mirror of
				https://github.com/ossrs/srs.git
				synced 2025-03-09 15:49:59 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			607 lines
		
	
	
	
		
			19 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			607 lines
		
	
	
	
		
			19 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2012 Andrew D'Addesio
 | |
|  * Copyright (c) 2013-2014 Mozilla Corporation
 | |
|  * Copyright (c) 2016 Rostislav Pehlivanov <atomnuker@gmail.com>
 | |
|  *
 | |
|  * This file is part of FFmpeg.
 | |
|  *
 | |
|  * FFmpeg is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2.1 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * FFmpeg is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with FFmpeg; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * @file
 | |
|  * Opus CELT decoder
 | |
|  */
 | |
| 
 | |
| #include "opus_celt.h"
 | |
| #include "opustab.h"
 | |
| #include "opus_pvq.h"
 | |
| 
 | |
| /* Use the 2D z-transform to apply prediction in both the time domain (alpha)
 | |
|  * and the frequency domain (beta) */
 | |
| static void celt_decode_coarse_energy(CeltFrame *f, OpusRangeCoder *rc)
 | |
| {
 | |
|     int i, j;
 | |
|     float prev[2] = { 0 };
 | |
|     float alpha = ff_celt_alpha_coef[f->size];
 | |
|     float beta  = ff_celt_beta_coef[f->size];
 | |
|     const uint8_t *model = ff_celt_coarse_energy_dist[f->size][0];
 | |
| 
 | |
|     /* intra frame */
 | |
|     if (opus_rc_tell(rc) + 3 <= f->framebits && ff_opus_rc_dec_log(rc, 3)) {
 | |
|         alpha = 0.0f;
 | |
|         beta  = 1.0f - (4915.0f/32768.0f);
 | |
|         model = ff_celt_coarse_energy_dist[f->size][1];
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < CELT_MAX_BANDS; i++) {
 | |
|         for (j = 0; j < f->channels; j++) {
 | |
|             CeltBlock *block = &f->block[j];
 | |
|             float value;
 | |
|             int available;
 | |
| 
 | |
|             if (i < f->start_band || i >= f->end_band) {
 | |
|                 block->energy[i] = 0.0;
 | |
|                 continue;
 | |
|             }
 | |
| 
 | |
|             available = f->framebits - opus_rc_tell(rc);
 | |
|             if (available >= 15) {
 | |
|                 /* decode using a Laplace distribution */
 | |
|                 int k = FFMIN(i, 20) << 1;
 | |
|                 value = ff_opus_rc_dec_laplace(rc, model[k] << 7, model[k+1] << 6);
 | |
|             } else if (available >= 2) {
 | |
|                 int x = ff_opus_rc_dec_cdf(rc, ff_celt_model_energy_small);
 | |
|                 value = (x>>1) ^ -(x&1);
 | |
|             } else if (available >= 1) {
 | |
|                 value = -(float)ff_opus_rc_dec_log(rc, 1);
 | |
|             } else value = -1;
 | |
| 
 | |
|             block->energy[i] = FFMAX(-9.0f, block->energy[i]) * alpha + prev[j] + value;
 | |
|             prev[j] += beta * value;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void celt_decode_fine_energy(CeltFrame *f, OpusRangeCoder *rc)
 | |
| {
 | |
|     int i;
 | |
|     for (i = f->start_band; i < f->end_band; i++) {
 | |
|         int j;
 | |
|         if (!f->fine_bits[i])
 | |
|             continue;
 | |
| 
 | |
|         for (j = 0; j < f->channels; j++) {
 | |
|             CeltBlock *block = &f->block[j];
 | |
|             int q2;
 | |
|             float offset;
 | |
|             q2 = ff_opus_rc_get_raw(rc, f->fine_bits[i]);
 | |
|             offset = (q2 + 0.5f) * (1 << (14 - f->fine_bits[i])) / 16384.0f - 0.5f;
 | |
|             block->energy[i] += offset;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void celt_decode_final_energy(CeltFrame *f, OpusRangeCoder *rc)
 | |
| {
 | |
|     int priority, i, j;
 | |
|     int bits_left = f->framebits - opus_rc_tell(rc);
 | |
| 
 | |
|     for (priority = 0; priority < 2; priority++) {
 | |
|         for (i = f->start_band; i < f->end_band && bits_left >= f->channels; i++) {
 | |
|             if (f->fine_priority[i] != priority || f->fine_bits[i] >= CELT_MAX_FINE_BITS)
 | |
|                 continue;
 | |
| 
 | |
|             for (j = 0; j < f->channels; j++) {
 | |
|                 int q2;
 | |
|                 float offset;
 | |
|                 q2 = ff_opus_rc_get_raw(rc, 1);
 | |
|                 offset = (q2 - 0.5f) * (1 << (14 - f->fine_bits[i] - 1)) / 16384.0f;
 | |
|                 f->block[j].energy[i] += offset;
 | |
|                 bits_left--;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void celt_decode_tf_changes(CeltFrame *f, OpusRangeCoder *rc)
 | |
| {
 | |
|     int i, diff = 0, tf_select = 0, tf_changed = 0, tf_select_bit;
 | |
|     int consumed, bits = f->transient ? 2 : 4;
 | |
| 
 | |
|     consumed = opus_rc_tell(rc);
 | |
|     tf_select_bit = (f->size != 0 && consumed+bits+1 <= f->framebits);
 | |
| 
 | |
|     for (i = f->start_band; i < f->end_band; i++) {
 | |
|         if (consumed+bits+tf_select_bit <= f->framebits) {
 | |
|             diff ^= ff_opus_rc_dec_log(rc, bits);
 | |
|             consumed = opus_rc_tell(rc);
 | |
|             tf_changed |= diff;
 | |
|         }
 | |
|         f->tf_change[i] = diff;
 | |
|         bits = f->transient ? 4 : 5;
 | |
|     }
 | |
| 
 | |
|     if (tf_select_bit && ff_celt_tf_select[f->size][f->transient][0][tf_changed] !=
 | |
|                          ff_celt_tf_select[f->size][f->transient][1][tf_changed])
 | |
|         tf_select = ff_opus_rc_dec_log(rc, 1);
 | |
| 
 | |
|     for (i = f->start_band; i < f->end_band; i++) {
 | |
|         f->tf_change[i] = ff_celt_tf_select[f->size][f->transient][tf_select][f->tf_change[i]];
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void celt_denormalize(CeltFrame *f, CeltBlock *block, float *data)
 | |
| {
 | |
|     int i, j;
 | |
| 
 | |
|     for (i = f->start_band; i < f->end_band; i++) {
 | |
|         float *dst = data + (ff_celt_freq_bands[i] << f->size);
 | |
|         float log_norm = block->energy[i] + ff_celt_mean_energy[i];
 | |
|         float norm = exp2f(FFMIN(log_norm, 32.0f));
 | |
| 
 | |
|         for (j = 0; j < ff_celt_freq_range[i] << f->size; j++)
 | |
|             dst[j] *= norm;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void celt_postfilter_apply_transition(CeltBlock *block, float *data)
 | |
| {
 | |
|     const int T0 = block->pf_period_old;
 | |
|     const int T1 = block->pf_period;
 | |
| 
 | |
|     float g00, g01, g02;
 | |
|     float g10, g11, g12;
 | |
| 
 | |
|     float x0, x1, x2, x3, x4;
 | |
| 
 | |
|     int i;
 | |
| 
 | |
|     if (block->pf_gains[0]     == 0.0 &&
 | |
|         block->pf_gains_old[0] == 0.0)
 | |
|         return;
 | |
| 
 | |
|     g00 = block->pf_gains_old[0];
 | |
|     g01 = block->pf_gains_old[1];
 | |
|     g02 = block->pf_gains_old[2];
 | |
|     g10 = block->pf_gains[0];
 | |
|     g11 = block->pf_gains[1];
 | |
|     g12 = block->pf_gains[2];
 | |
| 
 | |
|     x1 = data[-T1 + 1];
 | |
|     x2 = data[-T1];
 | |
|     x3 = data[-T1 - 1];
 | |
|     x4 = data[-T1 - 2];
 | |
| 
 | |
|     for (i = 0; i < CELT_OVERLAP; i++) {
 | |
|         float w = ff_celt_window2[i];
 | |
|         x0 = data[i - T1 + 2];
 | |
| 
 | |
|         data[i] +=  (1.0 - w) * g00 * data[i - T0]                          +
 | |
|                     (1.0 - w) * g01 * (data[i - T0 - 1] + data[i - T0 + 1]) +
 | |
|                     (1.0 - w) * g02 * (data[i - T0 - 2] + data[i - T0 + 2]) +
 | |
|                     w         * g10 * x2                                    +
 | |
|                     w         * g11 * (x1 + x3)                             +
 | |
|                     w         * g12 * (x0 + x4);
 | |
|         x4 = x3;
 | |
|         x3 = x2;
 | |
|         x2 = x1;
 | |
|         x1 = x0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void celt_postfilter_apply(CeltBlock *block, float *data, int len)
 | |
| {
 | |
|     const int T = block->pf_period;
 | |
|     float g0, g1, g2;
 | |
|     float x0, x1, x2, x3, x4;
 | |
|     int i;
 | |
| 
 | |
|     if (block->pf_gains[0] == 0.0 || len <= 0)
 | |
|         return;
 | |
| 
 | |
|     g0 = block->pf_gains[0];
 | |
|     g1 = block->pf_gains[1];
 | |
|     g2 = block->pf_gains[2];
 | |
| 
 | |
|     x4 = data[-T - 2];
 | |
|     x3 = data[-T - 1];
 | |
|     x2 = data[-T];
 | |
|     x1 = data[-T + 1];
 | |
| 
 | |
|     for (i = 0; i < len; i++) {
 | |
|         x0 = data[i - T + 2];
 | |
|         data[i] += g0 * x2        +
 | |
|                    g1 * (x1 + x3) +
 | |
|                    g2 * (x0 + x4);
 | |
|         x4 = x3;
 | |
|         x3 = x2;
 | |
|         x2 = x1;
 | |
|         x1 = x0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void celt_postfilter(CeltFrame *f, CeltBlock *block)
 | |
| {
 | |
|     int len = f->blocksize * f->blocks;
 | |
| 
 | |
|     celt_postfilter_apply_transition(block, block->buf + 1024);
 | |
| 
 | |
|     block->pf_period_old = block->pf_period;
 | |
|     memcpy(block->pf_gains_old, block->pf_gains, sizeof(block->pf_gains));
 | |
| 
 | |
|     block->pf_period = block->pf_period_new;
 | |
|     memcpy(block->pf_gains, block->pf_gains_new, sizeof(block->pf_gains));
 | |
| 
 | |
|     if (len > CELT_OVERLAP) {
 | |
|         celt_postfilter_apply_transition(block, block->buf + 1024 + CELT_OVERLAP);
 | |
|         celt_postfilter_apply(block, block->buf + 1024 + 2 * CELT_OVERLAP,
 | |
|                               len - 2 * CELT_OVERLAP);
 | |
| 
 | |
|         block->pf_period_old = block->pf_period;
 | |
|         memcpy(block->pf_gains_old, block->pf_gains, sizeof(block->pf_gains));
 | |
|     }
 | |
| 
 | |
|     memmove(block->buf, block->buf + len, (1024 + CELT_OVERLAP / 2) * sizeof(float));
 | |
| }
 | |
| 
 | |
| static int parse_postfilter(CeltFrame *f, OpusRangeCoder *rc, int consumed)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     memset(f->block[0].pf_gains_new, 0, sizeof(f->block[0].pf_gains_new));
 | |
|     memset(f->block[1].pf_gains_new, 0, sizeof(f->block[1].pf_gains_new));
 | |
| 
 | |
|     if (f->start_band == 0 && consumed + 16 <= f->framebits) {
 | |
|         int has_postfilter = ff_opus_rc_dec_log(rc, 1);
 | |
|         if (has_postfilter) {
 | |
|             float gain;
 | |
|             int tapset, octave, period;
 | |
| 
 | |
|             octave = ff_opus_rc_dec_uint(rc, 6);
 | |
|             period = (16 << octave) + ff_opus_rc_get_raw(rc, 4 + octave) - 1;
 | |
|             gain   = 0.09375f * (ff_opus_rc_get_raw(rc, 3) + 1);
 | |
|             tapset = (opus_rc_tell(rc) + 2 <= f->framebits) ?
 | |
|                      ff_opus_rc_dec_cdf(rc, ff_celt_model_tapset) : 0;
 | |
| 
 | |
|             for (i = 0; i < 2; i++) {
 | |
|                 CeltBlock *block = &f->block[i];
 | |
| 
 | |
|                 block->pf_period_new = FFMAX(period, CELT_POSTFILTER_MINPERIOD);
 | |
|                 block->pf_gains_new[0] = gain * ff_celt_postfilter_taps[tapset][0];
 | |
|                 block->pf_gains_new[1] = gain * ff_celt_postfilter_taps[tapset][1];
 | |
|                 block->pf_gains_new[2] = gain * ff_celt_postfilter_taps[tapset][2];
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         consumed = opus_rc_tell(rc);
 | |
|     }
 | |
| 
 | |
|     return consumed;
 | |
| }
 | |
| 
 | |
| static void process_anticollapse(CeltFrame *f, CeltBlock *block, float *X)
 | |
| {
 | |
|     int i, j, k;
 | |
| 
 | |
|     for (i = f->start_band; i < f->end_band; i++) {
 | |
|         int renormalize = 0;
 | |
|         float *xptr;
 | |
|         float prev[2];
 | |
|         float Ediff, r;
 | |
|         float thresh, sqrt_1;
 | |
|         int depth;
 | |
| 
 | |
|         /* depth in 1/8 bits */
 | |
|         depth = (1 + f->pulses[i]) / (ff_celt_freq_range[i] << f->size);
 | |
|         thresh = exp2f(-1.0 - 0.125f * depth);
 | |
|         sqrt_1 = 1.0f / sqrtf(ff_celt_freq_range[i] << f->size);
 | |
| 
 | |
|         xptr = X + (ff_celt_freq_bands[i] << f->size);
 | |
| 
 | |
|         prev[0] = block->prev_energy[0][i];
 | |
|         prev[1] = block->prev_energy[1][i];
 | |
|         if (f->channels == 1) {
 | |
|             CeltBlock *block1 = &f->block[1];
 | |
| 
 | |
|             prev[0] = FFMAX(prev[0], block1->prev_energy[0][i]);
 | |
|             prev[1] = FFMAX(prev[1], block1->prev_energy[1][i]);
 | |
|         }
 | |
|         Ediff = block->energy[i] - FFMIN(prev[0], prev[1]);
 | |
|         Ediff = FFMAX(0, Ediff);
 | |
| 
 | |
|         /* r needs to be multiplied by 2 or 2*sqrt(2) depending on LM because
 | |
|         short blocks don't have the same energy as long */
 | |
|         r = exp2f(1 - Ediff);
 | |
|         if (f->size == 3)
 | |
|             r *= M_SQRT2;
 | |
|         r = FFMIN(thresh, r) * sqrt_1;
 | |
|         for (k = 0; k < 1 << f->size; k++) {
 | |
|             /* Detect collapse */
 | |
|             if (!(block->collapse_masks[i] & 1 << k)) {
 | |
|                 /* Fill with noise */
 | |
|                 for (j = 0; j < ff_celt_freq_range[i]; j++)
 | |
|                     xptr[(j << f->size) + k] = (celt_rng(f) & 0x8000) ? r : -r;
 | |
|                 renormalize = 1;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         /* We just added some energy, so we need to renormalize */
 | |
|         if (renormalize)
 | |
|             celt_renormalize_vector(xptr, ff_celt_freq_range[i] << f->size, 1.0f);
 | |
|     }
 | |
| }
 | |
| 
 | |
| int ff_celt_decode_frame(CeltFrame *f, OpusRangeCoder *rc,
 | |
|                          float **output, int channels, int frame_size,
 | |
|                          int start_band,  int end_band)
 | |
| {
 | |
|     int i, j, downmix = 0;
 | |
|     int consumed;           // bits of entropy consumed thus far for this frame
 | |
|     MDCT15Context *imdct;
 | |
| 
 | |
|     if (channels != 1 && channels != 2) {
 | |
|         av_log(f->avctx, AV_LOG_ERROR, "Invalid number of coded channels: %d\n",
 | |
|                channels);
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
|     if (start_band < 0 || start_band > end_band || end_band > CELT_MAX_BANDS) {
 | |
|         av_log(f->avctx, AV_LOG_ERROR, "Invalid start/end band: %d %d\n",
 | |
|                start_band, end_band);
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
| 
 | |
|     f->silence        = 0;
 | |
|     f->transient      = 0;
 | |
|     f->anticollapse   = 0;
 | |
|     f->flushed        = 0;
 | |
|     f->channels       = channels;
 | |
|     f->start_band     = start_band;
 | |
|     f->end_band       = end_band;
 | |
|     f->framebits      = rc->rb.bytes * 8;
 | |
| 
 | |
|     f->size = av_log2(frame_size / CELT_SHORT_BLOCKSIZE);
 | |
|     if (f->size > CELT_MAX_LOG_BLOCKS ||
 | |
|         frame_size != CELT_SHORT_BLOCKSIZE * (1 << f->size)) {
 | |
|         av_log(f->avctx, AV_LOG_ERROR, "Invalid CELT frame size: %d\n",
 | |
|                frame_size);
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
| 
 | |
|     if (!f->output_channels)
 | |
|         f->output_channels = channels;
 | |
| 
 | |
|     for (i = 0; i < f->channels; i++) {
 | |
|         memset(f->block[i].coeffs,         0, sizeof(f->block[i].coeffs));
 | |
|         memset(f->block[i].collapse_masks, 0, sizeof(f->block[i].collapse_masks));
 | |
|     }
 | |
| 
 | |
|     consumed = opus_rc_tell(rc);
 | |
| 
 | |
|     /* obtain silence flag */
 | |
|     if (consumed >= f->framebits)
 | |
|         f->silence = 1;
 | |
|     else if (consumed == 1)
 | |
|         f->silence = ff_opus_rc_dec_log(rc, 15);
 | |
| 
 | |
| 
 | |
|     if (f->silence) {
 | |
|         consumed = f->framebits;
 | |
|         rc->total_bits += f->framebits - opus_rc_tell(rc);
 | |
|     }
 | |
| 
 | |
|     /* obtain post-filter options */
 | |
|     consumed = parse_postfilter(f, rc, consumed);
 | |
| 
 | |
|     /* obtain transient flag */
 | |
|     if (f->size != 0 && consumed+3 <= f->framebits)
 | |
|         f->transient = ff_opus_rc_dec_log(rc, 3);
 | |
| 
 | |
|     f->blocks    = f->transient ? 1 << f->size : 1;
 | |
|     f->blocksize = frame_size / f->blocks;
 | |
| 
 | |
|     imdct = f->imdct[f->transient ? 0 : f->size];
 | |
| 
 | |
|     if (channels == 1) {
 | |
|         for (i = 0; i < CELT_MAX_BANDS; i++)
 | |
|             f->block[0].energy[i] = FFMAX(f->block[0].energy[i], f->block[1].energy[i]);
 | |
|     }
 | |
| 
 | |
|     celt_decode_coarse_energy(f, rc);
 | |
|     celt_decode_tf_changes   (f, rc);
 | |
|     ff_celt_bitalloc         (f, rc, 0);
 | |
|     celt_decode_fine_energy  (f, rc);
 | |
|     ff_celt_quant_bands      (f, rc);
 | |
| 
 | |
|     if (f->anticollapse_needed)
 | |
|         f->anticollapse = ff_opus_rc_get_raw(rc, 1);
 | |
| 
 | |
|     celt_decode_final_energy(f, rc);
 | |
| 
 | |
|     /* apply anti-collapse processing and denormalization to
 | |
|      * each coded channel */
 | |
|     for (i = 0; i < f->channels; i++) {
 | |
|         CeltBlock *block = &f->block[i];
 | |
| 
 | |
|         if (f->anticollapse)
 | |
|             process_anticollapse(f, block, f->block[i].coeffs);
 | |
| 
 | |
|         celt_denormalize(f, block, f->block[i].coeffs);
 | |
|     }
 | |
| 
 | |
|     /* stereo -> mono downmix */
 | |
|     if (f->output_channels < f->channels) {
 | |
|         f->dsp->vector_fmac_scalar(f->block[0].coeffs, f->block[1].coeffs, 1.0, FFALIGN(frame_size, 16));
 | |
|         downmix = 1;
 | |
|     } else if (f->output_channels > f->channels)
 | |
|         memcpy(f->block[1].coeffs, f->block[0].coeffs, frame_size * sizeof(float));
 | |
| 
 | |
|     if (f->silence) {
 | |
|         for (i = 0; i < 2; i++) {
 | |
|             CeltBlock *block = &f->block[i];
 | |
| 
 | |
|             for (j = 0; j < FF_ARRAY_ELEMS(block->energy); j++)
 | |
|                 block->energy[j] = CELT_ENERGY_SILENCE;
 | |
|         }
 | |
|         memset(f->block[0].coeffs, 0, sizeof(f->block[0].coeffs));
 | |
|         memset(f->block[1].coeffs, 0, sizeof(f->block[1].coeffs));
 | |
|     }
 | |
| 
 | |
|     /* transform and output for each output channel */
 | |
|     for (i = 0; i < f->output_channels; i++) {
 | |
|         CeltBlock *block = &f->block[i];
 | |
|         float m = block->emph_coeff;
 | |
| 
 | |
|         /* iMDCT and overlap-add */
 | |
|         for (j = 0; j < f->blocks; j++) {
 | |
|             float *dst  = block->buf + 1024 + j * f->blocksize;
 | |
| 
 | |
|             imdct->imdct_half(imdct, dst + CELT_OVERLAP / 2, f->block[i].coeffs + j,
 | |
|                               f->blocks);
 | |
|             f->dsp->vector_fmul_window(dst, dst, dst + CELT_OVERLAP / 2,
 | |
|                                        ff_celt_window, CELT_OVERLAP / 2);
 | |
|         }
 | |
| 
 | |
|         if (downmix)
 | |
|             f->dsp->vector_fmul_scalar(&block->buf[1024], &block->buf[1024], 0.5f, frame_size);
 | |
| 
 | |
|         /* postfilter */
 | |
|         celt_postfilter(f, block);
 | |
| 
 | |
|         /* deemphasis and output scaling */
 | |
|         for (j = 0; j < frame_size; j++) {
 | |
|             const float tmp = block->buf[1024 - frame_size + j] + m;
 | |
|             m = tmp * CELT_EMPH_COEFF;
 | |
|             output[i][j] = tmp;
 | |
|         }
 | |
| 
 | |
|         block->emph_coeff = m;
 | |
|     }
 | |
| 
 | |
|     if (channels == 1)
 | |
|         memcpy(f->block[1].energy, f->block[0].energy, sizeof(f->block[0].energy));
 | |
| 
 | |
|     for (i = 0; i < 2; i++ ) {
 | |
|         CeltBlock *block = &f->block[i];
 | |
| 
 | |
|         if (!f->transient) {
 | |
|             memcpy(block->prev_energy[1], block->prev_energy[0], sizeof(block->prev_energy[0]));
 | |
|             memcpy(block->prev_energy[0], block->energy,         sizeof(block->prev_energy[0]));
 | |
|         } else {
 | |
|             for (j = 0; j < CELT_MAX_BANDS; j++)
 | |
|                 block->prev_energy[0][j] = FFMIN(block->prev_energy[0][j], block->energy[j]);
 | |
|         }
 | |
| 
 | |
|         for (j = 0; j < f->start_band; j++) {
 | |
|             block->prev_energy[0][j] = CELT_ENERGY_SILENCE;
 | |
|             block->energy[j]         = 0.0;
 | |
|         }
 | |
|         for (j = f->end_band; j < CELT_MAX_BANDS; j++) {
 | |
|             block->prev_energy[0][j] = CELT_ENERGY_SILENCE;
 | |
|             block->energy[j]         = 0.0;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     f->seed = rc->range;
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| void ff_celt_flush(CeltFrame *f)
 | |
| {
 | |
|     int i, j;
 | |
| 
 | |
|     if (f->flushed)
 | |
|         return;
 | |
| 
 | |
|     for (i = 0; i < 2; i++) {
 | |
|         CeltBlock *block = &f->block[i];
 | |
| 
 | |
|         for (j = 0; j < CELT_MAX_BANDS; j++)
 | |
|             block->prev_energy[0][j] = block->prev_energy[1][j] = CELT_ENERGY_SILENCE;
 | |
| 
 | |
|         memset(block->energy, 0, sizeof(block->energy));
 | |
|         memset(block->buf,    0, sizeof(block->buf));
 | |
| 
 | |
|         memset(block->pf_gains,     0, sizeof(block->pf_gains));
 | |
|         memset(block->pf_gains_old, 0, sizeof(block->pf_gains_old));
 | |
|         memset(block->pf_gains_new, 0, sizeof(block->pf_gains_new));
 | |
| 
 | |
|         block->emph_coeff = 0.0;
 | |
|     }
 | |
|     f->seed = 0;
 | |
| 
 | |
|     f->flushed = 1;
 | |
| }
 | |
| 
 | |
| void ff_celt_free(CeltFrame **f)
 | |
| {
 | |
|     CeltFrame *frm = *f;
 | |
|     int i;
 | |
| 
 | |
|     if (!frm)
 | |
|         return;
 | |
| 
 | |
|     for (i = 0; i < FF_ARRAY_ELEMS(frm->imdct); i++)
 | |
|         ff_mdct15_uninit(&frm->imdct[i]);
 | |
| 
 | |
|     ff_celt_pvq_uninit(&frm->pvq);
 | |
| 
 | |
|     av_freep(&frm->dsp);
 | |
|     av_freep(f);
 | |
| }
 | |
| 
 | |
| int ff_celt_init(AVCodecContext *avctx, CeltFrame **f, int output_channels,
 | |
|                  int apply_phase_inv)
 | |
| {
 | |
|     CeltFrame *frm;
 | |
|     int i, ret;
 | |
| 
 | |
|     if (output_channels != 1 && output_channels != 2) {
 | |
|         av_log(avctx, AV_LOG_ERROR, "Invalid number of output channels: %d\n",
 | |
|                output_channels);
 | |
|         return AVERROR(EINVAL);
 | |
|     }
 | |
| 
 | |
|     frm = av_mallocz(sizeof(*frm));
 | |
|     if (!frm)
 | |
|         return AVERROR(ENOMEM);
 | |
| 
 | |
|     frm->avctx           = avctx;
 | |
|     frm->output_channels = output_channels;
 | |
|     frm->apply_phase_inv = apply_phase_inv;
 | |
| 
 | |
|     for (i = 0; i < FF_ARRAY_ELEMS(frm->imdct); i++)
 | |
|         if ((ret = ff_mdct15_init(&frm->imdct[i], 1, i + 3, -1.0f/32768)) < 0)
 | |
|             goto fail;
 | |
| 
 | |
|     if ((ret = ff_celt_pvq_init(&frm->pvq, 0)) < 0)
 | |
|         goto fail;
 | |
| 
 | |
|     frm->dsp = avpriv_float_dsp_alloc(avctx->flags & AV_CODEC_FLAG_BITEXACT);
 | |
|     if (!frm->dsp) {
 | |
|         ret = AVERROR(ENOMEM);
 | |
|         goto fail;
 | |
|     }
 | |
| 
 | |
|     ff_celt_flush(frm);
 | |
| 
 | |
|     *f = frm;
 | |
| 
 | |
|     return 0;
 | |
| fail:
 | |
|     ff_celt_free(&frm);
 | |
|     return ret;
 | |
| }
 |