mirror of
				https://github.com/ossrs/srs.git
				synced 2025-03-09 15:49:59 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			646 lines
		
	
	
	
		
			17 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			646 lines
		
	
	
	
		
			17 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright 2015-2018 The OpenSSL Project Authors. All Rights Reserved.
 | |
|  * Copyright 2004-2014, Akamai Technologies. All Rights Reserved.
 | |
|  *
 | |
|  * Licensed under the OpenSSL license (the "License").  You may not use
 | |
|  * this file except in compliance with the License.  You can obtain a copy
 | |
|  * in the file LICENSE in the source distribution or at
 | |
|  * https://www.openssl.org/source/license.html
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * This file is in two halves. The first half implements the public API
 | |
|  * to be used by external consumers, and to be used by OpenSSL to store
 | |
|  * data in a "secure arena." The second half implements the secure arena.
 | |
|  * For details on that implementation, see below (look for uppercase
 | |
|  * "SECURE HEAP IMPLEMENTATION").
 | |
|  */
 | |
| #include "e_os.h"
 | |
| #include <openssl/crypto.h>
 | |
| 
 | |
| #include <string.h>
 | |
| 
 | |
| /* e_os.h defines OPENSSL_SECURE_MEMORY if secure memory can be implemented */
 | |
| #ifdef OPENSSL_SECURE_MEMORY
 | |
| # include <stdlib.h>
 | |
| # include <assert.h>
 | |
| # include <unistd.h>
 | |
| # include <sys/types.h>
 | |
| # include <sys/mman.h>
 | |
| # if defined(OPENSSL_SYS_LINUX)
 | |
| #  include <sys/syscall.h>
 | |
| #  if defined(SYS_mlock2)
 | |
| #   include <linux/mman.h>
 | |
| #   include <errno.h>
 | |
| #  endif
 | |
| # endif
 | |
| # include <sys/param.h>
 | |
| # include <sys/stat.h>
 | |
| # include <fcntl.h>
 | |
| #endif
 | |
| 
 | |
| #define CLEAR(p, s) OPENSSL_cleanse(p, s)
 | |
| #ifndef PAGE_SIZE
 | |
| # define PAGE_SIZE    4096
 | |
| #endif
 | |
| #if !defined(MAP_ANON) && defined(MAP_ANONYMOUS)
 | |
| # define MAP_ANON MAP_ANONYMOUS
 | |
| #endif
 | |
| 
 | |
| #ifdef OPENSSL_SECURE_MEMORY
 | |
| static size_t secure_mem_used;
 | |
| 
 | |
| static int secure_mem_initialized;
 | |
| 
 | |
| static CRYPTO_RWLOCK *sec_malloc_lock = NULL;
 | |
| 
 | |
| /*
 | |
|  * These are the functions that must be implemented by a secure heap (sh).
 | |
|  */
 | |
| static int sh_init(size_t size, int minsize);
 | |
| static void *sh_malloc(size_t size);
 | |
| static void sh_free(void *ptr);
 | |
| static void sh_done(void);
 | |
| static size_t sh_actual_size(char *ptr);
 | |
| static int sh_allocated(const char *ptr);
 | |
| #endif
 | |
| 
 | |
| int CRYPTO_secure_malloc_init(size_t size, int minsize)
 | |
| {
 | |
| #ifdef OPENSSL_SECURE_MEMORY
 | |
|     int ret = 0;
 | |
| 
 | |
|     if (!secure_mem_initialized) {
 | |
|         sec_malloc_lock = CRYPTO_THREAD_lock_new();
 | |
|         if (sec_malloc_lock == NULL)
 | |
|             return 0;
 | |
|         if ((ret = sh_init(size, minsize)) != 0) {
 | |
|             secure_mem_initialized = 1;
 | |
|         } else {
 | |
|             CRYPTO_THREAD_lock_free(sec_malloc_lock);
 | |
|             sec_malloc_lock = NULL;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return ret;
 | |
| #else
 | |
|     return 0;
 | |
| #endif /* OPENSSL_SECURE_MEMORY */
 | |
| }
 | |
| 
 | |
| int CRYPTO_secure_malloc_done(void)
 | |
| {
 | |
| #ifdef OPENSSL_SECURE_MEMORY
 | |
|     if (secure_mem_used == 0) {
 | |
|         sh_done();
 | |
|         secure_mem_initialized = 0;
 | |
|         CRYPTO_THREAD_lock_free(sec_malloc_lock);
 | |
|         sec_malloc_lock = NULL;
 | |
|         return 1;
 | |
|     }
 | |
| #endif /* OPENSSL_SECURE_MEMORY */
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| int CRYPTO_secure_malloc_initialized(void)
 | |
| {
 | |
| #ifdef OPENSSL_SECURE_MEMORY
 | |
|     return secure_mem_initialized;
 | |
| #else
 | |
|     return 0;
 | |
| #endif /* OPENSSL_SECURE_MEMORY */
 | |
| }
 | |
| 
 | |
| void *CRYPTO_secure_malloc(size_t num, const char *file, int line)
 | |
| {
 | |
| #ifdef OPENSSL_SECURE_MEMORY
 | |
|     void *ret;
 | |
|     size_t actual_size;
 | |
| 
 | |
|     if (!secure_mem_initialized) {
 | |
|         return CRYPTO_malloc(num, file, line);
 | |
|     }
 | |
|     CRYPTO_THREAD_write_lock(sec_malloc_lock);
 | |
|     ret = sh_malloc(num);
 | |
|     actual_size = ret ? sh_actual_size(ret) : 0;
 | |
|     secure_mem_used += actual_size;
 | |
|     CRYPTO_THREAD_unlock(sec_malloc_lock);
 | |
|     return ret;
 | |
| #else
 | |
|     return CRYPTO_malloc(num, file, line);
 | |
| #endif /* OPENSSL_SECURE_MEMORY */
 | |
| }
 | |
| 
 | |
| void *CRYPTO_secure_zalloc(size_t num, const char *file, int line)
 | |
| {
 | |
| #ifdef OPENSSL_SECURE_MEMORY
 | |
|     if (secure_mem_initialized)
 | |
|         /* CRYPTO_secure_malloc() zeroes allocations when it is implemented */
 | |
|         return CRYPTO_secure_malloc(num, file, line);
 | |
| #endif
 | |
|     return CRYPTO_zalloc(num, file, line);
 | |
| }
 | |
| 
 | |
| void CRYPTO_secure_free(void *ptr, const char *file, int line)
 | |
| {
 | |
| #ifdef OPENSSL_SECURE_MEMORY
 | |
|     size_t actual_size;
 | |
| 
 | |
|     if (ptr == NULL)
 | |
|         return;
 | |
|     if (!CRYPTO_secure_allocated(ptr)) {
 | |
|         CRYPTO_free(ptr, file, line);
 | |
|         return;
 | |
|     }
 | |
|     CRYPTO_THREAD_write_lock(sec_malloc_lock);
 | |
|     actual_size = sh_actual_size(ptr);
 | |
|     CLEAR(ptr, actual_size);
 | |
|     secure_mem_used -= actual_size;
 | |
|     sh_free(ptr);
 | |
|     CRYPTO_THREAD_unlock(sec_malloc_lock);
 | |
| #else
 | |
|     CRYPTO_free(ptr, file, line);
 | |
| #endif /* OPENSSL_SECURE_MEMORY */
 | |
| }
 | |
| 
 | |
| void CRYPTO_secure_clear_free(void *ptr, size_t num,
 | |
|                               const char *file, int line)
 | |
| {
 | |
| #ifdef OPENSSL_SECURE_MEMORY
 | |
|     size_t actual_size;
 | |
| 
 | |
|     if (ptr == NULL)
 | |
|         return;
 | |
|     if (!CRYPTO_secure_allocated(ptr)) {
 | |
|         OPENSSL_cleanse(ptr, num);
 | |
|         CRYPTO_free(ptr, file, line);
 | |
|         return;
 | |
|     }
 | |
|     CRYPTO_THREAD_write_lock(sec_malloc_lock);
 | |
|     actual_size = sh_actual_size(ptr);
 | |
|     CLEAR(ptr, actual_size);
 | |
|     secure_mem_used -= actual_size;
 | |
|     sh_free(ptr);
 | |
|     CRYPTO_THREAD_unlock(sec_malloc_lock);
 | |
| #else
 | |
|     if (ptr == NULL)
 | |
|         return;
 | |
|     OPENSSL_cleanse(ptr, num);
 | |
|     CRYPTO_free(ptr, file, line);
 | |
| #endif /* OPENSSL_SECURE_MEMORY */
 | |
| }
 | |
| 
 | |
| int CRYPTO_secure_allocated(const void *ptr)
 | |
| {
 | |
| #ifdef OPENSSL_SECURE_MEMORY
 | |
|     int ret;
 | |
| 
 | |
|     if (!secure_mem_initialized)
 | |
|         return 0;
 | |
|     CRYPTO_THREAD_write_lock(sec_malloc_lock);
 | |
|     ret = sh_allocated(ptr);
 | |
|     CRYPTO_THREAD_unlock(sec_malloc_lock);
 | |
|     return ret;
 | |
| #else
 | |
|     return 0;
 | |
| #endif /* OPENSSL_SECURE_MEMORY */
 | |
| }
 | |
| 
 | |
| size_t CRYPTO_secure_used(void)
 | |
| {
 | |
| #ifdef OPENSSL_SECURE_MEMORY
 | |
|     return secure_mem_used;
 | |
| #else
 | |
|     return 0;
 | |
| #endif /* OPENSSL_SECURE_MEMORY */
 | |
| }
 | |
| 
 | |
| size_t CRYPTO_secure_actual_size(void *ptr)
 | |
| {
 | |
| #ifdef OPENSSL_SECURE_MEMORY
 | |
|     size_t actual_size;
 | |
| 
 | |
|     CRYPTO_THREAD_write_lock(sec_malloc_lock);
 | |
|     actual_size = sh_actual_size(ptr);
 | |
|     CRYPTO_THREAD_unlock(sec_malloc_lock);
 | |
|     return actual_size;
 | |
| #else
 | |
|     return 0;
 | |
| #endif
 | |
| }
 | |
| /* END OF PAGE ...
 | |
| 
 | |
|    ... START OF PAGE */
 | |
| 
 | |
| /*
 | |
|  * SECURE HEAP IMPLEMENTATION
 | |
|  */
 | |
| #ifdef OPENSSL_SECURE_MEMORY
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * The implementation provided here uses a fixed-sized mmap() heap,
 | |
|  * which is locked into memory, not written to core files, and protected
 | |
|  * on either side by an unmapped page, which will catch pointer overruns
 | |
|  * (or underruns) and an attempt to read data out of the secure heap.
 | |
|  * Free'd memory is zero'd or otherwise cleansed.
 | |
|  *
 | |
|  * This is a pretty standard buddy allocator.  We keep areas in a multiple
 | |
|  * of "sh.minsize" units.  The freelist and bitmaps are kept separately,
 | |
|  * so all (and only) data is kept in the mmap'd heap.
 | |
|  *
 | |
|  * This code assumes eight-bit bytes.  The numbers 3 and 7 are all over the
 | |
|  * place.
 | |
|  */
 | |
| 
 | |
| #define ONE ((size_t)1)
 | |
| 
 | |
| # define TESTBIT(t, b)  (t[(b) >> 3] &  (ONE << ((b) & 7)))
 | |
| # define SETBIT(t, b)   (t[(b) >> 3] |= (ONE << ((b) & 7)))
 | |
| # define CLEARBIT(t, b) (t[(b) >> 3] &= (0xFF & ~(ONE << ((b) & 7))))
 | |
| 
 | |
| #define WITHIN_ARENA(p) \
 | |
|     ((char*)(p) >= sh.arena && (char*)(p) < &sh.arena[sh.arena_size])
 | |
| #define WITHIN_FREELIST(p) \
 | |
|     ((char*)(p) >= (char*)sh.freelist && (char*)(p) < (char*)&sh.freelist[sh.freelist_size])
 | |
| 
 | |
| 
 | |
| typedef struct sh_list_st
 | |
| {
 | |
|     struct sh_list_st *next;
 | |
|     struct sh_list_st **p_next;
 | |
| } SH_LIST;
 | |
| 
 | |
| typedef struct sh_st
 | |
| {
 | |
|     char* map_result;
 | |
|     size_t map_size;
 | |
|     char *arena;
 | |
|     size_t arena_size;
 | |
|     char **freelist;
 | |
|     ossl_ssize_t freelist_size;
 | |
|     size_t minsize;
 | |
|     unsigned char *bittable;
 | |
|     unsigned char *bitmalloc;
 | |
|     size_t bittable_size; /* size in bits */
 | |
| } SH;
 | |
| 
 | |
| static SH sh;
 | |
| 
 | |
| static size_t sh_getlist(char *ptr)
 | |
| {
 | |
|     ossl_ssize_t list = sh.freelist_size - 1;
 | |
|     size_t bit = (sh.arena_size + ptr - sh.arena) / sh.minsize;
 | |
| 
 | |
|     for (; bit; bit >>= 1, list--) {
 | |
|         if (TESTBIT(sh.bittable, bit))
 | |
|             break;
 | |
|         OPENSSL_assert((bit & 1) == 0);
 | |
|     }
 | |
| 
 | |
|     return list;
 | |
| }
 | |
| 
 | |
| 
 | |
| static int sh_testbit(char *ptr, int list, unsigned char *table)
 | |
| {
 | |
|     size_t bit;
 | |
| 
 | |
|     OPENSSL_assert(list >= 0 && list < sh.freelist_size);
 | |
|     OPENSSL_assert(((ptr - sh.arena) & ((sh.arena_size >> list) - 1)) == 0);
 | |
|     bit = (ONE << list) + ((ptr - sh.arena) / (sh.arena_size >> list));
 | |
|     OPENSSL_assert(bit > 0 && bit < sh.bittable_size);
 | |
|     return TESTBIT(table, bit);
 | |
| }
 | |
| 
 | |
| static void sh_clearbit(char *ptr, int list, unsigned char *table)
 | |
| {
 | |
|     size_t bit;
 | |
| 
 | |
|     OPENSSL_assert(list >= 0 && list < sh.freelist_size);
 | |
|     OPENSSL_assert(((ptr - sh.arena) & ((sh.arena_size >> list) - 1)) == 0);
 | |
|     bit = (ONE << list) + ((ptr - sh.arena) / (sh.arena_size >> list));
 | |
|     OPENSSL_assert(bit > 0 && bit < sh.bittable_size);
 | |
|     OPENSSL_assert(TESTBIT(table, bit));
 | |
|     CLEARBIT(table, bit);
 | |
| }
 | |
| 
 | |
| static void sh_setbit(char *ptr, int list, unsigned char *table)
 | |
| {
 | |
|     size_t bit;
 | |
| 
 | |
|     OPENSSL_assert(list >= 0 && list < sh.freelist_size);
 | |
|     OPENSSL_assert(((ptr - sh.arena) & ((sh.arena_size >> list) - 1)) == 0);
 | |
|     bit = (ONE << list) + ((ptr - sh.arena) / (sh.arena_size >> list));
 | |
|     OPENSSL_assert(bit > 0 && bit < sh.bittable_size);
 | |
|     OPENSSL_assert(!TESTBIT(table, bit));
 | |
|     SETBIT(table, bit);
 | |
| }
 | |
| 
 | |
| static void sh_add_to_list(char **list, char *ptr)
 | |
| {
 | |
|     SH_LIST *temp;
 | |
| 
 | |
|     OPENSSL_assert(WITHIN_FREELIST(list));
 | |
|     OPENSSL_assert(WITHIN_ARENA(ptr));
 | |
| 
 | |
|     temp = (SH_LIST *)ptr;
 | |
|     temp->next = *(SH_LIST **)list;
 | |
|     OPENSSL_assert(temp->next == NULL || WITHIN_ARENA(temp->next));
 | |
|     temp->p_next = (SH_LIST **)list;
 | |
| 
 | |
|     if (temp->next != NULL) {
 | |
|         OPENSSL_assert((char **)temp->next->p_next == list);
 | |
|         temp->next->p_next = &(temp->next);
 | |
|     }
 | |
| 
 | |
|     *list = ptr;
 | |
| }
 | |
| 
 | |
| static void sh_remove_from_list(char *ptr)
 | |
| {
 | |
|     SH_LIST *temp, *temp2;
 | |
| 
 | |
|     temp = (SH_LIST *)ptr;
 | |
|     if (temp->next != NULL)
 | |
|         temp->next->p_next = temp->p_next;
 | |
|     *temp->p_next = temp->next;
 | |
|     if (temp->next == NULL)
 | |
|         return;
 | |
| 
 | |
|     temp2 = temp->next;
 | |
|     OPENSSL_assert(WITHIN_FREELIST(temp2->p_next) || WITHIN_ARENA(temp2->p_next));
 | |
| }
 | |
| 
 | |
| 
 | |
| static int sh_init(size_t size, int minsize)
 | |
| {
 | |
|     int ret;
 | |
|     size_t i;
 | |
|     size_t pgsize;
 | |
|     size_t aligned;
 | |
| 
 | |
|     memset(&sh, 0, sizeof(sh));
 | |
| 
 | |
|     /* make sure size and minsize are powers of 2 */
 | |
|     OPENSSL_assert(size > 0);
 | |
|     OPENSSL_assert((size & (size - 1)) == 0);
 | |
|     OPENSSL_assert(minsize > 0);
 | |
|     OPENSSL_assert((minsize & (minsize - 1)) == 0);
 | |
|     if (size <= 0 || (size & (size - 1)) != 0)
 | |
|         goto err;
 | |
|     if (minsize <= 0 || (minsize & (minsize - 1)) != 0)
 | |
|         goto err;
 | |
| 
 | |
|     while (minsize < (int)sizeof(SH_LIST))
 | |
|         minsize *= 2;
 | |
| 
 | |
|     sh.arena_size = size;
 | |
|     sh.minsize = minsize;
 | |
|     sh.bittable_size = (sh.arena_size / sh.minsize) * 2;
 | |
| 
 | |
|     /* Prevent allocations of size 0 later on */
 | |
|     if (sh.bittable_size >> 3 == 0)
 | |
|         goto err;
 | |
| 
 | |
|     sh.freelist_size = -1;
 | |
|     for (i = sh.bittable_size; i; i >>= 1)
 | |
|         sh.freelist_size++;
 | |
| 
 | |
|     sh.freelist = OPENSSL_zalloc(sh.freelist_size * sizeof(char *));
 | |
|     OPENSSL_assert(sh.freelist != NULL);
 | |
|     if (sh.freelist == NULL)
 | |
|         goto err;
 | |
| 
 | |
|     sh.bittable = OPENSSL_zalloc(sh.bittable_size >> 3);
 | |
|     OPENSSL_assert(sh.bittable != NULL);
 | |
|     if (sh.bittable == NULL)
 | |
|         goto err;
 | |
| 
 | |
|     sh.bitmalloc = OPENSSL_zalloc(sh.bittable_size >> 3);
 | |
|     OPENSSL_assert(sh.bitmalloc != NULL);
 | |
|     if (sh.bitmalloc == NULL)
 | |
|         goto err;
 | |
| 
 | |
|     /* Allocate space for heap, and two extra pages as guards */
 | |
| #if defined(_SC_PAGE_SIZE) || defined (_SC_PAGESIZE)
 | |
|     {
 | |
| # if defined(_SC_PAGE_SIZE)
 | |
|         long tmppgsize = sysconf(_SC_PAGE_SIZE);
 | |
| # else
 | |
|         long tmppgsize = sysconf(_SC_PAGESIZE);
 | |
| # endif
 | |
|         if (tmppgsize < 1)
 | |
|             pgsize = PAGE_SIZE;
 | |
|         else
 | |
|             pgsize = (size_t)tmppgsize;
 | |
|     }
 | |
| #else
 | |
|     pgsize = PAGE_SIZE;
 | |
| #endif
 | |
|     sh.map_size = pgsize + sh.arena_size + pgsize;
 | |
|     if (1) {
 | |
| #ifdef MAP_ANON
 | |
|         sh.map_result = mmap(NULL, sh.map_size,
 | |
|                              PROT_READ|PROT_WRITE, MAP_ANON|MAP_PRIVATE, -1, 0);
 | |
|     } else {
 | |
| #endif
 | |
|         int fd;
 | |
| 
 | |
|         sh.map_result = MAP_FAILED;
 | |
|         if ((fd = open("/dev/zero", O_RDWR)) >= 0) {
 | |
|             sh.map_result = mmap(NULL, sh.map_size,
 | |
|                                  PROT_READ|PROT_WRITE, MAP_PRIVATE, fd, 0);
 | |
|             close(fd);
 | |
|         }
 | |
|     }
 | |
|     if (sh.map_result == MAP_FAILED)
 | |
|         goto err;
 | |
|     sh.arena = (char *)(sh.map_result + pgsize);
 | |
|     sh_setbit(sh.arena, 0, sh.bittable);
 | |
|     sh_add_to_list(&sh.freelist[0], sh.arena);
 | |
| 
 | |
|     /* Now try to add guard pages and lock into memory. */
 | |
|     ret = 1;
 | |
| 
 | |
|     /* Starting guard is already aligned from mmap. */
 | |
|     if (mprotect(sh.map_result, pgsize, PROT_NONE) < 0)
 | |
|         ret = 2;
 | |
| 
 | |
|     /* Ending guard page - need to round up to page boundary */
 | |
|     aligned = (pgsize + sh.arena_size + (pgsize - 1)) & ~(pgsize - 1);
 | |
|     if (mprotect(sh.map_result + aligned, pgsize, PROT_NONE) < 0)
 | |
|         ret = 2;
 | |
| 
 | |
| #if defined(OPENSSL_SYS_LINUX) && defined(MLOCK_ONFAULT) && defined(SYS_mlock2)
 | |
|     if (syscall(SYS_mlock2, sh.arena, sh.arena_size, MLOCK_ONFAULT) < 0) {
 | |
|         if (errno == ENOSYS) {
 | |
|             if (mlock(sh.arena, sh.arena_size) < 0)
 | |
|                 ret = 2;
 | |
|         } else {
 | |
|             ret = 2;
 | |
|         }
 | |
|     }
 | |
| #else
 | |
|     if (mlock(sh.arena, sh.arena_size) < 0)
 | |
|         ret = 2;
 | |
| #endif
 | |
| #ifdef MADV_DONTDUMP
 | |
|     if (madvise(sh.arena, sh.arena_size, MADV_DONTDUMP) < 0)
 | |
|         ret = 2;
 | |
| #endif
 | |
| 
 | |
|     return ret;
 | |
| 
 | |
|  err:
 | |
|     sh_done();
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static void sh_done(void)
 | |
| {
 | |
|     OPENSSL_free(sh.freelist);
 | |
|     OPENSSL_free(sh.bittable);
 | |
|     OPENSSL_free(sh.bitmalloc);
 | |
|     if (sh.map_result != NULL && sh.map_size)
 | |
|         munmap(sh.map_result, sh.map_size);
 | |
|     memset(&sh, 0, sizeof(sh));
 | |
| }
 | |
| 
 | |
| static int sh_allocated(const char *ptr)
 | |
| {
 | |
|     return WITHIN_ARENA(ptr) ? 1 : 0;
 | |
| }
 | |
| 
 | |
| static char *sh_find_my_buddy(char *ptr, int list)
 | |
| {
 | |
|     size_t bit;
 | |
|     char *chunk = NULL;
 | |
| 
 | |
|     bit = (ONE << list) + (ptr - sh.arena) / (sh.arena_size >> list);
 | |
|     bit ^= 1;
 | |
| 
 | |
|     if (TESTBIT(sh.bittable, bit) && !TESTBIT(sh.bitmalloc, bit))
 | |
|         chunk = sh.arena + ((bit & ((ONE << list) - 1)) * (sh.arena_size >> list));
 | |
| 
 | |
|     return chunk;
 | |
| }
 | |
| 
 | |
| static void *sh_malloc(size_t size)
 | |
| {
 | |
|     ossl_ssize_t list, slist;
 | |
|     size_t i;
 | |
|     char *chunk;
 | |
| 
 | |
|     if (size > sh.arena_size)
 | |
|         return NULL;
 | |
| 
 | |
|     list = sh.freelist_size - 1;
 | |
|     for (i = sh.minsize; i < size; i <<= 1)
 | |
|         list--;
 | |
|     if (list < 0)
 | |
|         return NULL;
 | |
| 
 | |
|     /* try to find a larger entry to split */
 | |
|     for (slist = list; slist >= 0; slist--)
 | |
|         if (sh.freelist[slist] != NULL)
 | |
|             break;
 | |
|     if (slist < 0)
 | |
|         return NULL;
 | |
| 
 | |
|     /* split larger entry */
 | |
|     while (slist != list) {
 | |
|         char *temp = sh.freelist[slist];
 | |
| 
 | |
|         /* remove from bigger list */
 | |
|         OPENSSL_assert(!sh_testbit(temp, slist, sh.bitmalloc));
 | |
|         sh_clearbit(temp, slist, sh.bittable);
 | |
|         sh_remove_from_list(temp);
 | |
|         OPENSSL_assert(temp != sh.freelist[slist]);
 | |
| 
 | |
|         /* done with bigger list */
 | |
|         slist++;
 | |
| 
 | |
|         /* add to smaller list */
 | |
|         OPENSSL_assert(!sh_testbit(temp, slist, sh.bitmalloc));
 | |
|         sh_setbit(temp, slist, sh.bittable);
 | |
|         sh_add_to_list(&sh.freelist[slist], temp);
 | |
|         OPENSSL_assert(sh.freelist[slist] == temp);
 | |
| 
 | |
|         /* split in 2 */
 | |
|         temp += sh.arena_size >> slist;
 | |
|         OPENSSL_assert(!sh_testbit(temp, slist, sh.bitmalloc));
 | |
|         sh_setbit(temp, slist, sh.bittable);
 | |
|         sh_add_to_list(&sh.freelist[slist], temp);
 | |
|         OPENSSL_assert(sh.freelist[slist] == temp);
 | |
| 
 | |
|         OPENSSL_assert(temp-(sh.arena_size >> slist) == sh_find_my_buddy(temp, slist));
 | |
|     }
 | |
| 
 | |
|     /* peel off memory to hand back */
 | |
|     chunk = sh.freelist[list];
 | |
|     OPENSSL_assert(sh_testbit(chunk, list, sh.bittable));
 | |
|     sh_setbit(chunk, list, sh.bitmalloc);
 | |
|     sh_remove_from_list(chunk);
 | |
| 
 | |
|     OPENSSL_assert(WITHIN_ARENA(chunk));
 | |
| 
 | |
|     /* zero the free list header as a precaution against information leakage */
 | |
|     memset(chunk, 0, sizeof(SH_LIST));
 | |
| 
 | |
|     return chunk;
 | |
| }
 | |
| 
 | |
| static void sh_free(void *ptr)
 | |
| {
 | |
|     size_t list;
 | |
|     void *buddy;
 | |
| 
 | |
|     if (ptr == NULL)
 | |
|         return;
 | |
|     OPENSSL_assert(WITHIN_ARENA(ptr));
 | |
|     if (!WITHIN_ARENA(ptr))
 | |
|         return;
 | |
| 
 | |
|     list = sh_getlist(ptr);
 | |
|     OPENSSL_assert(sh_testbit(ptr, list, sh.bittable));
 | |
|     sh_clearbit(ptr, list, sh.bitmalloc);
 | |
|     sh_add_to_list(&sh.freelist[list], ptr);
 | |
| 
 | |
|     /* Try to coalesce two adjacent free areas. */
 | |
|     while ((buddy = sh_find_my_buddy(ptr, list)) != NULL) {
 | |
|         OPENSSL_assert(ptr == sh_find_my_buddy(buddy, list));
 | |
|         OPENSSL_assert(ptr != NULL);
 | |
|         OPENSSL_assert(!sh_testbit(ptr, list, sh.bitmalloc));
 | |
|         sh_clearbit(ptr, list, sh.bittable);
 | |
|         sh_remove_from_list(ptr);
 | |
|         OPENSSL_assert(!sh_testbit(ptr, list, sh.bitmalloc));
 | |
|         sh_clearbit(buddy, list, sh.bittable);
 | |
|         sh_remove_from_list(buddy);
 | |
| 
 | |
|         list--;
 | |
| 
 | |
|         /* Zero the higher addressed block's free list pointers */
 | |
|         memset(ptr > buddy ? ptr : buddy, 0, sizeof(SH_LIST));
 | |
|         if (ptr > buddy)
 | |
|             ptr = buddy;
 | |
| 
 | |
|         OPENSSL_assert(!sh_testbit(ptr, list, sh.bitmalloc));
 | |
|         sh_setbit(ptr, list, sh.bittable);
 | |
|         sh_add_to_list(&sh.freelist[list], ptr);
 | |
|         OPENSSL_assert(sh.freelist[list] == ptr);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static size_t sh_actual_size(char *ptr)
 | |
| {
 | |
|     int list;
 | |
| 
 | |
|     OPENSSL_assert(WITHIN_ARENA(ptr));
 | |
|     if (!WITHIN_ARENA(ptr))
 | |
|         return 0;
 | |
|     list = sh_getlist(ptr);
 | |
|     OPENSSL_assert(sh_testbit(ptr, list, sh.bittable));
 | |
|     return sh.arena_size / (ONE << list);
 | |
| }
 | |
| #endif /* OPENSSL_SECURE_MEMORY */
 |