mirror of
				https://github.com/ossrs/srs.git
				synced 2025-03-09 15:49:59 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			3691 lines
		
	
	
	
		
			120 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			3691 lines
		
	
	
	
		
			120 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright 1995-2019 The OpenSSL Project Authors. All Rights Reserved.
 | |
|  * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
 | |
|  *
 | |
|  * Licensed under the OpenSSL license (the "License").  You may not use
 | |
|  * this file except in compliance with the License.  You can obtain a copy
 | |
|  * in the file LICENSE in the source distribution or at
 | |
|  * https://www.openssl.org/source/license.html
 | |
|  */
 | |
| 
 | |
| #undef SECONDS
 | |
| #define SECONDS                 3
 | |
| #define RSA_SECONDS             10
 | |
| #define DSA_SECONDS             10
 | |
| #define ECDSA_SECONDS   10
 | |
| #define ECDH_SECONDS    10
 | |
| #define EdDSA_SECONDS   10
 | |
| 
 | |
| #include <stdio.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <math.h>
 | |
| #include "apps.h"
 | |
| #include "progs.h"
 | |
| #include <openssl/crypto.h>
 | |
| #include <openssl/rand.h>
 | |
| #include <openssl/err.h>
 | |
| #include <openssl/evp.h>
 | |
| #include <openssl/objects.h>
 | |
| #include <openssl/async.h>
 | |
| #if !defined(OPENSSL_SYS_MSDOS)
 | |
| # include OPENSSL_UNISTD
 | |
| #endif
 | |
| 
 | |
| #if defined(_WIN32)
 | |
| # include <windows.h>
 | |
| #endif
 | |
| 
 | |
| #include <openssl/bn.h>
 | |
| #ifndef OPENSSL_NO_DES
 | |
| # include <openssl/des.h>
 | |
| #endif
 | |
| #include <openssl/aes.h>
 | |
| #ifndef OPENSSL_NO_CAMELLIA
 | |
| # include <openssl/camellia.h>
 | |
| #endif
 | |
| #ifndef OPENSSL_NO_MD2
 | |
| # include <openssl/md2.h>
 | |
| #endif
 | |
| #ifndef OPENSSL_NO_MDC2
 | |
| # include <openssl/mdc2.h>
 | |
| #endif
 | |
| #ifndef OPENSSL_NO_MD4
 | |
| # include <openssl/md4.h>
 | |
| #endif
 | |
| #ifndef OPENSSL_NO_MD5
 | |
| # include <openssl/md5.h>
 | |
| #endif
 | |
| #include <openssl/hmac.h>
 | |
| #include <openssl/sha.h>
 | |
| #ifndef OPENSSL_NO_RMD160
 | |
| # include <openssl/ripemd.h>
 | |
| #endif
 | |
| #ifndef OPENSSL_NO_WHIRLPOOL
 | |
| # include <openssl/whrlpool.h>
 | |
| #endif
 | |
| #ifndef OPENSSL_NO_RC4
 | |
| # include <openssl/rc4.h>
 | |
| #endif
 | |
| #ifndef OPENSSL_NO_RC5
 | |
| # include <openssl/rc5.h>
 | |
| #endif
 | |
| #ifndef OPENSSL_NO_RC2
 | |
| # include <openssl/rc2.h>
 | |
| #endif
 | |
| #ifndef OPENSSL_NO_IDEA
 | |
| # include <openssl/idea.h>
 | |
| #endif
 | |
| #ifndef OPENSSL_NO_SEED
 | |
| # include <openssl/seed.h>
 | |
| #endif
 | |
| #ifndef OPENSSL_NO_BF
 | |
| # include <openssl/blowfish.h>
 | |
| #endif
 | |
| #ifndef OPENSSL_NO_CAST
 | |
| # include <openssl/cast.h>
 | |
| #endif
 | |
| #ifndef OPENSSL_NO_RSA
 | |
| # include <openssl/rsa.h>
 | |
| # include "./testrsa.h"
 | |
| #endif
 | |
| #include <openssl/x509.h>
 | |
| #ifndef OPENSSL_NO_DSA
 | |
| # include <openssl/dsa.h>
 | |
| # include "./testdsa.h"
 | |
| #endif
 | |
| #ifndef OPENSSL_NO_EC
 | |
| # include <openssl/ec.h>
 | |
| #endif
 | |
| #include <openssl/modes.h>
 | |
| 
 | |
| #ifndef HAVE_FORK
 | |
| # if defined(OPENSSL_SYS_VMS) || defined(OPENSSL_SYS_WINDOWS) || defined(OPENSSL_SYS_VXWORKS)
 | |
| #  define HAVE_FORK 0
 | |
| # else
 | |
| #  define HAVE_FORK 1
 | |
| # endif
 | |
| #endif
 | |
| 
 | |
| #if HAVE_FORK
 | |
| # undef NO_FORK
 | |
| #else
 | |
| # define NO_FORK
 | |
| #endif
 | |
| 
 | |
| #define MAX_MISALIGNMENT 63
 | |
| #define MAX_ECDH_SIZE   256
 | |
| #define MISALIGN        64
 | |
| 
 | |
| typedef struct openssl_speed_sec_st {
 | |
|     int sym;
 | |
|     int rsa;
 | |
|     int dsa;
 | |
|     int ecdsa;
 | |
|     int ecdh;
 | |
|     int eddsa;
 | |
| } openssl_speed_sec_t;
 | |
| 
 | |
| static volatile int run = 0;
 | |
| 
 | |
| static int mr = 0;
 | |
| static int usertime = 1;
 | |
| 
 | |
| #ifndef OPENSSL_NO_MD2
 | |
| static int EVP_Digest_MD2_loop(void *args);
 | |
| #endif
 | |
| 
 | |
| #ifndef OPENSSL_NO_MDC2
 | |
| static int EVP_Digest_MDC2_loop(void *args);
 | |
| #endif
 | |
| #ifndef OPENSSL_NO_MD4
 | |
| static int EVP_Digest_MD4_loop(void *args);
 | |
| #endif
 | |
| #ifndef OPENSSL_NO_MD5
 | |
| static int MD5_loop(void *args);
 | |
| static int HMAC_loop(void *args);
 | |
| #endif
 | |
| static int SHA1_loop(void *args);
 | |
| static int SHA256_loop(void *args);
 | |
| static int SHA512_loop(void *args);
 | |
| #ifndef OPENSSL_NO_WHIRLPOOL
 | |
| static int WHIRLPOOL_loop(void *args);
 | |
| #endif
 | |
| #ifndef OPENSSL_NO_RMD160
 | |
| static int EVP_Digest_RMD160_loop(void *args);
 | |
| #endif
 | |
| #ifndef OPENSSL_NO_RC4
 | |
| static int RC4_loop(void *args);
 | |
| #endif
 | |
| #ifndef OPENSSL_NO_DES
 | |
| static int DES_ncbc_encrypt_loop(void *args);
 | |
| static int DES_ede3_cbc_encrypt_loop(void *args);
 | |
| #endif
 | |
| static int AES_cbc_128_encrypt_loop(void *args);
 | |
| static int AES_cbc_192_encrypt_loop(void *args);
 | |
| static int AES_ige_128_encrypt_loop(void *args);
 | |
| static int AES_cbc_256_encrypt_loop(void *args);
 | |
| static int AES_ige_192_encrypt_loop(void *args);
 | |
| static int AES_ige_256_encrypt_loop(void *args);
 | |
| static int CRYPTO_gcm128_aad_loop(void *args);
 | |
| static int RAND_bytes_loop(void *args);
 | |
| static int EVP_Update_loop(void *args);
 | |
| static int EVP_Update_loop_ccm(void *args);
 | |
| static int EVP_Update_loop_aead(void *args);
 | |
| static int EVP_Digest_loop(void *args);
 | |
| #ifndef OPENSSL_NO_RSA
 | |
| static int RSA_sign_loop(void *args);
 | |
| static int RSA_verify_loop(void *args);
 | |
| #endif
 | |
| #ifndef OPENSSL_NO_DSA
 | |
| static int DSA_sign_loop(void *args);
 | |
| static int DSA_verify_loop(void *args);
 | |
| #endif
 | |
| #ifndef OPENSSL_NO_EC
 | |
| static int ECDSA_sign_loop(void *args);
 | |
| static int ECDSA_verify_loop(void *args);
 | |
| static int EdDSA_sign_loop(void *args);
 | |
| static int EdDSA_verify_loop(void *args);
 | |
| #endif
 | |
| 
 | |
| static double Time_F(int s);
 | |
| static void print_message(const char *s, long num, int length, int tm);
 | |
| static void pkey_print_message(const char *str, const char *str2,
 | |
|                                long num, unsigned int bits, int sec);
 | |
| static void print_result(int alg, int run_no, int count, double time_used);
 | |
| #ifndef NO_FORK
 | |
| static int do_multi(int multi, int size_num);
 | |
| #endif
 | |
| 
 | |
| static const int lengths_list[] = {
 | |
|     16, 64, 256, 1024, 8 * 1024, 16 * 1024
 | |
| };
 | |
| static const int *lengths = lengths_list;
 | |
| 
 | |
| static const int aead_lengths_list[] = {
 | |
|     2, 31, 136, 1024, 8 * 1024, 16 * 1024
 | |
| };
 | |
| 
 | |
| #define START   0
 | |
| #define STOP    1
 | |
| 
 | |
| #ifdef SIGALRM
 | |
| 
 | |
| static void alarmed(int sig)
 | |
| {
 | |
|     signal(SIGALRM, alarmed);
 | |
|     run = 0;
 | |
| }
 | |
| 
 | |
| static double Time_F(int s)
 | |
| {
 | |
|     double ret = app_tminterval(s, usertime);
 | |
|     if (s == STOP)
 | |
|         alarm(0);
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| #elif defined(_WIN32)
 | |
| 
 | |
| # define SIGALRM -1
 | |
| 
 | |
| static unsigned int lapse;
 | |
| static volatile unsigned int schlock;
 | |
| static void alarm_win32(unsigned int secs)
 | |
| {
 | |
|     lapse = secs * 1000;
 | |
| }
 | |
| 
 | |
| # define alarm alarm_win32
 | |
| 
 | |
| static DWORD WINAPI sleepy(VOID * arg)
 | |
| {
 | |
|     schlock = 1;
 | |
|     Sleep(lapse);
 | |
|     run = 0;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static double Time_F(int s)
 | |
| {
 | |
|     double ret;
 | |
|     static HANDLE thr;
 | |
| 
 | |
|     if (s == START) {
 | |
|         schlock = 0;
 | |
|         thr = CreateThread(NULL, 4096, sleepy, NULL, 0, NULL);
 | |
|         if (thr == NULL) {
 | |
|             DWORD err = GetLastError();
 | |
|             BIO_printf(bio_err, "unable to CreateThread (%lu)", err);
 | |
|             ExitProcess(err);
 | |
|         }
 | |
|         while (!schlock)
 | |
|             Sleep(0);           /* scheduler spinlock */
 | |
|         ret = app_tminterval(s, usertime);
 | |
|     } else {
 | |
|         ret = app_tminterval(s, usertime);
 | |
|         if (run)
 | |
|             TerminateThread(thr, 0);
 | |
|         CloseHandle(thr);
 | |
|     }
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| #else
 | |
| static double Time_F(int s)
 | |
| {
 | |
|     return app_tminterval(s, usertime);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static void multiblock_speed(const EVP_CIPHER *evp_cipher, int lengths_single,
 | |
|                              const openssl_speed_sec_t *seconds);
 | |
| 
 | |
| #define found(value, pairs, result)\
 | |
|     opt_found(value, result, pairs, OSSL_NELEM(pairs))
 | |
| static int opt_found(const char *name, unsigned int *result,
 | |
|                      const OPT_PAIR pairs[], unsigned int nbelem)
 | |
| {
 | |
|     unsigned int idx;
 | |
| 
 | |
|     for (idx = 0; idx < nbelem; ++idx, pairs++)
 | |
|         if (strcmp(name, pairs->name) == 0) {
 | |
|             *result = pairs->retval;
 | |
|             return 1;
 | |
|         }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| typedef enum OPTION_choice {
 | |
|     OPT_ERR = -1, OPT_EOF = 0, OPT_HELP,
 | |
|     OPT_ELAPSED, OPT_EVP, OPT_DECRYPT, OPT_ENGINE, OPT_MULTI,
 | |
|     OPT_MR, OPT_MB, OPT_MISALIGN, OPT_ASYNCJOBS, OPT_R_ENUM,
 | |
|     OPT_PRIMES, OPT_SECONDS, OPT_BYTES, OPT_AEAD
 | |
| } OPTION_CHOICE;
 | |
| 
 | |
| const OPTIONS speed_options[] = {
 | |
|     {OPT_HELP_STR, 1, '-', "Usage: %s [options] ciphers...\n"},
 | |
|     {OPT_HELP_STR, 1, '-', "Valid options are:\n"},
 | |
|     {"help", OPT_HELP, '-', "Display this summary"},
 | |
|     {"evp", OPT_EVP, 's', "Use EVP-named cipher or digest"},
 | |
|     {"decrypt", OPT_DECRYPT, '-',
 | |
|      "Time decryption instead of encryption (only EVP)"},
 | |
|     {"aead", OPT_AEAD, '-',
 | |
|      "Benchmark EVP-named AEAD cipher in TLS-like sequence"},
 | |
|     {"mb", OPT_MB, '-',
 | |
|      "Enable (tls1>=1) multi-block mode on EVP-named cipher"},
 | |
|     {"mr", OPT_MR, '-', "Produce machine readable output"},
 | |
| #ifndef NO_FORK
 | |
|     {"multi", OPT_MULTI, 'p', "Run benchmarks in parallel"},
 | |
| #endif
 | |
| #ifndef OPENSSL_NO_ASYNC
 | |
|     {"async_jobs", OPT_ASYNCJOBS, 'p',
 | |
|      "Enable async mode and start specified number of jobs"},
 | |
| #endif
 | |
|     OPT_R_OPTIONS,
 | |
| #ifndef OPENSSL_NO_ENGINE
 | |
|     {"engine", OPT_ENGINE, 's', "Use engine, possibly a hardware device"},
 | |
| #endif
 | |
|     {"elapsed", OPT_ELAPSED, '-',
 | |
|      "Use wall-clock time instead of CPU user time as divisor"},
 | |
|     {"primes", OPT_PRIMES, 'p', "Specify number of primes (for RSA only)"},
 | |
|     {"seconds", OPT_SECONDS, 'p',
 | |
|      "Run benchmarks for specified amount of seconds"},
 | |
|     {"bytes", OPT_BYTES, 'p',
 | |
|      "Run [non-PKI] benchmarks on custom-sized buffer"},
 | |
|     {"misalign", OPT_MISALIGN, 'p',
 | |
|      "Use specified offset to mis-align buffers"},
 | |
|     {NULL}
 | |
| };
 | |
| 
 | |
| #define D_MD2           0
 | |
| #define D_MDC2          1
 | |
| #define D_MD4           2
 | |
| #define D_MD5           3
 | |
| #define D_HMAC          4
 | |
| #define D_SHA1          5
 | |
| #define D_RMD160        6
 | |
| #define D_RC4           7
 | |
| #define D_CBC_DES       8
 | |
| #define D_EDE3_DES      9
 | |
| #define D_CBC_IDEA      10
 | |
| #define D_CBC_SEED      11
 | |
| #define D_CBC_RC2       12
 | |
| #define D_CBC_RC5       13
 | |
| #define D_CBC_BF        14
 | |
| #define D_CBC_CAST      15
 | |
| #define D_CBC_128_AES   16
 | |
| #define D_CBC_192_AES   17
 | |
| #define D_CBC_256_AES   18
 | |
| #define D_CBC_128_CML   19
 | |
| #define D_CBC_192_CML   20
 | |
| #define D_CBC_256_CML   21
 | |
| #define D_EVP           22
 | |
| #define D_SHA256        23
 | |
| #define D_SHA512        24
 | |
| #define D_WHIRLPOOL     25
 | |
| #define D_IGE_128_AES   26
 | |
| #define D_IGE_192_AES   27
 | |
| #define D_IGE_256_AES   28
 | |
| #define D_GHASH         29
 | |
| #define D_RAND          30
 | |
| /* name of algorithms to test */
 | |
| static const char *names[] = {
 | |
|     "md2", "mdc2", "md4", "md5", "hmac(md5)", "sha1", "rmd160", "rc4",
 | |
|     "des cbc", "des ede3", "idea cbc", "seed cbc",
 | |
|     "rc2 cbc", "rc5-32/12 cbc", "blowfish cbc", "cast cbc",
 | |
|     "aes-128 cbc", "aes-192 cbc", "aes-256 cbc",
 | |
|     "camellia-128 cbc", "camellia-192 cbc", "camellia-256 cbc",
 | |
|     "evp", "sha256", "sha512", "whirlpool",
 | |
|     "aes-128 ige", "aes-192 ige", "aes-256 ige", "ghash",
 | |
|     "rand"
 | |
| };
 | |
| #define ALGOR_NUM       OSSL_NELEM(names)
 | |
| 
 | |
| /* list of configured algorithm (remaining) */
 | |
| static const OPT_PAIR doit_choices[] = {
 | |
| #ifndef OPENSSL_NO_MD2
 | |
|     {"md2", D_MD2},
 | |
| #endif
 | |
| #ifndef OPENSSL_NO_MDC2
 | |
|     {"mdc2", D_MDC2},
 | |
| #endif
 | |
| #ifndef OPENSSL_NO_MD4
 | |
|     {"md4", D_MD4},
 | |
| #endif
 | |
| #ifndef OPENSSL_NO_MD5
 | |
|     {"md5", D_MD5},
 | |
|     {"hmac", D_HMAC},
 | |
| #endif
 | |
|     {"sha1", D_SHA1},
 | |
|     {"sha256", D_SHA256},
 | |
|     {"sha512", D_SHA512},
 | |
| #ifndef OPENSSL_NO_WHIRLPOOL
 | |
|     {"whirlpool", D_WHIRLPOOL},
 | |
| #endif
 | |
| #ifndef OPENSSL_NO_RMD160
 | |
|     {"ripemd", D_RMD160},
 | |
|     {"rmd160", D_RMD160},
 | |
|     {"ripemd160", D_RMD160},
 | |
| #endif
 | |
| #ifndef OPENSSL_NO_RC4
 | |
|     {"rc4", D_RC4},
 | |
| #endif
 | |
| #ifndef OPENSSL_NO_DES
 | |
|     {"des-cbc", D_CBC_DES},
 | |
|     {"des-ede3", D_EDE3_DES},
 | |
| #endif
 | |
|     {"aes-128-cbc", D_CBC_128_AES},
 | |
|     {"aes-192-cbc", D_CBC_192_AES},
 | |
|     {"aes-256-cbc", D_CBC_256_AES},
 | |
|     {"aes-128-ige", D_IGE_128_AES},
 | |
|     {"aes-192-ige", D_IGE_192_AES},
 | |
|     {"aes-256-ige", D_IGE_256_AES},
 | |
| #ifndef OPENSSL_NO_RC2
 | |
|     {"rc2-cbc", D_CBC_RC2},
 | |
|     {"rc2", D_CBC_RC2},
 | |
| #endif
 | |
| #ifndef OPENSSL_NO_RC5
 | |
|     {"rc5-cbc", D_CBC_RC5},
 | |
|     {"rc5", D_CBC_RC5},
 | |
| #endif
 | |
| #ifndef OPENSSL_NO_IDEA
 | |
|     {"idea-cbc", D_CBC_IDEA},
 | |
|     {"idea", D_CBC_IDEA},
 | |
| #endif
 | |
| #ifndef OPENSSL_NO_SEED
 | |
|     {"seed-cbc", D_CBC_SEED},
 | |
|     {"seed", D_CBC_SEED},
 | |
| #endif
 | |
| #ifndef OPENSSL_NO_BF
 | |
|     {"bf-cbc", D_CBC_BF},
 | |
|     {"blowfish", D_CBC_BF},
 | |
|     {"bf", D_CBC_BF},
 | |
| #endif
 | |
| #ifndef OPENSSL_NO_CAST
 | |
|     {"cast-cbc", D_CBC_CAST},
 | |
|     {"cast", D_CBC_CAST},
 | |
|     {"cast5", D_CBC_CAST},
 | |
| #endif
 | |
|     {"ghash", D_GHASH},
 | |
|     {"rand", D_RAND}
 | |
| };
 | |
| 
 | |
| static double results[ALGOR_NUM][OSSL_NELEM(lengths_list)];
 | |
| 
 | |
| #ifndef OPENSSL_NO_DSA
 | |
| # define R_DSA_512       0
 | |
| # define R_DSA_1024      1
 | |
| # define R_DSA_2048      2
 | |
| static const OPT_PAIR dsa_choices[] = {
 | |
|     {"dsa512", R_DSA_512},
 | |
|     {"dsa1024", R_DSA_1024},
 | |
|     {"dsa2048", R_DSA_2048}
 | |
| };
 | |
| # define DSA_NUM         OSSL_NELEM(dsa_choices)
 | |
| 
 | |
| static double dsa_results[DSA_NUM][2];  /* 2 ops: sign then verify */
 | |
| #endif  /* OPENSSL_NO_DSA */
 | |
| 
 | |
| #define R_RSA_512       0
 | |
| #define R_RSA_1024      1
 | |
| #define R_RSA_2048      2
 | |
| #define R_RSA_3072      3
 | |
| #define R_RSA_4096      4
 | |
| #define R_RSA_7680      5
 | |
| #define R_RSA_15360     6
 | |
| #ifndef OPENSSL_NO_RSA
 | |
| static const OPT_PAIR rsa_choices[] = {
 | |
|     {"rsa512", R_RSA_512},
 | |
|     {"rsa1024", R_RSA_1024},
 | |
|     {"rsa2048", R_RSA_2048},
 | |
|     {"rsa3072", R_RSA_3072},
 | |
|     {"rsa4096", R_RSA_4096},
 | |
|     {"rsa7680", R_RSA_7680},
 | |
|     {"rsa15360", R_RSA_15360}
 | |
| };
 | |
| # define RSA_NUM OSSL_NELEM(rsa_choices)
 | |
| 
 | |
| static double rsa_results[RSA_NUM][2];  /* 2 ops: sign then verify */
 | |
| #endif /* OPENSSL_NO_RSA */
 | |
| 
 | |
| #define R_EC_P160    0
 | |
| #define R_EC_P192    1
 | |
| #define R_EC_P224    2
 | |
| #define R_EC_P256    3
 | |
| #define R_EC_P384    4
 | |
| #define R_EC_P521    5
 | |
| #define R_EC_K163    6
 | |
| #define R_EC_K233    7
 | |
| #define R_EC_K283    8
 | |
| #define R_EC_K409    9
 | |
| #define R_EC_K571    10
 | |
| #define R_EC_B163    11
 | |
| #define R_EC_B233    12
 | |
| #define R_EC_B283    13
 | |
| #define R_EC_B409    14
 | |
| #define R_EC_B571    15
 | |
| #define R_EC_BRP256R1  16
 | |
| #define R_EC_BRP256T1  17
 | |
| #define R_EC_BRP384R1  18
 | |
| #define R_EC_BRP384T1  19
 | |
| #define R_EC_BRP512R1  20
 | |
| #define R_EC_BRP512T1  21
 | |
| #define R_EC_X25519  22
 | |
| #define R_EC_X448    23
 | |
| #ifndef OPENSSL_NO_EC
 | |
| static OPT_PAIR ecdsa_choices[] = {
 | |
|     {"ecdsap160", R_EC_P160},
 | |
|     {"ecdsap192", R_EC_P192},
 | |
|     {"ecdsap224", R_EC_P224},
 | |
|     {"ecdsap256", R_EC_P256},
 | |
|     {"ecdsap384", R_EC_P384},
 | |
|     {"ecdsap521", R_EC_P521},
 | |
|     {"ecdsak163", R_EC_K163},
 | |
|     {"ecdsak233", R_EC_K233},
 | |
|     {"ecdsak283", R_EC_K283},
 | |
|     {"ecdsak409", R_EC_K409},
 | |
|     {"ecdsak571", R_EC_K571},
 | |
|     {"ecdsab163", R_EC_B163},
 | |
|     {"ecdsab233", R_EC_B233},
 | |
|     {"ecdsab283", R_EC_B283},
 | |
|     {"ecdsab409", R_EC_B409},
 | |
|     {"ecdsab571", R_EC_B571},
 | |
|     {"ecdsabrp256r1", R_EC_BRP256R1},
 | |
|     {"ecdsabrp256t1", R_EC_BRP256T1},
 | |
|     {"ecdsabrp384r1", R_EC_BRP384R1},
 | |
|     {"ecdsabrp384t1", R_EC_BRP384T1},
 | |
|     {"ecdsabrp512r1", R_EC_BRP512R1},
 | |
|     {"ecdsabrp512t1", R_EC_BRP512T1}
 | |
| };
 | |
| # define ECDSA_NUM       OSSL_NELEM(ecdsa_choices)
 | |
| 
 | |
| static double ecdsa_results[ECDSA_NUM][2];    /* 2 ops: sign then verify */
 | |
| 
 | |
| static const OPT_PAIR ecdh_choices[] = {
 | |
|     {"ecdhp160", R_EC_P160},
 | |
|     {"ecdhp192", R_EC_P192},
 | |
|     {"ecdhp224", R_EC_P224},
 | |
|     {"ecdhp256", R_EC_P256},
 | |
|     {"ecdhp384", R_EC_P384},
 | |
|     {"ecdhp521", R_EC_P521},
 | |
|     {"ecdhk163", R_EC_K163},
 | |
|     {"ecdhk233", R_EC_K233},
 | |
|     {"ecdhk283", R_EC_K283},
 | |
|     {"ecdhk409", R_EC_K409},
 | |
|     {"ecdhk571", R_EC_K571},
 | |
|     {"ecdhb163", R_EC_B163},
 | |
|     {"ecdhb233", R_EC_B233},
 | |
|     {"ecdhb283", R_EC_B283},
 | |
|     {"ecdhb409", R_EC_B409},
 | |
|     {"ecdhb571", R_EC_B571},
 | |
|     {"ecdhbrp256r1", R_EC_BRP256R1},
 | |
|     {"ecdhbrp256t1", R_EC_BRP256T1},
 | |
|     {"ecdhbrp384r1", R_EC_BRP384R1},
 | |
|     {"ecdhbrp384t1", R_EC_BRP384T1},
 | |
|     {"ecdhbrp512r1", R_EC_BRP512R1},
 | |
|     {"ecdhbrp512t1", R_EC_BRP512T1},
 | |
|     {"ecdhx25519", R_EC_X25519},
 | |
|     {"ecdhx448", R_EC_X448}
 | |
| };
 | |
| # define EC_NUM       OSSL_NELEM(ecdh_choices)
 | |
| 
 | |
| static double ecdh_results[EC_NUM][1];  /* 1 op: derivation */
 | |
| 
 | |
| #define R_EC_Ed25519    0
 | |
| #define R_EC_Ed448      1
 | |
| static OPT_PAIR eddsa_choices[] = {
 | |
|     {"ed25519", R_EC_Ed25519},
 | |
|     {"ed448", R_EC_Ed448}
 | |
| };
 | |
| # define EdDSA_NUM       OSSL_NELEM(eddsa_choices)
 | |
| 
 | |
| static double eddsa_results[EdDSA_NUM][2];    /* 2 ops: sign then verify */
 | |
| #endif /* OPENSSL_NO_EC */
 | |
| 
 | |
| #ifndef SIGALRM
 | |
| # define COND(d) (count < (d))
 | |
| # define COUNT(d) (d)
 | |
| #else
 | |
| # define COND(unused_cond) (run && count<0x7fffffff)
 | |
| # define COUNT(d) (count)
 | |
| #endif                          /* SIGALRM */
 | |
| 
 | |
| typedef struct loopargs_st {
 | |
|     ASYNC_JOB *inprogress_job;
 | |
|     ASYNC_WAIT_CTX *wait_ctx;
 | |
|     unsigned char *buf;
 | |
|     unsigned char *buf2;
 | |
|     unsigned char *buf_malloc;
 | |
|     unsigned char *buf2_malloc;
 | |
|     unsigned char *key;
 | |
|     unsigned int siglen;
 | |
|     size_t sigsize;
 | |
| #ifndef OPENSSL_NO_RSA
 | |
|     RSA *rsa_key[RSA_NUM];
 | |
| #endif
 | |
| #ifndef OPENSSL_NO_DSA
 | |
|     DSA *dsa_key[DSA_NUM];
 | |
| #endif
 | |
| #ifndef OPENSSL_NO_EC
 | |
|     EC_KEY *ecdsa[ECDSA_NUM];
 | |
|     EVP_PKEY_CTX *ecdh_ctx[EC_NUM];
 | |
|     EVP_MD_CTX *eddsa_ctx[EdDSA_NUM];
 | |
|     unsigned char *secret_a;
 | |
|     unsigned char *secret_b;
 | |
|     size_t outlen[EC_NUM];
 | |
| #endif
 | |
|     EVP_CIPHER_CTX *ctx;
 | |
|     HMAC_CTX *hctx;
 | |
|     GCM128_CONTEXT *gcm_ctx;
 | |
| } loopargs_t;
 | |
| static int run_benchmark(int async_jobs, int (*loop_function) (void *),
 | |
|                          loopargs_t * loopargs);
 | |
| 
 | |
| static unsigned int testnum;
 | |
| 
 | |
| /* Nb of iterations to do per algorithm and key-size */
 | |
| static long c[ALGOR_NUM][OSSL_NELEM(lengths_list)];
 | |
| 
 | |
| #ifndef OPENSSL_NO_MD2
 | |
| static int EVP_Digest_MD2_loop(void *args)
 | |
| {
 | |
|     loopargs_t *tempargs = *(loopargs_t **) args;
 | |
|     unsigned char *buf = tempargs->buf;
 | |
|     unsigned char md2[MD2_DIGEST_LENGTH];
 | |
|     int count;
 | |
| 
 | |
|     for (count = 0; COND(c[D_MD2][testnum]); count++) {
 | |
|         if (!EVP_Digest(buf, (size_t)lengths[testnum], md2, NULL, EVP_md2(),
 | |
|                         NULL))
 | |
|             return -1;
 | |
|     }
 | |
|     return count;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifndef OPENSSL_NO_MDC2
 | |
| static int EVP_Digest_MDC2_loop(void *args)
 | |
| {
 | |
|     loopargs_t *tempargs = *(loopargs_t **) args;
 | |
|     unsigned char *buf = tempargs->buf;
 | |
|     unsigned char mdc2[MDC2_DIGEST_LENGTH];
 | |
|     int count;
 | |
| 
 | |
|     for (count = 0; COND(c[D_MDC2][testnum]); count++) {
 | |
|         if (!EVP_Digest(buf, (size_t)lengths[testnum], mdc2, NULL, EVP_mdc2(),
 | |
|                         NULL))
 | |
|             return -1;
 | |
|     }
 | |
|     return count;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifndef OPENSSL_NO_MD4
 | |
| static int EVP_Digest_MD4_loop(void *args)
 | |
| {
 | |
|     loopargs_t *tempargs = *(loopargs_t **) args;
 | |
|     unsigned char *buf = tempargs->buf;
 | |
|     unsigned char md4[MD4_DIGEST_LENGTH];
 | |
|     int count;
 | |
| 
 | |
|     for (count = 0; COND(c[D_MD4][testnum]); count++) {
 | |
|         if (!EVP_Digest(buf, (size_t)lengths[testnum], md4, NULL, EVP_md4(),
 | |
|                         NULL))
 | |
|             return -1;
 | |
|     }
 | |
|     return count;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifndef OPENSSL_NO_MD5
 | |
| static int MD5_loop(void *args)
 | |
| {
 | |
|     loopargs_t *tempargs = *(loopargs_t **) args;
 | |
|     unsigned char *buf = tempargs->buf;
 | |
|     unsigned char md5[MD5_DIGEST_LENGTH];
 | |
|     int count;
 | |
|     for (count = 0; COND(c[D_MD5][testnum]); count++)
 | |
|         MD5(buf, lengths[testnum], md5);
 | |
|     return count;
 | |
| }
 | |
| 
 | |
| static int HMAC_loop(void *args)
 | |
| {
 | |
|     loopargs_t *tempargs = *(loopargs_t **) args;
 | |
|     unsigned char *buf = tempargs->buf;
 | |
|     HMAC_CTX *hctx = tempargs->hctx;
 | |
|     unsigned char hmac[MD5_DIGEST_LENGTH];
 | |
|     int count;
 | |
| 
 | |
|     for (count = 0; COND(c[D_HMAC][testnum]); count++) {
 | |
|         HMAC_Init_ex(hctx, NULL, 0, NULL, NULL);
 | |
|         HMAC_Update(hctx, buf, lengths[testnum]);
 | |
|         HMAC_Final(hctx, hmac, NULL);
 | |
|     }
 | |
|     return count;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static int SHA1_loop(void *args)
 | |
| {
 | |
|     loopargs_t *tempargs = *(loopargs_t **) args;
 | |
|     unsigned char *buf = tempargs->buf;
 | |
|     unsigned char sha[SHA_DIGEST_LENGTH];
 | |
|     int count;
 | |
|     for (count = 0; COND(c[D_SHA1][testnum]); count++)
 | |
|         SHA1(buf, lengths[testnum], sha);
 | |
|     return count;
 | |
| }
 | |
| 
 | |
| static int SHA256_loop(void *args)
 | |
| {
 | |
|     loopargs_t *tempargs = *(loopargs_t **) args;
 | |
|     unsigned char *buf = tempargs->buf;
 | |
|     unsigned char sha256[SHA256_DIGEST_LENGTH];
 | |
|     int count;
 | |
|     for (count = 0; COND(c[D_SHA256][testnum]); count++)
 | |
|         SHA256(buf, lengths[testnum], sha256);
 | |
|     return count;
 | |
| }
 | |
| 
 | |
| static int SHA512_loop(void *args)
 | |
| {
 | |
|     loopargs_t *tempargs = *(loopargs_t **) args;
 | |
|     unsigned char *buf = tempargs->buf;
 | |
|     unsigned char sha512[SHA512_DIGEST_LENGTH];
 | |
|     int count;
 | |
|     for (count = 0; COND(c[D_SHA512][testnum]); count++)
 | |
|         SHA512(buf, lengths[testnum], sha512);
 | |
|     return count;
 | |
| }
 | |
| 
 | |
| #ifndef OPENSSL_NO_WHIRLPOOL
 | |
| static int WHIRLPOOL_loop(void *args)
 | |
| {
 | |
|     loopargs_t *tempargs = *(loopargs_t **) args;
 | |
|     unsigned char *buf = tempargs->buf;
 | |
|     unsigned char whirlpool[WHIRLPOOL_DIGEST_LENGTH];
 | |
|     int count;
 | |
|     for (count = 0; COND(c[D_WHIRLPOOL][testnum]); count++)
 | |
|         WHIRLPOOL(buf, lengths[testnum], whirlpool);
 | |
|     return count;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifndef OPENSSL_NO_RMD160
 | |
| static int EVP_Digest_RMD160_loop(void *args)
 | |
| {
 | |
|     loopargs_t *tempargs = *(loopargs_t **) args;
 | |
|     unsigned char *buf = tempargs->buf;
 | |
|     unsigned char rmd160[RIPEMD160_DIGEST_LENGTH];
 | |
|     int count;
 | |
|     for (count = 0; COND(c[D_RMD160][testnum]); count++) {
 | |
|         if (!EVP_Digest(buf, (size_t)lengths[testnum], &(rmd160[0]),
 | |
|                         NULL, EVP_ripemd160(), NULL))
 | |
|             return -1;
 | |
|     }
 | |
|     return count;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifndef OPENSSL_NO_RC4
 | |
| static RC4_KEY rc4_ks;
 | |
| static int RC4_loop(void *args)
 | |
| {
 | |
|     loopargs_t *tempargs = *(loopargs_t **) args;
 | |
|     unsigned char *buf = tempargs->buf;
 | |
|     int count;
 | |
|     for (count = 0; COND(c[D_RC4][testnum]); count++)
 | |
|         RC4(&rc4_ks, (size_t)lengths[testnum], buf, buf);
 | |
|     return count;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifndef OPENSSL_NO_DES
 | |
| static unsigned char DES_iv[8];
 | |
| static DES_key_schedule sch;
 | |
| static DES_key_schedule sch2;
 | |
| static DES_key_schedule sch3;
 | |
| static int DES_ncbc_encrypt_loop(void *args)
 | |
| {
 | |
|     loopargs_t *tempargs = *(loopargs_t **) args;
 | |
|     unsigned char *buf = tempargs->buf;
 | |
|     int count;
 | |
|     for (count = 0; COND(c[D_CBC_DES][testnum]); count++)
 | |
|         DES_ncbc_encrypt(buf, buf, lengths[testnum], &sch,
 | |
|                          &DES_iv, DES_ENCRYPT);
 | |
|     return count;
 | |
| }
 | |
| 
 | |
| static int DES_ede3_cbc_encrypt_loop(void *args)
 | |
| {
 | |
|     loopargs_t *tempargs = *(loopargs_t **) args;
 | |
|     unsigned char *buf = tempargs->buf;
 | |
|     int count;
 | |
|     for (count = 0; COND(c[D_EDE3_DES][testnum]); count++)
 | |
|         DES_ede3_cbc_encrypt(buf, buf, lengths[testnum],
 | |
|                              &sch, &sch2, &sch3, &DES_iv, DES_ENCRYPT);
 | |
|     return count;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #define MAX_BLOCK_SIZE 128
 | |
| 
 | |
| static unsigned char iv[2 * MAX_BLOCK_SIZE / 8];
 | |
| static AES_KEY aes_ks1, aes_ks2, aes_ks3;
 | |
| static int AES_cbc_128_encrypt_loop(void *args)
 | |
| {
 | |
|     loopargs_t *tempargs = *(loopargs_t **) args;
 | |
|     unsigned char *buf = tempargs->buf;
 | |
|     int count;
 | |
|     for (count = 0; COND(c[D_CBC_128_AES][testnum]); count++)
 | |
|         AES_cbc_encrypt(buf, buf,
 | |
|                         (size_t)lengths[testnum], &aes_ks1, iv, AES_ENCRYPT);
 | |
|     return count;
 | |
| }
 | |
| 
 | |
| static int AES_cbc_192_encrypt_loop(void *args)
 | |
| {
 | |
|     loopargs_t *tempargs = *(loopargs_t **) args;
 | |
|     unsigned char *buf = tempargs->buf;
 | |
|     int count;
 | |
|     for (count = 0; COND(c[D_CBC_192_AES][testnum]); count++)
 | |
|         AES_cbc_encrypt(buf, buf,
 | |
|                         (size_t)lengths[testnum], &aes_ks2, iv, AES_ENCRYPT);
 | |
|     return count;
 | |
| }
 | |
| 
 | |
| static int AES_cbc_256_encrypt_loop(void *args)
 | |
| {
 | |
|     loopargs_t *tempargs = *(loopargs_t **) args;
 | |
|     unsigned char *buf = tempargs->buf;
 | |
|     int count;
 | |
|     for (count = 0; COND(c[D_CBC_256_AES][testnum]); count++)
 | |
|         AES_cbc_encrypt(buf, buf,
 | |
|                         (size_t)lengths[testnum], &aes_ks3, iv, AES_ENCRYPT);
 | |
|     return count;
 | |
| }
 | |
| 
 | |
| static int AES_ige_128_encrypt_loop(void *args)
 | |
| {
 | |
|     loopargs_t *tempargs = *(loopargs_t **) args;
 | |
|     unsigned char *buf = tempargs->buf;
 | |
|     unsigned char *buf2 = tempargs->buf2;
 | |
|     int count;
 | |
|     for (count = 0; COND(c[D_IGE_128_AES][testnum]); count++)
 | |
|         AES_ige_encrypt(buf, buf2,
 | |
|                         (size_t)lengths[testnum], &aes_ks1, iv, AES_ENCRYPT);
 | |
|     return count;
 | |
| }
 | |
| 
 | |
| static int AES_ige_192_encrypt_loop(void *args)
 | |
| {
 | |
|     loopargs_t *tempargs = *(loopargs_t **) args;
 | |
|     unsigned char *buf = tempargs->buf;
 | |
|     unsigned char *buf2 = tempargs->buf2;
 | |
|     int count;
 | |
|     for (count = 0; COND(c[D_IGE_192_AES][testnum]); count++)
 | |
|         AES_ige_encrypt(buf, buf2,
 | |
|                         (size_t)lengths[testnum], &aes_ks2, iv, AES_ENCRYPT);
 | |
|     return count;
 | |
| }
 | |
| 
 | |
| static int AES_ige_256_encrypt_loop(void *args)
 | |
| {
 | |
|     loopargs_t *tempargs = *(loopargs_t **) args;
 | |
|     unsigned char *buf = tempargs->buf;
 | |
|     unsigned char *buf2 = tempargs->buf2;
 | |
|     int count;
 | |
|     for (count = 0; COND(c[D_IGE_256_AES][testnum]); count++)
 | |
|         AES_ige_encrypt(buf, buf2,
 | |
|                         (size_t)lengths[testnum], &aes_ks3, iv, AES_ENCRYPT);
 | |
|     return count;
 | |
| }
 | |
| 
 | |
| static int CRYPTO_gcm128_aad_loop(void *args)
 | |
| {
 | |
|     loopargs_t *tempargs = *(loopargs_t **) args;
 | |
|     unsigned char *buf = tempargs->buf;
 | |
|     GCM128_CONTEXT *gcm_ctx = tempargs->gcm_ctx;
 | |
|     int count;
 | |
|     for (count = 0; COND(c[D_GHASH][testnum]); count++)
 | |
|         CRYPTO_gcm128_aad(gcm_ctx, buf, lengths[testnum]);
 | |
|     return count;
 | |
| }
 | |
| 
 | |
| static int RAND_bytes_loop(void *args)
 | |
| {
 | |
|     loopargs_t *tempargs = *(loopargs_t **) args;
 | |
|     unsigned char *buf = tempargs->buf;
 | |
|     int count;
 | |
| 
 | |
|     for (count = 0; COND(c[D_RAND][testnum]); count++)
 | |
|         RAND_bytes(buf, lengths[testnum]);
 | |
|     return count;
 | |
| }
 | |
| 
 | |
| static long save_count = 0;
 | |
| static int decrypt = 0;
 | |
| static int EVP_Update_loop(void *args)
 | |
| {
 | |
|     loopargs_t *tempargs = *(loopargs_t **) args;
 | |
|     unsigned char *buf = tempargs->buf;
 | |
|     EVP_CIPHER_CTX *ctx = tempargs->ctx;
 | |
|     int outl, count, rc;
 | |
| #ifndef SIGALRM
 | |
|     int nb_iter = save_count * 4 * lengths[0] / lengths[testnum];
 | |
| #endif
 | |
|     if (decrypt) {
 | |
|         for (count = 0; COND(nb_iter); count++) {
 | |
|             rc = EVP_DecryptUpdate(ctx, buf, &outl, buf, lengths[testnum]);
 | |
|             if (rc != 1) {
 | |
|                 /* reset iv in case of counter overflow */
 | |
|                 EVP_CipherInit_ex(ctx, NULL, NULL, NULL, iv, -1);
 | |
|             }
 | |
|         }
 | |
|     } else {
 | |
|         for (count = 0; COND(nb_iter); count++) {
 | |
|             rc = EVP_EncryptUpdate(ctx, buf, &outl, buf, lengths[testnum]);
 | |
|             if (rc != 1) {
 | |
|                 /* reset iv in case of counter overflow */
 | |
|                 EVP_CipherInit_ex(ctx, NULL, NULL, NULL, iv, -1);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     if (decrypt)
 | |
|         EVP_DecryptFinal_ex(ctx, buf, &outl);
 | |
|     else
 | |
|         EVP_EncryptFinal_ex(ctx, buf, &outl);
 | |
|     return count;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * CCM does not support streaming. For the purpose of performance measurement,
 | |
|  * each message is encrypted using the same (key,iv)-pair. Do not use this
 | |
|  * code in your application.
 | |
|  */
 | |
| static int EVP_Update_loop_ccm(void *args)
 | |
| {
 | |
|     loopargs_t *tempargs = *(loopargs_t **) args;
 | |
|     unsigned char *buf = tempargs->buf;
 | |
|     EVP_CIPHER_CTX *ctx = tempargs->ctx;
 | |
|     int outl, count;
 | |
|     unsigned char tag[12];
 | |
| #ifndef SIGALRM
 | |
|     int nb_iter = save_count * 4 * lengths[0] / lengths[testnum];
 | |
| #endif
 | |
|     if (decrypt) {
 | |
|         for (count = 0; COND(nb_iter); count++) {
 | |
|             EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG, sizeof(tag), tag);
 | |
|             /* reset iv */
 | |
|             EVP_DecryptInit_ex(ctx, NULL, NULL, NULL, iv);
 | |
|             /* counter is reset on every update */
 | |
|             EVP_DecryptUpdate(ctx, buf, &outl, buf, lengths[testnum]);
 | |
|         }
 | |
|     } else {
 | |
|         for (count = 0; COND(nb_iter); count++) {
 | |
|             /* restore iv length field */
 | |
|             EVP_EncryptUpdate(ctx, NULL, &outl, NULL, lengths[testnum]);
 | |
|             /* counter is reset on every update */
 | |
|             EVP_EncryptUpdate(ctx, buf, &outl, buf, lengths[testnum]);
 | |
|         }
 | |
|     }
 | |
|     if (decrypt)
 | |
|         EVP_DecryptFinal_ex(ctx, buf, &outl);
 | |
|     else
 | |
|         EVP_EncryptFinal_ex(ctx, buf, &outl);
 | |
|     return count;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * To make AEAD benchmarking more relevant perform TLS-like operations,
 | |
|  * 13-byte AAD followed by payload. But don't use TLS-formatted AAD, as
 | |
|  * payload length is not actually limited by 16KB...
 | |
|  */
 | |
| static int EVP_Update_loop_aead(void *args)
 | |
| {
 | |
|     loopargs_t *tempargs = *(loopargs_t **) args;
 | |
|     unsigned char *buf = tempargs->buf;
 | |
|     EVP_CIPHER_CTX *ctx = tempargs->ctx;
 | |
|     int outl, count;
 | |
|     unsigned char aad[13] = { 0xcc };
 | |
|     unsigned char faketag[16] = { 0xcc };
 | |
| #ifndef SIGALRM
 | |
|     int nb_iter = save_count * 4 * lengths[0] / lengths[testnum];
 | |
| #endif
 | |
|     if (decrypt) {
 | |
|         for (count = 0; COND(nb_iter); count++) {
 | |
|             EVP_DecryptInit_ex(ctx, NULL, NULL, NULL, iv);
 | |
|             EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG,
 | |
|                                 sizeof(faketag), faketag);
 | |
|             EVP_DecryptUpdate(ctx, NULL, &outl, aad, sizeof(aad));
 | |
|             EVP_DecryptUpdate(ctx, buf, &outl, buf, lengths[testnum]);
 | |
|             EVP_DecryptFinal_ex(ctx, buf + outl, &outl);
 | |
|         }
 | |
|     } else {
 | |
|         for (count = 0; COND(nb_iter); count++) {
 | |
|             EVP_EncryptInit_ex(ctx, NULL, NULL, NULL, iv);
 | |
|             EVP_EncryptUpdate(ctx, NULL, &outl, aad, sizeof(aad));
 | |
|             EVP_EncryptUpdate(ctx, buf, &outl, buf, lengths[testnum]);
 | |
|             EVP_EncryptFinal_ex(ctx, buf + outl, &outl);
 | |
|         }
 | |
|     }
 | |
|     return count;
 | |
| }
 | |
| 
 | |
| static const EVP_MD *evp_md = NULL;
 | |
| static int EVP_Digest_loop(void *args)
 | |
| {
 | |
|     loopargs_t *tempargs = *(loopargs_t **) args;
 | |
|     unsigned char *buf = tempargs->buf;
 | |
|     unsigned char md[EVP_MAX_MD_SIZE];
 | |
|     int count;
 | |
| #ifndef SIGALRM
 | |
|     int nb_iter = save_count * 4 * lengths[0] / lengths[testnum];
 | |
| #endif
 | |
| 
 | |
|     for (count = 0; COND(nb_iter); count++) {
 | |
|         if (!EVP_Digest(buf, lengths[testnum], md, NULL, evp_md, NULL))
 | |
|             return -1;
 | |
|     }
 | |
|     return count;
 | |
| }
 | |
| 
 | |
| #ifndef OPENSSL_NO_RSA
 | |
| static long rsa_c[RSA_NUM][2];  /* # RSA iteration test */
 | |
| 
 | |
| static int RSA_sign_loop(void *args)
 | |
| {
 | |
|     loopargs_t *tempargs = *(loopargs_t **) args;
 | |
|     unsigned char *buf = tempargs->buf;
 | |
|     unsigned char *buf2 = tempargs->buf2;
 | |
|     unsigned int *rsa_num = &tempargs->siglen;
 | |
|     RSA **rsa_key = tempargs->rsa_key;
 | |
|     int ret, count;
 | |
|     for (count = 0; COND(rsa_c[testnum][0]); count++) {
 | |
|         ret = RSA_sign(NID_md5_sha1, buf, 36, buf2, rsa_num, rsa_key[testnum]);
 | |
|         if (ret == 0) {
 | |
|             BIO_printf(bio_err, "RSA sign failure\n");
 | |
|             ERR_print_errors(bio_err);
 | |
|             count = -1;
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     return count;
 | |
| }
 | |
| 
 | |
| static int RSA_verify_loop(void *args)
 | |
| {
 | |
|     loopargs_t *tempargs = *(loopargs_t **) args;
 | |
|     unsigned char *buf = tempargs->buf;
 | |
|     unsigned char *buf2 = tempargs->buf2;
 | |
|     unsigned int rsa_num = tempargs->siglen;
 | |
|     RSA **rsa_key = tempargs->rsa_key;
 | |
|     int ret, count;
 | |
|     for (count = 0; COND(rsa_c[testnum][1]); count++) {
 | |
|         ret =
 | |
|             RSA_verify(NID_md5_sha1, buf, 36, buf2, rsa_num, rsa_key[testnum]);
 | |
|         if (ret <= 0) {
 | |
|             BIO_printf(bio_err, "RSA verify failure\n");
 | |
|             ERR_print_errors(bio_err);
 | |
|             count = -1;
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     return count;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifndef OPENSSL_NO_DSA
 | |
| static long dsa_c[DSA_NUM][2];
 | |
| static int DSA_sign_loop(void *args)
 | |
| {
 | |
|     loopargs_t *tempargs = *(loopargs_t **) args;
 | |
|     unsigned char *buf = tempargs->buf;
 | |
|     unsigned char *buf2 = tempargs->buf2;
 | |
|     DSA **dsa_key = tempargs->dsa_key;
 | |
|     unsigned int *siglen = &tempargs->siglen;
 | |
|     int ret, count;
 | |
|     for (count = 0; COND(dsa_c[testnum][0]); count++) {
 | |
|         ret = DSA_sign(0, buf, 20, buf2, siglen, dsa_key[testnum]);
 | |
|         if (ret == 0) {
 | |
|             BIO_printf(bio_err, "DSA sign failure\n");
 | |
|             ERR_print_errors(bio_err);
 | |
|             count = -1;
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     return count;
 | |
| }
 | |
| 
 | |
| static int DSA_verify_loop(void *args)
 | |
| {
 | |
|     loopargs_t *tempargs = *(loopargs_t **) args;
 | |
|     unsigned char *buf = tempargs->buf;
 | |
|     unsigned char *buf2 = tempargs->buf2;
 | |
|     DSA **dsa_key = tempargs->dsa_key;
 | |
|     unsigned int siglen = tempargs->siglen;
 | |
|     int ret, count;
 | |
|     for (count = 0; COND(dsa_c[testnum][1]); count++) {
 | |
|         ret = DSA_verify(0, buf, 20, buf2, siglen, dsa_key[testnum]);
 | |
|         if (ret <= 0) {
 | |
|             BIO_printf(bio_err, "DSA verify failure\n");
 | |
|             ERR_print_errors(bio_err);
 | |
|             count = -1;
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     return count;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifndef OPENSSL_NO_EC
 | |
| static long ecdsa_c[ECDSA_NUM][2];
 | |
| static int ECDSA_sign_loop(void *args)
 | |
| {
 | |
|     loopargs_t *tempargs = *(loopargs_t **) args;
 | |
|     unsigned char *buf = tempargs->buf;
 | |
|     EC_KEY **ecdsa = tempargs->ecdsa;
 | |
|     unsigned char *ecdsasig = tempargs->buf2;
 | |
|     unsigned int *ecdsasiglen = &tempargs->siglen;
 | |
|     int ret, count;
 | |
|     for (count = 0; COND(ecdsa_c[testnum][0]); count++) {
 | |
|         ret = ECDSA_sign(0, buf, 20, ecdsasig, ecdsasiglen, ecdsa[testnum]);
 | |
|         if (ret == 0) {
 | |
|             BIO_printf(bio_err, "ECDSA sign failure\n");
 | |
|             ERR_print_errors(bio_err);
 | |
|             count = -1;
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     return count;
 | |
| }
 | |
| 
 | |
| static int ECDSA_verify_loop(void *args)
 | |
| {
 | |
|     loopargs_t *tempargs = *(loopargs_t **) args;
 | |
|     unsigned char *buf = tempargs->buf;
 | |
|     EC_KEY **ecdsa = tempargs->ecdsa;
 | |
|     unsigned char *ecdsasig = tempargs->buf2;
 | |
|     unsigned int ecdsasiglen = tempargs->siglen;
 | |
|     int ret, count;
 | |
|     for (count = 0; COND(ecdsa_c[testnum][1]); count++) {
 | |
|         ret = ECDSA_verify(0, buf, 20, ecdsasig, ecdsasiglen, ecdsa[testnum]);
 | |
|         if (ret != 1) {
 | |
|             BIO_printf(bio_err, "ECDSA verify failure\n");
 | |
|             ERR_print_errors(bio_err);
 | |
|             count = -1;
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     return count;
 | |
| }
 | |
| 
 | |
| /* ******************************************************************** */
 | |
| static long ecdh_c[EC_NUM][1];
 | |
| 
 | |
| static int ECDH_EVP_derive_key_loop(void *args)
 | |
| {
 | |
|     loopargs_t *tempargs = *(loopargs_t **) args;
 | |
|     EVP_PKEY_CTX *ctx = tempargs->ecdh_ctx[testnum];
 | |
|     unsigned char *derived_secret = tempargs->secret_a;
 | |
|     int count;
 | |
|     size_t *outlen = &(tempargs->outlen[testnum]);
 | |
| 
 | |
|     for (count = 0; COND(ecdh_c[testnum][0]); count++)
 | |
|         EVP_PKEY_derive(ctx, derived_secret, outlen);
 | |
| 
 | |
|     return count;
 | |
| }
 | |
| 
 | |
| static long eddsa_c[EdDSA_NUM][2];
 | |
| static int EdDSA_sign_loop(void *args)
 | |
| {
 | |
|     loopargs_t *tempargs = *(loopargs_t **) args;
 | |
|     unsigned char *buf = tempargs->buf;
 | |
|     EVP_MD_CTX **edctx = tempargs->eddsa_ctx;
 | |
|     unsigned char *eddsasig = tempargs->buf2;
 | |
|     size_t *eddsasigsize = &tempargs->sigsize;
 | |
|     int ret, count;
 | |
| 
 | |
|     for (count = 0; COND(eddsa_c[testnum][0]); count++) {
 | |
|         ret = EVP_DigestSign(edctx[testnum], eddsasig, eddsasigsize, buf, 20);
 | |
|         if (ret == 0) {
 | |
|             BIO_printf(bio_err, "EdDSA sign failure\n");
 | |
|             ERR_print_errors(bio_err);
 | |
|             count = -1;
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     return count;
 | |
| }
 | |
| 
 | |
| static int EdDSA_verify_loop(void *args)
 | |
| {
 | |
|     loopargs_t *tempargs = *(loopargs_t **) args;
 | |
|     unsigned char *buf = tempargs->buf;
 | |
|     EVP_MD_CTX **edctx = tempargs->eddsa_ctx;
 | |
|     unsigned char *eddsasig = tempargs->buf2;
 | |
|     size_t eddsasigsize = tempargs->sigsize;
 | |
|     int ret, count;
 | |
| 
 | |
|     for (count = 0; COND(eddsa_c[testnum][1]); count++) {
 | |
|         ret = EVP_DigestVerify(edctx[testnum], eddsasig, eddsasigsize, buf, 20);
 | |
|         if (ret != 1) {
 | |
|             BIO_printf(bio_err, "EdDSA verify failure\n");
 | |
|             ERR_print_errors(bio_err);
 | |
|             count = -1;
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     return count;
 | |
| }
 | |
| #endif                          /* OPENSSL_NO_EC */
 | |
| 
 | |
| static int run_benchmark(int async_jobs,
 | |
|                          int (*loop_function) (void *), loopargs_t * loopargs)
 | |
| {
 | |
|     int job_op_count = 0;
 | |
|     int total_op_count = 0;
 | |
|     int num_inprogress = 0;
 | |
|     int error = 0, i = 0, ret = 0;
 | |
|     OSSL_ASYNC_FD job_fd = 0;
 | |
|     size_t num_job_fds = 0;
 | |
| 
 | |
|     run = 1;
 | |
| 
 | |
|     if (async_jobs == 0) {
 | |
|         return loop_function((void *)&loopargs);
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < async_jobs && !error; i++) {
 | |
|         loopargs_t *looparg_item = loopargs + i;
 | |
| 
 | |
|         /* Copy pointer content (looparg_t item address) into async context */
 | |
|         ret = ASYNC_start_job(&loopargs[i].inprogress_job, loopargs[i].wait_ctx,
 | |
|                               &job_op_count, loop_function,
 | |
|                               (void *)&looparg_item, sizeof(looparg_item));
 | |
|         switch (ret) {
 | |
|         case ASYNC_PAUSE:
 | |
|             ++num_inprogress;
 | |
|             break;
 | |
|         case ASYNC_FINISH:
 | |
|             if (job_op_count == -1) {
 | |
|                 error = 1;
 | |
|             } else {
 | |
|                 total_op_count += job_op_count;
 | |
|             }
 | |
|             break;
 | |
|         case ASYNC_NO_JOBS:
 | |
|         case ASYNC_ERR:
 | |
|             BIO_printf(bio_err, "Failure in the job\n");
 | |
|             ERR_print_errors(bio_err);
 | |
|             error = 1;
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     while (num_inprogress > 0) {
 | |
| #if defined(OPENSSL_SYS_WINDOWS)
 | |
|         DWORD avail = 0;
 | |
| #elif defined(OPENSSL_SYS_UNIX)
 | |
|         int select_result = 0;
 | |
|         OSSL_ASYNC_FD max_fd = 0;
 | |
|         fd_set waitfdset;
 | |
| 
 | |
|         FD_ZERO(&waitfdset);
 | |
| 
 | |
|         for (i = 0; i < async_jobs && num_inprogress > 0; i++) {
 | |
|             if (loopargs[i].inprogress_job == NULL)
 | |
|                 continue;
 | |
| 
 | |
|             if (!ASYNC_WAIT_CTX_get_all_fds
 | |
|                 (loopargs[i].wait_ctx, NULL, &num_job_fds)
 | |
|                 || num_job_fds > 1) {
 | |
|                 BIO_printf(bio_err, "Too many fds in ASYNC_WAIT_CTX\n");
 | |
|                 ERR_print_errors(bio_err);
 | |
|                 error = 1;
 | |
|                 break;
 | |
|             }
 | |
|             ASYNC_WAIT_CTX_get_all_fds(loopargs[i].wait_ctx, &job_fd,
 | |
|                                        &num_job_fds);
 | |
|             FD_SET(job_fd, &waitfdset);
 | |
|             if (job_fd > max_fd)
 | |
|                 max_fd = job_fd;
 | |
|         }
 | |
| 
 | |
|         if (max_fd >= (OSSL_ASYNC_FD)FD_SETSIZE) {
 | |
|             BIO_printf(bio_err,
 | |
|                        "Error: max_fd (%d) must be smaller than FD_SETSIZE (%d). "
 | |
|                        "Decrease the value of async_jobs\n",
 | |
|                        max_fd, FD_SETSIZE);
 | |
|             ERR_print_errors(bio_err);
 | |
|             error = 1;
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         select_result = select(max_fd + 1, &waitfdset, NULL, NULL, NULL);
 | |
|         if (select_result == -1 && errno == EINTR)
 | |
|             continue;
 | |
| 
 | |
|         if (select_result == -1) {
 | |
|             BIO_printf(bio_err, "Failure in the select\n");
 | |
|             ERR_print_errors(bio_err);
 | |
|             error = 1;
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         if (select_result == 0)
 | |
|             continue;
 | |
| #endif
 | |
| 
 | |
|         for (i = 0; i < async_jobs; i++) {
 | |
|             if (loopargs[i].inprogress_job == NULL)
 | |
|                 continue;
 | |
| 
 | |
|             if (!ASYNC_WAIT_CTX_get_all_fds
 | |
|                 (loopargs[i].wait_ctx, NULL, &num_job_fds)
 | |
|                 || num_job_fds > 1) {
 | |
|                 BIO_printf(bio_err, "Too many fds in ASYNC_WAIT_CTX\n");
 | |
|                 ERR_print_errors(bio_err);
 | |
|                 error = 1;
 | |
|                 break;
 | |
|             }
 | |
|             ASYNC_WAIT_CTX_get_all_fds(loopargs[i].wait_ctx, &job_fd,
 | |
|                                        &num_job_fds);
 | |
| 
 | |
| #if defined(OPENSSL_SYS_UNIX)
 | |
|             if (num_job_fds == 1 && !FD_ISSET(job_fd, &waitfdset))
 | |
|                 continue;
 | |
| #elif defined(OPENSSL_SYS_WINDOWS)
 | |
|             if (num_job_fds == 1
 | |
|                 && !PeekNamedPipe(job_fd, NULL, 0, NULL, &avail, NULL)
 | |
|                 && avail > 0)
 | |
|                 continue;
 | |
| #endif
 | |
| 
 | |
|             ret = ASYNC_start_job(&loopargs[i].inprogress_job,
 | |
|                                   loopargs[i].wait_ctx, &job_op_count,
 | |
|                                   loop_function, (void *)(loopargs + i),
 | |
|                                   sizeof(loopargs_t));
 | |
|             switch (ret) {
 | |
|             case ASYNC_PAUSE:
 | |
|                 break;
 | |
|             case ASYNC_FINISH:
 | |
|                 if (job_op_count == -1) {
 | |
|                     error = 1;
 | |
|                 } else {
 | |
|                     total_op_count += job_op_count;
 | |
|                 }
 | |
|                 --num_inprogress;
 | |
|                 loopargs[i].inprogress_job = NULL;
 | |
|                 break;
 | |
|             case ASYNC_NO_JOBS:
 | |
|             case ASYNC_ERR:
 | |
|                 --num_inprogress;
 | |
|                 loopargs[i].inprogress_job = NULL;
 | |
|                 BIO_printf(bio_err, "Failure in the job\n");
 | |
|                 ERR_print_errors(bio_err);
 | |
|                 error = 1;
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return error ? -1 : total_op_count;
 | |
| }
 | |
| 
 | |
| int speed_main(int argc, char **argv)
 | |
| {
 | |
|     ENGINE *e = NULL;
 | |
|     loopargs_t *loopargs = NULL;
 | |
|     const char *prog;
 | |
|     const char *engine_id = NULL;
 | |
|     const EVP_CIPHER *evp_cipher = NULL;
 | |
|     double d = 0.0;
 | |
|     OPTION_CHOICE o;
 | |
|     int async_init = 0, multiblock = 0, pr_header = 0;
 | |
|     int doit[ALGOR_NUM] = { 0 };
 | |
|     int ret = 1, misalign = 0, lengths_single = 0, aead = 0;
 | |
|     long count = 0;
 | |
|     unsigned int size_num = OSSL_NELEM(lengths_list);
 | |
|     unsigned int i, k, loop, loopargs_len = 0, async_jobs = 0;
 | |
|     int keylen;
 | |
|     int buflen;
 | |
| #ifndef NO_FORK
 | |
|     int multi = 0;
 | |
| #endif
 | |
| #if !defined(OPENSSL_NO_RSA) || !defined(OPENSSL_NO_DSA) \
 | |
|     || !defined(OPENSSL_NO_EC)
 | |
|     long rsa_count = 1;
 | |
| #endif
 | |
|     openssl_speed_sec_t seconds = { SECONDS, RSA_SECONDS, DSA_SECONDS,
 | |
|                                     ECDSA_SECONDS, ECDH_SECONDS,
 | |
|                                     EdDSA_SECONDS };
 | |
| 
 | |
|     /* What follows are the buffers and key material. */
 | |
| #ifndef OPENSSL_NO_RC5
 | |
|     RC5_32_KEY rc5_ks;
 | |
| #endif
 | |
| #ifndef OPENSSL_NO_RC2
 | |
|     RC2_KEY rc2_ks;
 | |
| #endif
 | |
| #ifndef OPENSSL_NO_IDEA
 | |
|     IDEA_KEY_SCHEDULE idea_ks;
 | |
| #endif
 | |
| #ifndef OPENSSL_NO_SEED
 | |
|     SEED_KEY_SCHEDULE seed_ks;
 | |
| #endif
 | |
| #ifndef OPENSSL_NO_BF
 | |
|     BF_KEY bf_ks;
 | |
| #endif
 | |
| #ifndef OPENSSL_NO_CAST
 | |
|     CAST_KEY cast_ks;
 | |
| #endif
 | |
|     static const unsigned char key16[16] = {
 | |
|         0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0,
 | |
|         0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12
 | |
|     };
 | |
|     static const unsigned char key24[24] = {
 | |
|         0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0,
 | |
|         0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12,
 | |
|         0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34
 | |
|     };
 | |
|     static const unsigned char key32[32] = {
 | |
|         0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0,
 | |
|         0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12,
 | |
|         0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34,
 | |
|         0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34, 0x56
 | |
|     };
 | |
| #ifndef OPENSSL_NO_CAMELLIA
 | |
|     static const unsigned char ckey24[24] = {
 | |
|         0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0,
 | |
|         0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12,
 | |
|         0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34
 | |
|     };
 | |
|     static const unsigned char ckey32[32] = {
 | |
|         0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0,
 | |
|         0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12,
 | |
|         0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34,
 | |
|         0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34, 0x56
 | |
|     };
 | |
|     CAMELLIA_KEY camellia_ks1, camellia_ks2, camellia_ks3;
 | |
| #endif
 | |
| #ifndef OPENSSL_NO_DES
 | |
|     static DES_cblock key = {
 | |
|         0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0
 | |
|     };
 | |
|     static DES_cblock key2 = {
 | |
|         0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12
 | |
|     };
 | |
|     static DES_cblock key3 = {
 | |
|         0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34
 | |
|     };
 | |
| #endif
 | |
| #ifndef OPENSSL_NO_RSA
 | |
|     static const unsigned int rsa_bits[RSA_NUM] = {
 | |
|         512, 1024, 2048, 3072, 4096, 7680, 15360
 | |
|     };
 | |
|     static const unsigned char *rsa_data[RSA_NUM] = {
 | |
|         test512, test1024, test2048, test3072, test4096, test7680, test15360
 | |
|     };
 | |
|     static const int rsa_data_length[RSA_NUM] = {
 | |
|         sizeof(test512), sizeof(test1024),
 | |
|         sizeof(test2048), sizeof(test3072),
 | |
|         sizeof(test4096), sizeof(test7680),
 | |
|         sizeof(test15360)
 | |
|     };
 | |
|     int rsa_doit[RSA_NUM] = { 0 };
 | |
|     int primes = RSA_DEFAULT_PRIME_NUM;
 | |
| #endif
 | |
| #ifndef OPENSSL_NO_DSA
 | |
|     static const unsigned int dsa_bits[DSA_NUM] = { 512, 1024, 2048 };
 | |
|     int dsa_doit[DSA_NUM] = { 0 };
 | |
| #endif
 | |
| #ifndef OPENSSL_NO_EC
 | |
|     /*
 | |
|      * We only test over the following curves as they are representative, To
 | |
|      * add tests over more curves, simply add the curve NID and curve name to
 | |
|      * the following arrays and increase the |ecdh_choices| list accordingly.
 | |
|      */
 | |
|     static const struct {
 | |
|         const char *name;
 | |
|         unsigned int nid;
 | |
|         unsigned int bits;
 | |
|     } test_curves[] = {
 | |
|         /* Prime Curves */
 | |
|         {"secp160r1", NID_secp160r1, 160},
 | |
|         {"nistp192", NID_X9_62_prime192v1, 192},
 | |
|         {"nistp224", NID_secp224r1, 224},
 | |
|         {"nistp256", NID_X9_62_prime256v1, 256},
 | |
|         {"nistp384", NID_secp384r1, 384},
 | |
|         {"nistp521", NID_secp521r1, 521},
 | |
|         /* Binary Curves */
 | |
|         {"nistk163", NID_sect163k1, 163},
 | |
|         {"nistk233", NID_sect233k1, 233},
 | |
|         {"nistk283", NID_sect283k1, 283},
 | |
|         {"nistk409", NID_sect409k1, 409},
 | |
|         {"nistk571", NID_sect571k1, 571},
 | |
|         {"nistb163", NID_sect163r2, 163},
 | |
|         {"nistb233", NID_sect233r1, 233},
 | |
|         {"nistb283", NID_sect283r1, 283},
 | |
|         {"nistb409", NID_sect409r1, 409},
 | |
|         {"nistb571", NID_sect571r1, 571},
 | |
|         {"brainpoolP256r1", NID_brainpoolP256r1, 256},
 | |
|         {"brainpoolP256t1", NID_brainpoolP256t1, 256},
 | |
|         {"brainpoolP384r1", NID_brainpoolP384r1, 384},
 | |
|         {"brainpoolP384t1", NID_brainpoolP384t1, 384},
 | |
|         {"brainpoolP512r1", NID_brainpoolP512r1, 512},
 | |
|         {"brainpoolP512t1", NID_brainpoolP512t1, 512},
 | |
|         /* Other and ECDH only ones */
 | |
|         {"X25519", NID_X25519, 253},
 | |
|         {"X448", NID_X448, 448}
 | |
|     };
 | |
|     static const struct {
 | |
|         const char *name;
 | |
|         unsigned int nid;
 | |
|         unsigned int bits;
 | |
|         size_t sigsize;
 | |
|     } test_ed_curves[] = {
 | |
|         /* EdDSA */
 | |
|         {"Ed25519", NID_ED25519, 253, 64},
 | |
|         {"Ed448", NID_ED448, 456, 114}
 | |
|     };
 | |
|     int ecdsa_doit[ECDSA_NUM] = { 0 };
 | |
|     int ecdh_doit[EC_NUM] = { 0 };
 | |
|     int eddsa_doit[EdDSA_NUM] = { 0 };
 | |
|     OPENSSL_assert(OSSL_NELEM(test_curves) >= EC_NUM);
 | |
|     OPENSSL_assert(OSSL_NELEM(test_ed_curves) >= EdDSA_NUM);
 | |
| #endif                          /* ndef OPENSSL_NO_EC */
 | |
| 
 | |
|     prog = opt_init(argc, argv, speed_options);
 | |
|     while ((o = opt_next()) != OPT_EOF) {
 | |
|         switch (o) {
 | |
|         case OPT_EOF:
 | |
|         case OPT_ERR:
 | |
|  opterr:
 | |
|             BIO_printf(bio_err, "%s: Use -help for summary.\n", prog);
 | |
|             goto end;
 | |
|         case OPT_HELP:
 | |
|             opt_help(speed_options);
 | |
|             ret = 0;
 | |
|             goto end;
 | |
|         case OPT_ELAPSED:
 | |
|             usertime = 0;
 | |
|             break;
 | |
|         case OPT_EVP:
 | |
|             evp_md = NULL;
 | |
|             evp_cipher = EVP_get_cipherbyname(opt_arg());
 | |
|             if (evp_cipher == NULL)
 | |
|                 evp_md = EVP_get_digestbyname(opt_arg());
 | |
|             if (evp_cipher == NULL && evp_md == NULL) {
 | |
|                 BIO_printf(bio_err,
 | |
|                            "%s: %s is an unknown cipher or digest\n",
 | |
|                            prog, opt_arg());
 | |
|                 goto end;
 | |
|             }
 | |
|             doit[D_EVP] = 1;
 | |
|             break;
 | |
|         case OPT_DECRYPT:
 | |
|             decrypt = 1;
 | |
|             break;
 | |
|         case OPT_ENGINE:
 | |
|             /*
 | |
|              * In a forked execution, an engine might need to be
 | |
|              * initialised by each child process, not by the parent.
 | |
|              * So store the name here and run setup_engine() later on.
 | |
|              */
 | |
|             engine_id = opt_arg();
 | |
|             break;
 | |
|         case OPT_MULTI:
 | |
| #ifndef NO_FORK
 | |
|             multi = atoi(opt_arg());
 | |
| #endif
 | |
|             break;
 | |
|         case OPT_ASYNCJOBS:
 | |
| #ifndef OPENSSL_NO_ASYNC
 | |
|             async_jobs = atoi(opt_arg());
 | |
|             if (!ASYNC_is_capable()) {
 | |
|                 BIO_printf(bio_err,
 | |
|                            "%s: async_jobs specified but async not supported\n",
 | |
|                            prog);
 | |
|                 goto opterr;
 | |
|             }
 | |
|             if (async_jobs > 99999) {
 | |
|                 BIO_printf(bio_err, "%s: too many async_jobs\n", prog);
 | |
|                 goto opterr;
 | |
|             }
 | |
| #endif
 | |
|             break;
 | |
|         case OPT_MISALIGN:
 | |
|             if (!opt_int(opt_arg(), &misalign))
 | |
|                 goto end;
 | |
|             if (misalign > MISALIGN) {
 | |
|                 BIO_printf(bio_err,
 | |
|                            "%s: Maximum offset is %d\n", prog, MISALIGN);
 | |
|                 goto opterr;
 | |
|             }
 | |
|             break;
 | |
|         case OPT_MR:
 | |
|             mr = 1;
 | |
|             break;
 | |
|         case OPT_MB:
 | |
|             multiblock = 1;
 | |
| #ifdef OPENSSL_NO_MULTIBLOCK
 | |
|             BIO_printf(bio_err,
 | |
|                        "%s: -mb specified but multi-block support is disabled\n",
 | |
|                        prog);
 | |
|             goto end;
 | |
| #endif
 | |
|             break;
 | |
|         case OPT_R_CASES:
 | |
|             if (!opt_rand(o))
 | |
|                 goto end;
 | |
|             break;
 | |
|         case OPT_PRIMES:
 | |
|             if (!opt_int(opt_arg(), &primes))
 | |
|                 goto end;
 | |
|             break;
 | |
|         case OPT_SECONDS:
 | |
|             seconds.sym = seconds.rsa = seconds.dsa = seconds.ecdsa
 | |
|                         = seconds.ecdh = seconds.eddsa = atoi(opt_arg());
 | |
|             break;
 | |
|         case OPT_BYTES:
 | |
|             lengths_single = atoi(opt_arg());
 | |
|             lengths = &lengths_single;
 | |
|             size_num = 1;
 | |
|             break;
 | |
|         case OPT_AEAD:
 | |
|             aead = 1;
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     argc = opt_num_rest();
 | |
|     argv = opt_rest();
 | |
| 
 | |
|     /* Remaining arguments are algorithms. */
 | |
|     for (; *argv; argv++) {
 | |
|         if (found(*argv, doit_choices, &i)) {
 | |
|             doit[i] = 1;
 | |
|             continue;
 | |
|         }
 | |
| #ifndef OPENSSL_NO_DES
 | |
|         if (strcmp(*argv, "des") == 0) {
 | |
|             doit[D_CBC_DES] = doit[D_EDE3_DES] = 1;
 | |
|             continue;
 | |
|         }
 | |
| #endif
 | |
|         if (strcmp(*argv, "sha") == 0) {
 | |
|             doit[D_SHA1] = doit[D_SHA256] = doit[D_SHA512] = 1;
 | |
|             continue;
 | |
|         }
 | |
| #ifndef OPENSSL_NO_RSA
 | |
|         if (strcmp(*argv, "openssl") == 0)
 | |
|             continue;
 | |
|         if (strcmp(*argv, "rsa") == 0) {
 | |
|             for (loop = 0; loop < OSSL_NELEM(rsa_doit); loop++)
 | |
|                 rsa_doit[loop] = 1;
 | |
|             continue;
 | |
|         }
 | |
|         if (found(*argv, rsa_choices, &i)) {
 | |
|             rsa_doit[i] = 1;
 | |
|             continue;
 | |
|         }
 | |
| #endif
 | |
| #ifndef OPENSSL_NO_DSA
 | |
|         if (strcmp(*argv, "dsa") == 0) {
 | |
|             dsa_doit[R_DSA_512] = dsa_doit[R_DSA_1024] =
 | |
|                 dsa_doit[R_DSA_2048] = 1;
 | |
|             continue;
 | |
|         }
 | |
|         if (found(*argv, dsa_choices, &i)) {
 | |
|             dsa_doit[i] = 2;
 | |
|             continue;
 | |
|         }
 | |
| #endif
 | |
|         if (strcmp(*argv, "aes") == 0) {
 | |
|             doit[D_CBC_128_AES] = doit[D_CBC_192_AES] = doit[D_CBC_256_AES] = 1;
 | |
|             continue;
 | |
|         }
 | |
| #ifndef OPENSSL_NO_CAMELLIA
 | |
|         if (strcmp(*argv, "camellia") == 0) {
 | |
|             doit[D_CBC_128_CML] = doit[D_CBC_192_CML] = doit[D_CBC_256_CML] = 1;
 | |
|             continue;
 | |
|         }
 | |
| #endif
 | |
| #ifndef OPENSSL_NO_EC
 | |
|         if (strcmp(*argv, "ecdsa") == 0) {
 | |
|             for (loop = 0; loop < OSSL_NELEM(ecdsa_doit); loop++)
 | |
|                 ecdsa_doit[loop] = 1;
 | |
|             continue;
 | |
|         }
 | |
|         if (found(*argv, ecdsa_choices, &i)) {
 | |
|             ecdsa_doit[i] = 2;
 | |
|             continue;
 | |
|         }
 | |
|         if (strcmp(*argv, "ecdh") == 0) {
 | |
|             for (loop = 0; loop < OSSL_NELEM(ecdh_doit); loop++)
 | |
|                 ecdh_doit[loop] = 1;
 | |
|             continue;
 | |
|         }
 | |
|         if (found(*argv, ecdh_choices, &i)) {
 | |
|             ecdh_doit[i] = 2;
 | |
|             continue;
 | |
|         }
 | |
|         if (strcmp(*argv, "eddsa") == 0) {
 | |
|             for (loop = 0; loop < OSSL_NELEM(eddsa_doit); loop++)
 | |
|                 eddsa_doit[loop] = 1;
 | |
|             continue;
 | |
|         }
 | |
|         if (found(*argv, eddsa_choices, &i)) {
 | |
|             eddsa_doit[i] = 2;
 | |
|             continue;
 | |
|         }
 | |
| #endif
 | |
|         BIO_printf(bio_err, "%s: Unknown algorithm %s\n", prog, *argv);
 | |
|         goto end;
 | |
|     }
 | |
| 
 | |
|     /* Sanity checks */
 | |
|     if (aead) {
 | |
|         if (evp_cipher == NULL) {
 | |
|             BIO_printf(bio_err, "-aead can be used only with an AEAD cipher\n");
 | |
|             goto end;
 | |
|         } else if (!(EVP_CIPHER_flags(evp_cipher) &
 | |
|                      EVP_CIPH_FLAG_AEAD_CIPHER)) {
 | |
|             BIO_printf(bio_err, "%s is not an AEAD cipher\n",
 | |
|                        OBJ_nid2ln(EVP_CIPHER_nid(evp_cipher)));
 | |
|             goto end;
 | |
|         }
 | |
|     }
 | |
|     if (multiblock) {
 | |
|         if (evp_cipher == NULL) {
 | |
|             BIO_printf(bio_err,"-mb can be used only with a multi-block"
 | |
|                                " capable cipher\n");
 | |
|             goto end;
 | |
|         } else if (!(EVP_CIPHER_flags(evp_cipher) &
 | |
|                      EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK)) {
 | |
|             BIO_printf(bio_err, "%s is not a multi-block capable\n",
 | |
|                        OBJ_nid2ln(EVP_CIPHER_nid(evp_cipher)));
 | |
|             goto end;
 | |
|         } else if (async_jobs > 0) {
 | |
|             BIO_printf(bio_err, "Async mode is not supported with -mb");
 | |
|             goto end;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Initialize the job pool if async mode is enabled */
 | |
|     if (async_jobs > 0) {
 | |
|         async_init = ASYNC_init_thread(async_jobs, async_jobs);
 | |
|         if (!async_init) {
 | |
|             BIO_printf(bio_err, "Error creating the ASYNC job pool\n");
 | |
|             goto end;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     loopargs_len = (async_jobs == 0 ? 1 : async_jobs);
 | |
|     loopargs =
 | |
|         app_malloc(loopargs_len * sizeof(loopargs_t), "array of loopargs");
 | |
|     memset(loopargs, 0, loopargs_len * sizeof(loopargs_t));
 | |
| 
 | |
|     for (i = 0; i < loopargs_len; i++) {
 | |
|         if (async_jobs > 0) {
 | |
|             loopargs[i].wait_ctx = ASYNC_WAIT_CTX_new();
 | |
|             if (loopargs[i].wait_ctx == NULL) {
 | |
|                 BIO_printf(bio_err, "Error creating the ASYNC_WAIT_CTX\n");
 | |
|                 goto end;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         buflen = lengths[size_num - 1];
 | |
|         if (buflen < 36)    /* size of random vector in RSA bencmark */
 | |
|             buflen = 36;
 | |
|         buflen += MAX_MISALIGNMENT + 1;
 | |
|         loopargs[i].buf_malloc = app_malloc(buflen, "input buffer");
 | |
|         loopargs[i].buf2_malloc = app_malloc(buflen, "input buffer");
 | |
|         memset(loopargs[i].buf_malloc, 0, buflen);
 | |
|         memset(loopargs[i].buf2_malloc, 0, buflen);
 | |
| 
 | |
|         /* Align the start of buffers on a 64 byte boundary */
 | |
|         loopargs[i].buf = loopargs[i].buf_malloc + misalign;
 | |
|         loopargs[i].buf2 = loopargs[i].buf2_malloc + misalign;
 | |
| #ifndef OPENSSL_NO_EC
 | |
|         loopargs[i].secret_a = app_malloc(MAX_ECDH_SIZE, "ECDH secret a");
 | |
|         loopargs[i].secret_b = app_malloc(MAX_ECDH_SIZE, "ECDH secret b");
 | |
| #endif
 | |
|     }
 | |
| 
 | |
| #ifndef NO_FORK
 | |
|     if (multi && do_multi(multi, size_num))
 | |
|         goto show_res;
 | |
| #endif
 | |
| 
 | |
|     /* Initialize the engine after the fork */
 | |
|     e = setup_engine(engine_id, 0);
 | |
| 
 | |
|     /* No parameters; turn on everything. */
 | |
|     if ((argc == 0) && !doit[D_EVP]) {
 | |
|         for (i = 0; i < ALGOR_NUM; i++)
 | |
|             if (i != D_EVP)
 | |
|                 doit[i] = 1;
 | |
| #ifndef OPENSSL_NO_RSA
 | |
|         for (i = 0; i < RSA_NUM; i++)
 | |
|             rsa_doit[i] = 1;
 | |
| #endif
 | |
| #ifndef OPENSSL_NO_DSA
 | |
|         for (i = 0; i < DSA_NUM; i++)
 | |
|             dsa_doit[i] = 1;
 | |
| #endif
 | |
| #ifndef OPENSSL_NO_EC
 | |
|         for (loop = 0; loop < OSSL_NELEM(ecdsa_doit); loop++)
 | |
|             ecdsa_doit[loop] = 1;
 | |
|         for (loop = 0; loop < OSSL_NELEM(ecdh_doit); loop++)
 | |
|             ecdh_doit[loop] = 1;
 | |
|         for (loop = 0; loop < OSSL_NELEM(eddsa_doit); loop++)
 | |
|             eddsa_doit[loop] = 1;
 | |
| #endif
 | |
|     }
 | |
|     for (i = 0; i < ALGOR_NUM; i++)
 | |
|         if (doit[i])
 | |
|             pr_header++;
 | |
| 
 | |
|     if (usertime == 0 && !mr)
 | |
|         BIO_printf(bio_err,
 | |
|                    "You have chosen to measure elapsed time "
 | |
|                    "instead of user CPU time.\n");
 | |
| 
 | |
| #ifndef OPENSSL_NO_RSA
 | |
|     for (i = 0; i < loopargs_len; i++) {
 | |
|         if (primes > RSA_DEFAULT_PRIME_NUM) {
 | |
|             /* for multi-prime RSA, skip this */
 | |
|             break;
 | |
|         }
 | |
|         for (k = 0; k < RSA_NUM; k++) {
 | |
|             const unsigned char *p;
 | |
| 
 | |
|             p = rsa_data[k];
 | |
|             loopargs[i].rsa_key[k] =
 | |
|                 d2i_RSAPrivateKey(NULL, &p, rsa_data_length[k]);
 | |
|             if (loopargs[i].rsa_key[k] == NULL) {
 | |
|                 BIO_printf(bio_err,
 | |
|                            "internal error loading RSA key number %d\n", k);
 | |
|                 goto end;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| #endif
 | |
| #ifndef OPENSSL_NO_DSA
 | |
|     for (i = 0; i < loopargs_len; i++) {
 | |
|         loopargs[i].dsa_key[0] = get_dsa(512);
 | |
|         loopargs[i].dsa_key[1] = get_dsa(1024);
 | |
|         loopargs[i].dsa_key[2] = get_dsa(2048);
 | |
|     }
 | |
| #endif
 | |
| #ifndef OPENSSL_NO_DES
 | |
|     DES_set_key_unchecked(&key, &sch);
 | |
|     DES_set_key_unchecked(&key2, &sch2);
 | |
|     DES_set_key_unchecked(&key3, &sch3);
 | |
| #endif
 | |
|     AES_set_encrypt_key(key16, 128, &aes_ks1);
 | |
|     AES_set_encrypt_key(key24, 192, &aes_ks2);
 | |
|     AES_set_encrypt_key(key32, 256, &aes_ks3);
 | |
| #ifndef OPENSSL_NO_CAMELLIA
 | |
|     Camellia_set_key(key16, 128, &camellia_ks1);
 | |
|     Camellia_set_key(ckey24, 192, &camellia_ks2);
 | |
|     Camellia_set_key(ckey32, 256, &camellia_ks3);
 | |
| #endif
 | |
| #ifndef OPENSSL_NO_IDEA
 | |
|     IDEA_set_encrypt_key(key16, &idea_ks);
 | |
| #endif
 | |
| #ifndef OPENSSL_NO_SEED
 | |
|     SEED_set_key(key16, &seed_ks);
 | |
| #endif
 | |
| #ifndef OPENSSL_NO_RC4
 | |
|     RC4_set_key(&rc4_ks, 16, key16);
 | |
| #endif
 | |
| #ifndef OPENSSL_NO_RC2
 | |
|     RC2_set_key(&rc2_ks, 16, key16, 128);
 | |
| #endif
 | |
| #ifndef OPENSSL_NO_RC5
 | |
|     RC5_32_set_key(&rc5_ks, 16, key16, 12);
 | |
| #endif
 | |
| #ifndef OPENSSL_NO_BF
 | |
|     BF_set_key(&bf_ks, 16, key16);
 | |
| #endif
 | |
| #ifndef OPENSSL_NO_CAST
 | |
|     CAST_set_key(&cast_ks, 16, key16);
 | |
| #endif
 | |
| #ifndef SIGALRM
 | |
| # ifndef OPENSSL_NO_DES
 | |
|     BIO_printf(bio_err, "First we calculate the approximate speed ...\n");
 | |
|     count = 10;
 | |
|     do {
 | |
|         long it;
 | |
|         count *= 2;
 | |
|         Time_F(START);
 | |
|         for (it = count; it; it--)
 | |
|             DES_ecb_encrypt((DES_cblock *)loopargs[0].buf,
 | |
|                             (DES_cblock *)loopargs[0].buf, &sch, DES_ENCRYPT);
 | |
|         d = Time_F(STOP);
 | |
|     } while (d < 3);
 | |
|     save_count = count;
 | |
|     c[D_MD2][0] = count / 10;
 | |
|     c[D_MDC2][0] = count / 10;
 | |
|     c[D_MD4][0] = count;
 | |
|     c[D_MD5][0] = count;
 | |
|     c[D_HMAC][0] = count;
 | |
|     c[D_SHA1][0] = count;
 | |
|     c[D_RMD160][0] = count;
 | |
|     c[D_RC4][0] = count * 5;
 | |
|     c[D_CBC_DES][0] = count;
 | |
|     c[D_EDE3_DES][0] = count / 3;
 | |
|     c[D_CBC_IDEA][0] = count;
 | |
|     c[D_CBC_SEED][0] = count;
 | |
|     c[D_CBC_RC2][0] = count;
 | |
|     c[D_CBC_RC5][0] = count;
 | |
|     c[D_CBC_BF][0] = count;
 | |
|     c[D_CBC_CAST][0] = count;
 | |
|     c[D_CBC_128_AES][0] = count;
 | |
|     c[D_CBC_192_AES][0] = count;
 | |
|     c[D_CBC_256_AES][0] = count;
 | |
|     c[D_CBC_128_CML][0] = count;
 | |
|     c[D_CBC_192_CML][0] = count;
 | |
|     c[D_CBC_256_CML][0] = count;
 | |
|     c[D_SHA256][0] = count;
 | |
|     c[D_SHA512][0] = count;
 | |
|     c[D_WHIRLPOOL][0] = count;
 | |
|     c[D_IGE_128_AES][0] = count;
 | |
|     c[D_IGE_192_AES][0] = count;
 | |
|     c[D_IGE_256_AES][0] = count;
 | |
|     c[D_GHASH][0] = count;
 | |
|     c[D_RAND][0] = count;
 | |
| 
 | |
|     for (i = 1; i < size_num; i++) {
 | |
|         long l0, l1;
 | |
| 
 | |
|         l0 = (long)lengths[0];
 | |
|         l1 = (long)lengths[i];
 | |
| 
 | |
|         c[D_MD2][i] = c[D_MD2][0] * 4 * l0 / l1;
 | |
|         c[D_MDC2][i] = c[D_MDC2][0] * 4 * l0 / l1;
 | |
|         c[D_MD4][i] = c[D_MD4][0] * 4 * l0 / l1;
 | |
|         c[D_MD5][i] = c[D_MD5][0] * 4 * l0 / l1;
 | |
|         c[D_HMAC][i] = c[D_HMAC][0] * 4 * l0 / l1;
 | |
|         c[D_SHA1][i] = c[D_SHA1][0] * 4 * l0 / l1;
 | |
|         c[D_RMD160][i] = c[D_RMD160][0] * 4 * l0 / l1;
 | |
|         c[D_SHA256][i] = c[D_SHA256][0] * 4 * l0 / l1;
 | |
|         c[D_SHA512][i] = c[D_SHA512][0] * 4 * l0 / l1;
 | |
|         c[D_WHIRLPOOL][i] = c[D_WHIRLPOOL][0] * 4 * l0 / l1;
 | |
|         c[D_GHASH][i] = c[D_GHASH][0] * 4 * l0 / l1;
 | |
|         c[D_RAND][i] = c[D_RAND][0] * 4 * l0 / l1;
 | |
| 
 | |
|         l0 = (long)lengths[i - 1];
 | |
| 
 | |
|         c[D_RC4][i] = c[D_RC4][i - 1] * l0 / l1;
 | |
|         c[D_CBC_DES][i] = c[D_CBC_DES][i - 1] * l0 / l1;
 | |
|         c[D_EDE3_DES][i] = c[D_EDE3_DES][i - 1] * l0 / l1;
 | |
|         c[D_CBC_IDEA][i] = c[D_CBC_IDEA][i - 1] * l0 / l1;
 | |
|         c[D_CBC_SEED][i] = c[D_CBC_SEED][i - 1] * l0 / l1;
 | |
|         c[D_CBC_RC2][i] = c[D_CBC_RC2][i - 1] * l0 / l1;
 | |
|         c[D_CBC_RC5][i] = c[D_CBC_RC5][i - 1] * l0 / l1;
 | |
|         c[D_CBC_BF][i] = c[D_CBC_BF][i - 1] * l0 / l1;
 | |
|         c[D_CBC_CAST][i] = c[D_CBC_CAST][i - 1] * l0 / l1;
 | |
|         c[D_CBC_128_AES][i] = c[D_CBC_128_AES][i - 1] * l0 / l1;
 | |
|         c[D_CBC_192_AES][i] = c[D_CBC_192_AES][i - 1] * l0 / l1;
 | |
|         c[D_CBC_256_AES][i] = c[D_CBC_256_AES][i - 1] * l0 / l1;
 | |
|         c[D_CBC_128_CML][i] = c[D_CBC_128_CML][i - 1] * l0 / l1;
 | |
|         c[D_CBC_192_CML][i] = c[D_CBC_192_CML][i - 1] * l0 / l1;
 | |
|         c[D_CBC_256_CML][i] = c[D_CBC_256_CML][i - 1] * l0 / l1;
 | |
|         c[D_IGE_128_AES][i] = c[D_IGE_128_AES][i - 1] * l0 / l1;
 | |
|         c[D_IGE_192_AES][i] = c[D_IGE_192_AES][i - 1] * l0 / l1;
 | |
|         c[D_IGE_256_AES][i] = c[D_IGE_256_AES][i - 1] * l0 / l1;
 | |
|     }
 | |
| 
 | |
| #  ifndef OPENSSL_NO_RSA
 | |
|     rsa_c[R_RSA_512][0] = count / 2000;
 | |
|     rsa_c[R_RSA_512][1] = count / 400;
 | |
|     for (i = 1; i < RSA_NUM; i++) {
 | |
|         rsa_c[i][0] = rsa_c[i - 1][0] / 8;
 | |
|         rsa_c[i][1] = rsa_c[i - 1][1] / 4;
 | |
|         if (rsa_doit[i] <= 1 && rsa_c[i][0] == 0)
 | |
|             rsa_doit[i] = 0;
 | |
|         else {
 | |
|             if (rsa_c[i][0] == 0) {
 | |
|                 rsa_c[i][0] = 1; /* Set minimum iteration Nb to 1. */
 | |
|                 rsa_c[i][1] = 20;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| #  endif
 | |
| 
 | |
| #  ifndef OPENSSL_NO_DSA
 | |
|     dsa_c[R_DSA_512][0] = count / 1000;
 | |
|     dsa_c[R_DSA_512][1] = count / 1000 / 2;
 | |
|     for (i = 1; i < DSA_NUM; i++) {
 | |
|         dsa_c[i][0] = dsa_c[i - 1][0] / 4;
 | |
|         dsa_c[i][1] = dsa_c[i - 1][1] / 4;
 | |
|         if (dsa_doit[i] <= 1 && dsa_c[i][0] == 0)
 | |
|             dsa_doit[i] = 0;
 | |
|         else {
 | |
|             if (dsa_c[i][0] == 0) {
 | |
|                 dsa_c[i][0] = 1; /* Set minimum iteration Nb to 1. */
 | |
|                 dsa_c[i][1] = 1;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| #  endif
 | |
| 
 | |
| #  ifndef OPENSSL_NO_EC
 | |
|     ecdsa_c[R_EC_P160][0] = count / 1000;
 | |
|     ecdsa_c[R_EC_P160][1] = count / 1000 / 2;
 | |
|     for (i = R_EC_P192; i <= R_EC_P521; i++) {
 | |
|         ecdsa_c[i][0] = ecdsa_c[i - 1][0] / 2;
 | |
|         ecdsa_c[i][1] = ecdsa_c[i - 1][1] / 2;
 | |
|         if (ecdsa_doit[i] <= 1 && ecdsa_c[i][0] == 0)
 | |
|             ecdsa_doit[i] = 0;
 | |
|         else {
 | |
|             if (ecdsa_c[i][0] == 0) {
 | |
|                 ecdsa_c[i][0] = 1;
 | |
|                 ecdsa_c[i][1] = 1;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     ecdsa_c[R_EC_K163][0] = count / 1000;
 | |
|     ecdsa_c[R_EC_K163][1] = count / 1000 / 2;
 | |
|     for (i = R_EC_K233; i <= R_EC_K571; i++) {
 | |
|         ecdsa_c[i][0] = ecdsa_c[i - 1][0] / 2;
 | |
|         ecdsa_c[i][1] = ecdsa_c[i - 1][1] / 2;
 | |
|         if (ecdsa_doit[i] <= 1 && ecdsa_c[i][0] == 0)
 | |
|             ecdsa_doit[i] = 0;
 | |
|         else {
 | |
|             if (ecdsa_c[i][0] == 0) {
 | |
|                 ecdsa_c[i][0] = 1;
 | |
|                 ecdsa_c[i][1] = 1;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     ecdsa_c[R_EC_B163][0] = count / 1000;
 | |
|     ecdsa_c[R_EC_B163][1] = count / 1000 / 2;
 | |
|     for (i = R_EC_B233; i <= R_EC_B571; i++) {
 | |
|         ecdsa_c[i][0] = ecdsa_c[i - 1][0] / 2;
 | |
|         ecdsa_c[i][1] = ecdsa_c[i - 1][1] / 2;
 | |
|         if (ecdsa_doit[i] <= 1 && ecdsa_c[i][0] == 0)
 | |
|             ecdsa_doit[i] = 0;
 | |
|         else {
 | |
|             if (ecdsa_c[i][0] == 0) {
 | |
|                 ecdsa_c[i][0] = 1;
 | |
|                 ecdsa_c[i][1] = 1;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     ecdh_c[R_EC_P160][0] = count / 1000;
 | |
|     for (i = R_EC_P192; i <= R_EC_P521; i++) {
 | |
|         ecdh_c[i][0] = ecdh_c[i - 1][0] / 2;
 | |
|         if (ecdh_doit[i] <= 1 && ecdh_c[i][0] == 0)
 | |
|             ecdh_doit[i] = 0;
 | |
|         else {
 | |
|             if (ecdh_c[i][0] == 0) {
 | |
|                 ecdh_c[i][0] = 1;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     ecdh_c[R_EC_K163][0] = count / 1000;
 | |
|     for (i = R_EC_K233; i <= R_EC_K571; i++) {
 | |
|         ecdh_c[i][0] = ecdh_c[i - 1][0] / 2;
 | |
|         if (ecdh_doit[i] <= 1 && ecdh_c[i][0] == 0)
 | |
|             ecdh_doit[i] = 0;
 | |
|         else {
 | |
|             if (ecdh_c[i][0] == 0) {
 | |
|                 ecdh_c[i][0] = 1;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     ecdh_c[R_EC_B163][0] = count / 1000;
 | |
|     for (i = R_EC_B233; i <= R_EC_B571; i++) {
 | |
|         ecdh_c[i][0] = ecdh_c[i - 1][0] / 2;
 | |
|         if (ecdh_doit[i] <= 1 && ecdh_c[i][0] == 0)
 | |
|             ecdh_doit[i] = 0;
 | |
|         else {
 | |
|             if (ecdh_c[i][0] == 0) {
 | |
|                 ecdh_c[i][0] = 1;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     /* repeated code good to factorize */
 | |
|     ecdh_c[R_EC_BRP256R1][0] = count / 1000;
 | |
|     for (i = R_EC_BRP384R1; i <= R_EC_BRP512R1; i += 2) {
 | |
|         ecdh_c[i][0] = ecdh_c[i - 2][0] / 2;
 | |
|         if (ecdh_doit[i] <= 1 && ecdh_c[i][0] == 0)
 | |
|             ecdh_doit[i] = 0;
 | |
|         else {
 | |
|             if (ecdh_c[i][0] == 0) {
 | |
|                 ecdh_c[i][0] = 1;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     ecdh_c[R_EC_BRP256T1][0] = count / 1000;
 | |
|     for (i = R_EC_BRP384T1; i <= R_EC_BRP512T1; i += 2) {
 | |
|         ecdh_c[i][0] = ecdh_c[i - 2][0] / 2;
 | |
|         if (ecdh_doit[i] <= 1 && ecdh_c[i][0] == 0)
 | |
|             ecdh_doit[i] = 0;
 | |
|         else {
 | |
|             if (ecdh_c[i][0] == 0) {
 | |
|                 ecdh_c[i][0] = 1;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     /* default iteration count for the last two EC Curves */
 | |
|     ecdh_c[R_EC_X25519][0] = count / 1800;
 | |
|     ecdh_c[R_EC_X448][0] = count / 7200;
 | |
| 
 | |
|     eddsa_c[R_EC_Ed25519][0] = count / 1800;
 | |
|     eddsa_c[R_EC_Ed448][0] = count / 7200;
 | |
| #  endif
 | |
| 
 | |
| # else
 | |
| /* not worth fixing */
 | |
| #  error "You cannot disable DES on systems without SIGALRM."
 | |
| # endif                         /* OPENSSL_NO_DES */
 | |
| #elif SIGALRM > 0
 | |
|     signal(SIGALRM, alarmed);
 | |
| #endif                          /* SIGALRM */
 | |
| 
 | |
| #ifndef OPENSSL_NO_MD2
 | |
|     if (doit[D_MD2]) {
 | |
|         for (testnum = 0; testnum < size_num; testnum++) {
 | |
|             print_message(names[D_MD2], c[D_MD2][testnum], lengths[testnum],
 | |
|                           seconds.sym);
 | |
|             Time_F(START);
 | |
|             count = run_benchmark(async_jobs, EVP_Digest_MD2_loop, loopargs);
 | |
|             d = Time_F(STOP);
 | |
|             print_result(D_MD2, testnum, count, d);
 | |
|         }
 | |
|     }
 | |
| #endif
 | |
| #ifndef OPENSSL_NO_MDC2
 | |
|     if (doit[D_MDC2]) {
 | |
|         for (testnum = 0; testnum < size_num; testnum++) {
 | |
|             print_message(names[D_MDC2], c[D_MDC2][testnum], lengths[testnum],
 | |
|                           seconds.sym);
 | |
|             Time_F(START);
 | |
|             count = run_benchmark(async_jobs, EVP_Digest_MDC2_loop, loopargs);
 | |
|             d = Time_F(STOP);
 | |
|             print_result(D_MDC2, testnum, count, d);
 | |
|         }
 | |
|     }
 | |
| #endif
 | |
| 
 | |
| #ifndef OPENSSL_NO_MD4
 | |
|     if (doit[D_MD4]) {
 | |
|         for (testnum = 0; testnum < size_num; testnum++) {
 | |
|             print_message(names[D_MD4], c[D_MD4][testnum], lengths[testnum],
 | |
|                           seconds.sym);
 | |
|             Time_F(START);
 | |
|             count = run_benchmark(async_jobs, EVP_Digest_MD4_loop, loopargs);
 | |
|             d = Time_F(STOP);
 | |
|             print_result(D_MD4, testnum, count, d);
 | |
|         }
 | |
|     }
 | |
| #endif
 | |
| 
 | |
| #ifndef OPENSSL_NO_MD5
 | |
|     if (doit[D_MD5]) {
 | |
|         for (testnum = 0; testnum < size_num; testnum++) {
 | |
|             print_message(names[D_MD5], c[D_MD5][testnum], lengths[testnum],
 | |
|                           seconds.sym);
 | |
|             Time_F(START);
 | |
|             count = run_benchmark(async_jobs, MD5_loop, loopargs);
 | |
|             d = Time_F(STOP);
 | |
|             print_result(D_MD5, testnum, count, d);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (doit[D_HMAC]) {
 | |
|         static const char hmac_key[] = "This is a key...";
 | |
|         int len = strlen(hmac_key);
 | |
| 
 | |
|         for (i = 0; i < loopargs_len; i++) {
 | |
|             loopargs[i].hctx = HMAC_CTX_new();
 | |
|             if (loopargs[i].hctx == NULL) {
 | |
|                 BIO_printf(bio_err, "HMAC malloc failure, exiting...");
 | |
|                 exit(1);
 | |
|             }
 | |
| 
 | |
|             HMAC_Init_ex(loopargs[i].hctx, hmac_key, len, EVP_md5(), NULL);
 | |
|         }
 | |
|         for (testnum = 0; testnum < size_num; testnum++) {
 | |
|             print_message(names[D_HMAC], c[D_HMAC][testnum], lengths[testnum],
 | |
|                           seconds.sym);
 | |
|             Time_F(START);
 | |
|             count = run_benchmark(async_jobs, HMAC_loop, loopargs);
 | |
|             d = Time_F(STOP);
 | |
|             print_result(D_HMAC, testnum, count, d);
 | |
|         }
 | |
|         for (i = 0; i < loopargs_len; i++) {
 | |
|             HMAC_CTX_free(loopargs[i].hctx);
 | |
|         }
 | |
|     }
 | |
| #endif
 | |
|     if (doit[D_SHA1]) {
 | |
|         for (testnum = 0; testnum < size_num; testnum++) {
 | |
|             print_message(names[D_SHA1], c[D_SHA1][testnum], lengths[testnum],
 | |
|                           seconds.sym);
 | |
|             Time_F(START);
 | |
|             count = run_benchmark(async_jobs, SHA1_loop, loopargs);
 | |
|             d = Time_F(STOP);
 | |
|             print_result(D_SHA1, testnum, count, d);
 | |
|         }
 | |
|     }
 | |
|     if (doit[D_SHA256]) {
 | |
|         for (testnum = 0; testnum < size_num; testnum++) {
 | |
|             print_message(names[D_SHA256], c[D_SHA256][testnum],
 | |
|                           lengths[testnum], seconds.sym);
 | |
|             Time_F(START);
 | |
|             count = run_benchmark(async_jobs, SHA256_loop, loopargs);
 | |
|             d = Time_F(STOP);
 | |
|             print_result(D_SHA256, testnum, count, d);
 | |
|         }
 | |
|     }
 | |
|     if (doit[D_SHA512]) {
 | |
|         for (testnum = 0; testnum < size_num; testnum++) {
 | |
|             print_message(names[D_SHA512], c[D_SHA512][testnum],
 | |
|                           lengths[testnum], seconds.sym);
 | |
|             Time_F(START);
 | |
|             count = run_benchmark(async_jobs, SHA512_loop, loopargs);
 | |
|             d = Time_F(STOP);
 | |
|             print_result(D_SHA512, testnum, count, d);
 | |
|         }
 | |
|     }
 | |
| #ifndef OPENSSL_NO_WHIRLPOOL
 | |
|     if (doit[D_WHIRLPOOL]) {
 | |
|         for (testnum = 0; testnum < size_num; testnum++) {
 | |
|             print_message(names[D_WHIRLPOOL], c[D_WHIRLPOOL][testnum],
 | |
|                           lengths[testnum], seconds.sym);
 | |
|             Time_F(START);
 | |
|             count = run_benchmark(async_jobs, WHIRLPOOL_loop, loopargs);
 | |
|             d = Time_F(STOP);
 | |
|             print_result(D_WHIRLPOOL, testnum, count, d);
 | |
|         }
 | |
|     }
 | |
| #endif
 | |
| 
 | |
| #ifndef OPENSSL_NO_RMD160
 | |
|     if (doit[D_RMD160]) {
 | |
|         for (testnum = 0; testnum < size_num; testnum++) {
 | |
|             print_message(names[D_RMD160], c[D_RMD160][testnum],
 | |
|                           lengths[testnum], seconds.sym);
 | |
|             Time_F(START);
 | |
|             count = run_benchmark(async_jobs, EVP_Digest_RMD160_loop, loopargs);
 | |
|             d = Time_F(STOP);
 | |
|             print_result(D_RMD160, testnum, count, d);
 | |
|         }
 | |
|     }
 | |
| #endif
 | |
| #ifndef OPENSSL_NO_RC4
 | |
|     if (doit[D_RC4]) {
 | |
|         for (testnum = 0; testnum < size_num; testnum++) {
 | |
|             print_message(names[D_RC4], c[D_RC4][testnum], lengths[testnum],
 | |
|                           seconds.sym);
 | |
|             Time_F(START);
 | |
|             count = run_benchmark(async_jobs, RC4_loop, loopargs);
 | |
|             d = Time_F(STOP);
 | |
|             print_result(D_RC4, testnum, count, d);
 | |
|         }
 | |
|     }
 | |
| #endif
 | |
| #ifndef OPENSSL_NO_DES
 | |
|     if (doit[D_CBC_DES]) {
 | |
|         for (testnum = 0; testnum < size_num; testnum++) {
 | |
|             print_message(names[D_CBC_DES], c[D_CBC_DES][testnum],
 | |
|                           lengths[testnum], seconds.sym);
 | |
|             Time_F(START);
 | |
|             count = run_benchmark(async_jobs, DES_ncbc_encrypt_loop, loopargs);
 | |
|             d = Time_F(STOP);
 | |
|             print_result(D_CBC_DES, testnum, count, d);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (doit[D_EDE3_DES]) {
 | |
|         for (testnum = 0; testnum < size_num; testnum++) {
 | |
|             print_message(names[D_EDE3_DES], c[D_EDE3_DES][testnum],
 | |
|                           lengths[testnum], seconds.sym);
 | |
|             Time_F(START);
 | |
|             count =
 | |
|                 run_benchmark(async_jobs, DES_ede3_cbc_encrypt_loop, loopargs);
 | |
|             d = Time_F(STOP);
 | |
|             print_result(D_EDE3_DES, testnum, count, d);
 | |
|         }
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     if (doit[D_CBC_128_AES]) {
 | |
|         for (testnum = 0; testnum < size_num; testnum++) {
 | |
|             print_message(names[D_CBC_128_AES], c[D_CBC_128_AES][testnum],
 | |
|                           lengths[testnum], seconds.sym);
 | |
|             Time_F(START);
 | |
|             count =
 | |
|                 run_benchmark(async_jobs, AES_cbc_128_encrypt_loop, loopargs);
 | |
|             d = Time_F(STOP);
 | |
|             print_result(D_CBC_128_AES, testnum, count, d);
 | |
|         }
 | |
|     }
 | |
|     if (doit[D_CBC_192_AES]) {
 | |
|         for (testnum = 0; testnum < size_num; testnum++) {
 | |
|             print_message(names[D_CBC_192_AES], c[D_CBC_192_AES][testnum],
 | |
|                           lengths[testnum], seconds.sym);
 | |
|             Time_F(START);
 | |
|             count =
 | |
|                 run_benchmark(async_jobs, AES_cbc_192_encrypt_loop, loopargs);
 | |
|             d = Time_F(STOP);
 | |
|             print_result(D_CBC_192_AES, testnum, count, d);
 | |
|         }
 | |
|     }
 | |
|     if (doit[D_CBC_256_AES]) {
 | |
|         for (testnum = 0; testnum < size_num; testnum++) {
 | |
|             print_message(names[D_CBC_256_AES], c[D_CBC_256_AES][testnum],
 | |
|                           lengths[testnum], seconds.sym);
 | |
|             Time_F(START);
 | |
|             count =
 | |
|                 run_benchmark(async_jobs, AES_cbc_256_encrypt_loop, loopargs);
 | |
|             d = Time_F(STOP);
 | |
|             print_result(D_CBC_256_AES, testnum, count, d);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (doit[D_IGE_128_AES]) {
 | |
|         for (testnum = 0; testnum < size_num; testnum++) {
 | |
|             print_message(names[D_IGE_128_AES], c[D_IGE_128_AES][testnum],
 | |
|                           lengths[testnum], seconds.sym);
 | |
|             Time_F(START);
 | |
|             count =
 | |
|                 run_benchmark(async_jobs, AES_ige_128_encrypt_loop, loopargs);
 | |
|             d = Time_F(STOP);
 | |
|             print_result(D_IGE_128_AES, testnum, count, d);
 | |
|         }
 | |
|     }
 | |
|     if (doit[D_IGE_192_AES]) {
 | |
|         for (testnum = 0; testnum < size_num; testnum++) {
 | |
|             print_message(names[D_IGE_192_AES], c[D_IGE_192_AES][testnum],
 | |
|                           lengths[testnum], seconds.sym);
 | |
|             Time_F(START);
 | |
|             count =
 | |
|                 run_benchmark(async_jobs, AES_ige_192_encrypt_loop, loopargs);
 | |
|             d = Time_F(STOP);
 | |
|             print_result(D_IGE_192_AES, testnum, count, d);
 | |
|         }
 | |
|     }
 | |
|     if (doit[D_IGE_256_AES]) {
 | |
|         for (testnum = 0; testnum < size_num; testnum++) {
 | |
|             print_message(names[D_IGE_256_AES], c[D_IGE_256_AES][testnum],
 | |
|                           lengths[testnum], seconds.sym);
 | |
|             Time_F(START);
 | |
|             count =
 | |
|                 run_benchmark(async_jobs, AES_ige_256_encrypt_loop, loopargs);
 | |
|             d = Time_F(STOP);
 | |
|             print_result(D_IGE_256_AES, testnum, count, d);
 | |
|         }
 | |
|     }
 | |
|     if (doit[D_GHASH]) {
 | |
|         for (i = 0; i < loopargs_len; i++) {
 | |
|             loopargs[i].gcm_ctx =
 | |
|                 CRYPTO_gcm128_new(&aes_ks1, (block128_f) AES_encrypt);
 | |
|             CRYPTO_gcm128_setiv(loopargs[i].gcm_ctx,
 | |
|                                 (unsigned char *)"0123456789ab", 12);
 | |
|         }
 | |
| 
 | |
|         for (testnum = 0; testnum < size_num; testnum++) {
 | |
|             print_message(names[D_GHASH], c[D_GHASH][testnum],
 | |
|                           lengths[testnum], seconds.sym);
 | |
|             Time_F(START);
 | |
|             count = run_benchmark(async_jobs, CRYPTO_gcm128_aad_loop, loopargs);
 | |
|             d = Time_F(STOP);
 | |
|             print_result(D_GHASH, testnum, count, d);
 | |
|         }
 | |
|         for (i = 0; i < loopargs_len; i++)
 | |
|             CRYPTO_gcm128_release(loopargs[i].gcm_ctx);
 | |
|     }
 | |
| #ifndef OPENSSL_NO_CAMELLIA
 | |
|     if (doit[D_CBC_128_CML]) {
 | |
|         if (async_jobs > 0) {
 | |
|             BIO_printf(bio_err, "Async mode is not supported with %s\n",
 | |
|                        names[D_CBC_128_CML]);
 | |
|             doit[D_CBC_128_CML] = 0;
 | |
|         }
 | |
|         for (testnum = 0; testnum < size_num && async_init == 0; testnum++) {
 | |
|             print_message(names[D_CBC_128_CML], c[D_CBC_128_CML][testnum],
 | |
|                           lengths[testnum], seconds.sym);
 | |
|             Time_F(START);
 | |
|             for (count = 0, run = 1; COND(c[D_CBC_128_CML][testnum]); count++)
 | |
|                 Camellia_cbc_encrypt(loopargs[0].buf, loopargs[0].buf,
 | |
|                                      (size_t)lengths[testnum], &camellia_ks1,
 | |
|                                      iv, CAMELLIA_ENCRYPT);
 | |
|             d = Time_F(STOP);
 | |
|             print_result(D_CBC_128_CML, testnum, count, d);
 | |
|         }
 | |
|     }
 | |
|     if (doit[D_CBC_192_CML]) {
 | |
|         if (async_jobs > 0) {
 | |
|             BIO_printf(bio_err, "Async mode is not supported with %s\n",
 | |
|                        names[D_CBC_192_CML]);
 | |
|             doit[D_CBC_192_CML] = 0;
 | |
|         }
 | |
|         for (testnum = 0; testnum < size_num && async_init == 0; testnum++) {
 | |
|             print_message(names[D_CBC_192_CML], c[D_CBC_192_CML][testnum],
 | |
|                           lengths[testnum], seconds.sym);
 | |
|             if (async_jobs > 0) {
 | |
|                 BIO_printf(bio_err, "Async mode is not supported, exiting...");
 | |
|                 exit(1);
 | |
|             }
 | |
|             Time_F(START);
 | |
|             for (count = 0, run = 1; COND(c[D_CBC_192_CML][testnum]); count++)
 | |
|                 Camellia_cbc_encrypt(loopargs[0].buf, loopargs[0].buf,
 | |
|                                      (size_t)lengths[testnum], &camellia_ks2,
 | |
|                                      iv, CAMELLIA_ENCRYPT);
 | |
|             d = Time_F(STOP);
 | |
|             print_result(D_CBC_192_CML, testnum, count, d);
 | |
|         }
 | |
|     }
 | |
|     if (doit[D_CBC_256_CML]) {
 | |
|         if (async_jobs > 0) {
 | |
|             BIO_printf(bio_err, "Async mode is not supported with %s\n",
 | |
|                        names[D_CBC_256_CML]);
 | |
|             doit[D_CBC_256_CML] = 0;
 | |
|         }
 | |
|         for (testnum = 0; testnum < size_num && async_init == 0; testnum++) {
 | |
|             print_message(names[D_CBC_256_CML], c[D_CBC_256_CML][testnum],
 | |
|                           lengths[testnum], seconds.sym);
 | |
|             Time_F(START);
 | |
|             for (count = 0, run = 1; COND(c[D_CBC_256_CML][testnum]); count++)
 | |
|                 Camellia_cbc_encrypt(loopargs[0].buf, loopargs[0].buf,
 | |
|                                      (size_t)lengths[testnum], &camellia_ks3,
 | |
|                                      iv, CAMELLIA_ENCRYPT);
 | |
|             d = Time_F(STOP);
 | |
|             print_result(D_CBC_256_CML, testnum, count, d);
 | |
|         }
 | |
|     }
 | |
| #endif
 | |
| #ifndef OPENSSL_NO_IDEA
 | |
|     if (doit[D_CBC_IDEA]) {
 | |
|         if (async_jobs > 0) {
 | |
|             BIO_printf(bio_err, "Async mode is not supported with %s\n",
 | |
|                        names[D_CBC_IDEA]);
 | |
|             doit[D_CBC_IDEA] = 0;
 | |
|         }
 | |
|         for (testnum = 0; testnum < size_num && async_init == 0; testnum++) {
 | |
|             print_message(names[D_CBC_IDEA], c[D_CBC_IDEA][testnum],
 | |
|                           lengths[testnum], seconds.sym);
 | |
|             Time_F(START);
 | |
|             for (count = 0, run = 1; COND(c[D_CBC_IDEA][testnum]); count++)
 | |
|                 IDEA_cbc_encrypt(loopargs[0].buf, loopargs[0].buf,
 | |
|                                  (size_t)lengths[testnum], &idea_ks,
 | |
|                                  iv, IDEA_ENCRYPT);
 | |
|             d = Time_F(STOP);
 | |
|             print_result(D_CBC_IDEA, testnum, count, d);
 | |
|         }
 | |
|     }
 | |
| #endif
 | |
| #ifndef OPENSSL_NO_SEED
 | |
|     if (doit[D_CBC_SEED]) {
 | |
|         if (async_jobs > 0) {
 | |
|             BIO_printf(bio_err, "Async mode is not supported with %s\n",
 | |
|                        names[D_CBC_SEED]);
 | |
|             doit[D_CBC_SEED] = 0;
 | |
|         }
 | |
|         for (testnum = 0; testnum < size_num && async_init == 0; testnum++) {
 | |
|             print_message(names[D_CBC_SEED], c[D_CBC_SEED][testnum],
 | |
|                           lengths[testnum], seconds.sym);
 | |
|             Time_F(START);
 | |
|             for (count = 0, run = 1; COND(c[D_CBC_SEED][testnum]); count++)
 | |
|                 SEED_cbc_encrypt(loopargs[0].buf, loopargs[0].buf,
 | |
|                                  (size_t)lengths[testnum], &seed_ks, iv, 1);
 | |
|             d = Time_F(STOP);
 | |
|             print_result(D_CBC_SEED, testnum, count, d);
 | |
|         }
 | |
|     }
 | |
| #endif
 | |
| #ifndef OPENSSL_NO_RC2
 | |
|     if (doit[D_CBC_RC2]) {
 | |
|         if (async_jobs > 0) {
 | |
|             BIO_printf(bio_err, "Async mode is not supported with %s\n",
 | |
|                        names[D_CBC_RC2]);
 | |
|             doit[D_CBC_RC2] = 0;
 | |
|         }
 | |
|         for (testnum = 0; testnum < size_num && async_init == 0; testnum++) {
 | |
|             print_message(names[D_CBC_RC2], c[D_CBC_RC2][testnum],
 | |
|                           lengths[testnum], seconds.sym);
 | |
|             if (async_jobs > 0) {
 | |
|                 BIO_printf(bio_err, "Async mode is not supported, exiting...");
 | |
|                 exit(1);
 | |
|             }
 | |
|             Time_F(START);
 | |
|             for (count = 0, run = 1; COND(c[D_CBC_RC2][testnum]); count++)
 | |
|                 RC2_cbc_encrypt(loopargs[0].buf, loopargs[0].buf,
 | |
|                                 (size_t)lengths[testnum], &rc2_ks,
 | |
|                                 iv, RC2_ENCRYPT);
 | |
|             d = Time_F(STOP);
 | |
|             print_result(D_CBC_RC2, testnum, count, d);
 | |
|         }
 | |
|     }
 | |
| #endif
 | |
| #ifndef OPENSSL_NO_RC5
 | |
|     if (doit[D_CBC_RC5]) {
 | |
|         if (async_jobs > 0) {
 | |
|             BIO_printf(bio_err, "Async mode is not supported with %s\n",
 | |
|                        names[D_CBC_RC5]);
 | |
|             doit[D_CBC_RC5] = 0;
 | |
|         }
 | |
|         for (testnum = 0; testnum < size_num && async_init == 0; testnum++) {
 | |
|             print_message(names[D_CBC_RC5], c[D_CBC_RC5][testnum],
 | |
|                           lengths[testnum], seconds.sym);
 | |
|             if (async_jobs > 0) {
 | |
|                 BIO_printf(bio_err, "Async mode is not supported, exiting...");
 | |
|                 exit(1);
 | |
|             }
 | |
|             Time_F(START);
 | |
|             for (count = 0, run = 1; COND(c[D_CBC_RC5][testnum]); count++)
 | |
|                 RC5_32_cbc_encrypt(loopargs[0].buf, loopargs[0].buf,
 | |
|                                    (size_t)lengths[testnum], &rc5_ks,
 | |
|                                    iv, RC5_ENCRYPT);
 | |
|             d = Time_F(STOP);
 | |
|             print_result(D_CBC_RC5, testnum, count, d);
 | |
|         }
 | |
|     }
 | |
| #endif
 | |
| #ifndef OPENSSL_NO_BF
 | |
|     if (doit[D_CBC_BF]) {
 | |
|         if (async_jobs > 0) {
 | |
|             BIO_printf(bio_err, "Async mode is not supported with %s\n",
 | |
|                        names[D_CBC_BF]);
 | |
|             doit[D_CBC_BF] = 0;
 | |
|         }
 | |
|         for (testnum = 0; testnum < size_num && async_init == 0; testnum++) {
 | |
|             print_message(names[D_CBC_BF], c[D_CBC_BF][testnum],
 | |
|                           lengths[testnum], seconds.sym);
 | |
|             Time_F(START);
 | |
|             for (count = 0, run = 1; COND(c[D_CBC_BF][testnum]); count++)
 | |
|                 BF_cbc_encrypt(loopargs[0].buf, loopargs[0].buf,
 | |
|                                (size_t)lengths[testnum], &bf_ks,
 | |
|                                iv, BF_ENCRYPT);
 | |
|             d = Time_F(STOP);
 | |
|             print_result(D_CBC_BF, testnum, count, d);
 | |
|         }
 | |
|     }
 | |
| #endif
 | |
| #ifndef OPENSSL_NO_CAST
 | |
|     if (doit[D_CBC_CAST]) {
 | |
|         if (async_jobs > 0) {
 | |
|             BIO_printf(bio_err, "Async mode is not supported with %s\n",
 | |
|                        names[D_CBC_CAST]);
 | |
|             doit[D_CBC_CAST] = 0;
 | |
|         }
 | |
|         for (testnum = 0; testnum < size_num && async_init == 0; testnum++) {
 | |
|             print_message(names[D_CBC_CAST], c[D_CBC_CAST][testnum],
 | |
|                           lengths[testnum], seconds.sym);
 | |
|             Time_F(START);
 | |
|             for (count = 0, run = 1; COND(c[D_CBC_CAST][testnum]); count++)
 | |
|                 CAST_cbc_encrypt(loopargs[0].buf, loopargs[0].buf,
 | |
|                                  (size_t)lengths[testnum], &cast_ks,
 | |
|                                  iv, CAST_ENCRYPT);
 | |
|             d = Time_F(STOP);
 | |
|             print_result(D_CBC_CAST, testnum, count, d);
 | |
|         }
 | |
|     }
 | |
| #endif
 | |
|     if (doit[D_RAND]) {
 | |
|         for (testnum = 0; testnum < size_num; testnum++) {
 | |
|             print_message(names[D_RAND], c[D_RAND][testnum], lengths[testnum],
 | |
|                           seconds.sym);
 | |
|             Time_F(START);
 | |
|             count = run_benchmark(async_jobs, RAND_bytes_loop, loopargs);
 | |
|             d = Time_F(STOP);
 | |
|             print_result(D_RAND, testnum, count, d);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (doit[D_EVP]) {
 | |
|         if (evp_cipher != NULL) {
 | |
|             int (*loopfunc)(void *args) = EVP_Update_loop;
 | |
| 
 | |
|             if (multiblock && (EVP_CIPHER_flags(evp_cipher) &
 | |
|                                EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK)) {
 | |
|                 multiblock_speed(evp_cipher, lengths_single, &seconds);
 | |
|                 ret = 0;
 | |
|                 goto end;
 | |
|             }
 | |
| 
 | |
|             names[D_EVP] = OBJ_nid2ln(EVP_CIPHER_nid(evp_cipher));
 | |
| 
 | |
|             if (EVP_CIPHER_mode(evp_cipher) == EVP_CIPH_CCM_MODE) {
 | |
|                 loopfunc = EVP_Update_loop_ccm;
 | |
|             } else if (aead && (EVP_CIPHER_flags(evp_cipher) &
 | |
|                                 EVP_CIPH_FLAG_AEAD_CIPHER)) {
 | |
|                 loopfunc = EVP_Update_loop_aead;
 | |
|                 if (lengths == lengths_list) {
 | |
|                     lengths = aead_lengths_list;
 | |
|                     size_num = OSSL_NELEM(aead_lengths_list);
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             for (testnum = 0; testnum < size_num; testnum++) {
 | |
|                 print_message(names[D_EVP], save_count, lengths[testnum],
 | |
|                               seconds.sym);
 | |
| 
 | |
|                 for (k = 0; k < loopargs_len; k++) {
 | |
|                     loopargs[k].ctx = EVP_CIPHER_CTX_new();
 | |
|                     EVP_CipherInit_ex(loopargs[k].ctx, evp_cipher, NULL, NULL,
 | |
|                                       iv, decrypt ? 0 : 1);
 | |
| 
 | |
|                     EVP_CIPHER_CTX_set_padding(loopargs[k].ctx, 0);
 | |
| 
 | |
|                     keylen = EVP_CIPHER_CTX_key_length(loopargs[k].ctx);
 | |
|                     loopargs[k].key = app_malloc(keylen, "evp_cipher key");
 | |
|                     EVP_CIPHER_CTX_rand_key(loopargs[k].ctx, loopargs[k].key);
 | |
|                     EVP_CipherInit_ex(loopargs[k].ctx, NULL, NULL,
 | |
|                                       loopargs[k].key, NULL, -1);
 | |
|                     OPENSSL_clear_free(loopargs[k].key, keylen);
 | |
|                 }
 | |
| 
 | |
|                 Time_F(START);
 | |
|                 count = run_benchmark(async_jobs, loopfunc, loopargs);
 | |
|                 d = Time_F(STOP);
 | |
|                 for (k = 0; k < loopargs_len; k++) {
 | |
|                     EVP_CIPHER_CTX_free(loopargs[k].ctx);
 | |
|                 }
 | |
|                 print_result(D_EVP, testnum, count, d);
 | |
|             }
 | |
|         } else if (evp_md != NULL) {
 | |
|             names[D_EVP] = OBJ_nid2ln(EVP_MD_type(evp_md));
 | |
| 
 | |
|             for (testnum = 0; testnum < size_num; testnum++) {
 | |
|                 print_message(names[D_EVP], save_count, lengths[testnum],
 | |
|                               seconds.sym);
 | |
|                 Time_F(START);
 | |
|                 count = run_benchmark(async_jobs, EVP_Digest_loop, loopargs);
 | |
|                 d = Time_F(STOP);
 | |
|                 print_result(D_EVP, testnum, count, d);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < loopargs_len; i++)
 | |
|         if (RAND_bytes(loopargs[i].buf, 36) <= 0)
 | |
|             goto end;
 | |
| 
 | |
| #ifndef OPENSSL_NO_RSA
 | |
|     for (testnum = 0; testnum < RSA_NUM; testnum++) {
 | |
|         int st = 0;
 | |
|         if (!rsa_doit[testnum])
 | |
|             continue;
 | |
|         for (i = 0; i < loopargs_len; i++) {
 | |
|             if (primes > 2) {
 | |
|                 /* we haven't set keys yet,  generate multi-prime RSA keys */
 | |
|                 BIGNUM *bn = BN_new();
 | |
| 
 | |
|                 if (bn == NULL)
 | |
|                     goto end;
 | |
|                 if (!BN_set_word(bn, RSA_F4)) {
 | |
|                     BN_free(bn);
 | |
|                     goto end;
 | |
|                 }
 | |
| 
 | |
|                 BIO_printf(bio_err, "Generate multi-prime RSA key for %s\n",
 | |
|                            rsa_choices[testnum].name);
 | |
| 
 | |
|                 loopargs[i].rsa_key[testnum] = RSA_new();
 | |
|                 if (loopargs[i].rsa_key[testnum] == NULL) {
 | |
|                     BN_free(bn);
 | |
|                     goto end;
 | |
|                 }
 | |
| 
 | |
|                 if (!RSA_generate_multi_prime_key(loopargs[i].rsa_key[testnum],
 | |
|                                                   rsa_bits[testnum],
 | |
|                                                   primes, bn, NULL)) {
 | |
|                     BN_free(bn);
 | |
|                     goto end;
 | |
|                 }
 | |
|                 BN_free(bn);
 | |
|             }
 | |
|             st = RSA_sign(NID_md5_sha1, loopargs[i].buf, 36, loopargs[i].buf2,
 | |
|                           &loopargs[i].siglen, loopargs[i].rsa_key[testnum]);
 | |
|             if (st == 0)
 | |
|                 break;
 | |
|         }
 | |
|         if (st == 0) {
 | |
|             BIO_printf(bio_err,
 | |
|                        "RSA sign failure.  No RSA sign will be done.\n");
 | |
|             ERR_print_errors(bio_err);
 | |
|             rsa_count = 1;
 | |
|         } else {
 | |
|             pkey_print_message("private", "rsa",
 | |
|                                rsa_c[testnum][0], rsa_bits[testnum],
 | |
|                                seconds.rsa);
 | |
|             /* RSA_blinding_on(rsa_key[testnum],NULL); */
 | |
|             Time_F(START);
 | |
|             count = run_benchmark(async_jobs, RSA_sign_loop, loopargs);
 | |
|             d = Time_F(STOP);
 | |
|             BIO_printf(bio_err,
 | |
|                        mr ? "+R1:%ld:%d:%.2f\n"
 | |
|                        : "%ld %u bits private RSA's in %.2fs\n",
 | |
|                        count, rsa_bits[testnum], d);
 | |
|             rsa_results[testnum][0] = (double)count / d;
 | |
|             rsa_count = count;
 | |
|         }
 | |
| 
 | |
|         for (i = 0; i < loopargs_len; i++) {
 | |
|             st = RSA_verify(NID_md5_sha1, loopargs[i].buf, 36, loopargs[i].buf2,
 | |
|                             loopargs[i].siglen, loopargs[i].rsa_key[testnum]);
 | |
|             if (st <= 0)
 | |
|                 break;
 | |
|         }
 | |
|         if (st <= 0) {
 | |
|             BIO_printf(bio_err,
 | |
|                        "RSA verify failure.  No RSA verify will be done.\n");
 | |
|             ERR_print_errors(bio_err);
 | |
|             rsa_doit[testnum] = 0;
 | |
|         } else {
 | |
|             pkey_print_message("public", "rsa",
 | |
|                                rsa_c[testnum][1], rsa_bits[testnum],
 | |
|                                seconds.rsa);
 | |
|             Time_F(START);
 | |
|             count = run_benchmark(async_jobs, RSA_verify_loop, loopargs);
 | |
|             d = Time_F(STOP);
 | |
|             BIO_printf(bio_err,
 | |
|                        mr ? "+R2:%ld:%d:%.2f\n"
 | |
|                        : "%ld %u bits public RSA's in %.2fs\n",
 | |
|                        count, rsa_bits[testnum], d);
 | |
|             rsa_results[testnum][1] = (double)count / d;
 | |
|         }
 | |
| 
 | |
|         if (rsa_count <= 1) {
 | |
|             /* if longer than 10s, don't do any more */
 | |
|             for (testnum++; testnum < RSA_NUM; testnum++)
 | |
|                 rsa_doit[testnum] = 0;
 | |
|         }
 | |
|     }
 | |
| #endif                          /* OPENSSL_NO_RSA */
 | |
| 
 | |
|     for (i = 0; i < loopargs_len; i++)
 | |
|         if (RAND_bytes(loopargs[i].buf, 36) <= 0)
 | |
|             goto end;
 | |
| 
 | |
| #ifndef OPENSSL_NO_DSA
 | |
|     for (testnum = 0; testnum < DSA_NUM; testnum++) {
 | |
|         int st = 0;
 | |
|         if (!dsa_doit[testnum])
 | |
|             continue;
 | |
| 
 | |
|         /* DSA_generate_key(dsa_key[testnum]); */
 | |
|         /* DSA_sign_setup(dsa_key[testnum],NULL); */
 | |
|         for (i = 0; i < loopargs_len; i++) {
 | |
|             st = DSA_sign(0, loopargs[i].buf, 20, loopargs[i].buf2,
 | |
|                           &loopargs[i].siglen, loopargs[i].dsa_key[testnum]);
 | |
|             if (st == 0)
 | |
|                 break;
 | |
|         }
 | |
|         if (st == 0) {
 | |
|             BIO_printf(bio_err,
 | |
|                        "DSA sign failure.  No DSA sign will be done.\n");
 | |
|             ERR_print_errors(bio_err);
 | |
|             rsa_count = 1;
 | |
|         } else {
 | |
|             pkey_print_message("sign", "dsa",
 | |
|                                dsa_c[testnum][0], dsa_bits[testnum],
 | |
|                                seconds.dsa);
 | |
|             Time_F(START);
 | |
|             count = run_benchmark(async_jobs, DSA_sign_loop, loopargs);
 | |
|             d = Time_F(STOP);
 | |
|             BIO_printf(bio_err,
 | |
|                        mr ? "+R3:%ld:%u:%.2f\n"
 | |
|                        : "%ld %u bits DSA signs in %.2fs\n",
 | |
|                        count, dsa_bits[testnum], d);
 | |
|             dsa_results[testnum][0] = (double)count / d;
 | |
|             rsa_count = count;
 | |
|         }
 | |
| 
 | |
|         for (i = 0; i < loopargs_len; i++) {
 | |
|             st = DSA_verify(0, loopargs[i].buf, 20, loopargs[i].buf2,
 | |
|                             loopargs[i].siglen, loopargs[i].dsa_key[testnum]);
 | |
|             if (st <= 0)
 | |
|                 break;
 | |
|         }
 | |
|         if (st <= 0) {
 | |
|             BIO_printf(bio_err,
 | |
|                        "DSA verify failure.  No DSA verify will be done.\n");
 | |
|             ERR_print_errors(bio_err);
 | |
|             dsa_doit[testnum] = 0;
 | |
|         } else {
 | |
|             pkey_print_message("verify", "dsa",
 | |
|                                dsa_c[testnum][1], dsa_bits[testnum],
 | |
|                                seconds.dsa);
 | |
|             Time_F(START);
 | |
|             count = run_benchmark(async_jobs, DSA_verify_loop, loopargs);
 | |
|             d = Time_F(STOP);
 | |
|             BIO_printf(bio_err,
 | |
|                        mr ? "+R4:%ld:%u:%.2f\n"
 | |
|                        : "%ld %u bits DSA verify in %.2fs\n",
 | |
|                        count, dsa_bits[testnum], d);
 | |
|             dsa_results[testnum][1] = (double)count / d;
 | |
|         }
 | |
| 
 | |
|         if (rsa_count <= 1) {
 | |
|             /* if longer than 10s, don't do any more */
 | |
|             for (testnum++; testnum < DSA_NUM; testnum++)
 | |
|                 dsa_doit[testnum] = 0;
 | |
|         }
 | |
|     }
 | |
| #endif                          /* OPENSSL_NO_DSA */
 | |
| 
 | |
| #ifndef OPENSSL_NO_EC
 | |
|     for (testnum = 0; testnum < ECDSA_NUM; testnum++) {
 | |
|         int st = 1;
 | |
| 
 | |
|         if (!ecdsa_doit[testnum])
 | |
|             continue;           /* Ignore Curve */
 | |
|         for (i = 0; i < loopargs_len; i++) {
 | |
|             loopargs[i].ecdsa[testnum] =
 | |
|                 EC_KEY_new_by_curve_name(test_curves[testnum].nid);
 | |
|             if (loopargs[i].ecdsa[testnum] == NULL) {
 | |
|                 st = 0;
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|         if (st == 0) {
 | |
|             BIO_printf(bio_err, "ECDSA failure.\n");
 | |
|             ERR_print_errors(bio_err);
 | |
|             rsa_count = 1;
 | |
|         } else {
 | |
|             for (i = 0; i < loopargs_len; i++) {
 | |
|                 EC_KEY_precompute_mult(loopargs[i].ecdsa[testnum], NULL);
 | |
|                 /* Perform ECDSA signature test */
 | |
|                 EC_KEY_generate_key(loopargs[i].ecdsa[testnum]);
 | |
|                 st = ECDSA_sign(0, loopargs[i].buf, 20, loopargs[i].buf2,
 | |
|                                 &loopargs[i].siglen,
 | |
|                                 loopargs[i].ecdsa[testnum]);
 | |
|                 if (st == 0)
 | |
|                     break;
 | |
|             }
 | |
|             if (st == 0) {
 | |
|                 BIO_printf(bio_err,
 | |
|                            "ECDSA sign failure.  No ECDSA sign will be done.\n");
 | |
|                 ERR_print_errors(bio_err);
 | |
|                 rsa_count = 1;
 | |
|             } else {
 | |
|                 pkey_print_message("sign", "ecdsa",
 | |
|                                    ecdsa_c[testnum][0],
 | |
|                                    test_curves[testnum].bits, seconds.ecdsa);
 | |
|                 Time_F(START);
 | |
|                 count = run_benchmark(async_jobs, ECDSA_sign_loop, loopargs);
 | |
|                 d = Time_F(STOP);
 | |
| 
 | |
|                 BIO_printf(bio_err,
 | |
|                            mr ? "+R5:%ld:%u:%.2f\n" :
 | |
|                            "%ld %u bits ECDSA signs in %.2fs \n",
 | |
|                            count, test_curves[testnum].bits, d);
 | |
|                 ecdsa_results[testnum][0] = (double)count / d;
 | |
|                 rsa_count = count;
 | |
|             }
 | |
| 
 | |
|             /* Perform ECDSA verification test */
 | |
|             for (i = 0; i < loopargs_len; i++) {
 | |
|                 st = ECDSA_verify(0, loopargs[i].buf, 20, loopargs[i].buf2,
 | |
|                                   loopargs[i].siglen,
 | |
|                                   loopargs[i].ecdsa[testnum]);
 | |
|                 if (st != 1)
 | |
|                     break;
 | |
|             }
 | |
|             if (st != 1) {
 | |
|                 BIO_printf(bio_err,
 | |
|                            "ECDSA verify failure.  No ECDSA verify will be done.\n");
 | |
|                 ERR_print_errors(bio_err);
 | |
|                 ecdsa_doit[testnum] = 0;
 | |
|             } else {
 | |
|                 pkey_print_message("verify", "ecdsa",
 | |
|                                    ecdsa_c[testnum][1],
 | |
|                                    test_curves[testnum].bits, seconds.ecdsa);
 | |
|                 Time_F(START);
 | |
|                 count = run_benchmark(async_jobs, ECDSA_verify_loop, loopargs);
 | |
|                 d = Time_F(STOP);
 | |
|                 BIO_printf(bio_err,
 | |
|                            mr ? "+R6:%ld:%u:%.2f\n"
 | |
|                            : "%ld %u bits ECDSA verify in %.2fs\n",
 | |
|                            count, test_curves[testnum].bits, d);
 | |
|                 ecdsa_results[testnum][1] = (double)count / d;
 | |
|             }
 | |
| 
 | |
|             if (rsa_count <= 1) {
 | |
|                 /* if longer than 10s, don't do any more */
 | |
|                 for (testnum++; testnum < ECDSA_NUM; testnum++)
 | |
|                     ecdsa_doit[testnum] = 0;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for (testnum = 0; testnum < EC_NUM; testnum++) {
 | |
|         int ecdh_checks = 1;
 | |
| 
 | |
|         if (!ecdh_doit[testnum])
 | |
|             continue;
 | |
| 
 | |
|         for (i = 0; i < loopargs_len; i++) {
 | |
|             EVP_PKEY_CTX *kctx = NULL;
 | |
|             EVP_PKEY_CTX *test_ctx = NULL;
 | |
|             EVP_PKEY_CTX *ctx = NULL;
 | |
|             EVP_PKEY *key_A = NULL;
 | |
|             EVP_PKEY *key_B = NULL;
 | |
|             size_t outlen;
 | |
|             size_t test_outlen;
 | |
| 
 | |
|             /* Ensure that the error queue is empty */
 | |
|             if (ERR_peek_error()) {
 | |
|                 BIO_printf(bio_err,
 | |
|                            "WARNING: the error queue contains previous unhandled errors.\n");
 | |
|                 ERR_print_errors(bio_err);
 | |
|             }
 | |
| 
 | |
|             /* Let's try to create a ctx directly from the NID: this works for
 | |
|              * curves like Curve25519 that are not implemented through the low
 | |
|              * level EC interface.
 | |
|              * If this fails we try creating a EVP_PKEY_EC generic param ctx,
 | |
|              * then we set the curve by NID before deriving the actual keygen
 | |
|              * ctx for that specific curve. */
 | |
|             kctx = EVP_PKEY_CTX_new_id(test_curves[testnum].nid, NULL); /* keygen ctx from NID */
 | |
|             if (!kctx) {
 | |
|                 EVP_PKEY_CTX *pctx = NULL;
 | |
|                 EVP_PKEY *params = NULL;
 | |
| 
 | |
|                 /* If we reach this code EVP_PKEY_CTX_new_id() failed and a
 | |
|                  * "int_ctx_new:unsupported algorithm" error was added to the
 | |
|                  * error queue.
 | |
|                  * We remove it from the error queue as we are handling it. */
 | |
|                 unsigned long error = ERR_peek_error(); /* peek the latest error in the queue */
 | |
|                 if (error == ERR_peek_last_error() && /* oldest and latest errors match */
 | |
|                     /* check that the error origin matches */
 | |
|                     ERR_GET_LIB(error) == ERR_LIB_EVP &&
 | |
|                     ERR_GET_FUNC(error) == EVP_F_INT_CTX_NEW &&
 | |
|                     ERR_GET_REASON(error) == EVP_R_UNSUPPORTED_ALGORITHM)
 | |
|                     ERR_get_error(); /* pop error from queue */
 | |
|                 if (ERR_peek_error()) {
 | |
|                     BIO_printf(bio_err,
 | |
|                                "Unhandled error in the error queue during ECDH init.\n");
 | |
|                     ERR_print_errors(bio_err);
 | |
|                     rsa_count = 1;
 | |
|                     break;
 | |
|                 }
 | |
| 
 | |
|                 if (            /* Create the context for parameter generation */
 | |
|                        !(pctx = EVP_PKEY_CTX_new_id(EVP_PKEY_EC, NULL)) ||
 | |
|                        /* Initialise the parameter generation */
 | |
|                        !EVP_PKEY_paramgen_init(pctx) ||
 | |
|                        /* Set the curve by NID */
 | |
|                        !EVP_PKEY_CTX_set_ec_paramgen_curve_nid(pctx,
 | |
|                                                                test_curves
 | |
|                                                                [testnum].nid) ||
 | |
|                        /* Create the parameter object params */
 | |
|                        !EVP_PKEY_paramgen(pctx, ¶ms)) {
 | |
|                     ecdh_checks = 0;
 | |
|                     BIO_printf(bio_err, "ECDH EC params init failure.\n");
 | |
|                     ERR_print_errors(bio_err);
 | |
|                     rsa_count = 1;
 | |
|                     break;
 | |
|                 }
 | |
|                 /* Create the context for the key generation */
 | |
|                 kctx = EVP_PKEY_CTX_new(params, NULL);
 | |
| 
 | |
|                 EVP_PKEY_free(params);
 | |
|                 params = NULL;
 | |
|                 EVP_PKEY_CTX_free(pctx);
 | |
|                 pctx = NULL;
 | |
|             }
 | |
|             if (kctx == NULL ||      /* keygen ctx is not null */
 | |
|                 !EVP_PKEY_keygen_init(kctx) /* init keygen ctx */ ) {
 | |
|                 ecdh_checks = 0;
 | |
|                 BIO_printf(bio_err, "ECDH keygen failure.\n");
 | |
|                 ERR_print_errors(bio_err);
 | |
|                 rsa_count = 1;
 | |
|                 break;
 | |
|             }
 | |
| 
 | |
|             if (!EVP_PKEY_keygen(kctx, &key_A) || /* generate secret key A */
 | |
|                 !EVP_PKEY_keygen(kctx, &key_B) || /* generate secret key B */
 | |
|                 !(ctx = EVP_PKEY_CTX_new(key_A, NULL)) || /* derivation ctx from skeyA */
 | |
|                 !EVP_PKEY_derive_init(ctx) || /* init derivation ctx */
 | |
|                 !EVP_PKEY_derive_set_peer(ctx, key_B) || /* set peer pubkey in ctx */
 | |
|                 !EVP_PKEY_derive(ctx, NULL, &outlen) || /* determine max length */
 | |
|                 outlen == 0 ||  /* ensure outlen is a valid size */
 | |
|                 outlen > MAX_ECDH_SIZE /* avoid buffer overflow */ ) {
 | |
|                 ecdh_checks = 0;
 | |
|                 BIO_printf(bio_err, "ECDH key generation failure.\n");
 | |
|                 ERR_print_errors(bio_err);
 | |
|                 rsa_count = 1;
 | |
|                 break;
 | |
|             }
 | |
| 
 | |
|             /* Here we perform a test run, comparing the output of a*B and b*A;
 | |
|              * we try this here and assume that further EVP_PKEY_derive calls
 | |
|              * never fail, so we can skip checks in the actually benchmarked
 | |
|              * code, for maximum performance. */
 | |
|             if (!(test_ctx = EVP_PKEY_CTX_new(key_B, NULL)) || /* test ctx from skeyB */
 | |
|                 !EVP_PKEY_derive_init(test_ctx) || /* init derivation test_ctx */
 | |
|                 !EVP_PKEY_derive_set_peer(test_ctx, key_A) || /* set peer pubkey in test_ctx */
 | |
|                 !EVP_PKEY_derive(test_ctx, NULL, &test_outlen) || /* determine max length */
 | |
|                 !EVP_PKEY_derive(ctx, loopargs[i].secret_a, &outlen) || /* compute a*B */
 | |
|                 !EVP_PKEY_derive(test_ctx, loopargs[i].secret_b, &test_outlen) || /* compute b*A */
 | |
|                 test_outlen != outlen /* compare output length */ ) {
 | |
|                 ecdh_checks = 0;
 | |
|                 BIO_printf(bio_err, "ECDH computation failure.\n");
 | |
|                 ERR_print_errors(bio_err);
 | |
|                 rsa_count = 1;
 | |
|                 break;
 | |
|             }
 | |
| 
 | |
|             /* Compare the computation results: CRYPTO_memcmp() returns 0 if equal */
 | |
|             if (CRYPTO_memcmp(loopargs[i].secret_a,
 | |
|                               loopargs[i].secret_b, outlen)) {
 | |
|                 ecdh_checks = 0;
 | |
|                 BIO_printf(bio_err, "ECDH computations don't match.\n");
 | |
|                 ERR_print_errors(bio_err);
 | |
|                 rsa_count = 1;
 | |
|                 break;
 | |
|             }
 | |
| 
 | |
|             loopargs[i].ecdh_ctx[testnum] = ctx;
 | |
|             loopargs[i].outlen[testnum] = outlen;
 | |
| 
 | |
|             EVP_PKEY_free(key_A);
 | |
|             EVP_PKEY_free(key_B);
 | |
|             EVP_PKEY_CTX_free(kctx);
 | |
|             kctx = NULL;
 | |
|             EVP_PKEY_CTX_free(test_ctx);
 | |
|             test_ctx = NULL;
 | |
|         }
 | |
|         if (ecdh_checks != 0) {
 | |
|             pkey_print_message("", "ecdh",
 | |
|                                ecdh_c[testnum][0],
 | |
|                                test_curves[testnum].bits, seconds.ecdh);
 | |
|             Time_F(START);
 | |
|             count =
 | |
|                 run_benchmark(async_jobs, ECDH_EVP_derive_key_loop, loopargs);
 | |
|             d = Time_F(STOP);
 | |
|             BIO_printf(bio_err,
 | |
|                        mr ? "+R7:%ld:%d:%.2f\n" :
 | |
|                        "%ld %u-bits ECDH ops in %.2fs\n", count,
 | |
|                        test_curves[testnum].bits, d);
 | |
|             ecdh_results[testnum][0] = (double)count / d;
 | |
|             rsa_count = count;
 | |
|         }
 | |
| 
 | |
|         if (rsa_count <= 1) {
 | |
|             /* if longer than 10s, don't do any more */
 | |
|             for (testnum++; testnum < OSSL_NELEM(ecdh_doit); testnum++)
 | |
|                 ecdh_doit[testnum] = 0;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for (testnum = 0; testnum < EdDSA_NUM; testnum++) {
 | |
|         int st = 1;
 | |
|         EVP_PKEY *ed_pkey = NULL;
 | |
|         EVP_PKEY_CTX *ed_pctx = NULL;
 | |
| 
 | |
|         if (!eddsa_doit[testnum])
 | |
|             continue;           /* Ignore Curve */
 | |
|         for (i = 0; i < loopargs_len; i++) {
 | |
|             loopargs[i].eddsa_ctx[testnum] = EVP_MD_CTX_new();
 | |
|             if (loopargs[i].eddsa_ctx[testnum] == NULL) {
 | |
|                 st = 0;
 | |
|                 break;
 | |
|             }
 | |
| 
 | |
|             if ((ed_pctx = EVP_PKEY_CTX_new_id(test_ed_curves[testnum].nid, NULL))
 | |
|                     == NULL
 | |
|                 || !EVP_PKEY_keygen_init(ed_pctx)
 | |
|                 || !EVP_PKEY_keygen(ed_pctx, &ed_pkey)) {
 | |
|                 st = 0;
 | |
|                 EVP_PKEY_CTX_free(ed_pctx);
 | |
|                 break;
 | |
|             }
 | |
|             EVP_PKEY_CTX_free(ed_pctx);
 | |
| 
 | |
|             if (!EVP_DigestSignInit(loopargs[i].eddsa_ctx[testnum], NULL, NULL,
 | |
|                                     NULL, ed_pkey)) {
 | |
|                 st = 0;
 | |
|                 EVP_PKEY_free(ed_pkey);
 | |
|                 break;
 | |
|             }
 | |
|             EVP_PKEY_free(ed_pkey);
 | |
|         }
 | |
|         if (st == 0) {
 | |
|             BIO_printf(bio_err, "EdDSA failure.\n");
 | |
|             ERR_print_errors(bio_err);
 | |
|             rsa_count = 1;
 | |
|         } else {
 | |
|             for (i = 0; i < loopargs_len; i++) {
 | |
|                 /* Perform EdDSA signature test */
 | |
|                 loopargs[i].sigsize = test_ed_curves[testnum].sigsize;
 | |
|                 st = EVP_DigestSign(loopargs[i].eddsa_ctx[testnum],
 | |
|                                     loopargs[i].buf2, &loopargs[i].sigsize,
 | |
|                                     loopargs[i].buf, 20);
 | |
|                 if (st == 0)
 | |
|                     break;
 | |
|             }
 | |
|             if (st == 0) {
 | |
|                 BIO_printf(bio_err,
 | |
|                            "EdDSA sign failure.  No EdDSA sign will be done.\n");
 | |
|                 ERR_print_errors(bio_err);
 | |
|                 rsa_count = 1;
 | |
|             } else {
 | |
|                 pkey_print_message("sign", test_ed_curves[testnum].name,
 | |
|                                    eddsa_c[testnum][0],
 | |
|                                    test_ed_curves[testnum].bits, seconds.eddsa);
 | |
|                 Time_F(START);
 | |
|                 count = run_benchmark(async_jobs, EdDSA_sign_loop, loopargs);
 | |
|                 d = Time_F(STOP);
 | |
| 
 | |
|                 BIO_printf(bio_err,
 | |
|                            mr ? "+R8:%ld:%u:%s:%.2f\n" :
 | |
|                            "%ld %u bits %s signs in %.2fs \n",
 | |
|                            count, test_ed_curves[testnum].bits,
 | |
|                            test_ed_curves[testnum].name, d);
 | |
|                 eddsa_results[testnum][0] = (double)count / d;
 | |
|                 rsa_count = count;
 | |
|             }
 | |
| 
 | |
|             /* Perform EdDSA verification test */
 | |
|             for (i = 0; i < loopargs_len; i++) {
 | |
|                 st = EVP_DigestVerify(loopargs[i].eddsa_ctx[testnum],
 | |
|                                       loopargs[i].buf2, loopargs[i].sigsize,
 | |
|                                       loopargs[i].buf, 20);
 | |
|                 if (st != 1)
 | |
|                     break;
 | |
|             }
 | |
|             if (st != 1) {
 | |
|                 BIO_printf(bio_err,
 | |
|                            "EdDSA verify failure.  No EdDSA verify will be done.\n");
 | |
|                 ERR_print_errors(bio_err);
 | |
|                 eddsa_doit[testnum] = 0;
 | |
|             } else {
 | |
|                 pkey_print_message("verify", test_ed_curves[testnum].name,
 | |
|                                    eddsa_c[testnum][1],
 | |
|                                    test_ed_curves[testnum].bits, seconds.eddsa);
 | |
|                 Time_F(START);
 | |
|                 count = run_benchmark(async_jobs, EdDSA_verify_loop, loopargs);
 | |
|                 d = Time_F(STOP);
 | |
|                 BIO_printf(bio_err,
 | |
|                            mr ? "+R9:%ld:%u:%s:%.2f\n"
 | |
|                            : "%ld %u bits %s verify in %.2fs\n",
 | |
|                            count, test_ed_curves[testnum].bits,
 | |
|                            test_ed_curves[testnum].name, d);
 | |
|                 eddsa_results[testnum][1] = (double)count / d;
 | |
|             }
 | |
| 
 | |
|             if (rsa_count <= 1) {
 | |
|                 /* if longer than 10s, don't do any more */
 | |
|                 for (testnum++; testnum < EdDSA_NUM; testnum++)
 | |
|                     eddsa_doit[testnum] = 0;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
| #endif                          /* OPENSSL_NO_EC */
 | |
| #ifndef NO_FORK
 | |
|  show_res:
 | |
| #endif
 | |
|     if (!mr) {
 | |
|         printf("%s\n", OpenSSL_version(OPENSSL_VERSION));
 | |
|         printf("%s\n", OpenSSL_version(OPENSSL_BUILT_ON));
 | |
|         printf("options:");
 | |
|         printf("%s ", BN_options());
 | |
| #ifndef OPENSSL_NO_MD2
 | |
|         printf("%s ", MD2_options());
 | |
| #endif
 | |
| #ifndef OPENSSL_NO_RC4
 | |
|         printf("%s ", RC4_options());
 | |
| #endif
 | |
| #ifndef OPENSSL_NO_DES
 | |
|         printf("%s ", DES_options());
 | |
| #endif
 | |
|         printf("%s ", AES_options());
 | |
| #ifndef OPENSSL_NO_IDEA
 | |
|         printf("%s ", IDEA_options());
 | |
| #endif
 | |
| #ifndef OPENSSL_NO_BF
 | |
|         printf("%s ", BF_options());
 | |
| #endif
 | |
|         printf("\n%s\n", OpenSSL_version(OPENSSL_CFLAGS));
 | |
|     }
 | |
| 
 | |
|     if (pr_header) {
 | |
|         if (mr)
 | |
|             printf("+H");
 | |
|         else {
 | |
|             printf
 | |
|                 ("The 'numbers' are in 1000s of bytes per second processed.\n");
 | |
|             printf("type        ");
 | |
|         }
 | |
|         for (testnum = 0; testnum < size_num; testnum++)
 | |
|             printf(mr ? ":%d" : "%7d bytes", lengths[testnum]);
 | |
|         printf("\n");
 | |
|     }
 | |
| 
 | |
|     for (k = 0; k < ALGOR_NUM; k++) {
 | |
|         if (!doit[k])
 | |
|             continue;
 | |
|         if (mr)
 | |
|             printf("+F:%u:%s", k, names[k]);
 | |
|         else
 | |
|             printf("%-13s", names[k]);
 | |
|         for (testnum = 0; testnum < size_num; testnum++) {
 | |
|             if (results[k][testnum] > 10000 && !mr)
 | |
|                 printf(" %11.2fk", results[k][testnum] / 1e3);
 | |
|             else
 | |
|                 printf(mr ? ":%.2f" : " %11.2f ", results[k][testnum]);
 | |
|         }
 | |
|         printf("\n");
 | |
|     }
 | |
| #ifndef OPENSSL_NO_RSA
 | |
|     testnum = 1;
 | |
|     for (k = 0; k < RSA_NUM; k++) {
 | |
|         if (!rsa_doit[k])
 | |
|             continue;
 | |
|         if (testnum && !mr) {
 | |
|             printf("%18ssign    verify    sign/s verify/s\n", " ");
 | |
|             testnum = 0;
 | |
|         }
 | |
|         if (mr)
 | |
|             printf("+F2:%u:%u:%f:%f\n",
 | |
|                    k, rsa_bits[k], rsa_results[k][0], rsa_results[k][1]);
 | |
|         else
 | |
|             printf("rsa %4u bits %8.6fs %8.6fs %8.1f %8.1f\n",
 | |
|                    rsa_bits[k], 1.0 / rsa_results[k][0], 1.0 / rsa_results[k][1],
 | |
|                    rsa_results[k][0], rsa_results[k][1]);
 | |
|     }
 | |
| #endif
 | |
| #ifndef OPENSSL_NO_DSA
 | |
|     testnum = 1;
 | |
|     for (k = 0; k < DSA_NUM; k++) {
 | |
|         if (!dsa_doit[k])
 | |
|             continue;
 | |
|         if (testnum && !mr) {
 | |
|             printf("%18ssign    verify    sign/s verify/s\n", " ");
 | |
|             testnum = 0;
 | |
|         }
 | |
|         if (mr)
 | |
|             printf("+F3:%u:%u:%f:%f\n",
 | |
|                    k, dsa_bits[k], dsa_results[k][0], dsa_results[k][1]);
 | |
|         else
 | |
|             printf("dsa %4u bits %8.6fs %8.6fs %8.1f %8.1f\n",
 | |
|                    dsa_bits[k], 1.0 / dsa_results[k][0], 1.0 / dsa_results[k][1],
 | |
|                    dsa_results[k][0], dsa_results[k][1]);
 | |
|     }
 | |
| #endif
 | |
| #ifndef OPENSSL_NO_EC
 | |
|     testnum = 1;
 | |
|     for (k = 0; k < OSSL_NELEM(ecdsa_doit); k++) {
 | |
|         if (!ecdsa_doit[k])
 | |
|             continue;
 | |
|         if (testnum && !mr) {
 | |
|             printf("%30ssign    verify    sign/s verify/s\n", " ");
 | |
|             testnum = 0;
 | |
|         }
 | |
| 
 | |
|         if (mr)
 | |
|             printf("+F4:%u:%u:%f:%f\n",
 | |
|                    k, test_curves[k].bits,
 | |
|                    ecdsa_results[k][0], ecdsa_results[k][1]);
 | |
|         else
 | |
|             printf("%4u bits ecdsa (%s) %8.4fs %8.4fs %8.1f %8.1f\n",
 | |
|                    test_curves[k].bits, test_curves[k].name,
 | |
|                    1.0 / ecdsa_results[k][0], 1.0 / ecdsa_results[k][1],
 | |
|                    ecdsa_results[k][0], ecdsa_results[k][1]);
 | |
|     }
 | |
| 
 | |
|     testnum = 1;
 | |
|     for (k = 0; k < EC_NUM; k++) {
 | |
|         if (!ecdh_doit[k])
 | |
|             continue;
 | |
|         if (testnum && !mr) {
 | |
|             printf("%30sop      op/s\n", " ");
 | |
|             testnum = 0;
 | |
|         }
 | |
|         if (mr)
 | |
|             printf("+F5:%u:%u:%f:%f\n",
 | |
|                    k, test_curves[k].bits,
 | |
|                    ecdh_results[k][0], 1.0 / ecdh_results[k][0]);
 | |
| 
 | |
|         else
 | |
|             printf("%4u bits ecdh (%s) %8.4fs %8.1f\n",
 | |
|                    test_curves[k].bits, test_curves[k].name,
 | |
|                    1.0 / ecdh_results[k][0], ecdh_results[k][0]);
 | |
|     }
 | |
| 
 | |
|     testnum = 1;
 | |
|     for (k = 0; k < OSSL_NELEM(eddsa_doit); k++) {
 | |
|         if (!eddsa_doit[k])
 | |
|             continue;
 | |
|         if (testnum && !mr) {
 | |
|             printf("%30ssign    verify    sign/s verify/s\n", " ");
 | |
|             testnum = 0;
 | |
|         }
 | |
| 
 | |
|         if (mr)
 | |
|             printf("+F6:%u:%u:%s:%f:%f\n",
 | |
|                    k, test_ed_curves[k].bits, test_ed_curves[k].name,
 | |
|                    eddsa_results[k][0], eddsa_results[k][1]);
 | |
|         else
 | |
|             printf("%4u bits EdDSA (%s) %8.4fs %8.4fs %8.1f %8.1f\n",
 | |
|                    test_ed_curves[k].bits, test_ed_curves[k].name,
 | |
|                    1.0 / eddsa_results[k][0], 1.0 / eddsa_results[k][1],
 | |
|                    eddsa_results[k][0], eddsa_results[k][1]);
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     ret = 0;
 | |
| 
 | |
|  end:
 | |
|     ERR_print_errors(bio_err);
 | |
|     for (i = 0; i < loopargs_len; i++) {
 | |
|         OPENSSL_free(loopargs[i].buf_malloc);
 | |
|         OPENSSL_free(loopargs[i].buf2_malloc);
 | |
| 
 | |
| #ifndef OPENSSL_NO_RSA
 | |
|         for (k = 0; k < RSA_NUM; k++)
 | |
|             RSA_free(loopargs[i].rsa_key[k]);
 | |
| #endif
 | |
| #ifndef OPENSSL_NO_DSA
 | |
|         for (k = 0; k < DSA_NUM; k++)
 | |
|             DSA_free(loopargs[i].dsa_key[k]);
 | |
| #endif
 | |
| #ifndef OPENSSL_NO_EC
 | |
|         for (k = 0; k < ECDSA_NUM; k++)
 | |
|             EC_KEY_free(loopargs[i].ecdsa[k]);
 | |
|         for (k = 0; k < EC_NUM; k++)
 | |
|             EVP_PKEY_CTX_free(loopargs[i].ecdh_ctx[k]);
 | |
|         for (k = 0; k < EdDSA_NUM; k++)
 | |
|             EVP_MD_CTX_free(loopargs[i].eddsa_ctx[k]);
 | |
|         OPENSSL_free(loopargs[i].secret_a);
 | |
|         OPENSSL_free(loopargs[i].secret_b);
 | |
| #endif
 | |
|     }
 | |
| 
 | |
|     if (async_jobs > 0) {
 | |
|         for (i = 0; i < loopargs_len; i++)
 | |
|             ASYNC_WAIT_CTX_free(loopargs[i].wait_ctx);
 | |
|     }
 | |
| 
 | |
|     if (async_init) {
 | |
|         ASYNC_cleanup_thread();
 | |
|     }
 | |
|     OPENSSL_free(loopargs);
 | |
|     release_engine(e);
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static void print_message(const char *s, long num, int length, int tm)
 | |
| {
 | |
| #ifdef SIGALRM
 | |
|     BIO_printf(bio_err,
 | |
|                mr ? "+DT:%s:%d:%d\n"
 | |
|                : "Doing %s for %ds on %d size blocks: ", s, tm, length);
 | |
|     (void)BIO_flush(bio_err);
 | |
|     alarm(tm);
 | |
| #else
 | |
|     BIO_printf(bio_err,
 | |
|                mr ? "+DN:%s:%ld:%d\n"
 | |
|                : "Doing %s %ld times on %d size blocks: ", s, num, length);
 | |
|     (void)BIO_flush(bio_err);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static void pkey_print_message(const char *str, const char *str2, long num,
 | |
|                                unsigned int bits, int tm)
 | |
| {
 | |
| #ifdef SIGALRM
 | |
|     BIO_printf(bio_err,
 | |
|                mr ? "+DTP:%d:%s:%s:%d\n"
 | |
|                : "Doing %u bits %s %s's for %ds: ", bits, str, str2, tm);
 | |
|     (void)BIO_flush(bio_err);
 | |
|     alarm(tm);
 | |
| #else
 | |
|     BIO_printf(bio_err,
 | |
|                mr ? "+DNP:%ld:%d:%s:%s\n"
 | |
|                : "Doing %ld %u bits %s %s's: ", num, bits, str, str2);
 | |
|     (void)BIO_flush(bio_err);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static void print_result(int alg, int run_no, int count, double time_used)
 | |
| {
 | |
|     if (count == -1) {
 | |
|         BIO_puts(bio_err, "EVP error!\n");
 | |
|         exit(1);
 | |
|     }
 | |
|     BIO_printf(bio_err,
 | |
|                mr ? "+R:%d:%s:%f\n"
 | |
|                : "%d %s's in %.2fs\n", count, names[alg], time_used);
 | |
|     results[alg][run_no] = ((double)count) / time_used * lengths[run_no];
 | |
| }
 | |
| 
 | |
| #ifndef NO_FORK
 | |
| static char *sstrsep(char **string, const char *delim)
 | |
| {
 | |
|     char isdelim[256];
 | |
|     char *token = *string;
 | |
| 
 | |
|     if (**string == 0)
 | |
|         return NULL;
 | |
| 
 | |
|     memset(isdelim, 0, sizeof(isdelim));
 | |
|     isdelim[0] = 1;
 | |
| 
 | |
|     while (*delim) {
 | |
|         isdelim[(unsigned char)(*delim)] = 1;
 | |
|         delim++;
 | |
|     }
 | |
| 
 | |
|     while (!isdelim[(unsigned char)(**string)]) {
 | |
|         (*string)++;
 | |
|     }
 | |
| 
 | |
|     if (**string) {
 | |
|         **string = 0;
 | |
|         (*string)++;
 | |
|     }
 | |
| 
 | |
|     return token;
 | |
| }
 | |
| 
 | |
| static int do_multi(int multi, int size_num)
 | |
| {
 | |
|     int n;
 | |
|     int fd[2];
 | |
|     int *fds;
 | |
|     static char sep[] = ":";
 | |
| 
 | |
|     fds = app_malloc(sizeof(*fds) * multi, "fd buffer for do_multi");
 | |
|     for (n = 0; n < multi; ++n) {
 | |
|         if (pipe(fd) == -1) {
 | |
|             BIO_printf(bio_err, "pipe failure\n");
 | |
|             exit(1);
 | |
|         }
 | |
|         fflush(stdout);
 | |
|         (void)BIO_flush(bio_err);
 | |
|         if (fork()) {
 | |
|             close(fd[1]);
 | |
|             fds[n] = fd[0];
 | |
|         } else {
 | |
|             close(fd[0]);
 | |
|             close(1);
 | |
|             if (dup(fd[1]) == -1) {
 | |
|                 BIO_printf(bio_err, "dup failed\n");
 | |
|                 exit(1);
 | |
|             }
 | |
|             close(fd[1]);
 | |
|             mr = 1;
 | |
|             usertime = 0;
 | |
|             free(fds);
 | |
|             return 0;
 | |
|         }
 | |
|         printf("Forked child %d\n", n);
 | |
|     }
 | |
| 
 | |
|     /* for now, assume the pipe is long enough to take all the output */
 | |
|     for (n = 0; n < multi; ++n) {
 | |
|         FILE *f;
 | |
|         char buf[1024];
 | |
|         char *p;
 | |
| 
 | |
|         f = fdopen(fds[n], "r");
 | |
|         while (fgets(buf, sizeof(buf), f)) {
 | |
|             p = strchr(buf, '\n');
 | |
|             if (p)
 | |
|                 *p = '\0';
 | |
|             if (buf[0] != '+') {
 | |
|                 BIO_printf(bio_err,
 | |
|                            "Don't understand line '%s' from child %d\n", buf,
 | |
|                            n);
 | |
|                 continue;
 | |
|             }
 | |
|             printf("Got: %s from %d\n", buf, n);
 | |
|             if (strncmp(buf, "+F:", 3) == 0) {
 | |
|                 int alg;
 | |
|                 int j;
 | |
| 
 | |
|                 p = buf + 3;
 | |
|                 alg = atoi(sstrsep(&p, sep));
 | |
|                 sstrsep(&p, sep);
 | |
|                 for (j = 0; j < size_num; ++j)
 | |
|                     results[alg][j] += atof(sstrsep(&p, sep));
 | |
|             } else if (strncmp(buf, "+F2:", 4) == 0) {
 | |
|                 int k;
 | |
|                 double d;
 | |
| 
 | |
|                 p = buf + 4;
 | |
|                 k = atoi(sstrsep(&p, sep));
 | |
|                 sstrsep(&p, sep);
 | |
| 
 | |
|                 d = atof(sstrsep(&p, sep));
 | |
|                 rsa_results[k][0] += d;
 | |
| 
 | |
|                 d = atof(sstrsep(&p, sep));
 | |
|                 rsa_results[k][1] += d;
 | |
|             }
 | |
| # ifndef OPENSSL_NO_DSA
 | |
|             else if (strncmp(buf, "+F3:", 4) == 0) {
 | |
|                 int k;
 | |
|                 double d;
 | |
| 
 | |
|                 p = buf + 4;
 | |
|                 k = atoi(sstrsep(&p, sep));
 | |
|                 sstrsep(&p, sep);
 | |
| 
 | |
|                 d = atof(sstrsep(&p, sep));
 | |
|                 dsa_results[k][0] += d;
 | |
| 
 | |
|                 d = atof(sstrsep(&p, sep));
 | |
|                 dsa_results[k][1] += d;
 | |
|             }
 | |
| # endif
 | |
| # ifndef OPENSSL_NO_EC
 | |
|             else if (strncmp(buf, "+F4:", 4) == 0) {
 | |
|                 int k;
 | |
|                 double d;
 | |
| 
 | |
|                 p = buf + 4;
 | |
|                 k = atoi(sstrsep(&p, sep));
 | |
|                 sstrsep(&p, sep);
 | |
| 
 | |
|                 d = atof(sstrsep(&p, sep));
 | |
|                 ecdsa_results[k][0] += d;
 | |
| 
 | |
|                 d = atof(sstrsep(&p, sep));
 | |
|                 ecdsa_results[k][1] += d;
 | |
|             } else if (strncmp(buf, "+F5:", 4) == 0) {
 | |
|                 int k;
 | |
|                 double d;
 | |
| 
 | |
|                 p = buf + 4;
 | |
|                 k = atoi(sstrsep(&p, sep));
 | |
|                 sstrsep(&p, sep);
 | |
| 
 | |
|                 d = atof(sstrsep(&p, sep));
 | |
|                 ecdh_results[k][0] += d;
 | |
|             } else if (strncmp(buf, "+F6:", 4) == 0) {
 | |
|                 int k;
 | |
|                 double d;
 | |
| 
 | |
|                 p = buf + 4;
 | |
|                 k = atoi(sstrsep(&p, sep));
 | |
|                 sstrsep(&p, sep);
 | |
| 
 | |
|                 d = atof(sstrsep(&p, sep));
 | |
|                 eddsa_results[k][0] += d;
 | |
| 
 | |
|                 d = atof(sstrsep(&p, sep));
 | |
|                 eddsa_results[k][1] += d;
 | |
|             }
 | |
| # endif
 | |
| 
 | |
|             else if (strncmp(buf, "+H:", 3) == 0) {
 | |
|                 ;
 | |
|             } else
 | |
|                 BIO_printf(bio_err, "Unknown type '%s' from child %d\n", buf,
 | |
|                            n);
 | |
|         }
 | |
| 
 | |
|         fclose(f);
 | |
|     }
 | |
|     free(fds);
 | |
|     return 1;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static void multiblock_speed(const EVP_CIPHER *evp_cipher, int lengths_single,
 | |
|                              const openssl_speed_sec_t *seconds)
 | |
| {
 | |
|     static const int mblengths_list[] =
 | |
|         { 8 * 1024, 2 * 8 * 1024, 4 * 8 * 1024, 8 * 8 * 1024, 8 * 16 * 1024 };
 | |
|     const int *mblengths = mblengths_list;
 | |
|     int j, count, keylen, num = OSSL_NELEM(mblengths_list);
 | |
|     const char *alg_name;
 | |
|     unsigned char *inp, *out, *key, no_key[32], no_iv[16];
 | |
|     EVP_CIPHER_CTX *ctx;
 | |
|     double d = 0.0;
 | |
| 
 | |
|     if (lengths_single) {
 | |
|         mblengths = &lengths_single;
 | |
|         num = 1;
 | |
|     }
 | |
| 
 | |
|     inp = app_malloc(mblengths[num - 1], "multiblock input buffer");
 | |
|     out = app_malloc(mblengths[num - 1] + 1024, "multiblock output buffer");
 | |
|     ctx = EVP_CIPHER_CTX_new();
 | |
|     EVP_EncryptInit_ex(ctx, evp_cipher, NULL, NULL, no_iv);
 | |
| 
 | |
|     keylen = EVP_CIPHER_CTX_key_length(ctx);
 | |
|     key = app_malloc(keylen, "evp_cipher key");
 | |
|     EVP_CIPHER_CTX_rand_key(ctx, key);
 | |
|     EVP_EncryptInit_ex(ctx, NULL, NULL, key, NULL);
 | |
|     OPENSSL_clear_free(key, keylen);
 | |
| 
 | |
|     EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_MAC_KEY, sizeof(no_key), no_key);
 | |
|     alg_name = OBJ_nid2ln(EVP_CIPHER_nid(evp_cipher));
 | |
| 
 | |
|     for (j = 0; j < num; j++) {
 | |
|         print_message(alg_name, 0, mblengths[j], seconds->sym);
 | |
|         Time_F(START);
 | |
|         for (count = 0, run = 1; run && count < 0x7fffffff; count++) {
 | |
|             unsigned char aad[EVP_AEAD_TLS1_AAD_LEN];
 | |
|             EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM mb_param;
 | |
|             size_t len = mblengths[j];
 | |
|             int packlen;
 | |
| 
 | |
|             memset(aad, 0, 8);  /* avoid uninitialized values */
 | |
|             aad[8] = 23;        /* SSL3_RT_APPLICATION_DATA */
 | |
|             aad[9] = 3;         /* version */
 | |
|             aad[10] = 2;
 | |
|             aad[11] = 0;        /* length */
 | |
|             aad[12] = 0;
 | |
|             mb_param.out = NULL;
 | |
|             mb_param.inp = aad;
 | |
|             mb_param.len = len;
 | |
|             mb_param.interleave = 8;
 | |
| 
 | |
|             packlen = EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_TLS1_1_MULTIBLOCK_AAD,
 | |
|                                           sizeof(mb_param), &mb_param);
 | |
| 
 | |
|             if (packlen > 0) {
 | |
|                 mb_param.out = out;
 | |
|                 mb_param.inp = inp;
 | |
|                 mb_param.len = len;
 | |
|                 EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_TLS1_1_MULTIBLOCK_ENCRYPT,
 | |
|                                     sizeof(mb_param), &mb_param);
 | |
|             } else {
 | |
|                 int pad;
 | |
| 
 | |
|                 RAND_bytes(out, 16);
 | |
|                 len += 16;
 | |
|                 aad[11] = (unsigned char)(len >> 8);
 | |
|                 aad[12] = (unsigned char)(len);
 | |
|                 pad = EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_TLS1_AAD,
 | |
|                                           EVP_AEAD_TLS1_AAD_LEN, aad);
 | |
|                 EVP_Cipher(ctx, out, inp, len + pad);
 | |
|             }
 | |
|         }
 | |
|         d = Time_F(STOP);
 | |
|         BIO_printf(bio_err, mr ? "+R:%d:%s:%f\n"
 | |
|                    : "%d %s's in %.2fs\n", count, "evp", d);
 | |
|         results[D_EVP][j] = ((double)count) / d * mblengths[j];
 | |
|     }
 | |
| 
 | |
|     if (mr) {
 | |
|         fprintf(stdout, "+H");
 | |
|         for (j = 0; j < num; j++)
 | |
|             fprintf(stdout, ":%d", mblengths[j]);
 | |
|         fprintf(stdout, "\n");
 | |
|         fprintf(stdout, "+F:%d:%s", D_EVP, alg_name);
 | |
|         for (j = 0; j < num; j++)
 | |
|             fprintf(stdout, ":%.2f", results[D_EVP][j]);
 | |
|         fprintf(stdout, "\n");
 | |
|     } else {
 | |
|         fprintf(stdout,
 | |
|                 "The 'numbers' are in 1000s of bytes per second processed.\n");
 | |
|         fprintf(stdout, "type                    ");
 | |
|         for (j = 0; j < num; j++)
 | |
|             fprintf(stdout, "%7d bytes", mblengths[j]);
 | |
|         fprintf(stdout, "\n");
 | |
|         fprintf(stdout, "%-24s", alg_name);
 | |
| 
 | |
|         for (j = 0; j < num; j++) {
 | |
|             if (results[D_EVP][j] > 10000)
 | |
|                 fprintf(stdout, " %11.2fk", results[D_EVP][j] / 1e3);
 | |
|             else
 | |
|                 fprintf(stdout, " %11.2f ", results[D_EVP][j]);
 | |
|         }
 | |
|         fprintf(stdout, "\n");
 | |
|     }
 | |
| 
 | |
|     OPENSSL_free(inp);
 | |
|     OPENSSL_free(out);
 | |
|     EVP_CIPHER_CTX_free(ctx);
 | |
| }
 |