mirror of
				https://github.com/ossrs/srs.git
				synced 2025-03-09 15:49:59 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			225 lines
		
	
	
	
		
			5.4 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			225 lines
		
	
	
	
		
			5.4 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * (I)DCT Transforms
 | |
|  * Copyright (c) 2009 Peter Ross <pross@xvid.org>
 | |
|  * Copyright (c) 2010 Alex Converse <alex.converse@gmail.com>
 | |
|  * Copyright (c) 2010 Vitor Sessak
 | |
|  *
 | |
|  * This file is part of FFmpeg.
 | |
|  *
 | |
|  * FFmpeg is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2.1 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * FFmpeg is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with FFmpeg; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * @file
 | |
|  * (Inverse) Discrete Cosine Transforms. These are also known as the
 | |
|  * type II and type III DCTs respectively.
 | |
|  */
 | |
| 
 | |
| #include <math.h>
 | |
| #include <string.h>
 | |
| 
 | |
| #include "libavutil/mathematics.h"
 | |
| #include "dct.h"
 | |
| #include "dct32.h"
 | |
| 
 | |
| /* sin((M_PI * x / (2 * n)) */
 | |
| #define SIN(s, n, x) (s->costab[(n) - (x)])
 | |
| 
 | |
| /* cos((M_PI * x / (2 * n)) */
 | |
| #define COS(s, n, x) (s->costab[x])
 | |
| 
 | |
| static void dst_calc_I_c(DCTContext *ctx, FFTSample *data)
 | |
| {
 | |
|     int n = 1 << ctx->nbits;
 | |
|     int i;
 | |
| 
 | |
|     data[0] = 0;
 | |
|     for (i = 1; i < n / 2; i++) {
 | |
|         float tmp1   = data[i    ];
 | |
|         float tmp2   = data[n - i];
 | |
|         float s      = SIN(ctx, n, 2 * i);
 | |
| 
 | |
|         s           *= tmp1 + tmp2;
 | |
|         tmp1         = (tmp1 - tmp2) * 0.5f;
 | |
|         data[i]      = s + tmp1;
 | |
|         data[n - i]  = s - tmp1;
 | |
|     }
 | |
| 
 | |
|     data[n / 2] *= 2;
 | |
|     ctx->rdft.rdft_calc(&ctx->rdft, data);
 | |
| 
 | |
|     data[0] *= 0.5f;
 | |
| 
 | |
|     for (i = 1; i < n - 2; i += 2) {
 | |
|         data[i + 1] +=  data[i - 1];
 | |
|         data[i]      = -data[i + 2];
 | |
|     }
 | |
| 
 | |
|     data[n - 1] = 0;
 | |
| }
 | |
| 
 | |
| static void dct_calc_I_c(DCTContext *ctx, FFTSample *data)
 | |
| {
 | |
|     int n = 1 << ctx->nbits;
 | |
|     int i;
 | |
|     float next = -0.5f * (data[0] - data[n]);
 | |
| 
 | |
|     for (i = 0; i < n / 2; i++) {
 | |
|         float tmp1 = data[i];
 | |
|         float tmp2 = data[n - i];
 | |
|         float s    = SIN(ctx, n, 2 * i);
 | |
|         float c    = COS(ctx, n, 2 * i);
 | |
| 
 | |
|         c *= tmp1 - tmp2;
 | |
|         s *= tmp1 - tmp2;
 | |
| 
 | |
|         next += c;
 | |
| 
 | |
|         tmp1        = (tmp1 + tmp2) * 0.5f;
 | |
|         data[i]     = tmp1 - s;
 | |
|         data[n - i] = tmp1 + s;
 | |
|     }
 | |
| 
 | |
|     ctx->rdft.rdft_calc(&ctx->rdft, data);
 | |
|     data[n] = data[1];
 | |
|     data[1] = next;
 | |
| 
 | |
|     for (i = 3; i <= n; i += 2)
 | |
|         data[i] = data[i - 2] - data[i];
 | |
| }
 | |
| 
 | |
| static void dct_calc_III_c(DCTContext *ctx, FFTSample *data)
 | |
| {
 | |
|     int n = 1 << ctx->nbits;
 | |
|     int i;
 | |
| 
 | |
|     float next  = data[n - 1];
 | |
|     float inv_n = 1.0f / n;
 | |
| 
 | |
|     for (i = n - 2; i >= 2; i -= 2) {
 | |
|         float val1 = data[i];
 | |
|         float val2 = data[i - 1] - data[i + 1];
 | |
|         float c    = COS(ctx, n, i);
 | |
|         float s    = SIN(ctx, n, i);
 | |
| 
 | |
|         data[i]     = c * val1 + s * val2;
 | |
|         data[i + 1] = s * val1 - c * val2;
 | |
|     }
 | |
| 
 | |
|     data[1] = 2 * next;
 | |
| 
 | |
|     ctx->rdft.rdft_calc(&ctx->rdft, data);
 | |
| 
 | |
|     for (i = 0; i < n / 2; i++) {
 | |
|         float tmp1 = data[i]         * inv_n;
 | |
|         float tmp2 = data[n - i - 1] * inv_n;
 | |
|         float csc  = ctx->csc2[i] * (tmp1 - tmp2);
 | |
| 
 | |
|         tmp1            += tmp2;
 | |
|         data[i]          = tmp1 + csc;
 | |
|         data[n - i - 1]  = tmp1 - csc;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void dct_calc_II_c(DCTContext *ctx, FFTSample *data)
 | |
| {
 | |
|     int n = 1 << ctx->nbits;
 | |
|     int i;
 | |
|     float next;
 | |
| 
 | |
|     for (i = 0; i < n / 2; i++) {
 | |
|         float tmp1 = data[i];
 | |
|         float tmp2 = data[n - i - 1];
 | |
|         float s    = SIN(ctx, n, 2 * i + 1);
 | |
| 
 | |
|         s    *= tmp1 - tmp2;
 | |
|         tmp1  = (tmp1 + tmp2) * 0.5f;
 | |
| 
 | |
|         data[i]     = tmp1 + s;
 | |
|         data[n-i-1] = tmp1 - s;
 | |
|     }
 | |
| 
 | |
|     ctx->rdft.rdft_calc(&ctx->rdft, data);
 | |
| 
 | |
|     next     = data[1] * 0.5;
 | |
|     data[1] *= -1;
 | |
| 
 | |
|     for (i = n - 2; i >= 0; i -= 2) {
 | |
|         float inr = data[i    ];
 | |
|         float ini = data[i + 1];
 | |
|         float c   = COS(ctx, n, i);
 | |
|         float s   = SIN(ctx, n, i);
 | |
| 
 | |
|         data[i]     = c * inr + s * ini;
 | |
|         data[i + 1] = next;
 | |
| 
 | |
|         next += s * inr - c * ini;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void dct32_func(DCTContext *ctx, FFTSample *data)
 | |
| {
 | |
|     ctx->dct32(data, data);
 | |
| }
 | |
| 
 | |
| av_cold int ff_dct_init(DCTContext *s, int nbits, enum DCTTransformType inverse)
 | |
| {
 | |
|     int n = 1 << nbits;
 | |
|     int i;
 | |
|     int ret;
 | |
| 
 | |
|     memset(s, 0, sizeof(*s));
 | |
| 
 | |
|     s->nbits   = nbits;
 | |
|     s->inverse = inverse;
 | |
| 
 | |
|     if (inverse == DCT_II && nbits == 5) {
 | |
|         s->dct_calc = dct32_func;
 | |
|     } else {
 | |
|         ff_init_ff_cos_tabs(nbits + 2);
 | |
| 
 | |
|         s->costab = ff_cos_tabs[nbits + 2];
 | |
|         s->csc2   = av_malloc_array(n / 2, sizeof(FFTSample));
 | |
|         if (!s->csc2)
 | |
|             return AVERROR(ENOMEM);
 | |
| 
 | |
|         if ((ret = ff_rdft_init(&s->rdft, nbits, inverse == DCT_III)) < 0) {
 | |
|             av_freep(&s->csc2);
 | |
|             return ret;
 | |
|         }
 | |
| 
 | |
|         for (i = 0; i < n / 2; i++)
 | |
|             s->csc2[i] = 0.5 / sin((M_PI / (2 * n) * (2 * i + 1)));
 | |
| 
 | |
|         switch (inverse) {
 | |
|         case DCT_I  : s->dct_calc = dct_calc_I_c;   break;
 | |
|         case DCT_II : s->dct_calc = dct_calc_II_c;  break;
 | |
|         case DCT_III: s->dct_calc = dct_calc_III_c; break;
 | |
|         case DST_I  : s->dct_calc = dst_calc_I_c;   break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     s->dct32 = ff_dct32_float;
 | |
|     if (ARCH_X86)
 | |
|         ff_dct_init_x86(s);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| av_cold void ff_dct_end(DCTContext *s)
 | |
| {
 | |
|     ff_rdft_end(&s->rdft);
 | |
|     av_freep(&s->csc2);
 | |
| }
 |