mirror of
				https://github.com/ossrs/srs.git
				synced 2025-03-09 15:49:59 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			859 lines
		
	
	
	
		
			22 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			859 lines
		
	
	
	
		
			22 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved.
 | |
|  *
 | |
|  * Licensed under the OpenSSL license (the "License").  You may not use
 | |
|  * this file except in compliance with the License.  You can obtain a copy
 | |
|  * in the file LICENSE in the source distribution or at
 | |
|  * https://www.openssl.org/source/license.html
 | |
|  */
 | |
| 
 | |
| #include <stdio.h>
 | |
| #include <time.h>
 | |
| #include "internal/cryptlib.h"
 | |
| #include <openssl/opensslconf.h>
 | |
| #include "internal/rand_int.h"
 | |
| #include <openssl/engine.h>
 | |
| #include "internal/thread_once.h"
 | |
| #include "rand_lcl.h"
 | |
| #include "e_os.h"
 | |
| 
 | |
| #ifndef OPENSSL_NO_ENGINE
 | |
| /* non-NULL if default_RAND_meth is ENGINE-provided */
 | |
| static ENGINE *funct_ref;
 | |
| static CRYPTO_RWLOCK *rand_engine_lock;
 | |
| #endif
 | |
| static CRYPTO_RWLOCK *rand_meth_lock;
 | |
| static const RAND_METHOD *default_RAND_meth;
 | |
| static CRYPTO_ONCE rand_init = CRYPTO_ONCE_STATIC_INIT;
 | |
| 
 | |
| int rand_fork_count;
 | |
| 
 | |
| static CRYPTO_RWLOCK *rand_nonce_lock;
 | |
| static int rand_nonce_count;
 | |
| 
 | |
| static int rand_inited = 0;
 | |
| 
 | |
| #ifdef OPENSSL_RAND_SEED_RDTSC
 | |
| /*
 | |
|  * IMPORTANT NOTE:  It is not currently possible to use this code
 | |
|  * because we are not sure about the amount of randomness it provides.
 | |
|  * Some SP900 tests have been run, but there is internal skepticism.
 | |
|  * So for now this code is not used.
 | |
|  */
 | |
| # error "RDTSC enabled?  Should not be possible!"
 | |
| 
 | |
| /*
 | |
|  * Acquire entropy from high-speed clock
 | |
|  *
 | |
|  * Since we get some randomness from the low-order bits of the
 | |
|  * high-speed clock, it can help.
 | |
|  *
 | |
|  * Returns the total entropy count, if it exceeds the requested
 | |
|  * entropy count. Otherwise, returns an entropy count of 0.
 | |
|  */
 | |
| size_t rand_acquire_entropy_from_tsc(RAND_POOL *pool)
 | |
| {
 | |
|     unsigned char c;
 | |
|     int i;
 | |
| 
 | |
|     if ((OPENSSL_ia32cap_P[0] & (1 << 4)) != 0) {
 | |
|         for (i = 0; i < TSC_READ_COUNT; i++) {
 | |
|             c = (unsigned char)(OPENSSL_rdtsc() & 0xFF);
 | |
|             rand_pool_add(pool, &c, 1, 4);
 | |
|         }
 | |
|     }
 | |
|     return rand_pool_entropy_available(pool);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef OPENSSL_RAND_SEED_RDCPU
 | |
| size_t OPENSSL_ia32_rdseed_bytes(unsigned char *buf, size_t len);
 | |
| size_t OPENSSL_ia32_rdrand_bytes(unsigned char *buf, size_t len);
 | |
| 
 | |
| extern unsigned int OPENSSL_ia32cap_P[];
 | |
| 
 | |
| /*
 | |
|  * Acquire entropy using Intel-specific cpu instructions
 | |
|  *
 | |
|  * Uses the RDSEED instruction if available, otherwise uses
 | |
|  * RDRAND if available.
 | |
|  *
 | |
|  * For the differences between RDSEED and RDRAND, and why RDSEED
 | |
|  * is the preferred choice, see https://goo.gl/oK3KcN
 | |
|  *
 | |
|  * Returns the total entropy count, if it exceeds the requested
 | |
|  * entropy count. Otherwise, returns an entropy count of 0.
 | |
|  */
 | |
| size_t rand_acquire_entropy_from_cpu(RAND_POOL *pool)
 | |
| {
 | |
|     size_t bytes_needed;
 | |
|     unsigned char *buffer;
 | |
| 
 | |
|     bytes_needed = rand_pool_bytes_needed(pool, 1 /*entropy_factor*/);
 | |
|     if (bytes_needed > 0) {
 | |
|         buffer = rand_pool_add_begin(pool, bytes_needed);
 | |
| 
 | |
|         if (buffer != NULL) {
 | |
|             /* Whichever comes first, use RDSEED, RDRAND or nothing */
 | |
|             if ((OPENSSL_ia32cap_P[2] & (1 << 18)) != 0) {
 | |
|                 if (OPENSSL_ia32_rdseed_bytes(buffer, bytes_needed)
 | |
|                     == bytes_needed) {
 | |
|                     rand_pool_add_end(pool, bytes_needed, 8 * bytes_needed);
 | |
|                 }
 | |
|             } else if ((OPENSSL_ia32cap_P[1] & (1 << (62 - 32))) != 0) {
 | |
|                 if (OPENSSL_ia32_rdrand_bytes(buffer, bytes_needed)
 | |
|                     == bytes_needed) {
 | |
|                     rand_pool_add_end(pool, bytes_needed, 8 * bytes_needed);
 | |
|                 }
 | |
|             } else {
 | |
|                 rand_pool_add_end(pool, 0, 0);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return rand_pool_entropy_available(pool);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Implements the get_entropy() callback (see RAND_DRBG_set_callbacks())
 | |
|  *
 | |
|  * If the DRBG has a parent, then the required amount of entropy input
 | |
|  * is fetched using the parent's RAND_DRBG_generate().
 | |
|  *
 | |
|  * Otherwise, the entropy is polled from the system entropy sources
 | |
|  * using rand_pool_acquire_entropy().
 | |
|  *
 | |
|  * If a random pool has been added to the DRBG using RAND_add(), then
 | |
|  * its entropy will be used up first.
 | |
|  */
 | |
| size_t rand_drbg_get_entropy(RAND_DRBG *drbg,
 | |
|                              unsigned char **pout,
 | |
|                              int entropy, size_t min_len, size_t max_len,
 | |
|                              int prediction_resistance)
 | |
| {
 | |
|     size_t ret = 0;
 | |
|     size_t entropy_available = 0;
 | |
|     RAND_POOL *pool;
 | |
| 
 | |
|     if (drbg->parent && drbg->strength > drbg->parent->strength) {
 | |
|         /*
 | |
|          * We currently don't support the algorithm from NIST SP 800-90C
 | |
|          * 10.1.2 to use a weaker DRBG as source
 | |
|          */
 | |
|         RANDerr(RAND_F_RAND_DRBG_GET_ENTROPY, RAND_R_PARENT_STRENGTH_TOO_WEAK);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     if (drbg->seed_pool != NULL) {
 | |
|         pool = drbg->seed_pool;
 | |
|         pool->entropy_requested = entropy;
 | |
|     } else {
 | |
|         pool = rand_pool_new(entropy, min_len, max_len);
 | |
|         if (pool == NULL)
 | |
|             return 0;
 | |
|     }
 | |
| 
 | |
|     if (drbg->parent) {
 | |
|         size_t bytes_needed = rand_pool_bytes_needed(pool, 1 /*entropy_factor*/);
 | |
|         unsigned char *buffer = rand_pool_add_begin(pool, bytes_needed);
 | |
| 
 | |
|         if (buffer != NULL) {
 | |
|             size_t bytes = 0;
 | |
| 
 | |
|             /*
 | |
|              * Get random from parent, include our state as additional input.
 | |
|              * Our lock is already held, but we need to lock our parent before
 | |
|              * generating bits from it. (Note: taking the lock will be a no-op
 | |
|              * if locking if drbg->parent->lock == NULL.)
 | |
|              */
 | |
|             rand_drbg_lock(drbg->parent);
 | |
|             if (RAND_DRBG_generate(drbg->parent,
 | |
|                                    buffer, bytes_needed,
 | |
|                                    prediction_resistance,
 | |
|                                    NULL, 0) != 0)
 | |
|                 bytes = bytes_needed;
 | |
|             drbg->reseed_next_counter
 | |
|                 = tsan_load(&drbg->parent->reseed_prop_counter);
 | |
|             rand_drbg_unlock(drbg->parent);
 | |
| 
 | |
|             rand_pool_add_end(pool, bytes, 8 * bytes);
 | |
|             entropy_available = rand_pool_entropy_available(pool);
 | |
|         }
 | |
| 
 | |
|     } else {
 | |
|         if (prediction_resistance) {
 | |
|             /*
 | |
|              * We don't have any entropy sources that comply with the NIST
 | |
|              * standard to provide prediction resistance (see NIST SP 800-90C,
 | |
|              * Section 5.4).
 | |
|              */
 | |
|             RANDerr(RAND_F_RAND_DRBG_GET_ENTROPY,
 | |
|                     RAND_R_PREDICTION_RESISTANCE_NOT_SUPPORTED);
 | |
|             goto err;
 | |
|         }
 | |
| 
 | |
|         /* Get entropy by polling system entropy sources. */
 | |
|         entropy_available = rand_pool_acquire_entropy(pool);
 | |
|     }
 | |
| 
 | |
|     if (entropy_available > 0) {
 | |
|         ret   = rand_pool_length(pool);
 | |
|         *pout = rand_pool_detach(pool);
 | |
|     }
 | |
| 
 | |
|  err:
 | |
|     if (drbg->seed_pool == NULL)
 | |
|         rand_pool_free(pool);
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Implements the cleanup_entropy() callback (see RAND_DRBG_set_callbacks())
 | |
|  *
 | |
|  */
 | |
| void rand_drbg_cleanup_entropy(RAND_DRBG *drbg,
 | |
|                                unsigned char *out, size_t outlen)
 | |
| {
 | |
|     if (drbg->seed_pool == NULL)
 | |
|         OPENSSL_secure_clear_free(out, outlen);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Implements the get_nonce() callback (see RAND_DRBG_set_callbacks())
 | |
|  *
 | |
|  */
 | |
| size_t rand_drbg_get_nonce(RAND_DRBG *drbg,
 | |
|                            unsigned char **pout,
 | |
|                            int entropy, size_t min_len, size_t max_len)
 | |
| {
 | |
|     size_t ret = 0;
 | |
|     RAND_POOL *pool;
 | |
| 
 | |
|     struct {
 | |
|         void * instance;
 | |
|         int count;
 | |
|     } data = { 0 };
 | |
| 
 | |
|     pool = rand_pool_new(0, min_len, max_len);
 | |
|     if (pool == NULL)
 | |
|         return 0;
 | |
| 
 | |
|     if (rand_pool_add_nonce_data(pool) == 0)
 | |
|         goto err;
 | |
| 
 | |
|     data.instance = drbg;
 | |
|     CRYPTO_atomic_add(&rand_nonce_count, 1, &data.count, rand_nonce_lock);
 | |
| 
 | |
|     if (rand_pool_add(pool, (unsigned char *)&data, sizeof(data), 0) == 0)
 | |
|         goto err;
 | |
| 
 | |
|     ret   = rand_pool_length(pool);
 | |
|     *pout = rand_pool_detach(pool);
 | |
| 
 | |
|  err:
 | |
|     rand_pool_free(pool);
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Implements the cleanup_nonce() callback (see RAND_DRBG_set_callbacks())
 | |
|  *
 | |
|  */
 | |
| void rand_drbg_cleanup_nonce(RAND_DRBG *drbg,
 | |
|                              unsigned char *out, size_t outlen)
 | |
| {
 | |
|     OPENSSL_secure_clear_free(out, outlen);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Generate additional data that can be used for the drbg. The data does
 | |
|  * not need to contain entropy, but it's useful if it contains at least
 | |
|  * some bits that are unpredictable.
 | |
|  *
 | |
|  * Returns 0 on failure.
 | |
|  *
 | |
|  * On success it allocates a buffer at |*pout| and returns the length of
 | |
|  * the data. The buffer should get freed using OPENSSL_secure_clear_free().
 | |
|  */
 | |
| size_t rand_drbg_get_additional_data(RAND_POOL *pool, unsigned char **pout)
 | |
| {
 | |
|     size_t ret = 0;
 | |
| 
 | |
|     if (rand_pool_add_additional_data(pool) == 0)
 | |
|         goto err;
 | |
| 
 | |
|     ret = rand_pool_length(pool);
 | |
|     *pout = rand_pool_detach(pool);
 | |
| 
 | |
|  err:
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| void rand_drbg_cleanup_additional_data(RAND_POOL *pool, unsigned char *out)
 | |
| {
 | |
|     rand_pool_reattach(pool, out);
 | |
| }
 | |
| 
 | |
| void rand_fork(void)
 | |
| {
 | |
|     rand_fork_count++;
 | |
| }
 | |
| 
 | |
| DEFINE_RUN_ONCE_STATIC(do_rand_init)
 | |
| {
 | |
| #ifndef OPENSSL_NO_ENGINE
 | |
|     rand_engine_lock = CRYPTO_THREAD_lock_new();
 | |
|     if (rand_engine_lock == NULL)
 | |
|         return 0;
 | |
| #endif
 | |
| 
 | |
|     rand_meth_lock = CRYPTO_THREAD_lock_new();
 | |
|     if (rand_meth_lock == NULL)
 | |
|         goto err1;
 | |
| 
 | |
|     rand_nonce_lock = CRYPTO_THREAD_lock_new();
 | |
|     if (rand_nonce_lock == NULL)
 | |
|         goto err2;
 | |
| 
 | |
|     if (!rand_pool_init())
 | |
|         goto err3;
 | |
| 
 | |
|     rand_inited = 1;
 | |
|     return 1;
 | |
| 
 | |
| err3:
 | |
|     CRYPTO_THREAD_lock_free(rand_nonce_lock);
 | |
|     rand_nonce_lock = NULL;
 | |
| err2:
 | |
|     CRYPTO_THREAD_lock_free(rand_meth_lock);
 | |
|     rand_meth_lock = NULL;
 | |
| err1:
 | |
| #ifndef OPENSSL_NO_ENGINE
 | |
|     CRYPTO_THREAD_lock_free(rand_engine_lock);
 | |
|     rand_engine_lock = NULL;
 | |
| #endif
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| void rand_cleanup_int(void)
 | |
| {
 | |
|     const RAND_METHOD *meth = default_RAND_meth;
 | |
| 
 | |
|     if (!rand_inited)
 | |
|         return;
 | |
| 
 | |
|     if (meth != NULL && meth->cleanup != NULL)
 | |
|         meth->cleanup();
 | |
|     RAND_set_rand_method(NULL);
 | |
|     rand_pool_cleanup();
 | |
| #ifndef OPENSSL_NO_ENGINE
 | |
|     CRYPTO_THREAD_lock_free(rand_engine_lock);
 | |
|     rand_engine_lock = NULL;
 | |
| #endif
 | |
|     CRYPTO_THREAD_lock_free(rand_meth_lock);
 | |
|     rand_meth_lock = NULL;
 | |
|     CRYPTO_THREAD_lock_free(rand_nonce_lock);
 | |
|     rand_nonce_lock = NULL;
 | |
|     rand_inited = 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * RAND_close_seed_files() ensures that any seed file decriptors are
 | |
|  * closed after use.
 | |
|  */
 | |
| void RAND_keep_random_devices_open(int keep)
 | |
| {
 | |
|     if (RUN_ONCE(&rand_init, do_rand_init))
 | |
|         rand_pool_keep_random_devices_open(keep);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * RAND_poll() reseeds the default RNG using random input
 | |
|  *
 | |
|  * The random input is obtained from polling various entropy
 | |
|  * sources which depend on the operating system and are
 | |
|  * configurable via the --with-rand-seed configure option.
 | |
|  */
 | |
| int RAND_poll(void)
 | |
| {
 | |
|     int ret = 0;
 | |
| 
 | |
|     RAND_POOL *pool = NULL;
 | |
| 
 | |
|     const RAND_METHOD *meth = RAND_get_rand_method();
 | |
| 
 | |
|     if (meth == RAND_OpenSSL()) {
 | |
|         /* fill random pool and seed the master DRBG */
 | |
|         RAND_DRBG *drbg = RAND_DRBG_get0_master();
 | |
| 
 | |
|         if (drbg == NULL)
 | |
|             return 0;
 | |
| 
 | |
|         rand_drbg_lock(drbg);
 | |
|         ret = rand_drbg_restart(drbg, NULL, 0, 0);
 | |
|         rand_drbg_unlock(drbg);
 | |
| 
 | |
|         return ret;
 | |
| 
 | |
|     } else {
 | |
|         /* fill random pool and seed the current legacy RNG */
 | |
|         pool = rand_pool_new(RAND_DRBG_STRENGTH,
 | |
|                              RAND_DRBG_STRENGTH / 8,
 | |
|                              RAND_POOL_MAX_LENGTH);
 | |
|         if (pool == NULL)
 | |
|             return 0;
 | |
| 
 | |
|         if (rand_pool_acquire_entropy(pool) == 0)
 | |
|             goto err;
 | |
| 
 | |
|         if (meth->add == NULL
 | |
|             || meth->add(rand_pool_buffer(pool),
 | |
|                          rand_pool_length(pool),
 | |
|                          (rand_pool_entropy(pool) / 8.0)) == 0)
 | |
|             goto err;
 | |
| 
 | |
|         ret = 1;
 | |
|     }
 | |
| 
 | |
| err:
 | |
|     rand_pool_free(pool);
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Allocate memory and initialize a new random pool
 | |
|  */
 | |
| 
 | |
| RAND_POOL *rand_pool_new(int entropy_requested, size_t min_len, size_t max_len)
 | |
| {
 | |
|     RAND_POOL *pool = OPENSSL_zalloc(sizeof(*pool));
 | |
| 
 | |
|     if (pool == NULL) {
 | |
|         RANDerr(RAND_F_RAND_POOL_NEW, ERR_R_MALLOC_FAILURE);
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     pool->min_len = min_len;
 | |
|     pool->max_len = (max_len > RAND_POOL_MAX_LENGTH) ?
 | |
|         RAND_POOL_MAX_LENGTH : max_len;
 | |
| 
 | |
|     pool->buffer = OPENSSL_secure_zalloc(pool->max_len);
 | |
|     if (pool->buffer == NULL) {
 | |
|         RANDerr(RAND_F_RAND_POOL_NEW, ERR_R_MALLOC_FAILURE);
 | |
|         goto err;
 | |
|     }
 | |
| 
 | |
|     pool->entropy_requested = entropy_requested;
 | |
| 
 | |
|     return pool;
 | |
| 
 | |
| err:
 | |
|     OPENSSL_free(pool);
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Attach new random pool to the given buffer
 | |
|  *
 | |
|  * This function is intended to be used only for feeding random data
 | |
|  * provided by RAND_add() and RAND_seed() into the <master> DRBG.
 | |
|  */
 | |
| RAND_POOL *rand_pool_attach(const unsigned char *buffer, size_t len,
 | |
|                             size_t entropy)
 | |
| {
 | |
|     RAND_POOL *pool = OPENSSL_zalloc(sizeof(*pool));
 | |
| 
 | |
|     if (pool == NULL) {
 | |
|         RANDerr(RAND_F_RAND_POOL_ATTACH, ERR_R_MALLOC_FAILURE);
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * The const needs to be cast away, but attached buffers will not be
 | |
|      * modified (in contrary to allocated buffers which are zeroed and
 | |
|      * freed in the end).
 | |
|      */
 | |
|     pool->buffer = (unsigned char *) buffer;
 | |
|     pool->len = len;
 | |
| 
 | |
|     pool->attached = 1;
 | |
| 
 | |
|     pool->min_len = pool->max_len = pool->len;
 | |
|     pool->entropy = entropy;
 | |
| 
 | |
|     return pool;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Free |pool|, securely erasing its buffer.
 | |
|  */
 | |
| void rand_pool_free(RAND_POOL *pool)
 | |
| {
 | |
|     if (pool == NULL)
 | |
|         return;
 | |
| 
 | |
|     /*
 | |
|      * Although it would be advisable from a cryptographical viewpoint,
 | |
|      * we are not allowed to clear attached buffers, since they are passed
 | |
|      * to rand_pool_attach() as `const unsigned char*`.
 | |
|      * (see corresponding comment in rand_pool_attach()).
 | |
|      */
 | |
|     if (!pool->attached)
 | |
|         OPENSSL_secure_clear_free(pool->buffer, pool->max_len);
 | |
|     OPENSSL_free(pool);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return the |pool|'s buffer to the caller (readonly).
 | |
|  */
 | |
| const unsigned char *rand_pool_buffer(RAND_POOL *pool)
 | |
| {
 | |
|     return pool->buffer;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return the |pool|'s entropy to the caller.
 | |
|  */
 | |
| size_t rand_pool_entropy(RAND_POOL *pool)
 | |
| {
 | |
|     return pool->entropy;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return the |pool|'s buffer length to the caller.
 | |
|  */
 | |
| size_t rand_pool_length(RAND_POOL *pool)
 | |
| {
 | |
|     return pool->len;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Detach the |pool| buffer and return it to the caller.
 | |
|  * It's the responsibility of the caller to free the buffer
 | |
|  * using OPENSSL_secure_clear_free() or to re-attach it
 | |
|  * again to the pool using rand_pool_reattach().
 | |
|  */
 | |
| unsigned char *rand_pool_detach(RAND_POOL *pool)
 | |
| {
 | |
|     unsigned char *ret = pool->buffer;
 | |
|     pool->buffer = NULL;
 | |
|     pool->entropy = 0;
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Re-attach the |pool| buffer. It is only allowed to pass
 | |
|  * the |buffer| which was previously detached from the same pool.
 | |
|  */
 | |
| void rand_pool_reattach(RAND_POOL *pool, unsigned char *buffer)
 | |
| {
 | |
|     pool->buffer = buffer;
 | |
|     OPENSSL_cleanse(pool->buffer, pool->len);
 | |
|     pool->len = 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If |entropy_factor| bits contain 1 bit of entropy, how many bytes does one
 | |
|  * need to obtain at least |bits| bits of entropy?
 | |
|  */
 | |
| #define ENTROPY_TO_BYTES(bits, entropy_factor) \
 | |
|     (((bits) * (entropy_factor) + 7) / 8)
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Checks whether the |pool|'s entropy is available to the caller.
 | |
|  * This is the case when entropy count and buffer length are high enough.
 | |
|  * Returns
 | |
|  *
 | |
|  *  |entropy|  if the entropy count and buffer size is large enough
 | |
|  *      0      otherwise
 | |
|  */
 | |
| size_t rand_pool_entropy_available(RAND_POOL *pool)
 | |
| {
 | |
|     if (pool->entropy < pool->entropy_requested)
 | |
|         return 0;
 | |
| 
 | |
|     if (pool->len < pool->min_len)
 | |
|         return 0;
 | |
| 
 | |
|     return pool->entropy;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns the (remaining) amount of entropy needed to fill
 | |
|  * the random pool.
 | |
|  */
 | |
| 
 | |
| size_t rand_pool_entropy_needed(RAND_POOL *pool)
 | |
| {
 | |
|     if (pool->entropy < pool->entropy_requested)
 | |
|         return pool->entropy_requested - pool->entropy;
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns the number of bytes needed to fill the pool, assuming
 | |
|  * the input has 1 / |entropy_factor| entropy bits per data bit.
 | |
|  * In case of an error, 0 is returned.
 | |
|  */
 | |
| 
 | |
| size_t rand_pool_bytes_needed(RAND_POOL *pool, unsigned int entropy_factor)
 | |
| {
 | |
|     size_t bytes_needed;
 | |
|     size_t entropy_needed = rand_pool_entropy_needed(pool);
 | |
| 
 | |
|     if (entropy_factor < 1) {
 | |
|         RANDerr(RAND_F_RAND_POOL_BYTES_NEEDED, RAND_R_ARGUMENT_OUT_OF_RANGE);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     bytes_needed = ENTROPY_TO_BYTES(entropy_needed, entropy_factor);
 | |
| 
 | |
|     if (bytes_needed > pool->max_len - pool->len) {
 | |
|         /* not enough space left */
 | |
|         RANDerr(RAND_F_RAND_POOL_BYTES_NEEDED, RAND_R_RANDOM_POOL_OVERFLOW);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     if (pool->len < pool->min_len &&
 | |
|         bytes_needed < pool->min_len - pool->len)
 | |
|         /* to meet the min_len requirement */
 | |
|         bytes_needed = pool->min_len - pool->len;
 | |
| 
 | |
|     return bytes_needed;
 | |
| }
 | |
| 
 | |
| /* Returns the remaining number of bytes available */
 | |
| size_t rand_pool_bytes_remaining(RAND_POOL *pool)
 | |
| {
 | |
|     return pool->max_len - pool->len;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Add random bytes to the random pool.
 | |
|  *
 | |
|  * It is expected that the |buffer| contains |len| bytes of
 | |
|  * random input which contains at least |entropy| bits of
 | |
|  * randomness.
 | |
|  *
 | |
|  * Returns 1 if the added amount is adequate, otherwise 0
 | |
|  */
 | |
| int rand_pool_add(RAND_POOL *pool,
 | |
|                   const unsigned char *buffer, size_t len, size_t entropy)
 | |
| {
 | |
|     if (len > pool->max_len - pool->len) {
 | |
|         RANDerr(RAND_F_RAND_POOL_ADD, RAND_R_ENTROPY_INPUT_TOO_LONG);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     if (pool->buffer == NULL) {
 | |
|         RANDerr(RAND_F_RAND_POOL_ADD, ERR_R_INTERNAL_ERROR);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     if (len > 0) {
 | |
|         memcpy(pool->buffer + pool->len, buffer, len);
 | |
|         pool->len += len;
 | |
|         pool->entropy += entropy;
 | |
|     }
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Start to add random bytes to the random pool in-place.
 | |
|  *
 | |
|  * Reserves the next |len| bytes for adding random bytes in-place
 | |
|  * and returns a pointer to the buffer.
 | |
|  * The caller is allowed to copy up to |len| bytes into the buffer.
 | |
|  * If |len| == 0 this is considered a no-op and a NULL pointer
 | |
|  * is returned without producing an error message.
 | |
|  *
 | |
|  * After updating the buffer, rand_pool_add_end() needs to be called
 | |
|  * to finish the udpate operation (see next comment).
 | |
|  */
 | |
| unsigned char *rand_pool_add_begin(RAND_POOL *pool, size_t len)
 | |
| {
 | |
|     if (len == 0)
 | |
|         return NULL;
 | |
| 
 | |
|     if (len > pool->max_len - pool->len) {
 | |
|         RANDerr(RAND_F_RAND_POOL_ADD_BEGIN, RAND_R_RANDOM_POOL_OVERFLOW);
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     if (pool->buffer == NULL) {
 | |
|         RANDerr(RAND_F_RAND_POOL_ADD_BEGIN, ERR_R_INTERNAL_ERROR);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     return pool->buffer + pool->len;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Finish to add random bytes to the random pool in-place.
 | |
|  *
 | |
|  * Finishes an in-place update of the random pool started by
 | |
|  * rand_pool_add_begin() (see previous comment).
 | |
|  * It is expected that |len| bytes of random input have been added
 | |
|  * to the buffer which contain at least |entropy| bits of randomness.
 | |
|  * It is allowed to add less bytes than originally reserved.
 | |
|  */
 | |
| int rand_pool_add_end(RAND_POOL *pool, size_t len, size_t entropy)
 | |
| {
 | |
|     if (len > pool->max_len - pool->len) {
 | |
|         RANDerr(RAND_F_RAND_POOL_ADD_END, RAND_R_RANDOM_POOL_OVERFLOW);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     if (len > 0) {
 | |
|         pool->len += len;
 | |
|         pool->entropy += entropy;
 | |
|     }
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| int RAND_set_rand_method(const RAND_METHOD *meth)
 | |
| {
 | |
|     if (!RUN_ONCE(&rand_init, do_rand_init))
 | |
|         return 0;
 | |
| 
 | |
|     CRYPTO_THREAD_write_lock(rand_meth_lock);
 | |
| #ifndef OPENSSL_NO_ENGINE
 | |
|     ENGINE_finish(funct_ref);
 | |
|     funct_ref = NULL;
 | |
| #endif
 | |
|     default_RAND_meth = meth;
 | |
|     CRYPTO_THREAD_unlock(rand_meth_lock);
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| const RAND_METHOD *RAND_get_rand_method(void)
 | |
| {
 | |
|     const RAND_METHOD *tmp_meth = NULL;
 | |
| 
 | |
|     if (!RUN_ONCE(&rand_init, do_rand_init))
 | |
|         return NULL;
 | |
| 
 | |
|     CRYPTO_THREAD_write_lock(rand_meth_lock);
 | |
|     if (default_RAND_meth == NULL) {
 | |
| #ifndef OPENSSL_NO_ENGINE
 | |
|         ENGINE *e;
 | |
| 
 | |
|         /* If we have an engine that can do RAND, use it. */
 | |
|         if ((e = ENGINE_get_default_RAND()) != NULL
 | |
|                 && (tmp_meth = ENGINE_get_RAND(e)) != NULL) {
 | |
|             funct_ref = e;
 | |
|             default_RAND_meth = tmp_meth;
 | |
|         } else {
 | |
|             ENGINE_finish(e);
 | |
|             default_RAND_meth = &rand_meth;
 | |
|         }
 | |
| #else
 | |
|         default_RAND_meth = &rand_meth;
 | |
| #endif
 | |
|     }
 | |
|     tmp_meth = default_RAND_meth;
 | |
|     CRYPTO_THREAD_unlock(rand_meth_lock);
 | |
|     return tmp_meth;
 | |
| }
 | |
| 
 | |
| #ifndef OPENSSL_NO_ENGINE
 | |
| int RAND_set_rand_engine(ENGINE *engine)
 | |
| {
 | |
|     const RAND_METHOD *tmp_meth = NULL;
 | |
| 
 | |
|     if (!RUN_ONCE(&rand_init, do_rand_init))
 | |
|         return 0;
 | |
| 
 | |
|     if (engine != NULL) {
 | |
|         if (!ENGINE_init(engine))
 | |
|             return 0;
 | |
|         tmp_meth = ENGINE_get_RAND(engine);
 | |
|         if (tmp_meth == NULL) {
 | |
|             ENGINE_finish(engine);
 | |
|             return 0;
 | |
|         }
 | |
|     }
 | |
|     CRYPTO_THREAD_write_lock(rand_engine_lock);
 | |
|     /* This function releases any prior ENGINE so call it first */
 | |
|     RAND_set_rand_method(tmp_meth);
 | |
|     funct_ref = engine;
 | |
|     CRYPTO_THREAD_unlock(rand_engine_lock);
 | |
|     return 1;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void RAND_seed(const void *buf, int num)
 | |
| {
 | |
|     const RAND_METHOD *meth = RAND_get_rand_method();
 | |
| 
 | |
|     if (meth->seed != NULL)
 | |
|         meth->seed(buf, num);
 | |
| }
 | |
| 
 | |
| void RAND_add(const void *buf, int num, double randomness)
 | |
| {
 | |
|     const RAND_METHOD *meth = RAND_get_rand_method();
 | |
| 
 | |
|     if (meth->add != NULL)
 | |
|         meth->add(buf, num, randomness);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function is not part of RAND_METHOD, so if we're not using
 | |
|  * the default method, then just call RAND_bytes().  Otherwise make
 | |
|  * sure we're instantiated and use the private DRBG.
 | |
|  */
 | |
| int RAND_priv_bytes(unsigned char *buf, int num)
 | |
| {
 | |
|     const RAND_METHOD *meth = RAND_get_rand_method();
 | |
|     RAND_DRBG *drbg;
 | |
|     int ret;
 | |
| 
 | |
|     if (meth != RAND_OpenSSL())
 | |
|         return RAND_bytes(buf, num);
 | |
| 
 | |
|     drbg = RAND_DRBG_get0_private();
 | |
|     if (drbg == NULL)
 | |
|         return 0;
 | |
| 
 | |
|     ret = RAND_DRBG_bytes(drbg, buf, num);
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| int RAND_bytes(unsigned char *buf, int num)
 | |
| {
 | |
|     const RAND_METHOD *meth = RAND_get_rand_method();
 | |
| 
 | |
|     if (meth->bytes != NULL)
 | |
|         return meth->bytes(buf, num);
 | |
|     RANDerr(RAND_F_RAND_BYTES, RAND_R_FUNC_NOT_IMPLEMENTED);
 | |
|     return -1;
 | |
| }
 | |
| 
 | |
| #if OPENSSL_API_COMPAT < 0x10100000L
 | |
| int RAND_pseudo_bytes(unsigned char *buf, int num)
 | |
| {
 | |
|     const RAND_METHOD *meth = RAND_get_rand_method();
 | |
| 
 | |
|     if (meth->pseudorand != NULL)
 | |
|         return meth->pseudorand(buf, num);
 | |
|     return -1;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| int RAND_status(void)
 | |
| {
 | |
|     const RAND_METHOD *meth = RAND_get_rand_method();
 | |
| 
 | |
|     if (meth->status != NULL)
 | |
|         return meth->status();
 | |
|     return 0;
 | |
| }
 |