mirror of
				https://github.com/ossrs/srs.git
				synced 2025-03-09 15:49:59 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			391 lines
		
	
	
	
		
			11 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			391 lines
		
	
	
	
		
			11 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved.
 | |
|  *
 | |
|  * Licensed under the OpenSSL license (the "License").  You may not use
 | |
|  * this file except in compliance with the License.  You can obtain a copy
 | |
|  * in the file LICENSE in the source distribution or at
 | |
|  * https://www.openssl.org/source/license.html
 | |
|  */
 | |
| 
 | |
| #include <stdio.h>
 | |
| #include <time.h>
 | |
| #include "internal/cryptlib.h"
 | |
| #include "bn_local.h"
 | |
| 
 | |
| /*
 | |
|  * The quick sieve algorithm approach to weeding out primes is Philip
 | |
|  * Zimmermann's, as implemented in PGP.  I have had a read of his comments
 | |
|  * and implemented my own version.
 | |
|  */
 | |
| #include "bn_prime.h"
 | |
| 
 | |
| static int witness(BIGNUM *w, const BIGNUM *a, const BIGNUM *a1,
 | |
|                    const BIGNUM *a1_odd, int k, BN_CTX *ctx,
 | |
|                    BN_MONT_CTX *mont);
 | |
| static int probable_prime(BIGNUM *rnd, int bits, int safe, prime_t *mods);
 | |
| static int probable_prime_dh(BIGNUM *rnd, int bits, int safe, prime_t *mods,
 | |
|                              const BIGNUM *add, const BIGNUM *rem,
 | |
|                              BN_CTX *ctx);
 | |
| 
 | |
| #define square(x) ((BN_ULONG)(x) * (BN_ULONG)(x))
 | |
| 
 | |
| int BN_GENCB_call(BN_GENCB *cb, int a, int b)
 | |
| {
 | |
|     /* No callback means continue */
 | |
|     if (!cb)
 | |
|         return 1;
 | |
|     switch (cb->ver) {
 | |
|     case 1:
 | |
|         /* Deprecated-style callbacks */
 | |
|         if (!cb->cb.cb_1)
 | |
|             return 1;
 | |
|         cb->cb.cb_1(a, b, cb->arg);
 | |
|         return 1;
 | |
|     case 2:
 | |
|         /* New-style callbacks */
 | |
|         return cb->cb.cb_2(a, b, cb);
 | |
|     default:
 | |
|         break;
 | |
|     }
 | |
|     /* Unrecognised callback type */
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| int BN_generate_prime_ex(BIGNUM *ret, int bits, int safe,
 | |
|                          const BIGNUM *add, const BIGNUM *rem, BN_GENCB *cb)
 | |
| {
 | |
|     BIGNUM *t;
 | |
|     int found = 0;
 | |
|     int i, j, c1 = 0;
 | |
|     BN_CTX *ctx = NULL;
 | |
|     prime_t *mods = NULL;
 | |
|     int checks = BN_prime_checks_for_size(bits);
 | |
| 
 | |
|     if (bits < 2) {
 | |
|         /* There are no prime numbers this small. */
 | |
|         BNerr(BN_F_BN_GENERATE_PRIME_EX, BN_R_BITS_TOO_SMALL);
 | |
|         return 0;
 | |
|     } else if (add == NULL && safe && bits < 6 && bits != 3) {
 | |
|         /*
 | |
|          * The smallest safe prime (7) is three bits.
 | |
|          * But the following two safe primes with less than 6 bits (11, 23)
 | |
|          * are unreachable for BN_rand with BN_RAND_TOP_TWO.
 | |
|          */
 | |
|         BNerr(BN_F_BN_GENERATE_PRIME_EX, BN_R_BITS_TOO_SMALL);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     mods = OPENSSL_zalloc(sizeof(*mods) * NUMPRIMES);
 | |
|     if (mods == NULL)
 | |
|         goto err;
 | |
| 
 | |
|     ctx = BN_CTX_new();
 | |
|     if (ctx == NULL)
 | |
|         goto err;
 | |
|     BN_CTX_start(ctx);
 | |
|     t = BN_CTX_get(ctx);
 | |
|     if (t == NULL)
 | |
|         goto err;
 | |
|  loop:
 | |
|     /* make a random number and set the top and bottom bits */
 | |
|     if (add == NULL) {
 | |
|         if (!probable_prime(ret, bits, safe, mods))
 | |
|             goto err;
 | |
|     } else {
 | |
|         if (!probable_prime_dh(ret, bits, safe, mods, add, rem, ctx))
 | |
|             goto err;
 | |
|     }
 | |
| 
 | |
|     if (!BN_GENCB_call(cb, 0, c1++))
 | |
|         /* aborted */
 | |
|         goto err;
 | |
| 
 | |
|     if (!safe) {
 | |
|         i = BN_is_prime_fasttest_ex(ret, checks, ctx, 0, cb);
 | |
|         if (i == -1)
 | |
|             goto err;
 | |
|         if (i == 0)
 | |
|             goto loop;
 | |
|     } else {
 | |
|         /*
 | |
|          * for "safe prime" generation, check that (p-1)/2 is prime. Since a
 | |
|          * prime is odd, We just need to divide by 2
 | |
|          */
 | |
|         if (!BN_rshift1(t, ret))
 | |
|             goto err;
 | |
| 
 | |
|         for (i = 0; i < checks; i++) {
 | |
|             j = BN_is_prime_fasttest_ex(ret, 1, ctx, 0, cb);
 | |
|             if (j == -1)
 | |
|                 goto err;
 | |
|             if (j == 0)
 | |
|                 goto loop;
 | |
| 
 | |
|             j = BN_is_prime_fasttest_ex(t, 1, ctx, 0, cb);
 | |
|             if (j == -1)
 | |
|                 goto err;
 | |
|             if (j == 0)
 | |
|                 goto loop;
 | |
| 
 | |
|             if (!BN_GENCB_call(cb, 2, c1 - 1))
 | |
|                 goto err;
 | |
|             /* We have a safe prime test pass */
 | |
|         }
 | |
|     }
 | |
|     /* we have a prime :-) */
 | |
|     found = 1;
 | |
|  err:
 | |
|     OPENSSL_free(mods);
 | |
|     BN_CTX_end(ctx);
 | |
|     BN_CTX_free(ctx);
 | |
|     bn_check_top(ret);
 | |
|     return found;
 | |
| }
 | |
| 
 | |
| int BN_is_prime_ex(const BIGNUM *a, int checks, BN_CTX *ctx_passed,
 | |
|                    BN_GENCB *cb)
 | |
| {
 | |
|     return BN_is_prime_fasttest_ex(a, checks, ctx_passed, 0, cb);
 | |
| }
 | |
| 
 | |
| int BN_is_prime_fasttest_ex(const BIGNUM *a, int checks, BN_CTX *ctx_passed,
 | |
|                             int do_trial_division, BN_GENCB *cb)
 | |
| {
 | |
|     int i, j, ret = -1;
 | |
|     int k;
 | |
|     BN_CTX *ctx = NULL;
 | |
|     BIGNUM *A1, *A1_odd, *A3, *check; /* taken from ctx */
 | |
|     BN_MONT_CTX *mont = NULL;
 | |
| 
 | |
|     /* Take care of the really small primes 2 & 3 */
 | |
|     if (BN_is_word(a, 2) || BN_is_word(a, 3))
 | |
|         return 1;
 | |
| 
 | |
|     /* Check odd and bigger than 1 */
 | |
|     if (!BN_is_odd(a) || BN_cmp(a, BN_value_one()) <= 0)
 | |
|         return 0;
 | |
| 
 | |
|     if (checks == BN_prime_checks)
 | |
|         checks = BN_prime_checks_for_size(BN_num_bits(a));
 | |
| 
 | |
|     /* first look for small factors */
 | |
|     if (do_trial_division) {
 | |
|         for (i = 1; i < NUMPRIMES; i++) {
 | |
|             BN_ULONG mod = BN_mod_word(a, primes[i]);
 | |
|             if (mod == (BN_ULONG)-1)
 | |
|                 goto err;
 | |
|             if (mod == 0)
 | |
|                 return BN_is_word(a, primes[i]);
 | |
|         }
 | |
|         if (!BN_GENCB_call(cb, 1, -1))
 | |
|             goto err;
 | |
|     }
 | |
| 
 | |
|     if (ctx_passed != NULL)
 | |
|         ctx = ctx_passed;
 | |
|     else if ((ctx = BN_CTX_new()) == NULL)
 | |
|         goto err;
 | |
|     BN_CTX_start(ctx);
 | |
| 
 | |
|     A1 = BN_CTX_get(ctx);
 | |
|     A3 = BN_CTX_get(ctx);
 | |
|     A1_odd = BN_CTX_get(ctx);
 | |
|     check = BN_CTX_get(ctx);
 | |
|     if (check == NULL)
 | |
|         goto err;
 | |
| 
 | |
|     /* compute A1 := a - 1 */
 | |
|     if (!BN_copy(A1, a) || !BN_sub_word(A1, 1))
 | |
|         goto err;
 | |
|     /* compute A3 := a - 3 */
 | |
|     if (!BN_copy(A3, a) || !BN_sub_word(A3, 3))
 | |
|         goto err;
 | |
| 
 | |
|     /* write  A1  as  A1_odd * 2^k */
 | |
|     k = 1;
 | |
|     while (!BN_is_bit_set(A1, k))
 | |
|         k++;
 | |
|     if (!BN_rshift(A1_odd, A1, k))
 | |
|         goto err;
 | |
| 
 | |
|     /* Montgomery setup for computations mod a */
 | |
|     mont = BN_MONT_CTX_new();
 | |
|     if (mont == NULL)
 | |
|         goto err;
 | |
|     if (!BN_MONT_CTX_set(mont, a, ctx))
 | |
|         goto err;
 | |
| 
 | |
|     for (i = 0; i < checks; i++) {
 | |
|         /* 1 < check < a-1 */
 | |
|         if (!BN_priv_rand_range(check, A3) || !BN_add_word(check, 2))
 | |
|             goto err;
 | |
| 
 | |
|         j = witness(check, a, A1, A1_odd, k, ctx, mont);
 | |
|         if (j == -1)
 | |
|             goto err;
 | |
|         if (j) {
 | |
|             ret = 0;
 | |
|             goto err;
 | |
|         }
 | |
|         if (!BN_GENCB_call(cb, 1, i))
 | |
|             goto err;
 | |
|     }
 | |
|     ret = 1;
 | |
|  err:
 | |
|     if (ctx != NULL) {
 | |
|         BN_CTX_end(ctx);
 | |
|         if (ctx_passed == NULL)
 | |
|             BN_CTX_free(ctx);
 | |
|     }
 | |
|     BN_MONT_CTX_free(mont);
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static int witness(BIGNUM *w, const BIGNUM *a, const BIGNUM *a1,
 | |
|                    const BIGNUM *a1_odd, int k, BN_CTX *ctx,
 | |
|                    BN_MONT_CTX *mont)
 | |
| {
 | |
|     if (!BN_mod_exp_mont(w, w, a1_odd, a, ctx, mont)) /* w := w^a1_odd mod a */
 | |
|         return -1;
 | |
|     if (BN_is_one(w))
 | |
|         return 0;               /* probably prime */
 | |
|     if (BN_cmp(w, a1) == 0)
 | |
|         return 0;               /* w == -1 (mod a), 'a' is probably prime */
 | |
|     while (--k) {
 | |
|         if (!BN_mod_mul(w, w, w, a, ctx)) /* w := w^2 mod a */
 | |
|             return -1;
 | |
|         if (BN_is_one(w))
 | |
|             return 1;           /* 'a' is composite, otherwise a previous 'w'
 | |
|                                  * would have been == -1 (mod 'a') */
 | |
|         if (BN_cmp(w, a1) == 0)
 | |
|             return 0;           /* w == -1 (mod a), 'a' is probably prime */
 | |
|     }
 | |
|     /*
 | |
|      * If we get here, 'w' is the (a-1)/2-th power of the original 'w', and
 | |
|      * it is neither -1 nor +1 -- so 'a' cannot be prime
 | |
|      */
 | |
|     bn_check_top(w);
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| static int probable_prime(BIGNUM *rnd, int bits, int safe, prime_t *mods)
 | |
| {
 | |
|     int i;
 | |
|     BN_ULONG delta;
 | |
|     BN_ULONG maxdelta = BN_MASK2 - primes[NUMPRIMES - 1];
 | |
| 
 | |
|  again:
 | |
|     /* TODO: Not all primes are private */
 | |
|     if (!BN_priv_rand(rnd, bits, BN_RAND_TOP_TWO, BN_RAND_BOTTOM_ODD))
 | |
|         return 0;
 | |
|     if (safe && !BN_set_bit(rnd, 1))
 | |
|         return 0;
 | |
|     /* we now have a random number 'rnd' to test. */
 | |
|     for (i = 1; i < NUMPRIMES; i++) {
 | |
|         BN_ULONG mod = BN_mod_word(rnd, (BN_ULONG)primes[i]);
 | |
|         if (mod == (BN_ULONG)-1)
 | |
|             return 0;
 | |
|         mods[i] = (prime_t) mod;
 | |
|     }
 | |
|     delta = 0;
 | |
|  loop:
 | |
|     for (i = 1; i < NUMPRIMES; i++) {
 | |
|         /*
 | |
|          * check that rnd is a prime and also that
 | |
|          * gcd(rnd-1,primes) == 1 (except for 2)
 | |
|          * do the second check only if we are interested in safe primes
 | |
|          * in the case that the candidate prime is a single word then
 | |
|          * we check only the primes up to sqrt(rnd)
 | |
|          */
 | |
|         if (bits <= 31 && delta <= 0x7fffffff
 | |
|                 && square(primes[i]) > BN_get_word(rnd) + delta)
 | |
|             break;
 | |
|         if (safe ? (mods[i] + delta) % primes[i] <= 1
 | |
|                  : (mods[i] + delta) % primes[i] == 0) {
 | |
|             delta += safe ? 4 : 2;
 | |
|             if (delta > maxdelta)
 | |
|                 goto again;
 | |
|             goto loop;
 | |
|         }
 | |
|     }
 | |
|     if (!BN_add_word(rnd, delta))
 | |
|         return 0;
 | |
|     if (BN_num_bits(rnd) != bits)
 | |
|         goto again;
 | |
|     bn_check_top(rnd);
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| static int probable_prime_dh(BIGNUM *rnd, int bits, int safe, prime_t *mods,
 | |
|                              const BIGNUM *add, const BIGNUM *rem,
 | |
|                              BN_CTX *ctx)
 | |
| {
 | |
|     int i, ret = 0;
 | |
|     BIGNUM *t1;
 | |
|     BN_ULONG delta;
 | |
|     BN_ULONG maxdelta = BN_MASK2 - primes[NUMPRIMES - 1];
 | |
| 
 | |
|     BN_CTX_start(ctx);
 | |
|     if ((t1 = BN_CTX_get(ctx)) == NULL)
 | |
|         goto err;
 | |
| 
 | |
|     if (maxdelta > BN_MASK2 - BN_get_word(add))
 | |
|         maxdelta = BN_MASK2 - BN_get_word(add);
 | |
| 
 | |
|  again:
 | |
|     if (!BN_rand(rnd, bits, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ODD))
 | |
|         goto err;
 | |
| 
 | |
|     /* we need ((rnd-rem) % add) == 0 */
 | |
| 
 | |
|     if (!BN_mod(t1, rnd, add, ctx))
 | |
|         goto err;
 | |
|     if (!BN_sub(rnd, rnd, t1))
 | |
|         goto err;
 | |
|     if (rem == NULL) {
 | |
|         if (!BN_add_word(rnd, safe ? 3u : 1u))
 | |
|             goto err;
 | |
|     } else {
 | |
|         if (!BN_add(rnd, rnd, rem))
 | |
|             goto err;
 | |
|     }
 | |
| 
 | |
|     if (BN_num_bits(rnd) < bits
 | |
|             || BN_get_word(rnd) < (safe ? 5u : 3u)) {
 | |
|         if (!BN_add(rnd, rnd, add))
 | |
|             goto err;
 | |
|     }
 | |
| 
 | |
|     /* we now have a random number 'rnd' to test. */
 | |
|     for (i = 1; i < NUMPRIMES; i++) {
 | |
|         BN_ULONG mod = BN_mod_word(rnd, (BN_ULONG)primes[i]);
 | |
|         if (mod == (BN_ULONG)-1)
 | |
|             goto err;
 | |
|         mods[i] = (prime_t) mod;
 | |
|     }
 | |
|     delta = 0;
 | |
|  loop:
 | |
|     for (i = 1; i < NUMPRIMES; i++) {
 | |
|         /* check that rnd is a prime */
 | |
|         if (bits <= 31 && delta <= 0x7fffffff
 | |
|                 && square(primes[i]) > BN_get_word(rnd) + delta)
 | |
|             break;
 | |
|         /* rnd mod p == 1 implies q = (rnd-1)/2 is divisible by p */
 | |
|         if (safe ? (mods[i] + delta) % primes[i] <= 1
 | |
|                  : (mods[i] + delta) % primes[i] == 0) {
 | |
|             delta += BN_get_word(add);
 | |
|             if (delta > maxdelta)
 | |
|                 goto again;
 | |
|             goto loop;
 | |
|         }
 | |
|     }
 | |
|     if (!BN_add_word(rnd, delta))
 | |
|         goto err;
 | |
|     ret = 1;
 | |
| 
 | |
|  err:
 | |
|     BN_CTX_end(ctx);
 | |
|     bn_check_top(rnd);
 | |
|     return ret;
 | |
| }
 |