mirror of
				https://github.com/ossrs/srs.git
				synced 2025-03-09 15:49:59 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			608 lines
		
	
	
	
		
			16 KiB
		
	
	
	
		
			Raku
		
	
	
	
	
	
			
		
		
	
	
			608 lines
		
	
	
	
		
			16 KiB
		
	
	
	
		
			Raku
		
	
	
	
	
	
#! /usr/bin/env perl
 | 
						|
# Copyright 2009-2016 The OpenSSL Project Authors. All Rights Reserved.
 | 
						|
#
 | 
						|
# Licensed under the OpenSSL license (the "License").  You may not use
 | 
						|
# this file except in compliance with the License.  You can obtain a copy
 | 
						|
# in the file LICENSE in the source distribution or at
 | 
						|
# https://www.openssl.org/source/license.html
 | 
						|
 | 
						|
 | 
						|
# ====================================================================
 | 
						|
# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
 | 
						|
# project. The module is, however, dual licensed under OpenSSL and
 | 
						|
# CRYPTOGAMS licenses depending on where you obtain it. For further
 | 
						|
# details see http://www.openssl.org/~appro/cryptogams/.
 | 
						|
# ====================================================================
 | 
						|
 | 
						|
# January 2009
 | 
						|
#
 | 
						|
# Provided that UltraSPARC VIS instructions are pipe-lined(*) and
 | 
						|
# pairable(*) with IALU ones, offloading of Xupdate to the UltraSPARC
 | 
						|
# Graphic Unit would make it possible to achieve higher instruction-
 | 
						|
# level parallelism, ILP, and thus higher performance. It should be
 | 
						|
# explicitly noted that ILP is the keyword, and it means that this
 | 
						|
# code would be unsuitable for cores like UltraSPARC-Tx. The idea is
 | 
						|
# not really novel, Sun had VIS-powered implementation for a while.
 | 
						|
# Unlike Sun's implementation this one can process multiple unaligned
 | 
						|
# input blocks, and as such works as drop-in replacement for OpenSSL
 | 
						|
# sha1_block_data_order. Performance improvement was measured to be
 | 
						|
# 40% over pure IALU sha1-sparcv9.pl on UltraSPARC-IIi, but 12% on
 | 
						|
# UltraSPARC-III. See below for discussion...
 | 
						|
#
 | 
						|
# The module does not present direct interest for OpenSSL, because
 | 
						|
# it doesn't provide better performance on contemporary SPARCv9 CPUs,
 | 
						|
# UltraSPARC-Tx and SPARC64-V[II] to be specific. Those who feel they
 | 
						|
# absolutely must score on UltraSPARC-I-IV can simply replace
 | 
						|
# crypto/sha/asm/sha1-sparcv9.pl with this module.
 | 
						|
#
 | 
						|
# (*)	"Pipe-lined" means that even if it takes several cycles to
 | 
						|
#	complete, next instruction using same functional unit [but not
 | 
						|
#	depending on the result of the current instruction] can start
 | 
						|
#	execution without having to wait for the unit. "Pairable"
 | 
						|
#	means that two [or more] independent instructions can be
 | 
						|
#	issued at the very same time.
 | 
						|
 | 
						|
$bits=32;
 | 
						|
for (@ARGV)	{ $bits=64 if (/\-m64/ || /\-xarch\=v9/); }
 | 
						|
if ($bits==64)	{ $bias=2047; $frame=192; }
 | 
						|
else		{ $bias=0;    $frame=112; }
 | 
						|
 | 
						|
$output=shift;
 | 
						|
open STDOUT,">$output";
 | 
						|
 | 
						|
$ctx="%i0";
 | 
						|
$inp="%i1";
 | 
						|
$len="%i2";
 | 
						|
$tmp0="%i3";
 | 
						|
$tmp1="%i4";
 | 
						|
$tmp2="%i5";
 | 
						|
$tmp3="%g5";
 | 
						|
 | 
						|
$base="%g1";
 | 
						|
$align="%g4";
 | 
						|
$Xfer="%o5";
 | 
						|
$nXfer=$tmp3;
 | 
						|
$Xi="%o7";
 | 
						|
 | 
						|
$A="%l0";
 | 
						|
$B="%l1";
 | 
						|
$C="%l2";
 | 
						|
$D="%l3";
 | 
						|
$E="%l4";
 | 
						|
@V=($A,$B,$C,$D,$E);
 | 
						|
 | 
						|
$Actx="%o0";
 | 
						|
$Bctx="%o1";
 | 
						|
$Cctx="%o2";
 | 
						|
$Dctx="%o3";
 | 
						|
$Ectx="%o4";
 | 
						|
 | 
						|
$fmul="%f32";
 | 
						|
$VK_00_19="%f34";
 | 
						|
$VK_20_39="%f36";
 | 
						|
$VK_40_59="%f38";
 | 
						|
$VK_60_79="%f40";
 | 
						|
@VK=($VK_00_19,$VK_20_39,$VK_40_59,$VK_60_79);
 | 
						|
@X=("%f0", "%f1", "%f2", "%f3", "%f4", "%f5", "%f6", "%f7",
 | 
						|
    "%f8", "%f9","%f10","%f11","%f12","%f13","%f14","%f15","%f16");
 | 
						|
 | 
						|
# This is reference 2x-parallelized VIS-powered Xupdate procedure. It
 | 
						|
# covers even K_NN_MM addition...
 | 
						|
sub Xupdate {
 | 
						|
my ($i)=@_;
 | 
						|
my $K=@VK[($i+16)/20];
 | 
						|
my $j=($i+16)%16;
 | 
						|
 | 
						|
#	[ provided that GSR.alignaddr_offset is 5, $mul contains
 | 
						|
#	  0x100ULL<<32|0x100 value and K_NN_MM are pre-loaded to
 | 
						|
#	  chosen registers... ]
 | 
						|
$code.=<<___;
 | 
						|
	fxors		@X[($j+13)%16],@X[$j],@X[$j]	!-1/-1/-1:X[0]^=X[13]
 | 
						|
	fxors		@X[($j+14)%16],@X[$j+1],@X[$j+1]! 0/ 0/ 0:X[1]^=X[14]
 | 
						|
	fxor		@X[($j+2)%16],@X[($j+8)%16],%f18! 1/ 1/ 1:Tmp=X[2,3]^X[8,9]
 | 
						|
	fxor		%f18,@X[$j],@X[$j]		! 2/ 4/ 3:X[0,1]^=X[2,3]^X[8,9]
 | 
						|
	faligndata	@X[$j],@X[$j],%f18		! 3/ 7/ 5:Tmp=X[0,1]>>>24
 | 
						|
	fpadd32		@X[$j],@X[$j],@X[$j]		! 4/ 8/ 6:X[0,1]<<=1
 | 
						|
	fmul8ulx16	%f18,$fmul,%f18			! 5/10/ 7:Tmp>>=7, Tmp&=1
 | 
						|
	![fxors		%f15,%f2,%f2]
 | 
						|
	for		%f18,@X[$j],@X[$j]		! 8/14/10:X[0,1]|=Tmp
 | 
						|
	![fxors		%f0,%f3,%f3]			!10/17/12:X[0] dependency
 | 
						|
	fpadd32		$K,@X[$j],%f20
 | 
						|
	std		%f20,[$Xfer+`4*$j`]
 | 
						|
___
 | 
						|
# The numbers delimited with slash are the earliest possible dispatch
 | 
						|
# cycles for given instruction assuming 1 cycle latency for simple VIS
 | 
						|
# instructions, such as on UltraSPARC-I&II, 3 cycles latency, such as
 | 
						|
# on UltraSPARC-III&IV, and 2 cycles latency(*), respectively. Being
 | 
						|
# 2x-parallelized the procedure is "worth" 5, 8.5 or 6 ticks per SHA1
 | 
						|
# round. As [long as] FPU/VIS instructions are perfectly pairable with
 | 
						|
# IALU ones, the round timing is defined by the maximum between VIS
 | 
						|
# and IALU timings. The latter varies from round to round and averages
 | 
						|
# out at 6.25 ticks. This means that USI&II should operate at IALU
 | 
						|
# rate, while USIII&IV - at VIS rate. This explains why performance
 | 
						|
# improvement varies among processors. Well, given that pure IALU
 | 
						|
# sha1-sparcv9.pl module exhibits virtually uniform performance of
 | 
						|
# ~9.3 cycles per SHA1 round. Timings mentioned above are theoretical
 | 
						|
# lower limits. Real-life performance was measured to be 6.6 cycles
 | 
						|
# per SHA1 round on USIIi and 8.3 on USIII. The latter is lower than
 | 
						|
# half-round VIS timing, because there are 16 Xupdate-free rounds,
 | 
						|
# which "push down" average theoretical timing to 8 cycles...
 | 
						|
 | 
						|
# (*)	SPARC64-V[II] was originally believed to have 2 cycles VIS
 | 
						|
#	latency. Well, it might have, but it doesn't have dedicated
 | 
						|
#	VIS-unit. Instead, VIS instructions are executed by other
 | 
						|
#	functional units, ones used here - by IALU. This doesn't
 | 
						|
#	improve effective ILP...
 | 
						|
}
 | 
						|
 | 
						|
# The reference Xupdate procedure is then "strained" over *pairs* of
 | 
						|
# BODY_NN_MM and kind of modulo-scheduled in respect to X[n]^=X[n+13]
 | 
						|
# and K_NN_MM addition. It's "running" 15 rounds ahead, which leaves
 | 
						|
# plenty of room to amortize for read-after-write hazard, as well as
 | 
						|
# to fetch and align input for the next spin. The VIS instructions are
 | 
						|
# scheduled for latency of 2 cycles, because there are not enough IALU
 | 
						|
# instructions to schedule for latency of 3, while scheduling for 1
 | 
						|
# would give no gain on USI&II anyway.
 | 
						|
 | 
						|
sub BODY_00_19 {
 | 
						|
my ($i,$a,$b,$c,$d,$e)=@_;
 | 
						|
my $j=$i&~1;
 | 
						|
my $k=($j+16+2)%16;	# ahead reference
 | 
						|
my $l=($j+16-2)%16;	# behind reference
 | 
						|
my $K=@VK[($j+16-2)/20];
 | 
						|
 | 
						|
$j=($j+16)%16;
 | 
						|
 | 
						|
$code.=<<___ if (!($i&1));
 | 
						|
	sll		$a,5,$tmp0			!! $i
 | 
						|
	and		$c,$b,$tmp3
 | 
						|
	ld		[$Xfer+`4*($i%16)`],$Xi
 | 
						|
	 fxors		@X[($j+14)%16],@X[$j+1],@X[$j+1]! 0/ 0/ 0:X[1]^=X[14]
 | 
						|
	srl		$a,27,$tmp1
 | 
						|
	add		$tmp0,$e,$e
 | 
						|
	 fxor		@X[($j+2)%16],@X[($j+8)%16],%f18! 1/ 1/ 1:Tmp=X[2,3]^X[8,9]
 | 
						|
	sll		$b,30,$tmp2
 | 
						|
	add		$tmp1,$e,$e
 | 
						|
	andn		$d,$b,$tmp1
 | 
						|
	add		$Xi,$e,$e
 | 
						|
	 fxor		%f18,@X[$j],@X[$j]		! 2/ 4/ 3:X[0,1]^=X[2,3]^X[8,9]
 | 
						|
	srl		$b,2,$b
 | 
						|
	or		$tmp1,$tmp3,$tmp1
 | 
						|
	or		$tmp2,$b,$b
 | 
						|
	add		$tmp1,$e,$e
 | 
						|
	 faligndata	@X[$j],@X[$j],%f18		! 3/ 7/ 5:Tmp=X[0,1]>>>24
 | 
						|
___
 | 
						|
$code.=<<___ if ($i&1);
 | 
						|
	sll		$a,5,$tmp0			!! $i
 | 
						|
	and		$c,$b,$tmp3
 | 
						|
	ld		[$Xfer+`4*($i%16)`],$Xi
 | 
						|
	 fpadd32	@X[$j],@X[$j],@X[$j]		! 4/ 8/ 6:X[0,1]<<=1
 | 
						|
	srl		$a,27,$tmp1
 | 
						|
	add		$tmp0,$e,$e
 | 
						|
	 fmul8ulx16	%f18,$fmul,%f18			! 5/10/ 7:Tmp>>=7, Tmp&=1
 | 
						|
	sll		$b,30,$tmp2
 | 
						|
	add		$tmp1,$e,$e
 | 
						|
	 fpadd32	$K,@X[$l],%f20			!
 | 
						|
	andn		$d,$b,$tmp1
 | 
						|
	add		$Xi,$e,$e
 | 
						|
	 fxors		@X[($k+13)%16],@X[$k],@X[$k]	!-1/-1/-1:X[0]^=X[13]
 | 
						|
	srl		$b,2,$b
 | 
						|
	or		$tmp1,$tmp3,$tmp1
 | 
						|
	 fxor		%f18,@X[$j],@X[$j]		! 8/14/10:X[0,1]|=Tmp
 | 
						|
	or		$tmp2,$b,$b
 | 
						|
	add		$tmp1,$e,$e
 | 
						|
___
 | 
						|
$code.=<<___ if ($i&1 && $i>=2);
 | 
						|
	 std		%f20,[$Xfer+`4*$l`]		!
 | 
						|
___
 | 
						|
}
 | 
						|
 | 
						|
sub BODY_20_39 {
 | 
						|
my ($i,$a,$b,$c,$d,$e)=@_;
 | 
						|
my $j=$i&~1;
 | 
						|
my $k=($j+16+2)%16;	# ahead reference
 | 
						|
my $l=($j+16-2)%16;	# behind reference
 | 
						|
my $K=@VK[($j+16-2)/20];
 | 
						|
 | 
						|
$j=($j+16)%16;
 | 
						|
 | 
						|
$code.=<<___ if (!($i&1) && $i<64);
 | 
						|
	sll		$a,5,$tmp0			!! $i
 | 
						|
	ld		[$Xfer+`4*($i%16)`],$Xi
 | 
						|
	 fxors		@X[($j+14)%16],@X[$j+1],@X[$j+1]! 0/ 0/ 0:X[1]^=X[14]
 | 
						|
	srl		$a,27,$tmp1
 | 
						|
	add		$tmp0,$e,$e
 | 
						|
	 fxor		@X[($j+2)%16],@X[($j+8)%16],%f18! 1/ 1/ 1:Tmp=X[2,3]^X[8,9]
 | 
						|
	xor		$c,$b,$tmp0
 | 
						|
	add		$tmp1,$e,$e
 | 
						|
	sll		$b,30,$tmp2
 | 
						|
	xor		$d,$tmp0,$tmp1
 | 
						|
	 fxor		%f18,@X[$j],@X[$j]		! 2/ 4/ 3:X[0,1]^=X[2,3]^X[8,9]
 | 
						|
	srl		$b,2,$b
 | 
						|
	add		$tmp1,$e,$e
 | 
						|
	or		$tmp2,$b,$b
 | 
						|
	add		$Xi,$e,$e
 | 
						|
	 faligndata	@X[$j],@X[$j],%f18		! 3/ 7/ 5:Tmp=X[0,1]>>>24
 | 
						|
___
 | 
						|
$code.=<<___ if ($i&1 && $i<64);
 | 
						|
	sll		$a,5,$tmp0			!! $i
 | 
						|
	ld		[$Xfer+`4*($i%16)`],$Xi
 | 
						|
	 fpadd32	@X[$j],@X[$j],@X[$j]		! 4/ 8/ 6:X[0,1]<<=1
 | 
						|
	srl		$a,27,$tmp1
 | 
						|
	add		$tmp0,$e,$e
 | 
						|
	 fmul8ulx16	%f18,$fmul,%f18			! 5/10/ 7:Tmp>>=7, Tmp&=1
 | 
						|
	xor		$c,$b,$tmp0
 | 
						|
	add		$tmp1,$e,$e
 | 
						|
	 fpadd32	$K,@X[$l],%f20			!
 | 
						|
	sll		$b,30,$tmp2
 | 
						|
	xor		$d,$tmp0,$tmp1
 | 
						|
	 fxors		@X[($k+13)%16],@X[$k],@X[$k]	!-1/-1/-1:X[0]^=X[13]
 | 
						|
	srl		$b,2,$b
 | 
						|
	add		$tmp1,$e,$e
 | 
						|
	 fxor		%f18,@X[$j],@X[$j]		! 8/14/10:X[0,1]|=Tmp
 | 
						|
	or		$tmp2,$b,$b
 | 
						|
	add		$Xi,$e,$e
 | 
						|
	 std		%f20,[$Xfer+`4*$l`]		!
 | 
						|
___
 | 
						|
$code.=<<___ if ($i==64);
 | 
						|
	sll		$a,5,$tmp0			!! $i
 | 
						|
	ld		[$Xfer+`4*($i%16)`],$Xi
 | 
						|
	 fpadd32	$K,@X[$l],%f20
 | 
						|
	srl		$a,27,$tmp1
 | 
						|
	add		$tmp0,$e,$e
 | 
						|
	xor		$c,$b,$tmp0
 | 
						|
	add		$tmp1,$e,$e
 | 
						|
	sll		$b,30,$tmp2
 | 
						|
	xor		$d,$tmp0,$tmp1
 | 
						|
	 std		%f20,[$Xfer+`4*$l`]
 | 
						|
	srl		$b,2,$b
 | 
						|
	add		$tmp1,$e,$e
 | 
						|
	or		$tmp2,$b,$b
 | 
						|
	add		$Xi,$e,$e
 | 
						|
___
 | 
						|
$code.=<<___ if ($i>64);
 | 
						|
	sll		$a,5,$tmp0			!! $i
 | 
						|
	ld		[$Xfer+`4*($i%16)`],$Xi
 | 
						|
	srl		$a,27,$tmp1
 | 
						|
	add		$tmp0,$e,$e
 | 
						|
	xor		$c,$b,$tmp0
 | 
						|
	add		$tmp1,$e,$e
 | 
						|
	sll		$b,30,$tmp2
 | 
						|
	xor		$d,$tmp0,$tmp1
 | 
						|
	srl		$b,2,$b
 | 
						|
	add		$tmp1,$e,$e
 | 
						|
	or		$tmp2,$b,$b
 | 
						|
	add		$Xi,$e,$e
 | 
						|
___
 | 
						|
}
 | 
						|
 | 
						|
sub BODY_40_59 {
 | 
						|
my ($i,$a,$b,$c,$d,$e)=@_;
 | 
						|
my $j=$i&~1;
 | 
						|
my $k=($j+16+2)%16;	# ahead reference
 | 
						|
my $l=($j+16-2)%16;	# behind reference
 | 
						|
my $K=@VK[($j+16-2)/20];
 | 
						|
 | 
						|
$j=($j+16)%16;
 | 
						|
 | 
						|
$code.=<<___ if (!($i&1));
 | 
						|
	sll		$a,5,$tmp0			!! $i
 | 
						|
	ld		[$Xfer+`4*($i%16)`],$Xi
 | 
						|
	 fxors		@X[($j+14)%16],@X[$j+1],@X[$j+1]! 0/ 0/ 0:X[1]^=X[14]
 | 
						|
	srl		$a,27,$tmp1
 | 
						|
	add		$tmp0,$e,$e
 | 
						|
	 fxor		@X[($j+2)%16],@X[($j+8)%16],%f18! 1/ 1/ 1:Tmp=X[2,3]^X[8,9]
 | 
						|
	and		$c,$b,$tmp0
 | 
						|
	add		$tmp1,$e,$e
 | 
						|
	sll		$b,30,$tmp2
 | 
						|
	or		$c,$b,$tmp1
 | 
						|
	 fxor		%f18,@X[$j],@X[$j]		! 2/ 4/ 3:X[0,1]^=X[2,3]^X[8,9]
 | 
						|
	srl		$b,2,$b
 | 
						|
	and		$d,$tmp1,$tmp1
 | 
						|
	add		$Xi,$e,$e
 | 
						|
	or		$tmp1,$tmp0,$tmp1
 | 
						|
	 faligndata	@X[$j],@X[$j],%f18		! 3/ 7/ 5:Tmp=X[0,1]>>>24
 | 
						|
	or		$tmp2,$b,$b
 | 
						|
	add		$tmp1,$e,$e
 | 
						|
	 fpadd32	@X[$j],@X[$j],@X[$j]		! 4/ 8/ 6:X[0,1]<<=1
 | 
						|
___
 | 
						|
$code.=<<___ if ($i&1);
 | 
						|
	sll		$a,5,$tmp0			!! $i
 | 
						|
	ld		[$Xfer+`4*($i%16)`],$Xi
 | 
						|
	srl		$a,27,$tmp1
 | 
						|
	add		$tmp0,$e,$e
 | 
						|
	 fmul8ulx16	%f18,$fmul,%f18			! 5/10/ 7:Tmp>>=7, Tmp&=1
 | 
						|
	and		$c,$b,$tmp0
 | 
						|
	add		$tmp1,$e,$e
 | 
						|
	 fpadd32	$K,@X[$l],%f20			!
 | 
						|
	sll		$b,30,$tmp2
 | 
						|
	or		$c,$b,$tmp1
 | 
						|
	 fxors		@X[($k+13)%16],@X[$k],@X[$k]	!-1/-1/-1:X[0]^=X[13]
 | 
						|
	srl		$b,2,$b
 | 
						|
	and		$d,$tmp1,$tmp1
 | 
						|
	 fxor		%f18,@X[$j],@X[$j]		! 8/14/10:X[0,1]|=Tmp
 | 
						|
	add		$Xi,$e,$e
 | 
						|
	or		$tmp1,$tmp0,$tmp1
 | 
						|
	or		$tmp2,$b,$b
 | 
						|
	add		$tmp1,$e,$e
 | 
						|
	 std		%f20,[$Xfer+`4*$l`]		!
 | 
						|
___
 | 
						|
}
 | 
						|
 | 
						|
# If there is more data to process, then we pre-fetch the data for
 | 
						|
# next iteration in last ten rounds...
 | 
						|
sub BODY_70_79 {
 | 
						|
my ($i,$a,$b,$c,$d,$e)=@_;
 | 
						|
my $j=$i&~1;
 | 
						|
my $m=($i%8)*2;
 | 
						|
 | 
						|
$j=($j+16)%16;
 | 
						|
 | 
						|
$code.=<<___ if ($i==70);
 | 
						|
	sll		$a,5,$tmp0			!! $i
 | 
						|
	ld		[$Xfer+`4*($i%16)`],$Xi
 | 
						|
	srl		$a,27,$tmp1
 | 
						|
	add		$tmp0,$e,$e
 | 
						|
	 ldd		[$inp+64],@X[0]
 | 
						|
	xor		$c,$b,$tmp0
 | 
						|
	add		$tmp1,$e,$e
 | 
						|
	sll		$b,30,$tmp2
 | 
						|
	xor		$d,$tmp0,$tmp1
 | 
						|
	srl		$b,2,$b
 | 
						|
	add		$tmp1,$e,$e
 | 
						|
	or		$tmp2,$b,$b
 | 
						|
	add		$Xi,$e,$e
 | 
						|
 | 
						|
	and		$inp,-64,$nXfer
 | 
						|
	inc		64,$inp
 | 
						|
	and		$nXfer,255,$nXfer
 | 
						|
	alignaddr	%g0,$align,%g0
 | 
						|
	add		$base,$nXfer,$nXfer
 | 
						|
___
 | 
						|
$code.=<<___ if ($i==71);
 | 
						|
	sll		$a,5,$tmp0			!! $i
 | 
						|
	ld		[$Xfer+`4*($i%16)`],$Xi
 | 
						|
	srl		$a,27,$tmp1
 | 
						|
	add		$tmp0,$e,$e
 | 
						|
	xor		$c,$b,$tmp0
 | 
						|
	add		$tmp1,$e,$e
 | 
						|
	sll		$b,30,$tmp2
 | 
						|
	xor		$d,$tmp0,$tmp1
 | 
						|
	srl		$b,2,$b
 | 
						|
	add		$tmp1,$e,$e
 | 
						|
	or		$tmp2,$b,$b
 | 
						|
	add		$Xi,$e,$e
 | 
						|
___
 | 
						|
$code.=<<___ if ($i>=72);
 | 
						|
	 faligndata	@X[$m],@X[$m+2],@X[$m]
 | 
						|
	sll		$a,5,$tmp0			!! $i
 | 
						|
	ld		[$Xfer+`4*($i%16)`],$Xi
 | 
						|
	srl		$a,27,$tmp1
 | 
						|
	add		$tmp0,$e,$e
 | 
						|
	xor		$c,$b,$tmp0
 | 
						|
	add		$tmp1,$e,$e
 | 
						|
	 fpadd32	$VK_00_19,@X[$m],%f20
 | 
						|
	sll		$b,30,$tmp2
 | 
						|
	xor		$d,$tmp0,$tmp1
 | 
						|
	srl		$b,2,$b
 | 
						|
	add		$tmp1,$e,$e
 | 
						|
	or		$tmp2,$b,$b
 | 
						|
	add		$Xi,$e,$e
 | 
						|
___
 | 
						|
$code.=<<___ if ($i<77);
 | 
						|
	 ldd		[$inp+`8*($i+1-70)`],@X[2*($i+1-70)]
 | 
						|
___
 | 
						|
$code.=<<___ if ($i==77);	# redundant if $inp was aligned
 | 
						|
	 add		$align,63,$tmp0
 | 
						|
	 and		$tmp0,-8,$tmp0
 | 
						|
	 ldd		[$inp+$tmp0],@X[16]
 | 
						|
___
 | 
						|
$code.=<<___ if ($i>=72);
 | 
						|
	 std		%f20,[$nXfer+`4*$m`]
 | 
						|
___
 | 
						|
}
 | 
						|
 | 
						|
$code.=<<___;
 | 
						|
.section	".text",#alloc,#execinstr
 | 
						|
 | 
						|
.align	64
 | 
						|
vis_const:
 | 
						|
.long	0x5a827999,0x5a827999	! K_00_19
 | 
						|
.long	0x6ed9eba1,0x6ed9eba1	! K_20_39
 | 
						|
.long	0x8f1bbcdc,0x8f1bbcdc	! K_40_59
 | 
						|
.long	0xca62c1d6,0xca62c1d6	! K_60_79
 | 
						|
.long	0x00000100,0x00000100
 | 
						|
.align	64
 | 
						|
.type	vis_const,#object
 | 
						|
.size	vis_const,(.-vis_const)
 | 
						|
 | 
						|
.globl	sha1_block_data_order
 | 
						|
sha1_block_data_order:
 | 
						|
	save	%sp,-$frame,%sp
 | 
						|
	add	%fp,$bias-256,$base
 | 
						|
 | 
						|
1:	call	.+8
 | 
						|
	add	%o7,vis_const-1b,$tmp0
 | 
						|
 | 
						|
	ldd	[$tmp0+0],$VK_00_19
 | 
						|
	ldd	[$tmp0+8],$VK_20_39
 | 
						|
	ldd	[$tmp0+16],$VK_40_59
 | 
						|
	ldd	[$tmp0+24],$VK_60_79
 | 
						|
	ldd	[$tmp0+32],$fmul
 | 
						|
 | 
						|
	ld	[$ctx+0],$Actx
 | 
						|
	and	$base,-256,$base
 | 
						|
	ld	[$ctx+4],$Bctx
 | 
						|
	sub	$base,$bias+$frame,%sp
 | 
						|
	ld	[$ctx+8],$Cctx
 | 
						|
	and	$inp,7,$align
 | 
						|
	ld	[$ctx+12],$Dctx
 | 
						|
	and	$inp,-8,$inp
 | 
						|
	ld	[$ctx+16],$Ectx
 | 
						|
 | 
						|
	! X[16] is maintained in FP register bank
 | 
						|
	alignaddr	%g0,$align,%g0
 | 
						|
	ldd		[$inp+0],@X[0]
 | 
						|
	sub		$inp,-64,$Xfer
 | 
						|
	ldd		[$inp+8],@X[2]
 | 
						|
	and		$Xfer,-64,$Xfer
 | 
						|
	ldd		[$inp+16],@X[4]
 | 
						|
	and		$Xfer,255,$Xfer
 | 
						|
	ldd		[$inp+24],@X[6]
 | 
						|
	add		$base,$Xfer,$Xfer
 | 
						|
	ldd		[$inp+32],@X[8]
 | 
						|
	ldd		[$inp+40],@X[10]
 | 
						|
	ldd		[$inp+48],@X[12]
 | 
						|
	brz,pt		$align,.Laligned
 | 
						|
	ldd		[$inp+56],@X[14]
 | 
						|
 | 
						|
	ldd		[$inp+64],@X[16]
 | 
						|
	faligndata	@X[0],@X[2],@X[0]
 | 
						|
	faligndata	@X[2],@X[4],@X[2]
 | 
						|
	faligndata	@X[4],@X[6],@X[4]
 | 
						|
	faligndata	@X[6],@X[8],@X[6]
 | 
						|
	faligndata	@X[8],@X[10],@X[8]
 | 
						|
	faligndata	@X[10],@X[12],@X[10]
 | 
						|
	faligndata	@X[12],@X[14],@X[12]
 | 
						|
	faligndata	@X[14],@X[16],@X[14]
 | 
						|
 | 
						|
.Laligned:
 | 
						|
	mov		5,$tmp0
 | 
						|
	dec		1,$len
 | 
						|
	alignaddr	%g0,$tmp0,%g0
 | 
						|
	fpadd32		$VK_00_19,@X[0],%f16
 | 
						|
	fpadd32		$VK_00_19,@X[2],%f18
 | 
						|
	fpadd32		$VK_00_19,@X[4],%f20
 | 
						|
	fpadd32		$VK_00_19,@X[6],%f22
 | 
						|
	fpadd32		$VK_00_19,@X[8],%f24
 | 
						|
	fpadd32		$VK_00_19,@X[10],%f26
 | 
						|
	fpadd32		$VK_00_19,@X[12],%f28
 | 
						|
	fpadd32		$VK_00_19,@X[14],%f30
 | 
						|
	std		%f16,[$Xfer+0]
 | 
						|
	mov		$Actx,$A
 | 
						|
	std		%f18,[$Xfer+8]
 | 
						|
	mov		$Bctx,$B
 | 
						|
	std		%f20,[$Xfer+16]
 | 
						|
	mov		$Cctx,$C
 | 
						|
	std		%f22,[$Xfer+24]
 | 
						|
	mov		$Dctx,$D
 | 
						|
	std		%f24,[$Xfer+32]
 | 
						|
	mov		$Ectx,$E
 | 
						|
	std		%f26,[$Xfer+40]
 | 
						|
	fxors		@X[13],@X[0],@X[0]
 | 
						|
	std		%f28,[$Xfer+48]
 | 
						|
	ba		.Loop
 | 
						|
	std		%f30,[$Xfer+56]
 | 
						|
.align	32
 | 
						|
.Loop:
 | 
						|
___
 | 
						|
for ($i=0;$i<20;$i++)	{ &BODY_00_19($i,@V); unshift(@V,pop(@V)); }
 | 
						|
for (;$i<40;$i++)	{ &BODY_20_39($i,@V); unshift(@V,pop(@V)); }
 | 
						|
for (;$i<60;$i++)	{ &BODY_40_59($i,@V); unshift(@V,pop(@V)); }
 | 
						|
for (;$i<70;$i++)	{ &BODY_20_39($i,@V); unshift(@V,pop(@V)); }
 | 
						|
$code.=<<___;
 | 
						|
	tst		$len
 | 
						|
	bz,pn		`$bits==32?"%icc":"%xcc"`,.Ltail
 | 
						|
	nop
 | 
						|
___
 | 
						|
for (;$i<80;$i++)	{ &BODY_70_79($i,@V); unshift(@V,pop(@V)); }
 | 
						|
$code.=<<___;
 | 
						|
	add		$A,$Actx,$Actx
 | 
						|
	add		$B,$Bctx,$Bctx
 | 
						|
	add		$C,$Cctx,$Cctx
 | 
						|
	add		$D,$Dctx,$Dctx
 | 
						|
	add		$E,$Ectx,$Ectx
 | 
						|
	mov		5,$tmp0
 | 
						|
	fxors		@X[13],@X[0],@X[0]
 | 
						|
	mov		$Actx,$A
 | 
						|
	mov		$Bctx,$B
 | 
						|
	mov		$Cctx,$C
 | 
						|
	mov		$Dctx,$D
 | 
						|
	mov		$Ectx,$E
 | 
						|
	alignaddr	%g0,$tmp0,%g0
 | 
						|
	dec		1,$len
 | 
						|
	ba		.Loop
 | 
						|
	mov		$nXfer,$Xfer
 | 
						|
 | 
						|
.align	32
 | 
						|
.Ltail:
 | 
						|
___
 | 
						|
for($i=70;$i<80;$i++)	{ &BODY_20_39($i,@V); unshift(@V,pop(@V)); }
 | 
						|
$code.=<<___;
 | 
						|
	add	$A,$Actx,$Actx
 | 
						|
	add	$B,$Bctx,$Bctx
 | 
						|
	add	$C,$Cctx,$Cctx
 | 
						|
	add	$D,$Dctx,$Dctx
 | 
						|
	add	$E,$Ectx,$Ectx
 | 
						|
 | 
						|
	st	$Actx,[$ctx+0]
 | 
						|
	st	$Bctx,[$ctx+4]
 | 
						|
	st	$Cctx,[$ctx+8]
 | 
						|
	st	$Dctx,[$ctx+12]
 | 
						|
	st	$Ectx,[$ctx+16]
 | 
						|
 | 
						|
	ret
 | 
						|
	restore
 | 
						|
.type	sha1_block_data_order,#function
 | 
						|
.size	sha1_block_data_order,(.-sha1_block_data_order)
 | 
						|
.asciz	"SHA1 block transform for SPARCv9a, CRYPTOGAMS by <appro\@openssl.org>"
 | 
						|
.align	4
 | 
						|
___
 | 
						|
 | 
						|
# Purpose of these subroutines is to explicitly encode VIS instructions,
 | 
						|
# so that one can compile the module without having to specify VIS
 | 
						|
# extensions on compiler command line, e.g. -xarch=v9 vs. -xarch=v9a.
 | 
						|
# Idea is to reserve for option to produce "universal" binary and let
 | 
						|
# programmer detect if current CPU is VIS capable at run-time.
 | 
						|
sub unvis {
 | 
						|
my ($mnemonic,$rs1,$rs2,$rd)=@_;
 | 
						|
my ($ref,$opf);
 | 
						|
my %visopf = (	"fmul8ulx16"	=> 0x037,
 | 
						|
		"faligndata"	=> 0x048,
 | 
						|
		"fpadd32"	=> 0x052,
 | 
						|
		"fxor"		=> 0x06c,
 | 
						|
		"fxors"		=> 0x06d	);
 | 
						|
 | 
						|
    $ref = "$mnemonic\t$rs1,$rs2,$rd";
 | 
						|
 | 
						|
    if ($opf=$visopf{$mnemonic}) {
 | 
						|
	foreach ($rs1,$rs2,$rd) {
 | 
						|
	    return $ref if (!/%f([0-9]{1,2})/);
 | 
						|
	    $_=$1;
 | 
						|
	    if ($1>=32) {
 | 
						|
		return $ref if ($1&1);
 | 
						|
		# re-encode for upper double register addressing
 | 
						|
		$_=($1|$1>>5)&31;
 | 
						|
	    }
 | 
						|
	}
 | 
						|
 | 
						|
	return	sprintf ".word\t0x%08x !%s",
 | 
						|
			0x81b00000|$rd<<25|$rs1<<14|$opf<<5|$rs2,
 | 
						|
			$ref;
 | 
						|
    } else {
 | 
						|
	return $ref;
 | 
						|
    }
 | 
						|
}
 | 
						|
sub unalignaddr {
 | 
						|
my ($mnemonic,$rs1,$rs2,$rd)=@_;
 | 
						|
my %bias = ( "g" => 0, "o" => 8, "l" => 16, "i" => 24 );
 | 
						|
my $ref="$mnemonic\t$rs1,$rs2,$rd";
 | 
						|
 | 
						|
    foreach ($rs1,$rs2,$rd) {
 | 
						|
	if (/%([goli])([0-7])/)	{ $_=$bias{$1}+$2; }
 | 
						|
	else			{ return $ref; }
 | 
						|
    }
 | 
						|
    return  sprintf ".word\t0x%08x !%s",
 | 
						|
		    0x81b00300|$rd<<25|$rs1<<14|$rs2,
 | 
						|
		    $ref;
 | 
						|
}
 | 
						|
 | 
						|
$code =~ s/\`([^\`]*)\`/eval $1/gem;
 | 
						|
$code =~ s/\b(f[^\s]*)\s+(%f[0-9]{1,2}),(%f[0-9]{1,2}),(%f[0-9]{1,2})/
 | 
						|
		&unvis($1,$2,$3,$4)
 | 
						|
	  /gem;
 | 
						|
$code =~ s/\b(alignaddr)\s+(%[goli][0-7]),(%[goli][0-7]),(%[goli][0-7])/
 | 
						|
		&unalignaddr($1,$2,$3,$4)
 | 
						|
	  /gem;
 | 
						|
print $code;
 | 
						|
close STDOUT;
 |