mirror of
				https://github.com/ossrs/srs.git
				synced 2025-03-09 15:49:59 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			239 lines
		
	
	
	
		
			5.4 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			239 lines
		
	
	
	
		
			5.4 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved.
 | |
|  *
 | |
|  * Licensed under the OpenSSL license (the "License").  You may not use
 | |
|  * this file except in compliance with the License.  You can obtain a copy
 | |
|  * in the file LICENSE in the source distribution or at
 | |
|  * https://www.openssl.org/source/license.html
 | |
|  */
 | |
| 
 | |
| #include "internal/cryptlib.h"
 | |
| #include "bn_lcl.h"
 | |
| 
 | |
| /* r must not be a */
 | |
| /*
 | |
|  * I've just gone over this and it is now %20 faster on x86 - eay - 27 Jun 96
 | |
|  */
 | |
| int BN_sqr(BIGNUM *r, const BIGNUM *a, BN_CTX *ctx)
 | |
| {
 | |
|     int ret = bn_sqr_fixed_top(r, a, ctx);
 | |
| 
 | |
|     bn_correct_top(r);
 | |
|     bn_check_top(r);
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| int bn_sqr_fixed_top(BIGNUM *r, const BIGNUM *a, BN_CTX *ctx)
 | |
| {
 | |
|     int max, al;
 | |
|     int ret = 0;
 | |
|     BIGNUM *tmp, *rr;
 | |
| 
 | |
|     bn_check_top(a);
 | |
| 
 | |
|     al = a->top;
 | |
|     if (al <= 0) {
 | |
|         r->top = 0;
 | |
|         r->neg = 0;
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     BN_CTX_start(ctx);
 | |
|     rr = (a != r) ? r : BN_CTX_get(ctx);
 | |
|     tmp = BN_CTX_get(ctx);
 | |
|     if (rr == NULL || tmp == NULL)
 | |
|         goto err;
 | |
| 
 | |
|     max = 2 * al;               /* Non-zero (from above) */
 | |
|     if (bn_wexpand(rr, max) == NULL)
 | |
|         goto err;
 | |
| 
 | |
|     if (al == 4) {
 | |
| #ifndef BN_SQR_COMBA
 | |
|         BN_ULONG t[8];
 | |
|         bn_sqr_normal(rr->d, a->d, 4, t);
 | |
| #else
 | |
|         bn_sqr_comba4(rr->d, a->d);
 | |
| #endif
 | |
|     } else if (al == 8) {
 | |
| #ifndef BN_SQR_COMBA
 | |
|         BN_ULONG t[16];
 | |
|         bn_sqr_normal(rr->d, a->d, 8, t);
 | |
| #else
 | |
|         bn_sqr_comba8(rr->d, a->d);
 | |
| #endif
 | |
|     } else {
 | |
| #if defined(BN_RECURSION)
 | |
|         if (al < BN_SQR_RECURSIVE_SIZE_NORMAL) {
 | |
|             BN_ULONG t[BN_SQR_RECURSIVE_SIZE_NORMAL * 2];
 | |
|             bn_sqr_normal(rr->d, a->d, al, t);
 | |
|         } else {
 | |
|             int j, k;
 | |
| 
 | |
|             j = BN_num_bits_word((BN_ULONG)al);
 | |
|             j = 1 << (j - 1);
 | |
|             k = j + j;
 | |
|             if (al == j) {
 | |
|                 if (bn_wexpand(tmp, k * 2) == NULL)
 | |
|                     goto err;
 | |
|                 bn_sqr_recursive(rr->d, a->d, al, tmp->d);
 | |
|             } else {
 | |
|                 if (bn_wexpand(tmp, max) == NULL)
 | |
|                     goto err;
 | |
|                 bn_sqr_normal(rr->d, a->d, al, tmp->d);
 | |
|             }
 | |
|         }
 | |
| #else
 | |
|         if (bn_wexpand(tmp, max) == NULL)
 | |
|             goto err;
 | |
|         bn_sqr_normal(rr->d, a->d, al, tmp->d);
 | |
| #endif
 | |
|     }
 | |
| 
 | |
|     rr->neg = 0;
 | |
|     rr->top = max;
 | |
|     rr->flags |= BN_FLG_FIXED_TOP;
 | |
|     if (r != rr && BN_copy(r, rr) == NULL)
 | |
|         goto err;
 | |
| 
 | |
|     ret = 1;
 | |
|  err:
 | |
|     bn_check_top(rr);
 | |
|     bn_check_top(tmp);
 | |
|     BN_CTX_end(ctx);
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /* tmp must have 2*n words */
 | |
| void bn_sqr_normal(BN_ULONG *r, const BN_ULONG *a, int n, BN_ULONG *tmp)
 | |
| {
 | |
|     int i, j, max;
 | |
|     const BN_ULONG *ap;
 | |
|     BN_ULONG *rp;
 | |
| 
 | |
|     max = n * 2;
 | |
|     ap = a;
 | |
|     rp = r;
 | |
|     rp[0] = rp[max - 1] = 0;
 | |
|     rp++;
 | |
|     j = n;
 | |
| 
 | |
|     if (--j > 0) {
 | |
|         ap++;
 | |
|         rp[j] = bn_mul_words(rp, ap, j, ap[-1]);
 | |
|         rp += 2;
 | |
|     }
 | |
| 
 | |
|     for (i = n - 2; i > 0; i--) {
 | |
|         j--;
 | |
|         ap++;
 | |
|         rp[j] = bn_mul_add_words(rp, ap, j, ap[-1]);
 | |
|         rp += 2;
 | |
|     }
 | |
| 
 | |
|     bn_add_words(r, r, r, max);
 | |
| 
 | |
|     /* There will not be a carry */
 | |
| 
 | |
|     bn_sqr_words(tmp, a, n);
 | |
| 
 | |
|     bn_add_words(r, r, tmp, max);
 | |
| }
 | |
| 
 | |
| #ifdef BN_RECURSION
 | |
| /*-
 | |
|  * r is 2*n words in size,
 | |
|  * a and b are both n words in size.    (There's not actually a 'b' here ...)
 | |
|  * n must be a power of 2.
 | |
|  * We multiply and return the result.
 | |
|  * t must be 2*n words in size
 | |
|  * We calculate
 | |
|  * a[0]*b[0]
 | |
|  * a[0]*b[0]+a[1]*b[1]+(a[0]-a[1])*(b[1]-b[0])
 | |
|  * a[1]*b[1]
 | |
|  */
 | |
| void bn_sqr_recursive(BN_ULONG *r, const BN_ULONG *a, int n2, BN_ULONG *t)
 | |
| {
 | |
|     int n = n2 / 2;
 | |
|     int zero, c1;
 | |
|     BN_ULONG ln, lo, *p;
 | |
| 
 | |
|     if (n2 == 4) {
 | |
| # ifndef BN_SQR_COMBA
 | |
|         bn_sqr_normal(r, a, 4, t);
 | |
| # else
 | |
|         bn_sqr_comba4(r, a);
 | |
| # endif
 | |
|         return;
 | |
|     } else if (n2 == 8) {
 | |
| # ifndef BN_SQR_COMBA
 | |
|         bn_sqr_normal(r, a, 8, t);
 | |
| # else
 | |
|         bn_sqr_comba8(r, a);
 | |
| # endif
 | |
|         return;
 | |
|     }
 | |
|     if (n2 < BN_SQR_RECURSIVE_SIZE_NORMAL) {
 | |
|         bn_sqr_normal(r, a, n2, t);
 | |
|         return;
 | |
|     }
 | |
|     /* r=(a[0]-a[1])*(a[1]-a[0]) */
 | |
|     c1 = bn_cmp_words(a, &(a[n]), n);
 | |
|     zero = 0;
 | |
|     if (c1 > 0)
 | |
|         bn_sub_words(t, a, &(a[n]), n);
 | |
|     else if (c1 < 0)
 | |
|         bn_sub_words(t, &(a[n]), a, n);
 | |
|     else
 | |
|         zero = 1;
 | |
| 
 | |
|     /* The result will always be negative unless it is zero */
 | |
|     p = &(t[n2 * 2]);
 | |
| 
 | |
|     if (!zero)
 | |
|         bn_sqr_recursive(&(t[n2]), t, n, p);
 | |
|     else
 | |
|         memset(&t[n2], 0, sizeof(*t) * n2);
 | |
|     bn_sqr_recursive(r, a, n, p);
 | |
|     bn_sqr_recursive(&(r[n2]), &(a[n]), n, p);
 | |
| 
 | |
|     /*-
 | |
|      * t[32] holds (a[0]-a[1])*(a[1]-a[0]), it is negative or zero
 | |
|      * r[10] holds (a[0]*b[0])
 | |
|      * r[32] holds (b[1]*b[1])
 | |
|      */
 | |
| 
 | |
|     c1 = (int)(bn_add_words(t, r, &(r[n2]), n2));
 | |
| 
 | |
|     /* t[32] is negative */
 | |
|     c1 -= (int)(bn_sub_words(&(t[n2]), t, &(t[n2]), n2));
 | |
| 
 | |
|     /*-
 | |
|      * t[32] holds (a[0]-a[1])*(a[1]-a[0])+(a[0]*a[0])+(a[1]*a[1])
 | |
|      * r[10] holds (a[0]*a[0])
 | |
|      * r[32] holds (a[1]*a[1])
 | |
|      * c1 holds the carry bits
 | |
|      */
 | |
|     c1 += (int)(bn_add_words(&(r[n]), &(r[n]), &(t[n2]), n2));
 | |
|     if (c1) {
 | |
|         p = &(r[n + n2]);
 | |
|         lo = *p;
 | |
|         ln = (lo + c1) & BN_MASK2;
 | |
|         *p = ln;
 | |
| 
 | |
|         /*
 | |
|          * The overflow will stop before we over write words we should not
 | |
|          * overwrite
 | |
|          */
 | |
|         if (ln < (BN_ULONG)c1) {
 | |
|             do {
 | |
|                 p++;
 | |
|                 lo = *p;
 | |
|                 ln = (lo + 1) & BN_MASK2;
 | |
|                 *p = ln;
 | |
|             } while (ln == 0);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| #endif
 |