mirror of
				https://github.com/ossrs/srs.git
				synced 2025-03-09 15:49:59 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			763 lines
		
	
	
	
		
			35 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			763 lines
		
	
	
	
		
			35 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * AAC encoder twoloop coder
 | |
|  * Copyright (C) 2008-2009 Konstantin Shishkov
 | |
|  *
 | |
|  * This file is part of FFmpeg.
 | |
|  *
 | |
|  * FFmpeg is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2.1 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * FFmpeg is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with FFmpeg; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * @file
 | |
|  * AAC encoder twoloop coder
 | |
|  * @author Konstantin Shishkov, Claudio Freire
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * This file contains a template for the twoloop coder function.
 | |
|  * It needs to be provided, externally, as an already included declaration,
 | |
|  * the following functions from aacenc_quantization/util.h. They're not included
 | |
|  * explicitly here to make it possible to provide alternative implementations:
 | |
|  *  - quantize_band_cost
 | |
|  *  - abs_pow34_v
 | |
|  *  - find_max_val
 | |
|  *  - find_min_book
 | |
|  *  - find_form_factor
 | |
|  */
 | |
| 
 | |
| #ifndef AVCODEC_AACCODER_TWOLOOP_H
 | |
| #define AVCODEC_AACCODER_TWOLOOP_H
 | |
| 
 | |
| #include <float.h>
 | |
| #include "libavutil/mathematics.h"
 | |
| #include "mathops.h"
 | |
| #include "avcodec.h"
 | |
| #include "put_bits.h"
 | |
| #include "aac.h"
 | |
| #include "aacenc.h"
 | |
| #include "aactab.h"
 | |
| #include "aacenctab.h"
 | |
| 
 | |
| /** Frequency in Hz for lower limit of noise substitution **/
 | |
| #define NOISE_LOW_LIMIT 4000
 | |
| 
 | |
| #define sclip(x) av_clip(x,60,218)
 | |
| 
 | |
| /* Reflects the cost to change codebooks */
 | |
| static inline int ff_pns_bits(SingleChannelElement *sce, int w, int g)
 | |
| {
 | |
|     return (!g || !sce->zeroes[w*16+g-1] || !sce->can_pns[w*16+g-1]) ? 9 : 5;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * two-loop quantizers search taken from ISO 13818-7 Appendix C
 | |
|  */
 | |
| static void search_for_quantizers_twoloop(AVCodecContext *avctx,
 | |
|                                           AACEncContext *s,
 | |
|                                           SingleChannelElement *sce,
 | |
|                                           const float lambda)
 | |
| {
 | |
|     int start = 0, i, w, w2, g, recomprd;
 | |
|     int destbits = avctx->bit_rate * 1024.0 / avctx->sample_rate
 | |
|         / ((avctx->flags & AV_CODEC_FLAG_QSCALE) ? 2.0f : avctx->channels)
 | |
|         * (lambda / 120.f);
 | |
|     int refbits = destbits;
 | |
|     int toomanybits, toofewbits;
 | |
|     char nzs[128];
 | |
|     uint8_t nextband[128];
 | |
|     int maxsf[128], minsf[128];
 | |
|     float dists[128] = { 0 }, qenergies[128] = { 0 }, uplims[128], euplims[128], energies[128];
 | |
|     float maxvals[128], spread_thr_r[128];
 | |
|     float min_spread_thr_r, max_spread_thr_r;
 | |
| 
 | |
|     /**
 | |
|      * rdlambda controls the maximum tolerated distortion. Twoloop
 | |
|      * will keep iterating until it fails to lower it or it reaches
 | |
|      * ulimit * rdlambda. Keeping it low increases quality on difficult
 | |
|      * signals, but lower it too much, and bits will be taken from weak
 | |
|      * signals, creating "holes". A balance is necessary.
 | |
|      * rdmax and rdmin specify the relative deviation from rdlambda
 | |
|      * allowed for tonality compensation
 | |
|      */
 | |
|     float rdlambda = av_clipf(2.0f * 120.f / lambda, 0.0625f, 16.0f);
 | |
|     const float nzslope = 1.5f;
 | |
|     float rdmin = 0.03125f;
 | |
|     float rdmax = 1.0f;
 | |
| 
 | |
|     /**
 | |
|      * sfoffs controls an offset of optmium allocation that will be
 | |
|      * applied based on lambda. Keep it real and modest, the loop
 | |
|      * will take care of the rest, this just accelerates convergence
 | |
|      */
 | |
|     float sfoffs = av_clipf(log2f(120.0f / lambda) * 4.0f, -5, 10);
 | |
| 
 | |
|     int fflag, minscaler, maxscaler, nminscaler;
 | |
|     int its  = 0;
 | |
|     int maxits = 30;
 | |
|     int allz = 0;
 | |
|     int tbits;
 | |
|     int cutoff = 1024;
 | |
|     int pns_start_pos;
 | |
|     int prev;
 | |
| 
 | |
|     /**
 | |
|      * zeroscale controls a multiplier of the threshold, if band energy
 | |
|      * is below this, a zero is forced. Keep it lower than 1, unless
 | |
|      * low lambda is used, because energy < threshold doesn't mean there's
 | |
|      * no audible signal outright, it's just energy. Also make it rise
 | |
|      * slower than rdlambda, as rdscale has due compensation with
 | |
|      * noisy band depriorization below, whereas zeroing logic is rather dumb
 | |
|      */
 | |
|     float zeroscale;
 | |
|     if (lambda > 120.f) {
 | |
|         zeroscale = av_clipf(powf(120.f / lambda, 0.25f), 0.0625f, 1.0f);
 | |
|     } else {
 | |
|         zeroscale = 1.f;
 | |
|     }
 | |
| 
 | |
|     if (s->psy.bitres.alloc >= 0) {
 | |
|         /**
 | |
|          * Psy granted us extra bits to use, from the reservoire
 | |
|          * adjust for lambda except what psy already did
 | |
|          */
 | |
|         destbits = s->psy.bitres.alloc
 | |
|             * (lambda / (avctx->global_quality ? avctx->global_quality : 120));
 | |
|     }
 | |
| 
 | |
|     if (avctx->flags & AV_CODEC_FLAG_QSCALE) {
 | |
|         /**
 | |
|          * Constant Q-scale doesn't compensate MS coding on its own
 | |
|          * No need to be overly precise, this only controls RD
 | |
|          * adjustment CB limits when going overboard
 | |
|          */
 | |
|         if (s->options.mid_side && s->cur_type == TYPE_CPE)
 | |
|             destbits *= 2;
 | |
| 
 | |
|         /**
 | |
|          * When using a constant Q-scale, don't adjust bits, just use RD
 | |
|          * Don't let it go overboard, though... 8x psy target is enough
 | |
|          */
 | |
|         toomanybits = 5800;
 | |
|         toofewbits = destbits / 16;
 | |
| 
 | |
|         /** Don't offset scalers, just RD */
 | |
|         sfoffs = sce->ics.num_windows - 1;
 | |
|         rdlambda = sqrtf(rdlambda);
 | |
| 
 | |
|         /** search further */
 | |
|         maxits *= 2;
 | |
|     } else {
 | |
|         /* When using ABR, be strict, but a reasonable leeway is
 | |
|          * critical to allow RC to smoothly track desired bitrate
 | |
|          * without sudden quality drops that cause audible artifacts.
 | |
|          * Symmetry is also desirable, to avoid systematic bias.
 | |
|          */
 | |
|         toomanybits = destbits + destbits/8;
 | |
|         toofewbits = destbits - destbits/8;
 | |
| 
 | |
|         sfoffs = 0;
 | |
|         rdlambda = sqrtf(rdlambda);
 | |
|     }
 | |
| 
 | |
|     /** and zero out above cutoff frequency */
 | |
|     {
 | |
|         int wlen = 1024 / sce->ics.num_windows;
 | |
|         int bandwidth;
 | |
| 
 | |
|         /**
 | |
|          * Scale, psy gives us constant quality, this LP only scales
 | |
|          * bitrate by lambda, so we save bits on subjectively unimportant HF
 | |
|          * rather than increase quantization noise. Adjust nominal bitrate
 | |
|          * to effective bitrate according to encoding parameters,
 | |
|          * AAC_CUTOFF_FROM_BITRATE is calibrated for effective bitrate.
 | |
|          */
 | |
|         float rate_bandwidth_multiplier = 1.5f;
 | |
|         int frame_bit_rate = (avctx->flags & AV_CODEC_FLAG_QSCALE)
 | |
|             ? (refbits * rate_bandwidth_multiplier * avctx->sample_rate / 1024)
 | |
|             : (avctx->bit_rate / avctx->channels);
 | |
| 
 | |
|         /** Compensate for extensions that increase efficiency */
 | |
|         if (s->options.pns || s->options.intensity_stereo)
 | |
|             frame_bit_rate *= 1.15f;
 | |
| 
 | |
|         if (avctx->cutoff > 0) {
 | |
|             bandwidth = avctx->cutoff;
 | |
|         } else {
 | |
|             bandwidth = FFMAX(3000, AAC_CUTOFF_FROM_BITRATE(frame_bit_rate, 1, avctx->sample_rate));
 | |
|             s->psy.cutoff = bandwidth;
 | |
|         }
 | |
| 
 | |
|         cutoff = bandwidth * 2 * wlen / avctx->sample_rate;
 | |
|         pns_start_pos = NOISE_LOW_LIMIT * 2 * wlen / avctx->sample_rate;
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * for values above this the decoder might end up in an endless loop
 | |
|      * due to always having more bits than what can be encoded.
 | |
|      */
 | |
|     destbits = FFMIN(destbits, 5800);
 | |
|     toomanybits = FFMIN(toomanybits, 5800);
 | |
|     toofewbits = FFMIN(toofewbits, 5800);
 | |
|     /**
 | |
|      * XXX: some heuristic to determine initial quantizers will reduce search time
 | |
|      * determine zero bands and upper distortion limits
 | |
|      */
 | |
|     min_spread_thr_r = -1;
 | |
|     max_spread_thr_r = -1;
 | |
|     for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
 | |
|         for (g = start = 0;  g < sce->ics.num_swb; start += sce->ics.swb_sizes[g++]) {
 | |
|             int nz = 0;
 | |
|             float uplim = 0.0f, energy = 0.0f, spread = 0.0f;
 | |
|             for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
 | |
|                 FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
 | |
|                 if (start >= cutoff || band->energy <= (band->threshold * zeroscale) || band->threshold == 0.0f) {
 | |
|                     sce->zeroes[(w+w2)*16+g] = 1;
 | |
|                     continue;
 | |
|                 }
 | |
|                 nz = 1;
 | |
|             }
 | |
|             if (!nz) {
 | |
|                 uplim = 0.0f;
 | |
|             } else {
 | |
|                 nz = 0;
 | |
|                 for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
 | |
|                     FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
 | |
|                     if (band->energy <= (band->threshold * zeroscale) || band->threshold == 0.0f)
 | |
|                         continue;
 | |
|                     uplim += band->threshold;
 | |
|                     energy += band->energy;
 | |
|                     spread += band->spread;
 | |
|                     nz++;
 | |
|                 }
 | |
|             }
 | |
|             uplims[w*16+g] = uplim;
 | |
|             energies[w*16+g] = energy;
 | |
|             nzs[w*16+g] = nz;
 | |
|             sce->zeroes[w*16+g] = !nz;
 | |
|             allz |= nz;
 | |
|             if (nz && sce->can_pns[w*16+g]) {
 | |
|                 spread_thr_r[w*16+g] = energy * nz / (uplim * spread);
 | |
|                 if (min_spread_thr_r < 0) {
 | |
|                     min_spread_thr_r = max_spread_thr_r = spread_thr_r[w*16+g];
 | |
|                 } else {
 | |
|                     min_spread_thr_r = FFMIN(min_spread_thr_r, spread_thr_r[w*16+g]);
 | |
|                     max_spread_thr_r = FFMAX(max_spread_thr_r, spread_thr_r[w*16+g]);
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /** Compute initial scalers */
 | |
|     minscaler = 65535;
 | |
|     for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
 | |
|         for (g = 0;  g < sce->ics.num_swb; g++) {
 | |
|             if (sce->zeroes[w*16+g]) {
 | |
|                 sce->sf_idx[w*16+g] = SCALE_ONE_POS;
 | |
|                 continue;
 | |
|             }
 | |
|             /**
 | |
|              * log2f-to-distortion ratio is, technically, 2 (1.5db = 4, but it's power vs level so it's 2).
 | |
|              * But, as offsets are applied, low-frequency signals are too sensitive to the induced distortion,
 | |
|              * so we make scaling more conservative by choosing a lower log2f-to-distortion ratio, and thus
 | |
|              * more robust.
 | |
|              */
 | |
|             sce->sf_idx[w*16+g] = av_clip(
 | |
|                 SCALE_ONE_POS
 | |
|                     + 1.75*log2f(FFMAX(0.00125f,uplims[w*16+g]) / sce->ics.swb_sizes[g])
 | |
|                     + sfoffs,
 | |
|                 60, SCALE_MAX_POS);
 | |
|             minscaler = FFMIN(minscaler, sce->sf_idx[w*16+g]);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /** Clip */
 | |
|     minscaler = av_clip(minscaler, SCALE_ONE_POS - SCALE_DIV_512, SCALE_MAX_POS - SCALE_DIV_512);
 | |
|     for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w])
 | |
|         for (g = 0;  g < sce->ics.num_swb; g++)
 | |
|             if (!sce->zeroes[w*16+g])
 | |
|                 sce->sf_idx[w*16+g] = av_clip(sce->sf_idx[w*16+g], minscaler, minscaler + SCALE_MAX_DIFF - 1);
 | |
| 
 | |
|     if (!allz)
 | |
|         return;
 | |
|     s->abs_pow34(s->scoefs, sce->coeffs, 1024);
 | |
|     ff_quantize_band_cost_cache_init(s);
 | |
| 
 | |
|     for (i = 0; i < sizeof(minsf) / sizeof(minsf[0]); ++i)
 | |
|         minsf[i] = 0;
 | |
|     for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
 | |
|         start = w*128;
 | |
|         for (g = 0;  g < sce->ics.num_swb; g++) {
 | |
|             const float *scaled = s->scoefs + start;
 | |
|             int minsfidx;
 | |
|             maxvals[w*16+g] = find_max_val(sce->ics.group_len[w], sce->ics.swb_sizes[g], scaled);
 | |
|             if (maxvals[w*16+g] > 0) {
 | |
|                 minsfidx = coef2minsf(maxvals[w*16+g]);
 | |
|                 for (w2 = 0; w2 < sce->ics.group_len[w]; w2++)
 | |
|                     minsf[(w+w2)*16+g] = minsfidx;
 | |
|             }
 | |
|             start += sce->ics.swb_sizes[g];
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Scale uplims to match rate distortion to quality
 | |
|      * bu applying noisy band depriorization and tonal band priorization.
 | |
|      * Maxval-energy ratio gives us an idea of how noisy/tonal the band is.
 | |
|      * If maxval^2 ~ energy, then that band is mostly noise, and we can relax
 | |
|      * rate distortion requirements.
 | |
|      */
 | |
|     memcpy(euplims, uplims, sizeof(euplims));
 | |
|     for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
 | |
|         /** psy already priorizes transients to some extent */
 | |
|         float de_psy_factor = (sce->ics.num_windows > 1) ? 8.0f / sce->ics.group_len[w] : 1.0f;
 | |
|         start = w*128;
 | |
|         for (g = 0;  g < sce->ics.num_swb; g++) {
 | |
|             if (nzs[g] > 0) {
 | |
|                 float cleanup_factor = ff_sqrf(av_clipf(start / (cutoff * 0.75f), 1.0f, 2.0f));
 | |
|                 float energy2uplim = find_form_factor(
 | |
|                     sce->ics.group_len[w], sce->ics.swb_sizes[g],
 | |
|                     uplims[w*16+g] / (nzs[g] * sce->ics.swb_sizes[w]),
 | |
|                     sce->coeffs + start,
 | |
|                     nzslope * cleanup_factor);
 | |
|                 energy2uplim *= de_psy_factor;
 | |
|                 if (!(avctx->flags & AV_CODEC_FLAG_QSCALE)) {
 | |
|                     /** In ABR, we need to priorize less and let rate control do its thing */
 | |
|                     energy2uplim = sqrtf(energy2uplim);
 | |
|                 }
 | |
|                 energy2uplim = FFMAX(0.015625f, FFMIN(1.0f, energy2uplim));
 | |
|                 uplims[w*16+g] *= av_clipf(rdlambda * energy2uplim, rdmin, rdmax)
 | |
|                                   * sce->ics.group_len[w];
 | |
| 
 | |
|                 energy2uplim = find_form_factor(
 | |
|                     sce->ics.group_len[w], sce->ics.swb_sizes[g],
 | |
|                     uplims[w*16+g] / (nzs[g] * sce->ics.swb_sizes[w]),
 | |
|                     sce->coeffs + start,
 | |
|                     2.0f);
 | |
|                 energy2uplim *= de_psy_factor;
 | |
|                 if (!(avctx->flags & AV_CODEC_FLAG_QSCALE)) {
 | |
|                     /** In ABR, we need to priorize less and let rate control do its thing */
 | |
|                     energy2uplim = sqrtf(energy2uplim);
 | |
|                 }
 | |
|                 energy2uplim = FFMAX(0.015625f, FFMIN(1.0f, energy2uplim));
 | |
|                 euplims[w*16+g] *= av_clipf(rdlambda * energy2uplim * sce->ics.group_len[w],
 | |
|                     0.5f, 1.0f);
 | |
|             }
 | |
|             start += sce->ics.swb_sizes[g];
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < sizeof(maxsf) / sizeof(maxsf[0]); ++i)
 | |
|         maxsf[i] = SCALE_MAX_POS;
 | |
| 
 | |
|     //perform two-loop search
 | |
|     //outer loop - improve quality
 | |
|     do {
 | |
|         //inner loop - quantize spectrum to fit into given number of bits
 | |
|         int overdist;
 | |
|         int qstep = its ? 1 : 32;
 | |
|         do {
 | |
|             int changed = 0;
 | |
|             prev = -1;
 | |
|             recomprd = 0;
 | |
|             tbits = 0;
 | |
|             for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
 | |
|                 start = w*128;
 | |
|                 for (g = 0;  g < sce->ics.num_swb; g++) {
 | |
|                     const float *coefs = &sce->coeffs[start];
 | |
|                     const float *scaled = &s->scoefs[start];
 | |
|                     int bits = 0;
 | |
|                     int cb;
 | |
|                     float dist = 0.0f;
 | |
|                     float qenergy = 0.0f;
 | |
| 
 | |
|                     if (sce->zeroes[w*16+g] || sce->sf_idx[w*16+g] >= 218) {
 | |
|                         start += sce->ics.swb_sizes[g];
 | |
|                         if (sce->can_pns[w*16+g]) {
 | |
|                             /** PNS isn't free */
 | |
|                             tbits += ff_pns_bits(sce, w, g);
 | |
|                         }
 | |
|                         continue;
 | |
|                     }
 | |
|                     cb = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]);
 | |
|                     for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
 | |
|                         int b;
 | |
|                         float sqenergy;
 | |
|                         dist += quantize_band_cost_cached(s, w + w2, g, coefs + w2*128,
 | |
|                                                    scaled + w2*128,
 | |
|                                                    sce->ics.swb_sizes[g],
 | |
|                                                    sce->sf_idx[w*16+g],
 | |
|                                                    cb,
 | |
|                                                    1.0f,
 | |
|                                                    INFINITY,
 | |
|                                                    &b, &sqenergy,
 | |
|                                                    0);
 | |
|                         bits += b;
 | |
|                         qenergy += sqenergy;
 | |
|                     }
 | |
|                     dists[w*16+g] = dist - bits;
 | |
|                     qenergies[w*16+g] = qenergy;
 | |
|                     if (prev != -1) {
 | |
|                         int sfdiff = av_clip(sce->sf_idx[w*16+g] - prev + SCALE_DIFF_ZERO, 0, 2*SCALE_MAX_DIFF);
 | |
|                         bits += ff_aac_scalefactor_bits[sfdiff];
 | |
|                     }
 | |
|                     tbits += bits;
 | |
|                     start += sce->ics.swb_sizes[g];
 | |
|                     prev = sce->sf_idx[w*16+g];
 | |
|                 }
 | |
|             }
 | |
|             if (tbits > toomanybits) {
 | |
|                 recomprd = 1;
 | |
|                 for (i = 0; i < 128; i++) {
 | |
|                     if (sce->sf_idx[i] < (SCALE_MAX_POS - SCALE_DIV_512)) {
 | |
|                         int maxsf_i = (tbits > 5800) ? SCALE_MAX_POS : maxsf[i];
 | |
|                         int new_sf = FFMIN(maxsf_i, sce->sf_idx[i] + qstep);
 | |
|                         if (new_sf != sce->sf_idx[i]) {
 | |
|                             sce->sf_idx[i] = new_sf;
 | |
|                             changed = 1;
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
|             } else if (tbits < toofewbits) {
 | |
|                 recomprd = 1;
 | |
|                 for (i = 0; i < 128; i++) {
 | |
|                     if (sce->sf_idx[i] > SCALE_ONE_POS) {
 | |
|                         int new_sf = FFMAX3(minsf[i], SCALE_ONE_POS, sce->sf_idx[i] - qstep);
 | |
|                         if (new_sf != sce->sf_idx[i]) {
 | |
|                             sce->sf_idx[i] = new_sf;
 | |
|                             changed = 1;
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|             qstep >>= 1;
 | |
|             if (!qstep && tbits > toomanybits && sce->sf_idx[0] < 217 && changed)
 | |
|                 qstep = 1;
 | |
|         } while (qstep);
 | |
| 
 | |
|         overdist = 1;
 | |
|         fflag = tbits < toofewbits;
 | |
|         for (i = 0; i < 2 && (overdist || recomprd); ++i) {
 | |
|             if (recomprd) {
 | |
|                 /** Must recompute distortion */
 | |
|                 prev = -1;
 | |
|                 tbits = 0;
 | |
|                 for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
 | |
|                     start = w*128;
 | |
|                     for (g = 0;  g < sce->ics.num_swb; g++) {
 | |
|                         const float *coefs = sce->coeffs + start;
 | |
|                         const float *scaled = s->scoefs + start;
 | |
|                         int bits = 0;
 | |
|                         int cb;
 | |
|                         float dist = 0.0f;
 | |
|                         float qenergy = 0.0f;
 | |
| 
 | |
|                         if (sce->zeroes[w*16+g] || sce->sf_idx[w*16+g] >= 218) {
 | |
|                             start += sce->ics.swb_sizes[g];
 | |
|                             if (sce->can_pns[w*16+g]) {
 | |
|                                 /** PNS isn't free */
 | |
|                                 tbits += ff_pns_bits(sce, w, g);
 | |
|                             }
 | |
|                             continue;
 | |
|                         }
 | |
|                         cb = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]);
 | |
|                         for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
 | |
|                             int b;
 | |
|                             float sqenergy;
 | |
|                             dist += quantize_band_cost_cached(s, w + w2, g, coefs + w2*128,
 | |
|                                                     scaled + w2*128,
 | |
|                                                     sce->ics.swb_sizes[g],
 | |
|                                                     sce->sf_idx[w*16+g],
 | |
|                                                     cb,
 | |
|                                                     1.0f,
 | |
|                                                     INFINITY,
 | |
|                                                     &b, &sqenergy,
 | |
|                                                     0);
 | |
|                             bits += b;
 | |
|                             qenergy += sqenergy;
 | |
|                         }
 | |
|                         dists[w*16+g] = dist - bits;
 | |
|                         qenergies[w*16+g] = qenergy;
 | |
|                         if (prev != -1) {
 | |
|                             int sfdiff = av_clip(sce->sf_idx[w*16+g] - prev + SCALE_DIFF_ZERO, 0, 2*SCALE_MAX_DIFF);
 | |
|                             bits += ff_aac_scalefactor_bits[sfdiff];
 | |
|                         }
 | |
|                         tbits += bits;
 | |
|                         start += sce->ics.swb_sizes[g];
 | |
|                         prev = sce->sf_idx[w*16+g];
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|             if (!i && s->options.pns && its > maxits/2 && tbits > toofewbits) {
 | |
|                 float maxoverdist = 0.0f;
 | |
|                 float ovrfactor = 1.f+(maxits-its)*16.f/maxits;
 | |
|                 overdist = recomprd = 0;
 | |
|                 for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
 | |
|                     for (g = start = 0;  g < sce->ics.num_swb; start += sce->ics.swb_sizes[g++]) {
 | |
|                         if (!sce->zeroes[w*16+g] && sce->sf_idx[w*16+g] > SCALE_ONE_POS && dists[w*16+g] > uplims[w*16+g]*ovrfactor) {
 | |
|                             float ovrdist = dists[w*16+g] / FFMAX(uplims[w*16+g],euplims[w*16+g]);
 | |
|                             maxoverdist = FFMAX(maxoverdist, ovrdist);
 | |
|                             overdist++;
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
|                 if (overdist) {
 | |
|                     /* We have overdistorted bands, trade for zeroes (that can be noise)
 | |
|                      * Zero the bands in the lowest 1.25% spread-energy-threshold ranking
 | |
|                      */
 | |
|                     float minspread = max_spread_thr_r;
 | |
|                     float maxspread = min_spread_thr_r;
 | |
|                     float zspread;
 | |
|                     int zeroable = 0;
 | |
|                     int zeroed = 0;
 | |
|                     int maxzeroed, zloop;
 | |
|                     for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
 | |
|                         for (g = start = 0;  g < sce->ics.num_swb; start += sce->ics.swb_sizes[g++]) {
 | |
|                             if (start >= pns_start_pos && !sce->zeroes[w*16+g] && sce->can_pns[w*16+g]) {
 | |
|                                 minspread = FFMIN(minspread, spread_thr_r[w*16+g]);
 | |
|                                 maxspread = FFMAX(maxspread, spread_thr_r[w*16+g]);
 | |
|                                 zeroable++;
 | |
|                             }
 | |
|                         }
 | |
|                     }
 | |
|                     zspread = (maxspread-minspread) * 0.0125f + minspread;
 | |
|                     /* Don't PNS everything even if allowed. It suppresses bit starvation signals from RC,
 | |
|                      * and forced the hand of the later search_for_pns step.
 | |
|                      * Instead, PNS a fraction of the spread_thr_r range depending on how starved for bits we are,
 | |
|                      * and leave further PNSing to search_for_pns if worthwhile.
 | |
|                      */
 | |
|                     zspread = FFMIN3(min_spread_thr_r * 8.f, zspread,
 | |
|                         ((toomanybits - tbits) * min_spread_thr_r + (tbits - toofewbits) * max_spread_thr_r) / (toomanybits - toofewbits + 1));
 | |
|                     maxzeroed = FFMIN(zeroable, FFMAX(1, (zeroable * its + maxits - 1) / (2 * maxits)));
 | |
|                     for (zloop = 0; zloop < 2; zloop++) {
 | |
|                         /* Two passes: first distorted stuff - two birds in one shot and all that,
 | |
|                          * then anything viable. Viable means not zero, but either CB=zero-able
 | |
|                          * (too high SF), not SF <= 1 (that means we'd be operating at very high
 | |
|                          * quality, we don't want PNS when doing VHQ), PNS allowed, and within
 | |
|                          * the lowest ranking percentile.
 | |
|                          */
 | |
|                         float loopovrfactor = (zloop) ? 1.0f : ovrfactor;
 | |
|                         int loopminsf = (zloop) ? (SCALE_ONE_POS - SCALE_DIV_512) : SCALE_ONE_POS;
 | |
|                         int mcb;
 | |
|                         for (g = sce->ics.num_swb-1; g > 0 && zeroed < maxzeroed; g--) {
 | |
|                             if (sce->ics.swb_offset[g] < pns_start_pos)
 | |
|                                 continue;
 | |
|                             for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
 | |
|                                 if (!sce->zeroes[w*16+g] && sce->can_pns[w*16+g] && spread_thr_r[w*16+g] <= zspread
 | |
|                                     && sce->sf_idx[w*16+g] > loopminsf
 | |
|                                     && (dists[w*16+g] > loopovrfactor*uplims[w*16+g] || !(mcb = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]))
 | |
|                                         || (mcb <= 1 && dists[w*16+g] > FFMIN(uplims[w*16+g], euplims[w*16+g]))) ) {
 | |
|                                     sce->zeroes[w*16+g] = 1;
 | |
|                                     sce->band_type[w*16+g] = 0;
 | |
|                                     zeroed++;
 | |
|                                 }
 | |
|                             }
 | |
|                         }
 | |
|                     }
 | |
|                     if (zeroed)
 | |
|                         recomprd = fflag = 1;
 | |
|                 } else {
 | |
|                     overdist = 0;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         minscaler = SCALE_MAX_POS;
 | |
|         maxscaler = 0;
 | |
|         for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
 | |
|             for (g = 0;  g < sce->ics.num_swb; g++) {
 | |
|                 if (!sce->zeroes[w*16+g]) {
 | |
|                     minscaler = FFMIN(minscaler, sce->sf_idx[w*16+g]);
 | |
|                     maxscaler = FFMAX(maxscaler, sce->sf_idx[w*16+g]);
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         minscaler = nminscaler = av_clip(minscaler, SCALE_ONE_POS - SCALE_DIV_512, SCALE_MAX_POS - SCALE_DIV_512);
 | |
|         prev = -1;
 | |
|         for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
 | |
|             /** Start with big steps, end up fine-tunning */
 | |
|             int depth = (its > maxits/2) ? ((its > maxits*2/3) ? 1 : 3) : 10;
 | |
|             int edepth = depth+2;
 | |
|             float uplmax = its / (maxits*0.25f) + 1.0f;
 | |
|             uplmax *= (tbits > destbits) ? FFMIN(2.0f, tbits / (float)FFMAX(1,destbits)) : 1.0f;
 | |
|             start = w * 128;
 | |
|             for (g = 0; g < sce->ics.num_swb; g++) {
 | |
|                 int prevsc = sce->sf_idx[w*16+g];
 | |
|                 if (prev < 0 && !sce->zeroes[w*16+g])
 | |
|                     prev = sce->sf_idx[0];
 | |
|                 if (!sce->zeroes[w*16+g]) {
 | |
|                     const float *coefs = sce->coeffs + start;
 | |
|                     const float *scaled = s->scoefs + start;
 | |
|                     int cmb = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]);
 | |
|                     int mindeltasf = FFMAX(0, prev - SCALE_MAX_DIFF);
 | |
|                     int maxdeltasf = FFMIN(SCALE_MAX_POS - SCALE_DIV_512, prev + SCALE_MAX_DIFF);
 | |
|                     if ((!cmb || dists[w*16+g] > uplims[w*16+g]) && sce->sf_idx[w*16+g] > FFMAX(mindeltasf, minsf[w*16+g])) {
 | |
|                         /* Try to make sure there is some energy in every nonzero band
 | |
|                          * NOTE: This algorithm must be forcibly imbalanced, pushing harder
 | |
|                          *  on holes or more distorted bands at first, otherwise there's
 | |
|                          *  no net gain (since the next iteration will offset all bands
 | |
|                          *  on the opposite direction to compensate for extra bits)
 | |
|                          */
 | |
|                         for (i = 0; i < edepth && sce->sf_idx[w*16+g] > mindeltasf; ++i) {
 | |
|                             int cb, bits;
 | |
|                             float dist, qenergy;
 | |
|                             int mb = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]-1);
 | |
|                             cb = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]);
 | |
|                             dist = qenergy = 0.f;
 | |
|                             bits = 0;
 | |
|                             if (!cb) {
 | |
|                                 maxsf[w*16+g] = FFMIN(sce->sf_idx[w*16+g]-1, maxsf[w*16+g]);
 | |
|                             } else if (i >= depth && dists[w*16+g] < euplims[w*16+g]) {
 | |
|                                 break;
 | |
|                             }
 | |
|                             /* !g is the DC band, it's important, since quantization error here
 | |
|                              * applies to less than a cycle, it creates horrible intermodulation
 | |
|                              * distortion if it doesn't stick to what psy requests
 | |
|                              */
 | |
|                             if (!g && sce->ics.num_windows > 1 && dists[w*16+g] >= euplims[w*16+g])
 | |
|                                 maxsf[w*16+g] = FFMIN(sce->sf_idx[w*16+g], maxsf[w*16+g]);
 | |
|                             for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
 | |
|                                 int b;
 | |
|                                 float sqenergy;
 | |
|                                 dist += quantize_band_cost_cached(s, w + w2, g, coefs + w2*128,
 | |
|                                                         scaled + w2*128,
 | |
|                                                         sce->ics.swb_sizes[g],
 | |
|                                                         sce->sf_idx[w*16+g]-1,
 | |
|                                                         cb,
 | |
|                                                         1.0f,
 | |
|                                                         INFINITY,
 | |
|                                                         &b, &sqenergy,
 | |
|                                                         0);
 | |
|                                 bits += b;
 | |
|                                 qenergy += sqenergy;
 | |
|                             }
 | |
|                             sce->sf_idx[w*16+g]--;
 | |
|                             dists[w*16+g] = dist - bits;
 | |
|                             qenergies[w*16+g] = qenergy;
 | |
|                             if (mb && (sce->sf_idx[w*16+g] < mindeltasf || (
 | |
|                                     (dists[w*16+g] < FFMIN(uplmax*uplims[w*16+g], euplims[w*16+g]))
 | |
|                                     && (fabsf(qenergies[w*16+g]-energies[w*16+g]) < euplims[w*16+g])
 | |
|                                 ) )) {
 | |
|                                 break;
 | |
|                             }
 | |
|                         }
 | |
|                     } else if (tbits > toofewbits && sce->sf_idx[w*16+g] < FFMIN(maxdeltasf, maxsf[w*16+g])
 | |
|                             && (dists[w*16+g] < FFMIN(euplims[w*16+g], uplims[w*16+g]))
 | |
|                             && (fabsf(qenergies[w*16+g]-energies[w*16+g]) < euplims[w*16+g])
 | |
|                         ) {
 | |
|                         /** Um... over target. Save bits for more important stuff. */
 | |
|                         for (i = 0; i < depth && sce->sf_idx[w*16+g] < maxdeltasf; ++i) {
 | |
|                             int cb, bits;
 | |
|                             float dist, qenergy;
 | |
|                             cb = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]+1);
 | |
|                             if (cb > 0) {
 | |
|                                 dist = qenergy = 0.f;
 | |
|                                 bits = 0;
 | |
|                                 for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
 | |
|                                     int b;
 | |
|                                     float sqenergy;
 | |
|                                     dist += quantize_band_cost_cached(s, w + w2, g, coefs + w2*128,
 | |
|                                                             scaled + w2*128,
 | |
|                                                             sce->ics.swb_sizes[g],
 | |
|                                                             sce->sf_idx[w*16+g]+1,
 | |
|                                                             cb,
 | |
|                                                             1.0f,
 | |
|                                                             INFINITY,
 | |
|                                                             &b, &sqenergy,
 | |
|                                                             0);
 | |
|                                     bits += b;
 | |
|                                     qenergy += sqenergy;
 | |
|                                 }
 | |
|                                 dist -= bits;
 | |
|                                 if (dist < FFMIN(euplims[w*16+g], uplims[w*16+g])) {
 | |
|                                     sce->sf_idx[w*16+g]++;
 | |
|                                     dists[w*16+g] = dist;
 | |
|                                     qenergies[w*16+g] = qenergy;
 | |
|                                 } else {
 | |
|                                     break;
 | |
|                                 }
 | |
|                             } else {
 | |
|                                 maxsf[w*16+g] = FFMIN(sce->sf_idx[w*16+g], maxsf[w*16+g]);
 | |
|                                 break;
 | |
|                             }
 | |
|                         }
 | |
|                     }
 | |
|                     prev = sce->sf_idx[w*16+g] = av_clip(sce->sf_idx[w*16+g], mindeltasf, maxdeltasf);
 | |
|                     if (sce->sf_idx[w*16+g] != prevsc)
 | |
|                         fflag = 1;
 | |
|                     nminscaler = FFMIN(nminscaler, sce->sf_idx[w*16+g]);
 | |
|                     sce->band_type[w*16+g] = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]);
 | |
|                 }
 | |
|                 start += sce->ics.swb_sizes[g];
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         /** SF difference limit violation risk. Must re-clamp. */
 | |
|         prev = -1;
 | |
|         for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
 | |
|             for (g = 0; g < sce->ics.num_swb; g++) {
 | |
|                 if (!sce->zeroes[w*16+g]) {
 | |
|                     int prevsf = sce->sf_idx[w*16+g];
 | |
|                     if (prev < 0)
 | |
|                         prev = prevsf;
 | |
|                     sce->sf_idx[w*16+g] = av_clip(sce->sf_idx[w*16+g], prev - SCALE_MAX_DIFF, prev + SCALE_MAX_DIFF);
 | |
|                     sce->band_type[w*16+g] = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]);
 | |
|                     prev = sce->sf_idx[w*16+g];
 | |
|                     if (!fflag && prevsf != sce->sf_idx[w*16+g])
 | |
|                         fflag = 1;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         its++;
 | |
|     } while (fflag && its < maxits);
 | |
| 
 | |
|     /** Scout out next nonzero bands */
 | |
|     ff_init_nextband_map(sce, nextband);
 | |
| 
 | |
|     prev = -1;
 | |
|     for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
 | |
|         /** Make sure proper codebooks are set */
 | |
|         for (g = 0; g < sce->ics.num_swb; g++) {
 | |
|             if (!sce->zeroes[w*16+g]) {
 | |
|                 sce->band_type[w*16+g] = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]);
 | |
|                 if (sce->band_type[w*16+g] <= 0) {
 | |
|                     if (!ff_sfdelta_can_remove_band(sce, nextband, prev, w*16+g)) {
 | |
|                         /** Cannot zero out, make sure it's not attempted */
 | |
|                         sce->band_type[w*16+g] = 1;
 | |
|                     } else {
 | |
|                         sce->zeroes[w*16+g] = 1;
 | |
|                         sce->band_type[w*16+g] = 0;
 | |
|                     }
 | |
|                 }
 | |
|             } else {
 | |
|                 sce->band_type[w*16+g] = 0;
 | |
|             }
 | |
|             /** Check that there's no SF delta range violations */
 | |
|             if (!sce->zeroes[w*16+g]) {
 | |
|                 if (prev != -1) {
 | |
|                     av_unused int sfdiff = sce->sf_idx[w*16+g] - prev + SCALE_DIFF_ZERO;
 | |
|                     av_assert1(sfdiff >= 0 && sfdiff <= 2*SCALE_MAX_DIFF);
 | |
|                 } else if (sce->zeroes[0]) {
 | |
|                     /** Set global gain to something useful */
 | |
|                     sce->sf_idx[0] = sce->sf_idx[w*16+g];
 | |
|                 }
 | |
|                 prev = sce->sf_idx[w*16+g];
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| #endif /* AVCODEC_AACCODER_TWOLOOP_H */
 |