mirror of
				https://github.com/ossrs/srs.git
				synced 2025-03-09 15:49:59 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			1701 lines
		
	
	
	
		
			58 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1701 lines
		
	
	
	
		
			58 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * Copyright 2014-2019 The OpenSSL Project Authors. All Rights Reserved.
 | 
						|
 * Copyright (c) 2014, Intel Corporation. All Rights Reserved.
 | 
						|
 * Copyright (c) 2015, CloudFlare, Inc.
 | 
						|
 *
 | 
						|
 * Licensed under the OpenSSL license (the "License").  You may not use
 | 
						|
 * this file except in compliance with the License.  You can obtain a copy
 | 
						|
 * in the file LICENSE in the source distribution or at
 | 
						|
 * https://www.openssl.org/source/license.html
 | 
						|
 *
 | 
						|
 * Originally written by Shay Gueron (1, 2), and Vlad Krasnov (1, 3)
 | 
						|
 * (1) Intel Corporation, Israel Development Center, Haifa, Israel
 | 
						|
 * (2) University of Haifa, Israel
 | 
						|
 * (3) CloudFlare, Inc.
 | 
						|
 *
 | 
						|
 * Reference:
 | 
						|
 * S.Gueron and V.Krasnov, "Fast Prime Field Elliptic Curve Cryptography with
 | 
						|
 *                          256 Bit Primes"
 | 
						|
 */
 | 
						|
 | 
						|
#include <string.h>
 | 
						|
 | 
						|
#include "internal/cryptlib.h"
 | 
						|
#include "internal/bn_int.h"
 | 
						|
#include "ec_lcl.h"
 | 
						|
#include "internal/refcount.h"
 | 
						|
 | 
						|
#if BN_BITS2 != 64
 | 
						|
# define TOBN(hi,lo)    lo,hi
 | 
						|
#else
 | 
						|
# define TOBN(hi,lo)    ((BN_ULONG)hi<<32|lo)
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined(__GNUC__)
 | 
						|
# define ALIGN32        __attribute((aligned(32)))
 | 
						|
#elif defined(_MSC_VER)
 | 
						|
# define ALIGN32        __declspec(align(32))
 | 
						|
#else
 | 
						|
# define ALIGN32
 | 
						|
#endif
 | 
						|
 | 
						|
#define ALIGNPTR(p,N)   ((unsigned char *)p+N-(size_t)p%N)
 | 
						|
#define P256_LIMBS      (256/BN_BITS2)
 | 
						|
 | 
						|
typedef unsigned short u16;
 | 
						|
 | 
						|
typedef struct {
 | 
						|
    BN_ULONG X[P256_LIMBS];
 | 
						|
    BN_ULONG Y[P256_LIMBS];
 | 
						|
    BN_ULONG Z[P256_LIMBS];
 | 
						|
} P256_POINT;
 | 
						|
 | 
						|
typedef struct {
 | 
						|
    BN_ULONG X[P256_LIMBS];
 | 
						|
    BN_ULONG Y[P256_LIMBS];
 | 
						|
} P256_POINT_AFFINE;
 | 
						|
 | 
						|
typedef P256_POINT_AFFINE PRECOMP256_ROW[64];
 | 
						|
 | 
						|
/* structure for precomputed multiples of the generator */
 | 
						|
struct nistz256_pre_comp_st {
 | 
						|
    const EC_GROUP *group;      /* Parent EC_GROUP object */
 | 
						|
    size_t w;                   /* Window size */
 | 
						|
    /*
 | 
						|
     * Constant time access to the X and Y coordinates of the pre-computed,
 | 
						|
     * generator multiplies, in the Montgomery domain. Pre-calculated
 | 
						|
     * multiplies are stored in affine form.
 | 
						|
     */
 | 
						|
    PRECOMP256_ROW *precomp;
 | 
						|
    void *precomp_storage;
 | 
						|
    CRYPTO_REF_COUNT references;
 | 
						|
    CRYPTO_RWLOCK *lock;
 | 
						|
};
 | 
						|
 | 
						|
/* Functions implemented in assembly */
 | 
						|
/*
 | 
						|
 * Most of below mentioned functions *preserve* the property of inputs
 | 
						|
 * being fully reduced, i.e. being in [0, modulus) range. Simply put if
 | 
						|
 * inputs are fully reduced, then output is too. Note that reverse is
 | 
						|
 * not true, in sense that given partially reduced inputs output can be
 | 
						|
 * either, not unlikely reduced. And "most" in first sentence refers to
 | 
						|
 * the fact that given the calculations flow one can tolerate that
 | 
						|
 * addition, 1st function below, produces partially reduced result *if*
 | 
						|
 * multiplications by 2 and 3, which customarily use addition, fully
 | 
						|
 * reduce it. This effectively gives two options: a) addition produces
 | 
						|
 * fully reduced result [as long as inputs are, just like remaining
 | 
						|
 * functions]; b) addition is allowed to produce partially reduced
 | 
						|
 * result, but multiplications by 2 and 3 perform additional reduction
 | 
						|
 * step. Choice between the two can be platform-specific, but it was a)
 | 
						|
 * in all cases so far...
 | 
						|
 */
 | 
						|
/* Modular add: res = a+b mod P   */
 | 
						|
void ecp_nistz256_add(BN_ULONG res[P256_LIMBS],
 | 
						|
                      const BN_ULONG a[P256_LIMBS],
 | 
						|
                      const BN_ULONG b[P256_LIMBS]);
 | 
						|
/* Modular mul by 2: res = 2*a mod P */
 | 
						|
void ecp_nistz256_mul_by_2(BN_ULONG res[P256_LIMBS],
 | 
						|
                           const BN_ULONG a[P256_LIMBS]);
 | 
						|
/* Modular mul by 3: res = 3*a mod P */
 | 
						|
void ecp_nistz256_mul_by_3(BN_ULONG res[P256_LIMBS],
 | 
						|
                           const BN_ULONG a[P256_LIMBS]);
 | 
						|
 | 
						|
/* Modular div by 2: res = a/2 mod P */
 | 
						|
void ecp_nistz256_div_by_2(BN_ULONG res[P256_LIMBS],
 | 
						|
                           const BN_ULONG a[P256_LIMBS]);
 | 
						|
/* Modular sub: res = a-b mod P   */
 | 
						|
void ecp_nistz256_sub(BN_ULONG res[P256_LIMBS],
 | 
						|
                      const BN_ULONG a[P256_LIMBS],
 | 
						|
                      const BN_ULONG b[P256_LIMBS]);
 | 
						|
/* Modular neg: res = -a mod P    */
 | 
						|
void ecp_nistz256_neg(BN_ULONG res[P256_LIMBS], const BN_ULONG a[P256_LIMBS]);
 | 
						|
/* Montgomery mul: res = a*b*2^-256 mod P */
 | 
						|
void ecp_nistz256_mul_mont(BN_ULONG res[P256_LIMBS],
 | 
						|
                           const BN_ULONG a[P256_LIMBS],
 | 
						|
                           const BN_ULONG b[P256_LIMBS]);
 | 
						|
/* Montgomery sqr: res = a*a*2^-256 mod P */
 | 
						|
void ecp_nistz256_sqr_mont(BN_ULONG res[P256_LIMBS],
 | 
						|
                           const BN_ULONG a[P256_LIMBS]);
 | 
						|
/* Convert a number from Montgomery domain, by multiplying with 1 */
 | 
						|
void ecp_nistz256_from_mont(BN_ULONG res[P256_LIMBS],
 | 
						|
                            const BN_ULONG in[P256_LIMBS]);
 | 
						|
/* Convert a number to Montgomery domain, by multiplying with 2^512 mod P*/
 | 
						|
void ecp_nistz256_to_mont(BN_ULONG res[P256_LIMBS],
 | 
						|
                          const BN_ULONG in[P256_LIMBS]);
 | 
						|
/* Functions that perform constant time access to the precomputed tables */
 | 
						|
void ecp_nistz256_scatter_w5(P256_POINT *val,
 | 
						|
                             const P256_POINT *in_t, int idx);
 | 
						|
void ecp_nistz256_gather_w5(P256_POINT *val,
 | 
						|
                            const P256_POINT *in_t, int idx);
 | 
						|
void ecp_nistz256_scatter_w7(P256_POINT_AFFINE *val,
 | 
						|
                             const P256_POINT_AFFINE *in_t, int idx);
 | 
						|
void ecp_nistz256_gather_w7(P256_POINT_AFFINE *val,
 | 
						|
                            const P256_POINT_AFFINE *in_t, int idx);
 | 
						|
 | 
						|
/* One converted into the Montgomery domain */
 | 
						|
static const BN_ULONG ONE[P256_LIMBS] = {
 | 
						|
    TOBN(0x00000000, 0x00000001), TOBN(0xffffffff, 0x00000000),
 | 
						|
    TOBN(0xffffffff, 0xffffffff), TOBN(0x00000000, 0xfffffffe)
 | 
						|
};
 | 
						|
 | 
						|
static NISTZ256_PRE_COMP *ecp_nistz256_pre_comp_new(const EC_GROUP *group);
 | 
						|
 | 
						|
/* Precomputed tables for the default generator */
 | 
						|
extern const PRECOMP256_ROW ecp_nistz256_precomputed[37];
 | 
						|
 | 
						|
/* Recode window to a signed digit, see ecp_nistputil.c for details */
 | 
						|
static unsigned int _booth_recode_w5(unsigned int in)
 | 
						|
{
 | 
						|
    unsigned int s, d;
 | 
						|
 | 
						|
    s = ~((in >> 5) - 1);
 | 
						|
    d = (1 << 6) - in - 1;
 | 
						|
    d = (d & s) | (in & ~s);
 | 
						|
    d = (d >> 1) + (d & 1);
 | 
						|
 | 
						|
    return (d << 1) + (s & 1);
 | 
						|
}
 | 
						|
 | 
						|
static unsigned int _booth_recode_w7(unsigned int in)
 | 
						|
{
 | 
						|
    unsigned int s, d;
 | 
						|
 | 
						|
    s = ~((in >> 7) - 1);
 | 
						|
    d = (1 << 8) - in - 1;
 | 
						|
    d = (d & s) | (in & ~s);
 | 
						|
    d = (d >> 1) + (d & 1);
 | 
						|
 | 
						|
    return (d << 1) + (s & 1);
 | 
						|
}
 | 
						|
 | 
						|
static void copy_conditional(BN_ULONG dst[P256_LIMBS],
 | 
						|
                             const BN_ULONG src[P256_LIMBS], BN_ULONG move)
 | 
						|
{
 | 
						|
    BN_ULONG mask1 = 0-move;
 | 
						|
    BN_ULONG mask2 = ~mask1;
 | 
						|
 | 
						|
    dst[0] = (src[0] & mask1) ^ (dst[0] & mask2);
 | 
						|
    dst[1] = (src[1] & mask1) ^ (dst[1] & mask2);
 | 
						|
    dst[2] = (src[2] & mask1) ^ (dst[2] & mask2);
 | 
						|
    dst[3] = (src[3] & mask1) ^ (dst[3] & mask2);
 | 
						|
    if (P256_LIMBS == 8) {
 | 
						|
        dst[4] = (src[4] & mask1) ^ (dst[4] & mask2);
 | 
						|
        dst[5] = (src[5] & mask1) ^ (dst[5] & mask2);
 | 
						|
        dst[6] = (src[6] & mask1) ^ (dst[6] & mask2);
 | 
						|
        dst[7] = (src[7] & mask1) ^ (dst[7] & mask2);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static BN_ULONG is_zero(BN_ULONG in)
 | 
						|
{
 | 
						|
    in |= (0 - in);
 | 
						|
    in = ~in;
 | 
						|
    in >>= BN_BITS2 - 1;
 | 
						|
    return in;
 | 
						|
}
 | 
						|
 | 
						|
static BN_ULONG is_equal(const BN_ULONG a[P256_LIMBS],
 | 
						|
                         const BN_ULONG b[P256_LIMBS])
 | 
						|
{
 | 
						|
    BN_ULONG res;
 | 
						|
 | 
						|
    res = a[0] ^ b[0];
 | 
						|
    res |= a[1] ^ b[1];
 | 
						|
    res |= a[2] ^ b[2];
 | 
						|
    res |= a[3] ^ b[3];
 | 
						|
    if (P256_LIMBS == 8) {
 | 
						|
        res |= a[4] ^ b[4];
 | 
						|
        res |= a[5] ^ b[5];
 | 
						|
        res |= a[6] ^ b[6];
 | 
						|
        res |= a[7] ^ b[7];
 | 
						|
    }
 | 
						|
 | 
						|
    return is_zero(res);
 | 
						|
}
 | 
						|
 | 
						|
static BN_ULONG is_one(const BIGNUM *z)
 | 
						|
{
 | 
						|
    BN_ULONG res = 0;
 | 
						|
    BN_ULONG *a = bn_get_words(z);
 | 
						|
 | 
						|
    if (bn_get_top(z) == (P256_LIMBS - P256_LIMBS / 8)) {
 | 
						|
        res = a[0] ^ ONE[0];
 | 
						|
        res |= a[1] ^ ONE[1];
 | 
						|
        res |= a[2] ^ ONE[2];
 | 
						|
        res |= a[3] ^ ONE[3];
 | 
						|
        if (P256_LIMBS == 8) {
 | 
						|
            res |= a[4] ^ ONE[4];
 | 
						|
            res |= a[5] ^ ONE[5];
 | 
						|
            res |= a[6] ^ ONE[6];
 | 
						|
            /*
 | 
						|
             * no check for a[7] (being zero) on 32-bit platforms,
 | 
						|
             * because value of "one" takes only 7 limbs.
 | 
						|
             */
 | 
						|
        }
 | 
						|
        res = is_zero(res);
 | 
						|
    }
 | 
						|
 | 
						|
    return res;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * For reference, this macro is used only when new ecp_nistz256 assembly
 | 
						|
 * module is being developed.  For example, configure with
 | 
						|
 * -DECP_NISTZ256_REFERENCE_IMPLEMENTATION and implement only functions
 | 
						|
 * performing simplest arithmetic operations on 256-bit vectors. Then
 | 
						|
 * work on implementation of higher-level functions performing point
 | 
						|
 * operations. Then remove ECP_NISTZ256_REFERENCE_IMPLEMENTATION
 | 
						|
 * and never define it again. (The correct macro denoting presence of
 | 
						|
 * ecp_nistz256 module is ECP_NISTZ256_ASM.)
 | 
						|
 */
 | 
						|
#ifndef ECP_NISTZ256_REFERENCE_IMPLEMENTATION
 | 
						|
void ecp_nistz256_point_double(P256_POINT *r, const P256_POINT *a);
 | 
						|
void ecp_nistz256_point_add(P256_POINT *r,
 | 
						|
                            const P256_POINT *a, const P256_POINT *b);
 | 
						|
void ecp_nistz256_point_add_affine(P256_POINT *r,
 | 
						|
                                   const P256_POINT *a,
 | 
						|
                                   const P256_POINT_AFFINE *b);
 | 
						|
#else
 | 
						|
/* Point double: r = 2*a */
 | 
						|
static void ecp_nistz256_point_double(P256_POINT *r, const P256_POINT *a)
 | 
						|
{
 | 
						|
    BN_ULONG S[P256_LIMBS];
 | 
						|
    BN_ULONG M[P256_LIMBS];
 | 
						|
    BN_ULONG Zsqr[P256_LIMBS];
 | 
						|
    BN_ULONG tmp0[P256_LIMBS];
 | 
						|
 | 
						|
    const BN_ULONG *in_x = a->X;
 | 
						|
    const BN_ULONG *in_y = a->Y;
 | 
						|
    const BN_ULONG *in_z = a->Z;
 | 
						|
 | 
						|
    BN_ULONG *res_x = r->X;
 | 
						|
    BN_ULONG *res_y = r->Y;
 | 
						|
    BN_ULONG *res_z = r->Z;
 | 
						|
 | 
						|
    ecp_nistz256_mul_by_2(S, in_y);
 | 
						|
 | 
						|
    ecp_nistz256_sqr_mont(Zsqr, in_z);
 | 
						|
 | 
						|
    ecp_nistz256_sqr_mont(S, S);
 | 
						|
 | 
						|
    ecp_nistz256_mul_mont(res_z, in_z, in_y);
 | 
						|
    ecp_nistz256_mul_by_2(res_z, res_z);
 | 
						|
 | 
						|
    ecp_nistz256_add(M, in_x, Zsqr);
 | 
						|
    ecp_nistz256_sub(Zsqr, in_x, Zsqr);
 | 
						|
 | 
						|
    ecp_nistz256_sqr_mont(res_y, S);
 | 
						|
    ecp_nistz256_div_by_2(res_y, res_y);
 | 
						|
 | 
						|
    ecp_nistz256_mul_mont(M, M, Zsqr);
 | 
						|
    ecp_nistz256_mul_by_3(M, M);
 | 
						|
 | 
						|
    ecp_nistz256_mul_mont(S, S, in_x);
 | 
						|
    ecp_nistz256_mul_by_2(tmp0, S);
 | 
						|
 | 
						|
    ecp_nistz256_sqr_mont(res_x, M);
 | 
						|
 | 
						|
    ecp_nistz256_sub(res_x, res_x, tmp0);
 | 
						|
    ecp_nistz256_sub(S, S, res_x);
 | 
						|
 | 
						|
    ecp_nistz256_mul_mont(S, S, M);
 | 
						|
    ecp_nistz256_sub(res_y, S, res_y);
 | 
						|
}
 | 
						|
 | 
						|
/* Point addition: r = a+b */
 | 
						|
static void ecp_nistz256_point_add(P256_POINT *r,
 | 
						|
                                   const P256_POINT *a, const P256_POINT *b)
 | 
						|
{
 | 
						|
    BN_ULONG U2[P256_LIMBS], S2[P256_LIMBS];
 | 
						|
    BN_ULONG U1[P256_LIMBS], S1[P256_LIMBS];
 | 
						|
    BN_ULONG Z1sqr[P256_LIMBS];
 | 
						|
    BN_ULONG Z2sqr[P256_LIMBS];
 | 
						|
    BN_ULONG H[P256_LIMBS], R[P256_LIMBS];
 | 
						|
    BN_ULONG Hsqr[P256_LIMBS];
 | 
						|
    BN_ULONG Rsqr[P256_LIMBS];
 | 
						|
    BN_ULONG Hcub[P256_LIMBS];
 | 
						|
 | 
						|
    BN_ULONG res_x[P256_LIMBS];
 | 
						|
    BN_ULONG res_y[P256_LIMBS];
 | 
						|
    BN_ULONG res_z[P256_LIMBS];
 | 
						|
 | 
						|
    BN_ULONG in1infty, in2infty;
 | 
						|
 | 
						|
    const BN_ULONG *in1_x = a->X;
 | 
						|
    const BN_ULONG *in1_y = a->Y;
 | 
						|
    const BN_ULONG *in1_z = a->Z;
 | 
						|
 | 
						|
    const BN_ULONG *in2_x = b->X;
 | 
						|
    const BN_ULONG *in2_y = b->Y;
 | 
						|
    const BN_ULONG *in2_z = b->Z;
 | 
						|
 | 
						|
    /*
 | 
						|
     * Infinity in encoded as (,,0)
 | 
						|
     */
 | 
						|
    in1infty = (in1_z[0] | in1_z[1] | in1_z[2] | in1_z[3]);
 | 
						|
    if (P256_LIMBS == 8)
 | 
						|
        in1infty |= (in1_z[4] | in1_z[5] | in1_z[6] | in1_z[7]);
 | 
						|
 | 
						|
    in2infty = (in2_z[0] | in2_z[1] | in2_z[2] | in2_z[3]);
 | 
						|
    if (P256_LIMBS == 8)
 | 
						|
        in2infty |= (in2_z[4] | in2_z[5] | in2_z[6] | in2_z[7]);
 | 
						|
 | 
						|
    in1infty = is_zero(in1infty);
 | 
						|
    in2infty = is_zero(in2infty);
 | 
						|
 | 
						|
    ecp_nistz256_sqr_mont(Z2sqr, in2_z);        /* Z2^2 */
 | 
						|
    ecp_nistz256_sqr_mont(Z1sqr, in1_z);        /* Z1^2 */
 | 
						|
 | 
						|
    ecp_nistz256_mul_mont(S1, Z2sqr, in2_z);    /* S1 = Z2^3 */
 | 
						|
    ecp_nistz256_mul_mont(S2, Z1sqr, in1_z);    /* S2 = Z1^3 */
 | 
						|
 | 
						|
    ecp_nistz256_mul_mont(S1, S1, in1_y);       /* S1 = Y1*Z2^3 */
 | 
						|
    ecp_nistz256_mul_mont(S2, S2, in2_y);       /* S2 = Y2*Z1^3 */
 | 
						|
    ecp_nistz256_sub(R, S2, S1);                /* R = S2 - S1 */
 | 
						|
 | 
						|
    ecp_nistz256_mul_mont(U1, in1_x, Z2sqr);    /* U1 = X1*Z2^2 */
 | 
						|
    ecp_nistz256_mul_mont(U2, in2_x, Z1sqr);    /* U2 = X2*Z1^2 */
 | 
						|
    ecp_nistz256_sub(H, U2, U1);                /* H = U2 - U1 */
 | 
						|
 | 
						|
    /*
 | 
						|
     * This should not happen during sign/ecdh, so no constant time violation
 | 
						|
     */
 | 
						|
    if (is_equal(U1, U2) && !in1infty && !in2infty) {
 | 
						|
        if (is_equal(S1, S2)) {
 | 
						|
            ecp_nistz256_point_double(r, a);
 | 
						|
            return;
 | 
						|
        } else {
 | 
						|
            memset(r, 0, sizeof(*r));
 | 
						|
            return;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    ecp_nistz256_sqr_mont(Rsqr, R);             /* R^2 */
 | 
						|
    ecp_nistz256_mul_mont(res_z, H, in1_z);     /* Z3 = H*Z1*Z2 */
 | 
						|
    ecp_nistz256_sqr_mont(Hsqr, H);             /* H^2 */
 | 
						|
    ecp_nistz256_mul_mont(res_z, res_z, in2_z); /* Z3 = H*Z1*Z2 */
 | 
						|
    ecp_nistz256_mul_mont(Hcub, Hsqr, H);       /* H^3 */
 | 
						|
 | 
						|
    ecp_nistz256_mul_mont(U2, U1, Hsqr);        /* U1*H^2 */
 | 
						|
    ecp_nistz256_mul_by_2(Hsqr, U2);            /* 2*U1*H^2 */
 | 
						|
 | 
						|
    ecp_nistz256_sub(res_x, Rsqr, Hsqr);
 | 
						|
    ecp_nistz256_sub(res_x, res_x, Hcub);
 | 
						|
 | 
						|
    ecp_nistz256_sub(res_y, U2, res_x);
 | 
						|
 | 
						|
    ecp_nistz256_mul_mont(S2, S1, Hcub);
 | 
						|
    ecp_nistz256_mul_mont(res_y, R, res_y);
 | 
						|
    ecp_nistz256_sub(res_y, res_y, S2);
 | 
						|
 | 
						|
    copy_conditional(res_x, in2_x, in1infty);
 | 
						|
    copy_conditional(res_y, in2_y, in1infty);
 | 
						|
    copy_conditional(res_z, in2_z, in1infty);
 | 
						|
 | 
						|
    copy_conditional(res_x, in1_x, in2infty);
 | 
						|
    copy_conditional(res_y, in1_y, in2infty);
 | 
						|
    copy_conditional(res_z, in1_z, in2infty);
 | 
						|
 | 
						|
    memcpy(r->X, res_x, sizeof(res_x));
 | 
						|
    memcpy(r->Y, res_y, sizeof(res_y));
 | 
						|
    memcpy(r->Z, res_z, sizeof(res_z));
 | 
						|
}
 | 
						|
 | 
						|
/* Point addition when b is known to be affine: r = a+b */
 | 
						|
static void ecp_nistz256_point_add_affine(P256_POINT *r,
 | 
						|
                                          const P256_POINT *a,
 | 
						|
                                          const P256_POINT_AFFINE *b)
 | 
						|
{
 | 
						|
    BN_ULONG U2[P256_LIMBS], S2[P256_LIMBS];
 | 
						|
    BN_ULONG Z1sqr[P256_LIMBS];
 | 
						|
    BN_ULONG H[P256_LIMBS], R[P256_LIMBS];
 | 
						|
    BN_ULONG Hsqr[P256_LIMBS];
 | 
						|
    BN_ULONG Rsqr[P256_LIMBS];
 | 
						|
    BN_ULONG Hcub[P256_LIMBS];
 | 
						|
 | 
						|
    BN_ULONG res_x[P256_LIMBS];
 | 
						|
    BN_ULONG res_y[P256_LIMBS];
 | 
						|
    BN_ULONG res_z[P256_LIMBS];
 | 
						|
 | 
						|
    BN_ULONG in1infty, in2infty;
 | 
						|
 | 
						|
    const BN_ULONG *in1_x = a->X;
 | 
						|
    const BN_ULONG *in1_y = a->Y;
 | 
						|
    const BN_ULONG *in1_z = a->Z;
 | 
						|
 | 
						|
    const BN_ULONG *in2_x = b->X;
 | 
						|
    const BN_ULONG *in2_y = b->Y;
 | 
						|
 | 
						|
    /*
 | 
						|
     * Infinity in encoded as (,,0)
 | 
						|
     */
 | 
						|
    in1infty = (in1_z[0] | in1_z[1] | in1_z[2] | in1_z[3]);
 | 
						|
    if (P256_LIMBS == 8)
 | 
						|
        in1infty |= (in1_z[4] | in1_z[5] | in1_z[6] | in1_z[7]);
 | 
						|
 | 
						|
    /*
 | 
						|
     * In affine representation we encode infinity as (0,0), which is
 | 
						|
     * not on the curve, so it is OK
 | 
						|
     */
 | 
						|
    in2infty = (in2_x[0] | in2_x[1] | in2_x[2] | in2_x[3] |
 | 
						|
                in2_y[0] | in2_y[1] | in2_y[2] | in2_y[3]);
 | 
						|
    if (P256_LIMBS == 8)
 | 
						|
        in2infty |= (in2_x[4] | in2_x[5] | in2_x[6] | in2_x[7] |
 | 
						|
                     in2_y[4] | in2_y[5] | in2_y[6] | in2_y[7]);
 | 
						|
 | 
						|
    in1infty = is_zero(in1infty);
 | 
						|
    in2infty = is_zero(in2infty);
 | 
						|
 | 
						|
    ecp_nistz256_sqr_mont(Z1sqr, in1_z);        /* Z1^2 */
 | 
						|
 | 
						|
    ecp_nistz256_mul_mont(U2, in2_x, Z1sqr);    /* U2 = X2*Z1^2 */
 | 
						|
    ecp_nistz256_sub(H, U2, in1_x);             /* H = U2 - U1 */
 | 
						|
 | 
						|
    ecp_nistz256_mul_mont(S2, Z1sqr, in1_z);    /* S2 = Z1^3 */
 | 
						|
 | 
						|
    ecp_nistz256_mul_mont(res_z, H, in1_z);     /* Z3 = H*Z1*Z2 */
 | 
						|
 | 
						|
    ecp_nistz256_mul_mont(S2, S2, in2_y);       /* S2 = Y2*Z1^3 */
 | 
						|
    ecp_nistz256_sub(R, S2, in1_y);             /* R = S2 - S1 */
 | 
						|
 | 
						|
    ecp_nistz256_sqr_mont(Hsqr, H);             /* H^2 */
 | 
						|
    ecp_nistz256_sqr_mont(Rsqr, R);             /* R^2 */
 | 
						|
    ecp_nistz256_mul_mont(Hcub, Hsqr, H);       /* H^3 */
 | 
						|
 | 
						|
    ecp_nistz256_mul_mont(U2, in1_x, Hsqr);     /* U1*H^2 */
 | 
						|
    ecp_nistz256_mul_by_2(Hsqr, U2);            /* 2*U1*H^2 */
 | 
						|
 | 
						|
    ecp_nistz256_sub(res_x, Rsqr, Hsqr);
 | 
						|
    ecp_nistz256_sub(res_x, res_x, Hcub);
 | 
						|
    ecp_nistz256_sub(H, U2, res_x);
 | 
						|
 | 
						|
    ecp_nistz256_mul_mont(S2, in1_y, Hcub);
 | 
						|
    ecp_nistz256_mul_mont(H, H, R);
 | 
						|
    ecp_nistz256_sub(res_y, H, S2);
 | 
						|
 | 
						|
    copy_conditional(res_x, in2_x, in1infty);
 | 
						|
    copy_conditional(res_x, in1_x, in2infty);
 | 
						|
 | 
						|
    copy_conditional(res_y, in2_y, in1infty);
 | 
						|
    copy_conditional(res_y, in1_y, in2infty);
 | 
						|
 | 
						|
    copy_conditional(res_z, ONE, in1infty);
 | 
						|
    copy_conditional(res_z, in1_z, in2infty);
 | 
						|
 | 
						|
    memcpy(r->X, res_x, sizeof(res_x));
 | 
						|
    memcpy(r->Y, res_y, sizeof(res_y));
 | 
						|
    memcpy(r->Z, res_z, sizeof(res_z));
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/* r = in^-1 mod p */
 | 
						|
static void ecp_nistz256_mod_inverse(BN_ULONG r[P256_LIMBS],
 | 
						|
                                     const BN_ULONG in[P256_LIMBS])
 | 
						|
{
 | 
						|
    /*
 | 
						|
     * The poly is ffffffff 00000001 00000000 00000000 00000000 ffffffff
 | 
						|
     * ffffffff ffffffff We use FLT and used poly-2 as exponent
 | 
						|
     */
 | 
						|
    BN_ULONG p2[P256_LIMBS];
 | 
						|
    BN_ULONG p4[P256_LIMBS];
 | 
						|
    BN_ULONG p8[P256_LIMBS];
 | 
						|
    BN_ULONG p16[P256_LIMBS];
 | 
						|
    BN_ULONG p32[P256_LIMBS];
 | 
						|
    BN_ULONG res[P256_LIMBS];
 | 
						|
    int i;
 | 
						|
 | 
						|
    ecp_nistz256_sqr_mont(res, in);
 | 
						|
    ecp_nistz256_mul_mont(p2, res, in);         /* 3*p */
 | 
						|
 | 
						|
    ecp_nistz256_sqr_mont(res, p2);
 | 
						|
    ecp_nistz256_sqr_mont(res, res);
 | 
						|
    ecp_nistz256_mul_mont(p4, res, p2);         /* f*p */
 | 
						|
 | 
						|
    ecp_nistz256_sqr_mont(res, p4);
 | 
						|
    ecp_nistz256_sqr_mont(res, res);
 | 
						|
    ecp_nistz256_sqr_mont(res, res);
 | 
						|
    ecp_nistz256_sqr_mont(res, res);
 | 
						|
    ecp_nistz256_mul_mont(p8, res, p4);         /* ff*p */
 | 
						|
 | 
						|
    ecp_nistz256_sqr_mont(res, p8);
 | 
						|
    for (i = 0; i < 7; i++)
 | 
						|
        ecp_nistz256_sqr_mont(res, res);
 | 
						|
    ecp_nistz256_mul_mont(p16, res, p8);        /* ffff*p */
 | 
						|
 | 
						|
    ecp_nistz256_sqr_mont(res, p16);
 | 
						|
    for (i = 0; i < 15; i++)
 | 
						|
        ecp_nistz256_sqr_mont(res, res);
 | 
						|
    ecp_nistz256_mul_mont(p32, res, p16);       /* ffffffff*p */
 | 
						|
 | 
						|
    ecp_nistz256_sqr_mont(res, p32);
 | 
						|
    for (i = 0; i < 31; i++)
 | 
						|
        ecp_nistz256_sqr_mont(res, res);
 | 
						|
    ecp_nistz256_mul_mont(res, res, in);
 | 
						|
 | 
						|
    for (i = 0; i < 32 * 4; i++)
 | 
						|
        ecp_nistz256_sqr_mont(res, res);
 | 
						|
    ecp_nistz256_mul_mont(res, res, p32);
 | 
						|
 | 
						|
    for (i = 0; i < 32; i++)
 | 
						|
        ecp_nistz256_sqr_mont(res, res);
 | 
						|
    ecp_nistz256_mul_mont(res, res, p32);
 | 
						|
 | 
						|
    for (i = 0; i < 16; i++)
 | 
						|
        ecp_nistz256_sqr_mont(res, res);
 | 
						|
    ecp_nistz256_mul_mont(res, res, p16);
 | 
						|
 | 
						|
    for (i = 0; i < 8; i++)
 | 
						|
        ecp_nistz256_sqr_mont(res, res);
 | 
						|
    ecp_nistz256_mul_mont(res, res, p8);
 | 
						|
 | 
						|
    ecp_nistz256_sqr_mont(res, res);
 | 
						|
    ecp_nistz256_sqr_mont(res, res);
 | 
						|
    ecp_nistz256_sqr_mont(res, res);
 | 
						|
    ecp_nistz256_sqr_mont(res, res);
 | 
						|
    ecp_nistz256_mul_mont(res, res, p4);
 | 
						|
 | 
						|
    ecp_nistz256_sqr_mont(res, res);
 | 
						|
    ecp_nistz256_sqr_mont(res, res);
 | 
						|
    ecp_nistz256_mul_mont(res, res, p2);
 | 
						|
 | 
						|
    ecp_nistz256_sqr_mont(res, res);
 | 
						|
    ecp_nistz256_sqr_mont(res, res);
 | 
						|
    ecp_nistz256_mul_mont(res, res, in);
 | 
						|
 | 
						|
    memcpy(r, res, sizeof(res));
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * ecp_nistz256_bignum_to_field_elem copies the contents of |in| to |out| and
 | 
						|
 * returns one if it fits. Otherwise it returns zero.
 | 
						|
 */
 | 
						|
__owur static int ecp_nistz256_bignum_to_field_elem(BN_ULONG out[P256_LIMBS],
 | 
						|
                                                    const BIGNUM *in)
 | 
						|
{
 | 
						|
    return bn_copy_words(out, in, P256_LIMBS);
 | 
						|
}
 | 
						|
 | 
						|
/* r = sum(scalar[i]*point[i]) */
 | 
						|
__owur static int ecp_nistz256_windowed_mul(const EC_GROUP *group,
 | 
						|
                                            P256_POINT *r,
 | 
						|
                                            const BIGNUM **scalar,
 | 
						|
                                            const EC_POINT **point,
 | 
						|
                                            size_t num, BN_CTX *ctx)
 | 
						|
{
 | 
						|
    size_t i;
 | 
						|
    int j, ret = 0;
 | 
						|
    unsigned int idx;
 | 
						|
    unsigned char (*p_str)[33] = NULL;
 | 
						|
    const unsigned int window_size = 5;
 | 
						|
    const unsigned int mask = (1 << (window_size + 1)) - 1;
 | 
						|
    unsigned int wvalue;
 | 
						|
    P256_POINT *temp;           /* place for 5 temporary points */
 | 
						|
    const BIGNUM **scalars = NULL;
 | 
						|
    P256_POINT (*table)[16] = NULL;
 | 
						|
    void *table_storage = NULL;
 | 
						|
 | 
						|
    if ((num * 16 + 6) > OPENSSL_MALLOC_MAX_NELEMS(P256_POINT)
 | 
						|
        || (table_storage =
 | 
						|
            OPENSSL_malloc((num * 16 + 5) * sizeof(P256_POINT) + 64)) == NULL
 | 
						|
        || (p_str =
 | 
						|
            OPENSSL_malloc(num * 33 * sizeof(unsigned char))) == NULL
 | 
						|
        || (scalars = OPENSSL_malloc(num * sizeof(BIGNUM *))) == NULL) {
 | 
						|
        ECerr(EC_F_ECP_NISTZ256_WINDOWED_MUL, ERR_R_MALLOC_FAILURE);
 | 
						|
        goto err;
 | 
						|
    }
 | 
						|
 | 
						|
    table = (void *)ALIGNPTR(table_storage, 64);
 | 
						|
    temp = (P256_POINT *)(table + num);
 | 
						|
 | 
						|
    for (i = 0; i < num; i++) {
 | 
						|
        P256_POINT *row = table[i];
 | 
						|
 | 
						|
        /* This is an unusual input, we don't guarantee constant-timeness. */
 | 
						|
        if ((BN_num_bits(scalar[i]) > 256) || BN_is_negative(scalar[i])) {
 | 
						|
            BIGNUM *mod;
 | 
						|
 | 
						|
            if ((mod = BN_CTX_get(ctx)) == NULL)
 | 
						|
                goto err;
 | 
						|
            if (!BN_nnmod(mod, scalar[i], group->order, ctx)) {
 | 
						|
                ECerr(EC_F_ECP_NISTZ256_WINDOWED_MUL, ERR_R_BN_LIB);
 | 
						|
                goto err;
 | 
						|
            }
 | 
						|
            scalars[i] = mod;
 | 
						|
        } else
 | 
						|
            scalars[i] = scalar[i];
 | 
						|
 | 
						|
        for (j = 0; j < bn_get_top(scalars[i]) * BN_BYTES; j += BN_BYTES) {
 | 
						|
            BN_ULONG d = bn_get_words(scalars[i])[j / BN_BYTES];
 | 
						|
 | 
						|
            p_str[i][j + 0] = (unsigned char)d;
 | 
						|
            p_str[i][j + 1] = (unsigned char)(d >> 8);
 | 
						|
            p_str[i][j + 2] = (unsigned char)(d >> 16);
 | 
						|
            p_str[i][j + 3] = (unsigned char)(d >>= 24);
 | 
						|
            if (BN_BYTES == 8) {
 | 
						|
                d >>= 8;
 | 
						|
                p_str[i][j + 4] = (unsigned char)d;
 | 
						|
                p_str[i][j + 5] = (unsigned char)(d >> 8);
 | 
						|
                p_str[i][j + 6] = (unsigned char)(d >> 16);
 | 
						|
                p_str[i][j + 7] = (unsigned char)(d >> 24);
 | 
						|
            }
 | 
						|
        }
 | 
						|
        for (; j < 33; j++)
 | 
						|
            p_str[i][j] = 0;
 | 
						|
 | 
						|
        if (!ecp_nistz256_bignum_to_field_elem(temp[0].X, point[i]->X)
 | 
						|
            || !ecp_nistz256_bignum_to_field_elem(temp[0].Y, point[i]->Y)
 | 
						|
            || !ecp_nistz256_bignum_to_field_elem(temp[0].Z, point[i]->Z)) {
 | 
						|
            ECerr(EC_F_ECP_NISTZ256_WINDOWED_MUL,
 | 
						|
                  EC_R_COORDINATES_OUT_OF_RANGE);
 | 
						|
            goto err;
 | 
						|
        }
 | 
						|
 | 
						|
        /*
 | 
						|
         * row[0] is implicitly (0,0,0) (the point at infinity), therefore it
 | 
						|
         * is not stored. All other values are actually stored with an offset
 | 
						|
         * of -1 in table.
 | 
						|
         */
 | 
						|
 | 
						|
        ecp_nistz256_scatter_w5  (row, &temp[0], 1);
 | 
						|
        ecp_nistz256_point_double(&temp[1], &temp[0]);              /*1+1=2  */
 | 
						|
        ecp_nistz256_scatter_w5  (row, &temp[1], 2);
 | 
						|
        ecp_nistz256_point_add   (&temp[2], &temp[1], &temp[0]);    /*2+1=3  */
 | 
						|
        ecp_nistz256_scatter_w5  (row, &temp[2], 3);
 | 
						|
        ecp_nistz256_point_double(&temp[1], &temp[1]);              /*2*2=4  */
 | 
						|
        ecp_nistz256_scatter_w5  (row, &temp[1], 4);
 | 
						|
        ecp_nistz256_point_double(&temp[2], &temp[2]);              /*2*3=6  */
 | 
						|
        ecp_nistz256_scatter_w5  (row, &temp[2], 6);
 | 
						|
        ecp_nistz256_point_add   (&temp[3], &temp[1], &temp[0]);    /*4+1=5  */
 | 
						|
        ecp_nistz256_scatter_w5  (row, &temp[3], 5);
 | 
						|
        ecp_nistz256_point_add   (&temp[4], &temp[2], &temp[0]);    /*6+1=7  */
 | 
						|
        ecp_nistz256_scatter_w5  (row, &temp[4], 7);
 | 
						|
        ecp_nistz256_point_double(&temp[1], &temp[1]);              /*2*4=8  */
 | 
						|
        ecp_nistz256_scatter_w5  (row, &temp[1], 8);
 | 
						|
        ecp_nistz256_point_double(&temp[2], &temp[2]);              /*2*6=12 */
 | 
						|
        ecp_nistz256_scatter_w5  (row, &temp[2], 12);
 | 
						|
        ecp_nistz256_point_double(&temp[3], &temp[3]);              /*2*5=10 */
 | 
						|
        ecp_nistz256_scatter_w5  (row, &temp[3], 10);
 | 
						|
        ecp_nistz256_point_double(&temp[4], &temp[4]);              /*2*7=14 */
 | 
						|
        ecp_nistz256_scatter_w5  (row, &temp[4], 14);
 | 
						|
        ecp_nistz256_point_add   (&temp[2], &temp[2], &temp[0]);    /*12+1=13*/
 | 
						|
        ecp_nistz256_scatter_w5  (row, &temp[2], 13);
 | 
						|
        ecp_nistz256_point_add   (&temp[3], &temp[3], &temp[0]);    /*10+1=11*/
 | 
						|
        ecp_nistz256_scatter_w5  (row, &temp[3], 11);
 | 
						|
        ecp_nistz256_point_add   (&temp[4], &temp[4], &temp[0]);    /*14+1=15*/
 | 
						|
        ecp_nistz256_scatter_w5  (row, &temp[4], 15);
 | 
						|
        ecp_nistz256_point_add   (&temp[2], &temp[1], &temp[0]);    /*8+1=9  */
 | 
						|
        ecp_nistz256_scatter_w5  (row, &temp[2], 9);
 | 
						|
        ecp_nistz256_point_double(&temp[1], &temp[1]);              /*2*8=16 */
 | 
						|
        ecp_nistz256_scatter_w5  (row, &temp[1], 16);
 | 
						|
    }
 | 
						|
 | 
						|
    idx = 255;
 | 
						|
 | 
						|
    wvalue = p_str[0][(idx - 1) / 8];
 | 
						|
    wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
 | 
						|
 | 
						|
    /*
 | 
						|
     * We gather to temp[0], because we know it's position relative
 | 
						|
     * to table
 | 
						|
     */
 | 
						|
    ecp_nistz256_gather_w5(&temp[0], table[0], _booth_recode_w5(wvalue) >> 1);
 | 
						|
    memcpy(r, &temp[0], sizeof(temp[0]));
 | 
						|
 | 
						|
    while (idx >= 5) {
 | 
						|
        for (i = (idx == 255 ? 1 : 0); i < num; i++) {
 | 
						|
            unsigned int off = (idx - 1) / 8;
 | 
						|
 | 
						|
            wvalue = p_str[i][off] | p_str[i][off + 1] << 8;
 | 
						|
            wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
 | 
						|
 | 
						|
            wvalue = _booth_recode_w5(wvalue);
 | 
						|
 | 
						|
            ecp_nistz256_gather_w5(&temp[0], table[i], wvalue >> 1);
 | 
						|
 | 
						|
            ecp_nistz256_neg(temp[1].Y, temp[0].Y);
 | 
						|
            copy_conditional(temp[0].Y, temp[1].Y, (wvalue & 1));
 | 
						|
 | 
						|
            ecp_nistz256_point_add(r, r, &temp[0]);
 | 
						|
        }
 | 
						|
 | 
						|
        idx -= window_size;
 | 
						|
 | 
						|
        ecp_nistz256_point_double(r, r);
 | 
						|
        ecp_nistz256_point_double(r, r);
 | 
						|
        ecp_nistz256_point_double(r, r);
 | 
						|
        ecp_nistz256_point_double(r, r);
 | 
						|
        ecp_nistz256_point_double(r, r);
 | 
						|
    }
 | 
						|
 | 
						|
    /* Final window */
 | 
						|
    for (i = 0; i < num; i++) {
 | 
						|
        wvalue = p_str[i][0];
 | 
						|
        wvalue = (wvalue << 1) & mask;
 | 
						|
 | 
						|
        wvalue = _booth_recode_w5(wvalue);
 | 
						|
 | 
						|
        ecp_nistz256_gather_w5(&temp[0], table[i], wvalue >> 1);
 | 
						|
 | 
						|
        ecp_nistz256_neg(temp[1].Y, temp[0].Y);
 | 
						|
        copy_conditional(temp[0].Y, temp[1].Y, wvalue & 1);
 | 
						|
 | 
						|
        ecp_nistz256_point_add(r, r, &temp[0]);
 | 
						|
    }
 | 
						|
 | 
						|
    ret = 1;
 | 
						|
 err:
 | 
						|
    OPENSSL_free(table_storage);
 | 
						|
    OPENSSL_free(p_str);
 | 
						|
    OPENSSL_free(scalars);
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
/* Coordinates of G, for which we have precomputed tables */
 | 
						|
static const BN_ULONG def_xG[P256_LIMBS] = {
 | 
						|
    TOBN(0x79e730d4, 0x18a9143c), TOBN(0x75ba95fc, 0x5fedb601),
 | 
						|
    TOBN(0x79fb732b, 0x77622510), TOBN(0x18905f76, 0xa53755c6)
 | 
						|
};
 | 
						|
 | 
						|
static const BN_ULONG def_yG[P256_LIMBS] = {
 | 
						|
    TOBN(0xddf25357, 0xce95560a), TOBN(0x8b4ab8e4, 0xba19e45c),
 | 
						|
    TOBN(0xd2e88688, 0xdd21f325), TOBN(0x8571ff18, 0x25885d85)
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * ecp_nistz256_is_affine_G returns one if |generator| is the standard, P-256
 | 
						|
 * generator.
 | 
						|
 */
 | 
						|
static int ecp_nistz256_is_affine_G(const EC_POINT *generator)
 | 
						|
{
 | 
						|
    return (bn_get_top(generator->X) == P256_LIMBS) &&
 | 
						|
        (bn_get_top(generator->Y) == P256_LIMBS) &&
 | 
						|
        is_equal(bn_get_words(generator->X), def_xG) &&
 | 
						|
        is_equal(bn_get_words(generator->Y), def_yG) &&
 | 
						|
        is_one(generator->Z);
 | 
						|
}
 | 
						|
 | 
						|
__owur static int ecp_nistz256_mult_precompute(EC_GROUP *group, BN_CTX *ctx)
 | 
						|
{
 | 
						|
    /*
 | 
						|
     * We precompute a table for a Booth encoded exponent (wNAF) based
 | 
						|
     * computation. Each table holds 64 values for safe access, with an
 | 
						|
     * implicit value of infinity at index zero. We use window of size 7, and
 | 
						|
     * therefore require ceil(256/7) = 37 tables.
 | 
						|
     */
 | 
						|
    const BIGNUM *order;
 | 
						|
    EC_POINT *P = NULL, *T = NULL;
 | 
						|
    const EC_POINT *generator;
 | 
						|
    NISTZ256_PRE_COMP *pre_comp;
 | 
						|
    BN_CTX *new_ctx = NULL;
 | 
						|
    int i, j, k, ret = 0;
 | 
						|
    size_t w;
 | 
						|
 | 
						|
    PRECOMP256_ROW *preComputedTable = NULL;
 | 
						|
    unsigned char *precomp_storage = NULL;
 | 
						|
 | 
						|
    /* if there is an old NISTZ256_PRE_COMP object, throw it away */
 | 
						|
    EC_pre_comp_free(group);
 | 
						|
    generator = EC_GROUP_get0_generator(group);
 | 
						|
    if (generator == NULL) {
 | 
						|
        ECerr(EC_F_ECP_NISTZ256_MULT_PRECOMPUTE, EC_R_UNDEFINED_GENERATOR);
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    if (ecp_nistz256_is_affine_G(generator)) {
 | 
						|
        /*
 | 
						|
         * No need to calculate tables for the standard generator because we
 | 
						|
         * have them statically.
 | 
						|
         */
 | 
						|
        return 1;
 | 
						|
    }
 | 
						|
 | 
						|
    if ((pre_comp = ecp_nistz256_pre_comp_new(group)) == NULL)
 | 
						|
        return 0;
 | 
						|
 | 
						|
    if (ctx == NULL) {
 | 
						|
        ctx = new_ctx = BN_CTX_new();
 | 
						|
        if (ctx == NULL)
 | 
						|
            goto err;
 | 
						|
    }
 | 
						|
 | 
						|
    BN_CTX_start(ctx);
 | 
						|
 | 
						|
    order = EC_GROUP_get0_order(group);
 | 
						|
    if (order == NULL)
 | 
						|
        goto err;
 | 
						|
 | 
						|
    if (BN_is_zero(order)) {
 | 
						|
        ECerr(EC_F_ECP_NISTZ256_MULT_PRECOMPUTE, EC_R_UNKNOWN_ORDER);
 | 
						|
        goto err;
 | 
						|
    }
 | 
						|
 | 
						|
    w = 7;
 | 
						|
 | 
						|
    if ((precomp_storage =
 | 
						|
         OPENSSL_malloc(37 * 64 * sizeof(P256_POINT_AFFINE) + 64)) == NULL) {
 | 
						|
        ECerr(EC_F_ECP_NISTZ256_MULT_PRECOMPUTE, ERR_R_MALLOC_FAILURE);
 | 
						|
        goto err;
 | 
						|
    }
 | 
						|
 | 
						|
    preComputedTable = (void *)ALIGNPTR(precomp_storage, 64);
 | 
						|
 | 
						|
    P = EC_POINT_new(group);
 | 
						|
    T = EC_POINT_new(group);
 | 
						|
    if (P == NULL || T == NULL)
 | 
						|
        goto err;
 | 
						|
 | 
						|
    /*
 | 
						|
     * The zero entry is implicitly infinity, and we skip it, storing other
 | 
						|
     * values with -1 offset.
 | 
						|
     */
 | 
						|
    if (!EC_POINT_copy(T, generator))
 | 
						|
        goto err;
 | 
						|
 | 
						|
    for (k = 0; k < 64; k++) {
 | 
						|
        if (!EC_POINT_copy(P, T))
 | 
						|
            goto err;
 | 
						|
        for (j = 0; j < 37; j++) {
 | 
						|
            P256_POINT_AFFINE temp;
 | 
						|
            /*
 | 
						|
             * It would be faster to use EC_POINTs_make_affine and
 | 
						|
             * make multiple points affine at the same time.
 | 
						|
             */
 | 
						|
            if (!EC_POINT_make_affine(group, P, ctx))
 | 
						|
                goto err;
 | 
						|
            if (!ecp_nistz256_bignum_to_field_elem(temp.X, P->X) ||
 | 
						|
                !ecp_nistz256_bignum_to_field_elem(temp.Y, P->Y)) {
 | 
						|
                ECerr(EC_F_ECP_NISTZ256_MULT_PRECOMPUTE,
 | 
						|
                      EC_R_COORDINATES_OUT_OF_RANGE);
 | 
						|
                goto err;
 | 
						|
            }
 | 
						|
            ecp_nistz256_scatter_w7(preComputedTable[j], &temp, k);
 | 
						|
            for (i = 0; i < 7; i++) {
 | 
						|
                if (!EC_POINT_dbl(group, P, P, ctx))
 | 
						|
                    goto err;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        if (!EC_POINT_add(group, T, T, generator, ctx))
 | 
						|
            goto err;
 | 
						|
    }
 | 
						|
 | 
						|
    pre_comp->group = group;
 | 
						|
    pre_comp->w = w;
 | 
						|
    pre_comp->precomp = preComputedTable;
 | 
						|
    pre_comp->precomp_storage = precomp_storage;
 | 
						|
    precomp_storage = NULL;
 | 
						|
    SETPRECOMP(group, nistz256, pre_comp);
 | 
						|
    pre_comp = NULL;
 | 
						|
    ret = 1;
 | 
						|
 | 
						|
 err:
 | 
						|
    if (ctx != NULL)
 | 
						|
        BN_CTX_end(ctx);
 | 
						|
    BN_CTX_free(new_ctx);
 | 
						|
 | 
						|
    EC_nistz256_pre_comp_free(pre_comp);
 | 
						|
    OPENSSL_free(precomp_storage);
 | 
						|
    EC_POINT_free(P);
 | 
						|
    EC_POINT_free(T);
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Note that by default ECP_NISTZ256_AVX2 is undefined. While it's great
 | 
						|
 * code processing 4 points in parallel, corresponding serial operation
 | 
						|
 * is several times slower, because it uses 29x29=58-bit multiplication
 | 
						|
 * as opposite to 64x64=128-bit in integer-only scalar case. As result
 | 
						|
 * it doesn't provide *significant* performance improvement. Note that
 | 
						|
 * just defining ECP_NISTZ256_AVX2 is not sufficient to make it work,
 | 
						|
 * you'd need to compile even asm/ecp_nistz256-avx.pl module.
 | 
						|
 */
 | 
						|
#if defined(ECP_NISTZ256_AVX2)
 | 
						|
# if !(defined(__x86_64) || defined(__x86_64__) || \
 | 
						|
       defined(_M_AMD64) || defined(_M_X64)) || \
 | 
						|
     !(defined(__GNUC__) || defined(_MSC_VER)) /* this is for ALIGN32 */
 | 
						|
#  undef ECP_NISTZ256_AVX2
 | 
						|
# else
 | 
						|
/* Constant time access, loading four values, from four consecutive tables */
 | 
						|
void ecp_nistz256_avx2_multi_gather_w7(void *result, const void *in,
 | 
						|
                                       int index0, int index1, int index2,
 | 
						|
                                       int index3);
 | 
						|
void ecp_nistz256_avx2_transpose_convert(void *RESULTx4, const void *in);
 | 
						|
void ecp_nistz256_avx2_convert_transpose_back(void *result, const void *Ax4);
 | 
						|
void ecp_nistz256_avx2_point_add_affine_x4(void *RESULTx4, const void *Ax4,
 | 
						|
                                           const void *Bx4);
 | 
						|
void ecp_nistz256_avx2_point_add_affines_x4(void *RESULTx4, const void *Ax4,
 | 
						|
                                            const void *Bx4);
 | 
						|
void ecp_nistz256_avx2_to_mont(void *RESULTx4, const void *Ax4);
 | 
						|
void ecp_nistz256_avx2_from_mont(void *RESULTx4, const void *Ax4);
 | 
						|
void ecp_nistz256_avx2_set1(void *RESULTx4);
 | 
						|
int ecp_nistz_avx2_eligible(void);
 | 
						|
 | 
						|
static void booth_recode_w7(unsigned char *sign,
 | 
						|
                            unsigned char *digit, unsigned char in)
 | 
						|
{
 | 
						|
    unsigned char s, d;
 | 
						|
 | 
						|
    s = ~((in >> 7) - 1);
 | 
						|
    d = (1 << 8) - in - 1;
 | 
						|
    d = (d & s) | (in & ~s);
 | 
						|
    d = (d >> 1) + (d & 1);
 | 
						|
 | 
						|
    *sign = s & 1;
 | 
						|
    *digit = d;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * ecp_nistz256_avx2_mul_g performs multiplication by G, using only the
 | 
						|
 * precomputed table. It does 4 affine point additions in parallel,
 | 
						|
 * significantly speeding up point multiplication for a fixed value.
 | 
						|
 */
 | 
						|
static void ecp_nistz256_avx2_mul_g(P256_POINT *r,
 | 
						|
                                    unsigned char p_str[33],
 | 
						|
                                    const P256_POINT_AFFINE(*preComputedTable)[64])
 | 
						|
{
 | 
						|
    const unsigned int window_size = 7;
 | 
						|
    const unsigned int mask = (1 << (window_size + 1)) - 1;
 | 
						|
    unsigned int wvalue;
 | 
						|
    /* Using 4 windows at a time */
 | 
						|
    unsigned char sign0, digit0;
 | 
						|
    unsigned char sign1, digit1;
 | 
						|
    unsigned char sign2, digit2;
 | 
						|
    unsigned char sign3, digit3;
 | 
						|
    unsigned int idx = 0;
 | 
						|
    BN_ULONG tmp[P256_LIMBS];
 | 
						|
    int i;
 | 
						|
 | 
						|
    ALIGN32 BN_ULONG aX4[4 * 9 * 3] = { 0 };
 | 
						|
    ALIGN32 BN_ULONG bX4[4 * 9 * 2] = { 0 };
 | 
						|
    ALIGN32 P256_POINT_AFFINE point_arr[4];
 | 
						|
    ALIGN32 P256_POINT res_point_arr[4];
 | 
						|
 | 
						|
    /* Initial four windows */
 | 
						|
    wvalue = *((u16 *) & p_str[0]);
 | 
						|
    wvalue = (wvalue << 1) & mask;
 | 
						|
    idx += window_size;
 | 
						|
    booth_recode_w7(&sign0, &digit0, wvalue);
 | 
						|
    wvalue = *((u16 *) & p_str[(idx - 1) / 8]);
 | 
						|
    wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
 | 
						|
    idx += window_size;
 | 
						|
    booth_recode_w7(&sign1, &digit1, wvalue);
 | 
						|
    wvalue = *((u16 *) & p_str[(idx - 1) / 8]);
 | 
						|
    wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
 | 
						|
    idx += window_size;
 | 
						|
    booth_recode_w7(&sign2, &digit2, wvalue);
 | 
						|
    wvalue = *((u16 *) & p_str[(idx - 1) / 8]);
 | 
						|
    wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
 | 
						|
    idx += window_size;
 | 
						|
    booth_recode_w7(&sign3, &digit3, wvalue);
 | 
						|
 | 
						|
    ecp_nistz256_avx2_multi_gather_w7(point_arr, preComputedTable[0],
 | 
						|
                                      digit0, digit1, digit2, digit3);
 | 
						|
 | 
						|
    ecp_nistz256_neg(tmp, point_arr[0].Y);
 | 
						|
    copy_conditional(point_arr[0].Y, tmp, sign0);
 | 
						|
    ecp_nistz256_neg(tmp, point_arr[1].Y);
 | 
						|
    copy_conditional(point_arr[1].Y, tmp, sign1);
 | 
						|
    ecp_nistz256_neg(tmp, point_arr[2].Y);
 | 
						|
    copy_conditional(point_arr[2].Y, tmp, sign2);
 | 
						|
    ecp_nistz256_neg(tmp, point_arr[3].Y);
 | 
						|
    copy_conditional(point_arr[3].Y, tmp, sign3);
 | 
						|
 | 
						|
    ecp_nistz256_avx2_transpose_convert(aX4, point_arr);
 | 
						|
    ecp_nistz256_avx2_to_mont(aX4, aX4);
 | 
						|
    ecp_nistz256_avx2_to_mont(&aX4[4 * 9], &aX4[4 * 9]);
 | 
						|
    ecp_nistz256_avx2_set1(&aX4[4 * 9 * 2]);
 | 
						|
 | 
						|
    wvalue = *((u16 *) & p_str[(idx - 1) / 8]);
 | 
						|
    wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
 | 
						|
    idx += window_size;
 | 
						|
    booth_recode_w7(&sign0, &digit0, wvalue);
 | 
						|
    wvalue = *((u16 *) & p_str[(idx - 1) / 8]);
 | 
						|
    wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
 | 
						|
    idx += window_size;
 | 
						|
    booth_recode_w7(&sign1, &digit1, wvalue);
 | 
						|
    wvalue = *((u16 *) & p_str[(idx - 1) / 8]);
 | 
						|
    wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
 | 
						|
    idx += window_size;
 | 
						|
    booth_recode_w7(&sign2, &digit2, wvalue);
 | 
						|
    wvalue = *((u16 *) & p_str[(idx - 1) / 8]);
 | 
						|
    wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
 | 
						|
    idx += window_size;
 | 
						|
    booth_recode_w7(&sign3, &digit3, wvalue);
 | 
						|
 | 
						|
    ecp_nistz256_avx2_multi_gather_w7(point_arr, preComputedTable[4 * 1],
 | 
						|
                                      digit0, digit1, digit2, digit3);
 | 
						|
 | 
						|
    ecp_nistz256_neg(tmp, point_arr[0].Y);
 | 
						|
    copy_conditional(point_arr[0].Y, tmp, sign0);
 | 
						|
    ecp_nistz256_neg(tmp, point_arr[1].Y);
 | 
						|
    copy_conditional(point_arr[1].Y, tmp, sign1);
 | 
						|
    ecp_nistz256_neg(tmp, point_arr[2].Y);
 | 
						|
    copy_conditional(point_arr[2].Y, tmp, sign2);
 | 
						|
    ecp_nistz256_neg(tmp, point_arr[3].Y);
 | 
						|
    copy_conditional(point_arr[3].Y, tmp, sign3);
 | 
						|
 | 
						|
    ecp_nistz256_avx2_transpose_convert(bX4, point_arr);
 | 
						|
    ecp_nistz256_avx2_to_mont(bX4, bX4);
 | 
						|
    ecp_nistz256_avx2_to_mont(&bX4[4 * 9], &bX4[4 * 9]);
 | 
						|
    /* Optimized when both inputs are affine */
 | 
						|
    ecp_nistz256_avx2_point_add_affines_x4(aX4, aX4, bX4);
 | 
						|
 | 
						|
    for (i = 2; i < 9; i++) {
 | 
						|
        wvalue = *((u16 *) & p_str[(idx - 1) / 8]);
 | 
						|
        wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
 | 
						|
        idx += window_size;
 | 
						|
        booth_recode_w7(&sign0, &digit0, wvalue);
 | 
						|
        wvalue = *((u16 *) & p_str[(idx - 1) / 8]);
 | 
						|
        wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
 | 
						|
        idx += window_size;
 | 
						|
        booth_recode_w7(&sign1, &digit1, wvalue);
 | 
						|
        wvalue = *((u16 *) & p_str[(idx - 1) / 8]);
 | 
						|
        wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
 | 
						|
        idx += window_size;
 | 
						|
        booth_recode_w7(&sign2, &digit2, wvalue);
 | 
						|
        wvalue = *((u16 *) & p_str[(idx - 1) / 8]);
 | 
						|
        wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
 | 
						|
        idx += window_size;
 | 
						|
        booth_recode_w7(&sign3, &digit3, wvalue);
 | 
						|
 | 
						|
        ecp_nistz256_avx2_multi_gather_w7(point_arr,
 | 
						|
                                          preComputedTable[4 * i],
 | 
						|
                                          digit0, digit1, digit2, digit3);
 | 
						|
 | 
						|
        ecp_nistz256_neg(tmp, point_arr[0].Y);
 | 
						|
        copy_conditional(point_arr[0].Y, tmp, sign0);
 | 
						|
        ecp_nistz256_neg(tmp, point_arr[1].Y);
 | 
						|
        copy_conditional(point_arr[1].Y, tmp, sign1);
 | 
						|
        ecp_nistz256_neg(tmp, point_arr[2].Y);
 | 
						|
        copy_conditional(point_arr[2].Y, tmp, sign2);
 | 
						|
        ecp_nistz256_neg(tmp, point_arr[3].Y);
 | 
						|
        copy_conditional(point_arr[3].Y, tmp, sign3);
 | 
						|
 | 
						|
        ecp_nistz256_avx2_transpose_convert(bX4, point_arr);
 | 
						|
        ecp_nistz256_avx2_to_mont(bX4, bX4);
 | 
						|
        ecp_nistz256_avx2_to_mont(&bX4[4 * 9], &bX4[4 * 9]);
 | 
						|
 | 
						|
        ecp_nistz256_avx2_point_add_affine_x4(aX4, aX4, bX4);
 | 
						|
    }
 | 
						|
 | 
						|
    ecp_nistz256_avx2_from_mont(&aX4[4 * 9 * 0], &aX4[4 * 9 * 0]);
 | 
						|
    ecp_nistz256_avx2_from_mont(&aX4[4 * 9 * 1], &aX4[4 * 9 * 1]);
 | 
						|
    ecp_nistz256_avx2_from_mont(&aX4[4 * 9 * 2], &aX4[4 * 9 * 2]);
 | 
						|
 | 
						|
    ecp_nistz256_avx2_convert_transpose_back(res_point_arr, aX4);
 | 
						|
    /* Last window is performed serially */
 | 
						|
    wvalue = *((u16 *) & p_str[(idx - 1) / 8]);
 | 
						|
    wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
 | 
						|
    booth_recode_w7(&sign0, &digit0, wvalue);
 | 
						|
    ecp_nistz256_gather_w7((P256_POINT_AFFINE *)r,
 | 
						|
                           preComputedTable[36], digit0);
 | 
						|
    ecp_nistz256_neg(tmp, r->Y);
 | 
						|
    copy_conditional(r->Y, tmp, sign0);
 | 
						|
    memcpy(r->Z, ONE, sizeof(ONE));
 | 
						|
    /* Sum the four windows */
 | 
						|
    ecp_nistz256_point_add(r, r, &res_point_arr[0]);
 | 
						|
    ecp_nistz256_point_add(r, r, &res_point_arr[1]);
 | 
						|
    ecp_nistz256_point_add(r, r, &res_point_arr[2]);
 | 
						|
    ecp_nistz256_point_add(r, r, &res_point_arr[3]);
 | 
						|
}
 | 
						|
# endif
 | 
						|
#endif
 | 
						|
 | 
						|
__owur static int ecp_nistz256_set_from_affine(EC_POINT *out, const EC_GROUP *group,
 | 
						|
                                               const P256_POINT_AFFINE *in,
 | 
						|
                                               BN_CTX *ctx)
 | 
						|
{
 | 
						|
    int ret = 0;
 | 
						|
 | 
						|
    if ((ret = bn_set_words(out->X, in->X, P256_LIMBS))
 | 
						|
        && (ret = bn_set_words(out->Y, in->Y, P256_LIMBS))
 | 
						|
        && (ret = bn_set_words(out->Z, ONE, P256_LIMBS)))
 | 
						|
        out->Z_is_one = 1;
 | 
						|
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
/* r = scalar*G + sum(scalars[i]*points[i]) */
 | 
						|
__owur static int ecp_nistz256_points_mul(const EC_GROUP *group,
 | 
						|
                                          EC_POINT *r,
 | 
						|
                                          const BIGNUM *scalar,
 | 
						|
                                          size_t num,
 | 
						|
                                          const EC_POINT *points[],
 | 
						|
                                          const BIGNUM *scalars[], BN_CTX *ctx)
 | 
						|
{
 | 
						|
    int i = 0, ret = 0, no_precomp_for_generator = 0, p_is_infinity = 0;
 | 
						|
    unsigned char p_str[33] = { 0 };
 | 
						|
    const PRECOMP256_ROW *preComputedTable = NULL;
 | 
						|
    const NISTZ256_PRE_COMP *pre_comp = NULL;
 | 
						|
    const EC_POINT *generator = NULL;
 | 
						|
    const BIGNUM **new_scalars = NULL;
 | 
						|
    const EC_POINT **new_points = NULL;
 | 
						|
    unsigned int idx = 0;
 | 
						|
    const unsigned int window_size = 7;
 | 
						|
    const unsigned int mask = (1 << (window_size + 1)) - 1;
 | 
						|
    unsigned int wvalue;
 | 
						|
    ALIGN32 union {
 | 
						|
        P256_POINT p;
 | 
						|
        P256_POINT_AFFINE a;
 | 
						|
    } t, p;
 | 
						|
    BIGNUM *tmp_scalar;
 | 
						|
 | 
						|
    if ((num + 1) == 0 || (num + 1) > OPENSSL_MALLOC_MAX_NELEMS(void *)) {
 | 
						|
        ECerr(EC_F_ECP_NISTZ256_POINTS_MUL, ERR_R_MALLOC_FAILURE);
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    BN_CTX_start(ctx);
 | 
						|
 | 
						|
    if (scalar) {
 | 
						|
        generator = EC_GROUP_get0_generator(group);
 | 
						|
        if (generator == NULL) {
 | 
						|
            ECerr(EC_F_ECP_NISTZ256_POINTS_MUL, EC_R_UNDEFINED_GENERATOR);
 | 
						|
            goto err;
 | 
						|
        }
 | 
						|
 | 
						|
        /* look if we can use precomputed multiples of generator */
 | 
						|
        pre_comp = group->pre_comp.nistz256;
 | 
						|
 | 
						|
        if (pre_comp) {
 | 
						|
            /*
 | 
						|
             * If there is a precomputed table for the generator, check that
 | 
						|
             * it was generated with the same generator.
 | 
						|
             */
 | 
						|
            EC_POINT *pre_comp_generator = EC_POINT_new(group);
 | 
						|
            if (pre_comp_generator == NULL)
 | 
						|
                goto err;
 | 
						|
 | 
						|
            ecp_nistz256_gather_w7(&p.a, pre_comp->precomp[0], 1);
 | 
						|
            if (!ecp_nistz256_set_from_affine(pre_comp_generator,
 | 
						|
                                              group, &p.a, ctx)) {
 | 
						|
                EC_POINT_free(pre_comp_generator);
 | 
						|
                goto err;
 | 
						|
            }
 | 
						|
 | 
						|
            if (0 == EC_POINT_cmp(group, generator, pre_comp_generator, ctx))
 | 
						|
                preComputedTable = (const PRECOMP256_ROW *)pre_comp->precomp;
 | 
						|
 | 
						|
            EC_POINT_free(pre_comp_generator);
 | 
						|
        }
 | 
						|
 | 
						|
        if (preComputedTable == NULL && ecp_nistz256_is_affine_G(generator)) {
 | 
						|
            /*
 | 
						|
             * If there is no precomputed data, but the generator is the
 | 
						|
             * default, a hardcoded table of precomputed data is used. This
 | 
						|
             * is because applications, such as Apache, do not use
 | 
						|
             * EC_KEY_precompute_mult.
 | 
						|
             */
 | 
						|
            preComputedTable = ecp_nistz256_precomputed;
 | 
						|
        }
 | 
						|
 | 
						|
        if (preComputedTable) {
 | 
						|
            if ((BN_num_bits(scalar) > 256)
 | 
						|
                || BN_is_negative(scalar)) {
 | 
						|
                if ((tmp_scalar = BN_CTX_get(ctx)) == NULL)
 | 
						|
                    goto err;
 | 
						|
 | 
						|
                if (!BN_nnmod(tmp_scalar, scalar, group->order, ctx)) {
 | 
						|
                    ECerr(EC_F_ECP_NISTZ256_POINTS_MUL, ERR_R_BN_LIB);
 | 
						|
                    goto err;
 | 
						|
                }
 | 
						|
                scalar = tmp_scalar;
 | 
						|
            }
 | 
						|
 | 
						|
            for (i = 0; i < bn_get_top(scalar) * BN_BYTES; i += BN_BYTES) {
 | 
						|
                BN_ULONG d = bn_get_words(scalar)[i / BN_BYTES];
 | 
						|
 | 
						|
                p_str[i + 0] = (unsigned char)d;
 | 
						|
                p_str[i + 1] = (unsigned char)(d >> 8);
 | 
						|
                p_str[i + 2] = (unsigned char)(d >> 16);
 | 
						|
                p_str[i + 3] = (unsigned char)(d >>= 24);
 | 
						|
                if (BN_BYTES == 8) {
 | 
						|
                    d >>= 8;
 | 
						|
                    p_str[i + 4] = (unsigned char)d;
 | 
						|
                    p_str[i + 5] = (unsigned char)(d >> 8);
 | 
						|
                    p_str[i + 6] = (unsigned char)(d >> 16);
 | 
						|
                    p_str[i + 7] = (unsigned char)(d >> 24);
 | 
						|
                }
 | 
						|
            }
 | 
						|
 | 
						|
            for (; i < 33; i++)
 | 
						|
                p_str[i] = 0;
 | 
						|
 | 
						|
#if defined(ECP_NISTZ256_AVX2)
 | 
						|
            if (ecp_nistz_avx2_eligible()) {
 | 
						|
                ecp_nistz256_avx2_mul_g(&p.p, p_str, preComputedTable);
 | 
						|
            } else
 | 
						|
#endif
 | 
						|
            {
 | 
						|
                BN_ULONG infty;
 | 
						|
 | 
						|
                /* First window */
 | 
						|
                wvalue = (p_str[0] << 1) & mask;
 | 
						|
                idx += window_size;
 | 
						|
 | 
						|
                wvalue = _booth_recode_w7(wvalue);
 | 
						|
 | 
						|
                ecp_nistz256_gather_w7(&p.a, preComputedTable[0],
 | 
						|
                                       wvalue >> 1);
 | 
						|
 | 
						|
                ecp_nistz256_neg(p.p.Z, p.p.Y);
 | 
						|
                copy_conditional(p.p.Y, p.p.Z, wvalue & 1);
 | 
						|
 | 
						|
                /*
 | 
						|
                 * Since affine infinity is encoded as (0,0) and
 | 
						|
                 * Jacobian ias (,,0), we need to harmonize them
 | 
						|
                 * by assigning "one" or zero to Z.
 | 
						|
                 */
 | 
						|
                infty = (p.p.X[0] | p.p.X[1] | p.p.X[2] | p.p.X[3] |
 | 
						|
                         p.p.Y[0] | p.p.Y[1] | p.p.Y[2] | p.p.Y[3]);
 | 
						|
                if (P256_LIMBS == 8)
 | 
						|
                    infty |= (p.p.X[4] | p.p.X[5] | p.p.X[6] | p.p.X[7] |
 | 
						|
                              p.p.Y[4] | p.p.Y[5] | p.p.Y[6] | p.p.Y[7]);
 | 
						|
 | 
						|
                infty = 0 - is_zero(infty);
 | 
						|
                infty = ~infty;
 | 
						|
 | 
						|
                p.p.Z[0] = ONE[0] & infty;
 | 
						|
                p.p.Z[1] = ONE[1] & infty;
 | 
						|
                p.p.Z[2] = ONE[2] & infty;
 | 
						|
                p.p.Z[3] = ONE[3] & infty;
 | 
						|
                if (P256_LIMBS == 8) {
 | 
						|
                    p.p.Z[4] = ONE[4] & infty;
 | 
						|
                    p.p.Z[5] = ONE[5] & infty;
 | 
						|
                    p.p.Z[6] = ONE[6] & infty;
 | 
						|
                    p.p.Z[7] = ONE[7] & infty;
 | 
						|
                }
 | 
						|
 | 
						|
                for (i = 1; i < 37; i++) {
 | 
						|
                    unsigned int off = (idx - 1) / 8;
 | 
						|
                    wvalue = p_str[off] | p_str[off + 1] << 8;
 | 
						|
                    wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
 | 
						|
                    idx += window_size;
 | 
						|
 | 
						|
                    wvalue = _booth_recode_w7(wvalue);
 | 
						|
 | 
						|
                    ecp_nistz256_gather_w7(&t.a,
 | 
						|
                                           preComputedTable[i], wvalue >> 1);
 | 
						|
 | 
						|
                    ecp_nistz256_neg(t.p.Z, t.a.Y);
 | 
						|
                    copy_conditional(t.a.Y, t.p.Z, wvalue & 1);
 | 
						|
 | 
						|
                    ecp_nistz256_point_add_affine(&p.p, &p.p, &t.a);
 | 
						|
                }
 | 
						|
            }
 | 
						|
        } else {
 | 
						|
            p_is_infinity = 1;
 | 
						|
            no_precomp_for_generator = 1;
 | 
						|
        }
 | 
						|
    } else
 | 
						|
        p_is_infinity = 1;
 | 
						|
 | 
						|
    if (no_precomp_for_generator) {
 | 
						|
        /*
 | 
						|
         * Without a precomputed table for the generator, it has to be
 | 
						|
         * handled like a normal point.
 | 
						|
         */
 | 
						|
        new_scalars = OPENSSL_malloc((num + 1) * sizeof(BIGNUM *));
 | 
						|
        if (new_scalars == NULL) {
 | 
						|
            ECerr(EC_F_ECP_NISTZ256_POINTS_MUL, ERR_R_MALLOC_FAILURE);
 | 
						|
            goto err;
 | 
						|
        }
 | 
						|
 | 
						|
        new_points = OPENSSL_malloc((num + 1) * sizeof(EC_POINT *));
 | 
						|
        if (new_points == NULL) {
 | 
						|
            ECerr(EC_F_ECP_NISTZ256_POINTS_MUL, ERR_R_MALLOC_FAILURE);
 | 
						|
            goto err;
 | 
						|
        }
 | 
						|
 | 
						|
        memcpy(new_scalars, scalars, num * sizeof(BIGNUM *));
 | 
						|
        new_scalars[num] = scalar;
 | 
						|
        memcpy(new_points, points, num * sizeof(EC_POINT *));
 | 
						|
        new_points[num] = generator;
 | 
						|
 | 
						|
        scalars = new_scalars;
 | 
						|
        points = new_points;
 | 
						|
        num++;
 | 
						|
    }
 | 
						|
 | 
						|
    if (num) {
 | 
						|
        P256_POINT *out = &t.p;
 | 
						|
        if (p_is_infinity)
 | 
						|
            out = &p.p;
 | 
						|
 | 
						|
        if (!ecp_nistz256_windowed_mul(group, out, scalars, points, num, ctx))
 | 
						|
            goto err;
 | 
						|
 | 
						|
        if (!p_is_infinity)
 | 
						|
            ecp_nistz256_point_add(&p.p, &p.p, out);
 | 
						|
    }
 | 
						|
 | 
						|
    /* Not constant-time, but we're only operating on the public output. */
 | 
						|
    if (!bn_set_words(r->X, p.p.X, P256_LIMBS) ||
 | 
						|
        !bn_set_words(r->Y, p.p.Y, P256_LIMBS) ||
 | 
						|
        !bn_set_words(r->Z, p.p.Z, P256_LIMBS)) {
 | 
						|
        goto err;
 | 
						|
    }
 | 
						|
    r->Z_is_one = is_one(r->Z) & 1;
 | 
						|
 | 
						|
    ret = 1;
 | 
						|
 | 
						|
err:
 | 
						|
    BN_CTX_end(ctx);
 | 
						|
    OPENSSL_free(new_points);
 | 
						|
    OPENSSL_free(new_scalars);
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
__owur static int ecp_nistz256_get_affine(const EC_GROUP *group,
 | 
						|
                                          const EC_POINT *point,
 | 
						|
                                          BIGNUM *x, BIGNUM *y, BN_CTX *ctx)
 | 
						|
{
 | 
						|
    BN_ULONG z_inv2[P256_LIMBS];
 | 
						|
    BN_ULONG z_inv3[P256_LIMBS];
 | 
						|
    BN_ULONG x_aff[P256_LIMBS];
 | 
						|
    BN_ULONG y_aff[P256_LIMBS];
 | 
						|
    BN_ULONG point_x[P256_LIMBS], point_y[P256_LIMBS], point_z[P256_LIMBS];
 | 
						|
    BN_ULONG x_ret[P256_LIMBS], y_ret[P256_LIMBS];
 | 
						|
 | 
						|
    if (EC_POINT_is_at_infinity(group, point)) {
 | 
						|
        ECerr(EC_F_ECP_NISTZ256_GET_AFFINE, EC_R_POINT_AT_INFINITY);
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    if (!ecp_nistz256_bignum_to_field_elem(point_x, point->X) ||
 | 
						|
        !ecp_nistz256_bignum_to_field_elem(point_y, point->Y) ||
 | 
						|
        !ecp_nistz256_bignum_to_field_elem(point_z, point->Z)) {
 | 
						|
        ECerr(EC_F_ECP_NISTZ256_GET_AFFINE, EC_R_COORDINATES_OUT_OF_RANGE);
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    ecp_nistz256_mod_inverse(z_inv3, point_z);
 | 
						|
    ecp_nistz256_sqr_mont(z_inv2, z_inv3);
 | 
						|
    ecp_nistz256_mul_mont(x_aff, z_inv2, point_x);
 | 
						|
 | 
						|
    if (x != NULL) {
 | 
						|
        ecp_nistz256_from_mont(x_ret, x_aff);
 | 
						|
        if (!bn_set_words(x, x_ret, P256_LIMBS))
 | 
						|
            return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    if (y != NULL) {
 | 
						|
        ecp_nistz256_mul_mont(z_inv3, z_inv3, z_inv2);
 | 
						|
        ecp_nistz256_mul_mont(y_aff, z_inv3, point_y);
 | 
						|
        ecp_nistz256_from_mont(y_ret, y_aff);
 | 
						|
        if (!bn_set_words(y, y_ret, P256_LIMBS))
 | 
						|
            return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    return 1;
 | 
						|
}
 | 
						|
 | 
						|
static NISTZ256_PRE_COMP *ecp_nistz256_pre_comp_new(const EC_GROUP *group)
 | 
						|
{
 | 
						|
    NISTZ256_PRE_COMP *ret = NULL;
 | 
						|
 | 
						|
    if (!group)
 | 
						|
        return NULL;
 | 
						|
 | 
						|
    ret = OPENSSL_zalloc(sizeof(*ret));
 | 
						|
 | 
						|
    if (ret == NULL) {
 | 
						|
        ECerr(EC_F_ECP_NISTZ256_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
 | 
						|
        return ret;
 | 
						|
    }
 | 
						|
 | 
						|
    ret->group = group;
 | 
						|
    ret->w = 6;                 /* default */
 | 
						|
    ret->references = 1;
 | 
						|
 | 
						|
    ret->lock = CRYPTO_THREAD_lock_new();
 | 
						|
    if (ret->lock == NULL) {
 | 
						|
        ECerr(EC_F_ECP_NISTZ256_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
 | 
						|
        OPENSSL_free(ret);
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
NISTZ256_PRE_COMP *EC_nistz256_pre_comp_dup(NISTZ256_PRE_COMP *p)
 | 
						|
{
 | 
						|
    int i;
 | 
						|
    if (p != NULL)
 | 
						|
        CRYPTO_UP_REF(&p->references, &i, p->lock);
 | 
						|
    return p;
 | 
						|
}
 | 
						|
 | 
						|
void EC_nistz256_pre_comp_free(NISTZ256_PRE_COMP *pre)
 | 
						|
{
 | 
						|
    int i;
 | 
						|
 | 
						|
    if (pre == NULL)
 | 
						|
        return;
 | 
						|
 | 
						|
    CRYPTO_DOWN_REF(&pre->references, &i, pre->lock);
 | 
						|
    REF_PRINT_COUNT("EC_nistz256", x);
 | 
						|
    if (i > 0)
 | 
						|
        return;
 | 
						|
    REF_ASSERT_ISNT(i < 0);
 | 
						|
 | 
						|
    OPENSSL_free(pre->precomp_storage);
 | 
						|
    CRYPTO_THREAD_lock_free(pre->lock);
 | 
						|
    OPENSSL_free(pre);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static int ecp_nistz256_window_have_precompute_mult(const EC_GROUP *group)
 | 
						|
{
 | 
						|
    /* There is a hard-coded table for the default generator. */
 | 
						|
    const EC_POINT *generator = EC_GROUP_get0_generator(group);
 | 
						|
 | 
						|
    if (generator != NULL && ecp_nistz256_is_affine_G(generator)) {
 | 
						|
        /* There is a hard-coded table for the default generator. */
 | 
						|
        return 1;
 | 
						|
    }
 | 
						|
 | 
						|
    return HAVEPRECOMP(group, nistz256);
 | 
						|
}
 | 
						|
 | 
						|
#if defined(__x86_64) || defined(__x86_64__) || \
 | 
						|
    defined(_M_AMD64) || defined(_M_X64) || \
 | 
						|
    defined(__powerpc64__) || defined(_ARCH_PP64) || \
 | 
						|
    defined(__aarch64__)
 | 
						|
/*
 | 
						|
 * Montgomery mul modulo Order(P): res = a*b*2^-256 mod Order(P)
 | 
						|
 */
 | 
						|
void ecp_nistz256_ord_mul_mont(BN_ULONG res[P256_LIMBS],
 | 
						|
                               const BN_ULONG a[P256_LIMBS],
 | 
						|
                               const BN_ULONG b[P256_LIMBS]);
 | 
						|
void ecp_nistz256_ord_sqr_mont(BN_ULONG res[P256_LIMBS],
 | 
						|
                               const BN_ULONG a[P256_LIMBS],
 | 
						|
                               int rep);
 | 
						|
 | 
						|
static int ecp_nistz256_inv_mod_ord(const EC_GROUP *group, BIGNUM *r,
 | 
						|
                                    const BIGNUM *x, BN_CTX *ctx)
 | 
						|
{
 | 
						|
    /* RR = 2^512 mod ord(p256) */
 | 
						|
    static const BN_ULONG RR[P256_LIMBS]  = {
 | 
						|
        TOBN(0x83244c95,0xbe79eea2), TOBN(0x4699799c,0x49bd6fa6),
 | 
						|
        TOBN(0x2845b239,0x2b6bec59), TOBN(0x66e12d94,0xf3d95620)
 | 
						|
    };
 | 
						|
    /* The constant 1 (unlike ONE that is one in Montgomery representation) */
 | 
						|
    static const BN_ULONG one[P256_LIMBS] = {
 | 
						|
        TOBN(0,1), TOBN(0,0), TOBN(0,0), TOBN(0,0)
 | 
						|
    };
 | 
						|
    /*
 | 
						|
     * We don't use entry 0 in the table, so we omit it and address
 | 
						|
     * with -1 offset.
 | 
						|
     */
 | 
						|
    BN_ULONG table[15][P256_LIMBS];
 | 
						|
    BN_ULONG out[P256_LIMBS], t[P256_LIMBS];
 | 
						|
    int i, ret = 0;
 | 
						|
    enum {
 | 
						|
        i_1 = 0, i_10,     i_11,     i_101, i_111, i_1010, i_1111,
 | 
						|
        i_10101, i_101010, i_101111, i_x6,  i_x8,  i_x16,  i_x32
 | 
						|
    };
 | 
						|
 | 
						|
    /*
 | 
						|
     * Catch allocation failure early.
 | 
						|
     */
 | 
						|
    if (bn_wexpand(r, P256_LIMBS) == NULL) {
 | 
						|
        ECerr(EC_F_ECP_NISTZ256_INV_MOD_ORD, ERR_R_BN_LIB);
 | 
						|
        goto err;
 | 
						|
    }
 | 
						|
 | 
						|
    if ((BN_num_bits(x) > 256) || BN_is_negative(x)) {
 | 
						|
        BIGNUM *tmp;
 | 
						|
 | 
						|
        if ((tmp = BN_CTX_get(ctx)) == NULL
 | 
						|
            || !BN_nnmod(tmp, x, group->order, ctx)) {
 | 
						|
            ECerr(EC_F_ECP_NISTZ256_INV_MOD_ORD, ERR_R_BN_LIB);
 | 
						|
            goto err;
 | 
						|
        }
 | 
						|
        x = tmp;
 | 
						|
    }
 | 
						|
 | 
						|
    if (!ecp_nistz256_bignum_to_field_elem(t, x)) {
 | 
						|
        ECerr(EC_F_ECP_NISTZ256_INV_MOD_ORD, EC_R_COORDINATES_OUT_OF_RANGE);
 | 
						|
        goto err;
 | 
						|
    }
 | 
						|
 | 
						|
    ecp_nistz256_ord_mul_mont(table[0], t, RR);
 | 
						|
#if 0
 | 
						|
    /*
 | 
						|
     * Original sparse-then-fixed-window algorithm, retained for reference.
 | 
						|
     */
 | 
						|
    for (i = 2; i < 16; i += 2) {
 | 
						|
        ecp_nistz256_ord_sqr_mont(table[i-1], table[i/2-1], 1);
 | 
						|
        ecp_nistz256_ord_mul_mont(table[i], table[i-1], table[0]);
 | 
						|
    }
 | 
						|
 | 
						|
    /*
 | 
						|
     * The top 128bit of the exponent are highly redudndant, so we
 | 
						|
     * perform an optimized flow
 | 
						|
     */
 | 
						|
    ecp_nistz256_ord_sqr_mont(t, table[15-1], 4);   /* f0 */
 | 
						|
    ecp_nistz256_ord_mul_mont(t, t, table[15-1]);   /* ff */
 | 
						|
 | 
						|
    ecp_nistz256_ord_sqr_mont(out, t, 8);           /* ff00 */
 | 
						|
    ecp_nistz256_ord_mul_mont(out, out, t);         /* ffff */
 | 
						|
 | 
						|
    ecp_nistz256_ord_sqr_mont(t, out, 16);          /* ffff0000 */
 | 
						|
    ecp_nistz256_ord_mul_mont(t, t, out);           /* ffffffff */
 | 
						|
 | 
						|
    ecp_nistz256_ord_sqr_mont(out, t, 64);          /* ffffffff0000000000000000 */
 | 
						|
    ecp_nistz256_ord_mul_mont(out, out, t);         /* ffffffff00000000ffffffff */
 | 
						|
 | 
						|
    ecp_nistz256_ord_sqr_mont(out, out, 32);        /* ffffffff00000000ffffffff00000000 */
 | 
						|
    ecp_nistz256_ord_mul_mont(out, out, t);         /* ffffffff00000000ffffffffffffffff */
 | 
						|
 | 
						|
    /*
 | 
						|
     * The bottom 128 bit of the exponent are processed with fixed 4-bit window
 | 
						|
     */
 | 
						|
    for(i = 0; i < 32; i++) {
 | 
						|
        /* expLo - the low 128 bits of the exponent we use (ord(p256) - 2),
 | 
						|
         * split into nibbles */
 | 
						|
        static const unsigned char expLo[32]  = {
 | 
						|
            0xb,0xc,0xe,0x6,0xf,0xa,0xa,0xd,0xa,0x7,0x1,0x7,0x9,0xe,0x8,0x4,
 | 
						|
            0xf,0x3,0xb,0x9,0xc,0xa,0xc,0x2,0xf,0xc,0x6,0x3,0x2,0x5,0x4,0xf
 | 
						|
        };
 | 
						|
 | 
						|
        ecp_nistz256_ord_sqr_mont(out, out, 4);
 | 
						|
        /* The exponent is public, no need in constant-time access */
 | 
						|
        ecp_nistz256_ord_mul_mont(out, out, table[expLo[i]-1]);
 | 
						|
    }
 | 
						|
#else
 | 
						|
    /*
 | 
						|
     * https://briansmith.org/ecc-inversion-addition-chains-01#p256_scalar_inversion
 | 
						|
     *
 | 
						|
     * Even though this code path spares 12 squarings, 4.5%, and 13
 | 
						|
     * multiplications, 25%, on grand scale sign operation is not that
 | 
						|
     * much faster, not more that 2%...
 | 
						|
     */
 | 
						|
 | 
						|
    /* pre-calculate powers */
 | 
						|
    ecp_nistz256_ord_sqr_mont(table[i_10], table[i_1], 1);
 | 
						|
 | 
						|
    ecp_nistz256_ord_mul_mont(table[i_11], table[i_1], table[i_10]);
 | 
						|
 | 
						|
    ecp_nistz256_ord_mul_mont(table[i_101], table[i_11], table[i_10]);
 | 
						|
 | 
						|
    ecp_nistz256_ord_mul_mont(table[i_111], table[i_101], table[i_10]);
 | 
						|
 | 
						|
    ecp_nistz256_ord_sqr_mont(table[i_1010], table[i_101], 1);
 | 
						|
 | 
						|
    ecp_nistz256_ord_mul_mont(table[i_1111], table[i_1010], table[i_101]);
 | 
						|
 | 
						|
    ecp_nistz256_ord_sqr_mont(table[i_10101], table[i_1010], 1);
 | 
						|
    ecp_nistz256_ord_mul_mont(table[i_10101], table[i_10101], table[i_1]);
 | 
						|
 | 
						|
    ecp_nistz256_ord_sqr_mont(table[i_101010], table[i_10101], 1);
 | 
						|
 | 
						|
    ecp_nistz256_ord_mul_mont(table[i_101111], table[i_101010], table[i_101]);
 | 
						|
 | 
						|
    ecp_nistz256_ord_mul_mont(table[i_x6], table[i_101010], table[i_10101]);
 | 
						|
 | 
						|
    ecp_nistz256_ord_sqr_mont(table[i_x8], table[i_x6], 2);
 | 
						|
    ecp_nistz256_ord_mul_mont(table[i_x8], table[i_x8], table[i_11]);
 | 
						|
 | 
						|
    ecp_nistz256_ord_sqr_mont(table[i_x16], table[i_x8], 8);
 | 
						|
    ecp_nistz256_ord_mul_mont(table[i_x16], table[i_x16], table[i_x8]);
 | 
						|
 | 
						|
    ecp_nistz256_ord_sqr_mont(table[i_x32], table[i_x16], 16);
 | 
						|
    ecp_nistz256_ord_mul_mont(table[i_x32], table[i_x32], table[i_x16]);
 | 
						|
 | 
						|
    /* calculations */
 | 
						|
    ecp_nistz256_ord_sqr_mont(out, table[i_x32], 64);
 | 
						|
    ecp_nistz256_ord_mul_mont(out, out, table[i_x32]);
 | 
						|
 | 
						|
    for (i = 0; i < 27; i++) {
 | 
						|
        static const struct { unsigned char p, i; } chain[27] = {
 | 
						|
            { 32, i_x32 }, { 6,  i_101111 }, { 5,  i_111    },
 | 
						|
            { 4,  i_11  }, { 5,  i_1111   }, { 5,  i_10101  },
 | 
						|
            { 4,  i_101 }, { 3,  i_101    }, { 3,  i_101    },
 | 
						|
            { 5,  i_111 }, { 9,  i_101111 }, { 6,  i_1111   },
 | 
						|
            { 2,  i_1   }, { 5,  i_1      }, { 6,  i_1111   },
 | 
						|
            { 5,  i_111 }, { 4,  i_111    }, { 5,  i_111    },
 | 
						|
            { 5,  i_101 }, { 3,  i_11     }, { 10, i_101111 },
 | 
						|
            { 2,  i_11  }, { 5,  i_11     }, { 5,  i_11     },
 | 
						|
            { 3,  i_1   }, { 7,  i_10101  }, { 6,  i_1111   }
 | 
						|
        };
 | 
						|
 | 
						|
        ecp_nistz256_ord_sqr_mont(out, out, chain[i].p);
 | 
						|
        ecp_nistz256_ord_mul_mont(out, out, table[chain[i].i]);
 | 
						|
    }
 | 
						|
#endif
 | 
						|
    ecp_nistz256_ord_mul_mont(out, out, one);
 | 
						|
 | 
						|
    /*
 | 
						|
     * Can't fail, but check return code to be consistent anyway.
 | 
						|
     */
 | 
						|
    if (!bn_set_words(r, out, P256_LIMBS))
 | 
						|
        goto err;
 | 
						|
 | 
						|
    ret = 1;
 | 
						|
err:
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
#else
 | 
						|
# define ecp_nistz256_inv_mod_ord NULL
 | 
						|
#endif
 | 
						|
 | 
						|
const EC_METHOD *EC_GFp_nistz256_method(void)
 | 
						|
{
 | 
						|
    static const EC_METHOD ret = {
 | 
						|
        EC_FLAGS_DEFAULT_OCT,
 | 
						|
        NID_X9_62_prime_field,
 | 
						|
        ec_GFp_mont_group_init,
 | 
						|
        ec_GFp_mont_group_finish,
 | 
						|
        ec_GFp_mont_group_clear_finish,
 | 
						|
        ec_GFp_mont_group_copy,
 | 
						|
        ec_GFp_mont_group_set_curve,
 | 
						|
        ec_GFp_simple_group_get_curve,
 | 
						|
        ec_GFp_simple_group_get_degree,
 | 
						|
        ec_group_simple_order_bits,
 | 
						|
        ec_GFp_simple_group_check_discriminant,
 | 
						|
        ec_GFp_simple_point_init,
 | 
						|
        ec_GFp_simple_point_finish,
 | 
						|
        ec_GFp_simple_point_clear_finish,
 | 
						|
        ec_GFp_simple_point_copy,
 | 
						|
        ec_GFp_simple_point_set_to_infinity,
 | 
						|
        ec_GFp_simple_set_Jprojective_coordinates_GFp,
 | 
						|
        ec_GFp_simple_get_Jprojective_coordinates_GFp,
 | 
						|
        ec_GFp_simple_point_set_affine_coordinates,
 | 
						|
        ecp_nistz256_get_affine,
 | 
						|
        0, 0, 0,
 | 
						|
        ec_GFp_simple_add,
 | 
						|
        ec_GFp_simple_dbl,
 | 
						|
        ec_GFp_simple_invert,
 | 
						|
        ec_GFp_simple_is_at_infinity,
 | 
						|
        ec_GFp_simple_is_on_curve,
 | 
						|
        ec_GFp_simple_cmp,
 | 
						|
        ec_GFp_simple_make_affine,
 | 
						|
        ec_GFp_simple_points_make_affine,
 | 
						|
        ecp_nistz256_points_mul,                    /* mul */
 | 
						|
        ecp_nistz256_mult_precompute,               /* precompute_mult */
 | 
						|
        ecp_nistz256_window_have_precompute_mult,   /* have_precompute_mult */
 | 
						|
        ec_GFp_mont_field_mul,
 | 
						|
        ec_GFp_mont_field_sqr,
 | 
						|
        0,                                          /* field_div */
 | 
						|
        ec_GFp_mont_field_inv,
 | 
						|
        ec_GFp_mont_field_encode,
 | 
						|
        ec_GFp_mont_field_decode,
 | 
						|
        ec_GFp_mont_field_set_to_one,
 | 
						|
        ec_key_simple_priv2oct,
 | 
						|
        ec_key_simple_oct2priv,
 | 
						|
        0, /* set private */
 | 
						|
        ec_key_simple_generate_key,
 | 
						|
        ec_key_simple_check_key,
 | 
						|
        ec_key_simple_generate_public_key,
 | 
						|
        0, /* keycopy */
 | 
						|
        0, /* keyfinish */
 | 
						|
        ecdh_simple_compute_key,
 | 
						|
        ecp_nistz256_inv_mod_ord,                   /* can be #define-d NULL */
 | 
						|
        0,                                          /* blind_coordinates */
 | 
						|
        0,                                          /* ladder_pre */
 | 
						|
        0,                                          /* ladder_step */
 | 
						|
        0                                           /* ladder_post */
 | 
						|
    };
 | 
						|
 | 
						|
    return &ret;
 | 
						|
}
 |