mirror of
				https://github.com/ossrs/srs.git
				synced 2025-03-09 15:49:59 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			3379 lines
		
	
	
	
		
			106 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			3379 lines
		
	
	
	
		
			106 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright 1995-2021 The OpenSSL Project Authors. All Rights Reserved.
 | |
|  *
 | |
|  * Licensed under the OpenSSL license (the "License").  You may not use
 | |
|  * this file except in compliance with the License.  You can obtain a copy
 | |
|  * in the file LICENSE in the source distribution or at
 | |
|  * https://www.openssl.org/source/license.html
 | |
|  */
 | |
| 
 | |
| #include <stdio.h>
 | |
| #include <time.h>
 | |
| #include <errno.h>
 | |
| #include <limits.h>
 | |
| 
 | |
| #include "crypto/ctype.h"
 | |
| #include "internal/cryptlib.h"
 | |
| #include <openssl/crypto.h>
 | |
| #include <openssl/buffer.h>
 | |
| #include <openssl/evp.h>
 | |
| #include <openssl/asn1.h>
 | |
| #include <openssl/x509.h>
 | |
| #include <openssl/x509v3.h>
 | |
| #include <openssl/objects.h>
 | |
| #include "internal/dane.h"
 | |
| #include "crypto/x509.h"
 | |
| #include "x509_local.h"
 | |
| 
 | |
| /* CRL score values */
 | |
| 
 | |
| /* No unhandled critical extensions */
 | |
| 
 | |
| #define CRL_SCORE_NOCRITICAL    0x100
 | |
| 
 | |
| /* certificate is within CRL scope */
 | |
| 
 | |
| #define CRL_SCORE_SCOPE         0x080
 | |
| 
 | |
| /* CRL times valid */
 | |
| 
 | |
| #define CRL_SCORE_TIME          0x040
 | |
| 
 | |
| /* Issuer name matches certificate */
 | |
| 
 | |
| #define CRL_SCORE_ISSUER_NAME   0x020
 | |
| 
 | |
| /* If this score or above CRL is probably valid */
 | |
| 
 | |
| #define CRL_SCORE_VALID (CRL_SCORE_NOCRITICAL|CRL_SCORE_TIME|CRL_SCORE_SCOPE)
 | |
| 
 | |
| /* CRL issuer is certificate issuer */
 | |
| 
 | |
| #define CRL_SCORE_ISSUER_CERT   0x018
 | |
| 
 | |
| /* CRL issuer is on certificate path */
 | |
| 
 | |
| #define CRL_SCORE_SAME_PATH     0x008
 | |
| 
 | |
| /* CRL issuer matches CRL AKID */
 | |
| 
 | |
| #define CRL_SCORE_AKID          0x004
 | |
| 
 | |
| /* Have a delta CRL with valid times */
 | |
| 
 | |
| #define CRL_SCORE_TIME_DELTA    0x002
 | |
| 
 | |
| static int build_chain(X509_STORE_CTX *ctx);
 | |
| static int verify_chain(X509_STORE_CTX *ctx);
 | |
| static int dane_verify(X509_STORE_CTX *ctx);
 | |
| static int null_callback(int ok, X509_STORE_CTX *e);
 | |
| static int check_issued(X509_STORE_CTX *ctx, X509 *x, X509 *issuer);
 | |
| static X509 *find_issuer(X509_STORE_CTX *ctx, STACK_OF(X509) *sk, X509 *x);
 | |
| static int check_chain_extensions(X509_STORE_CTX *ctx);
 | |
| static int check_name_constraints(X509_STORE_CTX *ctx);
 | |
| static int check_id(X509_STORE_CTX *ctx);
 | |
| static int check_trust(X509_STORE_CTX *ctx, int num_untrusted);
 | |
| static int check_revocation(X509_STORE_CTX *ctx);
 | |
| static int check_cert(X509_STORE_CTX *ctx);
 | |
| static int check_policy(X509_STORE_CTX *ctx);
 | |
| static int get_issuer_sk(X509 **issuer, X509_STORE_CTX *ctx, X509 *x);
 | |
| static int check_dane_issuer(X509_STORE_CTX *ctx, int depth);
 | |
| static int check_key_level(X509_STORE_CTX *ctx, X509 *cert);
 | |
| static int check_sig_level(X509_STORE_CTX *ctx, X509 *cert);
 | |
| static int check_curve(X509 *cert);
 | |
| 
 | |
| static int get_crl_score(X509_STORE_CTX *ctx, X509 **pissuer,
 | |
|                          unsigned int *preasons, X509_CRL *crl, X509 *x);
 | |
| static int get_crl_delta(X509_STORE_CTX *ctx,
 | |
|                          X509_CRL **pcrl, X509_CRL **pdcrl, X509 *x);
 | |
| static void get_delta_sk(X509_STORE_CTX *ctx, X509_CRL **dcrl,
 | |
|                          int *pcrl_score, X509_CRL *base,
 | |
|                          STACK_OF(X509_CRL) *crls);
 | |
| static void crl_akid_check(X509_STORE_CTX *ctx, X509_CRL *crl, X509 **pissuer,
 | |
|                            int *pcrl_score);
 | |
| static int crl_crldp_check(X509 *x, X509_CRL *crl, int crl_score,
 | |
|                            unsigned int *preasons);
 | |
| static int check_crl_path(X509_STORE_CTX *ctx, X509 *x);
 | |
| static int check_crl_chain(X509_STORE_CTX *ctx,
 | |
|                            STACK_OF(X509) *cert_path,
 | |
|                            STACK_OF(X509) *crl_path);
 | |
| 
 | |
| static int internal_verify(X509_STORE_CTX *ctx);
 | |
| 
 | |
| static int null_callback(int ok, X509_STORE_CTX *e)
 | |
| {
 | |
|     return ok;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return 1 if given cert is considered self-signed, 0 if not or on error.
 | |
|  * This does not verify self-signedness but relies on x509v3_cache_extensions()
 | |
|  * matching issuer and subject names (i.e., the cert being self-issued) and any
 | |
|  * present authority key identifier matching the subject key identifier, etc.
 | |
|  */
 | |
| static int cert_self_signed(X509 *x)
 | |
| {
 | |
|     if (X509_check_purpose(x, -1, 0) != 1)
 | |
|         return 0;
 | |
|     if (x->ex_flags & EXFLAG_SS)
 | |
|         return 1;
 | |
|     else
 | |
|         return 0;
 | |
| }
 | |
| 
 | |
| /* Given a certificate try and find an exact match in the store */
 | |
| 
 | |
| static X509 *lookup_cert_match(X509_STORE_CTX *ctx, X509 *x)
 | |
| {
 | |
|     STACK_OF(X509) *certs;
 | |
|     X509 *xtmp = NULL;
 | |
|     int i;
 | |
|     /* Lookup all certs with matching subject name */
 | |
|     certs = ctx->lookup_certs(ctx, X509_get_subject_name(x));
 | |
|     if (certs == NULL)
 | |
|         return NULL;
 | |
|     /* Look for exact match */
 | |
|     for (i = 0; i < sk_X509_num(certs); i++) {
 | |
|         xtmp = sk_X509_value(certs, i);
 | |
|         if (!X509_cmp(xtmp, x))
 | |
|             break;
 | |
|         xtmp = NULL;
 | |
|     }
 | |
|     if (xtmp != NULL && !X509_up_ref(xtmp))
 | |
|         xtmp = NULL;
 | |
|     sk_X509_pop_free(certs, X509_free);
 | |
|     return xtmp;
 | |
| }
 | |
| 
 | |
| /*-
 | |
|  * Inform the verify callback of an error.
 | |
|  * If B<x> is not NULL it is the error cert, otherwise use the chain cert at
 | |
|  * B<depth>.
 | |
|  * If B<err> is not X509_V_OK, that's the error value, otherwise leave
 | |
|  * unchanged (presumably set by the caller).
 | |
|  *
 | |
|  * Returns 0 to abort verification with an error, non-zero to continue.
 | |
|  */
 | |
| static int verify_cb_cert(X509_STORE_CTX *ctx, X509 *x, int depth, int err)
 | |
| {
 | |
|     ctx->error_depth = depth;
 | |
|     ctx->current_cert = (x != NULL) ? x : sk_X509_value(ctx->chain, depth);
 | |
|     if (err != X509_V_OK)
 | |
|         ctx->error = err;
 | |
|     return ctx->verify_cb(0, ctx);
 | |
| }
 | |
| 
 | |
| /*-
 | |
|  * Inform the verify callback of an error, CRL-specific variant.  Here, the
 | |
|  * error depth and certificate are already set, we just specify the error
 | |
|  * number.
 | |
|  *
 | |
|  * Returns 0 to abort verification with an error, non-zero to continue.
 | |
|  */
 | |
| static int verify_cb_crl(X509_STORE_CTX *ctx, int err)
 | |
| {
 | |
|     ctx->error = err;
 | |
|     return ctx->verify_cb(0, ctx);
 | |
| }
 | |
| 
 | |
| static int check_auth_level(X509_STORE_CTX *ctx)
 | |
| {
 | |
|     int i;
 | |
|     int num = sk_X509_num(ctx->chain);
 | |
| 
 | |
|     if (ctx->param->auth_level <= 0)
 | |
|         return 1;
 | |
| 
 | |
|     for (i = 0; i < num; ++i) {
 | |
|         X509 *cert = sk_X509_value(ctx->chain, i);
 | |
| 
 | |
|         /*
 | |
|          * We've already checked the security of the leaf key, so here we only
 | |
|          * check the security of issuer keys.
 | |
|          */
 | |
|         if (i > 0 && !check_key_level(ctx, cert) &&
 | |
|             verify_cb_cert(ctx, cert, i, X509_V_ERR_CA_KEY_TOO_SMALL) == 0)
 | |
|             return 0;
 | |
|         /*
 | |
|          * We also check the signature algorithm security of all certificates
 | |
|          * except those of the trust anchor at index num-1.
 | |
|          */
 | |
|         if (i < num - 1 && !check_sig_level(ctx, cert) &&
 | |
|             verify_cb_cert(ctx, cert, i, X509_V_ERR_CA_MD_TOO_WEAK) == 0)
 | |
|             return 0;
 | |
|     }
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| static int verify_chain(X509_STORE_CTX *ctx)
 | |
| {
 | |
|     int err;
 | |
|     int ok;
 | |
| 
 | |
|     /*
 | |
|      * Before either returning with an error, or continuing with CRL checks,
 | |
|      * instantiate chain public key parameters.
 | |
|      */
 | |
|     if ((ok = build_chain(ctx)) == 0 ||
 | |
|         (ok = check_chain_extensions(ctx)) == 0 ||
 | |
|         (ok = check_auth_level(ctx)) == 0 ||
 | |
|         (ok = check_id(ctx)) == 0 || 1)
 | |
|         X509_get_pubkey_parameters(NULL, ctx->chain);
 | |
|     if (ok == 0 || (ok = ctx->check_revocation(ctx)) == 0)
 | |
|         return ok;
 | |
| 
 | |
|     err = X509_chain_check_suiteb(&ctx->error_depth, NULL, ctx->chain,
 | |
|                                   ctx->param->flags);
 | |
|     if (err != X509_V_OK) {
 | |
|         if ((ok = verify_cb_cert(ctx, NULL, ctx->error_depth, err)) == 0)
 | |
|             return ok;
 | |
|     }
 | |
| 
 | |
|     /* Verify chain signatures and expiration times */
 | |
|     ok = (ctx->verify != NULL) ? ctx->verify(ctx) : internal_verify(ctx);
 | |
|     if (!ok)
 | |
|         return ok;
 | |
| 
 | |
|     if ((ok = check_name_constraints(ctx)) == 0)
 | |
|         return ok;
 | |
| 
 | |
| #ifndef OPENSSL_NO_RFC3779
 | |
|     /* RFC 3779 path validation, now that CRL check has been done */
 | |
|     if ((ok = X509v3_asid_validate_path(ctx)) == 0)
 | |
|         return ok;
 | |
|     if ((ok = X509v3_addr_validate_path(ctx)) == 0)
 | |
|         return ok;
 | |
| #endif
 | |
| 
 | |
|     /* If we get this far evaluate policies */
 | |
|     if (ctx->param->flags & X509_V_FLAG_POLICY_CHECK)
 | |
|         ok = ctx->check_policy(ctx);
 | |
|     return ok;
 | |
| }
 | |
| 
 | |
| int X509_verify_cert(X509_STORE_CTX *ctx)
 | |
| {
 | |
|     SSL_DANE *dane = ctx->dane;
 | |
|     int ret;
 | |
| 
 | |
|     if (ctx->cert == NULL) {
 | |
|         X509err(X509_F_X509_VERIFY_CERT, X509_R_NO_CERT_SET_FOR_US_TO_VERIFY);
 | |
|         ctx->error = X509_V_ERR_INVALID_CALL;
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     if (ctx->chain != NULL) {
 | |
|         /*
 | |
|          * This X509_STORE_CTX has already been used to verify a cert. We
 | |
|          * cannot do another one.
 | |
|          */
 | |
|         X509err(X509_F_X509_VERIFY_CERT, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
 | |
|         ctx->error = X509_V_ERR_INVALID_CALL;
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     if (!X509_up_ref(ctx->cert)) {
 | |
|         X509err(X509_F_X509_VERIFY_CERT, ERR_R_INTERNAL_ERROR);
 | |
|         ctx->error = X509_V_ERR_UNSPECIFIED;
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * first we make sure the chain we are going to build is present and that
 | |
|      * the first entry is in place
 | |
|      */
 | |
|     if ((ctx->chain = sk_X509_new_null()) == NULL
 | |
|             || !sk_X509_push(ctx->chain, ctx->cert)) {
 | |
|         X509_free(ctx->cert);
 | |
|         X509err(X509_F_X509_VERIFY_CERT, ERR_R_MALLOC_FAILURE);
 | |
|         ctx->error = X509_V_ERR_OUT_OF_MEM;
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     ctx->num_untrusted = 1;
 | |
| 
 | |
|     /* If the peer's public key is too weak, we can stop early. */
 | |
|     if (!check_key_level(ctx, ctx->cert) &&
 | |
|         !verify_cb_cert(ctx, ctx->cert, 0, X509_V_ERR_EE_KEY_TOO_SMALL))
 | |
|         return 0;
 | |
| 
 | |
|     if (DANETLS_ENABLED(dane))
 | |
|         ret = dane_verify(ctx);
 | |
|     else
 | |
|         ret = verify_chain(ctx);
 | |
| 
 | |
|     /*
 | |
|      * Safety-net.  If we are returning an error, we must also set ctx->error,
 | |
|      * so that the chain is not considered verified should the error be ignored
 | |
|      * (e.g. TLS with SSL_VERIFY_NONE).
 | |
|      */
 | |
|     if (ret <= 0 && ctx->error == X509_V_OK)
 | |
|         ctx->error = X509_V_ERR_UNSPECIFIED;
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static int sk_X509_contains(STACK_OF(X509) *sk, X509 *cert)
 | |
| {
 | |
|     int i, n = sk_X509_num(sk);
 | |
| 
 | |
|     for (i = 0; i < n; i++)
 | |
|         if (X509_cmp(sk_X509_value(sk, i), cert) == 0)
 | |
|             return 1;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Find in given STACK_OF(X509) sk an issuer cert of given cert x.
 | |
|  * The issuer must not yet be in ctx->chain, where the exceptional case
 | |
|  * that x is self-issued and ctx->chain has just one element is allowed.
 | |
|  * Prefer the first one that is not expired, else take the last expired one.
 | |
|  */
 | |
| static X509 *find_issuer(X509_STORE_CTX *ctx, STACK_OF(X509) *sk, X509 *x)
 | |
| {
 | |
|     int i;
 | |
|     X509 *issuer, *rv = NULL;
 | |
| 
 | |
|     for (i = 0; i < sk_X509_num(sk); i++) {
 | |
|         issuer = sk_X509_value(sk, i);
 | |
|         if (ctx->check_issued(ctx, x, issuer)
 | |
|             && (((x->ex_flags & EXFLAG_SI) != 0 && sk_X509_num(ctx->chain) == 1)
 | |
|                 || !sk_X509_contains(ctx->chain, issuer))) {
 | |
|             rv = issuer;
 | |
|             if (x509_check_cert_time(ctx, rv, -1))
 | |
|                 break;
 | |
|         }
 | |
|     }
 | |
|     return rv;
 | |
| }
 | |
| 
 | |
| /* Check that the given certificate 'x' is issued by the certificate 'issuer' */
 | |
| static int check_issued(X509_STORE_CTX *ctx, X509 *x, X509 *issuer)
 | |
| {
 | |
|     return x509_likely_issued(issuer, x) == X509_V_OK;
 | |
| }
 | |
| 
 | |
| /* Alternative lookup method: look from a STACK stored in other_ctx */
 | |
| static int get_issuer_sk(X509 **issuer, X509_STORE_CTX *ctx, X509 *x)
 | |
| {
 | |
|     *issuer = find_issuer(ctx, ctx->other_ctx, x);
 | |
| 
 | |
|     if (*issuer == NULL || !X509_up_ref(*issuer))
 | |
|         goto err;
 | |
| 
 | |
|     return 1;
 | |
| 
 | |
|  err:
 | |
|     *issuer = NULL;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static STACK_OF(X509) *lookup_certs_sk(X509_STORE_CTX *ctx, X509_NAME *nm)
 | |
| {
 | |
|     STACK_OF(X509) *sk = NULL;
 | |
|     X509 *x;
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < sk_X509_num(ctx->other_ctx); i++) {
 | |
|         x = sk_X509_value(ctx->other_ctx, i);
 | |
|         if (X509_NAME_cmp(nm, X509_get_subject_name(x)) == 0) {
 | |
|             if (!X509_up_ref(x)) {
 | |
|                 sk_X509_pop_free(sk, X509_free);
 | |
|                 X509err(X509_F_LOOKUP_CERTS_SK, ERR_R_INTERNAL_ERROR);
 | |
|                 ctx->error = X509_V_ERR_UNSPECIFIED;
 | |
|                 return NULL;
 | |
|             }
 | |
|             if (sk == NULL)
 | |
|                 sk = sk_X509_new_null();
 | |
|             if (sk == NULL || !sk_X509_push(sk, x)) {
 | |
|                 X509_free(x);
 | |
|                 sk_X509_pop_free(sk, X509_free);
 | |
|                 X509err(X509_F_LOOKUP_CERTS_SK, ERR_R_MALLOC_FAILURE);
 | |
|                 ctx->error = X509_V_ERR_OUT_OF_MEM;
 | |
|                 return NULL;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     return sk;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check EE or CA certificate purpose.  For trusted certificates explicit local
 | |
|  * auxiliary trust can be used to override EKU-restrictions.
 | |
|  */
 | |
| static int check_purpose(X509_STORE_CTX *ctx, X509 *x, int purpose, int depth,
 | |
|                          int must_be_ca)
 | |
| {
 | |
|     int tr_ok = X509_TRUST_UNTRUSTED;
 | |
| 
 | |
|     /*
 | |
|      * For trusted certificates we want to see whether any auxiliary trust
 | |
|      * settings trump the purpose constraints.
 | |
|      *
 | |
|      * This is complicated by the fact that the trust ordinals in
 | |
|      * ctx->param->trust are entirely independent of the purpose ordinals in
 | |
|      * ctx->param->purpose!
 | |
|      *
 | |
|      * What connects them is their mutual initialization via calls from
 | |
|      * X509_STORE_CTX_set_default() into X509_VERIFY_PARAM_lookup() which sets
 | |
|      * related values of both param->trust and param->purpose.  It is however
 | |
|      * typically possible to infer associated trust values from a purpose value
 | |
|      * via the X509_PURPOSE API.
 | |
|      *
 | |
|      * Therefore, we can only check for trust overrides when the purpose we're
 | |
|      * checking is the same as ctx->param->purpose and ctx->param->trust is
 | |
|      * also set.
 | |
|      */
 | |
|     if (depth >= ctx->num_untrusted && purpose == ctx->param->purpose)
 | |
|         tr_ok = X509_check_trust(x, ctx->param->trust, X509_TRUST_NO_SS_COMPAT);
 | |
| 
 | |
|     switch (tr_ok) {
 | |
|     case X509_TRUST_TRUSTED:
 | |
|         return 1;
 | |
|     case X509_TRUST_REJECTED:
 | |
|         break;
 | |
|     default:
 | |
|         switch (X509_check_purpose(x, purpose, must_be_ca > 0)) {
 | |
|         case 1:
 | |
|             return 1;
 | |
|         case 0:
 | |
|             break;
 | |
|         default:
 | |
|             if ((ctx->param->flags & X509_V_FLAG_X509_STRICT) == 0)
 | |
|                 return 1;
 | |
|         }
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     return verify_cb_cert(ctx, x, depth, X509_V_ERR_INVALID_PURPOSE);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check a certificate chains extensions for consistency with the supplied
 | |
|  * purpose
 | |
|  */
 | |
| 
 | |
| static int check_chain_extensions(X509_STORE_CTX *ctx)
 | |
| {
 | |
|     int i, must_be_ca, plen = 0;
 | |
|     X509 *x;
 | |
|     int proxy_path_length = 0;
 | |
|     int purpose;
 | |
|     int allow_proxy_certs;
 | |
|     int num = sk_X509_num(ctx->chain);
 | |
| 
 | |
|     /*-
 | |
|      *  must_be_ca can have 1 of 3 values:
 | |
|      * -1: we accept both CA and non-CA certificates, to allow direct
 | |
|      *     use of self-signed certificates (which are marked as CA).
 | |
|      * 0:  we only accept non-CA certificates.  This is currently not
 | |
|      *     used, but the possibility is present for future extensions.
 | |
|      * 1:  we only accept CA certificates.  This is currently used for
 | |
|      *     all certificates in the chain except the leaf certificate.
 | |
|      */
 | |
|     must_be_ca = -1;
 | |
| 
 | |
|     /* CRL path validation */
 | |
|     if (ctx->parent) {
 | |
|         allow_proxy_certs = 0;
 | |
|         purpose = X509_PURPOSE_CRL_SIGN;
 | |
|     } else {
 | |
|         allow_proxy_certs =
 | |
|             ! !(ctx->param->flags & X509_V_FLAG_ALLOW_PROXY_CERTS);
 | |
|         purpose = ctx->param->purpose;
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < num; i++) {
 | |
|         int ret;
 | |
|         x = sk_X509_value(ctx->chain, i);
 | |
|         if (!(ctx->param->flags & X509_V_FLAG_IGNORE_CRITICAL)
 | |
|             && (x->ex_flags & EXFLAG_CRITICAL)) {
 | |
|             if (!verify_cb_cert(ctx, x, i,
 | |
|                                 X509_V_ERR_UNHANDLED_CRITICAL_EXTENSION))
 | |
|                 return 0;
 | |
|         }
 | |
|         if (!allow_proxy_certs && (x->ex_flags & EXFLAG_PROXY)) {
 | |
|             if (!verify_cb_cert(ctx, x, i,
 | |
|                                 X509_V_ERR_PROXY_CERTIFICATES_NOT_ALLOWED))
 | |
|                 return 0;
 | |
|         }
 | |
|         ret = X509_check_ca(x);
 | |
|         switch (must_be_ca) {
 | |
|         case -1:
 | |
|             if ((ctx->param->flags & X509_V_FLAG_X509_STRICT)
 | |
|                 && (ret != 1) && (ret != 0)) {
 | |
|                 ret = 0;
 | |
|                 ctx->error = X509_V_ERR_INVALID_CA;
 | |
|             } else
 | |
|                 ret = 1;
 | |
|             break;
 | |
|         case 0:
 | |
|             if (ret != 0) {
 | |
|                 ret = 0;
 | |
|                 ctx->error = X509_V_ERR_INVALID_NON_CA;
 | |
|             } else
 | |
|                 ret = 1;
 | |
|             break;
 | |
|         default:
 | |
|             /* X509_V_FLAG_X509_STRICT is implicit for intermediate CAs */
 | |
|             if ((ret == 0)
 | |
|                 || ((i + 1 < num || ctx->param->flags & X509_V_FLAG_X509_STRICT)
 | |
|                     && (ret != 1))) {
 | |
|                 ret = 0;
 | |
|                 ctx->error = X509_V_ERR_INVALID_CA;
 | |
|             } else
 | |
|                 ret = 1;
 | |
|             break;
 | |
|         }
 | |
|         if (ret > 0
 | |
|             && (ctx->param->flags & X509_V_FLAG_X509_STRICT) && num > 1) {
 | |
|             /* Check for presence of explicit elliptic curve parameters */
 | |
|             ret = check_curve(x);
 | |
|             if (ret < 0) {
 | |
|                 ctx->error = X509_V_ERR_UNSPECIFIED;
 | |
|                 ret = 0;
 | |
|             } else if (ret == 0) {
 | |
|                 ctx->error = X509_V_ERR_EC_KEY_EXPLICIT_PARAMS;
 | |
|             }
 | |
|         }
 | |
|         if (ret > 0
 | |
|             && (x->ex_flags & EXFLAG_CA) == 0
 | |
|             && x->ex_pathlen != -1
 | |
|             && (ctx->param->flags & X509_V_FLAG_X509_STRICT)) {
 | |
|             ctx->error = X509_V_ERR_INVALID_EXTENSION;
 | |
|             ret = 0;
 | |
|         }
 | |
|         if (ret == 0 && !verify_cb_cert(ctx, x, i, X509_V_OK))
 | |
|             return 0;
 | |
|         /* check_purpose() makes the callback as needed */
 | |
|         if (purpose > 0 && !check_purpose(ctx, x, purpose, i, must_be_ca))
 | |
|             return 0;
 | |
|         /* Check pathlen */
 | |
|         if ((i > 1) && (x->ex_pathlen != -1)
 | |
|             && (plen > (x->ex_pathlen + proxy_path_length))) {
 | |
|             if (!verify_cb_cert(ctx, x, i, X509_V_ERR_PATH_LENGTH_EXCEEDED))
 | |
|                 return 0;
 | |
|         }
 | |
|         /* Increment path length if not a self issued intermediate CA */
 | |
|         if (i > 0 && (x->ex_flags & EXFLAG_SI) == 0)
 | |
|             plen++;
 | |
|         /*
 | |
|          * If this certificate is a proxy certificate, the next certificate
 | |
|          * must be another proxy certificate or a EE certificate.  If not,
 | |
|          * the next certificate must be a CA certificate.
 | |
|          */
 | |
|         if (x->ex_flags & EXFLAG_PROXY) {
 | |
|             /*
 | |
|              * RFC3820, 4.1.3 (b)(1) stipulates that if pCPathLengthConstraint
 | |
|              * is less than max_path_length, the former should be copied to
 | |
|              * the latter, and 4.1.4 (a) stipulates that max_path_length
 | |
|              * should be verified to be larger than zero and decrement it.
 | |
|              *
 | |
|              * Because we're checking the certs in the reverse order, we start
 | |
|              * with verifying that proxy_path_length isn't larger than pcPLC,
 | |
|              * and copy the latter to the former if it is, and finally,
 | |
|              * increment proxy_path_length.
 | |
|              */
 | |
|             if (x->ex_pcpathlen != -1) {
 | |
|                 if (proxy_path_length > x->ex_pcpathlen) {
 | |
|                     if (!verify_cb_cert(ctx, x, i,
 | |
|                                         X509_V_ERR_PROXY_PATH_LENGTH_EXCEEDED))
 | |
|                         return 0;
 | |
|                 }
 | |
|                 proxy_path_length = x->ex_pcpathlen;
 | |
|             }
 | |
|             proxy_path_length++;
 | |
|             must_be_ca = 0;
 | |
|         } else
 | |
|             must_be_ca = 1;
 | |
|     }
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| static int has_san_id(X509 *x, int gtype)
 | |
| {
 | |
|     int i;
 | |
|     int ret = 0;
 | |
|     GENERAL_NAMES *gs = X509_get_ext_d2i(x, NID_subject_alt_name, NULL, NULL);
 | |
| 
 | |
|     if (gs == NULL)
 | |
|         return 0;
 | |
| 
 | |
|     for (i = 0; i < sk_GENERAL_NAME_num(gs); i++) {
 | |
|         GENERAL_NAME *g = sk_GENERAL_NAME_value(gs, i);
 | |
| 
 | |
|         if (g->type == gtype) {
 | |
|             ret = 1;
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     GENERAL_NAMES_free(gs);
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static int check_name_constraints(X509_STORE_CTX *ctx)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     /* Check name constraints for all certificates */
 | |
|     for (i = sk_X509_num(ctx->chain) - 1; i >= 0; i--) {
 | |
|         X509 *x = sk_X509_value(ctx->chain, i);
 | |
|         int j;
 | |
| 
 | |
|         /* Ignore self issued certs unless last in chain */
 | |
|         if (i && (x->ex_flags & EXFLAG_SI))
 | |
|             continue;
 | |
| 
 | |
|         /*
 | |
|          * Proxy certificates policy has an extra constraint, where the
 | |
|          * certificate subject MUST be the issuer with a single CN entry
 | |
|          * added.
 | |
|          * (RFC 3820: 3.4, 4.1.3 (a)(4))
 | |
|          */
 | |
|         if (x->ex_flags & EXFLAG_PROXY) {
 | |
|             X509_NAME *tmpsubject = X509_get_subject_name(x);
 | |
|             X509_NAME *tmpissuer = X509_get_issuer_name(x);
 | |
|             X509_NAME_ENTRY *tmpentry = NULL;
 | |
|             int last_object_nid = 0;
 | |
|             int err = X509_V_OK;
 | |
|             int last_object_loc = X509_NAME_entry_count(tmpsubject) - 1;
 | |
| 
 | |
|             /* Check that there are at least two RDNs */
 | |
|             if (last_object_loc < 1) {
 | |
|                 err = X509_V_ERR_PROXY_SUBJECT_NAME_VIOLATION;
 | |
|                 goto proxy_name_done;
 | |
|             }
 | |
| 
 | |
|             /*
 | |
|              * Check that there is exactly one more RDN in subject as
 | |
|              * there is in issuer.
 | |
|              */
 | |
|             if (X509_NAME_entry_count(tmpsubject)
 | |
|                 != X509_NAME_entry_count(tmpissuer) + 1) {
 | |
|                 err = X509_V_ERR_PROXY_SUBJECT_NAME_VIOLATION;
 | |
|                 goto proxy_name_done;
 | |
|             }
 | |
| 
 | |
|             /*
 | |
|              * Check that the last subject component isn't part of a
 | |
|              * multivalued RDN
 | |
|              */
 | |
|             if (X509_NAME_ENTRY_set(X509_NAME_get_entry(tmpsubject,
 | |
|                                                         last_object_loc))
 | |
|                 == X509_NAME_ENTRY_set(X509_NAME_get_entry(tmpsubject,
 | |
|                                                            last_object_loc - 1))) {
 | |
|                 err = X509_V_ERR_PROXY_SUBJECT_NAME_VIOLATION;
 | |
|                 goto proxy_name_done;
 | |
|             }
 | |
| 
 | |
|             /*
 | |
|              * Check that the last subject RDN is a commonName, and that
 | |
|              * all the previous RDNs match the issuer exactly
 | |
|              */
 | |
|             tmpsubject = X509_NAME_dup(tmpsubject);
 | |
|             if (tmpsubject == NULL) {
 | |
|                 X509err(X509_F_CHECK_NAME_CONSTRAINTS, ERR_R_MALLOC_FAILURE);
 | |
|                 ctx->error = X509_V_ERR_OUT_OF_MEM;
 | |
|                 return 0;
 | |
|             }
 | |
| 
 | |
|             tmpentry =
 | |
|                 X509_NAME_delete_entry(tmpsubject, last_object_loc);
 | |
|             last_object_nid =
 | |
|                 OBJ_obj2nid(X509_NAME_ENTRY_get_object(tmpentry));
 | |
| 
 | |
|             if (last_object_nid != NID_commonName
 | |
|                 || X509_NAME_cmp(tmpsubject, tmpissuer) != 0) {
 | |
|                 err = X509_V_ERR_PROXY_SUBJECT_NAME_VIOLATION;
 | |
|             }
 | |
| 
 | |
|             X509_NAME_ENTRY_free(tmpentry);
 | |
|             X509_NAME_free(tmpsubject);
 | |
| 
 | |
|          proxy_name_done:
 | |
|             if (err != X509_V_OK
 | |
|                 && !verify_cb_cert(ctx, x, i, err))
 | |
|                 return 0;
 | |
|         }
 | |
| 
 | |
|         /*
 | |
|          * Check against constraints for all certificates higher in chain
 | |
|          * including trust anchor. Trust anchor not strictly speaking needed
 | |
|          * but if it includes constraints it is to be assumed it expects them
 | |
|          * to be obeyed.
 | |
|          */
 | |
|         for (j = sk_X509_num(ctx->chain) - 1; j > i; j--) {
 | |
|             NAME_CONSTRAINTS *nc = sk_X509_value(ctx->chain, j)->nc;
 | |
| 
 | |
|             if (nc) {
 | |
|                 int rv = NAME_CONSTRAINTS_check(x, nc);
 | |
| 
 | |
|                 /* If EE certificate check commonName too */
 | |
|                 if (rv == X509_V_OK && i == 0
 | |
|                     && (ctx->param->hostflags
 | |
|                         & X509_CHECK_FLAG_NEVER_CHECK_SUBJECT) == 0
 | |
|                     && ((ctx->param->hostflags
 | |
|                          & X509_CHECK_FLAG_ALWAYS_CHECK_SUBJECT) != 0
 | |
|                         || !has_san_id(x, GEN_DNS)))
 | |
|                     rv = NAME_CONSTRAINTS_check_CN(x, nc);
 | |
| 
 | |
|                 switch (rv) {
 | |
|                 case X509_V_OK:
 | |
|                     break;
 | |
|                 case X509_V_ERR_OUT_OF_MEM:
 | |
|                     return 0;
 | |
|                 default:
 | |
|                     if (!verify_cb_cert(ctx, x, i, rv))
 | |
|                         return 0;
 | |
|                     break;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| static int check_id_error(X509_STORE_CTX *ctx, int errcode)
 | |
| {
 | |
|     return verify_cb_cert(ctx, ctx->cert, 0, errcode);
 | |
| }
 | |
| 
 | |
| static int check_hosts(X509 *x, X509_VERIFY_PARAM *vpm)
 | |
| {
 | |
|     int i;
 | |
|     int n = sk_OPENSSL_STRING_num(vpm->hosts);
 | |
|     char *name;
 | |
| 
 | |
|     if (vpm->peername != NULL) {
 | |
|         OPENSSL_free(vpm->peername);
 | |
|         vpm->peername = NULL;
 | |
|     }
 | |
|     for (i = 0; i < n; ++i) {
 | |
|         name = sk_OPENSSL_STRING_value(vpm->hosts, i);
 | |
|         if (X509_check_host(x, name, 0, vpm->hostflags, &vpm->peername) > 0)
 | |
|             return 1;
 | |
|     }
 | |
|     return n == 0;
 | |
| }
 | |
| 
 | |
| static int check_id(X509_STORE_CTX *ctx)
 | |
| {
 | |
|     X509_VERIFY_PARAM *vpm = ctx->param;
 | |
|     X509 *x = ctx->cert;
 | |
|     if (vpm->hosts && check_hosts(x, vpm) <= 0) {
 | |
|         if (!check_id_error(ctx, X509_V_ERR_HOSTNAME_MISMATCH))
 | |
|             return 0;
 | |
|     }
 | |
|     if (vpm->email && X509_check_email(x, vpm->email, vpm->emaillen, 0) <= 0) {
 | |
|         if (!check_id_error(ctx, X509_V_ERR_EMAIL_MISMATCH))
 | |
|             return 0;
 | |
|     }
 | |
|     if (vpm->ip && X509_check_ip(x, vpm->ip, vpm->iplen, 0) <= 0) {
 | |
|         if (!check_id_error(ctx, X509_V_ERR_IP_ADDRESS_MISMATCH))
 | |
|             return 0;
 | |
|     }
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| static int check_trust(X509_STORE_CTX *ctx, int num_untrusted)
 | |
| {
 | |
|     int i;
 | |
|     X509 *x = NULL;
 | |
|     X509 *mx;
 | |
|     SSL_DANE *dane = ctx->dane;
 | |
|     int num = sk_X509_num(ctx->chain);
 | |
|     int trust;
 | |
| 
 | |
|     /*
 | |
|      * Check for a DANE issuer at depth 1 or greater, if it is a DANE-TA(2)
 | |
|      * match, we're done, otherwise we'll merely record the match depth.
 | |
|      */
 | |
|     if (DANETLS_HAS_TA(dane) && num_untrusted > 0 && num_untrusted < num) {
 | |
|         switch (trust = check_dane_issuer(ctx, num_untrusted)) {
 | |
|         case X509_TRUST_TRUSTED:
 | |
|         case X509_TRUST_REJECTED:
 | |
|             return trust;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Check trusted certificates in chain at depth num_untrusted and up.
 | |
|      * Note, that depths 0..num_untrusted-1 may also contain trusted
 | |
|      * certificates, but the caller is expected to have already checked those,
 | |
|      * and wants to incrementally check just any added since.
 | |
|      */
 | |
|     for (i = num_untrusted; i < num; i++) {
 | |
|         x = sk_X509_value(ctx->chain, i);
 | |
|         trust = X509_check_trust(x, ctx->param->trust, 0);
 | |
|         /* If explicitly trusted return trusted */
 | |
|         if (trust == X509_TRUST_TRUSTED)
 | |
|             goto trusted;
 | |
|         if (trust == X509_TRUST_REJECTED)
 | |
|             goto rejected;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * If we are looking at a trusted certificate, and accept partial chains,
 | |
|      * the chain is PKIX trusted.
 | |
|      */
 | |
|     if (num_untrusted < num) {
 | |
|         if (ctx->param->flags & X509_V_FLAG_PARTIAL_CHAIN)
 | |
|             goto trusted;
 | |
|         return X509_TRUST_UNTRUSTED;
 | |
|     }
 | |
| 
 | |
|     if (num_untrusted == num && ctx->param->flags & X509_V_FLAG_PARTIAL_CHAIN) {
 | |
|         /*
 | |
|          * Last-resort call with no new trusted certificates, check the leaf
 | |
|          * for a direct trust store match.
 | |
|          */
 | |
|         i = 0;
 | |
|         x = sk_X509_value(ctx->chain, i);
 | |
|         mx = lookup_cert_match(ctx, x);
 | |
|         if (!mx)
 | |
|             return X509_TRUST_UNTRUSTED;
 | |
| 
 | |
|         /*
 | |
|          * Check explicit auxiliary trust/reject settings.  If none are set,
 | |
|          * we'll accept X509_TRUST_UNTRUSTED when not self-signed.
 | |
|          */
 | |
|         trust = X509_check_trust(mx, ctx->param->trust, 0);
 | |
|         if (trust == X509_TRUST_REJECTED) {
 | |
|             X509_free(mx);
 | |
|             goto rejected;
 | |
|         }
 | |
| 
 | |
|         /* Replace leaf with trusted match */
 | |
|         (void) sk_X509_set(ctx->chain, 0, mx);
 | |
|         X509_free(x);
 | |
|         ctx->num_untrusted = 0;
 | |
|         goto trusted;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * If no trusted certs in chain at all return untrusted and allow
 | |
|      * standard (no issuer cert) etc errors to be indicated.
 | |
|      */
 | |
|     return X509_TRUST_UNTRUSTED;
 | |
| 
 | |
|  rejected:
 | |
|     if (!verify_cb_cert(ctx, x, i, X509_V_ERR_CERT_REJECTED))
 | |
|         return X509_TRUST_REJECTED;
 | |
|     return X509_TRUST_UNTRUSTED;
 | |
| 
 | |
|  trusted:
 | |
|     if (!DANETLS_ENABLED(dane))
 | |
|         return X509_TRUST_TRUSTED;
 | |
|     if (dane->pdpth < 0)
 | |
|         dane->pdpth = num_untrusted;
 | |
|     /* With DANE, PKIX alone is not trusted until we have both */
 | |
|     if (dane->mdpth >= 0)
 | |
|         return X509_TRUST_TRUSTED;
 | |
|     return X509_TRUST_UNTRUSTED;
 | |
| }
 | |
| 
 | |
| static int check_revocation(X509_STORE_CTX *ctx)
 | |
| {
 | |
|     int i = 0, last = 0, ok = 0;
 | |
|     if (!(ctx->param->flags & X509_V_FLAG_CRL_CHECK))
 | |
|         return 1;
 | |
|     if (ctx->param->flags & X509_V_FLAG_CRL_CHECK_ALL)
 | |
|         last = sk_X509_num(ctx->chain) - 1;
 | |
|     else {
 | |
|         /* If checking CRL paths this isn't the EE certificate */
 | |
|         if (ctx->parent)
 | |
|             return 1;
 | |
|         last = 0;
 | |
|     }
 | |
|     for (i = 0; i <= last; i++) {
 | |
|         ctx->error_depth = i;
 | |
|         ok = check_cert(ctx);
 | |
|         if (!ok)
 | |
|             return ok;
 | |
|     }
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| static int check_cert(X509_STORE_CTX *ctx)
 | |
| {
 | |
|     X509_CRL *crl = NULL, *dcrl = NULL;
 | |
|     int ok = 0;
 | |
|     int cnum = ctx->error_depth;
 | |
|     X509 *x = sk_X509_value(ctx->chain, cnum);
 | |
| 
 | |
|     ctx->current_cert = x;
 | |
|     ctx->current_issuer = NULL;
 | |
|     ctx->current_crl_score = 0;
 | |
|     ctx->current_reasons = 0;
 | |
| 
 | |
|     if (x->ex_flags & EXFLAG_PROXY)
 | |
|         return 1;
 | |
| 
 | |
|     while (ctx->current_reasons != CRLDP_ALL_REASONS) {
 | |
|         unsigned int last_reasons = ctx->current_reasons;
 | |
| 
 | |
|         /* Try to retrieve relevant CRL */
 | |
|         if (ctx->get_crl)
 | |
|             ok = ctx->get_crl(ctx, &crl, x);
 | |
|         else
 | |
|             ok = get_crl_delta(ctx, &crl, &dcrl, x);
 | |
|         /*
 | |
|          * If error looking up CRL, nothing we can do except notify callback
 | |
|          */
 | |
|         if (!ok) {
 | |
|             ok = verify_cb_crl(ctx, X509_V_ERR_UNABLE_TO_GET_CRL);
 | |
|             goto done;
 | |
|         }
 | |
|         ctx->current_crl = crl;
 | |
|         ok = ctx->check_crl(ctx, crl);
 | |
|         if (!ok)
 | |
|             goto done;
 | |
| 
 | |
|         if (dcrl) {
 | |
|             ok = ctx->check_crl(ctx, dcrl);
 | |
|             if (!ok)
 | |
|                 goto done;
 | |
|             ok = ctx->cert_crl(ctx, dcrl, x);
 | |
|             if (!ok)
 | |
|                 goto done;
 | |
|         } else
 | |
|             ok = 1;
 | |
| 
 | |
|         /* Don't look in full CRL if delta reason is removefromCRL */
 | |
|         if (ok != 2) {
 | |
|             ok = ctx->cert_crl(ctx, crl, x);
 | |
|             if (!ok)
 | |
|                 goto done;
 | |
|         }
 | |
| 
 | |
|         X509_CRL_free(crl);
 | |
|         X509_CRL_free(dcrl);
 | |
|         crl = NULL;
 | |
|         dcrl = NULL;
 | |
|         /*
 | |
|          * If reasons not updated we won't get anywhere by another iteration,
 | |
|          * so exit loop.
 | |
|          */
 | |
|         if (last_reasons == ctx->current_reasons) {
 | |
|             ok = verify_cb_crl(ctx, X509_V_ERR_UNABLE_TO_GET_CRL);
 | |
|             goto done;
 | |
|         }
 | |
|     }
 | |
|  done:
 | |
|     X509_CRL_free(crl);
 | |
|     X509_CRL_free(dcrl);
 | |
| 
 | |
|     ctx->current_crl = NULL;
 | |
|     return ok;
 | |
| }
 | |
| 
 | |
| /* Check CRL times against values in X509_STORE_CTX */
 | |
| 
 | |
| static int check_crl_time(X509_STORE_CTX *ctx, X509_CRL *crl, int notify)
 | |
| {
 | |
|     time_t *ptime;
 | |
|     int i;
 | |
| 
 | |
|     if (notify)
 | |
|         ctx->current_crl = crl;
 | |
|     if (ctx->param->flags & X509_V_FLAG_USE_CHECK_TIME)
 | |
|         ptime = &ctx->param->check_time;
 | |
|     else if (ctx->param->flags & X509_V_FLAG_NO_CHECK_TIME)
 | |
|         return 1;
 | |
|     else
 | |
|         ptime = NULL;
 | |
| 
 | |
|     i = X509_cmp_time(X509_CRL_get0_lastUpdate(crl), ptime);
 | |
|     if (i == 0) {
 | |
|         if (!notify)
 | |
|             return 0;
 | |
|         if (!verify_cb_crl(ctx, X509_V_ERR_ERROR_IN_CRL_LAST_UPDATE_FIELD))
 | |
|             return 0;
 | |
|     }
 | |
| 
 | |
|     if (i > 0) {
 | |
|         if (!notify)
 | |
|             return 0;
 | |
|         if (!verify_cb_crl(ctx, X509_V_ERR_CRL_NOT_YET_VALID))
 | |
|             return 0;
 | |
|     }
 | |
| 
 | |
|     if (X509_CRL_get0_nextUpdate(crl)) {
 | |
|         i = X509_cmp_time(X509_CRL_get0_nextUpdate(crl), ptime);
 | |
| 
 | |
|         if (i == 0) {
 | |
|             if (!notify)
 | |
|                 return 0;
 | |
|             if (!verify_cb_crl(ctx, X509_V_ERR_ERROR_IN_CRL_NEXT_UPDATE_FIELD))
 | |
|                 return 0;
 | |
|         }
 | |
|         /* Ignore expiry of base CRL is delta is valid */
 | |
|         if ((i < 0) && !(ctx->current_crl_score & CRL_SCORE_TIME_DELTA)) {
 | |
|             if (!notify)
 | |
|                 return 0;
 | |
|             if (!verify_cb_crl(ctx, X509_V_ERR_CRL_HAS_EXPIRED))
 | |
|                 return 0;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (notify)
 | |
|         ctx->current_crl = NULL;
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| static int get_crl_sk(X509_STORE_CTX *ctx, X509_CRL **pcrl, X509_CRL **pdcrl,
 | |
|                       X509 **pissuer, int *pscore, unsigned int *preasons,
 | |
|                       STACK_OF(X509_CRL) *crls)
 | |
| {
 | |
|     int i, crl_score, best_score = *pscore;
 | |
|     unsigned int reasons, best_reasons = 0;
 | |
|     X509 *x = ctx->current_cert;
 | |
|     X509_CRL *crl, *best_crl = NULL;
 | |
|     X509 *crl_issuer = NULL, *best_crl_issuer = NULL;
 | |
| 
 | |
|     for (i = 0; i < sk_X509_CRL_num(crls); i++) {
 | |
|         crl = sk_X509_CRL_value(crls, i);
 | |
|         reasons = *preasons;
 | |
|         crl_score = get_crl_score(ctx, &crl_issuer, &reasons, crl, x);
 | |
|         if (crl_score < best_score || crl_score == 0)
 | |
|             continue;
 | |
|         /* If current CRL is equivalent use it if it is newer */
 | |
|         if (crl_score == best_score && best_crl != NULL) {
 | |
|             int day, sec;
 | |
|             if (ASN1_TIME_diff(&day, &sec, X509_CRL_get0_lastUpdate(best_crl),
 | |
|                                X509_CRL_get0_lastUpdate(crl)) == 0)
 | |
|                 continue;
 | |
|             /*
 | |
|              * ASN1_TIME_diff never returns inconsistent signs for |day|
 | |
|              * and |sec|.
 | |
|              */
 | |
|             if (day <= 0 && sec <= 0)
 | |
|                 continue;
 | |
|         }
 | |
|         best_crl = crl;
 | |
|         best_crl_issuer = crl_issuer;
 | |
|         best_score = crl_score;
 | |
|         best_reasons = reasons;
 | |
|     }
 | |
| 
 | |
|     if (best_crl) {
 | |
|         X509_CRL_free(*pcrl);
 | |
|         *pcrl = best_crl;
 | |
|         *pissuer = best_crl_issuer;
 | |
|         *pscore = best_score;
 | |
|         *preasons = best_reasons;
 | |
|         X509_CRL_up_ref(best_crl);
 | |
|         X509_CRL_free(*pdcrl);
 | |
|         *pdcrl = NULL;
 | |
|         get_delta_sk(ctx, pdcrl, pscore, best_crl, crls);
 | |
|     }
 | |
| 
 | |
|     if (best_score >= CRL_SCORE_VALID)
 | |
|         return 1;
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Compare two CRL extensions for delta checking purposes. They should be
 | |
|  * both present or both absent. If both present all fields must be identical.
 | |
|  */
 | |
| 
 | |
| static int crl_extension_match(X509_CRL *a, X509_CRL *b, int nid)
 | |
| {
 | |
|     ASN1_OCTET_STRING *exta, *extb;
 | |
|     int i;
 | |
|     i = X509_CRL_get_ext_by_NID(a, nid, -1);
 | |
|     if (i >= 0) {
 | |
|         /* Can't have multiple occurrences */
 | |
|         if (X509_CRL_get_ext_by_NID(a, nid, i) != -1)
 | |
|             return 0;
 | |
|         exta = X509_EXTENSION_get_data(X509_CRL_get_ext(a, i));
 | |
|     } else
 | |
|         exta = NULL;
 | |
| 
 | |
|     i = X509_CRL_get_ext_by_NID(b, nid, -1);
 | |
| 
 | |
|     if (i >= 0) {
 | |
| 
 | |
|         if (X509_CRL_get_ext_by_NID(b, nid, i) != -1)
 | |
|             return 0;
 | |
|         extb = X509_EXTENSION_get_data(X509_CRL_get_ext(b, i));
 | |
|     } else
 | |
|         extb = NULL;
 | |
| 
 | |
|     if (!exta && !extb)
 | |
|         return 1;
 | |
| 
 | |
|     if (!exta || !extb)
 | |
|         return 0;
 | |
| 
 | |
|     if (ASN1_OCTET_STRING_cmp(exta, extb))
 | |
|         return 0;
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /* See if a base and delta are compatible */
 | |
| 
 | |
| static int check_delta_base(X509_CRL *delta, X509_CRL *base)
 | |
| {
 | |
|     /* Delta CRL must be a delta */
 | |
|     if (!delta->base_crl_number)
 | |
|         return 0;
 | |
|     /* Base must have a CRL number */
 | |
|     if (!base->crl_number)
 | |
|         return 0;
 | |
|     /* Issuer names must match */
 | |
|     if (X509_NAME_cmp(X509_CRL_get_issuer(base), X509_CRL_get_issuer(delta)))
 | |
|         return 0;
 | |
|     /* AKID and IDP must match */
 | |
|     if (!crl_extension_match(delta, base, NID_authority_key_identifier))
 | |
|         return 0;
 | |
|     if (!crl_extension_match(delta, base, NID_issuing_distribution_point))
 | |
|         return 0;
 | |
|     /* Delta CRL base number must not exceed Full CRL number. */
 | |
|     if (ASN1_INTEGER_cmp(delta->base_crl_number, base->crl_number) > 0)
 | |
|         return 0;
 | |
|     /* Delta CRL number must exceed full CRL number */
 | |
|     if (ASN1_INTEGER_cmp(delta->crl_number, base->crl_number) > 0)
 | |
|         return 1;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * For a given base CRL find a delta... maybe extend to delta scoring or
 | |
|  * retrieve a chain of deltas...
 | |
|  */
 | |
| 
 | |
| static void get_delta_sk(X509_STORE_CTX *ctx, X509_CRL **dcrl, int *pscore,
 | |
|                          X509_CRL *base, STACK_OF(X509_CRL) *crls)
 | |
| {
 | |
|     X509_CRL *delta;
 | |
|     int i;
 | |
|     if (!(ctx->param->flags & X509_V_FLAG_USE_DELTAS))
 | |
|         return;
 | |
|     if (!((ctx->current_cert->ex_flags | base->flags) & EXFLAG_FRESHEST))
 | |
|         return;
 | |
|     for (i = 0; i < sk_X509_CRL_num(crls); i++) {
 | |
|         delta = sk_X509_CRL_value(crls, i);
 | |
|         if (check_delta_base(delta, base)) {
 | |
|             if (check_crl_time(ctx, delta, 0))
 | |
|                 *pscore |= CRL_SCORE_TIME_DELTA;
 | |
|             X509_CRL_up_ref(delta);
 | |
|             *dcrl = delta;
 | |
|             return;
 | |
|         }
 | |
|     }
 | |
|     *dcrl = NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * For a given CRL return how suitable it is for the supplied certificate
 | |
|  * 'x'. The return value is a mask of several criteria. If the issuer is not
 | |
|  * the certificate issuer this is returned in *pissuer. The reasons mask is
 | |
|  * also used to determine if the CRL is suitable: if no new reasons the CRL
 | |
|  * is rejected, otherwise reasons is updated.
 | |
|  */
 | |
| 
 | |
| static int get_crl_score(X509_STORE_CTX *ctx, X509 **pissuer,
 | |
|                          unsigned int *preasons, X509_CRL *crl, X509 *x)
 | |
| {
 | |
| 
 | |
|     int crl_score = 0;
 | |
|     unsigned int tmp_reasons = *preasons, crl_reasons;
 | |
| 
 | |
|     /* First see if we can reject CRL straight away */
 | |
| 
 | |
|     /* Invalid IDP cannot be processed */
 | |
|     if (crl->idp_flags & IDP_INVALID)
 | |
|         return 0;
 | |
|     /* Reason codes or indirect CRLs need extended CRL support */
 | |
|     if (!(ctx->param->flags & X509_V_FLAG_EXTENDED_CRL_SUPPORT)) {
 | |
|         if (crl->idp_flags & (IDP_INDIRECT | IDP_REASONS))
 | |
|             return 0;
 | |
|     } else if (crl->idp_flags & IDP_REASONS) {
 | |
|         /* If no new reasons reject */
 | |
|         if (!(crl->idp_reasons & ~tmp_reasons))
 | |
|             return 0;
 | |
|     }
 | |
|     /* Don't process deltas at this stage */
 | |
|     else if (crl->base_crl_number)
 | |
|         return 0;
 | |
|     /* If issuer name doesn't match certificate need indirect CRL */
 | |
|     if (X509_NAME_cmp(X509_get_issuer_name(x), X509_CRL_get_issuer(crl))) {
 | |
|         if (!(crl->idp_flags & IDP_INDIRECT))
 | |
|             return 0;
 | |
|     } else
 | |
|         crl_score |= CRL_SCORE_ISSUER_NAME;
 | |
| 
 | |
|     if (!(crl->flags & EXFLAG_CRITICAL))
 | |
|         crl_score |= CRL_SCORE_NOCRITICAL;
 | |
| 
 | |
|     /* Check expiry */
 | |
|     if (check_crl_time(ctx, crl, 0))
 | |
|         crl_score |= CRL_SCORE_TIME;
 | |
| 
 | |
|     /* Check authority key ID and locate certificate issuer */
 | |
|     crl_akid_check(ctx, crl, pissuer, &crl_score);
 | |
| 
 | |
|     /* If we can't locate certificate issuer at this point forget it */
 | |
| 
 | |
|     if (!(crl_score & CRL_SCORE_AKID))
 | |
|         return 0;
 | |
| 
 | |
|     /* Check cert for matching CRL distribution points */
 | |
| 
 | |
|     if (crl_crldp_check(x, crl, crl_score, &crl_reasons)) {
 | |
|         /* If no new reasons reject */
 | |
|         if (!(crl_reasons & ~tmp_reasons))
 | |
|             return 0;
 | |
|         tmp_reasons |= crl_reasons;
 | |
|         crl_score |= CRL_SCORE_SCOPE;
 | |
|     }
 | |
| 
 | |
|     *preasons = tmp_reasons;
 | |
| 
 | |
|     return crl_score;
 | |
| 
 | |
| }
 | |
| 
 | |
| static void crl_akid_check(X509_STORE_CTX *ctx, X509_CRL *crl,
 | |
|                            X509 **pissuer, int *pcrl_score)
 | |
| {
 | |
|     X509 *crl_issuer = NULL;
 | |
|     X509_NAME *cnm = X509_CRL_get_issuer(crl);
 | |
|     int cidx = ctx->error_depth;
 | |
|     int i;
 | |
| 
 | |
|     if (cidx != sk_X509_num(ctx->chain) - 1)
 | |
|         cidx++;
 | |
| 
 | |
|     crl_issuer = sk_X509_value(ctx->chain, cidx);
 | |
| 
 | |
|     if (X509_check_akid(crl_issuer, crl->akid) == X509_V_OK) {
 | |
|         if (*pcrl_score & CRL_SCORE_ISSUER_NAME) {
 | |
|             *pcrl_score |= CRL_SCORE_AKID | CRL_SCORE_ISSUER_CERT;
 | |
|             *pissuer = crl_issuer;
 | |
|             return;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for (cidx++; cidx < sk_X509_num(ctx->chain); cidx++) {
 | |
|         crl_issuer = sk_X509_value(ctx->chain, cidx);
 | |
|         if (X509_NAME_cmp(X509_get_subject_name(crl_issuer), cnm))
 | |
|             continue;
 | |
|         if (X509_check_akid(crl_issuer, crl->akid) == X509_V_OK) {
 | |
|             *pcrl_score |= CRL_SCORE_AKID | CRL_SCORE_SAME_PATH;
 | |
|             *pissuer = crl_issuer;
 | |
|             return;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Anything else needs extended CRL support */
 | |
| 
 | |
|     if (!(ctx->param->flags & X509_V_FLAG_EXTENDED_CRL_SUPPORT))
 | |
|         return;
 | |
| 
 | |
|     /*
 | |
|      * Otherwise the CRL issuer is not on the path. Look for it in the set of
 | |
|      * untrusted certificates.
 | |
|      */
 | |
|     for (i = 0; i < sk_X509_num(ctx->untrusted); i++) {
 | |
|         crl_issuer = sk_X509_value(ctx->untrusted, i);
 | |
|         if (X509_NAME_cmp(X509_get_subject_name(crl_issuer), cnm))
 | |
|             continue;
 | |
|         if (X509_check_akid(crl_issuer, crl->akid) == X509_V_OK) {
 | |
|             *pissuer = crl_issuer;
 | |
|             *pcrl_score |= CRL_SCORE_AKID;
 | |
|             return;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check the path of a CRL issuer certificate. This creates a new
 | |
|  * X509_STORE_CTX and populates it with most of the parameters from the
 | |
|  * parent. This could be optimised somewhat since a lot of path checking will
 | |
|  * be duplicated by the parent, but this will rarely be used in practice.
 | |
|  */
 | |
| 
 | |
| static int check_crl_path(X509_STORE_CTX *ctx, X509 *x)
 | |
| {
 | |
|     X509_STORE_CTX crl_ctx;
 | |
|     int ret;
 | |
| 
 | |
|     /* Don't allow recursive CRL path validation */
 | |
|     if (ctx->parent)
 | |
|         return 0;
 | |
|     if (!X509_STORE_CTX_init(&crl_ctx, ctx->ctx, x, ctx->untrusted))
 | |
|         return -1;
 | |
| 
 | |
|     crl_ctx.crls = ctx->crls;
 | |
|     /* Copy verify params across */
 | |
|     X509_STORE_CTX_set0_param(&crl_ctx, ctx->param);
 | |
| 
 | |
|     crl_ctx.parent = ctx;
 | |
|     crl_ctx.verify_cb = ctx->verify_cb;
 | |
| 
 | |
|     /* Verify CRL issuer */
 | |
|     ret = X509_verify_cert(&crl_ctx);
 | |
|     if (ret <= 0)
 | |
|         goto err;
 | |
| 
 | |
|     /* Check chain is acceptable */
 | |
|     ret = check_crl_chain(ctx, ctx->chain, crl_ctx.chain);
 | |
|  err:
 | |
|     X509_STORE_CTX_cleanup(&crl_ctx);
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * RFC3280 says nothing about the relationship between CRL path and
 | |
|  * certificate path, which could lead to situations where a certificate could
 | |
|  * be revoked or validated by a CA not authorised to do so. RFC5280 is more
 | |
|  * strict and states that the two paths must end in the same trust anchor,
 | |
|  * though some discussions remain... until this is resolved we use the
 | |
|  * RFC5280 version
 | |
|  */
 | |
| 
 | |
| static int check_crl_chain(X509_STORE_CTX *ctx,
 | |
|                            STACK_OF(X509) *cert_path,
 | |
|                            STACK_OF(X509) *crl_path)
 | |
| {
 | |
|     X509 *cert_ta, *crl_ta;
 | |
|     cert_ta = sk_X509_value(cert_path, sk_X509_num(cert_path) - 1);
 | |
|     crl_ta = sk_X509_value(crl_path, sk_X509_num(crl_path) - 1);
 | |
|     if (!X509_cmp(cert_ta, crl_ta))
 | |
|         return 1;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /*-
 | |
|  * Check for match between two dist point names: three separate cases.
 | |
|  * 1. Both are relative names and compare X509_NAME types.
 | |
|  * 2. One full, one relative. Compare X509_NAME to GENERAL_NAMES.
 | |
|  * 3. Both are full names and compare two GENERAL_NAMES.
 | |
|  * 4. One is NULL: automatic match.
 | |
|  */
 | |
| 
 | |
| static int idp_check_dp(DIST_POINT_NAME *a, DIST_POINT_NAME *b)
 | |
| {
 | |
|     X509_NAME *nm = NULL;
 | |
|     GENERAL_NAMES *gens = NULL;
 | |
|     GENERAL_NAME *gena, *genb;
 | |
|     int i, j;
 | |
|     if (!a || !b)
 | |
|         return 1;
 | |
|     if (a->type == 1) {
 | |
|         if (!a->dpname)
 | |
|             return 0;
 | |
|         /* Case 1: two X509_NAME */
 | |
|         if (b->type == 1) {
 | |
|             if (!b->dpname)
 | |
|                 return 0;
 | |
|             if (!X509_NAME_cmp(a->dpname, b->dpname))
 | |
|                 return 1;
 | |
|             else
 | |
|                 return 0;
 | |
|         }
 | |
|         /* Case 2: set name and GENERAL_NAMES appropriately */
 | |
|         nm = a->dpname;
 | |
|         gens = b->name.fullname;
 | |
|     } else if (b->type == 1) {
 | |
|         if (!b->dpname)
 | |
|             return 0;
 | |
|         /* Case 2: set name and GENERAL_NAMES appropriately */
 | |
|         gens = a->name.fullname;
 | |
|         nm = b->dpname;
 | |
|     }
 | |
| 
 | |
|     /* Handle case 2 with one GENERAL_NAMES and one X509_NAME */
 | |
|     if (nm) {
 | |
|         for (i = 0; i < sk_GENERAL_NAME_num(gens); i++) {
 | |
|             gena = sk_GENERAL_NAME_value(gens, i);
 | |
|             if (gena->type != GEN_DIRNAME)
 | |
|                 continue;
 | |
|             if (!X509_NAME_cmp(nm, gena->d.directoryName))
 | |
|                 return 1;
 | |
|         }
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     /* Else case 3: two GENERAL_NAMES */
 | |
| 
 | |
|     for (i = 0; i < sk_GENERAL_NAME_num(a->name.fullname); i++) {
 | |
|         gena = sk_GENERAL_NAME_value(a->name.fullname, i);
 | |
|         for (j = 0; j < sk_GENERAL_NAME_num(b->name.fullname); j++) {
 | |
|             genb = sk_GENERAL_NAME_value(b->name.fullname, j);
 | |
|             if (!GENERAL_NAME_cmp(gena, genb))
 | |
|                 return 1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| 
 | |
| }
 | |
| 
 | |
| static int crldp_check_crlissuer(DIST_POINT *dp, X509_CRL *crl, int crl_score)
 | |
| {
 | |
|     int i;
 | |
|     X509_NAME *nm = X509_CRL_get_issuer(crl);
 | |
|     /* If no CRLissuer return is successful iff don't need a match */
 | |
|     if (!dp->CRLissuer)
 | |
|         return ! !(crl_score & CRL_SCORE_ISSUER_NAME);
 | |
|     for (i = 0; i < sk_GENERAL_NAME_num(dp->CRLissuer); i++) {
 | |
|         GENERAL_NAME *gen = sk_GENERAL_NAME_value(dp->CRLissuer, i);
 | |
|         if (gen->type != GEN_DIRNAME)
 | |
|             continue;
 | |
|         if (!X509_NAME_cmp(gen->d.directoryName, nm))
 | |
|             return 1;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /* Check CRLDP and IDP */
 | |
| 
 | |
| static int crl_crldp_check(X509 *x, X509_CRL *crl, int crl_score,
 | |
|                            unsigned int *preasons)
 | |
| {
 | |
|     int i;
 | |
|     if (crl->idp_flags & IDP_ONLYATTR)
 | |
|         return 0;
 | |
|     if (x->ex_flags & EXFLAG_CA) {
 | |
|         if (crl->idp_flags & IDP_ONLYUSER)
 | |
|             return 0;
 | |
|     } else {
 | |
|         if (crl->idp_flags & IDP_ONLYCA)
 | |
|             return 0;
 | |
|     }
 | |
|     *preasons = crl->idp_reasons;
 | |
|     for (i = 0; i < sk_DIST_POINT_num(x->crldp); i++) {
 | |
|         DIST_POINT *dp = sk_DIST_POINT_value(x->crldp, i);
 | |
|         if (crldp_check_crlissuer(dp, crl, crl_score)) {
 | |
|             if (!crl->idp || idp_check_dp(dp->distpoint, crl->idp->distpoint)) {
 | |
|                 *preasons &= dp->dp_reasons;
 | |
|                 return 1;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     if ((!crl->idp || !crl->idp->distpoint)
 | |
|         && (crl_score & CRL_SCORE_ISSUER_NAME))
 | |
|         return 1;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Retrieve CRL corresponding to current certificate. If deltas enabled try
 | |
|  * to find a delta CRL too
 | |
|  */
 | |
| 
 | |
| static int get_crl_delta(X509_STORE_CTX *ctx,
 | |
|                          X509_CRL **pcrl, X509_CRL **pdcrl, X509 *x)
 | |
| {
 | |
|     int ok;
 | |
|     X509 *issuer = NULL;
 | |
|     int crl_score = 0;
 | |
|     unsigned int reasons;
 | |
|     X509_CRL *crl = NULL, *dcrl = NULL;
 | |
|     STACK_OF(X509_CRL) *skcrl;
 | |
|     X509_NAME *nm = X509_get_issuer_name(x);
 | |
| 
 | |
|     reasons = ctx->current_reasons;
 | |
|     ok = get_crl_sk(ctx, &crl, &dcrl,
 | |
|                     &issuer, &crl_score, &reasons, ctx->crls);
 | |
|     if (ok)
 | |
|         goto done;
 | |
| 
 | |
|     /* Lookup CRLs from store */
 | |
| 
 | |
|     skcrl = ctx->lookup_crls(ctx, nm);
 | |
| 
 | |
|     /* If no CRLs found and a near match from get_crl_sk use that */
 | |
|     if (!skcrl && crl)
 | |
|         goto done;
 | |
| 
 | |
|     get_crl_sk(ctx, &crl, &dcrl, &issuer, &crl_score, &reasons, skcrl);
 | |
| 
 | |
|     sk_X509_CRL_pop_free(skcrl, X509_CRL_free);
 | |
| 
 | |
|  done:
 | |
|     /* If we got any kind of CRL use it and return success */
 | |
|     if (crl) {
 | |
|         ctx->current_issuer = issuer;
 | |
|         ctx->current_crl_score = crl_score;
 | |
|         ctx->current_reasons = reasons;
 | |
|         *pcrl = crl;
 | |
|         *pdcrl = dcrl;
 | |
|         return 1;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /* Check CRL validity */
 | |
| static int check_crl(X509_STORE_CTX *ctx, X509_CRL *crl)
 | |
| {
 | |
|     X509 *issuer = NULL;
 | |
|     EVP_PKEY *ikey = NULL;
 | |
|     int cnum = ctx->error_depth;
 | |
|     int chnum = sk_X509_num(ctx->chain) - 1;
 | |
| 
 | |
|     /* if we have an alternative CRL issuer cert use that */
 | |
|     if (ctx->current_issuer)
 | |
|         issuer = ctx->current_issuer;
 | |
|     /*
 | |
|      * Else find CRL issuer: if not last certificate then issuer is next
 | |
|      * certificate in chain.
 | |
|      */
 | |
|     else if (cnum < chnum)
 | |
|         issuer = sk_X509_value(ctx->chain, cnum + 1);
 | |
|     else {
 | |
|         issuer = sk_X509_value(ctx->chain, chnum);
 | |
|         /* If not self signed, can't check signature */
 | |
|         if (!ctx->check_issued(ctx, issuer, issuer) &&
 | |
|             !verify_cb_crl(ctx, X509_V_ERR_UNABLE_TO_GET_CRL_ISSUER))
 | |
|             return 0;
 | |
|     }
 | |
| 
 | |
|     if (issuer == NULL)
 | |
|         return 1;
 | |
| 
 | |
|     /*
 | |
|      * Skip most tests for deltas because they have already been done
 | |
|      */
 | |
|     if (!crl->base_crl_number) {
 | |
|         /* Check for cRLSign bit if keyUsage present */
 | |
|         if ((issuer->ex_flags & EXFLAG_KUSAGE) &&
 | |
|             !(issuer->ex_kusage & KU_CRL_SIGN) &&
 | |
|             !verify_cb_crl(ctx, X509_V_ERR_KEYUSAGE_NO_CRL_SIGN))
 | |
|             return 0;
 | |
| 
 | |
|         if (!(ctx->current_crl_score & CRL_SCORE_SCOPE) &&
 | |
|             !verify_cb_crl(ctx, X509_V_ERR_DIFFERENT_CRL_SCOPE))
 | |
|             return 0;
 | |
| 
 | |
|         if (!(ctx->current_crl_score & CRL_SCORE_SAME_PATH) &&
 | |
|             check_crl_path(ctx, ctx->current_issuer) <= 0 &&
 | |
|             !verify_cb_crl(ctx, X509_V_ERR_CRL_PATH_VALIDATION_ERROR))
 | |
|             return 0;
 | |
| 
 | |
|         if ((crl->idp_flags & IDP_INVALID) &&
 | |
|             !verify_cb_crl(ctx, X509_V_ERR_INVALID_EXTENSION))
 | |
|             return 0;
 | |
|     }
 | |
| 
 | |
|     if (!(ctx->current_crl_score & CRL_SCORE_TIME) &&
 | |
|         !check_crl_time(ctx, crl, 1))
 | |
|         return 0;
 | |
| 
 | |
|     /* Attempt to get issuer certificate public key */
 | |
|     ikey = X509_get0_pubkey(issuer);
 | |
| 
 | |
|     if (!ikey &&
 | |
|         !verify_cb_crl(ctx, X509_V_ERR_UNABLE_TO_DECODE_ISSUER_PUBLIC_KEY))
 | |
|         return 0;
 | |
| 
 | |
|     if (ikey) {
 | |
|         int rv = X509_CRL_check_suiteb(crl, ikey, ctx->param->flags);
 | |
| 
 | |
|         if (rv != X509_V_OK && !verify_cb_crl(ctx, rv))
 | |
|             return 0;
 | |
|         /* Verify CRL signature */
 | |
|         if (X509_CRL_verify(crl, ikey) <= 0 &&
 | |
|             !verify_cb_crl(ctx, X509_V_ERR_CRL_SIGNATURE_FAILURE))
 | |
|             return 0;
 | |
|     }
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /* Check certificate against CRL */
 | |
| static int cert_crl(X509_STORE_CTX *ctx, X509_CRL *crl, X509 *x)
 | |
| {
 | |
|     X509_REVOKED *rev;
 | |
| 
 | |
|     /*
 | |
|      * The rules changed for this... previously if a CRL contained unhandled
 | |
|      * critical extensions it could still be used to indicate a certificate
 | |
|      * was revoked. This has since been changed since critical extensions can
 | |
|      * change the meaning of CRL entries.
 | |
|      */
 | |
|     if (!(ctx->param->flags & X509_V_FLAG_IGNORE_CRITICAL)
 | |
|         && (crl->flags & EXFLAG_CRITICAL) &&
 | |
|         !verify_cb_crl(ctx, X509_V_ERR_UNHANDLED_CRITICAL_CRL_EXTENSION))
 | |
|         return 0;
 | |
|     /*
 | |
|      * Look for serial number of certificate in CRL.  If found, make sure
 | |
|      * reason is not removeFromCRL.
 | |
|      */
 | |
|     if (X509_CRL_get0_by_cert(crl, &rev, x)) {
 | |
|         if (rev->reason == CRL_REASON_REMOVE_FROM_CRL)
 | |
|             return 2;
 | |
|         if (!verify_cb_crl(ctx, X509_V_ERR_CERT_REVOKED))
 | |
|             return 0;
 | |
|     }
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| static int check_policy(X509_STORE_CTX *ctx)
 | |
| {
 | |
|     int ret;
 | |
| 
 | |
|     if (ctx->parent)
 | |
|         return 1;
 | |
|     /*
 | |
|      * With DANE, the trust anchor might be a bare public key, not a
 | |
|      * certificate!  In that case our chain does not have the trust anchor
 | |
|      * certificate as a top-most element.  This comports well with RFC5280
 | |
|      * chain verification, since there too, the trust anchor is not part of the
 | |
|      * chain to be verified.  In particular, X509_policy_check() does not look
 | |
|      * at the TA cert, but assumes that it is present as the top-most chain
 | |
|      * element.  We therefore temporarily push a NULL cert onto the chain if it
 | |
|      * was verified via a bare public key, and pop it off right after the
 | |
|      * X509_policy_check() call.
 | |
|      */
 | |
|     if (ctx->bare_ta_signed && !sk_X509_push(ctx->chain, NULL)) {
 | |
|         X509err(X509_F_CHECK_POLICY, ERR_R_MALLOC_FAILURE);
 | |
|         ctx->error = X509_V_ERR_OUT_OF_MEM;
 | |
|         return 0;
 | |
|     }
 | |
|     ret = X509_policy_check(&ctx->tree, &ctx->explicit_policy, ctx->chain,
 | |
|                             ctx->param->policies, ctx->param->flags);
 | |
|     if (ctx->bare_ta_signed)
 | |
|         sk_X509_pop(ctx->chain);
 | |
| 
 | |
|     if (ret == X509_PCY_TREE_INTERNAL) {
 | |
|         X509err(X509_F_CHECK_POLICY, ERR_R_MALLOC_FAILURE);
 | |
|         ctx->error = X509_V_ERR_OUT_OF_MEM;
 | |
|         return 0;
 | |
|     }
 | |
|     /* Invalid or inconsistent extensions */
 | |
|     if (ret == X509_PCY_TREE_INVALID) {
 | |
|         int i;
 | |
| 
 | |
|         /* Locate certificates with bad extensions and notify callback. */
 | |
|         for (i = 1; i < sk_X509_num(ctx->chain); i++) {
 | |
|             X509 *x = sk_X509_value(ctx->chain, i);
 | |
| 
 | |
|             if (!(x->ex_flags & EXFLAG_INVALID_POLICY))
 | |
|                 continue;
 | |
|             if (!verify_cb_cert(ctx, x, i,
 | |
|                                 X509_V_ERR_INVALID_POLICY_EXTENSION))
 | |
|                 return 0;
 | |
|         }
 | |
|         return 1;
 | |
|     }
 | |
|     if (ret == X509_PCY_TREE_FAILURE) {
 | |
|         ctx->current_cert = NULL;
 | |
|         ctx->error = X509_V_ERR_NO_EXPLICIT_POLICY;
 | |
|         return ctx->verify_cb(0, ctx);
 | |
|     }
 | |
|     if (ret != X509_PCY_TREE_VALID) {
 | |
|         X509err(X509_F_CHECK_POLICY, ERR_R_INTERNAL_ERROR);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     if (ctx->param->flags & X509_V_FLAG_NOTIFY_POLICY) {
 | |
|         ctx->current_cert = NULL;
 | |
|         /*
 | |
|          * Verification errors need to be "sticky", a callback may have allowed
 | |
|          * an SSL handshake to continue despite an error, and we must then
 | |
|          * remain in an error state.  Therefore, we MUST NOT clear earlier
 | |
|          * verification errors by setting the error to X509_V_OK.
 | |
|          */
 | |
|         if (!ctx->verify_cb(2, ctx))
 | |
|             return 0;
 | |
|     }
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /*-
 | |
|  * Check certificate validity times.
 | |
|  * If depth >= 0, invoke verification callbacks on error, otherwise just return
 | |
|  * the validation status.
 | |
|  *
 | |
|  * Return 1 on success, 0 otherwise.
 | |
|  */
 | |
| int x509_check_cert_time(X509_STORE_CTX *ctx, X509 *x, int depth)
 | |
| {
 | |
|     time_t *ptime;
 | |
|     int i;
 | |
| 
 | |
|     if (ctx->param->flags & X509_V_FLAG_USE_CHECK_TIME)
 | |
|         ptime = &ctx->param->check_time;
 | |
|     else if (ctx->param->flags & X509_V_FLAG_NO_CHECK_TIME)
 | |
|         return 1;
 | |
|     else
 | |
|         ptime = NULL;
 | |
| 
 | |
|     i = X509_cmp_time(X509_get0_notBefore(x), ptime);
 | |
|     if (i >= 0 && depth < 0)
 | |
|         return 0;
 | |
|     if (i == 0 && !verify_cb_cert(ctx, x, depth,
 | |
|                                   X509_V_ERR_ERROR_IN_CERT_NOT_BEFORE_FIELD))
 | |
|         return 0;
 | |
|     if (i > 0 && !verify_cb_cert(ctx, x, depth, X509_V_ERR_CERT_NOT_YET_VALID))
 | |
|         return 0;
 | |
| 
 | |
|     i = X509_cmp_time(X509_get0_notAfter(x), ptime);
 | |
|     if (i <= 0 && depth < 0)
 | |
|         return 0;
 | |
|     if (i == 0 && !verify_cb_cert(ctx, x, depth,
 | |
|                                   X509_V_ERR_ERROR_IN_CERT_NOT_AFTER_FIELD))
 | |
|         return 0;
 | |
|     if (i < 0 && !verify_cb_cert(ctx, x, depth, X509_V_ERR_CERT_HAS_EXPIRED))
 | |
|         return 0;
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /* verify the issuer signatures and cert times of ctx->chain */
 | |
| static int internal_verify(X509_STORE_CTX *ctx)
 | |
| {
 | |
|     int n = sk_X509_num(ctx->chain) - 1;
 | |
|     X509 *xi = sk_X509_value(ctx->chain, n);
 | |
|     X509 *xs;
 | |
| 
 | |
|     /*
 | |
|      * With DANE-verified bare public key TA signatures, it remains only to
 | |
|      * check the timestamps of the top certificate.  We report the issuer as
 | |
|      * NULL, since all we have is a bare key.
 | |
|      */
 | |
|     if (ctx->bare_ta_signed) {
 | |
|         xs = xi;
 | |
|         xi = NULL;
 | |
|         goto check_cert_time;
 | |
|     }
 | |
| 
 | |
|     if (ctx->check_issued(ctx, xi, xi))
 | |
|         xs = xi; /* the typical case: last cert in the chain is self-issued */
 | |
|     else {
 | |
|         if (ctx->param->flags & X509_V_FLAG_PARTIAL_CHAIN) {
 | |
|             xs = xi;
 | |
|             goto check_cert_time;
 | |
|         }
 | |
|         if (n <= 0) {
 | |
|             if (!verify_cb_cert(ctx, xi, 0,
 | |
|                                 X509_V_ERR_UNABLE_TO_VERIFY_LEAF_SIGNATURE))
 | |
|                 return 0;
 | |
| 
 | |
|             xs = xi;
 | |
|             goto check_cert_time;
 | |
|         }
 | |
| 
 | |
|         n--;
 | |
|         ctx->error_depth = n;
 | |
|         xs = sk_X509_value(ctx->chain, n);
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Do not clear ctx->error=0, it must be "sticky", only the user's callback
 | |
|      * is allowed to reset errors (at its own peril).
 | |
|      */
 | |
|     while (n >= 0) {
 | |
|         /*
 | |
|          * For each iteration of this loop:
 | |
|          * n is the subject depth
 | |
|          * xs is the subject cert, for which the signature is to be checked
 | |
|          * xi is the supposed issuer cert containing the public key to use
 | |
|          * Initially xs == xi if the last cert in the chain is self-issued.
 | |
|          *
 | |
|          * Skip signature check for self-signed certificates unless explicitly
 | |
|          * asked for because it does not add any security and just wastes time.
 | |
|          */
 | |
|         if (xs != xi || ((ctx->param->flags & X509_V_FLAG_CHECK_SS_SIGNATURE)
 | |
|                          && (xi->ex_flags & EXFLAG_SS) != 0)) {
 | |
|             EVP_PKEY *pkey;
 | |
|             /*
 | |
|              * If the issuer's public key is not available or its key usage
 | |
|              * does not support issuing the subject cert, report the issuer
 | |
|              * cert and its depth (rather than n, the depth of the subject).
 | |
|              */
 | |
|             int issuer_depth = n + (xs == xi ? 0 : 1);
 | |
|             /*
 | |
|              * According to https://tools.ietf.org/html/rfc5280#section-6.1.4
 | |
|              * step (n) we must check any given key usage extension in a CA cert
 | |
|              * when preparing the verification of a certificate issued by it.
 | |
|              * According to https://tools.ietf.org/html/rfc5280#section-4.2.1.3
 | |
|              * we must not verify a certifiate signature if the key usage of the
 | |
|              * CA certificate that issued the certificate prohibits signing.
 | |
|              * In case the 'issuing' certificate is the last in the chain and is
 | |
|              * not a CA certificate but a 'self-issued' end-entity cert (i.e.,
 | |
|              * xs == xi && !(xi->ex_flags & EXFLAG_CA)) RFC 5280 does not apply
 | |
|              * (see https://tools.ietf.org/html/rfc6818#section-2) and thus
 | |
|              * we are free to ignore any key usage restrictions on such certs.
 | |
|              */
 | |
|             int ret = xs == xi && (xi->ex_flags & EXFLAG_CA) == 0
 | |
|                 ? X509_V_OK : x509_signing_allowed(xi, xs);
 | |
| 
 | |
|             if (ret != X509_V_OK && !verify_cb_cert(ctx, xi, issuer_depth, ret))
 | |
|                 return 0;
 | |
|             if ((pkey = X509_get0_pubkey(xi)) == NULL) {
 | |
|                 ret = X509_V_ERR_UNABLE_TO_DECODE_ISSUER_PUBLIC_KEY;
 | |
|                 if (!verify_cb_cert(ctx, xi, issuer_depth, ret))
 | |
|                     return 0;
 | |
|             } else if (X509_verify(xs, pkey) <= 0) {
 | |
|                 ret = X509_V_ERR_CERT_SIGNATURE_FAILURE;
 | |
|                 if (!verify_cb_cert(ctx, xs, n, ret))
 | |
|                     return 0;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|     check_cert_time: /* in addition to RFC 5280, do also for trusted (root) cert */
 | |
|         /* Calls verify callback as needed */
 | |
|         if (!x509_check_cert_time(ctx, xs, n))
 | |
|             return 0;
 | |
| 
 | |
|         /*
 | |
|          * Signal success at this depth.  However, the previous error (if any)
 | |
|          * is retained.
 | |
|          */
 | |
|         ctx->current_issuer = xi;
 | |
|         ctx->current_cert = xs;
 | |
|         ctx->error_depth = n;
 | |
|         if (!ctx->verify_cb(1, ctx))
 | |
|             return 0;
 | |
| 
 | |
|         if (--n >= 0) {
 | |
|             xi = xs;
 | |
|             xs = sk_X509_value(ctx->chain, n);
 | |
|         }
 | |
|     }
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| int X509_cmp_current_time(const ASN1_TIME *ctm)
 | |
| {
 | |
|     return X509_cmp_time(ctm, NULL);
 | |
| }
 | |
| 
 | |
| int X509_cmp_time(const ASN1_TIME *ctm, time_t *cmp_time)
 | |
| {
 | |
|     static const size_t utctime_length = sizeof("YYMMDDHHMMSSZ") - 1;
 | |
|     static const size_t generalizedtime_length = sizeof("YYYYMMDDHHMMSSZ") - 1;
 | |
|     ASN1_TIME *asn1_cmp_time = NULL;
 | |
|     int i, day, sec, ret = 0;
 | |
| #ifdef CHARSET_EBCDIC
 | |
|     const char upper_z = 0x5A;
 | |
| #else
 | |
|     const char upper_z = 'Z';
 | |
| #endif
 | |
|     /*
 | |
|      * Note that ASN.1 allows much more slack in the time format than RFC5280.
 | |
|      * In RFC5280, the representation is fixed:
 | |
|      * UTCTime: YYMMDDHHMMSSZ
 | |
|      * GeneralizedTime: YYYYMMDDHHMMSSZ
 | |
|      *
 | |
|      * We do NOT currently enforce the following RFC 5280 requirement:
 | |
|      * "CAs conforming to this profile MUST always encode certificate
 | |
|      *  validity dates through the year 2049 as UTCTime; certificate validity
 | |
|      *  dates in 2050 or later MUST be encoded as GeneralizedTime."
 | |
|      */
 | |
|     switch (ctm->type) {
 | |
|     case V_ASN1_UTCTIME:
 | |
|         if (ctm->length != (int)(utctime_length))
 | |
|             return 0;
 | |
|         break;
 | |
|     case V_ASN1_GENERALIZEDTIME:
 | |
|         if (ctm->length != (int)(generalizedtime_length))
 | |
|             return 0;
 | |
|         break;
 | |
|     default:
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Verify the format: the ASN.1 functions we use below allow a more
 | |
|      * flexible format than what's mandated by RFC 5280.
 | |
|      * Digit and date ranges will be verified in the conversion methods.
 | |
|      */
 | |
|     for (i = 0; i < ctm->length - 1; i++) {
 | |
|         if (!ascii_isdigit(ctm->data[i]))
 | |
|             return 0;
 | |
|     }
 | |
|     if (ctm->data[ctm->length - 1] != upper_z)
 | |
|         return 0;
 | |
| 
 | |
|     /*
 | |
|      * There is ASN1_UTCTIME_cmp_time_t but no
 | |
|      * ASN1_GENERALIZEDTIME_cmp_time_t or ASN1_TIME_cmp_time_t,
 | |
|      * so we go through ASN.1
 | |
|      */
 | |
|     asn1_cmp_time = X509_time_adj(NULL, 0, cmp_time);
 | |
|     if (asn1_cmp_time == NULL)
 | |
|         goto err;
 | |
|     if (!ASN1_TIME_diff(&day, &sec, ctm, asn1_cmp_time))
 | |
|         goto err;
 | |
| 
 | |
|     /*
 | |
|      * X509_cmp_time comparison is <=.
 | |
|      * The return value 0 is reserved for errors.
 | |
|      */
 | |
|     ret = (day >= 0 && sec >= 0) ? -1 : 1;
 | |
| 
 | |
|  err:
 | |
|     ASN1_TIME_free(asn1_cmp_time);
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| ASN1_TIME *X509_gmtime_adj(ASN1_TIME *s, long adj)
 | |
| {
 | |
|     return X509_time_adj(s, adj, NULL);
 | |
| }
 | |
| 
 | |
| ASN1_TIME *X509_time_adj(ASN1_TIME *s, long offset_sec, time_t *in_tm)
 | |
| {
 | |
|     return X509_time_adj_ex(s, 0, offset_sec, in_tm);
 | |
| }
 | |
| 
 | |
| ASN1_TIME *X509_time_adj_ex(ASN1_TIME *s,
 | |
|                             int offset_day, long offset_sec, time_t *in_tm)
 | |
| {
 | |
|     time_t t;
 | |
| 
 | |
|     if (in_tm)
 | |
|         t = *in_tm;
 | |
|     else
 | |
|         time(&t);
 | |
| 
 | |
|     if (s && !(s->flags & ASN1_STRING_FLAG_MSTRING)) {
 | |
|         if (s->type == V_ASN1_UTCTIME)
 | |
|             return ASN1_UTCTIME_adj(s, t, offset_day, offset_sec);
 | |
|         if (s->type == V_ASN1_GENERALIZEDTIME)
 | |
|             return ASN1_GENERALIZEDTIME_adj(s, t, offset_day, offset_sec);
 | |
|     }
 | |
|     return ASN1_TIME_adj(s, t, offset_day, offset_sec);
 | |
| }
 | |
| 
 | |
| int X509_get_pubkey_parameters(EVP_PKEY *pkey, STACK_OF(X509) *chain)
 | |
| {
 | |
|     EVP_PKEY *ktmp = NULL, *ktmp2;
 | |
|     int i, j;
 | |
| 
 | |
|     if ((pkey != NULL) && !EVP_PKEY_missing_parameters(pkey))
 | |
|         return 1;
 | |
| 
 | |
|     for (i = 0; i < sk_X509_num(chain); i++) {
 | |
|         ktmp = X509_get0_pubkey(sk_X509_value(chain, i));
 | |
|         if (ktmp == NULL) {
 | |
|             X509err(X509_F_X509_GET_PUBKEY_PARAMETERS,
 | |
|                     X509_R_UNABLE_TO_GET_CERTS_PUBLIC_KEY);
 | |
|             return 0;
 | |
|         }
 | |
|         if (!EVP_PKEY_missing_parameters(ktmp))
 | |
|             break;
 | |
|     }
 | |
|     if (ktmp == NULL) {
 | |
|         X509err(X509_F_X509_GET_PUBKEY_PARAMETERS,
 | |
|                 X509_R_UNABLE_TO_FIND_PARAMETERS_IN_CHAIN);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     /* first, populate the other certs */
 | |
|     for (j = i - 1; j >= 0; j--) {
 | |
|         ktmp2 = X509_get0_pubkey(sk_X509_value(chain, j));
 | |
|         EVP_PKEY_copy_parameters(ktmp2, ktmp);
 | |
|     }
 | |
| 
 | |
|     if (pkey != NULL)
 | |
|         EVP_PKEY_copy_parameters(pkey, ktmp);
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /* Make a delta CRL as the diff between two full CRLs */
 | |
| 
 | |
| X509_CRL *X509_CRL_diff(X509_CRL *base, X509_CRL *newer,
 | |
|                         EVP_PKEY *skey, const EVP_MD *md, unsigned int flags)
 | |
| {
 | |
|     X509_CRL *crl = NULL;
 | |
|     int i;
 | |
|     STACK_OF(X509_REVOKED) *revs = NULL;
 | |
|     /* CRLs can't be delta already */
 | |
|     if (base->base_crl_number || newer->base_crl_number) {
 | |
|         X509err(X509_F_X509_CRL_DIFF, X509_R_CRL_ALREADY_DELTA);
 | |
|         return NULL;
 | |
|     }
 | |
|     /* Base and new CRL must have a CRL number */
 | |
|     if (!base->crl_number || !newer->crl_number) {
 | |
|         X509err(X509_F_X509_CRL_DIFF, X509_R_NO_CRL_NUMBER);
 | |
|         return NULL;
 | |
|     }
 | |
|     /* Issuer names must match */
 | |
|     if (X509_NAME_cmp(X509_CRL_get_issuer(base), X509_CRL_get_issuer(newer))) {
 | |
|         X509err(X509_F_X509_CRL_DIFF, X509_R_ISSUER_MISMATCH);
 | |
|         return NULL;
 | |
|     }
 | |
|     /* AKID and IDP must match */
 | |
|     if (!crl_extension_match(base, newer, NID_authority_key_identifier)) {
 | |
|         X509err(X509_F_X509_CRL_DIFF, X509_R_AKID_MISMATCH);
 | |
|         return NULL;
 | |
|     }
 | |
|     if (!crl_extension_match(base, newer, NID_issuing_distribution_point)) {
 | |
|         X509err(X509_F_X509_CRL_DIFF, X509_R_IDP_MISMATCH);
 | |
|         return NULL;
 | |
|     }
 | |
|     /* Newer CRL number must exceed full CRL number */
 | |
|     if (ASN1_INTEGER_cmp(newer->crl_number, base->crl_number) <= 0) {
 | |
|         X509err(X509_F_X509_CRL_DIFF, X509_R_NEWER_CRL_NOT_NEWER);
 | |
|         return NULL;
 | |
|     }
 | |
|     /* CRLs must verify */
 | |
|     if (skey && (X509_CRL_verify(base, skey) <= 0 ||
 | |
|                  X509_CRL_verify(newer, skey) <= 0)) {
 | |
|         X509err(X509_F_X509_CRL_DIFF, X509_R_CRL_VERIFY_FAILURE);
 | |
|         return NULL;
 | |
|     }
 | |
|     /* Create new CRL */
 | |
|     crl = X509_CRL_new();
 | |
|     if (crl == NULL || !X509_CRL_set_version(crl, 1))
 | |
|         goto memerr;
 | |
|     /* Set issuer name */
 | |
|     if (!X509_CRL_set_issuer_name(crl, X509_CRL_get_issuer(newer)))
 | |
|         goto memerr;
 | |
| 
 | |
|     if (!X509_CRL_set1_lastUpdate(crl, X509_CRL_get0_lastUpdate(newer)))
 | |
|         goto memerr;
 | |
|     if (!X509_CRL_set1_nextUpdate(crl, X509_CRL_get0_nextUpdate(newer)))
 | |
|         goto memerr;
 | |
| 
 | |
|     /* Set base CRL number: must be critical */
 | |
| 
 | |
|     if (!X509_CRL_add1_ext_i2d(crl, NID_delta_crl, base->crl_number, 1, 0))
 | |
|         goto memerr;
 | |
| 
 | |
|     /*
 | |
|      * Copy extensions across from newest CRL to delta: this will set CRL
 | |
|      * number to correct value too.
 | |
|      */
 | |
| 
 | |
|     for (i = 0; i < X509_CRL_get_ext_count(newer); i++) {
 | |
|         X509_EXTENSION *ext;
 | |
|         ext = X509_CRL_get_ext(newer, i);
 | |
|         if (!X509_CRL_add_ext(crl, ext, -1))
 | |
|             goto memerr;
 | |
|     }
 | |
| 
 | |
|     /* Go through revoked entries, copying as needed */
 | |
| 
 | |
|     revs = X509_CRL_get_REVOKED(newer);
 | |
| 
 | |
|     for (i = 0; i < sk_X509_REVOKED_num(revs); i++) {
 | |
|         X509_REVOKED *rvn, *rvtmp;
 | |
|         rvn = sk_X509_REVOKED_value(revs, i);
 | |
|         /*
 | |
|          * Add only if not also in base. TODO: need something cleverer here
 | |
|          * for some more complex CRLs covering multiple CAs.
 | |
|          */
 | |
|         if (!X509_CRL_get0_by_serial(base, &rvtmp, &rvn->serialNumber)) {
 | |
|             rvtmp = X509_REVOKED_dup(rvn);
 | |
|             if (!rvtmp)
 | |
|                 goto memerr;
 | |
|             if (!X509_CRL_add0_revoked(crl, rvtmp)) {
 | |
|                 X509_REVOKED_free(rvtmp);
 | |
|                 goto memerr;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     /* TODO: optionally prune deleted entries */
 | |
| 
 | |
|     if (skey && md && !X509_CRL_sign(crl, skey, md))
 | |
|         goto memerr;
 | |
| 
 | |
|     return crl;
 | |
| 
 | |
|  memerr:
 | |
|     X509err(X509_F_X509_CRL_DIFF, ERR_R_MALLOC_FAILURE);
 | |
|     X509_CRL_free(crl);
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| int X509_STORE_CTX_set_ex_data(X509_STORE_CTX *ctx, int idx, void *data)
 | |
| {
 | |
|     return CRYPTO_set_ex_data(&ctx->ex_data, idx, data);
 | |
| }
 | |
| 
 | |
| void *X509_STORE_CTX_get_ex_data(X509_STORE_CTX *ctx, int idx)
 | |
| {
 | |
|     return CRYPTO_get_ex_data(&ctx->ex_data, idx);
 | |
| }
 | |
| 
 | |
| int X509_STORE_CTX_get_error(X509_STORE_CTX *ctx)
 | |
| {
 | |
|     return ctx->error;
 | |
| }
 | |
| 
 | |
| void X509_STORE_CTX_set_error(X509_STORE_CTX *ctx, int err)
 | |
| {
 | |
|     ctx->error = err;
 | |
| }
 | |
| 
 | |
| int X509_STORE_CTX_get_error_depth(X509_STORE_CTX *ctx)
 | |
| {
 | |
|     return ctx->error_depth;
 | |
| }
 | |
| 
 | |
| void X509_STORE_CTX_set_error_depth(X509_STORE_CTX *ctx, int depth)
 | |
| {
 | |
|     ctx->error_depth = depth;
 | |
| }
 | |
| 
 | |
| X509 *X509_STORE_CTX_get_current_cert(X509_STORE_CTX *ctx)
 | |
| {
 | |
|     return ctx->current_cert;
 | |
| }
 | |
| 
 | |
| void X509_STORE_CTX_set_current_cert(X509_STORE_CTX *ctx, X509 *x)
 | |
| {
 | |
|     ctx->current_cert = x;
 | |
| }
 | |
| 
 | |
| STACK_OF(X509) *X509_STORE_CTX_get0_chain(X509_STORE_CTX *ctx)
 | |
| {
 | |
|     return ctx->chain;
 | |
| }
 | |
| 
 | |
| STACK_OF(X509) *X509_STORE_CTX_get1_chain(X509_STORE_CTX *ctx)
 | |
| {
 | |
|     if (!ctx->chain)
 | |
|         return NULL;
 | |
|     return X509_chain_up_ref(ctx->chain);
 | |
| }
 | |
| 
 | |
| X509 *X509_STORE_CTX_get0_current_issuer(X509_STORE_CTX *ctx)
 | |
| {
 | |
|     return ctx->current_issuer;
 | |
| }
 | |
| 
 | |
| X509_CRL *X509_STORE_CTX_get0_current_crl(X509_STORE_CTX *ctx)
 | |
| {
 | |
|     return ctx->current_crl;
 | |
| }
 | |
| 
 | |
| X509_STORE_CTX *X509_STORE_CTX_get0_parent_ctx(X509_STORE_CTX *ctx)
 | |
| {
 | |
|     return ctx->parent;
 | |
| }
 | |
| 
 | |
| void X509_STORE_CTX_set_cert(X509_STORE_CTX *ctx, X509 *x)
 | |
| {
 | |
|     ctx->cert = x;
 | |
| }
 | |
| 
 | |
| void X509_STORE_CTX_set0_crls(X509_STORE_CTX *ctx, STACK_OF(X509_CRL) *sk)
 | |
| {
 | |
|     ctx->crls = sk;
 | |
| }
 | |
| 
 | |
| int X509_STORE_CTX_set_purpose(X509_STORE_CTX *ctx, int purpose)
 | |
| {
 | |
|     /*
 | |
|      * XXX: Why isn't this function always used to set the associated trust?
 | |
|      * Should there even be a VPM->trust field at all?  Or should the trust
 | |
|      * always be inferred from the purpose by X509_STORE_CTX_init().
 | |
|      */
 | |
|     return X509_STORE_CTX_purpose_inherit(ctx, 0, purpose, 0);
 | |
| }
 | |
| 
 | |
| int X509_STORE_CTX_set_trust(X509_STORE_CTX *ctx, int trust)
 | |
| {
 | |
|     /*
 | |
|      * XXX: See above, this function would only be needed when the default
 | |
|      * trust for the purpose needs an override in a corner case.
 | |
|      */
 | |
|     return X509_STORE_CTX_purpose_inherit(ctx, 0, 0, trust);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function is used to set the X509_STORE_CTX purpose and trust values.
 | |
|  * This is intended to be used when another structure has its own trust and
 | |
|  * purpose values which (if set) will be inherited by the ctx. If they aren't
 | |
|  * set then we will usually have a default purpose in mind which should then
 | |
|  * be used to set the trust value. An example of this is SSL use: an SSL
 | |
|  * structure will have its own purpose and trust settings which the
 | |
|  * application can set: if they aren't set then we use the default of SSL
 | |
|  * client/server.
 | |
|  */
 | |
| 
 | |
| int X509_STORE_CTX_purpose_inherit(X509_STORE_CTX *ctx, int def_purpose,
 | |
|                                    int purpose, int trust)
 | |
| {
 | |
|     int idx;
 | |
|     /* If purpose not set use default */
 | |
|     if (!purpose)
 | |
|         purpose = def_purpose;
 | |
|     /* If we have a purpose then check it is valid */
 | |
|     if (purpose) {
 | |
|         X509_PURPOSE *ptmp;
 | |
|         idx = X509_PURPOSE_get_by_id(purpose);
 | |
|         if (idx == -1) {
 | |
|             X509err(X509_F_X509_STORE_CTX_PURPOSE_INHERIT,
 | |
|                     X509_R_UNKNOWN_PURPOSE_ID);
 | |
|             return 0;
 | |
|         }
 | |
|         ptmp = X509_PURPOSE_get0(idx);
 | |
|         if (ptmp->trust == X509_TRUST_DEFAULT) {
 | |
|             idx = X509_PURPOSE_get_by_id(def_purpose);
 | |
|             /*
 | |
|              * XXX: In the two callers above def_purpose is always 0, which is
 | |
|              * not a known value, so idx will always be -1.  How is the
 | |
|              * X509_TRUST_DEFAULT case actually supposed to be handled?
 | |
|              */
 | |
|             if (idx == -1) {
 | |
|                 X509err(X509_F_X509_STORE_CTX_PURPOSE_INHERIT,
 | |
|                         X509_R_UNKNOWN_PURPOSE_ID);
 | |
|                 return 0;
 | |
|             }
 | |
|             ptmp = X509_PURPOSE_get0(idx);
 | |
|         }
 | |
|         /* If trust not set then get from purpose default */
 | |
|         if (!trust)
 | |
|             trust = ptmp->trust;
 | |
|     }
 | |
|     if (trust) {
 | |
|         idx = X509_TRUST_get_by_id(trust);
 | |
|         if (idx == -1) {
 | |
|             X509err(X509_F_X509_STORE_CTX_PURPOSE_INHERIT,
 | |
|                     X509_R_UNKNOWN_TRUST_ID);
 | |
|             return 0;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (purpose && !ctx->param->purpose)
 | |
|         ctx->param->purpose = purpose;
 | |
|     if (trust && !ctx->param->trust)
 | |
|         ctx->param->trust = trust;
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| X509_STORE_CTX *X509_STORE_CTX_new(void)
 | |
| {
 | |
|     X509_STORE_CTX *ctx = OPENSSL_zalloc(sizeof(*ctx));
 | |
| 
 | |
|     if (ctx == NULL) {
 | |
|         X509err(X509_F_X509_STORE_CTX_NEW, ERR_R_MALLOC_FAILURE);
 | |
|         return NULL;
 | |
|     }
 | |
|     return ctx;
 | |
| }
 | |
| 
 | |
| void X509_STORE_CTX_free(X509_STORE_CTX *ctx)
 | |
| {
 | |
|     if (ctx == NULL)
 | |
|         return;
 | |
| 
 | |
|     X509_STORE_CTX_cleanup(ctx);
 | |
|     OPENSSL_free(ctx);
 | |
| }
 | |
| 
 | |
| int X509_STORE_CTX_init(X509_STORE_CTX *ctx, X509_STORE *store, X509 *x509,
 | |
|                         STACK_OF(X509) *chain)
 | |
| {
 | |
|     int ret = 1;
 | |
| 
 | |
|     ctx->ctx = store;
 | |
|     ctx->cert = x509;
 | |
|     ctx->untrusted = chain;
 | |
|     ctx->crls = NULL;
 | |
|     ctx->num_untrusted = 0;
 | |
|     ctx->other_ctx = NULL;
 | |
|     ctx->valid = 0;
 | |
|     ctx->chain = NULL;
 | |
|     ctx->error = 0;
 | |
|     ctx->explicit_policy = 0;
 | |
|     ctx->error_depth = 0;
 | |
|     ctx->current_cert = NULL;
 | |
|     ctx->current_issuer = NULL;
 | |
|     ctx->current_crl = NULL;
 | |
|     ctx->current_crl_score = 0;
 | |
|     ctx->current_reasons = 0;
 | |
|     ctx->tree = NULL;
 | |
|     ctx->parent = NULL;
 | |
|     ctx->dane = NULL;
 | |
|     ctx->bare_ta_signed = 0;
 | |
|     /* Zero ex_data to make sure we're cleanup-safe */
 | |
|     memset(&ctx->ex_data, 0, sizeof(ctx->ex_data));
 | |
| 
 | |
|     /* store->cleanup is always 0 in OpenSSL, if set must be idempotent */
 | |
|     if (store)
 | |
|         ctx->cleanup = store->cleanup;
 | |
|     else
 | |
|         ctx->cleanup = 0;
 | |
| 
 | |
|     if (store && store->check_issued)
 | |
|         ctx->check_issued = store->check_issued;
 | |
|     else
 | |
|         ctx->check_issued = check_issued;
 | |
| 
 | |
|     if (store && store->get_issuer)
 | |
|         ctx->get_issuer = store->get_issuer;
 | |
|     else
 | |
|         ctx->get_issuer = X509_STORE_CTX_get1_issuer;
 | |
| 
 | |
|     if (store && store->verify_cb)
 | |
|         ctx->verify_cb = store->verify_cb;
 | |
|     else
 | |
|         ctx->verify_cb = null_callback;
 | |
| 
 | |
|     if (store && store->verify)
 | |
|         ctx->verify = store->verify;
 | |
|     else
 | |
|         ctx->verify = internal_verify;
 | |
| 
 | |
|     if (store && store->check_revocation)
 | |
|         ctx->check_revocation = store->check_revocation;
 | |
|     else
 | |
|         ctx->check_revocation = check_revocation;
 | |
| 
 | |
|     if (store && store->get_crl)
 | |
|         ctx->get_crl = store->get_crl;
 | |
|     else
 | |
|         ctx->get_crl = NULL;
 | |
| 
 | |
|     if (store && store->check_crl)
 | |
|         ctx->check_crl = store->check_crl;
 | |
|     else
 | |
|         ctx->check_crl = check_crl;
 | |
| 
 | |
|     if (store && store->cert_crl)
 | |
|         ctx->cert_crl = store->cert_crl;
 | |
|     else
 | |
|         ctx->cert_crl = cert_crl;
 | |
| 
 | |
|     if (store && store->check_policy)
 | |
|         ctx->check_policy = store->check_policy;
 | |
|     else
 | |
|         ctx->check_policy = check_policy;
 | |
| 
 | |
|     if (store && store->lookup_certs)
 | |
|         ctx->lookup_certs = store->lookup_certs;
 | |
|     else
 | |
|         ctx->lookup_certs = X509_STORE_CTX_get1_certs;
 | |
| 
 | |
|     if (store && store->lookup_crls)
 | |
|         ctx->lookup_crls = store->lookup_crls;
 | |
|     else
 | |
|         ctx->lookup_crls = X509_STORE_CTX_get1_crls;
 | |
| 
 | |
|     ctx->param = X509_VERIFY_PARAM_new();
 | |
|     if (ctx->param == NULL) {
 | |
|         X509err(X509_F_X509_STORE_CTX_INIT, ERR_R_MALLOC_FAILURE);
 | |
|         goto err;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Inherit callbacks and flags from X509_STORE if not set use defaults.
 | |
|      */
 | |
|     if (store)
 | |
|         ret = X509_VERIFY_PARAM_inherit(ctx->param, store->param);
 | |
|     else
 | |
|         ctx->param->inh_flags |= X509_VP_FLAG_DEFAULT | X509_VP_FLAG_ONCE;
 | |
| 
 | |
|     if (ret)
 | |
|         ret = X509_VERIFY_PARAM_inherit(ctx->param,
 | |
|                                         X509_VERIFY_PARAM_lookup("default"));
 | |
| 
 | |
|     if (ret == 0) {
 | |
|         X509err(X509_F_X509_STORE_CTX_INIT, ERR_R_MALLOC_FAILURE);
 | |
|         goto err;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * XXX: For now, continue to inherit trust from VPM, but infer from the
 | |
|      * purpose if this still yields the default value.
 | |
|      */
 | |
|     if (ctx->param->trust == X509_TRUST_DEFAULT) {
 | |
|         int idx = X509_PURPOSE_get_by_id(ctx->param->purpose);
 | |
|         X509_PURPOSE *xp = X509_PURPOSE_get0(idx);
 | |
| 
 | |
|         if (xp != NULL)
 | |
|             ctx->param->trust = X509_PURPOSE_get_trust(xp);
 | |
|     }
 | |
| 
 | |
|     if (CRYPTO_new_ex_data(CRYPTO_EX_INDEX_X509_STORE_CTX, ctx,
 | |
|                            &ctx->ex_data))
 | |
|         return 1;
 | |
|     X509err(X509_F_X509_STORE_CTX_INIT, ERR_R_MALLOC_FAILURE);
 | |
| 
 | |
|  err:
 | |
|     /*
 | |
|      * On error clean up allocated storage, if the store context was not
 | |
|      * allocated with X509_STORE_CTX_new() this is our last chance to do so.
 | |
|      */
 | |
|     X509_STORE_CTX_cleanup(ctx);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Set alternative lookup method: just a STACK of trusted certificates. This
 | |
|  * avoids X509_STORE nastiness where it isn't needed.
 | |
|  */
 | |
| void X509_STORE_CTX_set0_trusted_stack(X509_STORE_CTX *ctx, STACK_OF(X509) *sk)
 | |
| {
 | |
|     ctx->other_ctx = sk;
 | |
|     ctx->get_issuer = get_issuer_sk;
 | |
|     ctx->lookup_certs = lookup_certs_sk;
 | |
| }
 | |
| 
 | |
| void X509_STORE_CTX_cleanup(X509_STORE_CTX *ctx)
 | |
| {
 | |
|     /*
 | |
|      * We need to be idempotent because, unfortunately, free() also calls
 | |
|      * cleanup(), so the natural call sequence new(), init(), cleanup(), free()
 | |
|      * calls cleanup() for the same object twice!  Thus we must zero the
 | |
|      * pointers below after they're freed!
 | |
|      */
 | |
|     /* Seems to always be 0 in OpenSSL, do this at most once. */
 | |
|     if (ctx->cleanup != NULL) {
 | |
|         ctx->cleanup(ctx);
 | |
|         ctx->cleanup = NULL;
 | |
|     }
 | |
|     if (ctx->param != NULL) {
 | |
|         if (ctx->parent == NULL)
 | |
|             X509_VERIFY_PARAM_free(ctx->param);
 | |
|         ctx->param = NULL;
 | |
|     }
 | |
|     X509_policy_tree_free(ctx->tree);
 | |
|     ctx->tree = NULL;
 | |
|     sk_X509_pop_free(ctx->chain, X509_free);
 | |
|     ctx->chain = NULL;
 | |
|     CRYPTO_free_ex_data(CRYPTO_EX_INDEX_X509_STORE_CTX, ctx, &(ctx->ex_data));
 | |
|     memset(&ctx->ex_data, 0, sizeof(ctx->ex_data));
 | |
| }
 | |
| 
 | |
| void X509_STORE_CTX_set_depth(X509_STORE_CTX *ctx, int depth)
 | |
| {
 | |
|     X509_VERIFY_PARAM_set_depth(ctx->param, depth);
 | |
| }
 | |
| 
 | |
| void X509_STORE_CTX_set_flags(X509_STORE_CTX *ctx, unsigned long flags)
 | |
| {
 | |
|     X509_VERIFY_PARAM_set_flags(ctx->param, flags);
 | |
| }
 | |
| 
 | |
| void X509_STORE_CTX_set_time(X509_STORE_CTX *ctx, unsigned long flags,
 | |
|                              time_t t)
 | |
| {
 | |
|     X509_VERIFY_PARAM_set_time(ctx->param, t);
 | |
| }
 | |
| 
 | |
| X509 *X509_STORE_CTX_get0_cert(X509_STORE_CTX *ctx)
 | |
| {
 | |
|     return ctx->cert;
 | |
| }
 | |
| 
 | |
| STACK_OF(X509) *X509_STORE_CTX_get0_untrusted(X509_STORE_CTX *ctx)
 | |
| {
 | |
|     return ctx->untrusted;
 | |
| }
 | |
| 
 | |
| void X509_STORE_CTX_set0_untrusted(X509_STORE_CTX *ctx, STACK_OF(X509) *sk)
 | |
| {
 | |
|     ctx->untrusted = sk;
 | |
| }
 | |
| 
 | |
| void X509_STORE_CTX_set0_verified_chain(X509_STORE_CTX *ctx, STACK_OF(X509) *sk)
 | |
| {
 | |
|     sk_X509_pop_free(ctx->chain, X509_free);
 | |
|     ctx->chain = sk;
 | |
| }
 | |
| 
 | |
| void X509_STORE_CTX_set_verify_cb(X509_STORE_CTX *ctx,
 | |
|                                   X509_STORE_CTX_verify_cb verify_cb)
 | |
| {
 | |
|     ctx->verify_cb = verify_cb;
 | |
| }
 | |
| 
 | |
| X509_STORE_CTX_verify_cb X509_STORE_CTX_get_verify_cb(X509_STORE_CTX *ctx)
 | |
| {
 | |
|     return ctx->verify_cb;
 | |
| }
 | |
| 
 | |
| void X509_STORE_CTX_set_verify(X509_STORE_CTX *ctx,
 | |
|                                X509_STORE_CTX_verify_fn verify)
 | |
| {
 | |
|     ctx->verify = verify;
 | |
| }
 | |
| 
 | |
| X509_STORE_CTX_verify_fn X509_STORE_CTX_get_verify(X509_STORE_CTX *ctx)
 | |
| {
 | |
|     return ctx->verify;
 | |
| }
 | |
| 
 | |
| X509_STORE_CTX_get_issuer_fn X509_STORE_CTX_get_get_issuer(X509_STORE_CTX *ctx)
 | |
| {
 | |
|     return ctx->get_issuer;
 | |
| }
 | |
| 
 | |
| X509_STORE_CTX_check_issued_fn X509_STORE_CTX_get_check_issued(X509_STORE_CTX *ctx)
 | |
| {
 | |
|     return ctx->check_issued;
 | |
| }
 | |
| 
 | |
| X509_STORE_CTX_check_revocation_fn X509_STORE_CTX_get_check_revocation(X509_STORE_CTX *ctx)
 | |
| {
 | |
|     return ctx->check_revocation;
 | |
| }
 | |
| 
 | |
| X509_STORE_CTX_get_crl_fn X509_STORE_CTX_get_get_crl(X509_STORE_CTX *ctx)
 | |
| {
 | |
|     return ctx->get_crl;
 | |
| }
 | |
| 
 | |
| X509_STORE_CTX_check_crl_fn X509_STORE_CTX_get_check_crl(X509_STORE_CTX *ctx)
 | |
| {
 | |
|     return ctx->check_crl;
 | |
| }
 | |
| 
 | |
| X509_STORE_CTX_cert_crl_fn X509_STORE_CTX_get_cert_crl(X509_STORE_CTX *ctx)
 | |
| {
 | |
|     return ctx->cert_crl;
 | |
| }
 | |
| 
 | |
| X509_STORE_CTX_check_policy_fn X509_STORE_CTX_get_check_policy(X509_STORE_CTX *ctx)
 | |
| {
 | |
|     return ctx->check_policy;
 | |
| }
 | |
| 
 | |
| X509_STORE_CTX_lookup_certs_fn X509_STORE_CTX_get_lookup_certs(X509_STORE_CTX *ctx)
 | |
| {
 | |
|     return ctx->lookup_certs;
 | |
| }
 | |
| 
 | |
| X509_STORE_CTX_lookup_crls_fn X509_STORE_CTX_get_lookup_crls(X509_STORE_CTX *ctx)
 | |
| {
 | |
|     return ctx->lookup_crls;
 | |
| }
 | |
| 
 | |
| X509_STORE_CTX_cleanup_fn X509_STORE_CTX_get_cleanup(X509_STORE_CTX *ctx)
 | |
| {
 | |
|     return ctx->cleanup;
 | |
| }
 | |
| 
 | |
| X509_POLICY_TREE *X509_STORE_CTX_get0_policy_tree(X509_STORE_CTX *ctx)
 | |
| {
 | |
|     return ctx->tree;
 | |
| }
 | |
| 
 | |
| int X509_STORE_CTX_get_explicit_policy(X509_STORE_CTX *ctx)
 | |
| {
 | |
|     return ctx->explicit_policy;
 | |
| }
 | |
| 
 | |
| int X509_STORE_CTX_get_num_untrusted(X509_STORE_CTX *ctx)
 | |
| {
 | |
|     return ctx->num_untrusted;
 | |
| }
 | |
| 
 | |
| int X509_STORE_CTX_set_default(X509_STORE_CTX *ctx, const char *name)
 | |
| {
 | |
|     const X509_VERIFY_PARAM *param;
 | |
|     param = X509_VERIFY_PARAM_lookup(name);
 | |
|     if (!param)
 | |
|         return 0;
 | |
|     return X509_VERIFY_PARAM_inherit(ctx->param, param);
 | |
| }
 | |
| 
 | |
| X509_VERIFY_PARAM *X509_STORE_CTX_get0_param(X509_STORE_CTX *ctx)
 | |
| {
 | |
|     return ctx->param;
 | |
| }
 | |
| 
 | |
| void X509_STORE_CTX_set0_param(X509_STORE_CTX *ctx, X509_VERIFY_PARAM *param)
 | |
| {
 | |
|     X509_VERIFY_PARAM_free(ctx->param);
 | |
|     ctx->param = param;
 | |
| }
 | |
| 
 | |
| void X509_STORE_CTX_set0_dane(X509_STORE_CTX *ctx, SSL_DANE *dane)
 | |
| {
 | |
|     ctx->dane = dane;
 | |
| }
 | |
| 
 | |
| static unsigned char *dane_i2d(
 | |
|     X509 *cert,
 | |
|     uint8_t selector,
 | |
|     unsigned int *i2dlen)
 | |
| {
 | |
|     unsigned char *buf = NULL;
 | |
|     int len;
 | |
| 
 | |
|     /*
 | |
|      * Extract ASN.1 DER form of certificate or public key.
 | |
|      */
 | |
|     switch (selector) {
 | |
|     case DANETLS_SELECTOR_CERT:
 | |
|         len = i2d_X509(cert, &buf);
 | |
|         break;
 | |
|     case DANETLS_SELECTOR_SPKI:
 | |
|         len = i2d_X509_PUBKEY(X509_get_X509_PUBKEY(cert), &buf);
 | |
|         break;
 | |
|     default:
 | |
|         X509err(X509_F_DANE_I2D, X509_R_BAD_SELECTOR);
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     if (len < 0 || buf == NULL) {
 | |
|         X509err(X509_F_DANE_I2D, ERR_R_MALLOC_FAILURE);
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     *i2dlen = (unsigned int)len;
 | |
|     return buf;
 | |
| }
 | |
| 
 | |
| #define DANETLS_NONE 256        /* impossible uint8_t */
 | |
| 
 | |
| static int dane_match(X509_STORE_CTX *ctx, X509 *cert, int depth)
 | |
| {
 | |
|     SSL_DANE *dane = ctx->dane;
 | |
|     unsigned usage = DANETLS_NONE;
 | |
|     unsigned selector = DANETLS_NONE;
 | |
|     unsigned ordinal = DANETLS_NONE;
 | |
|     unsigned mtype = DANETLS_NONE;
 | |
|     unsigned char *i2dbuf = NULL;
 | |
|     unsigned int i2dlen = 0;
 | |
|     unsigned char mdbuf[EVP_MAX_MD_SIZE];
 | |
|     unsigned char *cmpbuf = NULL;
 | |
|     unsigned int cmplen = 0;
 | |
|     int i;
 | |
|     int recnum;
 | |
|     int matched = 0;
 | |
|     danetls_record *t = NULL;
 | |
|     uint32_t mask;
 | |
| 
 | |
|     mask = (depth == 0) ? DANETLS_EE_MASK : DANETLS_TA_MASK;
 | |
| 
 | |
|     /*
 | |
|      * The trust store is not applicable with DANE-TA(2)
 | |
|      */
 | |
|     if (depth >= ctx->num_untrusted)
 | |
|         mask &= DANETLS_PKIX_MASK;
 | |
| 
 | |
|     /*
 | |
|      * If we've previously matched a PKIX-?? record, no need to test any
 | |
|      * further PKIX-?? records, it remains to just build the PKIX chain.
 | |
|      * Had the match been a DANE-?? record, we'd be done already.
 | |
|      */
 | |
|     if (dane->mdpth >= 0)
 | |
|         mask &= ~DANETLS_PKIX_MASK;
 | |
| 
 | |
|     /*-
 | |
|      * https://tools.ietf.org/html/rfc7671#section-5.1
 | |
|      * https://tools.ietf.org/html/rfc7671#section-5.2
 | |
|      * https://tools.ietf.org/html/rfc7671#section-5.3
 | |
|      * https://tools.ietf.org/html/rfc7671#section-5.4
 | |
|      *
 | |
|      * We handle DANE-EE(3) records first as they require no chain building
 | |
|      * and no expiration or hostname checks.  We also process digests with
 | |
|      * higher ordinals first and ignore lower priorities except Full(0) which
 | |
|      * is always processed (last).  If none match, we then process PKIX-EE(1).
 | |
|      *
 | |
|      * NOTE: This relies on DANE usages sorting before the corresponding PKIX
 | |
|      * usages in SSL_dane_tlsa_add(), and also on descending sorting of digest
 | |
|      * priorities.  See twin comment in ssl/ssl_lib.c.
 | |
|      *
 | |
|      * We expect that most TLSA RRsets will have just a single usage, so we
 | |
|      * don't go out of our way to cache multiple selector-specific i2d buffers
 | |
|      * across usages, but if the selector happens to remain the same as switch
 | |
|      * usages, that's OK.  Thus, a set of "3 1 1", "3 0 1", "1 1 1", "1 0 1",
 | |
|      * records would result in us generating each of the certificate and public
 | |
|      * key DER forms twice, but more typically we'd just see multiple "3 1 1"
 | |
|      * or multiple "3 0 1" records.
 | |
|      *
 | |
|      * As soon as we find a match at any given depth, we stop, because either
 | |
|      * we've matched a DANE-?? record and the peer is authenticated, or, after
 | |
|      * exhausting all DANE-?? records, we've matched a PKIX-?? record, which is
 | |
|      * sufficient for DANE, and what remains to do is ordinary PKIX validation.
 | |
|      */
 | |
|     recnum = (dane->umask & mask) ? sk_danetls_record_num(dane->trecs) : 0;
 | |
|     for (i = 0; matched == 0 && i < recnum; ++i) {
 | |
|         t = sk_danetls_record_value(dane->trecs, i);
 | |
|         if ((DANETLS_USAGE_BIT(t->usage) & mask) == 0)
 | |
|             continue;
 | |
|         if (t->usage != usage) {
 | |
|             usage = t->usage;
 | |
| 
 | |
|             /* Reset digest agility for each usage/selector pair */
 | |
|             mtype = DANETLS_NONE;
 | |
|             ordinal = dane->dctx->mdord[t->mtype];
 | |
|         }
 | |
|         if (t->selector != selector) {
 | |
|             selector = t->selector;
 | |
| 
 | |
|             /* Update per-selector state */
 | |
|             OPENSSL_free(i2dbuf);
 | |
|             i2dbuf = dane_i2d(cert, selector, &i2dlen);
 | |
|             if (i2dbuf == NULL)
 | |
|                 return -1;
 | |
| 
 | |
|             /* Reset digest agility for each usage/selector pair */
 | |
|             mtype = DANETLS_NONE;
 | |
|             ordinal = dane->dctx->mdord[t->mtype];
 | |
|         } else if (t->mtype != DANETLS_MATCHING_FULL) {
 | |
|             /*-
 | |
|              * Digest agility:
 | |
|              *
 | |
|              *     <https://tools.ietf.org/html/rfc7671#section-9>
 | |
|              *
 | |
|              * For a fixed selector, after processing all records with the
 | |
|              * highest mtype ordinal, ignore all mtypes with lower ordinals
 | |
|              * other than "Full".
 | |
|              */
 | |
|             if (dane->dctx->mdord[t->mtype] < ordinal)
 | |
|                 continue;
 | |
|         }
 | |
| 
 | |
|         /*
 | |
|          * Each time we hit a (new selector or) mtype, re-compute the relevant
 | |
|          * digest, more complex caching is not worth the code space.
 | |
|          */
 | |
|         if (t->mtype != mtype) {
 | |
|             const EVP_MD *md = dane->dctx->mdevp[mtype = t->mtype];
 | |
|             cmpbuf = i2dbuf;
 | |
|             cmplen = i2dlen;
 | |
| 
 | |
|             if (md != NULL) {
 | |
|                 cmpbuf = mdbuf;
 | |
|                 if (!EVP_Digest(i2dbuf, i2dlen, cmpbuf, &cmplen, md, 0)) {
 | |
|                     matched = -1;
 | |
|                     break;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         /*
 | |
|          * Squirrel away the certificate and depth if we have a match.  Any
 | |
|          * DANE match is dispositive, but with PKIX we still need to build a
 | |
|          * full chain.
 | |
|          */
 | |
|         if (cmplen == t->dlen &&
 | |
|             memcmp(cmpbuf, t->data, cmplen) == 0) {
 | |
|             if (DANETLS_USAGE_BIT(usage) & DANETLS_DANE_MASK)
 | |
|                 matched = 1;
 | |
|             if (matched || dane->mdpth < 0) {
 | |
|                 dane->mdpth = depth;
 | |
|                 dane->mtlsa = t;
 | |
|                 OPENSSL_free(dane->mcert);
 | |
|                 dane->mcert = cert;
 | |
|                 X509_up_ref(cert);
 | |
|             }
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Clear the one-element DER cache */
 | |
|     OPENSSL_free(i2dbuf);
 | |
|     return matched;
 | |
| }
 | |
| 
 | |
| static int check_dane_issuer(X509_STORE_CTX *ctx, int depth)
 | |
| {
 | |
|     SSL_DANE *dane = ctx->dane;
 | |
|     int matched = 0;
 | |
|     X509 *cert;
 | |
| 
 | |
|     if (!DANETLS_HAS_TA(dane) || depth == 0)
 | |
|         return  X509_TRUST_UNTRUSTED;
 | |
| 
 | |
|     /*
 | |
|      * Record any DANE trust-anchor matches, for the first depth to test, if
 | |
|      * there's one at that depth. (This'll be false for length 1 chains looking
 | |
|      * for an exact match for the leaf certificate).
 | |
|      */
 | |
|     cert = sk_X509_value(ctx->chain, depth);
 | |
|     if (cert != NULL && (matched = dane_match(ctx, cert, depth)) < 0)
 | |
|         return  X509_TRUST_REJECTED;
 | |
|     if (matched > 0) {
 | |
|         ctx->num_untrusted = depth - 1;
 | |
|         return  X509_TRUST_TRUSTED;
 | |
|     }
 | |
| 
 | |
|     return  X509_TRUST_UNTRUSTED;
 | |
| }
 | |
| 
 | |
| static int check_dane_pkeys(X509_STORE_CTX *ctx)
 | |
| {
 | |
|     SSL_DANE *dane = ctx->dane;
 | |
|     danetls_record *t;
 | |
|     int num = ctx->num_untrusted;
 | |
|     X509 *cert = sk_X509_value(ctx->chain, num - 1);
 | |
|     int recnum = sk_danetls_record_num(dane->trecs);
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < recnum; ++i) {
 | |
|         t = sk_danetls_record_value(dane->trecs, i);
 | |
|         if (t->usage != DANETLS_USAGE_DANE_TA ||
 | |
|             t->selector != DANETLS_SELECTOR_SPKI ||
 | |
|             t->mtype != DANETLS_MATCHING_FULL ||
 | |
|             X509_verify(cert, t->spki) <= 0)
 | |
|             continue;
 | |
| 
 | |
|         /* Clear any PKIX-?? matches that failed to extend to a full chain */
 | |
|         X509_free(dane->mcert);
 | |
|         dane->mcert = NULL;
 | |
| 
 | |
|         /* Record match via a bare TA public key */
 | |
|         ctx->bare_ta_signed = 1;
 | |
|         dane->mdpth = num - 1;
 | |
|         dane->mtlsa = t;
 | |
| 
 | |
|         /* Prune any excess chain certificates */
 | |
|         num = sk_X509_num(ctx->chain);
 | |
|         for (; num > ctx->num_untrusted; --num)
 | |
|             X509_free(sk_X509_pop(ctx->chain));
 | |
| 
 | |
|         return X509_TRUST_TRUSTED;
 | |
|     }
 | |
| 
 | |
|     return X509_TRUST_UNTRUSTED;
 | |
| }
 | |
| 
 | |
| static void dane_reset(SSL_DANE *dane)
 | |
| {
 | |
|     /*
 | |
|      * Reset state to verify another chain, or clear after failure.
 | |
|      */
 | |
|     X509_free(dane->mcert);
 | |
|     dane->mcert = NULL;
 | |
|     dane->mtlsa = NULL;
 | |
|     dane->mdpth = -1;
 | |
|     dane->pdpth = -1;
 | |
| }
 | |
| 
 | |
| static int check_leaf_suiteb(X509_STORE_CTX *ctx, X509 *cert)
 | |
| {
 | |
|     int err = X509_chain_check_suiteb(NULL, cert, NULL, ctx->param->flags);
 | |
| 
 | |
|     if (err == X509_V_OK)
 | |
|         return 1;
 | |
|     return verify_cb_cert(ctx, cert, 0, err);
 | |
| }
 | |
| 
 | |
| static int dane_verify(X509_STORE_CTX *ctx)
 | |
| {
 | |
|     X509 *cert = ctx->cert;
 | |
|     SSL_DANE *dane = ctx->dane;
 | |
|     int matched;
 | |
|     int done;
 | |
| 
 | |
|     dane_reset(dane);
 | |
| 
 | |
|     /*-
 | |
|      * When testing the leaf certificate, if we match a DANE-EE(3) record,
 | |
|      * dane_match() returns 1 and we're done.  If however we match a PKIX-EE(1)
 | |
|      * record, the match depth and matching TLSA record are recorded, but the
 | |
|      * return value is 0, because we still need to find a PKIX trust-anchor.
 | |
|      * Therefore, when DANE authentication is enabled (required), we're done
 | |
|      * if:
 | |
|      *   + matched < 0, internal error.
 | |
|      *   + matched == 1, we matched a DANE-EE(3) record
 | |
|      *   + matched == 0, mdepth < 0 (no PKIX-EE match) and there are no
 | |
|      *     DANE-TA(2) or PKIX-TA(0) to test.
 | |
|      */
 | |
|     matched = dane_match(ctx, ctx->cert, 0);
 | |
|     done = matched != 0 || (!DANETLS_HAS_TA(dane) && dane->mdpth < 0);
 | |
| 
 | |
|     if (done)
 | |
|         X509_get_pubkey_parameters(NULL, ctx->chain);
 | |
| 
 | |
|     if (matched > 0) {
 | |
|         /* Callback invoked as needed */
 | |
|         if (!check_leaf_suiteb(ctx, cert))
 | |
|             return 0;
 | |
|         /* Callback invoked as needed */
 | |
|         if ((dane->flags & DANE_FLAG_NO_DANE_EE_NAMECHECKS) == 0 &&
 | |
|             !check_id(ctx))
 | |
|             return 0;
 | |
|         /* Bypass internal_verify(), issue depth 0 success callback */
 | |
|         ctx->error_depth = 0;
 | |
|         ctx->current_cert = cert;
 | |
|         return ctx->verify_cb(1, ctx);
 | |
|     }
 | |
| 
 | |
|     if (matched < 0) {
 | |
|         ctx->error_depth = 0;
 | |
|         ctx->current_cert = cert;
 | |
|         ctx->error = X509_V_ERR_OUT_OF_MEM;
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     if (done) {
 | |
|         /* Fail early, TA-based success is not possible */
 | |
|         if (!check_leaf_suiteb(ctx, cert))
 | |
|             return 0;
 | |
|         return verify_cb_cert(ctx, cert, 0, X509_V_ERR_DANE_NO_MATCH);
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Chain verification for usages 0/1/2.  TLSA record matching of depth > 0
 | |
|      * certificates happens in-line with building the rest of the chain.
 | |
|      */
 | |
|     return verify_chain(ctx);
 | |
| }
 | |
| 
 | |
| /* Get issuer, without duplicate suppression */
 | |
| static int get_issuer(X509 **issuer, X509_STORE_CTX *ctx, X509 *cert)
 | |
| {
 | |
|     STACK_OF(X509) *saved_chain = ctx->chain;
 | |
|     int ok;
 | |
| 
 | |
|     ctx->chain = NULL;
 | |
|     ok = ctx->get_issuer(issuer, ctx, cert);
 | |
|     ctx->chain = saved_chain;
 | |
| 
 | |
|     return ok;
 | |
| }
 | |
| 
 | |
| static int build_chain(X509_STORE_CTX *ctx)
 | |
| {
 | |
|     SSL_DANE *dane = ctx->dane;
 | |
|     int num = sk_X509_num(ctx->chain);
 | |
|     X509 *cert = sk_X509_value(ctx->chain, num - 1);
 | |
|     int ss = cert_self_signed(cert);
 | |
|     STACK_OF(X509) *sktmp = NULL;
 | |
|     unsigned int search;
 | |
|     int may_trusted = 0;
 | |
|     int may_alternate = 0;
 | |
|     int trust = X509_TRUST_UNTRUSTED;
 | |
|     int alt_untrusted = 0;
 | |
|     int depth;
 | |
|     int ok = 0;
 | |
|     int i;
 | |
| 
 | |
|     /* Our chain starts with a single untrusted element. */
 | |
|     if (!ossl_assert(num == 1 && ctx->num_untrusted == num))  {
 | |
|         X509err(X509_F_BUILD_CHAIN, ERR_R_INTERNAL_ERROR);
 | |
|         ctx->error = X509_V_ERR_UNSPECIFIED;
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
| #define S_DOUNTRUSTED      (1 << 0)     /* Search untrusted chain */
 | |
| #define S_DOTRUSTED        (1 << 1)     /* Search trusted store */
 | |
| #define S_DOALTERNATE      (1 << 2)     /* Retry with pruned alternate chain */
 | |
|     /*
 | |
|      * Set up search policy, untrusted if possible, trusted-first if enabled.
 | |
|      * If we're doing DANE and not doing PKIX-TA/PKIX-EE, we never look in the
 | |
|      * trust_store, otherwise we might look there first.  If not trusted-first,
 | |
|      * and alternate chains are not disabled, try building an alternate chain
 | |
|      * if no luck with untrusted first.
 | |
|      */
 | |
|     search = (ctx->untrusted != NULL) ? S_DOUNTRUSTED : 0;
 | |
|     if (DANETLS_HAS_PKIX(dane) || !DANETLS_HAS_DANE(dane)) {
 | |
|         if (search == 0 || ctx->param->flags & X509_V_FLAG_TRUSTED_FIRST)
 | |
|             search |= S_DOTRUSTED;
 | |
|         else if (!(ctx->param->flags & X509_V_FLAG_NO_ALT_CHAINS))
 | |
|             may_alternate = 1;
 | |
|         may_trusted = 1;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Shallow-copy the stack of untrusted certificates (with TLS, this is
 | |
|      * typically the content of the peer's certificate message) so can make
 | |
|      * multiple passes over it, while free to remove elements as we go.
 | |
|      */
 | |
|     if (ctx->untrusted && (sktmp = sk_X509_dup(ctx->untrusted)) == NULL) {
 | |
|         X509err(X509_F_BUILD_CHAIN, ERR_R_MALLOC_FAILURE);
 | |
|         ctx->error = X509_V_ERR_OUT_OF_MEM;
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * If we got any "DANE-TA(2) Cert(0) Full(0)" trust-anchors from DNS, add
 | |
|      * them to our working copy of the untrusted certificate stack.  Since the
 | |
|      * caller of X509_STORE_CTX_init() may have provided only a leaf cert with
 | |
|      * no corresponding stack of untrusted certificates, we may need to create
 | |
|      * an empty stack first.  [ At present only the ssl library provides DANE
 | |
|      * support, and ssl_verify_cert_chain() always provides a non-null stack
 | |
|      * containing at least the leaf certificate, but we must be prepared for
 | |
|      * this to change. ]
 | |
|      */
 | |
|     if (DANETLS_ENABLED(dane) && dane->certs != NULL) {
 | |
|         if (sktmp == NULL && (sktmp = sk_X509_new_null()) == NULL) {
 | |
|             X509err(X509_F_BUILD_CHAIN, ERR_R_MALLOC_FAILURE);
 | |
|             ctx->error = X509_V_ERR_OUT_OF_MEM;
 | |
|             return 0;
 | |
|         }
 | |
|         for (i = 0; i < sk_X509_num(dane->certs); ++i) {
 | |
|             if (!sk_X509_push(sktmp, sk_X509_value(dane->certs, i))) {
 | |
|                 sk_X509_free(sktmp);
 | |
|                 X509err(X509_F_BUILD_CHAIN, ERR_R_MALLOC_FAILURE);
 | |
|                 ctx->error = X509_V_ERR_OUT_OF_MEM;
 | |
|                 return 0;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Still absurdly large, but arithmetically safe, a lower hard upper bound
 | |
|      * might be reasonable.
 | |
|      */
 | |
|     if (ctx->param->depth > INT_MAX/2)
 | |
|         ctx->param->depth = INT_MAX/2;
 | |
| 
 | |
|     /*
 | |
|      * Try to Extend the chain until we reach an ultimately trusted issuer.
 | |
|      * Build chains up to one longer the limit, later fail if we hit the limit,
 | |
|      * with an X509_V_ERR_CERT_CHAIN_TOO_LONG error code.
 | |
|      */
 | |
|     depth = ctx->param->depth + 1;
 | |
| 
 | |
|     while (search != 0) {
 | |
|         X509 *x;
 | |
|         X509 *xtmp = NULL;
 | |
| 
 | |
|         /*
 | |
|          * Look in the trust store if enabled for first lookup, or we've run
 | |
|          * out of untrusted issuers and search here is not disabled.  When we
 | |
|          * reach the depth limit, we stop extending the chain, if by that point
 | |
|          * we've not found a trust-anchor, any trusted chain would be too long.
 | |
|          *
 | |
|          * The error reported to the application verify callback is at the
 | |
|          * maximal valid depth with the current certificate equal to the last
 | |
|          * not ultimately-trusted issuer.  For example, with verify_depth = 0,
 | |
|          * the callback will report errors at depth=1 when the immediate issuer
 | |
|          * of the leaf certificate is not a trust anchor.  No attempt will be
 | |
|          * made to locate an issuer for that certificate, since such a chain
 | |
|          * would be a-priori too long.
 | |
|          */
 | |
|         if ((search & S_DOTRUSTED) != 0) {
 | |
|             i = num = sk_X509_num(ctx->chain);
 | |
|             if ((search & S_DOALTERNATE) != 0) {
 | |
|                 /*
 | |
|                  * As high up the chain as we can, look for an alternative
 | |
|                  * trusted issuer of an untrusted certificate that currently
 | |
|                  * has an untrusted issuer.  We use the alt_untrusted variable
 | |
|                  * to track how far up the chain we find the first match.  It
 | |
|                  * is only if and when we find a match, that we prune the chain
 | |
|                  * and reset ctx->num_untrusted to the reduced count of
 | |
|                  * untrusted certificates.  While we're searching for such a
 | |
|                  * match (which may never be found), it is neither safe nor
 | |
|                  * wise to preemptively modify either the chain or
 | |
|                  * ctx->num_untrusted.
 | |
|                  *
 | |
|                  * Note, like ctx->num_untrusted, alt_untrusted is a count of
 | |
|                  * untrusted certificates, not a "depth".
 | |
|                  */
 | |
|                 i = alt_untrusted;
 | |
|             }
 | |
|             x = sk_X509_value(ctx->chain, i-1);
 | |
| 
 | |
|             ok = (depth < num) ? 0 : get_issuer(&xtmp, ctx, x);
 | |
| 
 | |
|             if (ok < 0) {
 | |
|                 trust = X509_TRUST_REJECTED;
 | |
|                 ctx->error = X509_V_ERR_STORE_LOOKUP;
 | |
|                 search = 0;
 | |
|                 continue;
 | |
|             }
 | |
| 
 | |
|             if (ok > 0) {
 | |
|                 /*
 | |
|                  * Alternative trusted issuer for a mid-chain untrusted cert?
 | |
|                  * Pop the untrusted cert's successors and retry.  We might now
 | |
|                  * be able to complete a valid chain via the trust store.  Note
 | |
|                  * that despite the current trust-store match we might still
 | |
|                  * fail complete the chain to a suitable trust-anchor, in which
 | |
|                  * case we may prune some more untrusted certificates and try
 | |
|                  * again.  Thus the S_DOALTERNATE bit may yet be turned on
 | |
|                  * again with an even shorter untrusted chain!
 | |
|                  *
 | |
|                  * If in the process we threw away our matching PKIX-TA trust
 | |
|                  * anchor, reset DANE trust.  We might find a suitable trusted
 | |
|                  * certificate among the ones from the trust store.
 | |
|                  */
 | |
|                 if ((search & S_DOALTERNATE) != 0) {
 | |
|                     if (!ossl_assert(num > i && i > 0 && ss == 0)) {
 | |
|                         X509err(X509_F_BUILD_CHAIN, ERR_R_INTERNAL_ERROR);
 | |
|                         X509_free(xtmp);
 | |
|                         trust = X509_TRUST_REJECTED;
 | |
|                         ctx->error = X509_V_ERR_UNSPECIFIED;
 | |
|                         search = 0;
 | |
|                         continue;
 | |
|                     }
 | |
|                     search &= ~S_DOALTERNATE;
 | |
|                     for (; num > i; --num)
 | |
|                         X509_free(sk_X509_pop(ctx->chain));
 | |
|                     ctx->num_untrusted = num;
 | |
| 
 | |
|                     if (DANETLS_ENABLED(dane) &&
 | |
|                         dane->mdpth >= ctx->num_untrusted) {
 | |
|                         dane->mdpth = -1;
 | |
|                         X509_free(dane->mcert);
 | |
|                         dane->mcert = NULL;
 | |
|                     }
 | |
|                     if (DANETLS_ENABLED(dane) &&
 | |
|                         dane->pdpth >= ctx->num_untrusted)
 | |
|                         dane->pdpth = -1;
 | |
|                 }
 | |
| 
 | |
|                 /*
 | |
|                  * Self-signed untrusted certificates get replaced by their
 | |
|                  * trusted matching issuer.  Otherwise, grow the chain.
 | |
|                  */
 | |
|                 if (ss == 0) {
 | |
|                     if (!sk_X509_push(ctx->chain, x = xtmp)) {
 | |
|                         X509_free(xtmp);
 | |
|                         X509err(X509_F_BUILD_CHAIN, ERR_R_MALLOC_FAILURE);
 | |
|                         trust = X509_TRUST_REJECTED;
 | |
|                         ctx->error = X509_V_ERR_OUT_OF_MEM;
 | |
|                         search = 0;
 | |
|                         continue;
 | |
|                     }
 | |
|                     ss = cert_self_signed(x);
 | |
|                 } else if (num == ctx->num_untrusted) {
 | |
|                     /*
 | |
|                      * We have a self-signed certificate that has the same
 | |
|                      * subject name (and perhaps keyid and/or serial number) as
 | |
|                      * a trust-anchor.  We must have an exact match to avoid
 | |
|                      * possible impersonation via key substitution etc.
 | |
|                      */
 | |
|                     if (X509_cmp(x, xtmp) != 0) {
 | |
|                         /* Self-signed untrusted mimic. */
 | |
|                         X509_free(xtmp);
 | |
|                         ok = 0;
 | |
|                     } else {
 | |
|                         X509_free(x);
 | |
|                         ctx->num_untrusted = --num;
 | |
|                         (void) sk_X509_set(ctx->chain, num, x = xtmp);
 | |
|                     }
 | |
|                 }
 | |
| 
 | |
|                 /*
 | |
|                  * We've added a new trusted certificate to the chain, recheck
 | |
|                  * trust.  If not done, and not self-signed look deeper.
 | |
|                  * Whether or not we're doing "trusted first", we no longer
 | |
|                  * look for untrusted certificates from the peer's chain.
 | |
|                  *
 | |
|                  * At this point ctx->num_trusted and num must reflect the
 | |
|                  * correct number of untrusted certificates, since the DANE
 | |
|                  * logic in check_trust() depends on distinguishing CAs from
 | |
|                  * "the wire" from CAs from the trust store.  In particular, the
 | |
|                  * certificate at depth "num" should be the new trusted
 | |
|                  * certificate with ctx->num_untrusted <= num.
 | |
|                  */
 | |
|                 if (ok) {
 | |
|                     if (!ossl_assert(ctx->num_untrusted <= num)) {
 | |
|                         X509err(X509_F_BUILD_CHAIN, ERR_R_INTERNAL_ERROR);
 | |
|                         trust = X509_TRUST_REJECTED;
 | |
|                         ctx->error = X509_V_ERR_UNSPECIFIED;
 | |
|                         search = 0;
 | |
|                         continue;
 | |
|                     }
 | |
|                     search &= ~S_DOUNTRUSTED;
 | |
|                     switch (trust = check_trust(ctx, num)) {
 | |
|                     case X509_TRUST_TRUSTED:
 | |
|                     case X509_TRUST_REJECTED:
 | |
|                         search = 0;
 | |
|                         continue;
 | |
|                     }
 | |
|                     if (ss == 0)
 | |
|                         continue;
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             /*
 | |
|              * No dispositive decision, and either self-signed or no match, if
 | |
|              * we were doing untrusted-first, and alt-chains are not disabled,
 | |
|              * do that, by repeatedly losing one untrusted element at a time,
 | |
|              * and trying to extend the shorted chain.
 | |
|              */
 | |
|             if ((search & S_DOUNTRUSTED) == 0) {
 | |
|                 /* Continue search for a trusted issuer of a shorter chain? */
 | |
|                 if ((search & S_DOALTERNATE) != 0 && --alt_untrusted > 0)
 | |
|                     continue;
 | |
|                 /* Still no luck and no fallbacks left? */
 | |
|                 if (!may_alternate || (search & S_DOALTERNATE) != 0 ||
 | |
|                     ctx->num_untrusted < 2)
 | |
|                     break;
 | |
|                 /* Search for a trusted issuer of a shorter chain */
 | |
|                 search |= S_DOALTERNATE;
 | |
|                 alt_untrusted = ctx->num_untrusted - 1;
 | |
|                 ss = 0;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         /*
 | |
|          * Extend chain with peer-provided certificates
 | |
|          */
 | |
|         if ((search & S_DOUNTRUSTED) != 0) {
 | |
|             num = sk_X509_num(ctx->chain);
 | |
|             if (!ossl_assert(num == ctx->num_untrusted)) {
 | |
|                 X509err(X509_F_BUILD_CHAIN, ERR_R_INTERNAL_ERROR);
 | |
|                 trust = X509_TRUST_REJECTED;
 | |
|                 ctx->error = X509_V_ERR_UNSPECIFIED;
 | |
|                 search = 0;
 | |
|                 continue;
 | |
|             }
 | |
|             x = sk_X509_value(ctx->chain, num-1);
 | |
| 
 | |
|             /*
 | |
|              * Once we run out of untrusted issuers, we stop looking for more
 | |
|              * and start looking only in the trust store if enabled.
 | |
|              */
 | |
|             xtmp = (ss || depth < num) ? NULL : find_issuer(ctx, sktmp, x);
 | |
|             if (xtmp == NULL) {
 | |
|                 search &= ~S_DOUNTRUSTED;
 | |
|                 if (may_trusted)
 | |
|                     search |= S_DOTRUSTED;
 | |
|                 continue;
 | |
|             }
 | |
| 
 | |
|             /* Drop this issuer from future consideration */
 | |
|             (void) sk_X509_delete_ptr(sktmp, xtmp);
 | |
| 
 | |
|             if (!X509_up_ref(xtmp)) {
 | |
|                 X509err(X509_F_BUILD_CHAIN, ERR_R_INTERNAL_ERROR);
 | |
|                 trust = X509_TRUST_REJECTED;
 | |
|                 ctx->error = X509_V_ERR_UNSPECIFIED;
 | |
|                 search = 0;
 | |
|                 continue;
 | |
|             }
 | |
| 
 | |
|             if (!sk_X509_push(ctx->chain, xtmp)) {
 | |
|                 X509_free(xtmp);
 | |
|                 X509err(X509_F_BUILD_CHAIN, ERR_R_MALLOC_FAILURE);
 | |
|                 trust = X509_TRUST_REJECTED;
 | |
|                 ctx->error = X509_V_ERR_OUT_OF_MEM;
 | |
|                 search = 0;
 | |
|                 continue;
 | |
|             }
 | |
| 
 | |
|             x = xtmp;
 | |
|             ++ctx->num_untrusted;
 | |
|             ss = cert_self_signed(xtmp);
 | |
| 
 | |
|             /*
 | |
|              * Check for DANE-TA trust of the topmost untrusted certificate.
 | |
|              */
 | |
|             switch (trust = check_dane_issuer(ctx, ctx->num_untrusted - 1)) {
 | |
|             case X509_TRUST_TRUSTED:
 | |
|             case X509_TRUST_REJECTED:
 | |
|                 search = 0;
 | |
|                 continue;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     sk_X509_free(sktmp);
 | |
| 
 | |
|     /*
 | |
|      * Last chance to make a trusted chain, either bare DANE-TA public-key
 | |
|      * signers, or else direct leaf PKIX trust.
 | |
|      */
 | |
|     num = sk_X509_num(ctx->chain);
 | |
|     if (num <= depth) {
 | |
|         if (trust == X509_TRUST_UNTRUSTED && DANETLS_HAS_DANE_TA(dane))
 | |
|             trust = check_dane_pkeys(ctx);
 | |
|         if (trust == X509_TRUST_UNTRUSTED && num == ctx->num_untrusted)
 | |
|             trust = check_trust(ctx, num);
 | |
|     }
 | |
| 
 | |
|     switch (trust) {
 | |
|     case X509_TRUST_TRUSTED:
 | |
|         return 1;
 | |
|     case X509_TRUST_REJECTED:
 | |
|         /* Callback already issued */
 | |
|         return 0;
 | |
|     case X509_TRUST_UNTRUSTED:
 | |
|     default:
 | |
|         num = sk_X509_num(ctx->chain);
 | |
|         if (num > depth)
 | |
|             return verify_cb_cert(ctx, NULL, num-1,
 | |
|                                   X509_V_ERR_CERT_CHAIN_TOO_LONG);
 | |
|         if (DANETLS_ENABLED(dane) &&
 | |
|             (!DANETLS_HAS_PKIX(dane) || dane->pdpth >= 0))
 | |
|             return verify_cb_cert(ctx, NULL, num-1, X509_V_ERR_DANE_NO_MATCH);
 | |
|         if (ss && sk_X509_num(ctx->chain) == 1)
 | |
|             return verify_cb_cert(ctx, NULL, num-1,
 | |
|                                   X509_V_ERR_DEPTH_ZERO_SELF_SIGNED_CERT);
 | |
|         if (ss)
 | |
|             return verify_cb_cert(ctx, NULL, num-1,
 | |
|                                   X509_V_ERR_SELF_SIGNED_CERT_IN_CHAIN);
 | |
|         if (ctx->num_untrusted < num)
 | |
|             return verify_cb_cert(ctx, NULL, num-1,
 | |
|                                   X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT);
 | |
|         return verify_cb_cert(ctx, NULL, num-1,
 | |
|                               X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT_LOCALLY);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static const int minbits_table[] = { 80, 112, 128, 192, 256 };
 | |
| static const int NUM_AUTH_LEVELS = OSSL_NELEM(minbits_table);
 | |
| 
 | |
| /*
 | |
|  * Check whether the public key of ``cert`` meets the security level of
 | |
|  * ``ctx``.
 | |
|  *
 | |
|  * Returns 1 on success, 0 otherwise.
 | |
|  */
 | |
| static int check_key_level(X509_STORE_CTX *ctx, X509 *cert)
 | |
| {
 | |
|     EVP_PKEY *pkey = X509_get0_pubkey(cert);
 | |
|     int level = ctx->param->auth_level;
 | |
| 
 | |
|     /*
 | |
|      * At security level zero, return without checking for a supported public
 | |
|      * key type.  Some engines support key types not understood outside the
 | |
|      * engine, and we only need to understand the key when enforcing a security
 | |
|      * floor.
 | |
|      */
 | |
|     if (level <= 0)
 | |
|         return 1;
 | |
| 
 | |
|     /* Unsupported or malformed keys are not secure */
 | |
|     if (pkey == NULL)
 | |
|         return 0;
 | |
| 
 | |
|     if (level > NUM_AUTH_LEVELS)
 | |
|         level = NUM_AUTH_LEVELS;
 | |
| 
 | |
|     return EVP_PKEY_security_bits(pkey) >= minbits_table[level - 1];
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check whether the public key of ``cert`` does not use explicit params
 | |
|  * for an elliptic curve.
 | |
|  *
 | |
|  * Returns 1 on success, 0 if check fails, -1 for other errors.
 | |
|  */
 | |
| static int check_curve(X509 *cert)
 | |
| {
 | |
| #ifndef OPENSSL_NO_EC
 | |
|     EVP_PKEY *pkey = X509_get0_pubkey(cert);
 | |
| 
 | |
|     /* Unsupported or malformed key */
 | |
|     if (pkey == NULL)
 | |
|         return -1;
 | |
| 
 | |
|     if (EVP_PKEY_id(pkey) == EVP_PKEY_EC) {
 | |
|         int ret;
 | |
| 
 | |
|         ret = EC_KEY_decoded_from_explicit_params(EVP_PKEY_get0_EC_KEY(pkey));
 | |
|         return ret < 0 ? ret : !ret;
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check whether the signature digest algorithm of ``cert`` meets the security
 | |
|  * level of ``ctx``.  Should not be checked for trust anchors (whether
 | |
|  * self-signed or otherwise).
 | |
|  *
 | |
|  * Returns 1 on success, 0 otherwise.
 | |
|  */
 | |
| static int check_sig_level(X509_STORE_CTX *ctx, X509 *cert)
 | |
| {
 | |
|     int secbits = -1;
 | |
|     int level = ctx->param->auth_level;
 | |
| 
 | |
|     if (level <= 0)
 | |
|         return 1;
 | |
|     if (level > NUM_AUTH_LEVELS)
 | |
|         level = NUM_AUTH_LEVELS;
 | |
| 
 | |
|     if (!X509_get_signature_info(cert, NULL, NULL, &secbits, NULL))
 | |
|         return 0;
 | |
| 
 | |
|     return secbits >= minbits_table[level - 1];
 | |
| }
 |