mirror of
				https://github.com/ossrs/srs.git
				synced 2025-03-09 15:49:59 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			200 lines
		
	
	
	
		
			5.5 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			200 lines
		
	
	
	
		
			5.5 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright 2001-2018 The OpenSSL Project Authors. All Rights Reserved.
 | |
|  *
 | |
|  * Licensed under the OpenSSL license (the "License").  You may not use
 | |
|  * this file except in compliance with the License.  You can obtain a copy
 | |
|  * in the file LICENSE in the source distribution or at
 | |
|  * https://www.openssl.org/source/license.html
 | |
|  */
 | |
| 
 | |
| #include <openssl/e_os2.h>
 | |
| #include <string.h>
 | |
| #include <openssl/crypto.h>
 | |
| 
 | |
| struct tm *OPENSSL_gmtime(const time_t *timer, struct tm *result)
 | |
| {
 | |
|     struct tm *ts = NULL;
 | |
| 
 | |
| #if defined(OPENSSL_THREADS) && defined(OPENSSL_SYS_VMS)
 | |
|     {
 | |
|         /*
 | |
|          * On VMS, gmtime_r() takes a 32-bit pointer as second argument.
 | |
|          * Since we can't know that |result| is in a space that can easily
 | |
|          * translate to a 32-bit pointer, we must store temporarily on stack
 | |
|          * and copy the result.  The stack is always reachable with 32-bit
 | |
|          * pointers.
 | |
|          */
 | |
| #if defined(OPENSSL_SYS_VMS) && __INITIAL_POINTER_SIZE
 | |
| # pragma pointer_size save
 | |
| # pragma pointer_size 32
 | |
| #endif
 | |
|         struct tm data, *ts2 = &data;
 | |
| #if defined OPENSSL_SYS_VMS && __INITIAL_POINTER_SIZE
 | |
| # pragma pointer_size restore
 | |
| #endif
 | |
|         if (gmtime_r(timer, ts2) == NULL)
 | |
|             return NULL;
 | |
|         memcpy(result, ts2, sizeof(struct tm));
 | |
|         ts = result;
 | |
|     }
 | |
| #elif defined(OPENSSL_THREADS) && !defined(OPENSSL_SYS_WIN32) && !defined(OPENSSL_SYS_MACOSX)
 | |
|     if (gmtime_r(timer, result) == NULL)
 | |
|         return NULL;
 | |
|     ts = result;
 | |
| #elif defined (OPENSSL_SYS_WINDOWS) && defined(_MSC_VER) && _MSC_VER >= 1400
 | |
|     if (gmtime_s(result, timer))
 | |
|         return NULL;
 | |
|     ts = result;
 | |
| #else
 | |
|     ts = gmtime(timer);
 | |
|     if (ts == NULL)
 | |
|         return NULL;
 | |
| 
 | |
|     memcpy(result, ts, sizeof(struct tm));
 | |
|     ts = result;
 | |
| #endif
 | |
|     return ts;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Take a tm structure and add an offset to it. This avoids any OS issues
 | |
|  * with restricted date types and overflows which cause the year 2038
 | |
|  * problem.
 | |
|  */
 | |
| 
 | |
| #define SECS_PER_DAY (24 * 60 * 60)
 | |
| 
 | |
| static long date_to_julian(int y, int m, int d);
 | |
| static void julian_to_date(long jd, int *y, int *m, int *d);
 | |
| static int julian_adj(const struct tm *tm, int off_day, long offset_sec,
 | |
|                       long *pday, int *psec);
 | |
| 
 | |
| int OPENSSL_gmtime_adj(struct tm *tm, int off_day, long offset_sec)
 | |
| {
 | |
|     int time_sec, time_year, time_month, time_day;
 | |
|     long time_jd;
 | |
| 
 | |
|     /* Convert time and offset into Julian day and seconds */
 | |
|     if (!julian_adj(tm, off_day, offset_sec, &time_jd, &time_sec))
 | |
|         return 0;
 | |
| 
 | |
|     /* Convert Julian day back to date */
 | |
| 
 | |
|     julian_to_date(time_jd, &time_year, &time_month, &time_day);
 | |
| 
 | |
|     if (time_year < 1900 || time_year > 9999)
 | |
|         return 0;
 | |
| 
 | |
|     /* Update tm structure */
 | |
| 
 | |
|     tm->tm_year = time_year - 1900;
 | |
|     tm->tm_mon = time_month - 1;
 | |
|     tm->tm_mday = time_day;
 | |
| 
 | |
|     tm->tm_hour = time_sec / 3600;
 | |
|     tm->tm_min = (time_sec / 60) % 60;
 | |
|     tm->tm_sec = time_sec % 60;
 | |
| 
 | |
|     return 1;
 | |
| 
 | |
| }
 | |
| 
 | |
| int OPENSSL_gmtime_diff(int *pday, int *psec,
 | |
|                         const struct tm *from, const struct tm *to)
 | |
| {
 | |
|     int from_sec, to_sec, diff_sec;
 | |
|     long from_jd, to_jd, diff_day;
 | |
|     if (!julian_adj(from, 0, 0, &from_jd, &from_sec))
 | |
|         return 0;
 | |
|     if (!julian_adj(to, 0, 0, &to_jd, &to_sec))
 | |
|         return 0;
 | |
|     diff_day = to_jd - from_jd;
 | |
|     diff_sec = to_sec - from_sec;
 | |
|     /* Adjust differences so both positive or both negative */
 | |
|     if (diff_day > 0 && diff_sec < 0) {
 | |
|         diff_day--;
 | |
|         diff_sec += SECS_PER_DAY;
 | |
|     }
 | |
|     if (diff_day < 0 && diff_sec > 0) {
 | |
|         diff_day++;
 | |
|         diff_sec -= SECS_PER_DAY;
 | |
|     }
 | |
| 
 | |
|     if (pday)
 | |
|         *pday = (int)diff_day;
 | |
|     if (psec)
 | |
|         *psec = diff_sec;
 | |
| 
 | |
|     return 1;
 | |
| 
 | |
| }
 | |
| 
 | |
| /* Convert tm structure and offset into julian day and seconds */
 | |
| static int julian_adj(const struct tm *tm, int off_day, long offset_sec,
 | |
|                       long *pday, int *psec)
 | |
| {
 | |
|     int offset_hms, offset_day;
 | |
|     long time_jd;
 | |
|     int time_year, time_month, time_day;
 | |
|     /* split offset into days and day seconds */
 | |
|     offset_day = offset_sec / SECS_PER_DAY;
 | |
|     /* Avoid sign issues with % operator */
 | |
|     offset_hms = offset_sec - (offset_day * SECS_PER_DAY);
 | |
|     offset_day += off_day;
 | |
|     /* Add current time seconds to offset */
 | |
|     offset_hms += tm->tm_hour * 3600 + tm->tm_min * 60 + tm->tm_sec;
 | |
|     /* Adjust day seconds if overflow */
 | |
|     if (offset_hms >= SECS_PER_DAY) {
 | |
|         offset_day++;
 | |
|         offset_hms -= SECS_PER_DAY;
 | |
|     } else if (offset_hms < 0) {
 | |
|         offset_day--;
 | |
|         offset_hms += SECS_PER_DAY;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Convert date of time structure into a Julian day number.
 | |
|      */
 | |
| 
 | |
|     time_year = tm->tm_year + 1900;
 | |
|     time_month = tm->tm_mon + 1;
 | |
|     time_day = tm->tm_mday;
 | |
| 
 | |
|     time_jd = date_to_julian(time_year, time_month, time_day);
 | |
| 
 | |
|     /* Work out Julian day of new date */
 | |
|     time_jd += offset_day;
 | |
| 
 | |
|     if (time_jd < 0)
 | |
|         return 0;
 | |
| 
 | |
|     *pday = time_jd;
 | |
|     *psec = offset_hms;
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Convert date to and from julian day Uses Fliegel & Van Flandern algorithm
 | |
|  */
 | |
| static long date_to_julian(int y, int m, int d)
 | |
| {
 | |
|     return (1461 * (y + 4800 + (m - 14) / 12)) / 4 +
 | |
|         (367 * (m - 2 - 12 * ((m - 14) / 12))) / 12 -
 | |
|         (3 * ((y + 4900 + (m - 14) / 12) / 100)) / 4 + d - 32075;
 | |
| }
 | |
| 
 | |
| static void julian_to_date(long jd, int *y, int *m, int *d)
 | |
| {
 | |
|     long L = jd + 68569;
 | |
|     long n = (4 * L) / 146097;
 | |
|     long i, j;
 | |
| 
 | |
|     L = L - (146097 * n + 3) / 4;
 | |
|     i = (4000 * (L + 1)) / 1461001;
 | |
|     L = L - (1461 * i) / 4 + 31;
 | |
|     j = (80 * L) / 2447;
 | |
|     *d = L - (2447 * j) / 80;
 | |
|     L = j / 11;
 | |
|     *m = j + 2 - (12 * L);
 | |
|     *y = 100 * (n - 49) + i + L;
 | |
| }
 |