |
|              ((uint128_t) in1[3]) * in2[2] +
 | |
|              ((uint128_t) in1[4]) * in2[1] +
 | |
|              ((uint128_t) in1[5]) * in2[0];
 | |
| 
 | |
|     out[6] = ((uint128_t) in1[0]) * in2[6] +
 | |
|              ((uint128_t) in1[1]) * in2[5] +
 | |
|              ((uint128_t) in1[2]) * in2[4] +
 | |
|              ((uint128_t) in1[3]) * in2[3] +
 | |
|              ((uint128_t) in1[4]) * in2[2] +
 | |
|              ((uint128_t) in1[5]) * in2[1] +
 | |
|              ((uint128_t) in1[6]) * in2[0];
 | |
| 
 | |
|     out[7] = ((uint128_t) in1[0]) * in2[7] +
 | |
|              ((uint128_t) in1[1]) * in2[6] +
 | |
|              ((uint128_t) in1[2]) * in2[5] +
 | |
|              ((uint128_t) in1[3]) * in2[4] +
 | |
|              ((uint128_t) in1[4]) * in2[3] +
 | |
|              ((uint128_t) in1[5]) * in2[2] +
 | |
|              ((uint128_t) in1[6]) * in2[1] +
 | |
|              ((uint128_t) in1[7]) * in2[0];
 | |
| 
 | |
|     out[8] = ((uint128_t) in1[0]) * in2[8] +
 | |
|              ((uint128_t) in1[1]) * in2[7] +
 | |
|              ((uint128_t) in1[2]) * in2[6] +
 | |
|              ((uint128_t) in1[3]) * in2[5] +
 | |
|              ((uint128_t) in1[4]) * in2[4] +
 | |
|              ((uint128_t) in1[5]) * in2[3] +
 | |
|              ((uint128_t) in1[6]) * in2[2] +
 | |
|              ((uint128_t) in1[7]) * in2[1] +
 | |
|              ((uint128_t) in1[8]) * in2[0];
 | |
| 
 | |
|     /* See comment in felem_square about the use of in2x2 here */
 | |
| 
 | |
|     out[0] += ((uint128_t) in1[1]) * in2x2[8] +
 | |
|               ((uint128_t) in1[2]) * in2x2[7] +
 | |
|               ((uint128_t) in1[3]) * in2x2[6] +
 | |
|               ((uint128_t) in1[4]) * in2x2[5] +
 | |
|               ((uint128_t) in1[5]) * in2x2[4] +
 | |
|               ((uint128_t) in1[6]) * in2x2[3] +
 | |
|               ((uint128_t) in1[7]) * in2x2[2] +
 | |
|               ((uint128_t) in1[8]) * in2x2[1];
 | |
| 
 | |
|     out[1] += ((uint128_t) in1[2]) * in2x2[8] +
 | |
|               ((uint128_t) in1[3]) * in2x2[7] +
 | |
|               ((uint128_t) in1[4]) * in2x2[6] +
 | |
|               ((uint128_t) in1[5]) * in2x2[5] +
 | |
|               ((uint128_t) in1[6]) * in2x2[4] +
 | |
|               ((uint128_t) in1[7]) * in2x2[3] +
 | |
|               ((uint128_t) in1[8]) * in2x2[2];
 | |
| 
 | |
|     out[2] += ((uint128_t) in1[3]) * in2x2[8] +
 | |
|               ((uint128_t) in1[4]) * in2x2[7] +
 | |
|               ((uint128_t) in1[5]) * in2x2[6] +
 | |
|               ((uint128_t) in1[6]) * in2x2[5] +
 | |
|               ((uint128_t) in1[7]) * in2x2[4] +
 | |
|               ((uint128_t) in1[8]) * in2x2[3];
 | |
| 
 | |
|     out[3] += ((uint128_t) in1[4]) * in2x2[8] +
 | |
|               ((uint128_t) in1[5]) * in2x2[7] +
 | |
|               ((uint128_t) in1[6]) * in2x2[6] +
 | |
|               ((uint128_t) in1[7]) * in2x2[5] +
 | |
|               ((uint128_t) in1[8]) * in2x2[4];
 | |
| 
 | |
|     out[4] += ((uint128_t) in1[5]) * in2x2[8] +
 | |
|               ((uint128_t) in1[6]) * in2x2[7] +
 | |
|               ((uint128_t) in1[7]) * in2x2[6] +
 | |
|               ((uint128_t) in1[8]) * in2x2[5];
 | |
| 
 | |
|     out[5] += ((uint128_t) in1[6]) * in2x2[8] +
 | |
|               ((uint128_t) in1[7]) * in2x2[7] +
 | |
|               ((uint128_t) in1[8]) * in2x2[6];
 | |
| 
 | |
|     out[6] += ((uint128_t) in1[7]) * in2x2[8] +
 | |
|               ((uint128_t) in1[8]) * in2x2[7];
 | |
| 
 | |
|     out[7] += ((uint128_t) in1[8]) * in2x2[8];
 | |
| }
 | |
| 
 | |
| static const limb bottom52bits = 0xfffffffffffff;
 | |
| 
 | |
| /*-
 | |
|  * felem_reduce converts a largefelem to an felem.
 | |
|  * On entry:
 | |
|  *   in[i] < 2^128
 | |
|  * On exit:
 | |
|  *   out[i] < 2^59 + 2^14
 | |
|  */
 | |
| static void felem_reduce(felem out, const largefelem in)
 | |
| {
 | |
|     u64 overflow1, overflow2;
 | |
| 
 | |
|     out[0] = ((limb) in[0]) & bottom58bits;
 | |
|     out[1] = ((limb) in[1]) & bottom58bits;
 | |
|     out[2] = ((limb) in[2]) & bottom58bits;
 | |
|     out[3] = ((limb) in[3]) & bottom58bits;
 | |
|     out[4] = ((limb) in[4]) & bottom58bits;
 | |
|     out[5] = ((limb) in[5]) & bottom58bits;
 | |
|     out[6] = ((limb) in[6]) & bottom58bits;
 | |
|     out[7] = ((limb) in[7]) & bottom58bits;
 | |
|     out[8] = ((limb) in[8]) & bottom58bits;
 | |
| 
 | |
|     /* out[i] < 2^58 */
 | |
| 
 | |
|     out[1] += ((limb) in[0]) >> 58;
 | |
|     out[1] += (((limb) (in[0] >> 64)) & bottom52bits) << 6;
 | |
|     /*-
 | |
|      * out[1] < 2^58 + 2^6 + 2^58
 | |
|      *        = 2^59 + 2^6
 | |
|      */
 | |
|     out[2] += ((limb) (in[0] >> 64)) >> 52;
 | |
| 
 | |
|     out[2] += ((limb) in[1]) >> 58;
 | |
|     out[2] += (((limb) (in[1] >> 64)) & bottom52bits) << 6;
 | |
|     out[3] += ((limb) (in[1] >> 64)) >> 52;
 | |
| 
 | |
|     out[3] += ((limb) in[2]) >> 58;
 | |
|     out[3] += (((limb) (in[2] >> 64)) & bottom52bits) << 6;
 | |
|     out[4] += ((limb) (in[2] >> 64)) >> 52;
 | |
| 
 | |
|     out[4] += ((limb) in[3]) >> 58;
 | |
|     out[4] += (((limb) (in[3] >> 64)) & bottom52bits) << 6;
 | |
|     out[5] += ((limb) (in[3] >> 64)) >> 52;
 | |
| 
 | |
|     out[5] += ((limb) in[4]) >> 58;
 | |
|     out[5] += (((limb) (in[4] >> 64)) & bottom52bits) << 6;
 | |
|     out[6] += ((limb) (in[4] >> 64)) >> 52;
 | |
| 
 | |
|     out[6] += ((limb) in[5]) >> 58;
 | |
|     out[6] += (((limb) (in[5] >> 64)) & bottom52bits) << 6;
 | |
|     out[7] += ((limb) (in[5] >> 64)) >> 52;
 | |
| 
 | |
|     out[7] += ((limb) in[6]) >> 58;
 | |
|     out[7] += (((limb) (in[6] >> 64)) & bottom52bits) << 6;
 | |
|     out[8] += ((limb) (in[6] >> 64)) >> 52;
 | |
| 
 | |
|     out[8] += ((limb) in[7]) >> 58;
 | |
|     out[8] += (((limb) (in[7] >> 64)) & bottom52bits) << 6;
 | |
|     /*-
 | |
|      * out[x > 1] < 2^58 + 2^6 + 2^58 + 2^12
 | |
|      *            < 2^59 + 2^13
 | |
|      */
 | |
|     overflow1 = ((limb) (in[7] >> 64)) >> 52;
 | |
| 
 | |
|     overflow1 += ((limb) in[8]) >> 58;
 | |
|     overflow1 += (((limb) (in[8] >> 64)) & bottom52bits) << 6;
 | |
|     overflow2 = ((limb) (in[8] >> 64)) >> 52;
 | |
| 
 | |
|     overflow1 <<= 1;            /* overflow1 < 2^13 + 2^7 + 2^59 */
 | |
|     overflow2 <<= 1;            /* overflow2 < 2^13 */
 | |
| 
 | |
|     out[0] += overflow1;        /* out[0] < 2^60 */
 | |
|     out[1] += overflow2;        /* out[1] < 2^59 + 2^6 + 2^13 */
 | |
| 
 | |
|     out[1] += out[0] >> 58;
 | |
|     out[0] &= bottom58bits;
 | |
|     /*-
 | |
|      * out[0] < 2^58
 | |
|      * out[1] < 2^59 + 2^6 + 2^13 + 2^2
 | |
|      *        < 2^59 + 2^14
 | |
|      */
 | |
| }
 | |
| 
 | |
| static void felem_square_reduce(felem out, const felem in)
 | |
| {
 | |
|     largefelem tmp;
 | |
|     felem_square(tmp, in);
 | |
|     felem_reduce(out, tmp);
 | |
| }
 | |
| 
 | |
| static void felem_mul_reduce(felem out, const felem in1, const felem in2)
 | |
| {
 | |
|     largefelem tmp;
 | |
|     felem_mul(tmp, in1, in2);
 | |
|     felem_reduce(out, tmp);
 | |
| }
 | |
| 
 | |
| /*-
 | |
|  * felem_inv calculates |out| = |in|^{-1}
 | |
|  *
 | |
|  * Based on Fermat's Little Theorem:
 | |
|  *   a^p = a (mod p)
 | |
|  *   a^{p-1} = 1 (mod p)
 | |
|  *   a^{p-2} = a^{-1} (mod p)
 | |
|  */
 | |
| static void felem_inv(felem out, const felem in)
 | |
| {
 | |
|     felem ftmp, ftmp2, ftmp3, ftmp4;
 | |
|     largefelem tmp;
 | |
|     unsigned i;
 | |
| 
 | |
|     felem_square(tmp, in);
 | |
|     felem_reduce(ftmp, tmp);    /* 2^1 */
 | |
|     felem_mul(tmp, in, ftmp);
 | |
|     felem_reduce(ftmp, tmp);    /* 2^2 - 2^0 */
 | |
|     felem_assign(ftmp2, ftmp);
 | |
|     felem_square(tmp, ftmp);
 | |
|     felem_reduce(ftmp, tmp);    /* 2^3 - 2^1 */
 | |
|     felem_mul(tmp, in, ftmp);
 | |
|     felem_reduce(ftmp, tmp);    /* 2^3 - 2^0 */
 | |
|     felem_square(tmp, ftmp);
 | |
|     felem_reduce(ftmp, tmp);    /* 2^4 - 2^1 */
 | |
| 
 | |
|     felem_square(tmp, ftmp2);
 | |
|     felem_reduce(ftmp3, tmp);   /* 2^3 - 2^1 */
 | |
|     felem_square(tmp, ftmp3);
 | |
|     felem_reduce(ftmp3, tmp);   /* 2^4 - 2^2 */
 | |
|     felem_mul(tmp, ftmp3, ftmp2);
 | |
|     felem_reduce(ftmp3, tmp);   /* 2^4 - 2^0 */
 | |
| 
 | |
|     felem_assign(ftmp2, ftmp3);
 | |
|     felem_square(tmp, ftmp3);
 | |
|     felem_reduce(ftmp3, tmp);   /* 2^5 - 2^1 */
 | |
|     felem_square(tmp, ftmp3);
 | |
|     felem_reduce(ftmp3, tmp);   /* 2^6 - 2^2 */
 | |
|     felem_square(tmp, ftmp3);
 | |
|     felem_reduce(ftmp3, tmp);   /* 2^7 - 2^3 */
 | |
|     felem_square(tmp, ftmp3);
 | |
|     felem_reduce(ftmp3, tmp);   /* 2^8 - 2^4 */
 | |
|     felem_assign(ftmp4, ftmp3);
 | |
|     felem_mul(tmp, ftmp3, ftmp);
 | |
|     felem_reduce(ftmp4, tmp);   /* 2^8 - 2^1 */
 | |
|     felem_square(tmp, ftmp4);
 | |
|     felem_reduce(ftmp4, tmp);   /* 2^9 - 2^2 */
 | |
|     felem_mul(tmp, ftmp3, ftmp2);
 | |
|     felem_reduce(ftmp3, tmp);   /* 2^8 - 2^0 */
 | |
|     felem_assign(ftmp2, ftmp3);
 | |
| 
 | |
|     for (i = 0; i < 8; i++) {
 | |
|         felem_square(tmp, ftmp3);
 | |
|         felem_reduce(ftmp3, tmp); /* 2^16 - 2^8 */
 | |
|     }
 | |
|     felem_mul(tmp, ftmp3, ftmp2);
 | |
|     felem_reduce(ftmp3, tmp);   /* 2^16 - 2^0 */
 | |
|     felem_assign(ftmp2, ftmp3);
 | |
| 
 | |
|     for (i = 0; i < 16; i++) {
 | |
|         felem_square(tmp, ftmp3);
 | |
|         felem_reduce(ftmp3, tmp); /* 2^32 - 2^16 */
 | |
|     }
 | |
|     felem_mul(tmp, ftmp3, ftmp2);
 | |
|     felem_reduce(ftmp3, tmp);   /* 2^32 - 2^0 */
 | |
|     felem_assign(ftmp2, ftmp3);
 | |
| 
 | |
|     for (i = 0; i < 32; i++) {
 | |
|         felem_square(tmp, ftmp3);
 | |
|         felem_reduce(ftmp3, tmp); /* 2^64 - 2^32 */
 | |
|     }
 | |
|     felem_mul(tmp, ftmp3, ftmp2);
 | |
|     felem_reduce(ftmp3, tmp);   /* 2^64 - 2^0 */
 | |
|     felem_assign(ftmp2, ftmp3);
 | |
| 
 | |
|     for (i = 0; i < 64; i++) {
 | |
|         felem_square(tmp, ftmp3);
 | |
|         felem_reduce(ftmp3, tmp); /* 2^128 - 2^64 */
 | |
|     }
 | |
|     felem_mul(tmp, ftmp3, ftmp2);
 | |
|     felem_reduce(ftmp3, tmp);   /* 2^128 - 2^0 */
 | |
|     felem_assign(ftmp2, ftmp3);
 | |
| 
 | |
|     for (i = 0; i < 128; i++) {
 | |
|         felem_square(tmp, ftmp3);
 | |
|         felem_reduce(ftmp3, tmp); /* 2^256 - 2^128 */
 | |
|     }
 | |
|     felem_mul(tmp, ftmp3, ftmp2);
 | |
|     felem_reduce(ftmp3, tmp);   /* 2^256 - 2^0 */
 | |
|     felem_assign(ftmp2, ftmp3);
 | |
| 
 | |
|     for (i = 0; i < 256; i++) {
 | |
|         felem_square(tmp, ftmp3);
 | |
|         felem_reduce(ftmp3, tmp); /* 2^512 - 2^256 */
 | |
|     }
 | |
|     felem_mul(tmp, ftmp3, ftmp2);
 | |
|     felem_reduce(ftmp3, tmp);   /* 2^512 - 2^0 */
 | |
| 
 | |
|     for (i = 0; i < 9; i++) {
 | |
|         felem_square(tmp, ftmp3);
 | |
|         felem_reduce(ftmp3, tmp); /* 2^521 - 2^9 */
 | |
|     }
 | |
|     felem_mul(tmp, ftmp3, ftmp4);
 | |
|     felem_reduce(ftmp3, tmp);   /* 2^512 - 2^2 */
 | |
|     felem_mul(tmp, ftmp3, in);
 | |
|     felem_reduce(out, tmp);     /* 2^512 - 3 */
 | |
| }
 | |
| 
 | |
| /* This is 2^521-1, expressed as an felem */
 | |
| static const felem kPrime = {
 | |
|     0x03ffffffffffffff, 0x03ffffffffffffff, 0x03ffffffffffffff,
 | |
|     0x03ffffffffffffff, 0x03ffffffffffffff, 0x03ffffffffffffff,
 | |
|     0x03ffffffffffffff, 0x03ffffffffffffff, 0x01ffffffffffffff
 | |
| };
 | |
| 
 | |
| /*-
 | |
|  * felem_is_zero returns a limb with all bits set if |in| == 0 (mod p) and 0
 | |
|  * otherwise.
 | |
|  * On entry:
 | |
|  *   in[i] < 2^59 + 2^14
 | |
|  */
 | |
| static limb felem_is_zero(const felem in)
 | |
| {
 | |
|     felem ftmp;
 | |
|     limb is_zero, is_p;
 | |
|     felem_assign(ftmp, in);
 | |
| 
 | |
|     ftmp[0] += ftmp[8] >> 57;
 | |
|     ftmp[8] &= bottom57bits;
 | |
|     /* ftmp[8] < 2^57 */
 | |
|     ftmp[1] += ftmp[0] >> 58;
 | |
|     ftmp[0] &= bottom58bits;
 | |
|     ftmp[2] += ftmp[1] >> 58;
 | |
|     ftmp[1] &= bottom58bits;
 | |
|     ftmp[3] += ftmp[2] >> 58;
 | |
|     ftmp[2] &= bottom58bits;
 | |
|     ftmp[4] += ftmp[3] >> 58;
 | |
|     ftmp[3] &= bottom58bits;
 | |
|     ftmp[5] += ftmp[4] >> 58;
 | |
|     ftmp[4] &= bottom58bits;
 | |
|     ftmp[6] += ftmp[5] >> 58;
 | |
|     ftmp[5] &= bottom58bits;
 | |
|     ftmp[7] += ftmp[6] >> 58;
 | |
|     ftmp[6] &= bottom58bits;
 | |
|     ftmp[8] += ftmp[7] >> 58;
 | |
|     ftmp[7] &= bottom58bits;
 | |
|     /* ftmp[8] < 2^57 + 4 */
 | |
| 
 | |
|     /*
 | |
|      * The ninth limb of 2*(2^521-1) is 0x03ffffffffffffff, which is greater
 | |
|      * than our bound for ftmp[8]. Therefore we only have to check if the
 | |
|      * zero is zero or 2^521-1.
 | |
|      */
 | |
| 
 | |
|     is_zero = 0;
 | |
|     is_zero |= ftmp[0];
 | |
|     is_zero |= ftmp[1];
 | |
|     is_zero |= ftmp[2];
 | |
|     is_zero |= ftmp[3];
 | |
|     is_zero |= ftmp[4];
 | |
|     is_zero |= ftmp[5];
 | |
|     is_zero |= ftmp[6];
 | |
|     is_zero |= ftmp[7];
 | |
|     is_zero |= ftmp[8];
 | |
| 
 | |
|     is_zero--;
 | |
|     /*
 | |
|      * We know that ftmp[i] < 2^63, therefore the only way that the top bit
 | |
|      * can be set is if is_zero was 0 before the decrement.
 | |
|      */
 | |
|     is_zero = 0 - (is_zero >> 63);
 | |
| 
 | |
|     is_p = ftmp[0] ^ kPrime[0];
 | |
|     is_p |= ftmp[1] ^ kPrime[1];
 | |
|     is_p |= ftmp[2] ^ kPrime[2];
 | |
|     is_p |= ftmp[3] ^ kPrime[3];
 | |
|     is_p |= ftmp[4] ^ kPrime[4];
 | |
|     is_p |= ftmp[5] ^ kPrime[5];
 | |
|     is_p |= ftmp[6] ^ kPrime[6];
 | |
|     is_p |= ftmp[7] ^ kPrime[7];
 | |
|     is_p |= ftmp[8] ^ kPrime[8];
 | |
| 
 | |
|     is_p--;
 | |
|     is_p = 0 - (is_p >> 63);
 | |
| 
 | |
|     is_zero |= is_p;
 | |
|     return is_zero;
 | |
| }
 | |
| 
 | |
| static int felem_is_zero_int(const void *in)
 | |
| {
 | |
|     return (int)(felem_is_zero(in) & ((limb) 1));
 | |
| }
 | |
| 
 | |
| /*-
 | |
|  * felem_contract converts |in| to its unique, minimal representation.
 | |
|  * On entry:
 | |
|  *   in[i] < 2^59 + 2^14
 | |
|  */
 | |
| static void felem_contract(felem out, const felem in)
 | |
| {
 | |
|     limb is_p, is_greater, sign;
 | |
|     static const limb two58 = ((limb) 1) << 58;
 | |
| 
 | |
|     felem_assign(out, in);
 | |
| 
 | |
|     out[0] += out[8] >> 57;
 | |
|     out[8] &= bottom57bits;
 | |
|     /* out[8] < 2^57 */
 | |
|     out[1] += out[0] >> 58;
 | |
|     out[0] &= bottom58bits;
 | |
|     out[2] += out[1] >> 58;
 | |
|     out[1] &= bottom58bits;
 | |
|     out[3] += out[2] >> 58;
 | |
|     out[2] &= bottom58bits;
 | |
|     out[4] += out[3] >> 58;
 | |
|     out[3] &= bottom58bits;
 | |
|     out[5] += out[4] >> 58;
 | |
|     out[4] &= bottom58bits;
 | |
|     out[6] += out[5] >> 58;
 | |
|     out[5] &= bottom58bits;
 | |
|     out[7] += out[6] >> 58;
 | |
|     out[6] &= bottom58bits;
 | |
|     out[8] += out[7] >> 58;
 | |
|     out[7] &= bottom58bits;
 | |
|     /* out[8] < 2^57 + 4 */
 | |
| 
 | |
|     /*
 | |
|      * If the value is greater than 2^521-1 then we have to subtract 2^521-1
 | |
|      * out. See the comments in felem_is_zero regarding why we don't test for
 | |
|      * other multiples of the prime.
 | |
|      */
 | |
| 
 | |
|     /*
 | |
|      * First, if |out| is equal to 2^521-1, we subtract it out to get zero.
 | |
|      */
 | |
| 
 | |
|     is_p = out[0] ^ kPrime[0];
 | |
|     is_p |= out[1] ^ kPrime[1];
 | |
|     is_p |= out[2] ^ kPrime[2];
 | |
|     is_p |= out[3] ^ kPrime[3];
 | |
|     is_p |= out[4] ^ kPrime[4];
 | |
|     is_p |= out[5] ^ kPrime[5];
 | |
|     is_p |= out[6] ^ kPrime[6];
 | |
|     is_p |= out[7] ^ kPrime[7];
 | |
|     is_p |= out[8] ^ kPrime[8];
 | |
| 
 | |
|     is_p--;
 | |
|     is_p &= is_p << 32;
 | |
|     is_p &= is_p << 16;
 | |
|     is_p &= is_p << 8;
 | |
|     is_p &= is_p << 4;
 | |
|     is_p &= is_p << 2;
 | |
|     is_p &= is_p << 1;
 | |
|     is_p = 0 - (is_p >> 63);
 | |
|     is_p = ~is_p;
 | |
| 
 | |
|     /* is_p is 0 iff |out| == 2^521-1 and all ones otherwise */
 | |
| 
 | |
|     out[0] &= is_p;
 | |
|     out[1] &= is_p;
 | |
|     out[2] &= is_p;
 | |
|     out[3] &= is_p;
 | |
|     out[4] &= is_p;
 | |
|     out[5] &= is_p;
 | |
|     out[6] &= is_p;
 | |
|     out[7] &= is_p;
 | |
|     out[8] &= is_p;
 | |
| 
 | |
|     /*
 | |
|      * In order to test that |out| >= 2^521-1 we need only test if out[8] >>
 | |
|      * 57 is greater than zero as (2^521-1) + x >= 2^522
 | |
|      */
 | |
|     is_greater = out[8] >> 57;
 | |
|     is_greater |= is_greater << 32;
 | |
|     is_greater |= is_greater << 16;
 | |
|     is_greater |= is_greater << 8;
 | |
|     is_greater |= is_greater << 4;
 | |
|     is_greater |= is_greater << 2;
 | |
|     is_greater |= is_greater << 1;
 | |
|     is_greater = 0 - (is_greater >> 63);
 | |
| 
 | |
|     out[0] -= kPrime[0] & is_greater;
 | |
|     out[1] -= kPrime[1] & is_greater;
 | |
|     out[2] -= kPrime[2] & is_greater;
 | |
|     out[3] -= kPrime[3] & is_greater;
 | |
|     out[4] -= kPrime[4] & is_greater;
 | |
|     out[5] -= kPrime[5] & is_greater;
 | |
|     out[6] -= kPrime[6] & is_greater;
 | |
|     out[7] -= kPrime[7] & is_greater;
 | |
|     out[8] -= kPrime[8] & is_greater;
 | |
| 
 | |
|     /* Eliminate negative coefficients */
 | |
|     sign = -(out[0] >> 63);
 | |
|     out[0] += (two58 & sign);
 | |
|     out[1] -= (1 & sign);
 | |
|     sign = -(out[1] >> 63);
 | |
|     out[1] += (two58 & sign);
 | |
|     out[2] -= (1 & sign);
 | |
|     sign = -(out[2] >> 63);
 | |
|     out[2] += (two58 & sign);
 | |
|     out[3] -= (1 & sign);
 | |
|     sign = -(out[3] >> 63);
 | |
|     out[3] += (two58 & sign);
 | |
|     out[4] -= (1 & sign);
 | |
|     sign = -(out[4] >> 63);
 | |
|     out[4] += (two58 & sign);
 | |
|     out[5] -= (1 & sign);
 | |
|     sign = -(out[0] >> 63);
 | |
|     out[5] += (two58 & sign);
 | |
|     out[6] -= (1 & sign);
 | |
|     sign = -(out[6] >> 63);
 | |
|     out[6] += (two58 & sign);
 | |
|     out[7] -= (1 & sign);
 | |
|     sign = -(out[7] >> 63);
 | |
|     out[7] += (two58 & sign);
 | |
|     out[8] -= (1 & sign);
 | |
|     sign = -(out[5] >> 63);
 | |
|     out[5] += (two58 & sign);
 | |
|     out[6] -= (1 & sign);
 | |
|     sign = -(out[6] >> 63);
 | |
|     out[6] += (two58 & sign);
 | |
|     out[7] -= (1 & sign);
 | |
|     sign = -(out[7] >> 63);
 | |
|     out[7] += (two58 & sign);
 | |
|     out[8] -= (1 & sign);
 | |
| }
 | |
| 
 | |
| /*-
 | |
|  * Group operations
 | |
|  * ----------------
 | |
|  *
 | |
|  * Building on top of the field operations we have the operations on the
 | |
|  * elliptic curve group itself. Points on the curve are represented in Jacobian
 | |
|  * coordinates */
 | |
| 
 | |
| /*-
 | |
|  * point_double calculates 2*(x_in, y_in, z_in)
 | |
|  *
 | |
|  * The method is taken from:
 | |
|  *   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b
 | |
|  *
 | |
|  * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed.
 | |
|  * while x_out == y_in is not (maybe this works, but it's not tested). */
 | |
| static void
 | |
| point_double(felem x_out, felem y_out, felem z_out,
 | |
|              const felem x_in, const felem y_in, const felem z_in)
 | |
| {
 | |
|     largefelem tmp, tmp2;
 | |
|     felem delta, gamma, beta, alpha, ftmp, ftmp2;
 | |
| 
 | |
|     felem_assign(ftmp, x_in);
 | |
|     felem_assign(ftmp2, x_in);
 | |
| 
 | |
|     /* delta = z^2 */
 | |
|     felem_square(tmp, z_in);
 | |
|     felem_reduce(delta, tmp);   /* delta[i] < 2^59 + 2^14 */
 | |
| 
 | |
|     /* gamma = y^2 */
 | |
|     felem_square(tmp, y_in);
 | |
|     felem_reduce(gamma, tmp);   /* gamma[i] < 2^59 + 2^14 */
 | |
| 
 | |
|     /* beta = x*gamma */
 | |
|     felem_mul(tmp, x_in, gamma);
 | |
|     felem_reduce(beta, tmp);    /* beta[i] < 2^59 + 2^14 */
 | |
| 
 | |
|     /* alpha = 3*(x-delta)*(x+delta) */
 | |
|     felem_diff64(ftmp, delta);
 | |
|     /* ftmp[i] < 2^61 */
 | |
|     felem_sum64(ftmp2, delta);
 | |
|     /* ftmp2[i] < 2^60 + 2^15 */
 | |
|     felem_scalar64(ftmp2, 3);
 | |
|     /* ftmp2[i] < 3*2^60 + 3*2^15 */
 | |
|     felem_mul(tmp, ftmp, ftmp2);
 | |
|     /*-
 | |
|      * tmp[i] < 17(3*2^121 + 3*2^76)
 | |
|      *        = 61*2^121 + 61*2^76
 | |
|      *        < 64*2^121 + 64*2^76
 | |
|      *        = 2^127 + 2^82
 | |
|      *        < 2^128
 | |
|      */
 | |
|     felem_reduce(alpha, tmp);
 | |
| 
 | |
|     /* x' = alpha^2 - 8*beta */
 | |
|     felem_square(tmp, alpha);
 | |
|     /*
 | |
|      * tmp[i] < 17*2^120 < 2^125
 | |
|      */
 | |
|     felem_assign(ftmp, beta);
 | |
|     felem_scalar64(ftmp, 8);
 | |
|     /* ftmp[i] < 2^62 + 2^17 */
 | |
|     felem_diff_128_64(tmp, ftmp);
 | |
|     /* tmp[i] < 2^125 + 2^63 + 2^62 + 2^17 */
 | |
|     felem_reduce(x_out, tmp);
 | |
| 
 | |
|     /* z' = (y + z)^2 - gamma - delta */
 | |
|     felem_sum64(delta, gamma);
 | |
|     /* delta[i] < 2^60 + 2^15 */
 | |
|     felem_assign(ftmp, y_in);
 | |
|     felem_sum64(ftmp, z_in);
 | |
|     /* ftmp[i] < 2^60 + 2^15 */
 | |
|     felem_square(tmp, ftmp);
 | |
|     /*
 | |
|      * tmp[i] < 17(2^122) < 2^127
 | |
|      */
 | |
|     felem_diff_128_64(tmp, delta);
 | |
|     /* tmp[i] < 2^127 + 2^63 */
 | |
|     felem_reduce(z_out, tmp);
 | |
| 
 | |
|     /* y' = alpha*(4*beta - x') - 8*gamma^2 */
 | |
|     felem_scalar64(beta, 4);
 | |
|     /* beta[i] < 2^61 + 2^16 */
 | |
|     felem_diff64(beta, x_out);
 | |
|     /* beta[i] < 2^61 + 2^60 + 2^16 */
 | |
|     felem_mul(tmp, alpha, beta);
 | |
|     /*-
 | |
|      * tmp[i] < 17*((2^59 + 2^14)(2^61 + 2^60 + 2^16))
 | |
|      *        = 17*(2^120 + 2^75 + 2^119 + 2^74 + 2^75 + 2^30)
 | |
|      *        = 17*(2^120 + 2^119 + 2^76 + 2^74 + 2^30)
 | |
|      *        < 2^128
 | |
|      */
 | |
|     felem_square(tmp2, gamma);
 | |
|     /*-
 | |
|      * tmp2[i] < 17*(2^59 + 2^14)^2
 | |
|      *         = 17*(2^118 + 2^74 + 2^28)
 | |
|      */
 | |
|     felem_scalar128(tmp2, 8);
 | |
|     /*-
 | |
|      * tmp2[i] < 8*17*(2^118 + 2^74 + 2^28)
 | |
|      *         = 2^125 + 2^121 + 2^81 + 2^77 + 2^35 + 2^31
 | |
|      *         < 2^126
 | |
|      */
 | |
|     felem_diff128(tmp, tmp2);
 | |
|     /*-
 | |
|      * tmp[i] < 2^127 - 2^69 + 17(2^120 + 2^119 + 2^76 + 2^74 + 2^30)
 | |
|      *        = 2^127 + 2^124 + 2^122 + 2^120 + 2^118 + 2^80 + 2^78 + 2^76 +
 | |
|      *          2^74 + 2^69 + 2^34 + 2^30
 | |
|      *        < 2^128
 | |
|      */
 | |
|     felem_reduce(y_out, tmp);
 | |
| }
 | |
| 
 | |
| /* copy_conditional copies in to out iff mask is all ones. */
 | |
| static void copy_conditional(felem out, const felem in, limb mask)
 | |
| {
 | |
|     unsigned i;
 | |
|     for (i = 0; i < NLIMBS; ++i) {
 | |
|         const limb tmp = mask & (in[i] ^ out[i]);
 | |
|         out[i] ^= tmp;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*-
 | |
|  * point_add calculates (x1, y1, z1) + (x2, y2, z2)
 | |
|  *
 | |
|  * The method is taken from
 | |
|  *   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl,
 | |
|  * adapted for mixed addition (z2 = 1, or z2 = 0 for the point at infinity).
 | |
|  *
 | |
|  * This function includes a branch for checking whether the two input points
 | |
|  * are equal (while not equal to the point at infinity). See comment below
 | |
|  * on constant-time.
 | |
|  */
 | |
| static void point_add(felem x3, felem y3, felem z3,
 | |
|                       const felem x1, const felem y1, const felem z1,
 | |
|                       const int mixed, const felem x2, const felem y2,
 | |
|                       const felem z2)
 | |
| {
 | |
|     felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, ftmp6, x_out, y_out, z_out;
 | |
|     largefelem tmp, tmp2;
 | |
|     limb x_equal, y_equal, z1_is_zero, z2_is_zero;
 | |
|     limb points_equal;
 | |
| 
 | |
|     z1_is_zero = felem_is_zero(z1);
 | |
|     z2_is_zero = felem_is_zero(z2);
 | |
| 
 | |
|     /* ftmp = z1z1 = z1**2 */
 | |
|     felem_square(tmp, z1);
 | |
|     felem_reduce(ftmp, tmp);
 | |
| 
 | |
|     if (!mixed) {
 | |
|         /* ftmp2 = z2z2 = z2**2 */
 | |
|         felem_square(tmp, z2);
 | |
|         felem_reduce(ftmp2, tmp);
 | |
| 
 | |
|         /* u1 = ftmp3 = x1*z2z2 */
 | |
|         felem_mul(tmp, x1, ftmp2);
 | |
|         felem_reduce(ftmp3, tmp);
 | |
| 
 | |
|         /* ftmp5 = z1 + z2 */
 | |
|         felem_assign(ftmp5, z1);
 | |
|         felem_sum64(ftmp5, z2);
 | |
|         /* ftmp5[i] < 2^61 */
 | |
| 
 | |
|         /* ftmp5 = (z1 + z2)**2 - z1z1 - z2z2 = 2*z1z2 */
 | |
|         felem_square(tmp, ftmp5);
 | |
|         /* tmp[i] < 17*2^122 */
 | |
|         felem_diff_128_64(tmp, ftmp);
 | |
|         /* tmp[i] < 17*2^122 + 2^63 */
 | |
|         felem_diff_128_64(tmp, ftmp2);
 | |
|         /* tmp[i] < 17*2^122 + 2^64 */
 | |
|         felem_reduce(ftmp5, tmp);
 | |
| 
 | |
|         /* ftmp2 = z2 * z2z2 */
 | |
|         felem_mul(tmp, ftmp2, z2);
 | |
|         felem_reduce(ftmp2, tmp);
 | |
| 
 | |
|         /* s1 = ftmp6 = y1 * z2**3 */
 | |
|         felem_mul(tmp, y1, ftmp2);
 | |
|         felem_reduce(ftmp6, tmp);
 | |
|     } else {
 | |
|         /*
 | |
|          * We'll assume z2 = 1 (special case z2 = 0 is handled later)
 | |
|          */
 | |
| 
 | |
|         /* u1 = ftmp3 = x1*z2z2 */
 | |
|         felem_assign(ftmp3, x1);
 | |
| 
 | |
|         /* ftmp5 = 2*z1z2 */
 | |
|         felem_scalar(ftmp5, z1, 2);
 | |
| 
 | |
|         /* s1 = ftmp6 = y1 * z2**3 */
 | |
|         felem_assign(ftmp6, y1);
 | |
|     }
 | |
| 
 | |
|     /* u2 = x2*z1z1 */
 | |
|     felem_mul(tmp, x2, ftmp);
 | |
|     /* tmp[i] < 17*2^120 */
 | |
| 
 | |
|     /* h = ftmp4 = u2 - u1 */
 | |
|     felem_diff_128_64(tmp, ftmp3);
 | |
|     /* tmp[i] < 17*2^120 + 2^63 */
 | |
|     felem_reduce(ftmp4, tmp);
 | |
| 
 | |
|     x_equal = felem_is_zero(ftmp4);
 | |
| 
 | |
|     /* z_out = ftmp5 * h */
 | |
|     felem_mul(tmp, ftmp5, ftmp4);
 | |
|     felem_reduce(z_out, tmp);
 | |
| 
 | |
|     /* ftmp = z1 * z1z1 */
 | |
|     felem_mul(tmp, ftmp, z1);
 | |
|     felem_reduce(ftmp, tmp);
 | |
| 
 | |
|     /* s2 = tmp = y2 * z1**3 */
 | |
|     felem_mul(tmp, y2, ftmp);
 | |
|     /* tmp[i] < 17*2^120 */
 | |
| 
 | |
|     /* r = ftmp5 = (s2 - s1)*2 */
 | |
|     felem_diff_128_64(tmp, ftmp6);
 | |
|     /* tmp[i] < 17*2^120 + 2^63 */
 | |
|     felem_reduce(ftmp5, tmp);
 | |
|     y_equal = felem_is_zero(ftmp5);
 | |
|     felem_scalar64(ftmp5, 2);
 | |
|     /* ftmp5[i] < 2^61 */
 | |
| 
 | |
|     /*
 | |
|      * The formulae are incorrect if the points are equal, in affine coordinates
 | |
|      * (X_1, Y_1) == (X_2, Y_2), so we check for this and do doubling if this
 | |
|      * happens.
 | |
|      *
 | |
|      * We use bitwise operations to avoid potential side-channels introduced by
 | |
|      * the short-circuiting behaviour of boolean operators.
 | |
|      *
 | |
|      * The special case of either point being the point at infinity (z1 and/or
 | |
|      * z2 are zero), is handled separately later on in this function, so we
 | |
|      * avoid jumping to point_double here in those special cases.
 | |
|      *
 | |
|      * Notice the comment below on the implications of this branching for timing
 | |
|      * leaks and why it is considered practically irrelevant.
 | |
|      */
 | |
|     points_equal = (x_equal & y_equal & (~z1_is_zero) & (~z2_is_zero));
 | |
| 
 | |
|     if (points_equal) {
 | |
|         /*
 | |
|          * This is obviously not constant-time but it will almost-never happen
 | |
|          * for ECDH / ECDSA. The case where it can happen is during scalar-mult
 | |
|          * where the intermediate value gets very close to the group order.
 | |
|          * Since |ec_GFp_nistp_recode_scalar_bits| produces signed digits for
 | |
|          * the scalar, it's possible for the intermediate value to be a small
 | |
|          * negative multiple of the base point, and for the final signed digit
 | |
|          * to be the same value. We believe that this only occurs for the scalar
 | |
|          * 1fffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
 | |
|          * ffffffa51868783bf2f966b7fcc0148f709a5d03bb5c9b8899c47aebb6fb
 | |
|          * 71e913863f7, in that case the penultimate intermediate is -9G and
 | |
|          * the final digit is also -9G. Since this only happens for a single
 | |
|          * scalar, the timing leak is irrelevant. (Any attacker who wanted to
 | |
|          * check whether a secret scalar was that exact value, can already do
 | |
|          * so.)
 | |
|          */
 | |
|         point_double(x3, y3, z3, x1, y1, z1);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     /* I = ftmp = (2h)**2 */
 | |
|     felem_assign(ftmp, ftmp4);
 | |
|     felem_scalar64(ftmp, 2);
 | |
|     /* ftmp[i] < 2^61 */
 | |
|     felem_square(tmp, ftmp);
 | |
|     /* tmp[i] < 17*2^122 */
 | |
|     felem_reduce(ftmp, tmp);
 | |
| 
 | |
|     /* J = ftmp2 = h * I */
 | |
|     felem_mul(tmp, ftmp4, ftmp);
 | |
|     felem_reduce(ftmp2, tmp);
 | |
| 
 | |
|     /* V = ftmp4 = U1 * I */
 | |
|     felem_mul(tmp, ftmp3, ftmp);
 | |
|     felem_reduce(ftmp4, tmp);
 | |
| 
 | |
|     /* x_out = r**2 - J - 2V */
 | |
|     felem_square(tmp, ftmp5);
 | |
|     /* tmp[i] < 17*2^122 */
 | |
|     felem_diff_128_64(tmp, ftmp2);
 | |
|     /* tmp[i] < 17*2^122 + 2^63 */
 | |
|     felem_assign(ftmp3, ftmp4);
 | |
|     felem_scalar64(ftmp4, 2);
 | |
|     /* ftmp4[i] < 2^61 */
 | |
|     felem_diff_128_64(tmp, ftmp4);
 | |
|     /* tmp[i] < 17*2^122 + 2^64 */
 | |
|     felem_reduce(x_out, tmp);
 | |
| 
 | |
|     /* y_out = r(V-x_out) - 2 * s1 * J */
 | |
|     felem_diff64(ftmp3, x_out);
 | |
|     /*
 | |
|      * ftmp3[i] < 2^60 + 2^60 = 2^61
 | |
|      */
 | |
|     felem_mul(tmp, ftmp5, ftmp3);
 | |
|     /* tmp[i] < 17*2^122 */
 | |
|     felem_mul(tmp2, ftmp6, ftmp2);
 | |
|     /* tmp2[i] < 17*2^120 */
 | |
|     felem_scalar128(tmp2, 2);
 | |
|     /* tmp2[i] < 17*2^121 */
 | |
|     felem_diff128(tmp, tmp2);
 | |
|         /*-
 | |
|          * tmp[i] < 2^127 - 2^69 + 17*2^122
 | |
|          *        = 2^126 - 2^122 - 2^6 - 2^2 - 1
 | |
|          *        < 2^127
 | |
|          */
 | |
|     felem_reduce(y_out, tmp);
 | |
| 
 | |
|     copy_conditional(x_out, x2, z1_is_zero);
 | |
|     copy_conditional(x_out, x1, z2_is_zero);
 | |
|     copy_conditional(y_out, y2, z1_is_zero);
 | |
|     copy_conditional(y_out, y1, z2_is_zero);
 | |
|     copy_conditional(z_out, z2, z1_is_zero);
 | |
|     copy_conditional(z_out, z1, z2_is_zero);
 | |
|     felem_assign(x3, x_out);
 | |
|     felem_assign(y3, y_out);
 | |
|     felem_assign(z3, z_out);
 | |
| }
 | |
| 
 | |
| /*-
 | |
|  * Base point pre computation
 | |
|  * --------------------------
 | |
|  *
 | |
|  * Two different sorts of precomputed tables are used in the following code.
 | |
|  * Each contain various points on the curve, where each point is three field
 | |
|  * elements (x, y, z).
 | |
|  *
 | |
|  * For the base point table, z is usually 1 (0 for the point at infinity).
 | |
|  * This table has 16 elements:
 | |
|  * index | bits    | point
 | |
|  * ------+---------+------------------------------
 | |
|  *     0 | 0 0 0 0 | 0G
 | |
|  *     1 | 0 0 0 1 | 1G
 | |
|  *     2 | 0 0 1 0 | 2^130G
 | |
|  *     3 | 0 0 1 1 | (2^130 + 1)G
 | |
|  *     4 | 0 1 0 0 | 2^260G
 | |
|  *     5 | 0 1 0 1 | (2^260 + 1)G
 | |
|  *     6 | 0 1 1 0 | (2^260 + 2^130)G
 | |
|  *     7 | 0 1 1 1 | (2^260 + 2^130 + 1)G
 | |
|  *     8 | 1 0 0 0 | 2^390G
 | |
|  *     9 | 1 0 0 1 | (2^390 + 1)G
 | |
|  *    10 | 1 0 1 0 | (2^390 + 2^130)G
 | |
|  *    11 | 1 0 1 1 | (2^390 + 2^130 + 1)G
 | |
|  *    12 | 1 1 0 0 | (2^390 + 2^260)G
 | |
|  *    13 | 1 1 0 1 | (2^390 + 2^260 + 1)G
 | |
|  *    14 | 1 1 1 0 | (2^390 + 2^260 + 2^130)G
 | |
|  *    15 | 1 1 1 1 | (2^390 + 2^260 + 2^130 + 1)G
 | |
|  *
 | |
|  * The reason for this is so that we can clock bits into four different
 | |
|  * locations when doing simple scalar multiplies against the base point.
 | |
|  *
 | |
|  * Tables for other points have table[i] = iG for i in 0 .. 16. */
 | |
| 
 | |
| /* gmul is the table of precomputed base points */
 | |
| static const felem gmul[16][3] = {
 | |
| {{0, 0, 0, 0, 0, 0, 0, 0, 0},
 | |
|  {0, 0, 0, 0, 0, 0, 0, 0, 0},
 | |
|  {0, 0, 0, 0, 0, 0, 0, 0, 0}},
 | |
| {{0x017e7e31c2e5bd66, 0x022cf0615a90a6fe, 0x00127a2ffa8de334,
 | |
|   0x01dfbf9d64a3f877, 0x006b4d3dbaa14b5e, 0x014fed487e0a2bd8,
 | |
|   0x015b4429c6481390, 0x03a73678fb2d988e, 0x00c6858e06b70404},
 | |
|  {0x00be94769fd16650, 0x031c21a89cb09022, 0x039013fad0761353,
 | |
|   0x02657bd099031542, 0x03273e662c97ee72, 0x01e6d11a05ebef45,
 | |
|   0x03d1bd998f544495, 0x03001172297ed0b1, 0x011839296a789a3b},
 | |
|  {1, 0, 0, 0, 0, 0, 0, 0, 0}},
 | |
| {{0x0373faacbc875bae, 0x00f325023721c671, 0x00f666fd3dbde5ad,
 | |
|   0x01a6932363f88ea7, 0x01fc6d9e13f9c47b, 0x03bcbffc2bbf734e,
 | |
|   0x013ee3c3647f3a92, 0x029409fefe75d07d, 0x00ef9199963d85e5},
 | |
|  {0x011173743ad5b178, 0x02499c7c21bf7d46, 0x035beaeabb8b1a58,
 | |
|   0x00f989c4752ea0a3, 0x0101e1de48a9c1a3, 0x01a20076be28ba6c,
 | |
|   0x02f8052e5eb2de95, 0x01bfe8f82dea117c, 0x0160074d3c36ddb7},
 | |
|  {1, 0, 0, 0, 0, 0, 0, 0, 0}},
 | |
| {{0x012f3fc373393b3b, 0x03d3d6172f1419fa, 0x02adc943c0b86873,
 | |
|   0x00d475584177952b, 0x012a4d1673750ee2, 0x00512517a0f13b0c,
 | |
|   0x02b184671a7b1734, 0x0315b84236f1a50a, 0x00a4afc472edbdb9},
 | |
|  {0x00152a7077f385c4, 0x03044007d8d1c2ee, 0x0065829d61d52b52,
 | |
|   0x00494ff6b6631d0d, 0x00a11d94d5f06bcf, 0x02d2f89474d9282e,
 | |
|   0x0241c5727c06eeb9, 0x0386928710fbdb9d, 0x01f883f727b0dfbe},
 | |
|  {1, 0, 0, 0, 0, 0, 0, 0, 0}},
 | |
| {{0x019b0c3c9185544d, 0x006243a37c9d97db, 0x02ee3cbe030a2ad2,
 | |
|   0x00cfdd946bb51e0d, 0x0271c00932606b91, 0x03f817d1ec68c561,
 | |
|   0x03f37009806a369c, 0x03c1f30baf184fd5, 0x01091022d6d2f065},
 | |
|  {0x0292c583514c45ed, 0x0316fca51f9a286c, 0x00300af507c1489a,
 | |
|   0x0295f69008298cf1, 0x02c0ed8274943d7b, 0x016509b9b47a431e,
 | |
|   0x02bc9de9634868ce, 0x005b34929bffcb09, 0x000c1a0121681524},
 | |
|  {1, 0, 0, 0, 0, 0, 0, 0, 0}},
 | |
| {{0x0286abc0292fb9f2, 0x02665eee9805b3f7, 0x01ed7455f17f26d6,
 | |
|   0x0346355b83175d13, 0x006284944cd0a097, 0x0191895bcdec5e51,
 | |
|   0x02e288370afda7d9, 0x03b22312bfefa67a, 0x01d104d3fc0613fe},
 | |
|  {0x0092421a12f7e47f, 0x0077a83fa373c501, 0x03bd25c5f696bd0d,
 | |
|   0x035c41e4d5459761, 0x01ca0d1742b24f53, 0x00aaab27863a509c,
 | |
|   0x018b6de47df73917, 0x025c0b771705cd01, 0x01fd51d566d760a7},
 | |
|  {1, 0, 0, 0, 0, 0, 0, 0, 0}},
 | |
| {{0x01dd92ff6b0d1dbd, 0x039c5e2e8f8afa69, 0x0261ed13242c3b27,
 | |
|   0x0382c6e67026e6a0, 0x01d60b10be2089f9, 0x03c15f3dce86723f,
 | |
|   0x03c764a32d2a062d, 0x017307eac0fad056, 0x018207c0b96c5256},
 | |
|  {0x0196a16d60e13154, 0x03e6ce74c0267030, 0x00ddbf2b4e52a5aa,
 | |
|   0x012738241bbf31c8, 0x00ebe8dc04685a28, 0x024c2ad6d380d4a2,
 | |
|   0x035ee062a6e62d0e, 0x0029ed74af7d3a0f, 0x00eef32aec142ebd},
 | |
|  {1, 0, 0, 0, 0, 0, 0, 0, 0}},
 | |
| {{0x00c31ec398993b39, 0x03a9f45bcda68253, 0x00ac733c24c70890,
 | |
|   0x00872b111401ff01, 0x01d178c23195eafb, 0x03bca2c816b87f74,
 | |
|   0x0261a9af46fbad7a, 0x0324b2a8dd3d28f9, 0x00918121d8f24e23},
 | |
|  {0x032bc8c1ca983cd7, 0x00d869dfb08fc8c6, 0x01693cb61fce1516,
 | |
|   0x012a5ea68f4e88a8, 0x010869cab88d7ae3, 0x009081ad277ceee1,
 | |
|   0x033a77166d064cdc, 0x03955235a1fb3a95, 0x01251a4a9b25b65e},
 | |
|  {1, 0, 0, 0, 0, 0, 0, 0, 0}},
 | |
| {{0x00148a3a1b27f40b, 0x0123186df1b31fdc, 0x00026e7beaad34ce,
 | |
|   0x01db446ac1d3dbba, 0x0299c1a33437eaec, 0x024540610183cbb7,
 | |
|   0x0173bb0e9ce92e46, 0x02b937e43921214b, 0x01ab0436a9bf01b5},
 | |
|  {0x0383381640d46948, 0x008dacbf0e7f330f, 0x03602122bcc3f318,
 | |
|   0x01ee596b200620d6, 0x03bd0585fda430b3, 0x014aed77fd123a83,
 | |
|   0x005ace749e52f742, 0x0390fe041da2b842, 0x0189a8ceb3299242},
 | |
|  {1, 0, 0, 0, 0, 0, 0, 0, 0}},
 | |
| {{0x012a19d6b3282473, 0x00c0915918b423ce, 0x023a954eb94405ae,
 | |
|   0x00529f692be26158, 0x0289fa1b6fa4b2aa, 0x0198ae4ceea346ef,
 | |
|   0x0047d8cdfbdedd49, 0x00cc8c8953f0f6b8, 0x001424abbff49203},
 | |
|  {0x0256732a1115a03a, 0x0351bc38665c6733, 0x03f7b950fb4a6447,
 | |
|   0x000afffa94c22155, 0x025763d0a4dab540, 0x000511e92d4fc283,
 | |
|   0x030a7e9eda0ee96c, 0x004c3cd93a28bf0a, 0x017edb3a8719217f},
 | |
|  {1, 0, 0, 0, 0, 0, 0, 0, 0}},
 | |
| {{0x011de5675a88e673, 0x031d7d0f5e567fbe, 0x0016b2062c970ae5,
 | |
|   0x03f4a2be49d90aa7, 0x03cef0bd13822866, 0x03f0923dcf774a6c,
 | |
|   0x0284bebc4f322f72, 0x016ab2645302bb2c, 0x01793f95dace0e2a},
 | |
|  {0x010646e13527a28f, 0x01ca1babd59dc5e7, 0x01afedfd9a5595df,
 | |
|   0x01f15785212ea6b1, 0x0324e5d64f6ae3f4, 0x02d680f526d00645,
 | |
|   0x0127920fadf627a7, 0x03b383f75df4f684, 0x0089e0057e783b0a},
 | |
|  {1, 0, 0, 0, 0, 0, 0, 0, 0}},
 | |
| {{0x00f334b9eb3c26c6, 0x0298fdaa98568dce, 0x01c2d24843a82292,
 | |
|   0x020bcb24fa1b0711, 0x02cbdb3d2b1875e6, 0x0014907598f89422,
 | |
|   0x03abe3aa43b26664, 0x02cbf47f720bc168, 0x0133b5e73014b79b},
 | |
|  {0x034aab5dab05779d, 0x00cdc5d71fee9abb, 0x0399f16bd4bd9d30,
 | |
|   0x03582fa592d82647, 0x02be1cdfb775b0e9, 0x0034f7cea32e94cb,
 | |
|   0x0335a7f08f56f286, 0x03b707e9565d1c8b, 0x0015c946ea5b614f},
 | |
|  {1, 0, 0, 0, 0, 0, 0, 0, 0}},
 | |
| {{0x024676f6cff72255, 0x00d14625cac96378, 0x00532b6008bc3767,
 | |
|   0x01fc16721b985322, 0x023355ea1b091668, 0x029de7afdc0317c3,
 | |
|   0x02fc8a7ca2da037c, 0x02de1217d74a6f30, 0x013f7173175b73bf},
 | |
|  {0x0344913f441490b5, 0x0200f9e272b61eca, 0x0258a246b1dd55d2,
 | |
|   0x03753db9ea496f36, 0x025e02937a09c5ef, 0x030cbd3d14012692,
 | |
|   0x01793a67e70dc72a, 0x03ec1d37048a662e, 0x006550f700c32a8d},
 | |
|  {1, 0, 0, 0, 0, 0, 0, 0, 0}},
 | |
| {{0x00d3f48a347eba27, 0x008e636649b61bd8, 0x00d3b93716778fb3,
 | |
|   0x004d1915757bd209, 0x019d5311a3da44e0, 0x016d1afcbbe6aade,
 | |
|   0x0241bf5f73265616, 0x0384672e5d50d39b, 0x005009fee522b684},
 | |
|  {0x029b4fab064435fe, 0x018868ee095bbb07, 0x01ea3d6936cc92b8,
 | |
|   0x000608b00f78a2f3, 0x02db911073d1c20f, 0x018205938470100a,
 | |
|   0x01f1e4964cbe6ff2, 0x021a19a29eed4663, 0x01414485f42afa81},
 | |
|  {1, 0, 0, 0, 0, 0, 0, 0, 0}},
 | |
| {{0x01612b3a17f63e34, 0x03813992885428e6, 0x022b3c215b5a9608,
 | |
|   0x029b4057e19f2fcb, 0x0384059a587af7e6, 0x02d6400ace6fe610,
 | |
|   0x029354d896e8e331, 0x00c047ee6dfba65e, 0x0037720542e9d49d},
 | |
|  {0x02ce9eed7c5e9278, 0x0374ed703e79643b, 0x01316c54c4072006,
 | |
|   0x005aaa09054b2ee8, 0x002824000c840d57, 0x03d4eba24771ed86,
 | |
|   0x0189c50aabc3bdae, 0x0338c01541e15510, 0x00466d56e38eed42},
 | |
|  {1, 0, 0, 0, 0, 0, 0, 0, 0}},
 | |
| {{0x007efd8330ad8bd6, 0x02465ed48047710b, 0x0034c6606b215e0c,
 | |
|   0x016ae30c53cbf839, 0x01fa17bd37161216, 0x018ead4e61ce8ab9,
 | |
|   0x005482ed5f5dee46, 0x037543755bba1d7f, 0x005e5ac7e70a9d0f},
 | |
|  {0x0117e1bb2fdcb2a2, 0x03deea36249f40c4, 0x028d09b4a6246cb7,
 | |
|   0x03524b8855bcf756, 0x023d7d109d5ceb58, 0x0178e43e3223ef9c,
 | |
|   0x0154536a0c6e966a, 0x037964d1286ee9fe, 0x0199bcd90e125055},
 | |
|  {1, 0, 0, 0, 0, 0, 0, 0, 0}}
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * select_point selects the |idx|th point from a precomputation table and
 | |
|  * copies it to out.
 | |
|  */
 | |
|  /* pre_comp below is of the size provided in |size| */
 | |
| static void select_point(const limb idx, unsigned int size,
 | |
|                          const felem pre_comp[][3], felem out[3])
 | |
| {
 | |
|     unsigned i, j;
 | |
|     limb *outlimbs = &out[0][0];
 | |
| 
 | |
|     memset(out, 0, sizeof(*out) * 3);
 | |
| 
 | |
|     for (i = 0; i < size; i++) {
 | |
|         const limb *inlimbs = &pre_comp[i][0][0];
 | |
|         limb mask = i ^ idx;
 | |
|         mask |= mask >> 4;
 | |
|         mask |= mask >> 2;
 | |
|         mask |= mask >> 1;
 | |
|         mask &= 1;
 | |
|         mask--;
 | |
|         for (j = 0; j < NLIMBS * 3; j++)
 | |
|             outlimbs[j] |= inlimbs[j] & mask;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* get_bit returns the |i|th bit in |in| */
 | |
| static char get_bit(const felem_bytearray in, int i)
 | |
| {
 | |
|     if (i < 0)
 | |
|         return 0;
 | |
|     return (in[i >> 3] >> (i & 7)) & 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Interleaved point multiplication using precomputed point multiples: The
 | |
|  * small point multiples 0*P, 1*P, ..., 16*P are in pre_comp[], the scalars
 | |
|  * in scalars[]. If g_scalar is non-NULL, we also add this multiple of the
 | |
|  * generator, using certain (large) precomputed multiples in g_pre_comp.
 | |
|  * Output point (X, Y, Z) is stored in x_out, y_out, z_out
 | |
|  */
 | |
| static void batch_mul(felem x_out, felem y_out, felem z_out,
 | |
|                       const felem_bytearray scalars[],
 | |
|                       const unsigned num_points, const u8 *g_scalar,
 | |
|                       const int mixed, const felem pre_comp[][17][3],
 | |
|                       const felem g_pre_comp[16][3])
 | |
| {
 | |
|     int i, skip;
 | |
|     unsigned num, gen_mul = (g_scalar != NULL);
 | |
|     felem nq[3], tmp[4];
 | |
|     limb bits;
 | |
|     u8 sign, digit;
 | |
| 
 | |
|     /* set nq to the point at infinity */
 | |
|     memset(nq, 0, sizeof(nq));
 | |
| 
 | |
|     /*
 | |
|      * Loop over all scalars msb-to-lsb, interleaving additions of multiples
 | |
|      * of the generator (last quarter of rounds) and additions of other
 | |
|      * points multiples (every 5th round).
 | |
|      */
 | |
|     skip = 1;                   /* save two point operations in the first
 | |
|                                  * round */
 | |
|     for (i = (num_points ? 520 : 130); i >= 0; --i) {
 | |
|         /* double */
 | |
|         if (!skip)
 | |
|             point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
 | |
| 
 | |
|         /* add multiples of the generator */
 | |
|         if (gen_mul && (i <= 130)) {
 | |
|             bits = get_bit(g_scalar, i + 390) << 3;
 | |
|             if (i < 130) {
 | |
|                 bits |= get_bit(g_scalar, i + 260) << 2;
 | |
|                 bits |= get_bit(g_scalar, i + 130) << 1;
 | |
|                 bits |= get_bit(g_scalar, i);
 | |
|             }
 | |
|             /* select the point to add, in constant time */
 | |
|             select_point(bits, 16, g_pre_comp, tmp);
 | |
|             if (!skip) {
 | |
|                 /* The 1 argument below is for "mixed" */
 | |
|                 point_add(nq[0], nq[1], nq[2],
 | |
|                           nq[0], nq[1], nq[2], 1, tmp[0], tmp[1], tmp[2]);
 | |
|             } else {
 | |
|                 memcpy(nq, tmp, 3 * sizeof(felem));
 | |
|                 skip = 0;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         /* do other additions every 5 doublings */
 | |
|         if (num_points && (i % 5 == 0)) {
 | |
|             /* loop over all scalars */
 | |
|             for (num = 0; num < num_points; ++num) {
 | |
|                 bits = get_bit(scalars[num], i + 4) << 5;
 | |
|                 bits |= get_bit(scalars[num], i + 3) << 4;
 | |
|                 bits |= get_bit(scalars[num], i + 2) << 3;
 | |
|                 bits |= get_bit(scalars[num], i + 1) << 2;
 | |
|                 bits |= get_bit(scalars[num], i) << 1;
 | |
|                 bits |= get_bit(scalars[num], i - 1);
 | |
|                 ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
 | |
| 
 | |
|                 /*
 | |
|                  * select the point to add or subtract, in constant time
 | |
|                  */
 | |
|                 select_point(digit, 17, pre_comp[num], tmp);
 | |
|                 felem_neg(tmp[3], tmp[1]); /* (X, -Y, Z) is the negative
 | |
|                                             * point */
 | |
|                 copy_conditional(tmp[1], tmp[3], (-(limb) sign));
 | |
| 
 | |
|                 if (!skip) {
 | |
|                     point_add(nq[0], nq[1], nq[2],
 | |
|                               nq[0], nq[1], nq[2],
 | |
|                               mixed, tmp[0], tmp[1], tmp[2]);
 | |
|                 } else {
 | |
|                     memcpy(nq, tmp, 3 * sizeof(felem));
 | |
|                     skip = 0;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     felem_assign(x_out, nq[0]);
 | |
|     felem_assign(y_out, nq[1]);
 | |
|     felem_assign(z_out, nq[2]);
 | |
| }
 | |
| 
 | |
| /* Precomputation for the group generator. */
 | |
| struct nistp521_pre_comp_st {
 | |
|     felem g_pre_comp[16][3];
 | |
|     CRYPTO_REF_COUNT references;
 | |
|     CRYPTO_RWLOCK *lock;
 | |
| };
 | |
| 
 | |
| const EC_METHOD *EC_GFp_nistp521_method(void)
 | |
| {
 | |
|     static const EC_METHOD ret = {
 | |
|         EC_FLAGS_DEFAULT_OCT,
 | |
|         NID_X9_62_prime_field,
 | |
|         ec_GFp_nistp521_group_init,
 | |
|         ec_GFp_simple_group_finish,
 | |
|         ec_GFp_simple_group_clear_finish,
 | |
|         ec_GFp_nist_group_copy,
 | |
|         ec_GFp_nistp521_group_set_curve,
 | |
|         ec_GFp_simple_group_get_curve,
 | |
|         ec_GFp_simple_group_get_degree,
 | |
|         ec_group_simple_order_bits,
 | |
|         ec_GFp_simple_group_check_discriminant,
 | |
|         ec_GFp_simple_point_init,
 | |
|         ec_GFp_simple_point_finish,
 | |
|         ec_GFp_simple_point_clear_finish,
 | |
|         ec_GFp_simple_point_copy,
 | |
|         ec_GFp_simple_point_set_to_infinity,
 | |
|         ec_GFp_simple_set_Jprojective_coordinates_GFp,
 | |
|         ec_GFp_simple_get_Jprojective_coordinates_GFp,
 | |
|         ec_GFp_simple_point_set_affine_coordinates,
 | |
|         ec_GFp_nistp521_point_get_affine_coordinates,
 | |
|         0 /* point_set_compressed_coordinates */ ,
 | |
|         0 /* point2oct */ ,
 | |
|         0 /* oct2point */ ,
 | |
|         ec_GFp_simple_add,
 | |
|         ec_GFp_simple_dbl,
 | |
|         ec_GFp_simple_invert,
 | |
|         ec_GFp_simple_is_at_infinity,
 | |
|         ec_GFp_simple_is_on_curve,
 | |
|         ec_GFp_simple_cmp,
 | |
|         ec_GFp_simple_make_affine,
 | |
|         ec_GFp_simple_points_make_affine,
 | |
|         ec_GFp_nistp521_points_mul,
 | |
|         ec_GFp_nistp521_precompute_mult,
 | |
|         ec_GFp_nistp521_have_precompute_mult,
 | |
|         ec_GFp_nist_field_mul,
 | |
|         ec_GFp_nist_field_sqr,
 | |
|         0 /* field_div */ ,
 | |
|         ec_GFp_simple_field_inv,
 | |
|         0 /* field_encode */ ,
 | |
|         0 /* field_decode */ ,
 | |
|         0,                      /* field_set_to_one */
 | |
|         ec_key_simple_priv2oct,
 | |
|         ec_key_simple_oct2priv,
 | |
|         0, /* set private */
 | |
|         ec_key_simple_generate_key,
 | |
|         ec_key_simple_check_key,
 | |
|         ec_key_simple_generate_public_key,
 | |
|         0, /* keycopy */
 | |
|         0, /* keyfinish */
 | |
|         ecdh_simple_compute_key,
 | |
|         0, /* field_inverse_mod_ord */
 | |
|         0, /* blind_coordinates */
 | |
|         0, /* ladder_pre */
 | |
|         0, /* ladder_step */
 | |
|         0  /* ladder_post */
 | |
|     };
 | |
| 
 | |
|     return &ret;
 | |
| }
 | |
| 
 | |
| /******************************************************************************/
 | |
| /*
 | |
|  * FUNCTIONS TO MANAGE PRECOMPUTATION
 | |
|  */
 | |
| 
 | |
| static NISTP521_PRE_COMP *nistp521_pre_comp_new(void)
 | |
| {
 | |
|     NISTP521_PRE_COMP *ret = OPENSSL_zalloc(sizeof(*ret));
 | |
| 
 | |
|     if (ret == NULL) {
 | |
|         ECerr(EC_F_NISTP521_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     ret->references = 1;
 | |
| 
 | |
|     ret->lock = CRYPTO_THREAD_lock_new();
 | |
|     if (ret->lock == NULL) {
 | |
|         ECerr(EC_F_NISTP521_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
 | |
|         OPENSSL_free(ret);
 | |
|         return NULL;
 | |
|     }
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| NISTP521_PRE_COMP *EC_nistp521_pre_comp_dup(NISTP521_PRE_COMP *p)
 | |
| {
 | |
|     int i;
 | |
|     if (p != NULL)
 | |
|         CRYPTO_UP_REF(&p->references, &i, p->lock);
 | |
|     return p;
 | |
| }
 | |
| 
 | |
| void EC_nistp521_pre_comp_free(NISTP521_PRE_COMP *p)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     if (p == NULL)
 | |
|         return;
 | |
| 
 | |
|     CRYPTO_DOWN_REF(&p->references, &i, p->lock);
 | |
|     REF_PRINT_COUNT("EC_nistp521", x);
 | |
|     if (i > 0)
 | |
|         return;
 | |
|     REF_ASSERT_ISNT(i < 0);
 | |
| 
 | |
|     CRYPTO_THREAD_lock_free(p->lock);
 | |
|     OPENSSL_free(p);
 | |
| }
 | |
| 
 | |
| /******************************************************************************/
 | |
| /*
 | |
|  * OPENSSL EC_METHOD FUNCTIONS
 | |
|  */
 | |
| 
 | |
| int ec_GFp_nistp521_group_init(EC_GROUP *group)
 | |
| {
 | |
|     int ret;
 | |
|     ret = ec_GFp_simple_group_init(group);
 | |
|     group->a_is_minus3 = 1;
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| int ec_GFp_nistp521_group_set_curve(EC_GROUP *group, const BIGNUM *p,
 | |
|                                     const BIGNUM *a, const BIGNUM *b,
 | |
|                                     BN_CTX *ctx)
 | |
| {
 | |
|     int ret = 0;
 | |
|     BN_CTX *new_ctx = NULL;
 | |
|     BIGNUM *curve_p, *curve_a, *curve_b;
 | |
| 
 | |
|     if (ctx == NULL)
 | |
|         if ((ctx = new_ctx = BN_CTX_new()) == NULL)
 | |
|             return 0;
 | |
|     BN_CTX_start(ctx);
 | |
|     curve_p = BN_CTX_get(ctx);
 | |
|     curve_a = BN_CTX_get(ctx);
 | |
|     curve_b = BN_CTX_get(ctx);
 | |
|     if (curve_b == NULL)
 | |
|         goto err;
 | |
|     BN_bin2bn(nistp521_curve_params[0], sizeof(felem_bytearray), curve_p);
 | |
|     BN_bin2bn(nistp521_curve_params[1], sizeof(felem_bytearray), curve_a);
 | |
|     BN_bin2bn(nistp521_curve_params[2], sizeof(felem_bytearray), curve_b);
 | |
|     if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) || (BN_cmp(curve_b, b))) {
 | |
|         ECerr(EC_F_EC_GFP_NISTP521_GROUP_SET_CURVE,
 | |
|               EC_R_WRONG_CURVE_PARAMETERS);
 | |
|         goto err;
 | |
|     }
 | |
|     group->field_mod_func = BN_nist_mod_521;
 | |
|     ret = ec_GFp_simple_group_set_curve(group, p, a, b, ctx);
 | |
|  err:
 | |
|     BN_CTX_end(ctx);
 | |
|     BN_CTX_free(new_ctx);
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Takes the Jacobian coordinates (X, Y, Z) of a point and returns (X', Y') =
 | |
|  * (X/Z^2, Y/Z^3)
 | |
|  */
 | |
| int ec_GFp_nistp521_point_get_affine_coordinates(const EC_GROUP *group,
 | |
|                                                  const EC_POINT *point,
 | |
|                                                  BIGNUM *x, BIGNUM *y,
 | |
|                                                  BN_CTX *ctx)
 | |
| {
 | |
|     felem z1, z2, x_in, y_in, x_out, y_out;
 | |
|     largefelem tmp;
 | |
| 
 | |
|     if (EC_POINT_is_at_infinity(group, point)) {
 | |
|         ECerr(EC_F_EC_GFP_NISTP521_POINT_GET_AFFINE_COORDINATES,
 | |
|               EC_R_POINT_AT_INFINITY);
 | |
|         return 0;
 | |
|     }
 | |
|     if ((!BN_to_felem(x_in, point->X)) || (!BN_to_felem(y_in, point->Y)) ||
 | |
|         (!BN_to_felem(z1, point->Z)))
 | |
|         return 0;
 | |
|     felem_inv(z2, z1);
 | |
|     felem_square(tmp, z2);
 | |
|     felem_reduce(z1, tmp);
 | |
|     felem_mul(tmp, x_in, z1);
 | |
|     felem_reduce(x_in, tmp);
 | |
|     felem_contract(x_out, x_in);
 | |
|     if (x != NULL) {
 | |
|         if (!felem_to_BN(x, x_out)) {
 | |
|             ECerr(EC_F_EC_GFP_NISTP521_POINT_GET_AFFINE_COORDINATES,
 | |
|                   ERR_R_BN_LIB);
 | |
|             return 0;
 | |
|         }
 | |
|     }
 | |
|     felem_mul(tmp, z1, z2);
 | |
|     felem_reduce(z1, tmp);
 | |
|     felem_mul(tmp, y_in, z1);
 | |
|     felem_reduce(y_in, tmp);
 | |
|     felem_contract(y_out, y_in);
 | |
|     if (y != NULL) {
 | |
|         if (!felem_to_BN(y, y_out)) {
 | |
|             ECerr(EC_F_EC_GFP_NISTP521_POINT_GET_AFFINE_COORDINATES,
 | |
|                   ERR_R_BN_LIB);
 | |
|             return 0;
 | |
|         }
 | |
|     }
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /* points below is of size |num|, and tmp_felems is of size |num+1/ */
 | |
| static void make_points_affine(size_t num, felem points[][3],
 | |
|                                felem tmp_felems[])
 | |
| {
 | |
|     /*
 | |
|      * Runs in constant time, unless an input is the point at infinity (which
 | |
|      * normally shouldn't happen).
 | |
|      */
 | |
|     ec_GFp_nistp_points_make_affine_internal(num,
 | |
|                                              points,
 | |
|                                              sizeof(felem),
 | |
|                                              tmp_felems,
 | |
|                                              (void (*)(void *))felem_one,
 | |
|                                              felem_is_zero_int,
 | |
|                                              (void (*)(void *, const void *))
 | |
|                                              felem_assign,
 | |
|                                              (void (*)(void *, const void *))
 | |
|                                              felem_square_reduce, (void (*)
 | |
|                                                                    (void *,
 | |
|                                                                     const void
 | |
|                                                                     *,
 | |
|                                                                     const void
 | |
|                                                                     *))
 | |
|                                              felem_mul_reduce,
 | |
|                                              (void (*)(void *, const void *))
 | |
|                                              felem_inv,
 | |
|                                              (void (*)(void *, const void *))
 | |
|                                              felem_contract);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL
 | |
|  * values Result is stored in r (r can equal one of the inputs).
 | |
|  */
 | |
| int ec_GFp_nistp521_points_mul(const EC_GROUP *group, EC_POINT *r,
 | |
|                                const BIGNUM *scalar, size_t num,
 | |
|                                const EC_POINT *points[],
 | |
|                                const BIGNUM *scalars[], BN_CTX *ctx)
 | |
| {
 | |
|     int ret = 0;
 | |
|     int j;
 | |
|     int mixed = 0;
 | |
|     BIGNUM *x, *y, *z, *tmp_scalar;
 | |
|     felem_bytearray g_secret;
 | |
|     felem_bytearray *secrets = NULL;
 | |
|     felem (*pre_comp)[17][3] = NULL;
 | |
|     felem *tmp_felems = NULL;
 | |
|     unsigned i;
 | |
|     int num_bytes;
 | |
|     int have_pre_comp = 0;
 | |
|     size_t num_points = num;
 | |
|     felem x_in, y_in, z_in, x_out, y_out, z_out;
 | |
|     NISTP521_PRE_COMP *pre = NULL;
 | |
|     felem(*g_pre_comp)[3] = NULL;
 | |
|     EC_POINT *generator = NULL;
 | |
|     const EC_POINT *p = NULL;
 | |
|     const BIGNUM *p_scalar = NULL;
 | |
| 
 | |
|     BN_CTX_start(ctx);
 | |
|     x = BN_CTX_get(ctx);
 | |
|     y = BN_CTX_get(ctx);
 | |
|     z = BN_CTX_get(ctx);
 | |
|     tmp_scalar = BN_CTX_get(ctx);
 | |
|     if (tmp_scalar == NULL)
 | |
|         goto err;
 | |
| 
 | |
|     if (scalar != NULL) {
 | |
|         pre = group->pre_comp.nistp521;
 | |
|         if (pre)
 | |
|             /* we have precomputation, try to use it */
 | |
|             g_pre_comp = &pre->g_pre_comp[0];
 | |
|         else
 | |
|             /* try to use the standard precomputation */
 | |
|             g_pre_comp = (felem(*)[3]) gmul;
 | |
|         generator = EC_POINT_new(group);
 | |
|         if (generator == NULL)
 | |
|             goto err;
 | |
|         /* get the generator from precomputation */
 | |
|         if (!felem_to_BN(x, g_pre_comp[1][0]) ||
 | |
|             !felem_to_BN(y, g_pre_comp[1][1]) ||
 | |
|             !felem_to_BN(z, g_pre_comp[1][2])) {
 | |
|             ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_BN_LIB);
 | |
|             goto err;
 | |
|         }
 | |
|         if (!EC_POINT_set_Jprojective_coordinates_GFp(group,
 | |
|                                                       generator, x, y, z,
 | |
|                                                       ctx))
 | |
|             goto err;
 | |
|         if (0 == EC_POINT_cmp(group, generator, group->generator, ctx))
 | |
|             /* precomputation matches generator */
 | |
|             have_pre_comp = 1;
 | |
|         else
 | |
|             /*
 | |
|              * we don't have valid precomputation: treat the generator as a
 | |
|              * random point
 | |
|              */
 | |
|             num_points++;
 | |
|     }
 | |
| 
 | |
|     if (num_points > 0) {
 | |
|         if (num_points >= 2) {
 | |
|             /*
 | |
|              * unless we precompute multiples for just one point, converting
 | |
|              * those into affine form is time well spent
 | |
|              */
 | |
|             mixed = 1;
 | |
|         }
 | |
|         secrets = OPENSSL_zalloc(sizeof(*secrets) * num_points);
 | |
|         pre_comp = OPENSSL_zalloc(sizeof(*pre_comp) * num_points);
 | |
|         if (mixed)
 | |
|             tmp_felems =
 | |
|                 OPENSSL_malloc(sizeof(*tmp_felems) * (num_points * 17 + 1));
 | |
|         if ((secrets == NULL) || (pre_comp == NULL)
 | |
|             || (mixed && (tmp_felems == NULL))) {
 | |
|             ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_MALLOC_FAILURE);
 | |
|             goto err;
 | |
|         }
 | |
| 
 | |
|         /*
 | |
|          * we treat NULL scalars as 0, and NULL points as points at infinity,
 | |
|          * i.e., they contribute nothing to the linear combination
 | |
|          */
 | |
|         for (i = 0; i < num_points; ++i) {
 | |
|             if (i == num) {
 | |
|                 /*
 | |
|                  * we didn't have a valid precomputation, so we pick the
 | |
|                  * generator
 | |
|                  */
 | |
|                 p = EC_GROUP_get0_generator(group);
 | |
|                 p_scalar = scalar;
 | |
|             } else {
 | |
|                 /* the i^th point */
 | |
|                 p = points[i];
 | |
|                 p_scalar = scalars[i];
 | |
|             }
 | |
|             if ((p_scalar != NULL) && (p != NULL)) {
 | |
|                 /* reduce scalar to 0 <= scalar < 2^521 */
 | |
|                 if ((BN_num_bits(p_scalar) > 521)
 | |
|                     || (BN_is_negative(p_scalar))) {
 | |
|                     /*
 | |
|                      * this is an unusual input, and we don't guarantee
 | |
|                      * constant-timeness
 | |
|                      */
 | |
|                     if (!BN_nnmod(tmp_scalar, p_scalar, group->order, ctx)) {
 | |
|                         ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_BN_LIB);
 | |
|                         goto err;
 | |
|                     }
 | |
|                     num_bytes = BN_bn2lebinpad(tmp_scalar,
 | |
|                                                secrets[i], sizeof(secrets[i]));
 | |
|                 } else {
 | |
|                     num_bytes = BN_bn2lebinpad(p_scalar,
 | |
|                                                secrets[i], sizeof(secrets[i]));
 | |
|                 }
 | |
|                 if (num_bytes < 0) {
 | |
|                     ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_BN_LIB);
 | |
|                     goto err;
 | |
|                 }
 | |
|                 /* precompute multiples */
 | |
|                 if ((!BN_to_felem(x_out, p->X)) ||
 | |
|                     (!BN_to_felem(y_out, p->Y)) ||
 | |
|                     (!BN_to_felem(z_out, p->Z)))
 | |
|                     goto err;
 | |
|                 memcpy(pre_comp[i][1][0], x_out, sizeof(felem));
 | |
|                 memcpy(pre_comp[i][1][1], y_out, sizeof(felem));
 | |
|                 memcpy(pre_comp[i][1][2], z_out, sizeof(felem));
 | |
|                 for (j = 2; j <= 16; ++j) {
 | |
|                     if (j & 1) {
 | |
|                         point_add(pre_comp[i][j][0], pre_comp[i][j][1],
 | |
|                                   pre_comp[i][j][2], pre_comp[i][1][0],
 | |
|                                   pre_comp[i][1][1], pre_comp[i][1][2], 0,
 | |
|                                   pre_comp[i][j - 1][0],
 | |
|                                   pre_comp[i][j - 1][1],
 | |
|                                   pre_comp[i][j - 1][2]);
 | |
|                     } else {
 | |
|                         point_double(pre_comp[i][j][0], pre_comp[i][j][1],
 | |
|                                      pre_comp[i][j][2], pre_comp[i][j / 2][0],
 | |
|                                      pre_comp[i][j / 2][1],
 | |
|                                      pre_comp[i][j / 2][2]);
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         if (mixed)
 | |
|             make_points_affine(num_points * 17, pre_comp[0], tmp_felems);
 | |
|     }
 | |
| 
 | |
|     /* the scalar for the generator */
 | |
|     if ((scalar != NULL) && (have_pre_comp)) {
 | |
|         memset(g_secret, 0, sizeof(g_secret));
 | |
|         /* reduce scalar to 0 <= scalar < 2^521 */
 | |
|         if ((BN_num_bits(scalar) > 521) || (BN_is_negative(scalar))) {
 | |
|             /*
 | |
|              * this is an unusual input, and we don't guarantee
 | |
|              * constant-timeness
 | |
|              */
 | |
|             if (!BN_nnmod(tmp_scalar, scalar, group->order, ctx)) {
 | |
|                 ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_BN_LIB);
 | |
|                 goto err;
 | |
|             }
 | |
|             num_bytes = BN_bn2lebinpad(tmp_scalar, g_secret, sizeof(g_secret));
 | |
|         } else {
 | |
|             num_bytes = BN_bn2lebinpad(scalar, g_secret, sizeof(g_secret));
 | |
|         }
 | |
|         /* do the multiplication with generator precomputation */
 | |
|         batch_mul(x_out, y_out, z_out,
 | |
|                   (const felem_bytearray(*))secrets, num_points,
 | |
|                   g_secret,
 | |
|                   mixed, (const felem(*)[17][3])pre_comp,
 | |
|                   (const felem(*)[3])g_pre_comp);
 | |
|     } else {
 | |
|         /* do the multiplication without generator precomputation */
 | |
|         batch_mul(x_out, y_out, z_out,
 | |
|                   (const felem_bytearray(*))secrets, num_points,
 | |
|                   NULL, mixed, (const felem(*)[17][3])pre_comp, NULL);
 | |
|     }
 | |
|     /* reduce the output to its unique minimal representation */
 | |
|     felem_contract(x_in, x_out);
 | |
|     felem_contract(y_in, y_out);
 | |
|     felem_contract(z_in, z_out);
 | |
|     if ((!felem_to_BN(x, x_in)) || (!felem_to_BN(y, y_in)) ||
 | |
|         (!felem_to_BN(z, z_in))) {
 | |
|         ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_BN_LIB);
 | |
|         goto err;
 | |
|     }
 | |
|     ret = EC_POINT_set_Jprojective_coordinates_GFp(group, r, x, y, z, ctx);
 | |
| 
 | |
|  err:
 | |
|     BN_CTX_end(ctx);
 | |
|     EC_POINT_free(generator);
 | |
|     OPENSSL_free(secrets);
 | |
|     OPENSSL_free(pre_comp);
 | |
|     OPENSSL_free(tmp_felems);
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| int ec_GFp_nistp521_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
 | |
| {
 | |
|     int ret = 0;
 | |
|     NISTP521_PRE_COMP *pre = NULL;
 | |
|     int i, j;
 | |
|     BN_CTX *new_ctx = NULL;
 | |
|     BIGNUM *x, *y;
 | |
|     EC_POINT *generator = NULL;
 | |
|     felem tmp_felems[16];
 | |
| 
 | |
|     /* throw away old precomputation */
 | |
|     EC_pre_comp_free(group);
 | |
|     if (ctx == NULL)
 | |
|         if ((ctx = new_ctx = BN_CTX_new()) == NULL)
 | |
|             return 0;
 | |
|     BN_CTX_start(ctx);
 | |
|     x = BN_CTX_get(ctx);
 | |
|     y = BN_CTX_get(ctx);
 | |
|     if (y == NULL)
 | |
|         goto err;
 | |
|     /* get the generator */
 | |
|     if (group->generator == NULL)
 | |
|         goto err;
 | |
|     generator = EC_POINT_new(group);
 | |
|     if (generator == NULL)
 | |
|         goto err;
 | |
|     BN_bin2bn(nistp521_curve_params[3], sizeof(felem_bytearray), x);
 | |
|     BN_bin2bn(nistp521_curve_params[4], sizeof(felem_bytearray), y);
 | |
|     if (!EC_POINT_set_affine_coordinates(group, generator, x, y, ctx))
 | |
|         goto err;
 | |
|     if ((pre = nistp521_pre_comp_new()) == NULL)
 | |
|         goto err;
 | |
|     /*
 | |
|      * if the generator is the standard one, use built-in precomputation
 | |
|      */
 | |
|     if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) {
 | |
|         memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp));
 | |
|         goto done;
 | |
|     }
 | |
|     if ((!BN_to_felem(pre->g_pre_comp[1][0], group->generator->X)) ||
 | |
|         (!BN_to_felem(pre->g_pre_comp[1][1], group->generator->Y)) ||
 | |
|         (!BN_to_felem(pre->g_pre_comp[1][2], group->generator->Z)))
 | |
|         goto err;
 | |
|     /* compute 2^130*G, 2^260*G, 2^390*G */
 | |
|     for (i = 1; i <= 4; i <<= 1) {
 | |
|         point_double(pre->g_pre_comp[2 * i][0], pre->g_pre_comp[2 * i][1],
 | |
|                      pre->g_pre_comp[2 * i][2], pre->g_pre_comp[i][0],
 | |
|                      pre->g_pre_comp[i][1], pre->g_pre_comp[i][2]);
 | |
|         for (j = 0; j < 129; ++j) {
 | |
|             point_double(pre->g_pre_comp[2 * i][0],
 | |
|                          pre->g_pre_comp[2 * i][1],
 | |
|                          pre->g_pre_comp[2 * i][2],
 | |
|                          pre->g_pre_comp[2 * i][0],
 | |
|                          pre->g_pre_comp[2 * i][1],
 | |
|                          pre->g_pre_comp[2 * i][2]);
 | |
|         }
 | |
|     }
 | |
|     /* g_pre_comp[0] is the point at infinity */
 | |
|     memset(pre->g_pre_comp[0], 0, sizeof(pre->g_pre_comp[0]));
 | |
|     /* the remaining multiples */
 | |
|     /* 2^130*G + 2^260*G */
 | |
|     point_add(pre->g_pre_comp[6][0], pre->g_pre_comp[6][1],
 | |
|               pre->g_pre_comp[6][2], pre->g_pre_comp[4][0],
 | |
|               pre->g_pre_comp[4][1], pre->g_pre_comp[4][2],
 | |
|               0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],
 | |
|               pre->g_pre_comp[2][2]);
 | |
|     /* 2^130*G + 2^390*G */
 | |
|     point_add(pre->g_pre_comp[10][0], pre->g_pre_comp[10][1],
 | |
|               pre->g_pre_comp[10][2], pre->g_pre_comp[8][0],
 | |
|               pre->g_pre_comp[8][1], pre->g_pre_comp[8][2],
 | |
|               0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],
 | |
|               pre->g_pre_comp[2][2]);
 | |
|     /* 2^260*G + 2^390*G */
 | |
|     point_add(pre->g_pre_comp[12][0], pre->g_pre_comp[12][1],
 | |
|               pre->g_pre_comp[12][2], pre->g_pre_comp[8][0],
 | |
|               pre->g_pre_comp[8][1], pre->g_pre_comp[8][2],
 | |
|               0, pre->g_pre_comp[4][0], pre->g_pre_comp[4][1],
 | |
|               pre->g_pre_comp[4][2]);
 | |
|     /* 2^130*G + 2^260*G + 2^390*G */
 | |
|     point_add(pre->g_pre_comp[14][0], pre->g_pre_comp[14][1],
 | |
|               pre->g_pre_comp[14][2], pre->g_pre_comp[12][0],
 | |
|               pre->g_pre_comp[12][1], pre->g_pre_comp[12][2],
 | |
|               0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],
 | |
|               pre->g_pre_comp[2][2]);
 | |
|     for (i = 1; i < 8; ++i) {
 | |
|         /* odd multiples: add G */
 | |
|         point_add(pre->g_pre_comp[2 * i + 1][0],
 | |
|                   pre->g_pre_comp[2 * i + 1][1],
 | |
|                   pre->g_pre_comp[2 * i + 1][2], pre->g_pre_comp[2 * i][0],
 | |
|                   pre->g_pre_comp[2 * i][1], pre->g_pre_comp[2 * i][2], 0,
 | |
|                   pre->g_pre_comp[1][0], pre->g_pre_comp[1][1],
 | |
|                   pre->g_pre_comp[1][2]);
 | |
|     }
 | |
|     make_points_affine(15, &(pre->g_pre_comp[1]), tmp_felems);
 | |
| 
 | |
|  done:
 | |
|     SETPRECOMP(group, nistp521, pre);
 | |
|     ret = 1;
 | |
|     pre = NULL;
 | |
|  err:
 | |
|     BN_CTX_end(ctx);
 | |
|     EC_POINT_free(generator);
 | |
|     BN_CTX_free(new_ctx);
 | |
|     EC_nistp521_pre_comp_free(pre);
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| int ec_GFp_nistp521_have_precompute_mult(const EC_GROUP *group)
 | |
| {
 | |
|     return HAVEPRECOMP(group, nistp521);
 | |
| }
 | |
| 
 | |
| #endif
 |