mirror of
				https://github.com/ossrs/srs.git
				synced 2025-03-09 15:49:59 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			969 lines
		
	
	
	
		
			27 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			969 lines
		
	
	
	
		
			27 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright 2002-2019 The OpenSSL Project Authors. All Rights Reserved.
 | |
|  * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
 | |
|  *
 | |
|  * Licensed under the OpenSSL license (the "License").  You may not use
 | |
|  * this file except in compliance with the License.  You can obtain a copy
 | |
|  * in the file LICENSE in the source distribution or at
 | |
|  * https://www.openssl.org/source/license.html
 | |
|  */
 | |
| 
 | |
| #include <openssl/err.h>
 | |
| 
 | |
| #include "crypto/bn.h"
 | |
| #include "ec_local.h"
 | |
| 
 | |
| #ifndef OPENSSL_NO_EC2M
 | |
| 
 | |
| /*
 | |
|  * Initialize a GF(2^m)-based EC_GROUP structure. Note that all other members
 | |
|  * are handled by EC_GROUP_new.
 | |
|  */
 | |
| int ec_GF2m_simple_group_init(EC_GROUP *group)
 | |
| {
 | |
|     group->field = BN_new();
 | |
|     group->a = BN_new();
 | |
|     group->b = BN_new();
 | |
| 
 | |
|     if (group->field == NULL || group->a == NULL || group->b == NULL) {
 | |
|         BN_free(group->field);
 | |
|         BN_free(group->a);
 | |
|         BN_free(group->b);
 | |
|         return 0;
 | |
|     }
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Free a GF(2^m)-based EC_GROUP structure. Note that all other members are
 | |
|  * handled by EC_GROUP_free.
 | |
|  */
 | |
| void ec_GF2m_simple_group_finish(EC_GROUP *group)
 | |
| {
 | |
|     BN_free(group->field);
 | |
|     BN_free(group->a);
 | |
|     BN_free(group->b);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Clear and free a GF(2^m)-based EC_GROUP structure. Note that all other
 | |
|  * members are handled by EC_GROUP_clear_free.
 | |
|  */
 | |
| void ec_GF2m_simple_group_clear_finish(EC_GROUP *group)
 | |
| {
 | |
|     BN_clear_free(group->field);
 | |
|     BN_clear_free(group->a);
 | |
|     BN_clear_free(group->b);
 | |
|     group->poly[0] = 0;
 | |
|     group->poly[1] = 0;
 | |
|     group->poly[2] = 0;
 | |
|     group->poly[3] = 0;
 | |
|     group->poly[4] = 0;
 | |
|     group->poly[5] = -1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Copy a GF(2^m)-based EC_GROUP structure. Note that all other members are
 | |
|  * handled by EC_GROUP_copy.
 | |
|  */
 | |
| int ec_GF2m_simple_group_copy(EC_GROUP *dest, const EC_GROUP *src)
 | |
| {
 | |
|     if (!BN_copy(dest->field, src->field))
 | |
|         return 0;
 | |
|     if (!BN_copy(dest->a, src->a))
 | |
|         return 0;
 | |
|     if (!BN_copy(dest->b, src->b))
 | |
|         return 0;
 | |
|     dest->poly[0] = src->poly[0];
 | |
|     dest->poly[1] = src->poly[1];
 | |
|     dest->poly[2] = src->poly[2];
 | |
|     dest->poly[3] = src->poly[3];
 | |
|     dest->poly[4] = src->poly[4];
 | |
|     dest->poly[5] = src->poly[5];
 | |
|     if (bn_wexpand(dest->a, (int)(dest->poly[0] + BN_BITS2 - 1) / BN_BITS2) ==
 | |
|         NULL)
 | |
|         return 0;
 | |
|     if (bn_wexpand(dest->b, (int)(dest->poly[0] + BN_BITS2 - 1) / BN_BITS2) ==
 | |
|         NULL)
 | |
|         return 0;
 | |
|     bn_set_all_zero(dest->a);
 | |
|     bn_set_all_zero(dest->b);
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /* Set the curve parameters of an EC_GROUP structure. */
 | |
| int ec_GF2m_simple_group_set_curve(EC_GROUP *group,
 | |
|                                    const BIGNUM *p, const BIGNUM *a,
 | |
|                                    const BIGNUM *b, BN_CTX *ctx)
 | |
| {
 | |
|     int ret = 0, i;
 | |
| 
 | |
|     /* group->field */
 | |
|     if (!BN_copy(group->field, p))
 | |
|         goto err;
 | |
|     i = BN_GF2m_poly2arr(group->field, group->poly, 6) - 1;
 | |
|     if ((i != 5) && (i != 3)) {
 | |
|         ECerr(EC_F_EC_GF2M_SIMPLE_GROUP_SET_CURVE, EC_R_UNSUPPORTED_FIELD);
 | |
|         goto err;
 | |
|     }
 | |
| 
 | |
|     /* group->a */
 | |
|     if (!BN_GF2m_mod_arr(group->a, a, group->poly))
 | |
|         goto err;
 | |
|     if (bn_wexpand(group->a, (int)(group->poly[0] + BN_BITS2 - 1) / BN_BITS2)
 | |
|         == NULL)
 | |
|         goto err;
 | |
|     bn_set_all_zero(group->a);
 | |
| 
 | |
|     /* group->b */
 | |
|     if (!BN_GF2m_mod_arr(group->b, b, group->poly))
 | |
|         goto err;
 | |
|     if (bn_wexpand(group->b, (int)(group->poly[0] + BN_BITS2 - 1) / BN_BITS2)
 | |
|         == NULL)
 | |
|         goto err;
 | |
|     bn_set_all_zero(group->b);
 | |
| 
 | |
|     ret = 1;
 | |
|  err:
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Get the curve parameters of an EC_GROUP structure. If p, a, or b are NULL
 | |
|  * then there values will not be set but the method will return with success.
 | |
|  */
 | |
| int ec_GF2m_simple_group_get_curve(const EC_GROUP *group, BIGNUM *p,
 | |
|                                    BIGNUM *a, BIGNUM *b, BN_CTX *ctx)
 | |
| {
 | |
|     int ret = 0;
 | |
| 
 | |
|     if (p != NULL) {
 | |
|         if (!BN_copy(p, group->field))
 | |
|             return 0;
 | |
|     }
 | |
| 
 | |
|     if (a != NULL) {
 | |
|         if (!BN_copy(a, group->a))
 | |
|             goto err;
 | |
|     }
 | |
| 
 | |
|     if (b != NULL) {
 | |
|         if (!BN_copy(b, group->b))
 | |
|             goto err;
 | |
|     }
 | |
| 
 | |
|     ret = 1;
 | |
| 
 | |
|  err:
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Gets the degree of the field.  For a curve over GF(2^m) this is the value
 | |
|  * m.
 | |
|  */
 | |
| int ec_GF2m_simple_group_get_degree(const EC_GROUP *group)
 | |
| {
 | |
|     return BN_num_bits(group->field) - 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Checks the discriminant of the curve. y^2 + x*y = x^3 + a*x^2 + b is an
 | |
|  * elliptic curve <=> b != 0 (mod p)
 | |
|  */
 | |
| int ec_GF2m_simple_group_check_discriminant(const EC_GROUP *group,
 | |
|                                             BN_CTX *ctx)
 | |
| {
 | |
|     int ret = 0;
 | |
|     BIGNUM *b;
 | |
|     BN_CTX *new_ctx = NULL;
 | |
| 
 | |
|     if (ctx == NULL) {
 | |
|         ctx = new_ctx = BN_CTX_new();
 | |
|         if (ctx == NULL) {
 | |
|             ECerr(EC_F_EC_GF2M_SIMPLE_GROUP_CHECK_DISCRIMINANT,
 | |
|                   ERR_R_MALLOC_FAILURE);
 | |
|             goto err;
 | |
|         }
 | |
|     }
 | |
|     BN_CTX_start(ctx);
 | |
|     b = BN_CTX_get(ctx);
 | |
|     if (b == NULL)
 | |
|         goto err;
 | |
| 
 | |
|     if (!BN_GF2m_mod_arr(b, group->b, group->poly))
 | |
|         goto err;
 | |
| 
 | |
|     /*
 | |
|      * check the discriminant: y^2 + x*y = x^3 + a*x^2 + b is an elliptic
 | |
|      * curve <=> b != 0 (mod p)
 | |
|      */
 | |
|     if (BN_is_zero(b))
 | |
|         goto err;
 | |
| 
 | |
|     ret = 1;
 | |
| 
 | |
|  err:
 | |
|     BN_CTX_end(ctx);
 | |
|     BN_CTX_free(new_ctx);
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /* Initializes an EC_POINT. */
 | |
| int ec_GF2m_simple_point_init(EC_POINT *point)
 | |
| {
 | |
|     point->X = BN_new();
 | |
|     point->Y = BN_new();
 | |
|     point->Z = BN_new();
 | |
| 
 | |
|     if (point->X == NULL || point->Y == NULL || point->Z == NULL) {
 | |
|         BN_free(point->X);
 | |
|         BN_free(point->Y);
 | |
|         BN_free(point->Z);
 | |
|         return 0;
 | |
|     }
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /* Frees an EC_POINT. */
 | |
| void ec_GF2m_simple_point_finish(EC_POINT *point)
 | |
| {
 | |
|     BN_free(point->X);
 | |
|     BN_free(point->Y);
 | |
|     BN_free(point->Z);
 | |
| }
 | |
| 
 | |
| /* Clears and frees an EC_POINT. */
 | |
| void ec_GF2m_simple_point_clear_finish(EC_POINT *point)
 | |
| {
 | |
|     BN_clear_free(point->X);
 | |
|     BN_clear_free(point->Y);
 | |
|     BN_clear_free(point->Z);
 | |
|     point->Z_is_one = 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Copy the contents of one EC_POINT into another.  Assumes dest is
 | |
|  * initialized.
 | |
|  */
 | |
| int ec_GF2m_simple_point_copy(EC_POINT *dest, const EC_POINT *src)
 | |
| {
 | |
|     if (!BN_copy(dest->X, src->X))
 | |
|         return 0;
 | |
|     if (!BN_copy(dest->Y, src->Y))
 | |
|         return 0;
 | |
|     if (!BN_copy(dest->Z, src->Z))
 | |
|         return 0;
 | |
|     dest->Z_is_one = src->Z_is_one;
 | |
|     dest->curve_name = src->curve_name;
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Set an EC_POINT to the point at infinity. A point at infinity is
 | |
|  * represented by having Z=0.
 | |
|  */
 | |
| int ec_GF2m_simple_point_set_to_infinity(const EC_GROUP *group,
 | |
|                                          EC_POINT *point)
 | |
| {
 | |
|     point->Z_is_one = 0;
 | |
|     BN_zero(point->Z);
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Set the coordinates of an EC_POINT using affine coordinates. Note that
 | |
|  * the simple implementation only uses affine coordinates.
 | |
|  */
 | |
| int ec_GF2m_simple_point_set_affine_coordinates(const EC_GROUP *group,
 | |
|                                                 EC_POINT *point,
 | |
|                                                 const BIGNUM *x,
 | |
|                                                 const BIGNUM *y, BN_CTX *ctx)
 | |
| {
 | |
|     int ret = 0;
 | |
|     if (x == NULL || y == NULL) {
 | |
|         ECerr(EC_F_EC_GF2M_SIMPLE_POINT_SET_AFFINE_COORDINATES,
 | |
|               ERR_R_PASSED_NULL_PARAMETER);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     if (!BN_copy(point->X, x))
 | |
|         goto err;
 | |
|     BN_set_negative(point->X, 0);
 | |
|     if (!BN_copy(point->Y, y))
 | |
|         goto err;
 | |
|     BN_set_negative(point->Y, 0);
 | |
|     if (!BN_copy(point->Z, BN_value_one()))
 | |
|         goto err;
 | |
|     BN_set_negative(point->Z, 0);
 | |
|     point->Z_is_one = 1;
 | |
|     ret = 1;
 | |
| 
 | |
|  err:
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Gets the affine coordinates of an EC_POINT. Note that the simple
 | |
|  * implementation only uses affine coordinates.
 | |
|  */
 | |
| int ec_GF2m_simple_point_get_affine_coordinates(const EC_GROUP *group,
 | |
|                                                 const EC_POINT *point,
 | |
|                                                 BIGNUM *x, BIGNUM *y,
 | |
|                                                 BN_CTX *ctx)
 | |
| {
 | |
|     int ret = 0;
 | |
| 
 | |
|     if (EC_POINT_is_at_infinity(group, point)) {
 | |
|         ECerr(EC_F_EC_GF2M_SIMPLE_POINT_GET_AFFINE_COORDINATES,
 | |
|               EC_R_POINT_AT_INFINITY);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     if (BN_cmp(point->Z, BN_value_one())) {
 | |
|         ECerr(EC_F_EC_GF2M_SIMPLE_POINT_GET_AFFINE_COORDINATES,
 | |
|               ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
 | |
|         return 0;
 | |
|     }
 | |
|     if (x != NULL) {
 | |
|         if (!BN_copy(x, point->X))
 | |
|             goto err;
 | |
|         BN_set_negative(x, 0);
 | |
|     }
 | |
|     if (y != NULL) {
 | |
|         if (!BN_copy(y, point->Y))
 | |
|             goto err;
 | |
|         BN_set_negative(y, 0);
 | |
|     }
 | |
|     ret = 1;
 | |
| 
 | |
|  err:
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Computes a + b and stores the result in r.  r could be a or b, a could be
 | |
|  * b. Uses algorithm A.10.2 of IEEE P1363.
 | |
|  */
 | |
| int ec_GF2m_simple_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a,
 | |
|                        const EC_POINT *b, BN_CTX *ctx)
 | |
| {
 | |
|     BN_CTX *new_ctx = NULL;
 | |
|     BIGNUM *x0, *y0, *x1, *y1, *x2, *y2, *s, *t;
 | |
|     int ret = 0;
 | |
| 
 | |
|     if (EC_POINT_is_at_infinity(group, a)) {
 | |
|         if (!EC_POINT_copy(r, b))
 | |
|             return 0;
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     if (EC_POINT_is_at_infinity(group, b)) {
 | |
|         if (!EC_POINT_copy(r, a))
 | |
|             return 0;
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     if (ctx == NULL) {
 | |
|         ctx = new_ctx = BN_CTX_new();
 | |
|         if (ctx == NULL)
 | |
|             return 0;
 | |
|     }
 | |
| 
 | |
|     BN_CTX_start(ctx);
 | |
|     x0 = BN_CTX_get(ctx);
 | |
|     y0 = BN_CTX_get(ctx);
 | |
|     x1 = BN_CTX_get(ctx);
 | |
|     y1 = BN_CTX_get(ctx);
 | |
|     x2 = BN_CTX_get(ctx);
 | |
|     y2 = BN_CTX_get(ctx);
 | |
|     s = BN_CTX_get(ctx);
 | |
|     t = BN_CTX_get(ctx);
 | |
|     if (t == NULL)
 | |
|         goto err;
 | |
| 
 | |
|     if (a->Z_is_one) {
 | |
|         if (!BN_copy(x0, a->X))
 | |
|             goto err;
 | |
|         if (!BN_copy(y0, a->Y))
 | |
|             goto err;
 | |
|     } else {
 | |
|         if (!EC_POINT_get_affine_coordinates(group, a, x0, y0, ctx))
 | |
|             goto err;
 | |
|     }
 | |
|     if (b->Z_is_one) {
 | |
|         if (!BN_copy(x1, b->X))
 | |
|             goto err;
 | |
|         if (!BN_copy(y1, b->Y))
 | |
|             goto err;
 | |
|     } else {
 | |
|         if (!EC_POINT_get_affine_coordinates(group, b, x1, y1, ctx))
 | |
|             goto err;
 | |
|     }
 | |
| 
 | |
|     if (BN_GF2m_cmp(x0, x1)) {
 | |
|         if (!BN_GF2m_add(t, x0, x1))
 | |
|             goto err;
 | |
|         if (!BN_GF2m_add(s, y0, y1))
 | |
|             goto err;
 | |
|         if (!group->meth->field_div(group, s, s, t, ctx))
 | |
|             goto err;
 | |
|         if (!group->meth->field_sqr(group, x2, s, ctx))
 | |
|             goto err;
 | |
|         if (!BN_GF2m_add(x2, x2, group->a))
 | |
|             goto err;
 | |
|         if (!BN_GF2m_add(x2, x2, s))
 | |
|             goto err;
 | |
|         if (!BN_GF2m_add(x2, x2, t))
 | |
|             goto err;
 | |
|     } else {
 | |
|         if (BN_GF2m_cmp(y0, y1) || BN_is_zero(x1)) {
 | |
|             if (!EC_POINT_set_to_infinity(group, r))
 | |
|                 goto err;
 | |
|             ret = 1;
 | |
|             goto err;
 | |
|         }
 | |
|         if (!group->meth->field_div(group, s, y1, x1, ctx))
 | |
|             goto err;
 | |
|         if (!BN_GF2m_add(s, s, x1))
 | |
|             goto err;
 | |
| 
 | |
|         if (!group->meth->field_sqr(group, x2, s, ctx))
 | |
|             goto err;
 | |
|         if (!BN_GF2m_add(x2, x2, s))
 | |
|             goto err;
 | |
|         if (!BN_GF2m_add(x2, x2, group->a))
 | |
|             goto err;
 | |
|     }
 | |
| 
 | |
|     if (!BN_GF2m_add(y2, x1, x2))
 | |
|         goto err;
 | |
|     if (!group->meth->field_mul(group, y2, y2, s, ctx))
 | |
|         goto err;
 | |
|     if (!BN_GF2m_add(y2, y2, x2))
 | |
|         goto err;
 | |
|     if (!BN_GF2m_add(y2, y2, y1))
 | |
|         goto err;
 | |
| 
 | |
|     if (!EC_POINT_set_affine_coordinates(group, r, x2, y2, ctx))
 | |
|         goto err;
 | |
| 
 | |
|     ret = 1;
 | |
| 
 | |
|  err:
 | |
|     BN_CTX_end(ctx);
 | |
|     BN_CTX_free(new_ctx);
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Computes 2 * a and stores the result in r.  r could be a. Uses algorithm
 | |
|  * A.10.2 of IEEE P1363.
 | |
|  */
 | |
| int ec_GF2m_simple_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a,
 | |
|                        BN_CTX *ctx)
 | |
| {
 | |
|     return ec_GF2m_simple_add(group, r, a, a, ctx);
 | |
| }
 | |
| 
 | |
| int ec_GF2m_simple_invert(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx)
 | |
| {
 | |
|     if (EC_POINT_is_at_infinity(group, point) || BN_is_zero(point->Y))
 | |
|         /* point is its own inverse */
 | |
|         return 1;
 | |
| 
 | |
|     if (!EC_POINT_make_affine(group, point, ctx))
 | |
|         return 0;
 | |
|     return BN_GF2m_add(point->Y, point->X, point->Y);
 | |
| }
 | |
| 
 | |
| /* Indicates whether the given point is the point at infinity. */
 | |
| int ec_GF2m_simple_is_at_infinity(const EC_GROUP *group,
 | |
|                                   const EC_POINT *point)
 | |
| {
 | |
|     return BN_is_zero(point->Z);
 | |
| }
 | |
| 
 | |
| /*-
 | |
|  * Determines whether the given EC_POINT is an actual point on the curve defined
 | |
|  * in the EC_GROUP.  A point is valid if it satisfies the Weierstrass equation:
 | |
|  *      y^2 + x*y = x^3 + a*x^2 + b.
 | |
|  */
 | |
| int ec_GF2m_simple_is_on_curve(const EC_GROUP *group, const EC_POINT *point,
 | |
|                                BN_CTX *ctx)
 | |
| {
 | |
|     int ret = -1;
 | |
|     BN_CTX *new_ctx = NULL;
 | |
|     BIGNUM *lh, *y2;
 | |
|     int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *,
 | |
|                       const BIGNUM *, BN_CTX *);
 | |
|     int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
 | |
| 
 | |
|     if (EC_POINT_is_at_infinity(group, point))
 | |
|         return 1;
 | |
| 
 | |
|     field_mul = group->meth->field_mul;
 | |
|     field_sqr = group->meth->field_sqr;
 | |
| 
 | |
|     /* only support affine coordinates */
 | |
|     if (!point->Z_is_one)
 | |
|         return -1;
 | |
| 
 | |
|     if (ctx == NULL) {
 | |
|         ctx = new_ctx = BN_CTX_new();
 | |
|         if (ctx == NULL)
 | |
|             return -1;
 | |
|     }
 | |
| 
 | |
|     BN_CTX_start(ctx);
 | |
|     y2 = BN_CTX_get(ctx);
 | |
|     lh = BN_CTX_get(ctx);
 | |
|     if (lh == NULL)
 | |
|         goto err;
 | |
| 
 | |
|     /*-
 | |
|      * We have a curve defined by a Weierstrass equation
 | |
|      *      y^2 + x*y = x^3 + a*x^2 + b.
 | |
|      *  <=> x^3 + a*x^2 + x*y + b + y^2 = 0
 | |
|      *  <=> ((x + a) * x + y ) * x + b + y^2 = 0
 | |
|      */
 | |
|     if (!BN_GF2m_add(lh, point->X, group->a))
 | |
|         goto err;
 | |
|     if (!field_mul(group, lh, lh, point->X, ctx))
 | |
|         goto err;
 | |
|     if (!BN_GF2m_add(lh, lh, point->Y))
 | |
|         goto err;
 | |
|     if (!field_mul(group, lh, lh, point->X, ctx))
 | |
|         goto err;
 | |
|     if (!BN_GF2m_add(lh, lh, group->b))
 | |
|         goto err;
 | |
|     if (!field_sqr(group, y2, point->Y, ctx))
 | |
|         goto err;
 | |
|     if (!BN_GF2m_add(lh, lh, y2))
 | |
|         goto err;
 | |
|     ret = BN_is_zero(lh);
 | |
| 
 | |
|  err:
 | |
|     BN_CTX_end(ctx);
 | |
|     BN_CTX_free(new_ctx);
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /*-
 | |
|  * Indicates whether two points are equal.
 | |
|  * Return values:
 | |
|  *  -1   error
 | |
|  *   0   equal (in affine coordinates)
 | |
|  *   1   not equal
 | |
|  */
 | |
| int ec_GF2m_simple_cmp(const EC_GROUP *group, const EC_POINT *a,
 | |
|                        const EC_POINT *b, BN_CTX *ctx)
 | |
| {
 | |
|     BIGNUM *aX, *aY, *bX, *bY;
 | |
|     BN_CTX *new_ctx = NULL;
 | |
|     int ret = -1;
 | |
| 
 | |
|     if (EC_POINT_is_at_infinity(group, a)) {
 | |
|         return EC_POINT_is_at_infinity(group, b) ? 0 : 1;
 | |
|     }
 | |
| 
 | |
|     if (EC_POINT_is_at_infinity(group, b))
 | |
|         return 1;
 | |
| 
 | |
|     if (a->Z_is_one && b->Z_is_one) {
 | |
|         return ((BN_cmp(a->X, b->X) == 0) && BN_cmp(a->Y, b->Y) == 0) ? 0 : 1;
 | |
|     }
 | |
| 
 | |
|     if (ctx == NULL) {
 | |
|         ctx = new_ctx = BN_CTX_new();
 | |
|         if (ctx == NULL)
 | |
|             return -1;
 | |
|     }
 | |
| 
 | |
|     BN_CTX_start(ctx);
 | |
|     aX = BN_CTX_get(ctx);
 | |
|     aY = BN_CTX_get(ctx);
 | |
|     bX = BN_CTX_get(ctx);
 | |
|     bY = BN_CTX_get(ctx);
 | |
|     if (bY == NULL)
 | |
|         goto err;
 | |
| 
 | |
|     if (!EC_POINT_get_affine_coordinates(group, a, aX, aY, ctx))
 | |
|         goto err;
 | |
|     if (!EC_POINT_get_affine_coordinates(group, b, bX, bY, ctx))
 | |
|         goto err;
 | |
|     ret = ((BN_cmp(aX, bX) == 0) && BN_cmp(aY, bY) == 0) ? 0 : 1;
 | |
| 
 | |
|  err:
 | |
|     BN_CTX_end(ctx);
 | |
|     BN_CTX_free(new_ctx);
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /* Forces the given EC_POINT to internally use affine coordinates. */
 | |
| int ec_GF2m_simple_make_affine(const EC_GROUP *group, EC_POINT *point,
 | |
|                                BN_CTX *ctx)
 | |
| {
 | |
|     BN_CTX *new_ctx = NULL;
 | |
|     BIGNUM *x, *y;
 | |
|     int ret = 0;
 | |
| 
 | |
|     if (point->Z_is_one || EC_POINT_is_at_infinity(group, point))
 | |
|         return 1;
 | |
| 
 | |
|     if (ctx == NULL) {
 | |
|         ctx = new_ctx = BN_CTX_new();
 | |
|         if (ctx == NULL)
 | |
|             return 0;
 | |
|     }
 | |
| 
 | |
|     BN_CTX_start(ctx);
 | |
|     x = BN_CTX_get(ctx);
 | |
|     y = BN_CTX_get(ctx);
 | |
|     if (y == NULL)
 | |
|         goto err;
 | |
| 
 | |
|     if (!EC_POINT_get_affine_coordinates(group, point, x, y, ctx))
 | |
|         goto err;
 | |
|     if (!BN_copy(point->X, x))
 | |
|         goto err;
 | |
|     if (!BN_copy(point->Y, y))
 | |
|         goto err;
 | |
|     if (!BN_one(point->Z))
 | |
|         goto err;
 | |
|     point->Z_is_one = 1;
 | |
| 
 | |
|     ret = 1;
 | |
| 
 | |
|  err:
 | |
|     BN_CTX_end(ctx);
 | |
|     BN_CTX_free(new_ctx);
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Forces each of the EC_POINTs in the given array to use affine coordinates.
 | |
|  */
 | |
| int ec_GF2m_simple_points_make_affine(const EC_GROUP *group, size_t num,
 | |
|                                       EC_POINT *points[], BN_CTX *ctx)
 | |
| {
 | |
|     size_t i;
 | |
| 
 | |
|     for (i = 0; i < num; i++) {
 | |
|         if (!group->meth->make_affine(group, points[i], ctx))
 | |
|             return 0;
 | |
|     }
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /* Wrapper to simple binary polynomial field multiplication implementation. */
 | |
| int ec_GF2m_simple_field_mul(const EC_GROUP *group, BIGNUM *r,
 | |
|                              const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
 | |
| {
 | |
|     return BN_GF2m_mod_mul_arr(r, a, b, group->poly, ctx);
 | |
| }
 | |
| 
 | |
| /* Wrapper to simple binary polynomial field squaring implementation. */
 | |
| int ec_GF2m_simple_field_sqr(const EC_GROUP *group, BIGNUM *r,
 | |
|                              const BIGNUM *a, BN_CTX *ctx)
 | |
| {
 | |
|     return BN_GF2m_mod_sqr_arr(r, a, group->poly, ctx);
 | |
| }
 | |
| 
 | |
| /* Wrapper to simple binary polynomial field division implementation. */
 | |
| int ec_GF2m_simple_field_div(const EC_GROUP *group, BIGNUM *r,
 | |
|                              const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
 | |
| {
 | |
|     return BN_GF2m_mod_div(r, a, b, group->field, ctx);
 | |
| }
 | |
| 
 | |
| /*-
 | |
|  * Lopez-Dahab ladder, pre step.
 | |
|  * See e.g. "Guide to ECC" Alg 3.40.
 | |
|  * Modified to blind s and r independently.
 | |
|  * s:= p, r := 2p
 | |
|  */
 | |
| static
 | |
| int ec_GF2m_simple_ladder_pre(const EC_GROUP *group,
 | |
|                               EC_POINT *r, EC_POINT *s,
 | |
|                               EC_POINT *p, BN_CTX *ctx)
 | |
| {
 | |
|     /* if p is not affine, something is wrong */
 | |
|     if (p->Z_is_one == 0)
 | |
|         return 0;
 | |
| 
 | |
|     /* s blinding: make sure lambda (s->Z here) is not zero */
 | |
|     do {
 | |
|         if (!BN_priv_rand(s->Z, BN_num_bits(group->field) - 1,
 | |
|                           BN_RAND_TOP_ANY, BN_RAND_BOTTOM_ANY)) {
 | |
|             ECerr(EC_F_EC_GF2M_SIMPLE_LADDER_PRE, ERR_R_BN_LIB);
 | |
|             return 0;
 | |
|         }
 | |
|     } while (BN_is_zero(s->Z));
 | |
| 
 | |
|     /* if field_encode defined convert between representations */
 | |
|     if ((group->meth->field_encode != NULL
 | |
|          && !group->meth->field_encode(group, s->Z, s->Z, ctx))
 | |
|         || !group->meth->field_mul(group, s->X, p->X, s->Z, ctx))
 | |
|         return 0;
 | |
| 
 | |
|     /* r blinding: make sure lambda (r->Y here for storage) is not zero */
 | |
|     do {
 | |
|         if (!BN_priv_rand(r->Y, BN_num_bits(group->field) - 1,
 | |
|                           BN_RAND_TOP_ANY, BN_RAND_BOTTOM_ANY)) {
 | |
|             ECerr(EC_F_EC_GF2M_SIMPLE_LADDER_PRE, ERR_R_BN_LIB);
 | |
|             return 0;
 | |
|         }
 | |
|     } while (BN_is_zero(r->Y));
 | |
| 
 | |
|     if ((group->meth->field_encode != NULL
 | |
|          && !group->meth->field_encode(group, r->Y, r->Y, ctx))
 | |
|         || !group->meth->field_sqr(group, r->Z, p->X, ctx)
 | |
|         || !group->meth->field_sqr(group, r->X, r->Z, ctx)
 | |
|         || !BN_GF2m_add(r->X, r->X, group->b)
 | |
|         || !group->meth->field_mul(group, r->Z, r->Z, r->Y, ctx)
 | |
|         || !group->meth->field_mul(group, r->X, r->X, r->Y, ctx))
 | |
|         return 0;
 | |
| 
 | |
|     s->Z_is_one = 0;
 | |
|     r->Z_is_one = 0;
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /*-
 | |
|  * Ladder step: differential addition-and-doubling, mixed Lopez-Dahab coords.
 | |
|  * http://www.hyperelliptic.org/EFD/g12o/auto-code/shortw/xz/ladder/mladd-2003-s.op3
 | |
|  * s := r + s, r := 2r
 | |
|  */
 | |
| static
 | |
| int ec_GF2m_simple_ladder_step(const EC_GROUP *group,
 | |
|                                EC_POINT *r, EC_POINT *s,
 | |
|                                EC_POINT *p, BN_CTX *ctx)
 | |
| {
 | |
|     if (!group->meth->field_mul(group, r->Y, r->Z, s->X, ctx)
 | |
|         || !group->meth->field_mul(group, s->X, r->X, s->Z, ctx)
 | |
|         || !group->meth->field_sqr(group, s->Y, r->Z, ctx)
 | |
|         || !group->meth->field_sqr(group, r->Z, r->X, ctx)
 | |
|         || !BN_GF2m_add(s->Z, r->Y, s->X)
 | |
|         || !group->meth->field_sqr(group, s->Z, s->Z, ctx)
 | |
|         || !group->meth->field_mul(group, s->X, r->Y, s->X, ctx)
 | |
|         || !group->meth->field_mul(group, r->Y, s->Z, p->X, ctx)
 | |
|         || !BN_GF2m_add(s->X, s->X, r->Y)
 | |
|         || !group->meth->field_sqr(group, r->Y, r->Z, ctx)
 | |
|         || !group->meth->field_mul(group, r->Z, r->Z, s->Y, ctx)
 | |
|         || !group->meth->field_sqr(group, s->Y, s->Y, ctx)
 | |
|         || !group->meth->field_mul(group, s->Y, s->Y, group->b, ctx)
 | |
|         || !BN_GF2m_add(r->X, r->Y, s->Y))
 | |
|         return 0;
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /*-
 | |
|  * Recover affine (x,y) result from Lopez-Dahab r and s, affine p.
 | |
|  * See e.g. "Fast Multiplication on Elliptic Curves over GF(2**m)
 | |
|  * without Precomputation" (Lopez and Dahab, CHES 1999),
 | |
|  * Appendix Alg Mxy.
 | |
|  */
 | |
| static
 | |
| int ec_GF2m_simple_ladder_post(const EC_GROUP *group,
 | |
|                                EC_POINT *r, EC_POINT *s,
 | |
|                                EC_POINT *p, BN_CTX *ctx)
 | |
| {
 | |
|     int ret = 0;
 | |
|     BIGNUM *t0, *t1, *t2 = NULL;
 | |
| 
 | |
|     if (BN_is_zero(r->Z))
 | |
|         return EC_POINT_set_to_infinity(group, r);
 | |
| 
 | |
|     if (BN_is_zero(s->Z)) {
 | |
|         if (!EC_POINT_copy(r, p)
 | |
|             || !EC_POINT_invert(group, r, ctx)) {
 | |
|             ECerr(EC_F_EC_GF2M_SIMPLE_LADDER_POST, ERR_R_EC_LIB);
 | |
|             return 0;
 | |
|         }
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     BN_CTX_start(ctx);
 | |
|     t0 = BN_CTX_get(ctx);
 | |
|     t1 = BN_CTX_get(ctx);
 | |
|     t2 = BN_CTX_get(ctx);
 | |
|     if (t2 == NULL) {
 | |
|         ECerr(EC_F_EC_GF2M_SIMPLE_LADDER_POST, ERR_R_MALLOC_FAILURE);
 | |
|         goto err;
 | |
|     }
 | |
| 
 | |
|     if (!group->meth->field_mul(group, t0, r->Z, s->Z, ctx)
 | |
|         || !group->meth->field_mul(group, t1, p->X, r->Z, ctx)
 | |
|         || !BN_GF2m_add(t1, r->X, t1)
 | |
|         || !group->meth->field_mul(group, t2, p->X, s->Z, ctx)
 | |
|         || !group->meth->field_mul(group, r->Z, r->X, t2, ctx)
 | |
|         || !BN_GF2m_add(t2, t2, s->X)
 | |
|         || !group->meth->field_mul(group, t1, t1, t2, ctx)
 | |
|         || !group->meth->field_sqr(group, t2, p->X, ctx)
 | |
|         || !BN_GF2m_add(t2, p->Y, t2)
 | |
|         || !group->meth->field_mul(group, t2, t2, t0, ctx)
 | |
|         || !BN_GF2m_add(t1, t2, t1)
 | |
|         || !group->meth->field_mul(group, t2, p->X, t0, ctx)
 | |
|         || !group->meth->field_inv(group, t2, t2, ctx)
 | |
|         || !group->meth->field_mul(group, t1, t1, t2, ctx)
 | |
|         || !group->meth->field_mul(group, r->X, r->Z, t2, ctx)
 | |
|         || !BN_GF2m_add(t2, p->X, r->X)
 | |
|         || !group->meth->field_mul(group, t2, t2, t1, ctx)
 | |
|         || !BN_GF2m_add(r->Y, p->Y, t2)
 | |
|         || !BN_one(r->Z))
 | |
|         goto err;
 | |
| 
 | |
|     r->Z_is_one = 1;
 | |
| 
 | |
|     /* GF(2^m) field elements should always have BIGNUM::neg = 0 */
 | |
|     BN_set_negative(r->X, 0);
 | |
|     BN_set_negative(r->Y, 0);
 | |
| 
 | |
|     ret = 1;
 | |
| 
 | |
|  err:
 | |
|     BN_CTX_end(ctx);
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static
 | |
| int ec_GF2m_simple_points_mul(const EC_GROUP *group, EC_POINT *r,
 | |
|                               const BIGNUM *scalar, size_t num,
 | |
|                               const EC_POINT *points[],
 | |
|                               const BIGNUM *scalars[],
 | |
|                               BN_CTX *ctx)
 | |
| {
 | |
|     int ret = 0;
 | |
|     EC_POINT *t = NULL;
 | |
| 
 | |
|     /*-
 | |
|      * We limit use of the ladder only to the following cases:
 | |
|      * - r := scalar * G
 | |
|      *   Fixed point mul: scalar != NULL && num == 0;
 | |
|      * - r := scalars[0] * points[0]
 | |
|      *   Variable point mul: scalar == NULL && num == 1;
 | |
|      * - r := scalar * G + scalars[0] * points[0]
 | |
|      *   used, e.g., in ECDSA verification: scalar != NULL && num == 1
 | |
|      *
 | |
|      * In any other case (num > 1) we use the default wNAF implementation.
 | |
|      *
 | |
|      * We also let the default implementation handle degenerate cases like group
 | |
|      * order or cofactor set to 0.
 | |
|      */
 | |
|     if (num > 1 || BN_is_zero(group->order) || BN_is_zero(group->cofactor))
 | |
|         return ec_wNAF_mul(group, r, scalar, num, points, scalars, ctx);
 | |
| 
 | |
|     if (scalar != NULL && num == 0)
 | |
|         /* Fixed point multiplication */
 | |
|         return ec_scalar_mul_ladder(group, r, scalar, NULL, ctx);
 | |
| 
 | |
|     if (scalar == NULL && num == 1)
 | |
|         /* Variable point multiplication */
 | |
|         return ec_scalar_mul_ladder(group, r, scalars[0], points[0], ctx);
 | |
| 
 | |
|     /*-
 | |
|      * Double point multiplication:
 | |
|      *  r := scalar * G + scalars[0] * points[0]
 | |
|      */
 | |
| 
 | |
|     if ((t = EC_POINT_new(group)) == NULL) {
 | |
|         ECerr(EC_F_EC_GF2M_SIMPLE_POINTS_MUL, ERR_R_MALLOC_FAILURE);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     if (!ec_scalar_mul_ladder(group, t, scalar, NULL, ctx)
 | |
|         || !ec_scalar_mul_ladder(group, r, scalars[0], points[0], ctx)
 | |
|         || !EC_POINT_add(group, r, t, r, ctx))
 | |
|         goto err;
 | |
| 
 | |
|     ret = 1;
 | |
| 
 | |
|  err:
 | |
|     EC_POINT_free(t);
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /*-
 | |
|  * Computes the multiplicative inverse of a in GF(2^m), storing the result in r.
 | |
|  * If a is zero (or equivalent), you'll get a EC_R_CANNOT_INVERT error.
 | |
|  * SCA hardening is with blinding: BN_GF2m_mod_inv does that.
 | |
|  */
 | |
| static int ec_GF2m_simple_field_inv(const EC_GROUP *group, BIGNUM *r,
 | |
|                                     const BIGNUM *a, BN_CTX *ctx)
 | |
| {
 | |
|     int ret;
 | |
| 
 | |
|     if (!(ret = BN_GF2m_mod_inv(r, a, group->field, ctx)))
 | |
|         ECerr(EC_F_EC_GF2M_SIMPLE_FIELD_INV, EC_R_CANNOT_INVERT);
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| const EC_METHOD *EC_GF2m_simple_method(void)
 | |
| {
 | |
|     static const EC_METHOD ret = {
 | |
|         EC_FLAGS_DEFAULT_OCT,
 | |
|         NID_X9_62_characteristic_two_field,
 | |
|         ec_GF2m_simple_group_init,
 | |
|         ec_GF2m_simple_group_finish,
 | |
|         ec_GF2m_simple_group_clear_finish,
 | |
|         ec_GF2m_simple_group_copy,
 | |
|         ec_GF2m_simple_group_set_curve,
 | |
|         ec_GF2m_simple_group_get_curve,
 | |
|         ec_GF2m_simple_group_get_degree,
 | |
|         ec_group_simple_order_bits,
 | |
|         ec_GF2m_simple_group_check_discriminant,
 | |
|         ec_GF2m_simple_point_init,
 | |
|         ec_GF2m_simple_point_finish,
 | |
|         ec_GF2m_simple_point_clear_finish,
 | |
|         ec_GF2m_simple_point_copy,
 | |
|         ec_GF2m_simple_point_set_to_infinity,
 | |
|         0, /* set_Jprojective_coordinates_GFp */
 | |
|         0, /* get_Jprojective_coordinates_GFp */
 | |
|         ec_GF2m_simple_point_set_affine_coordinates,
 | |
|         ec_GF2m_simple_point_get_affine_coordinates,
 | |
|         0, /* point_set_compressed_coordinates */
 | |
|         0, /* point2oct */
 | |
|         0, /* oct2point */
 | |
|         ec_GF2m_simple_add,
 | |
|         ec_GF2m_simple_dbl,
 | |
|         ec_GF2m_simple_invert,
 | |
|         ec_GF2m_simple_is_at_infinity,
 | |
|         ec_GF2m_simple_is_on_curve,
 | |
|         ec_GF2m_simple_cmp,
 | |
|         ec_GF2m_simple_make_affine,
 | |
|         ec_GF2m_simple_points_make_affine,
 | |
|         ec_GF2m_simple_points_mul,
 | |
|         0, /* precompute_mult */
 | |
|         0, /* have_precompute_mult */
 | |
|         ec_GF2m_simple_field_mul,
 | |
|         ec_GF2m_simple_field_sqr,
 | |
|         ec_GF2m_simple_field_div,
 | |
|         ec_GF2m_simple_field_inv,
 | |
|         0, /* field_encode */
 | |
|         0, /* field_decode */
 | |
|         0, /* field_set_to_one */
 | |
|         ec_key_simple_priv2oct,
 | |
|         ec_key_simple_oct2priv,
 | |
|         0, /* set private */
 | |
|         ec_key_simple_generate_key,
 | |
|         ec_key_simple_check_key,
 | |
|         ec_key_simple_generate_public_key,
 | |
|         0, /* keycopy */
 | |
|         0, /* keyfinish */
 | |
|         ecdh_simple_compute_key,
 | |
|         0, /* field_inverse_mod_ord */
 | |
|         0, /* blind_coordinates */
 | |
|         ec_GF2m_simple_ladder_pre,
 | |
|         ec_GF2m_simple_ladder_step,
 | |
|         ec_GF2m_simple_ladder_post
 | |
|     };
 | |
| 
 | |
|     return &ret;
 | |
| }
 | |
| 
 | |
| #endif
 |